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Uber die Orthogonalpolynome

Von H. Kreis, Winterthur

Die Entwicklung einer Funktion nach Orthogonalpolynomen wird
durch zwei charakteristische Figenschaften ausgezeichnet:

1. bei gegebener Gradzahl liefert sie die Mimanalsumme der quadra-
tischen Abweichungen der ausgeglichenen von den urspriinglichen
Werten ;

2. bel wachsender Gradzahl der herangezogenen Orthogonalpolynome
nimmt diese Summe der Fehlerquadrate monoton gegen 0 ab.

Die vorliegende Mitteilung untersucht allgemein diese bei der Aus-
gleichung von Beobachtungswerten sich aufdrangenden Funktionen und
bringt in Zusammenhang damit einen Beweis fiir eine von T'chebycheff
angegebene Formel.

Die den beliebigen Abszissen x,, ,, ... , zugeordneten Ortho-
gonalpolynome werden durch folgende Bedingungsgleichungen definiert :

b Bz) = 0, (1)

P (x) bedeutet ein Polynom vom s. Grad, das in der Normalform fol-
gendermassen geschrieben werden kann:

-1
Px)=z+a_ "+ ... 4+ a.

Die Summation erstreckt sich iiber die m Abszissen z; bis z,; die
Gleichungen (1) gelten fiir alle Zahlenpaare h == k.

Der Definition zufolge hat man insbesondere:

1, DuPy(x) = n= Ny;
0, far k=0;

0, fir h<k.

a) B} — nf
b) Deh(2)
¢) PAEAAC)

|

|



Hieraus folgt: ;.

Pi(w) =g— - s
und falls » >1, ist die Norm

Ny == Z”Pi(m) = ZZ$P1($)

von Null verschieden, da sonst die lineare Gleichung Pj(x) =0, n >1
verschiedene Wurzeln z,, z,, . .. z, hitte.

Das Polynom F,(z) kann aus der Gleichung
7 = D@} - A Py} = A, B (1)
ermittelt werden, in der 4, und 4, durch die Bedingungsgleichungen
Ay Ny = D= Pyfa),
Ay Ny = Sea? Pla),

bestimmt werden. Das so definierte Polynom P, erfillt die Ortho-
gonalititsbedingungen (1), und falls n > 2, ist die Norm

N, = SeP(z) = Sex?P(zx
nicht Null. a= Frlie) = Fre L)

Werden auf diese Weise die Polynome P;, P, . .. und die zugehérigen
Normen N, N, ... nach und nach ermittelt, so gelangt man schliesslich
zum Polynom P, (z), das mit dem Produkt

PHa)=(a—a) (e —a) ... (x—a,)
identisch ist. Denn in der Entwicklung
Po(z) = By@) + 4, Py + - - . + 4, Fo(2)
hat man
AN, = DePrz)Pz) =0, fir0<i<n—1,
also 4; = 0. Folglich sind P,(z) und P}(x) identisch gleich und die Norm
N,= S:P)z) — S¥PX(1)

verschwindet.

Durch das beliebige Abszissensystem 2, Z, . . . &, wird infolgedessen
ein System von Polynomen, das den Orthogonalbedingungen (1) geniigt,
eindeutig definiert.
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Fiihrt man eine neue Variable 2 = x —m, m beliebig, ein und setzt

Py(z) = Bz +m) = ¢,(2),

so erfillen die Polynome @ () ebenfalls die Bedingungen (1). Die beiden
Koordinatensysteme (x,) und (z,) sind sowohl in bezug auf die Polynom-
auswertungen als auch in bezug auf die Normen dquivalent. Fir jeden
Index s ist némlich P

J(2:) = Q(z,) -

Zahlenbeispiel: 1. w =1, 9. 4, 8§,
Dylw] = 1
Pi(x) = 2—38
Py(z) = 22— 6z -+ 6,5
Pyx) = 3 — 9221 23,6z — 16,8
Py(x) = (z—1) (z—2) (z —4) (x—5)
2. m=8:2=2—8=-2,—-1,1, 2.
Qo(2) = 1
Q1(2) = 2
@a(2) = 22—2,5
@5(2) = *— 8,42
Qu(2) = (—1) (F—4)

Z

1 -2 1 —2 1,5 ~1,2 0
2 -1 1 1 1,5 9.4 0
4 1 1 1 1,5 —9.4 0
5 2 1 2 1,5 1,2 0

Noy=d; N; =105 Ny=0; Ny=144; N;=1,

Bilden die Abszissen z, die naturliche Zahlenreihe 1,2, ... % und
+n

wird m = gewihlt, so bilden die z-Werte eine arithmetische
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n—1

symmetrische Folge mit dem Anfangsglied 2; = — und dem

Schlussglied 2, = — - Da die Argumente z paarweise entgegen-

gesetzt gleich sind, erfiillen die beiden Polynome @ ,(2) und (—1)°*Q,(—2)
die Orthogonalititsbedingungen (1), und da die Koeffizienten von 2°,
nimlich 1 und (—1)*, gleich sind, hat man

(1) Qy(—2) = @(2) -
Iar ein gerades s folgt hieraus
Qy(—2) = €,()
—Q,(—2) = ().

D. h. das Orthogonalpolynom @, (2) ist eine gerade oder ungerade
Funktion von 2z, je nachdem der Grad s desselben eine gerade oder
eine ungerade Zahl ist.

und fiir ein ungerades s

Ziwischen drei aufeinanderfolgenden Polynomen () () besteht fol-
gende Beziehung: N

Qs-%—l(Z) = 2 QS(Z) — ﬁ Qs~1(z) s (2)

Um diese Relation zu bewelsen, denken wir uns das Produkt
2@Q,(z) nach Orthogonalpolynomen entwickelt:

ZQS(Z) = Qs-{-l(’g) —|_ As—i Qs—l(z) e + AO QO(Z) .

Der allgemeine Koeffizient 4, fiir 4 = 0 bis s — 2 wird erhalten durch
Multiplikation mit z° und Summation; es ergibt sich

2 gt Q,(x) = 4; N,

da 7+ 1 < s ist, verschwindet die Summe auf der linken Seite, also
A; = 0. Multipliziert man aber die Gleichung mit 2" und summiert,

s0 erhdlt man _
D Qu(0) = 4,y 2227 Q04(2),

Ns = As—le—l’

A, i ="N,:N_;.

also

somit

Hieraus resultiert die Rekursionsformel

No1@s14(8) = Ny 2Q(2) — N, @a(2) - (3)
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Fir die Norm N, besteht die noch zu beweisende allgemeine Be-

zichung: sl sl (n—}—l)
2s +1/°

N, = ——
()
8
Durch Einsetzung geht die Formel (2) in die eingangs erwiahnte Formel
von Techebycheff tiber

(4)

Qs-}—l(z) = ZQS(Z) _—‘ %&?82181§

B Qs—l (Z) :

Zur Begriindung der Formel (4) formen wir die rechte Seite der
Definitionsgleichung N, = 129,

um, indem wir die Summen der geraden Potenzen der Zahlen z,,
Z,,, einfithren. N ldsst sich folgendermassen darstellen

Ns == ZZS + b2s—2Z2s-—2+ e + b2fz2r’

wobei 27 gleich s oder s + 1, je nachdem s eine gerade oder ungerade
Zahl bedeutet.

Durch partielle Differentiation der erzeugenden Funktion
Flt;m) = ™ g™+t 0 L™

(fm = 3%-«_2{——1) nach ¢, findet man

_ PFE(tm)

T fir t = 0.

Summiert man die geometrische Folge rechts, so wird

=5
e’ —e
Fit;m) = — — = E(t;n).
G- w=slg
Es 1st somit auch
F*E(tm)
o, — T, fir ¢t = 0.

Da E(t;n) = E(—t;n), eine gerade Funktion von ¢ ist, gilt folgende
Entwicklung nach Potenzen von t*: )

B(t;n) = Ag(n) + Ay(n) 2+ Agln) 124 . ..
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Aus E(t;—n) = —E(t;n), ergibt sich ferner
Ag(—m) = —Ay(n),
d. h. die Koeffizienten 4,, sind ungerade Funktionen von n.
Fiir n = 1 wird
E(t;1) = 1 = Dk A, 1) #,
0
A4o(1) =1;  Ag(1) =0, fir k>0.

Far n = —1 findet man analog aus

folglich

B(t;—1) = —1 = Sk Ay (—1) £,
0

Ay~1) = —1;  Ay(~1) =0, fiir k>0.

Ziweimalige Differentiation von

=

t —
6 ey

m]g

i

©o

e

o0
; Zk tZk

o
10 |

nach n ergibt
—‘26 2k tZk ECA tZk
Die Koeffizientenverglemhung liefert folgende Relation

Ay (n) = %A%—Z(w’) .
Zweimalige Integration von 4,(n) nach m liefert ein Polynom, in

dem die beiden Glieder pn -4 g noch unbestimmte Koeffizienten haben.
Ay, (0) fithrt auf g =0 und 4y, ,(1) = 0 gestattet, p zu bestimmen.

Die ersten Koeffizienten lauten

nd—mn
A, — 83n5 —10m3+Tn

2 -5
3n? —21n° - 4913 —381ln
8.7! '
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Die Polynome A, ,(n) besitzen die Nullstellen —1, 0, 41 und
lassen sich auf folgende Form bringen

n~—!—1)

Appppa(m) = ( fr(n?),

wobel f,(n?) ein Polynom von n? vom k. Grad bezeichnet. Z. B.

4= ("5")

B fn,—-|—1) 3n2—17
A4_( 3 60

4 n-41y 6n*—36n% 462
6_( 3 ) 7! '

Die Potenzsummen Z,, lassen sich demnach wie folgt darstellen:

1
Zg, = (2k)! (n—g}— )fk—i(nz)» k>0.
7. B.
n -1
ZZ:%( 3 )
1\ 3n2—T
- )
: 3 40
n-+1\ 3n*—18n%+ 31
Z“z( 3 ) 294 '

Die Normen N, erhalten fiir s >0 dieselbe Form wie die Summen
Zg, Zy ..., s0 dass geschrieben werden kann

No= (") g, >0, )

Wéhlt man @y(2) = @,(2) B,(2), wobeil R, (z) irgendein Polynom vom
Grad p bedeutet, so geniigt diese besondere Funktion (),(2) den Ortho-
gonalbedingungen (1), verschwindet aber fir alle Werte z;, iiber welche
summiert wird, so dass auch N, verschwindet.
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Betrachtet man in der Gleichung (5) s als feste und n als ver-
anderliche Zahl, so verschwindet N, fir n =1, 2, ... s, so dass die
rechte Seite der Gleichung (5) die Form haben muss:

N, =C,nnt—1)(n2—4)... (n%*—s?

N, =, (2’1131).

oder kiirzer

Fir n+s=2s+41, also n =s-+1, ist die Konstante C, = N,.
Die Glieder des entwickelten Binoms (1 —1)° liefern bis auf einen
konstanten Faktor 4 einen solchen Spezialfall. Die s + 1-Werte

P() = A(- 1) (@j1) i=1,2 ...s+1

geniigen den Orthogonalbedingungen (1); denn

s+1 s+1 S

SR (i) = 4 3 (1) (@._1) = A4 (i¥).

1

Diese Differenz der s. Ordnung der Funktion vom k. Grad +* ver-
schwindet aber, falls k=0, 1, ... (s —1) ist.

Der konstante Faktor 4 wird erhalten, indem N, auf zwei ver-
schiedene Arten ausgewertet wird. Es ist

s+1 s+1

1. Nsmzin(i):Azzf(iii).

1

Die Summe auf der rechten Seite stimmt iberein mit dem Koeffi-
zienten von ¢* in der Entwicklung von (1 + 1)*, also

N, — Az(QS).
S
9 N s+1 ) - s+1 .y S .
: o= DR = A1) ((i“1>:A(—1) 5!,

wie man durch s-malige Differentiation des Produktes
(1—ehel = (1)t + A4, 7+ ...,

fir t = 0 erkennt.
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Die Gleichsetzung der beiden Ausdriicke fiir N

A= (=1)°s!: (28),

S

ergibt

g

und hieraus folgt die behauptete Formel

N, — sl sl (n-—'—s),
(288) 2s 41

die auch fir s = 0 gilt, wenn, wie iiblich, unter dem Symbol 0! die
Zahl 1 verstanden wird, ndmlich Ny = n.

/

Pareto [1] hat eine Zusammenstellung der Polynome ¢ (z) und
' 1
Ps(m):Qs<x_'n+

die Auswertungen derselben fiir die positiven Werte der Argumente 2
fur die Gliederzahlen n = 4 bis n = 25 tabelliert.

) fiir s =1 bis 8 publiziert und ausserdem

Die ersten Orthogonalpolynome heissen:

Qo(z) = 1

Qi(z) = 2

%@—ﬁwﬁgl

Qy(2) = 28 — SWZO—T p
%@=$_3ﬁzmﬁ SW—iytm

Gegeben sei eine auszugleichende Folge von Beobachtungswerten
Uy, Ug, - .. U,. Mit Hilfe der Orthogonalpolynome P,(z) lasst sich die
Zahlenreihe analytisch folgendermassen genau darstellen

Uy = A Fy(x) + 4, P () + ... +4,,F,4(x), (6)
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oder, wenn die Momente der Funktion u, eingefithrt werden,

M, = >ou,Fy(w) = 4,N,
M, = Dru,P(z) = 4; N,

-------------

Mn—1 - EumPn—l(w) = An——l Nn—l

M, M

. 1 Mn~1
Uiy =2 TDPO(m) +—1€P1(90) + e N_ L)

Beschrankt man sich auf die k ersten Glieder der Entwicklung (6),
so 1st der begangene I'ehler gleich der Summe der vernachléssigten

Glieder
Ak 'Pk(m) + cr + An—lpn—l(x) ’
so dass die Summe der Fehlerquadrate betrigt
A2N,+ ...+ 42, N, ,=EF.
Irgendeine Ersatzfunktion ebenfalls (n —1). Grades fur u,, etwa

AsPofe) + ... + 4 By(@)

bedingt folgende Abweichung von wu,:
(AO - A:)k) PO _i— < —|_ (Akﬁl — A;f—l) Pk~1 + ‘Ak ’Pk _l_ M + An—-l P‘n—l *

Die Summe F; der Fehlerquadrate setzt sich aus F, und den folgenden
Ausdriicken zusammen:

(A(}_A(T)zNO + e —}— (Ak—-l_-A;:—l)sz—l’

und da mindestens eine der Klammern nicht verschwindet, ist die
Summe F, kleiner als F7.

Unter allen Ersatzfunktionen (k —1). Grades fiir %, bedingt das
aus den Momenten M,, M,, ... M, gebildete Polynom

v

M,

s .. P,
N, P o(%) + -t N, e1()

die kleinste Summe der Fehlerquadrate.



Den aufemanderfolgenden Ausgleichungspolynomen entsprechend

M,

Nq

M,
w, 1 (%)
M,
+ , (@) +

sind diese Minimalsummen

R>R>F> ...

>F,>F,>0.

Die Gleichheit I, = F,  ; bedeutet, dass die Summe der Momente

M, Null ist.
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