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Die Taylorsche Reihe
der generalisierten Poukkaschen Funktion

und ihre Anwendung

Von Ivo Lah, Ljubljana

Die generalisierte Poukkasche Funktion definieren wir

o(n+1) o(n-l)y =K(x + 1,l) kn, (i)

wo die n-te Summe der diskontierten Zahlen Dx bedeutet, nämlich

sirii 2
(=i

Speziell haben wir:

n — 1 + £
D,x+ i ' (2)

Kix +1» "0 K
Sx+l As+l

Kh
,Q(2) JJ

£(3) sx+i x^- h(x + l ,i) k2
x + l.

(3)

Aus der generalisierten Poukkaschen Funktion (1) lassen sich

bekanntlich die meisten und darunter die besten Näherungsformeln
des Zinsfussproblemes herleiten. Bei allen diesen Herleitungen wurde
bis jetzt die Grösse lin als Konstante angenommen. Es stellt sich die

Frage, wie sich die Formeln des Zinsfussproblemes ändern, wenn man
lcn nicht mehr als Konstante, sondern als Funktion des Zinsfusses i
betrachtet. Diese Aufgabe können wir nur so lösen, dass wir die generalisierte

Poukkasche Funktion kn in die Taylorsche Beihe in bezug auf
den Zinsfuss i entwickeln. Zu diesem Zwecke führen wir zwei
Hilfsfunktionen ein, und zwar:
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«4-1 S(n)
K=—±-kn> (4) Mn=- (-1)«„!_5±L. (5)

71 Dx

Die Grenzwerte von hn sind r)

« 4~ 4

l<hn<——. (6)
n

Die Summen der diskontierten Zahlen in (1) ersetzen wir
durch die Hilfsfunktion Mn aus (5). Wir bekommen so:

_ Mn+1 Mn_t Mn+1vn+ldn+1a d^a /d»a\2
M2n {Mnvnf din+1

'
di»-1 '

V din)' [)
wo v den Diskontfaktor und a ax(i) den Barwert der konstanten
nachschüssigen lebenslänglichen Leibrente bedeutet.

Die Funktion Mnvn hat die merkwürdige Eigenschaft, dass ihre
Ableitungen und Integrale nach i einfach durch Änderung von n
gebildet werden 1). Es ist

(8)

Infolgedessen können die Ableitungen von hn (7) leicht berechnet werden.
Man findet:

K =-^-(VA-2^, + D
lvln

K +^ +

/M v\3
^» ~ y ^ J (^+8^+2^+1^»» 8hn+2hl+1hn3hn+2hl+1

— 6 hl+1 hn + 36 hn+1 hn — 14fen+1 — 24 hn + 12)

/ M d\4

+ 4K+3 ^K+2 ^n+1 + 60ÄB+.7$+A-26Äs+a

+ 90K+1K- 20hl+1 - 240fcn+1 K + 100kn+1 +120hn- 60)

x) «Eine neue Funktion der Versicherungsmathematik und ihre Anwendung»,
Mitteilungen derVereinigung schweizerischer Versicherungsmathematiker, 51. Band,
Heft 2, 15. Oktober 1951, Seite 191-210.
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Mn+1v
Die Grösse ——— kann am besten nach der folgenden Formel

n

berechnet werden:

Mn 1 v Mn
V/, ^ln\-1\-2 ^2 ^1^0 (10)

Px

in welcher M0 a ax(i) und px die einjährige Erlebenswahrschein-
lichkeit bedeutet.

Insofern wir eine Tafel von kn-Werten fur ra 1, 2, 3, 4,
welche zum Zinsfusse i0 berechnet sind, zur Verfügung haben, können
wir die Funktion hn mittels der Formeln (9) in die Taylorsche Eeihe

hn oK + Aoh^ + _LA*o%+±.Azoh»>+„. (H)

entwickeln, in welcher A i — i0. Durch Multiplikation der Eeihe (11)

n
mit gemäss (4) bekommen wir die Taylorsche Eeihe der gene¬

ra +1
ralisierten Poukkaschen Funktion (1):

K °kn + A % + ~ A*% + -1 A'X' + • • • • (12)

An der unteren und an der oberen Grenze (6) ist hn unabhängig
von i. Die Ableitungen von hn müssen daher an beiden Grenzen gleich
Null sein, d. h. fur

ra 1

h„ 1 und hn (13)
n

müssen die Polynome in (9) verschwinden, was als Kontrolle der

Eechnung dienen kann.
Je kleiner die Variabilität von kn ist, desto rascher konvergiert

die Eeihe (12). In den höheren Altern haben wir eine raschere Konvergenz

als in den niederen. Desgleichen konvergiert die Eeihe von kn+J

rascher als die Eeihe von kn. Anhand der slowenischen Volkssterbe-
tafel, männliches Geschlecht, Beobachtungsperiode 1931-1933, welche

wir im folgenden mit STM bezeichnen wollen, haben wir fur das Alter
x + 1 =40 und fur den Grundzinsfuss i0 3 % folgende Taylorsche
Eeihe gefunden:

^(40, i) 0-80288 + 2-0656 A -4*4850zl2—46-961 A3 + 250-72ZI4 + •
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In der Tabelle 1 sind die exakten Werte von ^(40, i) für die Zins-
füsse 7 0%, 1%, 2%, 4%, 5%, 6%, 6 und die entsprechenden
Fehler Fv fur v 1, 2, 3, 4 gegeben. Der Fehler F„ bedeutet die Differenz

zwischen dem Näherungswerte, wenn die Reihe (14) beim y-ten
Gliede abgebrochen wird, und dem exakten Werte. t h 11 1

Zinsfuss
%

Exakter Wert
fci(40, i)

Fehler

D Fi Fs Fi

o%
i%
2%
4%
5%
6%

0-73831
0-76018
0-78182
0-82305
0-84207
0-85977

+ 0-00260

+ 0-00139
+ 0-00040
+ 0-00049

+ 0-00212

+ 0-00508

— 0-00144
— 0-00040
— 0-00005
+ 0-00004
+ 0-00033
+ 0-00104

— 0-00017
— 0-00002

0-00000
— 0-00001
— 0-00005
— 0-00023

+ 0-00003

+ 0-00002
0-00000
0-00000

— 0-00001
— 0-00003

Die Abweichungen in der fünften Dezimale stammen wenigstens
zum Teil von den vernachlässigten Dezimalen der Grundwerte.

Aus der Reihe

~ ao 4" + k2Z12 + a3kl3 4- (15)

können wir unmittelbar, d. h. ohne Formeln (9) die Reihe

hn+i ßo ßi A + + ßs^3 + • • • (^)
herleiten und umgekehrt. Diesbezügliche Rekursionsformeln ergeben
sich aus dem vollständigen Integral der Differentialgleichung (7),
welches lautetx):

ff ff-SM • + dA-'. (17)
v 0

Wir setzen in (17) n — 1, n 2 und bilden die Gleichung

r dA r r aa

/ A — A1l~ f hiäA I / A-A2-fh2dA
BxeJ J

=C2 + B2JeJ dA. (18)

x) «Das Zinsfussproblem», Mitteilungen der Vereinigung schweizerischer
Versicherungsmathematiker, 47. Band, Heft 1, 30. April 1947, Seite 242.

6
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Mittels Differentiation eliminieren wir aus (18) die Integrationskonstanten

Blt A2, B2, C2 und gelangen so zur folgenden Eekursionsformel

h.2 ^.[2h^-h1 + h'1{A-A1-fh1dA)}, (19)

welche eine Differenzen-, Differential- und Integralgleichung zugleich
darstellt. Auf ähnliche Art und Weise finden wir allgemein

Vi ~m-hn + K(A~An-JJindA)\. (20)
nn

Die Richtigkeit von (20) kann mittels Einsetzung des Wertes von hn

aus (7) leicht bewiesen werden.

Aus der Anfangsbedingung A 0 bestimmen wir zunächst die

Integrationskonstante An in (20).

Unter Beachtung von (9) und (10) finden wir:
(21)

0K ,07 07 «07 ,77 0Mn-1 Px
~4n — ~ ~^TT (0Vl °K~ + 1) — ~~ — ^7 (W 0, •

°K °Mnv0 °hn_2... °Jh fc0

Nachher setzen wir die Reihen von hn und hn+1 aus (15) und (16) in (20)
ein und entwickeln die rechte Seite von (20) in eine Potenzreihe von A.
Durch Yergleichung der Koeffizienten derselben Potenz A" bekommen wir

_
2«0—1 Oi_

r 0 n 2
a0 a0

ai(2-«o) _2J f*2__ V
J1 2 n\ 2 3

a0 \ a0 a0

2a0a2(3-2a0) + 3ai(a0-2) / a3 2axa2 ct\
^ -A-n I 2 a ~r d2«g

2a0a1a2(7a0—12) -f- 3oc2a3(4 — 3a0) + 6oc3(2 —a0)
3 q 4

3a0

-4d.-!—ot4 2 olx oc3 -p a2 3 a2 a2

*2 a3*o Ko

(22)



— 83 —

Alle ß-Koeffizienten können somit als Funktionen von oc-Koeffizienten

dargestellt werden. Zu beachten ist, dass ßn auch von an+1
abhängt. Daraus schliessen wir, dass (n 1) Glieder der Reihe von hn

etwa dieselbe Präzision ergeben wie n Glieder der Reihe von fe„+1.
Aus den Gleichungen (22) ist ersichtlich, dass man mit Ausnahme von
a0 auch umgekehrt die a-Koeffizienten als Funktionen von ^-Koeffizienten

ausdrücken kann.

Obige Ausführungen beziehen sich auf die Taylorsche
Reihenentwicklung von fe1; fe2, fe3, Die Taylorsche Reihe von fe0 muss
dagegen gesondert berechnet werden. Aus (3) und (5) folgt

M, v
i» —mTp- (28)

Unter Beachtung von (8) können auch die Ableitungen von fe0 leicht
berechnet werden. Es ist:

K »JiDkWij\ Vx J

K fe0(—Yß-e^ + feffe*]
V Vx J

f Je M \3
feg" fe0

°
J [24 — 36 fe4 (6 fe? + 8 h\ fe2) — h\ hl ^3]

Til" K [120 - 240fex + (90h\ + 60h\ fe2) -
- (20fe® fe2 +10fe® hlfe3) + fe*h3h\feJ

/ fe M \5
fe';'" fc0 J [720 - 1800fex + (1080 fef + 480 fe® fe2) -V Vx /

— (90 fe® 4-360fe®fe2 + 90fe®fe2fe3) +
+ (20 A* hl + 30 fe* hl fe3 + 12 fe* fe® hl fe4) — hl hl fe® fe® fe6]

An den beiden Grenzen, d. i. für fc0 0 und fc0 fcn 1 werden
die Ableitungen von fe0 — ähnlich wie die Ableitungen von hn — gleich

Null, wie man sich durch Einsetzung von fe — in (24) über-
n

zeugen kann. Damit können die Formeln (24) kontrolliert werden.

(24)
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Nebenbei bemerken wir, dass die Koeffizienten bzw. die Summen
der Koeffizienten in runden Klammern in (24) die Produkte der

Stirlingschen Zahlen <3* und der Faktoriellen vi darstellen. Weil:

n

2(-l)'v!S;=(-l)» (25)
V 1

muss die Summe der Koeffizienten in jedem Polynome (24) gleich 1

sein, was ebenfalls als Kontrolle der Rechnung dienen kann.

Infolge der grösseren Variabilität von 7c0 konvergiert die Reihe

fc0 °fc0 + A % + -^2°fco + gV ^80C + • • • (26)

nicht so rasch wie die Reihe von fcx. Anhand der STM haben wir für
x -f-1 =40 und i0 3 % folgende Reihe bekommen:

(2/)

fco(40,i) 0 75216 + 4*0731A -27*257A2 + 17-358ZI3 + 1099*3zl4-7440*8zl5 +

Die exakten Worte von fc0(40,i) für i 0%, 1 %, 2%, 4%, 5%,
6 % als auch die entsprechenden Fehler Fv, wenn die Reihe (27) beim
j»-ten Gliede abgebrochen wird, sind in der Tabelle 2 gegeben.

Tabelle 2 *.

ZinsExakter Fehler
fuss Wert
i *0 (40, ») D F2 Ps

0% 0*60603 + 0*02394 —0*00059 —0*00106 —0*00017 + 0*00001
1% 0*65987 + 0*01083 —0 *00007 —0*00021 —0*00003 —0*00001
2% 0*70871 + 0*00272 —0 *00001 —0*00003 —0*00002 —0*00002
4% 0*79023 + 0*00266 —0*00007 —0*00005 — 0*00004 —0*00004
5% 0*82303 -| 0*01059 —0*00031 —0*00017 + 0*00001 —0*00001
6% 0*85103 + 0*0233*2 —0*00121 —0*00074 + 0*00015 —0*00003

Die Reihen von fc0 konvergieren nicht immer monoton. Durch
Hinzufügung eines neuen Gliedes kann der Näherungswert von fc0

vorübergehend auch verschlechtert werden.

*
*
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Wir wollen nun an den einfachsten Beispielen zeigen, wie sich die

Näherungsformeln des Zinsfussproblemes ändern, wenn man die
Annahme kn Konstante fallen lägst. Für n 1 bekommen wir aus (17)

C dA

a M0 Be
A — A\ — J hidA

(28)

wo a den exakten Barwert der konstanten nachschüssigen lebenslänglichen

Leibrente darstellt. Durch logarithmische Differentiation nach A

bekommen wir aus (28)

Mxv 1

M0 ~ A-A^Jhy dA

oder

Ax A- _Mo_
Mx v

J hxdA.

(29)

(30)

Aus der Anfangsbedingung A — 0 folgt im Einklänge mit (21)

Wenn wir in (28) ~hx °h1 setzen, dann bekommen wir

*(i) B
°Mn

°M^0

1

l-Oft,

(31)

(32)

wo a(1j den Näherungswert von a darstellt. Die Integrationskonstante B
in (32) bestimmen wir so, dass im Falle A 0, a(1) °a °M0 wird.
Also /oi\/r \ J —

(3ä)

Nach Einsetzung des Wertes von B aus (33) in (32) bekommen wir die
wohlbekannte Gtittingersche Näherungsformelx):

a(i) u« 1
(1-°h1)v0A(>M1

°Mn

i
1-Oh,

Nun setzen wir ^ 0^ + 40^.
So verbesserten Näherungswert von a bezeichnen wir mit a(2).

(34)

(35)

B Güttinger, Paul: «Zwei Beiträge zum Zinsfussproblem», Mitteilungen der
Vereinigung schweizerischer Versicherungsmathematiker, SO. Heft, Oktober 1935.



Aus (28), (31) und (35) folgt
dA

«(2) Be °M1 ®o
(«Äj-pzl + O-S Oft) zi2

(36)

Das im Exponent der Formel (36) auftretende Integral nimmt drei
verschiedene Formen an, je nachdem die Diskriminante

/ «M \
D (o/ll_i)2_4(___^jo-5<%; 1 +<%5(2<%a-3)SO. (37)

Dementsprechend bekommen wir aus (36) folgende drei Formen der

verbesserten Güttingerschen Näherungsformel:

A % + "i^ — 1 + ]/!>" %-1-j/D\yV
«(2,1) "«

«(2,2) — «e

2^1 0^1

+ (0^^1)2

«(2,3) °«e V-n
aretg

zi oh[ y_ b
(0/(l_l)+ (0ft1_1)2_£)

(38)

Für £ + 1 =40 und 70 3% haben wir anhand der STM
folgende Näherungsformel gefunden:

2-00081 zl
— 4*12945 arctfr r-r-r

0,
"(2,3) "ae (39)

° 2-50247 zl + 0-60152

oa a39(3 %) 18-116

Die Tabelle 3 enthält die exakten Werte von a39(i) für i 0%,
1 %, 2%, 4%, 5%, 6% als auch die entsprechenden Fehler der

Güttingerschen Formel (34) und der verbesserten Näherungsformel (39).

Tabelle 3

Zinsfuss Exakter Wert Fehler von

i "suM
a:l>

0%
1%
2%
4%
5%
6%

28-948
24-433
20-907
15-879
14-062
12-570

— 0-157
— 0-033
— 0-002
+ 0-002
+ 0-011

+ 0-030

+ 0-003
o-ooo

— 0-001
— o-ooi

0-000
+ o-ooi

Die Näherungswerte a(2>3) sind also bedeutend besser als a(1)
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Setzen wir weiter

hx °h1 +A % + {zl2 %. (40)

Den zum zweiten Male verbesserten Näherungswert von a bezeichnen
wir mit a(3). Aus (28) und (40) folgt

7-
d,d

a(3) Be
°M0

»M, »o
+ (»/l!-1) A + 0'5»Ä( A2 + — y|3

(41)

Der Polynom unter dem Integralzeichen in (41) kann haben:

1. drei reelle verschiedene Wurzeln a, ß, y,
2. drei reelle gleiche Wurzeln a, a, a;
3. drei reelle Wurzeln, von denen zwei gleich sind a, a, ß;
4. eine reelle und zwei komplexe oder imaginäre Wurzeln a, /i + ri,

— vi, wobei —2/u ß und /t2 + r2 y.
Dementsprechend bekommen wir aus (41) folgende vier Formen

der zum zweiten Male verbesserten Güttingerschen Näherungsformel

a(3,i) — °a
A

1 )(«-£) (<*-y) i _
a

ZI
(/Mt) (/3—y)

zl
j j(y-a) (r-

y.

6

Oft"

(3,2) uae

3

°ä" f—--1Im-«)! «2J

(3,3)

zl — «

zl-j
6Z

{a~ß)z g (J-a) (<x—j3) a OftJ

ÜM) "a
]/ Zl2 —|— Zl /? —)— y a

j/y

12ot+6/5

(a2 +aß+y) °/i'( g »^'{a2 +ot/S+y) "|/4y-^2
a — Zl

Wir können weiter setzen

\ %+zi <%; + { zl:2 %_+{ A:3 °h';' (43)

und so die Güttingersche Formel (34) zum dritten Male verbessern.
Wir sehen jedoch davon ab. Die Formeln sind kompliziert und weisen
ausserdem nichts wesentlich Neues oder Interessantes auf. Für die
Bedürfnisse der VerSicherungspraxis reichen schon die Formeln (38)
vollkommen aus. Wir bemerken nur, dass aus (43) neun Formen der
verbesserten Näherungsformel a(4>2)> a(4,3)> •••> a(4,9) resultieren,
je nachdem die Wurzeln des zu integrierenden Polynoms reell, komplex,
gleich, verschieden usw. sind.

(42)

A -fiy-ß*
Aß-\-2y



Für n 2 bekommen wir aus (17)

JJ "
A — A. 2 —J~7&2

(44)a C + B e dA

Die erste Ableitung von (44) nach A lautet
r dA

_
I A — Ao— fhvdA

— I v M1 v Be (45)

Die Grösse I (la)x bedeutet den Barwert der steigenden nachschüssigen
lebenslänglichen Leibrente. Die Gleichung (45) bekommen wir aus (28)

°M0
einfach so, dass wir °a M0 mit — Iv Mxv, Ax —— mit

om 1 V°

A2 und Ji1 mit Ji2 vertauschen. Infolgedessen können wir
°M2Vo

die verschiedenen Näherungsformeln der steigenden Kente I gleich
niederschreiben.

Wenn wir h2 °h2 setzen, bekommen wir analog (34)

l(i) °I —
(1 — °h2) v0 A °M2

°M1
(46)

Wenn wir h2 °h2-\- A °h2 setzen, bekommen wir analog den

Formeln (37) und (38)

D 1 + (2 °h3 — 3) g= 0. (47;

-^(2,1) —

(2,2)

oj
»o / A % + %2 ^ 1 + y d °h2 -1 - y D w
v \ A% + °K-l-fD' °h2-l + yu)

2 A »h'

V0 jo^(oÄ2_i) + (oÄ2_i)S
"i — e

'(2,3) °I—e
v

M-D
arctg

AOh'^-D
AOh'z (°ft2-l) + (o/i2-l)2-Z>

(48)

Für x 4-1 40 und i0 8 % haben wir anhand der STM folgende
Näherungsformel gefunden:

11 „ „„ 0*520684 A

I(2 3) °i~° e
arC g

0*453006 A + 0*15763

V

°I a«)39,3% 256*32

(49)
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Die Tabelle 4 enthält die exakten Werte von I (Ia)39 für
i 0 %, 1 %, 2 %, 4 %, 5 %, 6 % und die Fehler der Näherungsformeln

(46) und (49). 4

Zinsfuss Exakter Wert
Ua)39

Fehler von

f<2>3

o%
i%
2%
4%
5%
6%

511-94
401-05
318-52
208-88
172-26
143-68

+ 2-54 — 0-03
+ 0-54 — 0-01
+ 0-05 — o-oi
— 0-03 0-00
— 0-16 + 0-01
— 0-42 + 0-01

* *
*

Die Taylorschen Eeihen der Poukkaschen Funktionen kv k2, k3,

ermöglichen die Verbesserung der Näherungsformeln des Zinsfuss-

problemes bis zur beliebig hohen Präzision. Die Schattenseite solcher

Verbesserungen bildet die verhältnismässig grosse Eechenarbeit, welche

man dabei zu bewältigen hat. Es gibt jedoch gewisse Gebiete des Zins-

fussproblemes, in welchen sich die Anwendung der Taylorschen Eeihen
von kn sehr einfach gestaltet. Zwei solche Beispiele geben wir im
folgenden.

I. Gegeben sind zwei Eentenbarwerte °a ax(iQ) und xa ajij,
aus welchen man mit verschiedenen Inter- und Extrapolationsmethoden

mehr oder weniger genaue Näherungswerte von a ax(i)
berechnen kann. Bezeichnen wir mit mx und m2 zwei solche Interpolations-

bzw. Extrapolationswerte von °a und 1a. Die lineare Kombination

mi fi + (1 — fx) rax, 2 (50)

wo fx eine rationale Funktion von kx kx(x + l,i) bedeutet, stellt
einen verbesserten Näherungswert von a dar + Dieses Verfahren kann
unbegrenzt fortgesetzt werden. Die lineare Kombination

^1,2/2 + ^3,4(1— h) ^i,2-3,4 (51)

B «Noch einige praktische Interpolationsformeln des Zinsfussproblemes von
hoher Präzision», Mitteilungen der Vereinigung schweizerischer Versicherungs-
mathematiker, 52. Band, Heft 2, 15. Oktober 1952, Seite 161-172.
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wo /2 eine rationale Punktion von 7cx und k2 bedeutet, stellt einen
weiter verbesserten Näherungswert von a dar. Die Punktionen /x und /2

sind meistens sehr einfach. Bei der arithmetischen und harmonischen
Inter- bzw. Extrapolation ist z. B. /x 7c1 usw. Ähnliche ebenfalls
sehr einfache Pormeln haben wir auch bei den Verbesserungen der
Inter- und Extrapolationswerte der steigenden Rente bzw. °Iv0 und
1lv1. In diesem Gebiete des Zinsfussproblemes haben also die Taylor-
schen Reihen von kn nicht nur einen theoretischen, sondern auch einen
bedeutenden praktischen Wert.

II. Das vollständige Integral der Differentialgleichung (23) lautetii r— c -\ I k0dA (52)
a pxJ

oder nach Bestimmung der Integrationskonstante c

j- + — (ZI % + \A*% + \A3% +°a px

Anhand der STM haben wir für x + 1 40 und i0 — 3 % folgende
Reihe gefunden:

0-0551998 + 0-75821A + 2-0529 — 9-1587 A3 + (54)
aS9 (1)

Die exakten Werte von a39(i) als auch die entsprechenden Pehler

Fv, wenn die Reihe (54) beim r-ten Gliede abgebrochen wird, sind in
der Tabelle 5 gegeben.

Zinsfuss
i

Exakter Wert "Fehler

D

o%
i%
2%
4%
5%
6%

28-948
24-438
20-907
15-879
14-062
12-570

+ 1-865

+ 0-545
+ 0-094
-f 0-049
+ 0-150
+ 0-259

+ 0-206

+ 0-043
+ 0-003
— 0-003
— 0-014
— 0-038

— 0-003
— o-ooi
— 0-001

0-000
o-ooo

+ 0-001
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Mit Hilfe der Taylorschen Reihe von ~k0 können also die Näherungswerte

von a bis zur beliebig hohen Präzision ohne viel Rechenarbeit
berechnet werden. Aus dem Näherungswerte von a kann weiter auch
der Barwert der steigenden Rente näherungsweise leicht berechnet
werden, und zwar nach der Formel

fcft a2
1 -?—. (55)

Die Taylorsche Reihe von k0 hat also im allgemeinen einen bedeutenden

praktischen Wert.
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