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B

Wissenschaftliche Mitteilungen

Die Risikotheorie und ihre Bedeutung
für die Versicherungsmathematik1)

You Hans Wyss, Zürich

Die Theorie des Versicherungsrisikos hat ihren Niederschlag
gefunden in zerstreuten Abhandlungen verschiedener Fachschriften 2)

und auf den letzten Seiten der Lehrbucher, vergleichbar dem
sprichwortlichen Blumchen, das im Verborgenen blüht. Jedenfalls hat das

Versicherungswesen seine erfolgreiche Entwicklung und innere Festigung

erreicht, ohne grundlegende Beanspruchung der Risikotheorie.
Diesem Umstand entspringen wohl auch die verbreiteten Zweifel an
ihrer Bedeutung fur die Versicherungspraxis. Aber gerade diese Unklarheit

legt dem Versicherungsmathematiker die Pflicht auf, sich klar zu
machen, was die Risikotheorie zu bieten vermag. Kann der Praktiker
etwas damit anfangen Kann der Theoretiker darin eine Stutze finden
zur Begründung oder zur Vertiefung der Versicherungsmathematik?
Soll sich der Versicherungsmathematiker ernstlich damit befassen

Wenn im folgenden versucht wird, diese Fragen zu klären, so dürfen

selbstverständlich von der Risikotheorie nicht Ergebnisse erwartet
werden, die über die Natur des Problems hinausreichen. Zum
vornherein beschränkt sie sich auf die zufallsbedingten Belastungen aus
Versicherungsfällen und will sich nicht mit den Risiken geschäftlicher
Art befassen, die der Versicherungsträger ebenfalls auf sich nimmt und
die fur sein Schicksal unter Umständen noch bedeutungsvoller sein
können als das Schadenrisiko.

Die derart abgegrenzten Probleme kann man auf verschiedene Weise
mathematisch erfassen. Bisher sind zwei Wege bekannt geworden: man
pflegt sie als «individuelle Risikotheorie» und «kollektive Risikotheorie»
zu unterscheiden. Eine Schilderung dieser beiden Lösungen in ihren

*) Nachdem an der Jahresversammlungvoml2.0kt. 1952 gehaltenenVortrag.
a) Literaturhinweise am Schlüsse.
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Hauptzügen mag vielleicht zu einer Klärung der an die Spitze gestellten
Fragen beitragen.

Zur Veranschaulichung wird jeweilen ein ganz einfaches Beispiel
aus der Lebensversicherung benützt. Doch sei betont, dass sich die

gleichen Betrachtungen ohne weiteres ausdehnen liessen auf alle anderen

komplizierteren Formen der Lebensversicherung - mit positivem
oder negativem Bisiko - und ebenso auf andere Versicherungszweige.

I. Modell der Versicherungsmathematik

1.

Ein Hinweis auf die vertraute Technik der Versicherungsmathematik
soll einige Begriffe in Erinnerung rufen; er mag zugleich hervortreten
lassen, wie die Bisikotheorie die gleiche Betrachtungsweise ausweitet.

Als Ausgangspunkt diene die elementare Aufgabe der
Versicherungsmathematik, eine Prämie zu bestimmen. Für das Beispiel einer

lebenslänglichen Todesfallversicherung mit fester Summe für einen

ai-jährigen Versicherten bietet eine Hypothese über die Häufigkeit der
Todesfälle die notwendige Grundlage. Im Sinne der neueren
Wahrscheinlichkeitstheorie wird die Altersverteilung der Sterbefälle dargestellt
durch die Frequenzfunktion

f(t) p(x,t) fi(x + t).
Daraus ergibt sich die Verteilungsfunktion

t t

F(t) J fix) dt I" p{x,x) nix + t) dt,
— ©o 0

weil im vorliegenden Fall der negative Ast der Verteilungsfunktion
null ist. Der einfacheren Schreibweise wegen wird das Integralzeichen
benützt. Im Sinne des Integralbegriffes von Lebesgue ist in dieser

Darstellung ohne weiteres auch der Fall eingeschlossen, wo die Frequenz
nicht durch eine stetige Funktion, sondern durch eine diskrete Zahlenfolge

gegeben ist, zum Beispiel durch

.f/jAf{i) t\1x —j~>

die aufsummiert wird zur Verteilungsfunktion:

lx T — 0 ^x
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In unserem Beispiel besitzt also die Frequenzfunktion die vertraute
Gestalt der Zahlen der Gestorbenen, wie sie in Zeichnung 1 dargestellt
ist. Die Verteilungsfunktion ist nichts anderes als das in Zeichnung 1

ebenfalls dargestellte Spiegelbild der Absterbeordnung, wobei der Maßstab

so normiert ist, dass F(oo) 1 wird.

Zeichnung 1

Altersverteilung der Schadenfälle
bei einer lebenslänglichen Versicherung auf den Todesfall

(SM 1939/1944)

a) Frequenzfunktion

f(t)
dA±A

(für x 30)
h

x + t

b) Verteilungsfunktion

(-1 l
F(t) 2 /(*) 1 -— (für 3 30)

t=o lx

X -+ t
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2.

Zur Bestimmung der Einmalprämie für die lebenslängliche
Todesfallversicherung sind die verschiedenen Möglichkeiten in Betracht zu
ziehen, dass der x-] ährige Versicherte entweder im ersten oder zweiten
oder in einem der folgenden Versicherungsjahre sterben kann;
auszuzahlen ist in jedem Fall die Summe 1; der Barwert der Versicherungsleistung

beträgt also entweder v oder v2 oder vl. Die in Betracht
zu ziehenden Möglichkeiten sind nicht alle gleich häufig; ihr Eintreten
ist erfasst durch die Frequenzfunktion f(t), mit der alle in Betracht
fallenden Zahlungen zu wägen sind für die Berechnung des

Durchschnittes. In kontinuierlicher Darstellung beträgt der Erwartungswert
OO OO

Ax — J vl f(t) dt J vl p(x,t) p,(x -j-1) dt.
o o

Das ist die Einmaleinlage für die lebenslängliche Todesfallversicherung
des rr-j ährigen, aus der sich mit ähnhchen Überlegungen die periodische
Prämie ableiten lässt.

3.

Dieses einfache Beispiel charakterisiert die Versicherungsmathematik

und deutet an, wie sie sich aus der Wahrscheinlichkeitstheorie
aufbauen lässt. Ebensogut liesse sie sich unmittelbar aus dem
mathematischen Modell der Absterbeordnung ableiten. Innerhalb dieses

Modells entsteht sie, und nur innerhalb dieses Modells gilt sie.

Stillschweigend pflegt man für die Ableitung aller Formeln der

Versicherungsmathematik anzunehmen, es handle sich um einen sehr grossen
Versicherungsbestand, für den die tatsächlichen Ereignisse
übereinstimmen mit den berechneten Durchschnittswerten. Nur unter dieser

Voraussetzung fallen die Gesamtleistungen des Versicherers und
diejenigen der Versicherten im Barwert gleich hoch aus. Man weiss

allerdings, dass praktisch diese Voraussetzung kaum je erfüllt ist, und
deshalb bildet streng genommen das Aequivalenzprinzip keine geeignete
Grundlage für die praktische Prämienberechnung. Es liesse sich sogar
nachweisen, dass ein Versicherungsträger, der sich genau an das

Aequivalenzprinzip hielte, früher oder später zusammenbrechen müsste.
Tatsächlich wird dieses Prinzip denn auch bei der Gewährung wirklicher
Risikodeckungsgarantien nie in reiner Form angewandt; vielmehr werden

stets in irgendeiner Weise Sicherheitszuschläge in Rechnung gestellt.



— 27 —

Die Anwendung des versicherungsmathematischen Formelapparates

auf wirkliche Versicherungsbestände, die der idealen
Grundvoraussetzung des Modells nicht gerecht werden, gehört in den

allgemeinen Fragenkomplex der Übertragung von Ergebnissen aus einem
mathematischen Modell auf die Wirklichkeit; ein Problem, das für die

Anwendung aller Theorien aus der Mathematik und Physik von
Bedeutung ist. Im Gebiete der Versicherungsmathematik tritt aber ein
besonderer Umstand hinzu, nämlich der stochastische (zufallsartige)
Charakter der Vorgänge, die den Gegenstand ihrer Berechnungen
bilden. Innerhalb des Modells spielt diese Besonderheit keine Rolle. Dort
wird mit festen Durchschnittswerten gerechnet, wie unter Ziffer 2 im
Beispiel der Einmaleinlage. Aber für die Gegenüberstellung mit der
Wirklichkeit müssen das versicherungsmathematische Modell und seine

Ergebnisse gewissermassen mit einer elastischen Toleranzzone umkleidet
werden, die der stochastischen Natur der Versicherungsereignisse gerecht
wird. Das ist die Aufgabe der Risikotheorie.

II. Modell der individuellen Risikotheorie

1.

Die individuelle Risikotheorie geht - wie die Versicherungsmathematik

- von der einzelnen Versicherung (oder einer Generation gleicher
Versicherungen) aus. Als Beispiel wird wiederum die lebenslängliche
Todesfallversicherung benützt. Es werde dafür eine feste Prämie P
(bei kontinuierlicher Betrachtung Pdt) bezahlt. Stirbt der Versicherte
zur Zeit t, so weist die Rechnung der Gesellschaft im Barwert einen
Einnahmenüberschuss auf von

t

g(t) J vrPdt — v',
o

wobei für g{t) auch das negative Vorzeichen eingeschlossen ist, falls
die Ausgabe überwiegt.

Der Sterbefall kann zu jeder Zeit t eintreten. Der Erwartungswert
ergibt sich, wenn jedes mögliche Ergebnis g(t) mit dem Gewicht seiner

Häufigkeit versehen und das Mittel gebildet wird:

oo oo

Ex[g(t)\ f g(t) f(t) dt J g® p(x>t) rtx + t)dt o.
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Bs lässt sich formelmässig zeigen - und liegt auch anschaulich auf
der Hand dass dieses erste Moment der betrachteten Verteilung der
Einnahmenuberschusse verschwindet, sofern die Prämie P auf Grund
der gleichen Frequenzfunktion f(t) bestimmt worden ist. Die Barwerte
der positiven und negativen Abweichungen vom Mittelwert heben sich
auf. Dieses Verschwinden des ersten Momentes ist nichts anderes als
der risikotheoretische Ausdruck des Aequivalenzprinzipes.

An dieser Stelle ist die individuelle Bisikotheorie mit der

Versicherungsmathematik verwachsen. Man kann den Zusammenhang
auch analytisch nachweisen. Beispielsweise fuhrt Berger in seinem

Lehrbuch einen ganz allgemein gehaltenen Ansatz fur risikotheoretisch
betrachtete Verlusterwartungen in die Thielesehe Differentialgleichung
des Deckungskapitals über, aus der die ganze Versicherungsmathematik

abgeleitet werden kann. Er benotigt dabei als zusätzliche Hypothese

nur das Aequivalenzprinzip. Damit benutzt er die angedeutete
Brücke zwischen Bisikotheorie und Versicherungsmathematik.

2.

Für die weitere Betrachtung ist festzuhalten, dass der Erwartungswert

über sämtliche Abweichungen vom Prämienmodell keine Aussage
über das Ausmass der Verlustgefahr fur den Versicherungsträger zulässt.

Wie bei anderen Messungen können die Abweichungen vom
Erwartungswert nicht anhand des ersten Momentes der Verteilung
beurteilt werden; man pflegt dafür zwei andere Masszahlen zu benutzen,
bei denen der Einfluss des Vorzeichens von g(t) ausgeschaltet ist.

A. Naheliegend ist das absolute erste Moment, das heisst die

gewogene Summe der absolut eingenommenen Einnahmenuberschusse

00

Ma ff(t) \g(t)\dt.
0

Weil fur das betrachtete Problem nur die Verluste interessieren und
weil deren Barwert gleich ist dem Barwert der Gewinne, gibt fur die

betrachtete Versicherung der Ausdruck
00

D I / f(t) | g® |dt
0

ein brauchbares Mass für das ihr innewohnende Verlustrisiko. Man
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nennt diese Masszahl das durchschnittliche Risiko. Es stellt gewissermassen
die Einmalprämie dar, die der Erstversicherer einem Rückversicherer
zahlen müsste, damit ihm dieser alle Schwankungsverluste abnimmt.

Diese Masszahl lässt sich fur jede Versicherungsform ziemlich
leicht berechnen und ermöglicht Aussagen darüber, ob beispielsweise
das durchschnittliche Risiko bei der einen Versicherungsart grösser ist
als bei der anderen.

B. Eine andere - für die mathematische Statistik noch wichtigere -
Masszahl ist das zweite Moment der Verteilung, die Streuung:

oo

m2 J/(W) dt.
o

In der Risikotheorie nennt man diese Zahl das Quadrat des mittleren
Risikos; ähnlich wie man in der Eehlertheorie vom mittleren Fehler
spricht. Auch diese Masszahl lässt sich fur die einzelne Versicherung
ziemlich einfach berechnen, besonders wenn man ein System von
Kommutationszahlen mit v2x anstatt mit vx benützt. Die Ergebnisse
erlauben ähnliche Aussagen wie das durchschnittliche Risiko.

3.

Die individuelle Risikotheorie arbeitet ausschliesslich mit den
beiden angegebenen Masszahlen, vornehmlich mit dem mittleren
Risiko. Dieses benützte schon La-place, der vor 140 Jahren in seiner
«Theorie analytique des probabilites» unter anderem das Risiko einer
Leibrente untersuchte. Von klassischen Lehrbüchern, die im angedeuteten

Sinne die Risikotheorie behandeln, seien erwähnt: Czuber, Broggi,
Landre, Berger. Den Höhepunkt ihrer Entwicklung erreichte diese

Theorie wohl am Wiener Kongress der Versicherungsmathematiker
1909, wo «das Problem des mathematischen Risikos; die Sicherheitsreserven

bei Versicherungsanstalten und Pensionsfonden» als Kongressfrage

behandelt wurde. Von den Abhandlungen dieser Kongressberichte
sei besonders die umfassende Darstellung von Bohlmann erwähnt.
Seither ist diese Theorie nicht mehr stark entwickelt worden. Allerdings
wurde das Thema noch zweimal von Internationalen Kongressen
aufgenommen (Stockholm 1930 und Luzern 1940), und die betreffenden
Denkschriften enthalten interessante Untersuchungen über Sonderfragen

mit Hilfe der individuellen Risikotheorie.
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4.

Die theoretischen Ergebnisse der individuellen Risikotheorie
beschränken sich nicht auf die Bestimmung einer Masszahl für das von
der Gesellschaft übernommene Yerlustrisiko aus den stochastischen
Schwankungen im Verlauf der Versicherungsereignisse. Sie gestatten
auch tiefere Einblicke; wichtig ist zum Beispiel die Erfassung der

Zusammenhänge zwischen der Grösse des Versicherungsbestandes, der
Sicherheitsreserve (oder der Sicherheitszuschläge) und der Wahrscheinlichkeit

eines Verlustes oder (wie Gürtler anschaulicher sagt) der
Häufigkeit von Verlustjahren. Wenn man beispielsweise die Zahl der
Verlustjahre unter einer bestimmten Grenze halten will, so kann der für
einen bestimmten Bestand benötigte Sicherheitszuschlag zur Prämie
berechnet werden. Eerner lassen sich die Stabilität eines Versicherungsbestandes,

die Höhe des Selbstbehaltes und ähnliche Fragen abklären.
Als Hinweis auf solche praktische Anwendungen enthält Tabelle 1

in der oberen Hälfte ein Zahlenbeispiel. Es soll andeuten, dass die
Wahrscheinlichkeit von Verlusten - oder die Häufigkeit von Verlustjahren -
stark abnimmt, sobald der Versicherungsbestand von grösserem
Umfang ist. Die Verteilung unter lit. a) bezieht sich auf den Fall eines

Bestandes mit durchwegs gleichen Risikosummen, der sich mit Hilfe
der individuellen Risikotheorie darstellen lässt. Der allgemeinere Fall
unter b), für den verschieden hohe Risikosummen angenommen werden,
liesse sich praktisch mit den bisher geschilderten Masszahlen nicht
hinreichend genau darstellen aus den Gründen, auf die im folgenden
Abschnitt hingewiesen wird.

5.

Für einzelne Versicherungen (oder Generationen von gleichen
Versicherungen) liefert die individuelle Risikotheorie wohl einfache
brauchbare Masszahlen. Für die praktische Anwendung kommt aber
der Behandlung von ganzen Beständen, die aus verschiedenen
Versicherungen zusammengesetzt sind, weit grössere Bedeutung zu. Bei
der Anwendung der individuellen Risikotheorie auf solche beliebige
Bestände ergeben sich jedoch ernste Schwierigkeiten. Um diese
anzudeuten, genügt es, einen Bestand von nur zwei stochastisch unabhängigen

Versicherungen zu behandeln. Die Frequenzfunktion des
Gesamtschadens lässt sich dann bestimmen aus den - im allgemeinen Fall



Jahresbelastung B
in % der

Risikoprämie

31
Tabelle 1

Relative Häufigkeit von Geschäftsjahren
mit einer Jahresbelastung B,

für einen Versicherungsbestand, aus dem
100 | 1000 | 10 000

Versicherungsfälle pro Jahr zu erwarten sind

a) Alles gleich grosse Risikosummen

%

0- 60

°//o
0

% %

61- 70 0,2
OCO1tH 2,1 0

81- 90 13,6 0,1 0

91-100 34,1 i) 49,9 50

101-110 34,1 i) 49,9 50

111-120 13,6 2) 0,1 0

121-130 2,1 2) 0

131-140 0,2 2)

141 u. mehr 0

b) Ungleiche Risikosummen

(Verteilung nach Beobachtungen bei der Rentenanstalt)
Zahlen in bei einem Selbstbehalt von 50 000

%

0- 60

%

1,3 0,4)

°//o %

61- 70 4,7 2,7) 0

1 00 o 12,8 8,3) 0,2 0

81- 90 19,8 (17,7) 8,5 3,2) 0(0)
91-100 17,6 (23,3) 43,3 (47,6) 50,6 (50,2)

101-110 14,4 (21,2) 37,8 (45,0) 49,4 (49,8)
111-120 10,3 (13,6) 8,9 4,2) 0(0)
121-130 7,5 7,6) 1,3 0

131-140 4,7 3,3) 0

141-150 2,9 1,4)
151 u. mehr 4,0 0,5)

1) 68,2% aller Geschäftsjahre bringen eine Belastung von 91 bis 110%
der erwarteten.

2) Bei einer Prämie mit einem Sicherheitszuschlag von 10% sind von
100 Geschäftsergebnissen 15,9 verlustbringend.
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ungleichen - Frequenzfunktionen fur die einzelnen Versicherungen mit
Hilfe des Faltungsintegrals

i,2/(2) f 2/U2) ^2-

Analytisch bedeutet somit der Übergang von einzelnen Versicherungen
auf einen grosseren Versicherungsbestand die Vornahme zahlreicher
Faltungen dieser Art.

Es lässt sich allerdings zeigen, dass die ersten zwei (oder sogar drei)
Momente der Frequenzfunktion des Bestandes durch einfache
Summierung der entsprechenden Momente der Frequenzfunktionen fur die
einzelnen Versicherungen berechnet werden können. Ein so einfacher

Zusammenhang besteht nicht fur das absolute Moment. Daher ist die
erste erwähnte Masszahl - das Durchschnittliche Bisiko - fur die

Untersuchung von Versicherungsbeständen zum vornherein kaum
brauchbar. Dagegen kann das Quadrat des mittleren Risikos fur den

Bestand gebildet werden als Summe der Quadrate der mittleren
Risiken fur jede einzelne Versicherung:

K*,c. =Ml + M'l + Ml+
In bezug auf die praktische Anwendung dieses Ergebnisses müssen

aber zwei Vorbehalte angebracht werden.

1) Schon fur einen verhältnismässig kleinen Versicherungsbestand
verlangt die Bestimmung des mittleren Risikos fur jede einzelne

Versicherung eine mühsame, praktisch bald nicht mehr durchfuhrbare
Rechenarbeit, die sich zudem nicht lohnen wurde.

2) Eine zweite tiefergehende Schwierigkeit liegt darin begründet,
dass im allgemeinen die Kenntnis des 2. Momentes die Verteilung noch
nicht hinreichend bestimmt. Dies wäre allerdings der Fall fur die
wohlbekannte Verteilung von Gauss. Aber erst unendlich viele Faltungen
von beliebigen Verteilungen fuhren zur Gawssschen Verteilung. Das

ist der Inhalt des zentralen Grenzwertsatzes der Wahrscheinlichkeitstheorie,

den Professor Saxer kurzlich in den «Elementen der
Mathematik» erläutert hat. Durch diesen Grenzubergang wurde allerdings
die Aufgabe mathematisch übersichtlich, weil sich die Behandlung von
der Masse der Einzelfälle lost. Aber gerade fur diesen Extremfall
verliert das Problem des Risikos seine praktische Bedeutung, weil im
unendlich grossen Versicherungsbestand die relativen Abweichungen
vom Erwartungswert verschwinden.
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Leider liegen die tatsächlichen Yersichernngsbestände von
Gesellschaften oder Versicherungskassen recht fern von den beiden Extremlagen,

die sich leicht auswerten lassen: einerseits von der einzelnen

Versicherung; anderseits vom Bestand mit unendlich vielen Versicherungen.

Will man aber das fur den theoretischen Grenzfall ermittelte
Ergebnis auf einen konkreten, nicht ausserordentlich grossen Bestand
ubertragen, so handelt es sich dabei stets um eine mehr oder weniger
grobe Approximation, über deren Genauigkeit man gewohnlich nicht
genugende Anhaltspunkte besitzt.

6.

Es fehlt allerdings nicht an Versuchen, die angedeuteten
Schwierigkeiten fur die praktische Anwendung der individuellen Bisikotheorie
auf Versicherungsbestände zu überbrücken. Als Beispiel sei die
Untersuchung von Ammeter über «das Zufallsrisiko bei kleinen
Versicherungsbeständen» erwähnt. Er benützt nicht nur die beiden ersten,
sondern auch höhere Momente zur Darstellung der Verteilung der
finanziellen Ergebnisse kleiner Kassen mit Hilfe der Brunsachen Beihe.
Ohne zum Grenzfall eines unendlich grossen Bestandes ubergehen zu
müssen, befreit er sich in dieser Weise vom Einzelfall. Bestehen bleibt
aber - sogar in verstärktem Masse - der Nachteil, dass umfangreiche
Berechnungen erforderlich sind.

III. Modell der kollektiven Risikotheorie

1.

Nachdem sich gezeigt hatte, dass der von der individuellen Bisikotheorie

eingeschlagene Weg nicht weiterführt, weil kein Übergang vom
Einzelfall zum beliebig zusammengesetzten Versicherungsbestand
gefunden werden kann, wurde versucht, die Schwankungen im Schadenverlauf

eines Versicherungskollektivs unmittelbar als solche zu
erfassen. Damit wird von vornherein der Anschluss an die praktische
Fragestellung vollzogen.

Diese kollektive Bisikotheorie lässt die Einzelrisiken eines Bestandes

vollständig ausser acht. Sie betrachtet nur den Gesamtbestand; denn
tatsächlich ist es nicht von Bedeutung, ob der eintretende Geschäftsverlust

aus dieser oder jener, aus einer oder mehreren Versicherungen
3
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stammt. Man darf also an einen Bestand denken, der Lebensversicherungen

verschiedener Art, mit ganz verschiedenen Summen und
verschieden altrigen Versicherten umfasst; ebensogut kann es sich um
irgendeinen Bestand von Versicherungen eines anderen Zweiges oder

sogar verschiedener Zweige handeln.

Die kollektive Risikotheorie ist ziemlich jung. Immerhin ist eine

erste Arbeit ihres Begründers, des Schweden Filvp Lundberg, schon in
den Berichten des VI. Internationalen Kongresses von 1909 erschienen.
Aber erst vor etwa 20 Jahren veröffentlichte Lundberg in der Skandi-
navisk Aktuarietidskrift die grundlegende Arbeit «Über die
Wahrscheinlichkeitsfunktion einer Risikenmasse». Andere Schweden haben
den glucklichen Gedanken der neuen Risikotheorie weiter verfolgt,
besonders erwähnt sei Cramer. SegerdaJd hat das kollektive Modell auf
die Theorie der stochastischen Prozesse zurückgeführt und eine strenge
Beweisführung unter allgemeinen Voraussetzungen gegeben.

Die Gedankengänge der kollektiven Risikotheorie lassen sich in
vereinfachter Weise etwa folgendermassen wiedergeben:

Eine Gesellschaft trägt fur ein beliebiges Zeitelement das Risiko -
beispielsweise das Sterberisiko - aus irgendeinem Versicherungsbestand.
Die unter Risiko stehende Summe betrage Kt. Nach den Rechnungsgrundlagen

wird mit einer Schadenintensität (it gerechnet, die zustande
kommt aus den Schadenintensitäten fur die einzelnen Versicherungen.
Fur den ganzen Versicherungsbestand rechnet die Gesellschaft also

mit einem Gesamtschaden von Ktfitdt im betreffenden Zeitelement.
Anderseits erhalt sie für den gleichen Bestand eine Risikoprämie P(t) dt.

Nach dem Aequivalenzprinzip gilt fur den Zeitabschnitt 0 bis a der

Zusammenhang a a

Lundberg, der Begründer der Theorie, hatte den glucklichen
Gedanken, als massgebende Variable fur die Darstellung der Vorgänge
im Versicherungsbestand nicht - wie sonst üblich - die Zeit zu wählen,
sondern die seit Beginn der Operation eingegangene Risikoprämie P.

2.

3

o 0
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Nach dieser Auffassung kann also nicht mehr nach der Gewinn-Wahrscheinlichkeit

in der Zeit t gefragt werden, sondern nach der
Wahrscheinlichkeit für einen Gewinn in der Periode, während der insgesamt
die Risikoprämiensumme P eingegangen ist. In diesem Sinne pflegt
man geradezu von der Periode P zu sprechen, oder vom Elementarintervall

dP, obschon es sich nur mittelbar um eine Zeit handelt.
Für den Aufbau seiner Theorie geht Lundberg von diesem Element

dP aus, das er Risikoelement nennt. Man kann sich denken, dass dieses

hervorgeht durch den Grenzübergang von kleinen Elementarabschnitten,

die so gewählt sind, dass im einzelnen Abschnitt je entweder kein
oder nur ein Schadenfall eintritt. Man hat es dann mit einer Folge von
Alternativen zu tun, was die mathematische Erfassung vereinfacht.

Da man sich dabei von der Betrachtung einzelner Policen
losgelöst hat und einfach einen irgendwie zusammengesetzten
Versicherungsbestand ins Auge fasst, der sich ständig ändern kann durch Zu-
und Abgänge, so darf man jede Elementar-Rechnung als von allen
übrigen unabhängig ansehen.

Nun ist ein zweiter glücklicher Ansatz von Lundberg zu erwähnen:
Er wählt als Einheit des Geldwertes, in dem die Versicherungsleistung
zu zahlen ist, stets gerade den Durchschnittswert der Risikosummen.
Dann bedeutet dP nicht nur die Prämieneinnahme im Risikoelement,
sondern geradezu die Wahrscheinlichkeit für den Eintritt eines Schadens

im Risikoelement; und (1 — dP) ist die Gegenwahrscheinlichkeit,
dass kein Schaden eintritt.

Wenn ein Schaden eintritt, so ist eine Risikosumme zu zahlen,
die ausgedrückt ist in Vielfachen der mittleren Risikosumme. Diese
Schadensumme kann verschieden gross sein; die Häufigkeit mit der
eine bestimmte Summe z auftritt, sei festgelegt durch die Frequenzfunktion

s(z). Diese Frequenz bildet die Schadensummenverteilung.
s(z) dz kann auch aufgefasst werden als die Wahrscheinlichkeit, dass

eine fällige Summe zwischen z und z P dz liegt.
Wenn für das Risikoelement die Wahrscheinlichkeit dP bekannt

ist, dass ein Versicherungsfall eintrifft, und zudem die Wahrscheinlichkeit

s(z) dz, dass dieser Fall eine Schadensumme zwischen 2 und z -{-dz
auslöst, so können für das Risikoelement die Belastung und auch der
Elementar-Gewinn bestimmt werden. Die Verteilung des Gesamtgewinnes

für eine bestimmte Geschäftsdauer P lässt sich dann berechnen
durch fortgesetzte Faltung der Elementarverteilung.
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4.

Die Integration über die Ergebnisse der Elementarvorgänge, die
zahlreiche Faltungen verlangt, wurde umständlich, wenn nicht die

bequeme Hypothese benützt werden durfte, dass trotz der Veränderungen

des betrachteten Bestandes die Frequenzfunktion der Schäden

s(z) unverändert bleibt. Diese fur die praktische Anwendbarkeit
ausschlaggebende Hypothese scheint mit der Wirklichkeit - sogar fur
längere Zeitspannen - gut übereinzustimmen, wie praktische
Nachprüfungen gezeigt haben.

Als Beispiel diene die Zeichnung 2, in der die Frequenzfunktionen
der Schäden dargestellt sind, wie sie bei den Einzel-Kapitalversicherungen

der Bentenanstalt in den Jahren 1928, 1938 und 1948 festgestellt
wurden. Wenn man bedenkt, dass in den zwischenliegenden 20 Jahren
der betrachtete Versicherungsbestand eine starke Umschichtung und eine

Frequenzfunktion der Schadensumme

abgeleitet aus dem Bestand der grossen Einzel-Kapitalversicherungen
bei der Bentenanstalt

Zeichnung 2

nllo0

300 I Beobachtung 1928 (875 Fälle)

100

200

l/3 1 llU 2 2l/a

Schadensumme in Vielfachen der mittleren Schadensumme
des Beobachtungsjahres
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Verdoppelung erfuhr, die Sterblichkeit zurückging, die durchschnittliche
Versicherungssumme zunahm und das Deckungskapital für die Berechnung

der Risikosumme auf andere Grundlagen umgestellt wurde, so

muss die nahe Übereinstimmung der drei beobachteten
Frequenzfunktionen der Schäden tatsächlich überraschen.

5.

Ein besonders wichtiger Umstand ist noch hervorzuheben. In der
individuellen Risikotheorie wird die Wahrscheinlichkeit, dass gerade
eine bestimmte Zahl von Schadenfällen eintritt, nur im Grenzfall eines

Versicherungsbestandes mit unendlich vielen Versicherungen durch die

wohlbekannte Verteilung von Gauss erfasst. Ganz anders liegen die

Verhältnisse in der kollektiven Risikotheorie. Weil nicht auf die Zahl
der Versicherungen abgestellt wird, sondern auf das Elementargeschäft
dP, ist ein Grenzübergang für jeden beliebigen - auch schon für einen
kleinen - Versicherungsbestand und für jede praktisch interessierende

Geschäftsperiode P zulässig. Dieser Grenzübergang führt bei gleich-
grossen Schadensummen ebenfalls zu einer wohlbekannten Verteilungmit
besonders günstigen Eigenschaften, nämlich zu derjenigen von Poisson.
Die Möglichkeit, diese ausfuhrlich tabellierte Verteilungsfunktion bei
der Untersuchung praktisch vorkommender Versicherungsbestände zu
benutzen, bringt bedeutsame Erleichterungen fur die Auswertung.

6.

An einem einfachen Beispiel soll die praktische Anwendung der
kollektiven Risikotheorie angedeutet werden. Pur einen beliebigen
Versicherungsbestand seien - bezogen auf eine Periode P - die beiden
Frequenzfunktionen bekannt:

w(n) Wahrscheinlichkeit, dass n Schadenfälle eintreten,

s(z) Wahrscheinlichkeit, dass ein Fall die Schadensumme z auslöst.

Dann ist die Wahrscheinlichkeit, dass n Fälle einen Gesamtschaden z

auslösen, erfasst durch die Funktion ws(z), die durch n-fache Faltung
aus s(z) hervorgeht. Die Frequenzfunktion der Belastung ist dann
dargestellt durch

oo

b(z) 2 w(n)siz) •

n= 0
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Hier tritt eine ähnliche praktische Schwierigkeit auf, wie in der
individuellen Risikotheorie, weil die Auswertung der Frequenzfunktion
für die Schadenverteilung ^s^z) die rechnerische Durchfuhrung von n
Faltungen erfordert, was bei einem grossen Versicherungsbestand zu
einer riesigen Rechenarbeit führen müsste. Vermutlich könnte dieses

Hindernis mit Hilfe der modernen Rechenmaschinen uberwunden
werden. Von verschiedenen Versuchen, diese Klippe mit mathematischen

Mitteln zu bewältigen, scheint sich die von Esscher mit asymptotischen

Funktionen ausgebildete Methode durchgesetzt zu haben. Es

handelt sich allerdings um eine Approximation, die sich jedoch im
Bereich der Spitzenrisiken, der für praktische Probleme bedeutsam ist,
durch einen hohen Grad von Genauigkeit auszeichnet. Mit Hilfe dieser

asymptotischen Approximation lässt sich die Frequenzfunktion der

Belastung auswerten.

Das erste Moment der Belastungsverteilung

oo

f z b(z) dz P
o

ist gleich der Risikoprämieneinnahme. Wie in der individuellen Risikotheorie

bringt auch hier das erste Moment das Aequivalenzprinzip zum
Ausdruck.

Die Verteilungsfunktion der Belastung kann unmittelbar als

risikotheoretische Masszahl dienen. Beispielsweise lässt sich sogleich die
Wahrscheinlichkeit angeben, dass die Belastung der Gesellschaft eine

bestimmte Grenze K nicht übersteige:

K

B(K) — J b(z) dz.
o

Setzt man K P, der gesamten Einnahme an Risikoprämien in der
Periode P gleich, so ist B(P) die Wahrscheinlichkeit, dass die Summe
aller Schäden die Einnahme an Risikoprämien nicht übersteigt. Ist S
eine Sicherheitsreserve, die entweder von Anfang an vorhanden ist
oder während der Periode durch die Sicherheitszuschläge eingenommen
wird, so ist die Wahrscheinlichkeit, dass die Mittel S + P ausreichen

B(SP); oder die Wahrscheinlichkeit, dass die Periode mit einem
Verlust abschliesst, 1 — B(S + P); wobei offen bleibt, wann im Verlauf
der Periode dieser Verlust entsteht. Umgekehrt lässt sich die Frage
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beantworten, wie gross muss die Sicherheitsreserve sein, damit die
Wahrscheinlichkeit eines Yerlustes kleiner ist als eine gewünschte Grösse:

beispielsweise kleiner als 5%, so dass auf 20 Jahre nicht mehr als ein

Verlustjahr entfällt.

Im wesentlichen ist also der Geschäftsverlauf durch die Frequenzfunktion

der Belastung b(z) charakterisiert. Diese ist ohne Bücksicht
auf die Bestandeszusammensetzung bestimmt durch nur zwei
Bestandesmerkmale:

a) durch die gesamte Bisikoprämie P, die bei der gewählten Geld¬

einheit identisch ist mit der Anzahl der zu erwartenden
Versicherungsfälle und

b) durch die Frequenzfunktion der Schadensummen s(z).

Stimmen zwei Bestände in diesen Merkmalen iiberein, so sind sie vom
Standpunkt der kollektiven Bisikotheorie gleichwertig.

Die zweite Hälfte des Zahlenbeispieles auf Tabelle 1 stützt sich
auf die nach der erwähnten Methode von Esscher ausgewertete
Belastungsverteilung. Dabei ist angenommen, dass die einzelnen Schadensummen

oder Bisikosummen nicht alle gleich gross sind, sondern einer

Frequenzfunktion der Schäden entsprechen, die als Ausgleichung aus
den Beobachtungen der Bentenanstalt unter Anwendung der Funktion
von Pareto ermittelt und in Zeichnung 2 als ausgezogene Kurve
eingetragenist. Die Verlustfrequenz (oder Häufigkeit der Verlustjähre) fällt
in diesem allgemeinen Fall b) asymmetrisch aus und zeigt deutlich eine

breitere Streuung als im idealisierten Fall a), wo alle Summen gleich
sind. Die in Klammern beigefügten Zahlen der Tabelle 1 zeigen, wie die

Streuung durch Bückversicherung der Spitzenrisiken verschmälert wird.

Untersuchungen über den Selbstbehalt nach der in dieser Hinsicht
genaueren kollektiven Bisikotheorie zeigen übrigens, dass bei Anwendung

der individuellen Theorie die Stabilität des selbst behaltenen
Versicherungsbestandes überschätzt wird.

7.

Besonderes Interesse im Gebiet der kollektiven Bisikotheorie hat
das sogenannte Ruinproblem gefunden. Es kann durch die von Gramer
benützte Zeichnung 3 charakterisiert werden.



— 40 —

0 7 ^ Zeichnung 3
bchema eines stochastiscnen Prozesses

P Risikoprämieneinnahmen
XP Sicherheitszuschlag
S0 Anfängliche Sicherheitsreserve

U(P) Verlauf des Einnahmenüberschusses

S(P) S0 + XP Sicherheitsreserve

Für irgendeinen Versicherungsbestand sei zu Beginn der Operation
eine Sicherheitsreserve S0 vorhanden. P sei die ausreichende
Risikoprämie, die eingenommen wird. Daneben wird mit der Prämie ein
Sicherheitszuschlag XP erhoben. Die aufgelaufene Risikoprämieneinnahme

P dient in Zeichnung 3 als Abszisse. Als Ordinate wird der Stand
der Einnahmenüberschüsse (ohne Sicherheits-Mittel) aufgetragen. Eine
Zeitlang stellt sich kein Schaden ein; der Einnahmenüberschuss U
steigt vom Nullpunkt als Gerade mit 45° an. Tritt ein Schadenfall ein,
so fällt U senkrecht ab um die fällige Schadensumme, steigt dann wieder

als Gerade mit 45° weiter an, und so fort. Wird U negativ, so
bedeutet dies nicht den Ruin der Gesellschaft, denn diese verfügt noch
über die Sicherheitsreserve, die durch die eingenommenen Sicherheitszuschläge

linear angewachsen ist, wenn der Einfachheit halber von der
Verzinsung abgesehen wird. Die kritische Grenze lässt sich also durch
eine Gerade darstellen, die bei — S0 beginnt und in der Periode P um
XP sinkt. Fällt nun der Streckenzug U unter diese kritische Linie S,
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dann ist die Gesellschaft zahlungsunfähig. Dabei kann man auch an
die Möglichkeit denken, dass die Gesellschaft die peinliche Lage irgendwie

überbrückt und U in der Folge wieder über die Grenzlinie S

ansteigt. Aus diesem Schema lassen sich nun - je nach der Fragestellung -
verschiedene Masszahlen ableiten: beispielsweise die Wahrscheinlichkeit,

dass der Euin nie eintritt bis zu einem bestimmten Moment P
(beispielsweise im Laufe von 10 Jahren).

In diesem Zusammenhang soll nicht dargestellt werden, wie die

auftretenden Wahrscheinlichkeiten zu berechnen sind, die unmittelbar
als Masszahl dienen zur Beurteilung der Stabilität eines Versicherungsbestandes

unter Berücksichtigung der getroffenen Sicherheitsmass-
nahmen. Es sei etwa auf die im Anhang zitierte Abhandlung von Cramer
verwiesen. Die Ableitungen sind vielleicht nicht besonders einfach, doch
stehen die erforderlichen mathematischen Hilfsmittel zur Verfugung.
Dabei leistet oft die Laplace-Transformation gute Dienste, über die
Professor Saxer in Band 45 dieser Mitteilungen einen meisterhaften
Überblick gegeben hat.

Die Zeichnung 3 gibt übrigens das typische Bild eines stochasti-
schen Prozesses. Sie charakterisiert auch eine sprunghafte Bewegung,
aus deren wahrscheinlichkeitstheoretischen Betrachtung Saxen das

Buinproblem behandelt. Das gleiche Schema gilt fur alle möglichen,
grossen und kleinen, irgendwie zusammengesetzten Versicherungsbestände.

Bei der Buckubertragung auf konkrete Fälle muss allerdings
jeweilen die richtige Interpretation angewandt werden. Beispielsweise
bedeutet die Strecke P (die Zeit, bis die Gesellschaft die Bisikoprämie P
eingenommen hat) bei einer grossen Gesellschaft vielleicht eine kurze
Spanne von wenigen Monaten, bei einer kleinen Kasse unter Umständen

eine Zeit von mehreren Jahren.

8.

Als theoretisches Ergebnis des Buinproblems ergibt sich die
Wahrscheinlichkeit für den Euin der Gesellschaft irgendwann in der Zukunft:

W(S0) (l-g)e-SoK

wo e eine sehr kleine Zahl bedeutet, die gewöhnlich vernachlässigt
werden kann. Der Ausgleichskoeffizient B ist bestimmbar aus

1 + (1 +Ä)B JeBz s{z) dz
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und hängt also nur ab von der Frequenzfunktion der Schäden 5(0)

und vom Sicherheitszuschlag X. Fur die Buinwahrscheinlichkeit spielt
dann noch die anfängliche Sicherheitsreserve S0 eine Bolle.

Merkwürdig erscheint, dass die Buinwahrscheinlichkeit nicht
unmittelbar abhängig ist vom Umfange des Bestandes, sondern nur von
der Bisikostruktur und den Sicherheitsmitteln. Es ist aber zu beachten,
dass die anfängliche Sicherheitsreserve in absolutem Betrag auftritt.
Die Wahrscheinlichkeit ip(S0) bei einer grossen und einer kleinen Kasse

wäre also nur dann gleich, wenn die kleine Kasse in absolutem Betrag
eine gleich grosse Sicherheitsreserve besässe wie die grosse.

9.

Die angedeuteten Ableitungen der kollektiven Bisikotheorie stützen

sich auf die Schadenwahrscheinlichkeiten. Für die Anwendung der
Theorie ist es daher von entscheidender Bedeutung, ob im konkreten
Fall überhaupt Wahrscheinlichkeiten vorliegen, die auf das klassische

Urnenschema zurückzufuhren sind.
In der Lebensversicherung dürfte dies annähernd der Fall sein.

Bei anderen Versicherungsarten reicht jedoch das einfache
Urnenschema nicht aus, beispielsweise für Unfall- oder Hagelversicherungen.
Oft machen sich auch das Kumulrisiko oder die Wahrscheinlichkeitsansteckung

störend geltend. Deswegen darf aber die Anwendung der
Wahrscheinlichkeitstheorie - und damit der Bisikotheorie - nicht
einfach verworfen werden. Verschiedene Untersuchungen - erwähnt seien

Polya, Eggenberger, Ove Lundberg, Nolfi und Ammeter - haben gezeigt,
dass in solchen Fällen das Urnenschema in geeigneter Weise erweitert
werden muss. In seiner Arbeit im Band 49 unserer Mitteilungen hat
Ammeter gezeigt, dass an Stelle zufällig schwankender
Grundwahrscheinlichkeiten auch mit festen Grundwahrscheinlichkeiten gerechnet
werden kann, wenn zuerst eine mathematisch festgelegte Transformation
der Schadenverteilung vorgenommen wird. Damit lässt sich die Bisikotheorie

auch auf den ganz allgemeinen Fall des erweiterten Urnenmodells
für die Schadenwahrscheinlichkeiten anwenden.

IV. Zusammenfassung

Die am Anfang dieser Betrachtung aufgeworfenen Fragen lassen

sich nun vielleicht durch folgende Feststellungen beantworten:
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1.

Die Bisikotheorie fuhrt nicht zu einem neuen Aufbau der

Versicherungsmathematik. Sie stellt vielmehr den Übergang von ihr zur
Wirklichkeit her, indem sie das mathematische, starre Modell, das mit
festen Durchschnittswerten rechnet, mit dem angemessenen
Schwankungsbereich umgibt, der dem stochastischen Charakter der
dargestellten Vorgänge gerecht wird.

2.

Die individuelle Bisikotheorie ist wegen der Schwierigkeiten ihrer
Übertragung auf allgemeine Versicherungsbestände und auch wegen
der ihr innewohnenden ungenügenden Approximationen nur beschränkt
brauchbar.

3.

Die kollektive Bisikotheorie ist der individuellen inhaltlich und
methodisch überlegen. Die praktische Auswertung der theoretischen
Ergebnisse ist im allgemeinen einfach, weil sie nur die Kenntnis zweier
Bestandesmerkmale verlangt, die meist leicht zu beschaffen sind. Die
Urteile über die individuelle Bisikotheorie dürfen daher nicht auf die
kollektive übertragen werden.

4.

Die Fragen, die von der kollektiven Bisikotheorie beantwortet
werden können, wären fur die Lebensversicherung - und in noch
stärkerem Masse fur alle anderen Versicherungszweige - wichtig; besonders

wertvoll sind die Aufschlüsse über die notwendigen Sicherheitsvorkehrungen,

die sich aus dem Modell der Versicherungsmathematik nicht
ergeben.

5.

Die ziemlich junge kollektive Bisikotheorie scheint in verschiedener
Hinsicht noch weiterer Abklärung zu bedürfen. Die meisten
bekanntgewordenen Abhandlungen über diese Theorie begnügen sich mit
formalen Besultaten. Anwendungen auf bestimmte Fragen und Fälle sind
bisher wenig untersucht worden. Studien in dieser Bichtung könnten
zu Ergebnissen von willkommener praktischer Bedeutung fuhren.
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