Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 53 (1953)

Artikel: Über die Variation der Invaliditätswahrscheinlichkeiten bei der

Berechnung des Barwertes anwartschaftlicher Invalidenrenten und

ihrer Prämien

Autor: Saxer, Walter

DOI: https://doi.org/10.5169/seals-551017

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über die Variation der Invaliditätswahrscheinlichkeiten bei der Berechnung des Barwertes anwartschaftlicher Invalidenrenten und ihrer Prämien

Von Walter Saxer, Zürich

Die numerischen Berechnungen für diese Untersuchung wurden in verdankenswerter Weise von Herrn Fritz Buser, Mathematiker der VITA, Lebensversicherungs-Aktiengesellschaft in Zürich, ausgeführt.

Es ist wohlbekannt und statistisch erwiesen, dass die Invaliditätswahrscheinlichkeit in erheblichem Masse vom Berufe der Beobachteten und auch von der Aufnahme- und Invalidierungspraxis einer Versicherungsinstitution abhängt. Neuere statistische Erfahrungen haben auch gezeigt, dass eine enge Korrelation zwischen der Konjunkturlage eines Landes und dem Verlaufe der Invaliditätsversicherung besteht, indem Staat und private Firmen in wirtschaftlich schlechten Zeiten die Tendenz haben, möglichst viele Angestellte und Arbeiter zu pensionieren, und umgekehrt, sie bei Hochkonjunktur möglichst lange im Arbeitsprozess zu behalten. Deshalb ist es vor allem bei der Gründung von Pensionskassen von Bedeutung, lediglich die Invaliditätswahrscheinlichkeiten zu variieren und die Abhängigkeit der Kosten der Versicherung von der Invalidität darzustellen.

Die Sterblichkeitskontrolle der Invaliden hat gezeigt, dass ihre Mortalität unmittelbar nach der Invaliderklärung erheblich über derjenigen der noch aktiven Versicherten liegt, um sich nach einigen Jahren derjenigen der Aktiven und später derjenigen der infolge Erreichens der Altersgrenze Pensionierten anzugleichen. Wenn man zuverlässige Budgets für Versicherungseinrichtungen und insbesondere für Pensionskassen aufstellen will, ist deshalb das folgende Vorgehen zu empfehlen: es wird die Anwartschaft der Aktiven auf Invalidenrenten berechnet, wobei dieselben als temporäre Renten bis zum Rücktrittsalter definiert werden, das in der Regel zwischen den Altern 60 und 70 liegen dürfte. Dazu kommt die Berechnung der Anwartschaft

auf Altersrenten, für deren Bestimmung für sämtliche Versicherte vom gleichen Geschlecht die gleichen Sterbenswahrscheinlichkeiten zu berücksichtigen sind. Wegen dieses grundsätzlichen Standpunktes sind moderne Pensionskassengrundlagen wie diejenigen von P. Nolfi (VZ 1950), EVK 1949 und 1950 und die Richttafeln für die Pensionsversicherung von Heubeck und Fischer 1948 (Verlag René Fischer, Weissenburg) so angelegt.

Wegen der vorhin erwähnten Unsicherheit bei der Annahme der Invaliditätswahrscheinlichkeit ist es häufig empfehlenswert, dieselben zu variieren unter Festhaltung der übrigen Grundlagen. Denn einlässliche Untersuchungen, wie z. B. diejenigen von H. Parthier, A. Urech und M. Haldy, E. Décastel, M. Ballenegger haben gezeigt, dass die Kosten einer Invaliditätsversicherung in erster Linie von den Invaliditätswahrscheinlichkeiten abhängen. Dank dieser Sachlage bestehen bereits einige Näherungsformeln für die Berechnung der Prämien von Invalidenrenten, wenn die Invaliditätswahrscheinlichkeiten variiert werden, die im folgenden kurz besprochen werden sollen.

In den Jahren 1925/35 haben amerikanische Mathematiker (J. D. Craig, J. T. Philipps, R. Henderson, A. Hunter) auf rein heuristischem Weg festgestellt, dass es bei der Berechnung der Prämien für Invalidenrenten unter sehr allgemeinen Voraussetzungen möglich sei, l_{x+t}^{aa} durch l_{x+t} zu ersetzen. $M. Jakob^{-1}$) hat nachgewiesen, dass der Grund dieser guten Approximation in der von Cantelli geschaffenen Theorie der Kapitalansammlung liegt. Dank dieser guten theoretischen Begründung dieser Näherungsformel durch Jakob wurde sie auch von Zwinggi²) in sein Lehrbuch aufgenommen.

Heubeck und Fischer haben in ihren Richttafeln festgestellt, dass die obige, von Jakob begründete Näherungsformel immerhin noch Unterschiede von 20 % und mehr gegenüber den exakten Werten ergibt. Sie haben deshalb eine andere, sehr brauchbare Näherungsformel für die approximative Berechnung der neuen Prämie für eine Invalidenrente, bezahlbar bis zu einem bestimmten Schlussalter, gegeben, sofern lediglich die Invaliditätswahrscheinlichkeit variiert wird und die

¹) M. Jakob: Sui metodi di approssimazione per il calcolo dei premi nelle assicurazioni d'invalidità. Berichte des 10. internationalen Aktuarkongresses, Rom 1934, 1. Bd., S. 304–322.

²) E. Zwinggi: Versicherungsmathematik. Verlag Birkhäuser, Basel, 1945. S. 80 und 81.

übrigen Grundlagen festgehalten werden. Sie fanden diese Formel mit Hilfe der χ^2 -Verteilung und einem heuristischen Ansatz, indem sie das Verhältnis der beiden zu den entsprechenden Invaliditätswahrscheinlichkeiten gehörigen exakten Prämien gleich dem Verhältnis dieser Wahrscheinlichkeiten im betreffenden Abschlussalter setzten.

Im folgenden gebe ich zwei neue, durchaus brauchbare und zweckmässige Näherungsformeln, die theoretisch lediglich auf dem Prinzip der Linearisierung des Problems beruhen, d. h. alle Glieder höherer Ordnung als erste Ordnung werden vernachlässigt. Diese Formeln besitzen auch einen gewissen Zusammenhang mit dem heuristischen Ansatz von Heubeck und Fischer, womit jedoch noch nicht behauptet sei, dass dadurch die Gründe für die guten Ergebnisse ihrer Näherungsformel endgültig abgeklärt seien.

Wir bezeichnen mit $i_x^{(1)}$ und $i_x^{(2)}$ die beiden Invaliditätswahrscheinlichkeiten von zwei verschiedenen Aktivitätsordnungen. Es handelt sich hier um die sogenannte abhängige Wahrscheinlichkeit gemäss der Bezeichnung von Karup. Diese Bezeichnung ist jedoch vom Standpunkte der modernen Wahrscheinlichkeitsrechnung aus gesehen unzweckmässig und irreführend, wenn sie auch Karup seinerzeit mit guten Gründen einführte. Bezeichnen wir nämlich mit q_x^{aa} die Todeswahrscheinlichkeit der Aktiven, so haben wir wiederum eine im Sinne von Karup abhängige Wahrscheinlichkeit. Die totale Ausscheidewahrscheinlichkeit beträgt dann $1-i_x-q_x^{aa}$, sofern keine übrigen Ausscheideursachen vorliegen. Dies beweist, dass es sich hier um unabhängige Wahrscheinlichkeiten im Sinne der modernen Wahrscheinlichkeitsrechnung handelt, weil bei der Berechnung der Wahrscheinlichkeit, entweder durch Tod oder durch Invalidität auszuscheiden, einfach beide Wahrscheinlichkeiten addiert werden dürfen. Bezeichnen wir umgekehrt mit i_x und q_x^{aa} die partiellen Ausscheidewahrscheinlichkeiten oder nach der Terminologie von Karup unabhängigen Ausscheidewahrscheinlichkeiten, so sind dieselben im Sinne der modernen Wahrscheinlichkeitsrechnung gerade abhängig. Denn mit ihrer Hilfe kann die totale Ausscheidewahrscheinlichkeit durch die Formel $(1-*i_x)(1-*q_x^{aa})$ bezeichnet werden, was lediglich einen Spezialfall des fundamentalen Theorems über die Addition abhängiger Wahrscheinlichkeiten im Sinne der modernen Wahrscheinlichkeitsrechnung darstellt 1).

¹) Vgl. z. B. W. Feller: An introduction to Probability theory and its applications. Verlag Wiley, New York, 1950, S. 60.

Um diese Kollision in den Bezeichnungen zu vermeiden, wäre es deshalb zweckmässig, die Grössen i_x und q_x^{aa} schlechthin als Wahrscheinlichkeiten und die Grössen $*i_x$ und $*q_x^{aa}$ als partielle Ausscheidewahrscheinlichkeiten zu bezeichnen. Wir werden im folgenden lediglich die Grössen i_x und q_x^{aa} benützen müssen und uns der eben eingeführten Bezeichnung bedienen.

Wir bezeichnen eine vorschüssige Invalidenrente vom jährlichen Betrage 1, bezahlbar bis zum Schlussalter s, sofern die Invalidität zwischen dem Alter x und s eintritt, mit $\ddot{a}_{x:s-x|}^{ai}$ und berechnen diesen Barwert mit der üblichen Formel

$$\ddot{a}_{x:\overline{s-x}|}^{ai} = rac{N_{x:\overline{s-x}|}^{ai}}{D_{x}^{aa}}$$
, $N_{x:\overline{s-x}|}^{ai} = \sum_{t=0}^{s-x+1} D_{x+t:\overline{s-x-t}|}^{ai}$,

wobei

$$D_{x+t:\overline{s-x-t}|}^{ai} = i_{x+t} \, l_{x+t}^{aa} \, v^{x+t+\frac{1}{2}} \, \ddot{a}_{x+t+\frac{1}{2}:\overline{s-x-t-\frac{1}{2}}|}.$$

Die Grösse i_{x+t} l_{x+t}^{aa} bedeutet die gemäss der benutzten Aktivitätsordnung zu erwartende Anzahl der Invaliden im (t+1)-ten Jahre nach Abschluss der Versicherung im Alter x. Wir setzen

$$\begin{split} i_{x+t}\,l_{x+t}^{aa} &= Z_{x+t}\,,\\ \ddot{a}_{x:\,\overline{s-x}|}^{ai} &= \frac{1}{D_x^{aa}} \sum_{t=0}^{s-x-1} \! Z_{x+t}\,c_{x+t}^{}\,,\quad \text{wobei}\quad c_{x+t} = v^{x+t+\frac{1}{2}} \, \ddot{a}_{x+t+\frac{1}{2}:\,\overline{s-x-t-\frac{1}{2}}|}^i. \end{split}$$

Die Grössen c sind unabhängig von den Invaliditätswahrscheinlichkeiten, unter der Voraussetzung, dass die Sterbenswahrscheinlichkeiten der Invaliden unabhängig von den Invaliditätswahrscheinlichkeiten seien, was allerdings bei starker Variation der Invalidität nicht mehr genau

zutreffen dürfte. Wir bilden nunmehr den Quotienten
$$\frac{\ddot{a}_{x:s-x|}^{ai(1)}}{\ddot{a}_{x:s-x|}^{ai(1)}} = Q$$
.

Die Indizes (1) und (2) weisen auf die verschiedenen Invaliditätswahrscheinlichkeiten hin. Die approximative Berechnung von Q soll zunächst im Spezialfall gezeigt werden, wenn s-x=2. In diesem Fall gilt die Beziehung

$$Q = \frac{\ddot{a}_{x:\overline{s-x}|}^{ai(\underline{2})}}{\ddot{a}_{x:\overline{s-x}|}^{ai(\underline{1})}} = \frac{Z_x^{(2)}\,c_x + Z_{x+1}^{(2)}\,c_{x+1}}{Z_x^{(1)}\,c_x + Z_{x+1}^{(1)}\,c_{x+1}},$$

die man durch Ausdividieren auf die beiden folgenden Formen bringen kann

$$\begin{split} Q &= \frac{Z_x^{(2)}}{Z_x^{(1)}} + \left[\frac{Z_{x+1}^{(2)} Z_x^{(1)} - Z_{x+1}^{(1)} Z_x^{(2)}}{Z_x^{(1)} (Z_x^{(1)} c_x + Z_{x+1}^{(1)} c_{x+1})} \right] c_{x+1} \\ Q &= \frac{Z_{x+1}^{(2)}}{Z_{x+1}^{(1)}} - \left[\frac{Z_{x+1}^{(2)} Z_x^{(1)} - Z_{x+1}^{(1)} Z_x^{(2)}}{Z_{x+1}^{(1)} (Z_x^{(1)} c_x + Z_{x+1}^{(1)} c_{x+1})} \right] c_x. \end{split}$$

Durch Addition der letztern beiden Gleichungen erhalten wir

$$Q = \frac{1}{2} \left[\frac{Z_x^{(2)}}{Z_x^{(1)}} + \frac{Z_{x+1}^{(2)}}{Z_{x+1}^{(1)}} \right] + \frac{Z_{x+1}^{(2)} Z_x^{(1)} - Z_{x+1}^{(1)} Z_x^{(2)}}{Z_x^{(1)} c_x + Z_{x+1}^{(1)} c_{x+1}} \left(\frac{c_{x+1}}{Z_x^{(1)}} - \frac{c_x}{Z_{x+1}^{(1)}} \right).$$

Setzt man $Z_x^{(2)} = Z_x^{(1)} + \Delta Z_x^{(1)}, \quad Z_{x+1}^{(2)} = Z_{x+1}^{(1)} + \Delta Z_{x+1}^{(1)},$

so gilt
$$Z_{x+1}^{(2)} Z_x^{(1)} - Z_{x+1}^{(1)} Z_x^{(2)} = \Delta Z_{x+1}^{(1)} Z_x^{(1)} - \Delta Z_x^{(1)} Z_{x+1}^{(1)}$$

Beim letztern Ausdruck handelt es sich um eine doppelte Differenzenbildung, die dazu noch mit einer Differenz multipliziert wird. Der ganze Ausdruck ist demnach von kleinerer Grössenordnung als der erste Summand von der Form

$$rac{1}{2} \left[rac{Z_x^{(2)}}{Z_x^{(1)}} + rac{Z_{x+1}^{(2)}}{Z_{x+1}^{(1)}}
ight].$$

Wir setzen deshalb näherungsweise

$$Q \sim \frac{1}{2} \left[\frac{Z_x^{(2)}}{Z_x^{(1)}} + \frac{Z_{x+1}^{(2)}}{Z_{x+1}^{(1)}} \right].$$

Dauert die Versicherungszeit nicht 2, sondern n Jahre, so erhalten wir ganz analog die Näherungsformel

$$Q \sim \frac{1}{n} \left[\frac{Z_x^{(2)}}{Z_x^{(1)}} + \frac{Z_{x+1}^{(2)}}{Z_{x+1}^{(1)}} + \dots + \frac{Z_{x+n-1}^{(2)}}{Z_{x+n-1}^{(1)}} \right].$$

Die Berechnung der obigen Quotienten $\frac{Z_{x+t}^{(2)}}{Z_{x+t}^{(1)}}$ kann durch die folgenden Überlegungen gezeigt werden. Wir setzen:

$$Z_{x+t} = l_{x+t}^{aa} \, i_{x+t} \quad \text{ und damit } \quad rac{Z_{x+t}^{(2)}}{Z_{x+t}^{(1)}} = rac{l_{x+t}^{aa(2)}}{l_{x+t}^{aa(1)}} \, rac{i_{x+t}^{(2)}}{i_{x+t}^{(1)}} \, .$$

Normieren wir l_x^{aa} mit 1, so erhalten wir

$$l_{x+t}^{aa} = \prod_{k=0}^{t-1} (1 - i_{x+k} - q_{x+k}^{aa}).$$

Wir finden weiter

$$\frac{l_{x+t}^{aa(2)}}{l_{x+t}^{aa(1)}} = \underbrace{\prod_{k=0}^{t-1} (1 - i_{x+k}^{(2)} - q_{x+k}^{aa})}_{l_{x+t}^{aa(1)}} \sim \underbrace{\prod_{k=0}^{t-1} (1 - i_{x+k}^{(2)} - q_{x+k}^{aa})}_{l_{x+t}^{aa(1)}} \sim \underbrace{\prod_{k=0}^{t-1} (1 - i_{x+k}^{(2)} - q_{x+k}^{aa})}_{l_{x+t}^{aa(1)}} \sim \underbrace{\prod_{k=0}^{t-1} (1 + i_{x+k}^{(1)} - i_{x+k}^{(2)})}_{l_{x+k}^{aa(1)}} \sim 1 + \underbrace{\sum_{k=0}^{t-1} (i_{x+k}^{(1)} - i_{x+k}^{(2)})}_{l_{x+k}^{aa(1)}}.$$

Damit gewinnen wir schliesslich die Näherungsformel I

I.
$$\frac{\ddot{a}_{x:n|}^{ai(2)}}{\ddot{a}_{x:n|}^{ai(1)}} \sim \frac{1}{n} \left[\frac{i_x^{(2)}}{i_x^{(1)}} + k_1 \frac{i_{x+1}^{(2)}}{i_{x+1}^{(1)}} + \ldots + k_{n-1} \frac{i_{x+n-1}^{(2)}}{i_{x+n-1}^{(1)}} \right],$$
 wobei
$$k_{\lambda} = 1 + \sum_{\mu=0}^{\lambda-1} (i_{x+\mu}^{(1)} - i_{x+\mu}^{(2)}), \quad \lambda = 1, 2, \ldots, n-1.$$

Benützen wir die von Jakob angewendete Approximation $l_{x+t}^{aa} \sim l_{x+t}$ erhalten wir

 $\frac{Z_{x+t}^{(2)}}{Z_{x+t}^{(1)}} \sim \frac{i_{x+t}^{(2)}}{i_{x+t}^{(1)}},$

und damit die Näherungsformel II

II.
$$\frac{\ddot{a}_{x:n|}^{ai(2)}}{\ddot{a}_{x:n|}^{ai(1)}} \sim \frac{1}{n} \left[\frac{i_x^{(2)}}{i_x^{(1)}} + \frac{i_{x+1}^{(2)}}{i_{x+1}^{(1)}} + \dots + \frac{i_{x+n-1}^{(2)}}{i_{x+n-1}^{(1)}} \right].$$

Es wäre nicht schwierig, bei geeigneten Annahmen über die Grösse der Variation der Invaliditätswahrscheinlichkeiten und der übrigen bei diesen Berechnungen benutzten Grössen Schranken für die Fehler bei Anwendung der Näherungsformel I aufzustellen. Wir verzichten auf solche allgemeine Betrachtungen und geben statt dessen in den Tabellen 1, 2 und 3 des Anhanges einige Beispiele für die Anwendung der Näherungsformeln I und II. Nach diesen Beispielen betrug der maximale prozentuale Fehler bei Anwendung von Formel I 3 % und bei Formel II 6,8 %.

Es ist klar, dass analoge Betrachtungen auch zur Herleitung von Näherungsformeln für andere temporäre Anwartschaften aufgestellt werden können. Werden z. B. bei der Berechnung einer *n*-jährigen Todesfallversicherung die Todeswahrscheinlichkeiten aus zwei verschiedenen Absterbeordnungen benutzt, d. h. die Sterbenswahrscheinlichkeiten variiert, so gilt die Näherungsformel

$$\frac{\frac{1}{n}A_{x}^{(2)}}{\frac{1}{n}A_{x}^{(1)}} \sim \frac{1}{n} \left[\frac{q_{x}^{(2)}}{q_{x}^{(1)}} + k_{1} \frac{q_{x+1}^{(2)}}{q_{x+1}^{(1)}} + \ldots + k_{n-1} \frac{q_{x+n-1}^{(2)}}{q_{x+n-1}^{(1)}} \right],$$
 wobei
$$k_{\lambda} = 1 + \sum_{\mu=0}^{\lambda-1} (q_{x+\mu}^{(1)} - q_{x+\mu}^{(2)}), \quad \lambda = 1, 2, \ldots, n-1.$$

Die Berechnung der Jahresprämie $P^{ai}_{x:\overline{n}|}$ für die temporäre Invalidenrente erfolge nach der üblichen Formel

$$P_{x:\overline{n}|}^{ai} = \frac{\ddot{a}_{x:\overline{n}|}^{ai}}{\ddot{a}_{x:\overline{n}|}^{aa}} = \frac{\ddot{a}_{x:\overline{n}|}^{ai}}{\ddot{a}_{x:\overline{n}|} - \ddot{a}_{x:\overline{n}|}^{ai}}.$$

Es seien Zähler und Nenner nach einer der Näherungsformeln I bzw. II wegen Variation der Invaliditätswahrscheinlichkeiten approximativ berechnet worden. Der dadurch entstandene Fehler bei $\ddot{a}_{x:\overline{n}|}^{ai}$ werde mit $\Delta \ddot{a}_{x:\overline{n}|}^{ai}$ bezeichnet und analog der Fehler auf $P_{x:\overline{n}|}^{ai}$ mit $\Delta P_{x:\overline{n}|}^{ai}$. Bei üblicher Anwendung der Fehlerrechnung gilt dann angenähert

$$\Delta P_{x:\overline{n}|}^{ai} \sim \frac{\ddot{a}_{x:\overline{n}|}}{(\ddot{a}_{x:\overline{n}|}^{aa})^2} \Delta \ddot{a}_{x:\overline{n}|}^{ai}.$$

Bilden wir den Quotienten

$$\frac{P_{x:\,\bar{n}|}^{ai(\underline{2})}}{P_{x:\,\bar{n}|}^{ai(\underline{1})}} = \frac{\ddot{a}_{x:\,\bar{n}|}^{ai(\underline{2})}}{\ddot{a}_{x:\,\bar{n}|}^{aa(\underline{2})}} : \frac{\ddot{a}_{x:\,\bar{n}|}^{ai(\underline{1})}}{\ddot{a}_{x:\,\bar{n}|}^{aa(\underline{1})}}.$$

und ersetzen $\ddot{a}_{x:\overline{n}|}^{aa}$ wiederum durch $\ddot{a}_{x:\overline{n}|}$, so erhalten wir schliesslich die folgende Näherungsformel für die Prämien

$$\begin{aligned} \text{III, 1:} \quad & \frac{P_{x:\,\overline{n}|}^{ai(\underline{2})}}{P_{x:\,\overline{n}|}^{ai(\underline{1})}} \sim \frac{1}{n} \left[\frac{i_x^{(2)}}{i_n^{(1)}} + k_1 \frac{i_{x+1}^{(2)}}{i_{x+1}^{(1)}} + \ldots + k_{n-1} \frac{i_{x+n-1}^{(2)}}{i_{x+n-1}^{(1)}} \right], \\ \text{wobei} \quad & k_{\lambda} = 1 + \sum_{\mu=0}^{\lambda-1} (i_{x+\mu}^{(1)} - i_{x+\mu}^{(2)}), \quad \lambda = 1, 2, \ldots, n-1. \\ \\ \text{III, 2:} \quad & \frac{P_{x:\,\overline{n}|}^{ai(\underline{2})}}{P_{x:\,\overline{n}|}^{ai(\underline{1})}} \sim \frac{1}{n} \left[\frac{i_x^{(2)}}{i_x^{(1)}} + \frac{i_{x+1}^{(2)}}{i_{x+1}^{(1)}} + \ldots + \frac{i_{x+n-1}^{(2)}}{i_{x+n-1}^{(1)}} \right]. \end{aligned}$$

Bei den in Tabellen 4 und 5 des Anhanges gerechneten Beispielen ergeben sich maximale Abweichungen von den exakten Werten der Prämien von 5 %.

Zusammenfassend darf festgestellt werden, dass die mit ganz einfachen Mitteln gewonnenen Näherungsformeln I, II und III sehr exakte Werte für die Barwerte anwartschaftlicher Invalidenrenten und Prämien mit geringem Rechnungsaufwand liefern.

 $Tabelle\ 1$

Grundlagen EVK 1936, Männer, 3½ %, Sammlung I und II Diese Grundlagen unterscheiden sich lediglich in den benutzten Invaliditätswahrscheinlichkeiten

Schlussalter 60

x	$\frac{i_x^{(2)}}{i_x^{(1)}}$	$\begin{array}{c} (12)\ddot{a}_{x:60-x }^{ai(2)}\\ \text{exakt} \end{array}$	$\overset{(12)}{\overset{\dot{a}}{x:60-x}}\overset{\dot{a}i(2)}{\overset{\dot{a}}{x:60-x}}$ Formel I	$\overset{(12)}{\overset{ai(2)}{z:60-x}}$ Formel II
45	1	0,6189	0,6103	0,6020
46	0,9286	0,6005	0,5902	0,5815
47	0,8429	0,5784	0,5674	0,5585
48	0,8000	0,5521	0,5408	0,5322
49	0,7822	0,5207	0,5092	0,5012
50	0,7863	0,4835	0,4715	0,4643
51	0,8182	0,4400	0,4278	0,4215
52	0,8378	0,3897	0,3783	0,3729
53	0,8452	0,3344	0,3247	0,3201
54	0,8205	0,2752	0,2681	0,2642
55	0,7783	0,2145	0,2102	0,2072
56	0,7345	0,1551	0,1530	0,1510
57	0,6898	0,0991	0,0986	0,0975
58	0,6633	0,0506	0,0506	0,0503
59	0,6553	0,0147	0,0147	0,0147

Der maximale prozentuale Fehler beträgt bei Anwendung von Formel I 3 %, von Formel II 4,3 %

Tabelle~4 Grundlagen EVK 1936, Sammlung II, Männer, $3\frac{1}{2}\,\%$

Die Prämien für die Invalidenrente vom Betrage 1 wurden approximativ mit den Invaliditätswahrscheinlichkeiten gemäss Sammlung I berechnet

Schlussalter 60

x	Exakte	Näherungsprämie	Näherungsprämie
	Prämien	nach Formel III, 1	nach Formel III, 2
45	0,0589	0,0589	0,0581
50	0,0635	0,0630	0,0620
55	0,0504	0,0503	0,0496

 $Tabelle\ 2$

Grundlagen EVK 1936, Männer, $3\frac{1}{2}\,\%$, Sammlung I und III

Sie unterscheiden sich lediglich in den benutzten Invaliditätswahrscheinlichkeiten

Schlussalter 60

x	$\frac{i_x^{(3)}}{\frac{(1)}{x}}$	$\begin{array}{c} (12)\ddot{a}_{x:60-x }^{ai(3)} \\ = \operatorname{exakt} \end{array}$	$\overset{(12)}{\overset{\circ}{a}}\overset{\circ}{\overset{\circ}{a}}\overset{i(3)}{\overset{i(3)}{\overset{\circ}{a}}\overset{i(3)}{\overset{\circ}{a}}\overset{i(3)}{\overset{i(3)}{\overset{\circ}{a}}\overset{i(3)}{\overset{i(3)}{\overset{\circ}{a}}\overset{i(3)}{\overset{i(3)}$	$\overset{(12)}{\overset{\circ}{a}}\overset{\circ}{\overset{\circ}{a}}\overset{(3)}{\overset{\circ}{a}}\overset{\circ}{\overset{\circ}{a}}\overset{\circ}{\overset{\circ}{a}}\overset{\circ}{\overset{\circ}{$
45	1	0,9788	1,0007	1,0350 $1,0378$ $1,0332$ $1,0169$ $0,9870$
46	1	0,9767	1,0018	
47	1	0,9685	0,9953	
48	1,0353	0,9518	0,9775	
49	1,0990	0,9247	0,9467	
50	1,1795	0,8850 $0,8321$ $0,7643$ $0,6816$ $0,5849$	0,9010	0,9413
51	1,3030		0,8412	0,8801
52	1,4324		0,7678	0,8037
53	1,5417		0,6817	0,7129
54	1,6051		0,5839	0,6091
55 56 57 58 59	1,6435 1,6509 1,6506 1,6935 1,7660	0,4766 $0,3599$ $0,2411$ $0,1296$ $0,0395$	0,4760 0,3604 0,2420 0,1301 0,0396	0,4945 $0,3722$ $0,2480$ $0,1320$ $0,0396$

Der maximale prozentuale Fehler beträgt bei Anwendung von Formel I 2,8 %, von Formel II 6,8 %

Tabelle~5 Grundlagen EVK 1936, Sammlung III, Männer, $3\frac{1}{2}\,\%$

Die Prämien für die Invalidenrente vom Betrage 1 wurden approximativ mit den Invaliditätswahrscheinlichkeiten gemäss Sammlung I berechnet

Schlussalter 60

x	Exakte	Näherungsprämie	Näherungsprämie
	Prämien	nach Formel III, 1	nach Formel III, 2
45	0,0966	0,0965	0,0998
50	0,1229	0,1204	0,1257
55	0,1193	0,1139	0,1183

Tabelle~3 Grundlagen VZ 1950, Männer, 3 %, Schlussalter 60 Die Invaliditätswahrscheinlichkeiten $i_x^{(2)}$ seien EVK 1950 entnommen

x	$\frac{i_x^{(2)}}{i_x^{(1)}}$	$\begin{array}{c} (12)\ddot{a}_{x:60-x}^{ai(2)}\\ \text{exakt} \end{array}$	$\ddot{a}_{x:\overline{60-x} }^{(12)}$ Formel I	$\ddot{a}_{x:60-x }^{(12)}$ Formel II
20 21 22 23 24 25	1,5370 1,4000 1,2768 1,1391 1,0085 0,8926	0,4206 $0,4085$ $0,3980$ $0,3889$ $0,3814$ $0,3757$	0,4196 $0,4092$ $0,4000$ $0,3920$ $0,3854$ $0,3802$	0,4147 0,4039 0,3944 0,3862 0,3793 0,3739
26 27 28 29	0,7823 0,6797 0,5909 0,5147	0,3715 0,3690 0,3679 0,3682	0,3764 0,3741 0,3731 0,3734	0,3700 0,3676 0,3666 0,3669
30 31 32 33 34	0,4539 0,4110 0,3750 0,3585 0,3494	0,3698 0,3723 0,3756 0,3795 0,3836	0,3748 0,3773 0,3805 0,3843 0,3884	0,3684 0,3709 0,3742 0,3782 0,3825
35 36 37 38 39	0,3621 0,3750 0,3918 0,4078 0,4338	0,3879 0,3918 0,3953 0,3983 0,4007	0,3926 $0,3966$ $0,4002$ $0,4032$ $0,4056$	$0,3869 \\ 0,3912 \\ 0,3950 \\ 0,3984 \\ 0,4012$
40 41 42 43 44	0,4530 $0,4861$ $0,5222$ $0,5597$ $0,5987$	0,4023 $0,4031$ $0,4027$ $0,4010$ $0,3975$	$\begin{array}{c} 0,4073 \\ 0,4082 \\ 0,4077 \\ 0,4058 \\ 0,4021 \end{array}$	0,4032 0,4044 0,4044 0,4029 0,3996
45 46 47 48 49	0,6371 0,6857 0,7347 0,7836 0,8318	0,3923 0,3848 0,3748 0,3620 0,3458	0,3966 0,3887 0,3782 0,3646 0,3477	0,3945 0,3871 0,3769 0,3638 0,3472
50 51 52 53 54	0,8779 0,9221 0,9612 0,9957 1,0211	0,3260 0,3023 0,2744 0,2424 0,2063	$\begin{array}{c} 0,3272 \\ 0,3028 \\ 0,2742 \\ 0,2416 \\ 0,2052 \end{array}$	$\begin{array}{c} 0,3270 \\ 0,3028 \\ 0,2743 \\ 0,2418 \\ 0,2054 \end{array}$
55 56 57 58 59	1,0387 1,0445 1,0382 1,0194 0,9879	0,1667 0,1248 0,0826 0,0436 0,0130	$\begin{array}{c} 0,1655 \\ 0,1237 \\ 0,0819 \\ 0,0433 \\ 0,0130 \end{array}$	0,1657 0,1238 0,0819 0,0433 0,0130

Der maximale prozentuale Fehler beträgt bei Anwendung von Formel I 1,41 %, von Formel II 1,40 %