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Die Taylorsche Reihe

der generalisierten Poukkaschen Funktion
und ihre Anwendung

Von Ive Lah, Ljubljana

Die generalisierte Poukkasche Funktion definieren wir

SE SEy ,
W == k,,(ib’—}—l,%) = ]ﬂ,n, (1)
wo S, die n-te Summe der diskontierten Zahlen D, bedeutet, nimlich
. “m—14t
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Speziell haben wir:

S,.,D
2t O = Ryl b 1,9) = Ky

Niss
S N,
S;(p24)_1 1( 1 (3)
S 5,
mﬁaﬁi:%@+Lﬂ—%
z-+1

--------------

Aus der generalisierten Poukkaschen Funktion (1) lassen sich
bekanntlich die meisten und darunter die besten Naherungsformeln
des Zinsfussproblemes herleiten. Bei allen diesen Herleitungen wurde
bis jetzt die Grosse k, als Konstante angenommen. Es stellt sich die
Frage, wie sich die Formeln des Zinsfussproblemes dndern, wenn man
k, nicht mehr als Konstante, sondern als Funktion des Zinsfusses 1
betrachtet. Diese Aufgabe kénnen wir nur so 16sen, dass wir die genera-
lisierte Poukkasche Funktion k, in die Taylorsche Reihe in bezug auf
den Zinsfuss 1 entwickeln. Zu diesem Zwecke fithren wir zwei Hilfs-
funktionen ein, und zwar:



n—+1 St .
="k, @ M, = (—1rnl 222 (5)
Die Grenzwerte von A, sind 1)

1
1<h, <212 (6)
n

Die Summen der diskontierten Zahlen S¥), in (1) ersetzen wir
durch die Hilfsfunktion M, aus (5). Wir bekommen so:

. M. B _ M. P M Y _ g . e /d'a\? M
" M2 (M, v™)? artt @t T\ div )

wo v den Diskontfaktor und a = a (1) den Barwert der konstanten
nachschiissigen lebenslédnglichen Leibrente bedeutet.

Die Funktion M, o" hat die merkwiirdige Figenschaft, dags ihre
Ableitungen und Integrale nach 4 einfach durch Anderung von = ge-
bildet werden ). Es ist

&'(M,v")
d
Infolgedessen kénnen die Ableitungen von h, (7) leicht berechnet werden.
Man findet:
M

B = ;iv(hﬂﬂhn—zwrn

n

ks Mn—!—lv 2 2
h, = —f) (hyya byt —6h, 4 By 420, 46k, —3)
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...............................

: 1) «Eine neue Funktion der Versicherungsmathematik und ihre Anwendung»,
Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker, 51. Band,
Heft 2, 15. Oktober 1951, Seite 191-210.




Die Grosse kann am besten nach der folgenden Formel

n
berechnet werden:

M, v M
1‘; —hh P g By hy iy —

n x

(10)

i welcher M, = a = a, (1) und p, die einjdhrige Erlebenswahrschein-
lichkeit bedeutet.

Insofern wir eine Tafel von h,-Werten fir n =1, 2, 3, 4, ...,
welche zum Zinsfusse 7, berechnet sind, zur Verfiigung haben, kénnen
wir die unktion A, mittels der Formeln (9) in die Taylorsche Reihe

1 w1 m
b, = Ohn—I—AOh.;—F?A“hn—l—g’—A“hﬁ — (11)
entwickeln, in welcher 4 = 1—1,. Durch Multiplikation der Reihe (11)
mit : geméss (4) bekommen wir die Taylorsche Reihe der gene-
n

ralisierten Poukkaschen Funktion (1):
k, = %, 4 A%, + A“k" —[— 43%'” + . (12)

An der unteren und an der oberen Grenze (6) ist h, unabhéingig
von ¢. Die Ableitungen von h, miissen daher an beiden Grenzen gleich
Null sein, d. h. fir

n-+1
. =1 und k=
n

(18)

miissen die Polynome in (9) verschwinden, was als Kontrolle der
Rechnung dienen kann.

Je kleiner die Variabilitdt von k, ist, desto rascher konvergiert
die Reihe (12). In den hoheren Altern haben wir eine raschere Konver-
genz als in den niederen. Desgleichen konvergiert die Reithe von k, 4
rascher als die Reihe von k,. Anhand der slowenischen Volkssterbe-
tafel, ménnliches Geschlecht, Beobachtungsperiode 1931-1933, welche
wir im folgenden mit STM bezeichnen wollen, haben wir fur das Alter
41 = 40 und far den Grundzinsfuss 7, = 3 %, folgende Taylorsche
Reihe gefunden: (14)

k1 (40, 1) = (-80288 +2-0656 4 —4-4850 A2 —46-961 A3 + 2507244+ ...



In der Tabelle 1 sind die exakten Werte von k,(40,7) fir die Zins-
fisse + = 0%, 1%, 2%, 4%, 5%, 6%, 6 und die entsprechenden
Fehler F, fur v =1, 2, 3, 4 gegeben. Der Fehler F, bedeutet die Diffe-
renz zwischen dem Ndherungswerte, wenn die Reihe (14) beim »-ten
Gliede abgebrochen wird, und dem exakten Werte.

Tabelle 1
Zinsfuss Exakter Wert Fehler
1 k1(40, %)
By Fy Fy Fy
09, 0-73831 -+ 0-00260 | —0-00144 |} —0-00017 | - 0-00003
19, 0-76018 -+ 0-00139 | — 0-00040 | — 0-00002 | - 0-00002
29, 0-78182 -+ 0-00040 | — 0-00005 0-00000 0-00000
49, 0-82305 -+ 0-00049 | 4+ 0-00004 | — 0-00001 0-00000
59, 0- 84207 -+ 0-00212 | -+ 0-00083 | —0-00005 | — 0-00001
6 % 0-85977 -+ 0-00508 | -~ 0-00104 | —0-00023 | — 0-00003

Die Abweichungen in der finften Dezimale stammen wenigstens
zum Teil von den vernachlissigten Dezimalen der Grundwerte.

Aus der Reihe

h, = og + o4+ o 4%+ azA43 4 ... (15)
kénnen wir unmittelbar, d. h. ohne Formeln (9) die Reihe
h’n+1 = fo+ prd + B A+ B A7 + . (16)

herleiten und umgekehrt. Diesbeztigliche Rekursionsformeln ergeben
sich aus dem vollstélndigen Integral der Differentialgleichung (7),
welches lautet 1)

a—§04”+3ff ff/fh" aa. ()

Wir setzen in (17) n = 1, n = 2 und bilden die Gleichung

fa Ay ]hldd _o, +ija Ag— fhzdd . (18)

) «Das Zinsfussproblem», Mitteilungen der Vereinigung schweizerischer Ver-
sicherungsmathematiker, 47. Band, Heft 1, 30. April 1947, Seite 242.

6
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Mittels Differentiation eliminieren wir aus (18) die Integrationskonstan-
ten By, 4,, By, U, und gelangen so zur folgenden Rekursionsformel

1 :
hy = E[Qh‘f—hl—{—hlw—Al—fhldd)], (19)
welche eine Differenzen-, Differential- und Integralgleichung zugleich
darstellt. Auf dhnliche Art und Weise finden wir allgemein

1 :
gy = 5 [2h2 — R, + R (4 — A, — [h,d4)]. (20)

Die Richtigkeit von (20) kann mittels Kinsetzung des Wertes von h,,
aus (7) leicht bewiesen werden.

Aus der Anfangsbedingung 4 = 0 bestimmen wir zunéchst die
Integrationskonstante 4, in (20).

Unter Beachtung von (9) und (10) finden wir: (@1)
Oh, oM, P
A = ——" (O O —20h +1)=—— "1 — z :
" *h s ERE O M, v, sy Mg -+ Oy B

n

Nachher setzen wir die Reihen von h, und h,,, aus (15) und (16) in (20)
ein und entwickeln die rechte Seite von (20) in eine Potenzreihe von 4.
Durch Vergleichung der Koeffizienten derselben Potenz A4” bekommen wir

- Qog—1 L
0 — . —'Anz%'
0.4} O(O
oy (2 — o) o o\
B = LE_JL_QAa{_Z___;
%o % %y
D oty %o (B — 2etg) + Bt (0tg—2) g Qo0 &
fa = 3 =B34\ ——+— 99
2oy % o o, (22)
8 Datg oy oy (Totg— 12) + Bog ety (4 —Borg) + 6 (2 —ty)
3 —_ iy

4
3o

—4An(% Qalagr—J— ol n 3o oty ocf)

----------------------------
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Alle p-Koeffizienten kénnen somit als Funktionen von «-Koeffi-
zienten dargestellt werden. Zu beachten ist, dass f, auch von «,,
abhéngt. Daraus schliessen wir, dass (n+ 1) Glieder der Rethe von h,
etwa dieselbe Priizision ergeben wie n Glieder der Reihe von h, .
Aus den Gleichungen (22) ist ersichtlich, dass man mit Ausnahme von
o auch umgekehrt die «-Koetfizienten als Funktionen von f-Koeffi-
zienten ausdriicken kann.

Obige Ausfithrungen beziehen sich auf die Taylorsche Reihen-

entwicklung von %, k,, k3, .... Die Taylorsche Reihe von k, muss
dagegen gesondert berechnet werden. Aus (3) und (5) folgt
K ) (23
0 — M% pCE * )

Unter Beachtung von (8) konnen auch die Ableitungen von Fk, leicht
berechnet werden. Hs ist:

; koM,
Ky :k0< ”p °>[~2—-h1]

. o My \?
ky = ko( : 0) [6*6h1+h?h2]

T

1 kOMO ¥ 5 2 2 31,2
B — R, - [24 — 367, - (672 - 8T ) — B3R hy]

(24)

11 k{)M() # 2 | 9
Ky = ko( ; [120 — 2407, + (9072 4 6042 hy) —
— (2043 hy + 10h3 K2 hy) + RERER2R,]

nn k M 5
ko' = kg( “p “—) [720 — 1800h, ~+ (108072 4 48043 hy) —
— (90T + 36013 hy + 90K A3 hg) +
+ (207 {73 + 80hS h2 hy + 12hT K3 h3 hy) — i by b3 b ]

---------------------------

An den beiden Grenzen, d. i. fiir ky = 0 und ky = k, = 1 werden
die Ableitungen von k, — #hnlich wie die Ableitungen von h, — gleich

n—+1

Null, wie man sich durch Einsetzung von h, = n (24) iber-

zeugen kann. Damit kénnen die Formeln (24) kontrolliert werden.
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Nebenbel bemerken wir, dass die Koeffizienten bzw. die Summen
der Koeffizienten in runden Klammern () in (24) die Produkte der

Stirlingschen Zahlen &) und der Faktoriellen »! darstellen. Weil:

S =1y 91 & = (1Y
p=1

(25)

muss die Summe der Koeffizienten in jedem Polynome (24) gleich 1
sein, was ebenfalls als Kontrolle der Rechnung dienen kann.

nicht so rasch wie die Reithe von k;. Anhand der STM haben wir fir

Infolge der grosseren Variabilitit von ky konvergiert die Reihe

i d T | i
Ko = Oy + A%, + o 420 4 - AWK
s .

r-+1 =40 und 7, = 39, folgende Reihe bekommen:

foo (40,1) = 0 75216 + 4-0731 4 —27-257 A2 17-858 A% - 1099-3 44 —T440-34°4- ...

(26)

(27)

Die exakten Werte von k,(40,1) fiir + = 09, 1%, 2%, 4%, 5%,
6 9%, als auch die entsprechenden Fehler I7, wenn die Reihe (27) beim
v-ten Gliede abgebrochen wird, sind in der Tabelle 2 gegeben.

Die Reihen von k, konvergieren nicht immer monoton. Durch
Hinzufiigung eines neuen Gliedes kann der Naherungswert von k
voriibergehend auch verschlechtert werden.

*

*

Tabelle 2 -

Zins- | Exakter Fehler

fuss Wert

i Feg (40, 4) ” Py s 7 7y

09, [ 0-60608 | 4 0-02394 | —0-00059 | —0-00106 | —0-00017 | -~ 0-00001

19, 10-65987 | 4 0-01083 | —0-00007 | —0-00021 | —0-00003 | —0-00001

29, 10-70871 | 4 0-00272 | —0-00001 | —0-00003 | —0-00002 | —0-00002

49, 1 0-79023 | - 0-00266 | —0-00007 | —0-00005 | —0-00004 | —0-00004

59, 10-82303 | -+0-01059 | —0-00031 | —0-00017 | -~ 0-00001 | —0-00001

69, | 0-85103 | -0-02332 | —0-00121 | —0-00074 | -~ 0-00015 | —0-00003



e Bh ==

Wir wollen nun an den einfachsten Beispielen zeigen, wie sich die
Néaherungsformeln des Zinsfussproblemes dndern, wenn man die An-
nahme k, = Konstante fallen lisst. I'tir n = 1 bekommen wir aus (17)

a4
fA—Al—jhldA (28)

wo a den exakten Barwert der konstanten nachschiissigen lebensling-
lichen Leibrente darstellt. Durch logarithmische Differentiation nach A
bekommen wir aus (28)

Mv 1

CLZM():Be

My ~ A—d4,—[has (%)
e A=A Mo g (80)
T M, v S .
Aus der Anfangsbedingung 4 = 0 folgt im Einklange mit (21)
@:—OM. (31)
O M, v,
Wenn wir in (28) h; = %, setzen, dann bekommen wir
ay = B [—%— +4(1- "hoF“’T‘ (32)
M, v,

Wo a;) den Niherungswert von a darstellt. Die Integrationskonstante B
in (32) bestimmen wir so, dass im Falle 4 =0, ayy ="a ="M, wird.

Also N e e _
%Cﬁﬁﬂ)k%, (33)

Nach Einsetzung des Wertes von B aus (33) in (32) bekommen wir die
wohlbekannte Giittingersche Naherungsformel 1):

v
I

1— %) v, 4°M, | =on
a(l) — 0 [1 + ( ;;;0 1:{ 1—-0h, . (34)
0
Nun setzen wir hy = %, + A%, (35)

So verbesserten Néherungswert von a bezeichnen wir mit ay.

‘1)‘ Giittinger, Paul: «Zwei Beitrige zum Zinsfussproblem», Mitteilungen der
Verelmgung schweizerischer Versicherungsmathematiker, 80. Heft, Oktober 1935.
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Aus (28), (31) und (35) folgt

f d4
0, . :
~ 0 4 (0hy—1) 4+ 05 0] 4
o) = Be 03, v + Oh—1) . (36)

Das im Exponent der Formel (36) auftretende Integral nimmt drei
verschiedene Formen an, je nachdem die Diskriminante

OMO
D = (%hy—1)*—4(—

1%

>0-5Oh; — 1L %2(2%,—8)=0. (37)

Dementsprechend bekommen wir aus (36) folgende drei Formen der
verbesserten Gattingerschen Naherungsformel:

1

Qo 1) = %0 ‘Aﬂhf—f_%l“l—l_l/,lz 0hl_1_VD>V3
* A%+ % —1— D % —1+|D
24014 (38)

- AOROhy—1) + kg —1)?

0
(o gy = e
A% Y-D
N B o (V1) + (g —1)3—D
Bo) 21— 11— o
Gy = ‘ac VP s 1

Fir 2 +1 = 40 und 7 = 3%, haben wir anhand der STM fol-

gende Naherungsformel gefunden:

2-00081 4

u — e 412945 aretg oot 7 A + 060152
2,3) = (39)

Die Tabelle 3 enthilt die exakten Werte von ag(s) fir + = 09,

1%, 2%, 4%, 5%, 6% als auch die entsprechenden Iehler der
Giuttingerschen Formel (84) und der verbesserten Naherungsformel (39).

Tabelle 3
Zinsfuss Exakter Wert Fehler von
i a39(i)
1> ac2,3)
0% 28-948 —0°157 + 0-003
2C%) 20-907 —0-002 —0-001
40/0 15-879 -+ 0-002 —0-001
5% 14-062 -+ 0-011 0-000
6% 12-570 -+ 0-030 -+ 0-001

Die Naherungswerte a, ) sind also bedeutend besser als ay.



Setzen wir weiter
hy = Ohy + A%, + L A2 (40)

Den zum zweiten Male verbesserten Naherungswert von a bezeichnen
wir mit ay. Aus (28) und (40) folgt

_f i
OM, ’ 1w
- L (Ohy—1) A 4 050k A2 & —0p" 48
0 1 1
ay = Be M1 vo s

(41)

Der Polynom unter dem Integralzeichen in (41) kann haben:
1. drei reelle verschiedene Wurzeln «, f, v;
2. drei reelle gleiche Wurzeln o, «, «;
3. drei reelle Wurzeln, von denen zwei gleich sind «, «, §;
4. eine reelle und zwei komplexe oder imagindre Wurzeln o, u -+ »1,
u—v1, wobei —2u = f und u?-+ 9% = y.
Dementsprechend bekommen wir aus (41) folgende vier Formen
der zum zweiten Male verbesserten Guttingerschen Niherungsformel

1 1 1 s
G = % [(1_£>m(1ﬁi>m<l_ﬂ>m] ]
k) a 5 }}

3 [ 1 _ lJ
0r] L(d—)2 a2

i 6 64
Uz = 0 — E} N @p)? ¢ (d—a) (up) @Ok,

| A=f o

6 120468 AV 452

o

/42484y
i x—A4 ]/—77
Wir kénnen weiter setzen
hy = %y + A%, + %Az Oh; + %A“h’i" (43)
und so die Gittingersche Formel (84) zum dritten Male verbessern.
Wir sehen jedoch davon ab. Die Formeln sind kompliziert und weisen
ausserdem nichts wesentlich Neues oder Interessantes auf. Fiur die
Bediirfnisse der Versicherungspraxis reichen schon die Formeln (88)
vollkommen aus. Wir bemerken nur, dass aus (43) neun Formen der
verbesserten Niherungsformel Gpg 1) Baz)s Oazys - - -0 Yag Tesultieren,

Je nachdem die Wurzeln des zu integrierenden Polynoms reell, komplex,
gleich, verschieden usw. sind.

=}

s W
Og,g) = "0

——— arct;
(02 +aB+y) Oy g Ohy (e +af+y) Y dy—pE ap+2y

(42)
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Fuar n = 2 bekommen wir aus (17)

- C’—{—Bf fA A, fhsz ' (44)
Die erste Ableitung von (44) nach A lautet

dA
—Iv= Mo — Bef A (45)
Die Grosse I = (Ia), bedeutet den Barwert der steigenden nachschiissigen
lebenslanglichen Leibrente. Die Gleichung (45) bekommen wir aus (28)

OMO

"M, v,
und k; mit hy, vertauschen. Infolgedessen konnen wir

einfach so, dass wir % = M, mit — Iv = Myv, 4, = — mit

0
Ay = — =

2 OM, v,
die verschiedenen N&herungsformeln der steigenden Rente I gleich
niederschreiben.

Wenn wir hy = %%, setzen, bekommen wir a,nalog (34)
(1 _Oh )UOAOszl 1—0h,

o (46)

o7 20

Wenn wir hy = %, - A%, setzen, bekommen wir analog den
Formeln (87) und (38)

D=1+%2@2%,—3)= (47

0 0} 0, __ 1 __ .
1{21):01”°(Ah+h 1+)D %hy—1 VD 1/3
: A%y + %y —1—) D Shy—1-4+})D
240,
AR (Ohy—1) + (VR —1)2

Loz = il i (48)

/

2 " 4%, 1/ =D

? V-D ae A0k (Ohy—1) + (Ohp—1)2—D

Tinm = 017% J

Fir 2 4 1 = 40 und 7, = 8 %, haben wir anhand der STM folgende
Néherungsformel gefunden:

: 4
Do — 667708 anat 0'520684
070 8 arele 453006 4 1 015763

v (49)
Of = (150, = 25632

Ly g =
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Die Tabelle 4 enthilt die exakten Werte von I = (Ia)y fur
1 =09%, 1%, 2%, 4%, 5%, 6% und die Fehler der Naherungs-
formeln (46) und (49).

Tabelle 4
Zinsfuss Exakter Wert Fehler von
? (Ia)zg T, -
0% 511-94 + 2-54 —0-03
1% 401-05 054 __0-01
2% 31852 4 0:05 —0-01
4% 208-88 — 008 0°00
5% 17226 —0-16 1001
% %

#

Die Taylorschen Reihen der Poukkaschen Funktionen ky, kg, ks, . . .
ermoglichen die Verbesserung der Néherungsformeln des Zinsfuss-
problemes bis zur beliebig hohen Prézision. Die Schattenseite solcher
Verbesserungen bildet die verhiltnisméssig grosse Rechenarbeit, welche
man dabei zu bewéltigen hat. Es gibt jedoch gewisse Gebiete des Zins-
fussproblemes, in welchen sich die Anwendung der Taylorschen Reihen
von k, sehr einfach gestaltet. Zwel solche Beispiele geben wir im
folgenden.

I. Gegeben sind zwei Rentenbarwerte % = a,(7,) und o = a,(3,),
aus welchen man mit verschiedenen Inter- und Extrapolations-
methoden mehr oder weniger genaue Niherungswerte von a = a,(7)
berechnen kann. Bezeichnen wir mit m, und m, zwei solche Interpola-
tions- bzw. Extrapolationswerte von % und 'a. Die lineare Kombination

myfr+me(l —f1) = My, o (50)

Wo f; eine rationale Funktion von k, = k;(z -+ 1,7) bedeutet, stellt
einen verbesserten Naherungswert von a dar 1). Dieses Verfahren kann
unbegrenzt fortgesetzt werden. Die lineare Kombination

My 2 fz + Mg a(l—715) = My 5 5.4 (51)

') «Noch einige praktische Interpolationsformeln des Zinsfussproblemes von
hoher Prizisiony, Mitteilungen der Vereinigung schweizerischer Versicherungs-
mathematiker, 52. Band, Heft 2, 15. Oktober 1952, Seite 161-172.
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wo f, eine rationale Funktion von k, und k, bedeutet, stellt einen
weilter verbesserten Naherungswert von a dar. Die Funktionen f, und f,
sind meistens sehr einfach. Bei der arithmetischen und harmonischen
Inter- bzw. Extrapolation ist z. B. f; =k, usw. Ahnliche ebenfalls
sehr einfache Formeln haben wir auch bei den Verbesserungen der
Inter- und Extrapolationswerte der steigenden Rente bzw. °I v, und
Jv,. In diesem Gebiete des Zinstussproblemes haben also die Taylor-
schen Reihen von k, nicht nur einen theoretischen, sondern auch einen
bedeutenden praktischen Wert.

IT. Das vollstindige Integral der Differentialgleichung (23) lautet

i=c+ifkod4 (52)
P

a
oder nach Bestimmung der Integrationskonstante c¢

1 1 1
—:——l—ufkﬂdd
P,

a Ug
(53)

1 1 ! "
= +?(A Oy 4L 420k, 4 1 A0k 4 )

T

Anhand der STM haben wir fiir 4 1 = 40 und 1, = 3 9%, folgende
Reihe gefunden:

) = 00551998 + 075821 4 + 20529 A2 — 91587 A3+ . ... (54)
g ll

Die exakten Werte von asy(7) als auch die entsprechenden Fehler
F , wenn die Reihe (54) beim »-ten Gliede abgebrochen wird, sind in
der Tabelle 5 gegeben.

Tabelle 5
Zinsfuss Exakter Wert Fehler
i azo (1) s 7 T

09, 28-948 -+ 1-865 -+ 0-206 —0-003
19 24-433 -+ 0-545 -+ 0-043 —0-001
29, 20907 -+ 0-094 -+ 0-0038 —0-001
49 15879 + 0049 —0-003 0000
59 14-062 -+ 0-150 —0-014 0-000

6 9% 12-570 -+ 0-259 —0-038 -+ 0-001
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Mit Hilfe der Taylorschen Reihe von k, kénnen also die Ndherungs-
werte von a bis zur beliebig hohen Prézision ohne viel Rechenarbeit
berechnet werden. Aus dem Naherungswerte von o kann weiter auch
der Barwert der steigenden Rente néherungsweise leicht berechnet
werden, und zwar nach der Formel

2
koa

L = .
Py

(55)

Die Taylorsche Reihe von k, hat also im allgemeinen einen bedeutenden
praktischen Wert.
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