Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 53 (1953)

Artikel: Über ein Sterbegesetz, welches eine exakte Darstellung der Leibrenten

durch Zeitrentenwerte erlaubt

Autor: Jecklin, H. / Leimbacher, W.

DOI: https://doi.org/10.5169/seals-551082

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über ein Sterbegesetz, welches eine exakte Darstellung der Leibrenten durch Zeitrentenwerte erlaubt

Von H. Jecklin und W. Leimbacher, Zürich

Die Lidstonesche Z-Methode zur gruppenweisen Reserveberechnung basiert bekanntlich auf der Voraussetzung, dass die temporäre Leibrente sich genähert darstellen lasse in der Gestalt

$$\mathbf{a}_{x\overline{n}} \sim A_n + q_x B_n. \tag{1}$$

Hierin bedeuten q_x die einjährige Sterbenswahrscheinlichkeit des Eintrittsalters x, A_n und B_n Grössen, die nur von n, also nicht von x abhängig sind, somit bei gegebenem n Konstanten darstellen.

Man kann sich nun fragen, ob es durch analytische Funktionen wiederzugebende Absterbeordnungen gibt, welche die Darstellung (1) exakt erfüllen, so dass also

Nachdem

$$a_{x\overline{n}|} = A_n + q_x B_n.$$
 (2)
$$a_{x\overline{n}|} = \sum_{t=0}^{n-1} v^t {}_t p_x,$$

reduziert sich die Frage auf jene der exakten Darstellbarkeit der Erlebenswahrscheinlichkeiten in der Gestalt

$$_{t}p_{x}=a_{t}+q_{x}b_{t}.$$

Gesucht werden demnach diejenigen Absterbeordnungen l_x und die dazu gehörigen Funktionen a_t , b_t , welche den Bedingungen genügen

$$l_x < l_{x-1}, \qquad x = 1, 2, \dots, \omega.$$
 (3)

$$l_{x=0} = l_0, \quad l_{\omega} = 0.$$
 (4)

$$_{t}p_{x} = a_{t} + q_{x}b_{t}, \quad t = 0, 1, 2, \dots, \omega - 1 - x.$$
 (5)

Bedingung (5) kann auch geschrieben werden

$$l_{x+t} = \alpha_t l_x - \beta_t l_{x+1},$$
wobei $\alpha_t = a_t + b_t, \ \beta_t = b_t.$
(6)

Durch (6) wird ein System von linearen homogenen Differenzengleichungen mit konstanten Koeffizienten gegeben. Da das charakteristische Polynom der t-ten Gleichung eine algebraische Gleichung t-ten Grades darstellt, ist es nicht möglich, die allgemeine Lösung von (6) aufzusuchen und nachher diejenigen Lösungen l(x,t) auszusondern, welche von t unabhängig sind und (3) und (4) genügen. Wir gehen deshalb so vor, dass wir aus (6) mit Hilfe der Nebenbedingungen (3) und (4) notwendige Bedingungen für die Koeffizientenfunktionen α_t und β_t herleiten. Diese werden sich auch als hinreichend erweisen und die gesuchte Klasse von Absterbeordnungen l_x eindeutig bestimmen. Dabei erweist sich die Fallunterscheidung $\omega < \infty$ und $\omega = \infty$ als nützlich.

Sei vorerst $\omega < \infty$. Für $x = \omega$ und $x = \omega - 1$ folgt dann aus (6):

$$l_{\omega+t} = -\beta_t l_{\omega+1},$$

$$l_{\omega+t-1} = \alpha_t l_{\omega-1}.$$
(7)

Weil $l_{\omega-1} \neq 0$ folgt hieraus

$$\alpha_{t+1} = c\beta_t$$
, wobei $c = -\frac{l_{\omega+1}}{l_{\omega-1}}$. (8)

Somit kann (6) wie folgt vereinfacht werden:

$$l_{x+t} = c \beta_{t-1} l_x - \beta_t l_{x+1}. \tag{9}$$

Setzt man hier $x + t = \omega$, so ergibt sich, dass

$$c\,\beta_{\boldsymbol{\omega}-\boldsymbol{x}-1}\,l_{\boldsymbol{x}} = \beta_{\boldsymbol{\omega}-\boldsymbol{x}}\,l_{\boldsymbol{x}+1}.\tag{10}$$

Wäre nun für einen Wert $x < \omega$, der mit ξ bezeichnet sei, $\beta_{\omega-\xi}$ gleich Null, so müsste wegen (10) auch $c \beta_{\omega-\xi-1}$ verschwinden, und für $t = \omega - \xi$ würde aus (9) folgen, dass $l_{x+(\omega-\xi)} \equiv 0$

für alle x, was für $x < \xi$ offenbar einen Widerspruch ergibt. Daher ist für alle x mit $0 < x < \omega$ die Grösse $\beta_{\omega-x}$ von Null verschieden, und aus (10) folgt

$$\frac{l_{x+1}}{l_x} = p_x = c \frac{\beta_{\omega-x-1}}{\beta_{\omega-x}}, \quad 0 < x < \omega < \infty.$$
 (11)

Somit ist

$$l_x = l_0 \prod_{k=0}^{x-1} p_k = l_0 c^x \frac{\beta_{\omega - x}}{\beta_{\omega}}, \tag{12}$$

was mit (9) die Rekursionsformel liefert

$$c^{t-1}\beta_{\omega-x-t} = \beta_{t-1}\beta_{\omega-x} - \beta_t \beta_{\omega-x-1}. \tag{13}$$

Setzt man $\omega - x = t + 1$, so ergibt sich schliesslich

$$c^{t-1}\beta_1 = \beta_{t-1}\beta_{t+1} - \beta_t^2. \tag{14}$$

Es wird sich zeigen, dass diese Differenzengleichung 2. Ordnung und 2. Grades nicht nur notwendig, sondern auch hinreichend ist für das Bestehen der Beziehungen (4) und (5), dies immer noch unter der Voraussetzung $\omega < \infty$.

Nunmehr suchen wir die Anfangsbedingungen, welchen die Lösung von (14) gehorchen muss. Für t = 1 folgt aus (9)

$$l_{x+1}(1+\beta_1) = c\,\beta_0\,l_x. \tag{15}$$

Wenn hier nicht sämtliche Koeffizienten von l_x und l_{x+1} verschwinden, so ist $l_{x+1}/l_x = p_x = \text{konstant}$. Dies führt aber, wie leicht zu sehen, auf den vorläufig ausgeschlossenen Fall $\omega = \infty$, $(l_x = l_0 k^x)$.

Also ist
$$\beta_1 = -1. \tag{16}$$

Zusammen mit (16) führt der Ansatz $\beta_t = g(t) c^{f(t)}$ auf folgende Lösung der Differenzengleichung (14):

$$\beta_t = -\frac{\sin zt}{\sin z} \, c^{\frac{t-1}{2}},\tag{17}$$

wobei der Scharparameter z reell sein kann (trigonometrischer Sinus) oder rein imaginär (hyperbolischer Sinus); auch der z=0 entsprechende Grenzwert $\beta_t=-tc^{\frac{t-1}{2}}$ ist eine Lösung. Da in (17) eine beliebige Konstante (z) auftritt und zugleich eine Anfangsbedingung befriedigt wird, hat (14) keine andere Lösung als (17).

Mit Hilfe von (12), (17) und $\sqrt{c} = k$ ergibt sich nun die gesuchte Absterbeordnung

$$l_x = l_0 \frac{\sin z(\omega - x)}{\sin z\omega} k^x, \quad 0 < x < \omega < \infty,$$

$$|z| > 0, \quad z \text{ reell oder imaginar,}$$
(18)

und für $z \rightarrow 0$

$$l_x = l_0 \left(1 - \frac{x}{\omega}\right) k^x, \quad 0 < x < \omega < \infty. \quad (19)$$

Man verifiziert leicht, dass (18) und (19) zusammen mit den entsprechenden Koeffizientenfunktionen (8) und (17) der Gleichung (6) genügen, somit sind für ein festes $\omega < \infty$ sämtliche l_x gefunden, welche die Bedingungen (4) und (5) befriedigen.

Anmerkung: Herrn Dr. H. R. Haegi, welcher (18) und (19) auf anderem Wege gefunden, sind die Verfasser für die Aufdeckung eines Irrtums zu Dank verpflichtet.

Hat k insbesondere den Wert 1, so haben wir als Spezialfall von (19) die Sterbeformel von Moivre

$$l_x = l_0 \left(1 - \frac{x}{\omega} \right). \tag{20}$$

Geht man in (18) oder (19) zur Grenze $\omega = \infty$ über, so genügt auch die entstehende Lösung

$$l_x = l_0 k^x, \quad 0 < k < 1,$$
 (21)

zusammen mit

$$\alpha_t - k\beta_t = k^t$$

den gegebenen Bedingungen. Und zwar gibt es für $\omega = \infty$ im wesentlichen keine anderen Lösungen, wie die folgende Überlegung zeigt.

Es sei $\omega = \infty$. Unter der für praktische Anwendungen überhaupt keine Einschränkung bedeutenden zusätzlichen Voraussetzung

$$p_x < p_{x-1}$$
 für alle $x > \xi$ (22)

existiert der Limes

$$\lim_{x \to \infty} p_x = p, \quad 0 \leqslant p < 1 \tag{23}$$

da die Folge $\{p_x\}_{x=\xi+1}^{\infty}$ beschränkt und monoton ist. Geht man nun in

$$\frac{l_{x+t}}{l_x} = \alpha_t - \beta_t \frac{l_{x+1}}{l_x}$$

zur Grenze $x = \infty$ über, so folgt

$$p^t = \alpha_t - \beta_t \, p \,, \tag{24}$$

d. h. mit p=k genau die gleiche Relation wie in (21). Nun bestimmen aber zwei Folgen $\{\alpha_t\}$ und $\{\beta_t\}$ die Funktion l_x unter den Bedingungen (4)–(5) eindeutig: Die aus (6) sich ergebenden Gleichungen

$$l_{2} = \alpha_{2} l_{0} - \beta_{2} l_{1}$$

$$l_{3} = \alpha_{2} l_{1} - \beta_{2} l_{2}$$

$$l_{3} = \alpha_{3} l_{0} - \beta_{3} l_{1}$$
(25)

bestimmen eindeutig l_1 ; da weiter l_0 durch (4) gegeben ist, folgt aus (6) eindeutig für alle t > 1 $l_t = \alpha_t \, l_0 - \beta_t \, l_1 \quad \text{w. z. b. w.} \tag{26}$

Für die Darstellung einer effektiven Absterbeordnung beschränken wir uns aus praktischen Gründen auf (19). Es folgt dann

$$_{t}p_{x} = \frac{l_{x+t}}{l_{x}} = \frac{\omega - x - t}{\omega - x} k^{t} = \left(1 - \frac{t}{\omega - x}\right) k^{t}. \tag{27}$$

Also ist

$$a_{x\overline{n}|} = \sum_{t=0}^{n-1} v^t p_x = \sum_{t=0}^{n-1} (vk)^t - \frac{1}{\omega - x} \sum_{t=0}^{n-1} t(vk)^t,$$
 (28)

oder, wenn $vk = v^*$ gesetzt wird

$$a_{x\overline{n}|} = a_{\overline{n}|}^* - \frac{1}{\omega - x} (Ia)_{\overline{n-1}|}^*,$$
 (29)

womit eine Darstellung der temporären Leibrente durch Zeitrentenwerte gegeben ist.

Es erhebt sich nun die praktische Frage, ob eine Absterbeordnung oder doch ein für die Praxis wesentlicher Teil einer solchen, durch (19) befriedigend wiedergegeben werden kann. In diesem Fall wäre es möglich, die temporäre Leibrente und alle Versicherungswerte, die sich als Funktion derselben darstellen lassen, ohne Kommutationszahlen nach (29) zu bestimmen. Insbesondere brauchte man auch nicht zweidimensionale (nach x und n) tabellierte Zusammenstellungen für die Belange der Praxis. Für die Rentenwerte z. B. würde eine Tabelle, wie sie am Schluss der Arbeit beigegeben ist, genügen.

Um die Konstanten ω und k für eine Sterbetafel zu bestimmen, schreiben wir (19) in der Gestalt

$$l_0 k^x - l_x = \frac{l_0}{\alpha} x k^x.$$

Sind, ausser l_0 , noch zwei weitere Werte, l_{x_1} und l_{x_2} , gegeben, so ist

$$\frac{l_0 k^{x_1} - l_{x_1}}{l_0 k^{x_2} - l_{x_2}} = \frac{x_1}{x_2} k^{x_1 - x_2}$$

oder

$$k^{x_1} \frac{l_0}{l_{x_1}} \left(1 - \frac{x_1}{x_2} \right) + k^{x_1 - x_2} \frac{l_{x_2}}{l_{x_1}} \frac{x_1}{x_2} = 1.$$
 (30)

Damit haben wir eine trinomische Gleichung zur Bestimmung von k. Da eine Absterbeordnung in ihrem für die Praxis wesentlichen Teil konkav fallend ist, muss hier $\omega/(\omega-1) > k > 1$ sein, was aus (19) sofort ersichtlich.

Wir setzen

$$\frac{l_0}{l_{x_1}} \left(1 - \frac{x_1}{x_2} \right) = A, \qquad \frac{l_{x_2}}{l_{x_1}} \frac{x_1}{x_2} = B,$$

wodurch (30) übergeht in

Weiter setzt man

$$k^{x_1}A + k^{x_1-x_2}B = 1. (31)$$

$$k^{x_1} A = \sin^2 \alpha, \quad k^{x_1 - x_2} B = \cos^2 \alpha.$$
 (32)

Dann ist offenbar

$$k^{x_1^2-x_1x_2} A^{x_1-x_2} = (\sin \alpha)^{2(x_1-x_2)},$$

$$k^{x_1^2 - x_1 x_2} B^{x_1} = (\cos \alpha)^{2x_1},$$

$$\lambda = \frac{A^{x_1 - x_2}}{B^{x_1}} = \frac{(l_{x_1} x_2)^{x_2}}{(l_{x_2} x_1)^{x_1}} \left[l_0 (x_2 - x_1) \right]^{x_1 - x_2} = \frac{(\sin \alpha)^{2(x_1 - x_2)}}{(\cos \alpha)^{2x_1}}.$$
 (33)

Man berechnet die Grösse λ , wozu alle benötigten Werte vorgegeben sind, und sucht dann den Winkel α , welcher nach Relation (33) der Grösse λ entspricht. Ist α gefunden, so bestimmt man k aus (32), und ω ist dann durch die Ausgangsgleichungen festgelegt. Diese Methode der Lösung trinomischer Gleichungen höheren Grades geht auf Gauss zurück.

Für ein numerisches Beispiel wählen wir die Tafel S. M. 1939/44 und betrachten hier speziell das Intervall von x=30 bis x=60. Indem wir $l_{30}=l_0$ setzen und $x_1=15$, $x_2=30$ wählen, ist

$$l_0 = 89 \cdot 014$$
 , $l_{15} = 83 \cdot 868$, $l_{30} = 69 \cdot 435$.

Es ist dann

$$\lambda = \frac{(83.868 \cdot 30)^{30}}{(69.435 \cdot 15)^{15} \cdot (89.014 \cdot 15)^{15}},$$

resp.

$$\sqrt[15]{\lambda} = \frac{(83.868 \cdot 30)^2}{69.435 \cdot 89.014 \cdot 225} = 4,55214.$$

Nun soll gelten

$$\frac{(\sin \alpha)^{-30}}{(\cos \alpha)^{30}} = \lambda$$

oder

$$\frac{1}{\sin \alpha \cos \alpha} = \sqrt[30]{\lambda} = \sqrt{4.55214} = 2.13358,$$

$$\sin \alpha \cos \alpha = \frac{1}{2,13358} = 0,4687.$$

Hieraus ergibt sich, dass α entweder 34° 50′ oder 55° 10′ sein muss.

Ein k > 1 wird vom grösseren Wert geliefert, welcher daher in Betracht kommt. Es bestimmt sich k nach (32): es ist

$$A = \frac{89 \cdot 014}{83 \cdot 868} \left(1 - \frac{15}{30} \right) = 0,53068,$$

$$\sin^2 \alpha = 0,67371,$$

$$k^{15} = \frac{0,67371}{0,53068} = 1,2695, \quad k = 1,0158,$$

und schliesslich ist

$$\omega = \frac{l_0 \, x_1 \, k^{x_1}}{l_0 \, k^{x_1} - l_{x_1}} = \frac{89 \cdot 014 \cdot 15 \cdot 1,2695}{89 \cdot 014 \cdot 1,2695 - 83 \cdot 868} = 58,2.$$

Daraus erhalten wir für das betrachtete Tafelintervall folgende Zahlen, welche mit den entsprechenden l_x -Werten der Tafel S. M. 1939/44 in Vergleich gestellt sind:

$$\begin{array}{lll} l_x = l_0 \left(1 - \frac{x}{\omega}\right) k^x & \text{Tafel S. M. 1939/44} \\ l_0 &= 89 \cdot 014 & l_{30} = 89 \cdot 014 \\ l_5 &= 88 \cdot 108 & l_{35} = 87 \cdot 651 \\ l_{10} &= 86 \cdot 435 & l_{40} = 86 \cdot 063 \\ l_{15} &= 83 \cdot 882 & l_{45} = 83 \cdot 868 \\ l_{20} &= 80 \cdot 320 & l_{50} = 80 \cdot 654 \\ l_{25} &= 75 \cdot 589 & l_{55} = 76 \cdot 059 \\ l_{30} &= 69 \cdot 503 & l_{60} = 69 \cdot 435 \end{array}$$

Obwohl die Übereinstimmung nicht durchwegs gut ist und ausserhalb des Intervalls verständlicherweise rasch schlecht wird, sei doch der Versuch gemacht, Rentenwerte und Prämien der gemischten Versicherung innerhalb der Grenzen x=20 und x+n=70 zu rechnen (i=3%). Es ist also linksseitig in der nachfolgenden Zusammenstellung

$$a_{x\overline{n}|} = a_{\overline{n}|}^* - \frac{1}{\omega - x} (Ia)_{\overline{n-1}|}^*.$$
 (29)

Dabei ist, um die normalen Eintrittsalter x benutzen zu können, $\omega = 88,2$ gesetzt.

$$\mathbf{a}_{\overline{n}|}^{*} = \sum_{t=0}^{n-1} v^{*t}, \qquad (Ia)_{\overline{n-1}|}^{*} = \sum_{t=0}^{n-1} tv^{*t},$$

$$v^{*} = vk = 0.970874 \cdot 1.0158 = 0.986214.$$

Die rechtsseitigen Angaben der Zusammenstellung geben vergleichsweise die nach der offiziellen Tafel S. M. 1939/44 à 3 % gerechneten Werte.

		Nach For	rmel (29)	Nach S. M. 1939/44, 3%		
x	n	$a_{x\overline{n} }$	$\frac{1}{a_{x\overline{n} }}$	$a_{x\overline{n} }$	$\frac{1}{ a_{x\overline{n} }}$	
			0/00		0/00	
30	15	12,0545	82,96	12,032	83,11	
40	15	11,7328	85,23	11,807	84,70	
20	20	15,2485	65,58	14,931	66,97	
30	20	14,8512	67,33	14,845	67,36	
35	20	14,5968	68,51	14,685	68,10	
40	20	14,2948	69,96	14,398	69,45	
50	20	13,4206	74,51	13,307	75,15	
35	25	16,7595	59,67	16,880	59,24	
30	30	18,9863	52,67	19,028	$52,\!55$	
40	30	17,8221	56,11	17,864	55,98	

Die Übereinstimmung ist, wie ersichtlich, ganz ordentlich.

Da beim Sterbegesetz (19) die einjährige Sterbenswahrscheinlichkeit gegeben ist durch

$$q_x = 1 - p_x = 1 - k \left(1 - \frac{1}{\omega - x} \right) \tag{34}$$

gestaltet sich die Berechnung des mittleren Eintrittsalters \overline{x} nach der Relation

$$q_{\bar{x}} = \frac{1}{n} \sum q_x$$

wie sie bei der Z- und t-Methode der gruppenweisen Reserveberechnung Verwendung findet, hier besonders einfach.

Es folgt nämlich aus der Gleichsetzung

$$n\left(1-k\left(1-\frac{1}{\omega-\bar{x}}\right)\right) = \sum \left(1-k\left(1-\frac{1}{\omega-x}\right)\right)$$

die einfache Beziehung

$$\frac{1}{\omega - \bar{x}} = \frac{1}{n} \sum \frac{1}{\omega - x} \quad \text{oder} \quad \bar{x} = \omega - \frac{n}{\sum (\omega - x)^{-1}}. \quad (35)$$

Die Berechnung des mittleren Eintrittsalters ergibt sich also einfach aus einer harmonischen Mittelbildung über die Differenzen der Eintrittsalter zu ω . — Aus der prospektiven Reserveformel der gemischten Versicherung

$$_{t}V_{x\overline{n}|}=1-\frac{a_{x+t,\overline{n-t}|}}{a_{x\overline{n}|}}$$

folgt für die Anwendung der Z-Methode (Gruppen gleicher restlicher Dauer n-t), wenn S die einzelne Versicherungssumme bezeichnet

$$\sum S_{t} V_{x\overline{n}|} = \sum S - \left(a_{\overline{n-t}|}^{*} - \frac{1}{\omega - \overline{x} - t} (Ia)_{\overline{n-t-1}|}^{*} \right) \sum \frac{S}{a_{x\overline{n}|}}$$
(36)

wobei die während der ganzen Versicherungsdauer konstanten Werte $1/a_{x\overline{n}|}$ mit Vorteil nach (29) bestimmt werden. — Die t-Methode der gruppenweisen Reserveberechnung (Gruppen gleicher abgelaufener Dauer t) basiert auf der retrospektiven Reserveformel. Für die gemischte Einzelversicherung gilt hier

$$egin{align*} & _{t}V_{\overline{xn}|} = rac{a_{x\overline{t}|}}{a_{x\overline{n}|}} rac{D_{x}}{D_{x+t}} - rac{D_{x}}{D_{x+t}} + 1 = \ & = rac{1}{a_{x\overline{n}|}} \left[a_{t|}^{*} - rac{1}{\omega - x} \left(I \, a
ight)_{t-1|}^{*}
ight] rac{\omega - x}{\omega - x - t} \, v^{*-t} - rac{\omega - x}{\omega - x - t} \, v^{*-t} + 1, \end{split}$$

oder wenn wir schreiben

$$\begin{split} v^{*-t} &= r^{*t}, \qquad \mathbf{a}_{\overline{n}|}^{*} \, v^{*-n} = s_{\overline{n}|}^{*}, \qquad (Ia)_{\overline{n-1}|}^{*} \, v^{*-n} = (Is)_{\overline{n-1}|}^{*}, \\ {}_{t}V_{\overline{xn}|} &= \frac{\omega - x}{\omega - x - t} \left[s_{\overline{t}|}^{*} - \frac{1}{\omega - x} \, (Is)_{\overline{t-1}|}^{*} \right] \frac{1}{\mathbf{a}_{x\overline{n}|}} - \left(\frac{\omega - x}{\omega - x - t} \, r^{*t} - 1 \right). \end{split}$$

Daraus folgt die Gruppenreserveformel

$$(37)$$

$$t = 1 \setminus \sum S$$

$$\sum S_t V_{x\overline{n}|} = \frac{\omega - \overline{x}}{\omega - \overline{x} - t} \left[s_{\overline{t}|}^{*} - \frac{1}{\omega - \overline{x}} (I s)_{\overline{t-1}|}^{*} \right] \sum \frac{S}{a_{x\overline{n}|}} - \left(\frac{\omega - \overline{x}}{\omega - \overline{x} - t} r^{*t} - 1 \right) \sum S.$$

Die während des Versicherungsablaufs konstanten Werte $1/a_{x\overline{n}|}$ werden auch hier mit Vorteil nach (29) berechnet; das mittlere Alter \overline{x} bestimmt man nach (35).

Nachstehend ist ein numerisches Beispiel gegeben für eine Gruppe von 10 gemischten Versicherungen, wobei angenommen ist, dass die Versicherungssumme einheitlich Fr. 10·000 betrage ($\omega = 88,2, k = 1,0158$).

			10.000	Genaue Reserven			
		1	* 1	nach S.	M. 1939/44	à 3%	
x	n	${\omega - x}$ a	$\frac{1}{m} - \frac{1}{\omega - x} (1a) \frac{1}{n-1}$	$10.000_{5}V_{x\overline{n} }$	$10.000_{10}V_{x\overline{n} }$	$10{\cdot}000_{15}V_{x\overline{n} }$	
30	15	0,0172	829,6	2.815,8	6.115,4	10.000,0	
40	15	0,0207	852,3	2.813,6	6.160,2	10.000,0	
20	20	0,0147	655,8	1.928,2	4.194,0	6.862,2	
30	20	0,0172	673,3	1.946,1	4.217,9	6.866,3	
35	20	0,0188	685,1	1.959,8	4.222,0	6.855,9	
40	20	0,0207	699,6	1.967,5	4.209,6	6.826,6	
50	20	0,0262	745,1	1.974,9	4.170,0	6.716,8	
35	25	0,0188	596,7	1.470,4	3.146,9	5.061,0	
30	30	0,0172	526,7	1.128,9	2.438,5	3.920,5	
40	30	0,0207	561,1	1.216,4	2.550,9	4.022,1	
	\sum :	0,1922	6.825,3	19.221,6	41.425,4	67.131,4	
$\frac{1}{\omega - i}$	$\overline{\overline{x}} = \overline{x}$	$\frac{0,1922}{10} =$	= $0,01922$, ω -	$-\overline{x} = 52.0$,	$\overline{x} = \omega - 5$	52.0 = 36.2.	
t		$\frac{\omega - \overline{x}}{\omega - \overline{x} - t}$	$s_{\overline{t} }^* - \frac{1}{\omega - \overline{x}} (1)$	$(s)^*_{\overline{t-1} } \qquad r^*$	$\sum S_t V_a$	\overline{m} nach (37)	
5		1,1064	5,0160	1,07	19 19	288,4	
10		1,2381	9,8915	1,148	89 41	.337,4	
15		1,4054	14,6164	1,23	15 67	·134,6	

Die Summen der Einzelreserven und die Gruppenreserven differieren wie ersichtlich nur unwesentlich. Das darf jedoch nicht darüber hinwegtäuschen, dass bei anderer Altersverteilung und unterschiedlichen Versicherungssummen die Resultate erheblich ungünstiger ausfallen können. Doch könnte die hier entwickelte Methode bei Volksversicherungsportefeuilles, die einheitlich gemischte Versicherungen und nicht stark differierende Versicherungssummen umfassen, vielleicht gute Dienste leisten.

Anhang

Zeitrenten-Hilfstafel

 $i=3\,\%$, v=0.970874 , k=1.0158 , $vk=v^*=0.986214$

t	v^{*t}	tv^{*t}	n	$a_{\overline{n} }^*$	$(Ia)^*_{\overline{n-1} }$
0	1	0	1	1	0
1	0,986 214	0,986 214	2	1,986 214	0,986 214
2	0,972 618	1,946 236	3	2,958 832	2,931 450
3	0,959 209	2,877 627	4	3,918 041	5,809 077
4	0,945 985	3,783 940	5	4,864 026	9,593 017
5	0,932 944	4,664 720	6	5,796 970	14,257 737
6	0,920 082	5,520 492	7	6,717 052	19,778 229
7	0,907 397	6,351 779	8	7,624 449	26,130 008
8	0,894 888	7,159 104	9	8,519 337	33,289 112
9	$0,\!882551$	7,942959	10	9,401 888	41,232071
10	0,870 384	8,703 840	11	10,272 272	49,935 911
11	0,858 384	$9,\!442224$	12	11,130 656	59,378 135
12	$0,\!846551$	10,158 612	13	11,977 207	69,536 747
13	0,834 880	10,853440	14	12,812 087	80,390 187
14	0,823 370	11,527 180	15	13,635 457	91,917 367
15	0,812 019	$12,\!180285$	16	14,447 476	104,097 652
16	0,800 824	12,813 184	17	15,248 300	116,910 836
17	0,789 784	$13,\!426328$	18	16,038 084	130,337 164
18	0,778 896	14,020 128	19	16,816 980	144,357 292
19	0,768158	14,595002	20	17,585 138	158,952 294
20	0,757 568	15,151 360	21	18,342 706	174,103 654
21	0,747 124	15,689 604	22	19,089 830	189,793 258
22	0,736 824	16,210 128	23	19,826 654	206,003 386
23	0,726 666	16,713 318	24	20,553 320	222,716 704
24	0,716 648	$17,\!199552$	25	21,269 968	239,916 256
25	0,706 768	17,669 200	26	21,976 736	257,585 456
26	0,697024	$18,\!122624$	27	22,673 760	275,708 080
27	$0,\!687415$	$18,\!560205$	28	23,361 175	294,268 285
28	0,677 938	18,982264	29	24,039 113	313,250 549
29	0,668 592	19,389 168	30	24,707 705	332,639 717