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Wissenschaftliche Mitteilungen

Die Risikotheorie und ihre Bedeutung
tir die Versicherungsmathematik ")

Von Hans Wyss, Ziirich

Die Theorie des Versicherungsrisikos hat ihren Niederschlag ge-
funden in zerstreuten Abhandlungen verschiedener Fachschriften 2)
und auf den letzten Seiten der Lehrbiicher, vergleichbar dem sprich-
wortlichen Blimchen, das im Verborgenen blitht. Jedenfalls hat das
Versicherungswesen seine erfolgreiche Entwicklung und innere Festi-
gung erreicht, ohne grundlegende Beanspruchung der Risikotheorie.
Diesem Umstand entspringen wohl auch die verbreiteten Zweifel an
threr Bedeutung fiir die Versicherungspraxis. Aber gerade diese Unklar-
heit legt dem Versicherungsmathematiker die Pflicht auf, sich klar zu
machen, was die Risikotheorie zu bieten vermag. Kann der Praktiker
etwas damit anfangen ? Kann der Theoretiker darin eine Stiitze finden
zur Begrindung oder zur Vertiefung der Versicherungsmathematik ?
Soll sich der Versicherungsmathematiker ernstlich damit befassen ?

Wenn im folgenden versucht wird, diese Fragen zu kliren, so diir-
fen selbstversténdlich von der Risikotheorie nicht Ergebnisse erwartet
werden, die iiber die Natur des Problems hinausreichen. Zum vorn-
herein beschréankt sie sich auf die zufallsbedingten Belastungen aus
Versicherungsfallen und will sich nicht mit den Risiken geschéftlicher
Art befassen, die der Versicherungstréiger ebenfalls auf sich nimmt und
die fiir sein Schicksal unter Umstinden noch bedeutungsvoller sein
konnen als das Schadenrisiko.

Die derart abgegrenzten Probleme kann man auf verschiedene Weise
mathematisch erfassen. Bisher sind zwei Wege bekannt geworden: man
ptlegt sie als «individuelle Risikotheorie» und «kollektive Risikotheorie»
zu unterscheiden. Eine Schilderung dieser beiden Lésungen in ihren

1) Nach dem an der Jahresversammlung vom 12. Okt. 1952 gehaltenen Vortrag.
?) Literaturhinweise am Schlusse.



Hauptziigen mag vielleicht zu einer Klirung der an die Spitze gestellten
Fragen beitragen.

Zur Veranschaulichung wird jeweilen ein ganz einfaches Beispiel
aus der Lebensversicherung beniitzt. Doch sel betont, dass sich die
gleichen Betrachtungen ohne weiteres ausdehnen liessen auf alle ande-
ren komplizierteren Formen der Lebensversicherung — mit positivem
oder negativem Risiko — und ebenso auf andere Versicherungszweige.

I. Modell der Versicherungsmathematik
1.

Hin Hinweis auf die vertraute Technik der Versicherungsmathematik
soll einige Begriffe in irinnerung rufen; er mag zugleich hervortreten
lagsen, wie die Risikotheorie die gleiche Betrachtungsweise ausweitet.

Als Ausgangspunkt diene die elementare Aufgabe der Versiche-
rungsmathematik, eine Primie zu bestimmen. Fiur das Beispiel einer
lebensldanglichen Todesfallversicherung mit fester Summe fiir einen
z-jihrigen Versicherten bietet eine Hypothese iiber die Haufigkeit der
Todestille die notwendige Grundlage. Im Sinne der neueren Wahrschein-
lichkeitstheorie wird die Altersverteilung der Sterbefille dargestellt
durch die Frequenzfunktion

() = p(x.t) p(z + 1)

Daraus ergibt sich die Verteilungsfunktion

F(t) = f f(r) dv = f p(,7) u(z + 1) dr,

weil im vorliegenden Fall der negative Ast der Verteilungsfunktion
null ist. Der einfacheren Schreibweise wegen wird das Integralzeichen
beniitzt. Im Sinne des Integralbegriffes von Lebesque ist in dieser Dar-
stellung ohne weiteres auch der Fall eingeschlossen, wo die Frequenz
nicht durch eine stetige Funktion, sondern durch eine diskrete Zahlen-

folge gegeben ist, zum Beispiel durch :
Uy
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die aufsummiert wird zur Verteilungsfunktion:
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In unserem Beispiel besitzt also die Frequenzfunktion die vertraute
Gestalt der Zahlen der Gestorbenen, wie sie in Zeichnung 1 dargestellt
ist. Die Verteilungsfunktion ist nichts anderes als das in Zeichnung 1
ebenfalls dargestellte Spiegelbild der Absterbeordnung, wobei der Mal3-
stab so normiert ist, dass If(ec) = 1 wird.

Zeichnung 1

Altersverterlung der Schadenfdlle
bev ewner lebenslinglichen Versicherung auf den Todesfall

(SM 1939/1944)
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2.

Zur Bestimmung der Einmalprdamie fiir die lebenslangliche Todes-
fallversicherung sind die verschiedenen Moglichkeiten in Betracht zu
ziehen, dass der z-jihrige Versicherte entweder im ersten oder zweiten
oder in einem der folgenden Versicherungsjahre sterben kann; auszu-
zahlen ist in jedem Fall die Summe 1; der Barwert der Versicherungs-
leistung betrigt also entweder » oder v2 ... oder ». Die in Betracht
zu ziehenden Moglichkeiten sind nicht alle gleich hdufig; ihr Eintreten
18t erfasst durch die Frequenzfunktion f(¢), mit der alle in Betracht
fallenden Zahlungen zu wégen sind fir die Berechnung des Durch-
schnittes. In kontinuierlicher Darstellung betrigt der Erwartungswert

A, = ff(tdt:m‘(,t + 1) dt.
ofﬂ ) Offopwm(m )

Das ist die Einmaleinlage fiir die lebensléngliche Todesfallversicherung
des z-jahrigen, aus der sich mit &hnlichen Uberlegungen die periodische
Priamie ableiten ldsst.

3.

Dieses einfache Beispiel charakterisiert die Versicherungsmathe-
matik und deutet an, wie sie sich aus der Wahrscheinlichkeitstheorie
aufbauen lisst. Ebengogut liesse sie sich unmittelbar aus dem mathe-
matischen Modell der Absterbeordnung ableiten. Innerhalb dieses
Modells entsteht sie, und nur innerhalb dieses Modells gilt sie. Still-
schweigend pflegt man fiir die Ableitung aller Formeln der Versiche-
rungsmathematik anzunehmen, es handle sich um einen sehr grossen
Versicherungsbestand, fir den die tatséchlichen Ereignisse iiberein-
stimmen mit den berechneten Durchschnittswerten. Nur unter dieser
Voraussetzung fallen die Gesamtleistungen des Versicherers und die-
jenigen der Versicherten im Barwert gleich hoch aus. Man weiss aller-
dings, dass praktisch diese Voraussetzung kaum je erfillt ist, und des-
halb bildet streng genommen das Aequivalenzprinzip keine geeignete
Grundlage fiir die praktische Pramienberechnung. Es liesse sich sogar
nachweisen, dass ein Versicherungstriiger, der sich genau an das Aequi-
valenzprinzip hielte, frither oder spiter zusammenbrechen miisste.
Tatséchlich wird dieses Prinzip denn auch bei der Gewdhrung wirklicher
Risikodeckungsgarantien nie in reiner Form angewandt; vielmehr wer-
den stets in irgendeiner Weise Sicherheitszuschliige in Rechnung gestellt.
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Die Anwendung des versicherungsmathematischen Formelappa-
rates auf wirkliche Versicherungsbestéinde, die der idealen Grund-
voraussetzung des Modells nicht gerecht werden, gehort in den all-
gemeinen Fragenkomplex der Ubertragung von Ergebnissen aus einem
mathematischen Modell auf die Wirklichkeit; ein Problem, das fiir die
Anwendung aller Theorien aus der Mathematik und Physik von Be-
deutung ist. Im Gebiete der Versicherungsmathematik tritt aber ein
besonderer Umstand hinzu, ndmlich der stochastische (zufallsartige)
Charakter der Vorginge, die den Gegenstand ihrer Berechnungen bil-
den. Innerhalb des Modells spielt diese Besonderheit keine Rolle. Dort
wird mit festen Durchschnittswerten gerechnet, wie unter Ziffer 2 im
Beispiel der Einmaleinlage. Aber fir die Gegeniiberstellung mit der
Wirklichkeit miigsen das versicherungsmathematische Modell und seine
Ergebnisse gewissermassen mit einer elastischen Toleranzzone umkleidet
werden, die der stochastischen Natur der Versicherungsereignisse gerecht
wird. Das ist die Aufgabe der Risikotheorie.

II. Modell der individuellen Risikotheorie
1.

Die individuelle Risikotheorie geht — wie die Versicherungsmathe-
matik — von der einzelnen Versicherung (oder einer Generation gleicher
Versicherungen) aus. Als Beispiel wird wiederum die lebenslingliche
Todesfallversicherung beniitzt. Es werde dafiir eine feste Prémie P
(bei kontinuierlicher Betrachtung Pdt) bezahlt. Stirbt der Versicherte
zur Zeit £, so weist die Rechnung der Gesellschaft im Barwert einen
FEinnahmeniiberschuss auf von

t
t) = | v" Pdi—1t,
9(t) Of
wobei fiir g(t) auch das negative Vorzeichen eingeschlossen ist, falls
die Ausgabe iiberwiegt.

Der Sterbefall kann zu jeder Zeit t eintreten. Der Erwartungswert
ergibt sich, wenn jedes mégliche Ergebnis g(f) mit dem Gewicht seiner
Héaufigkeit versehen und das Mittel gebildet wird:

o =]

E[g)] = [ 9t f(t) dt = [ 909 p(a.t) ple + 1) dt = 0.

0 0
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Es lasst sich formelmiissig zeigen — und liegt auch anschaulich auf
der Hand —, dass dieses erste Moment der betrachteten Verteilung der
Kinnahmeniiberschiisse verschwindet, sofern die Pramie P auf Grund
der gleichen Frequenzfunktion f(f) bestimmt worden ist. Die Barwerte
der positiven und negativen Abweichungen vom Mittelwert heben sich
auf. Dieses Verschwinden des ersten Momentes ist nichts anderes als
der risikotheoretische Ausdruck des Aequivalenzprinzipes.

An dieser Stelle ist die individuelle Risikotheorie mit der Ver-
sicherungsmathematik verwachsen. Man kann den Zusammenhang
auch analytisch nachweisen. Beispielsweise fithrt Berger in seinem
Lehrbuch einen ganz allgemein gehaltenen Ansatz fir risikotheoretisch
betrachtete Verlusterwartungen in die Thielesche Differentialgleichung
des Deckungskapitals iiber, aus der die ganze Versicherungsmathe-
matik abgeleitet werden kann. Er bendtigt dabei als zusétzliche Hypo-
these nur das Aequivalenzprinzip. Damit beniitzt er die angedeutete
Briicke zwischen Risikotheorie und Versicherungsmathematik.

2.

Iir die weitere Betrachtung ist festzuhalten, dass der Erwartungs-
wert iiber simtliche Abweichungen vom Pramienmodell keine Aussage
tiber das Ausmass der Verlustgefahr fiir den Versicherungstriger zulisst.

Wie bel anderen Messungen koénnen die Abweichungen vom Ir-
wartungswert nicht anhand des ersten Momentes der Verteilung be-
urteilt werden; man pflegt dafiir zwei andere Masszahlen zu beniitzen,
bei denen der Einfluss des Vorzeichens von g¢(f) ausgeschaltet ist.

A. Naheliegend 1st das absolute erste Moment, das heisst die ge-
wogene Summe der absolut eingenommenen Einnahmeniiberschiisse

M, = [ 1) |g(t)] di.

Weil fiir das betrachtete Problem nur die Verluste interessieren und
weil deren Barwert gleich ist dem Barwert der Gewinne, gibt fir die
betrachtete Versicherung der Ausdruck

D =1 [ft)|g)]|a

ein brauchbares Mass fiir das ihr innewohnende Verlustrisiko. Man
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nennt diese Masszahl das durchschnittliche Risiko. s stellt gewissermassen
die Einmalprdmie dar, die der Erstversicherer einem Riickversicherer
zahlen miisste, damit ithm dieser alle Schwankungsverluste abnimmt.

Diese Masszahl lasst sich far jede Versicherungsform ziemlich
leicht berechnen und ermdéglicht Aussagen dariiber, ob beispielsweise
das durchschnittliche Risiko bei der einen Versicherungsart grosser ist
als bel der anderen.

B. Eine andere — tiir die mathematische Statistik noch wichtigere —
Masszahl ist das zweite Moment der Verteilung, die Streuung:

M2 = [ () g*(t) de.

In der Risikotheorie nennt man diese Zahl das Quadrat des maittleren
Rasikos; ahnlich wie man in der Fehlertheorie vom mittleren Fehler
spricht. Auch diese Masszahl ldsst sich fiir die einzelne Versicherung
ziemlich einfach berechnen, besonders wenn man ein System von
Kommutationszahlen mit »** anstatt mit »* beniitzt. Die Ergebnisse
erlauben dhnliche Aussagen wie das durchschnittliche Risiko.

3.

Die individuelle Risikotheorie arbeitet ausschliesslich mit den
beiden angegebenen Masszahlen, vornehmlich mit dem mittleren Ri-
siko. Dieses beniitzte schon Laplace, der vor 140 Jahren in seiner
«Théorie analytique des probabilités» unter anderem das Risiko einer
Leibrente untersuchte. Von klassischen Lehrbiichern, die im angedeu-
teten Sinne die Risikotheorie behandeln, seien erwihnt: Czuber, Brogge,
Landré, Berger. Den Hoéhepunkt ihrer Entwicklung erreichte diese
Theorie wohl am Wiener Kongress der Versicherungsmathematiker
1909, wo «das Problem des mathematischen Risikos; die Sicherheits-
reserven bei Versicherungsanstalten und Pensionsfonden» als Kongress-
frage behandelt wurde. Von den Abhandlungen dieser Kongressberichte
sel besonders die umfassende Darstellung von Bohlmann erwahnt.
Seither ist diese Theorie nicht mehr stark entwickelt worden. Allerdings
wurde das Thema noch zweimal von Internationalen Kongressen auf-
genommen (Stockholm 1930 und Luzern 1940), und die betreffenden
Denkschriften enthalten interessante Untersuchungen iiber Sonder-
fragen mit Hilfe der individuellen Risikotheorie.
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4.

Die theoretischen Ergebnisse der individuellen Risikotheorie be-
schrdnken sich nicht auf die Bestimmung einer Masszahl fir das von
der Gesellschaft tibernommene Verlustrisiko aus den stochastischen
Schwankungen im Verlauf der Versicherungsereignisse. Sie gestatten
auch tiefere Einblicke; wichtig ist zum Beispiel die Erfassung der Zu-
sammenhénge zwischen der Grosse des Versicherungsbestandes, der
Sicherheitsreserve (oder der Sicherheitszuschlige) und der Wahrschein-
lichkeit eines Verlustes oder (wie Giirtler anschaulicher sagt) der Hau-
figkeit von Verlustjahren. Wenn man beispielsweise die Zahl der Ver-
lustjahre unter einer bestimmten Grenze halten will, so kann der fiir
einen bestimmten Bestand bendtigte Sicherheitszuschlag zur Prémie
berechnet werden. Ferner lassen sich die Stabilitét eines Versicherungs-
bestandes, die Hohe des Selbstbehaltes und &hnliche Fragen abklaren.

Als Hinweis auf solche praktische Anwendungen enthélt Tabelle 1
in der oberen Hélfte ein Zahlenbeispiel. Es soll andeuten, dass die Wahr-
scheinlichkeit von Verlusten — oder die Hiaufigkeit von Verlustjahren —
stark abnimmt. sobald der Versicherungsbestand von grésserem Um-
fang ist. Die Verteilung unter lit. a) bezieht sich auf den Fall eines
Bestandes mit durchwegs gleichen Risikosummen, der sich mit Hilfe
der individuellen Risikotheorie darstellen lasst. Der allgemeinere Fall
unter b), fiir den verschieden hohe Risikosummen angenommen werden,
liesse sich praktisch mit den bisher geschilderten Masszahlen nicht
hinreichend genau darstellen aus den Griinden, auf die im folgenden
Abschnitt hingewiesen wird.

5.

Fir einzelne Versicherungen (oder Generationen von gleichen
Versicherungen) liefert die individuelle Risikotheorie wohl einfache
brauchbare Masszahlen. Fiir die praktische Anwendung kommt aber
der Behandlung von ganzen Bestinden, die aus verschiedenen Ver-
sicherungen zusammengesetzt sind, weit grossere Bedeutung zu. Bei
der Anwendung der individuellen Risikotheorie auf solche beliebige
Bestiinde ergeben sich jedoch ernste Schwierigkeiten. Um diese anzu-
deuten, geniigt es, einen Bestand von nur zwei stochastisch unabhéngi-
gen Versicherungen zu behandeln. Die Frequenzfunktion des Gesamt-
schadens lisst sich dann bestimmen aus den — im allgemeinen Fall
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Tabelle 1
Tolies Rela,tive‘ Hia“,uﬁgkeit von Geschéftsjahren
e o o mit 3111@? gahresbslastung B,
55,07, ok iir einen Versicherungsbestand, aus dem
Risikopramie Hi) ) I . 1400 19 o
Versicherungsfille pro Jahr zu erwarten sind
a) Alles gleich grosse Risikosummen
%o % % %
0- 60 0
61— 70 0,2
71- 80 2,1 0
81— 90 13,6 0,1 0
91-100 34,11 49,9 50
101-110 34,1 1) 49,9 50
111-120 13,6 2?) 0,1 0
121-130 2,12 0
131-140 0,2 2)
141 u. mehr 0
b) Ungleiche Ristkosummen
(Verteilung nach Beobachtungen bei der Rentenanstalt)
Zahlen in () bei einem Selbstbehalt von 50 000
%o % % %
0- 60 1 3 ( 0,4)
61- 70 T ( 2,7) 0
71- 80 12 8 ( 8,3) 0,2 (0 )
81- 90 19,8 (17,7) 8,5 ( 3,2) 0 (0)
- 91-100 17,6 (23,3) 43,3 (47,6) 50,6 (50,2)
101-110 14,4 (21,2) 37,8 (45,0) 49,4 (49,8)
111-120 10 3 (13,6) 8,9 ( 4,2) 0 (0)
121-130 5 (17,6) 1,3 (0 )
131-140 7 (8,3) 0
141-150 9 (1,4
151 u. mehr 40 ( 0,5)
1) 68,29, aller Geschiftsjahre bringen eine Belastung von 91 bis 1109,
der erwarteten.
%) Bei einer Prémie mit einem Sicherheitszuschlag von 109, sind von
100 Geschéftsergebnissen 15,9 verlustbringend.




ungleichen — Frequenzfunktionen fiir die einzelnen Versicherungen mit
Hilfe des Faltungsintegrals

al(?) = [ 1f(e—2) of (22) dza-

Analytisch bedeutet somit der Ubergang von einzelnen Versicherungen
auf einen grosseren Versicherungsbestand die Vornahme zahlreicher
Faltungen dieser Art.

Is lagst sich allerdings zeigen, dass die ersten zwei (oder sogar drei)
Momente der Frequenzfunktion des Bestandes durch einfache Sum-
mierung der entsprechenden Momente der Frequenzfunktionen fiir die
einzelnen Versicherungen berechnet werden kénnen. Ein so einfacher
Zusammenhang besteht nicht fiir das absolute Moment. Daher ist die
erste erwahnte Masszahl — das Durchschnittliche Risiko — fir die
Untersuchung von Versicherungsbestinden zum vornherein kaum
brauchbar. Dagegen kann das Quadrat des mittleren Risikos fiir den
Bestand gebildet werden als Summe der Quadrate der mittleren
Risiken fur jede einzelne Versicherung:

M2 =M M, D2+ ...

a, b, e, ...

In bezug auf die praktische Anwendung dieses Ergebnisses miissen
aber zwel Vorbehalte angebracht werden.

1) Schon fir einen verhdltnisméssig kleinen Versicherungsbestand
verlangt die Bestimmung des mittleren Risikos fir jede einzelne Ver-
sicherung eine muhsame, praktisch bald nicht mehr durchfithrbare
Rechenarbeit, die sich zudem nicht lohnen wiirde.

2) Eine zweite tiefergehende Schwierigkeit liegt darin begriindet,
dass im allgemeinen die Kenntnis des 2. Momentes die Verteilung noch
nicht hinreichend bestimmt. Dies wire allerdings der Fall fiir die wohl-
bekannte Verteilung von Gauss. Aber erst unendlich viele Faltungen
von beliebigen Verteilungen fithren zur Gaussschen Verteilung. Das
1st der Inhalt des zentralen Grenzwertsatzes der Wahrscheinlichkeits-
theorie, den Professor Sazer kiirzlich in den «Elementen der Mathe-
matik» erldutert hat. Durch diesen Grenziitbergang wiirde allerdings
die Aufgabe mathematisch tibersichtlich, weil sich die Behandlung von
der Masse der Einzelfille 16st. Aber gerade fiir diesen Extremfall ver-
liert das Problem des Risikos seine praktische Bedeutung, weil im
unendlich grossen Versicherungsbestand die relativen Abweichungen
vom Erwartungswert verschwinden.
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Leider liegen die tatséchlichen Versicherungsbestinde von Gesell-
schaften oder Versicherungskassen recht fern von den beiden Extrem-
lagen, die sich leicht auswerten lassen: einerseits von der einzelnen
Versicherung; anderseits vom Bestand mit unendlich vielen Versiche-
rungen. Will man aber das fiir den theoretischen Grenzfall ermittelte
Ergebnis auf einen konkreten, nicht ausserordentlich grossen Bestand
itbertragen, so handelt es sich dabei stets um eine mehr oder weniger
grobe Approximation, iiber deren Genauigkeit man gewohnlich nicht
geniigende Anhaltspunkte besitzt.

6.

Es fehlt allerdings nicht an Versuchen, die angedeuteten Schwie-
rigkeiten fiir die praktische Anwendung der individuellen Risikotheorie
auf Versicherungsbestdnde zu iiberbriicken. Als Beispiel sei die Unter-
suchung von Ammeter iiber «das Zufallsrisiko bei kleinen Versiche-
rungsbestdnden» erwihnt. Er beniitzt nicht nur die beiden ersten,
sondern auch hohere Momente zur Darstellung der Verteilung der
finanziellen Ergebnisse kleiner Kassen mit Hilfe der Brunsschen Reihe.
Ohne zum Grenzfall eines unendlich grossen Bestandes iibergehen zu
miissen, befreit er sich in dieser Weise vom Einzelfall. Bestehen bleibt
aber — sogar in verstiirktem Masse — der Nachteil, dass umfangreiche
Berechnungen erforderlich sind.

ITI. Modell der kollektiven Risikotheorie
1.

Nachdem sich gezeigt hatte, dass der von der individuellen Risiko-
theorie eingeschlagene Weg nicht weiterfiihrt, weil kein Ubergang vom
Einzelfall zum beliebig zusammengesetzten Versicherungsbestand ge-
funden werden kann, wurde versucht, die Schwankungen im Schaden-
verlauf eines Versicherungskollektivs unmittelbar als solche zu er-
fassen. Damit wird von vornherein der Anschluss an die praktische
Fragestellung vollzogen.

Diese kollektive Risikotheorie lisst die Einzelrisiken eines Bestandes
vollstandig ausser acht. Sie betrachtet nur den Gesamtbestand; denn
tatséichlich ist es nicht von Bedeutung, ob der eintretende Geschéfts-
verlust aus dieser oder jener, aus einer oder mehreren Versicherungen

3



stammt. Man darf also an einen Bestand denken, der Lebensversiche-
rungen verschiedener Art, mit ganz verschiedenen Summen und ver-
schieden altrigen Versicherten umfasst; ebensogut kann es sich um
irgendeinen Bestand von Versicherungen eines anderen Zweiges oder
sogar verschiedener Zweige handeln.

2.

Die kollektive Risikotheorie 18t ziemlich jung. Immerhin ist eine
erste Arbeit ihres Begriinders, des Schweden Filvp Lundberg, schon in
den Berichten des VI. Internationalen Kongresses von 1909 erschienen.
Aber erst vor etwa 20 Jahren verdtfentlichte Lundberg in der Skandi-
navisk Aktuarietidskrift die grundlegende Arbeit «Uber die Wahi-
scheinlichkeitsfunktion einer Risikenmasse». Andere Schweden haben
den glicklichen Gedanken der neuen Risikotheorie weiter verfolgt,
besonders erwihnt sei Cramér. Segerdahl hat das kollektive Modell auf
die Theorie der stochastischen Prozesse zuriickgefithrt und eine strenge
Beweisfithrung unter allgemeinen Voraussetzungen gegeben.

3.

Die Gedankenginge der kollektiven Risikotheorie lassen sich in
vereinfachter Weise etwa folgendermassen wiedergeben:

Eine Gesellschaft triagt fiir ein beliebiges Zeitelement das Risiko —
beispielsweise das Sterberisiko — aus irgendeinem Versicherungsbestand.
Die unter Risiko stehende Summe betrage K,. Nach den Rechnungs-
grundlagen wird mit einer Schadenintensitit x4, gerechnet, die zustande
kommt aus den Schadenintensitdten fiir die einzelnen Versicherungen.
Fir den ganzen Versicherungsbestand rechnet die Gesellschaft also
mit einem Gesamtschaden von K, u, dt im betreffenden Zeitelement.
Anderseits erhilt sie fiir den gleichen Bestand eine Risikopriamie P(t) dt.
Nach dem Aequivalenzprinzip gilt fiir den Zeitabschnitt 0 bis o der
Zusammenhang

fa P{t) dt = faKt w, dt.
0 0

Lundberg, der Begriinder der Theorie, hatte den gliicklichen Ge-
danken, als massgebende Variable far die Darstellung der Vorgéinge
im Versicherungsbestand nicht — wie sonst tiblich — die Zeit zu wihlen,
sondern die seit Beginn der Operation eingegangene Risikopridmie P.
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Nach dieser Auffassung kann also nicht mehr nach der Gewinn-Wahr-
scheinlichkeit in der Zeit ¢ gefragt werden, sondern nach der Wahr-
scheinlichkeit fiir einen Gewinn in der Periode, wihrend der insgesamt
die Risikoprémiensumme P eingegangen ist. In diesem Sinne pflegt
man geradezu von der Periode P zu sprechen, oder vom Elementar-
mtervall d P, obschon es sich nur mittelbar um eine Zeit handelt.

Fiar den Aufbau seiner Theorie geht Lundberg von diesem Element
d P aus, das er Risikoelement nennt. Man kann sich denken, dass dieses
hervorgeht durch den Grenzibergang von kleinen Elementarabschnit-
ten, die so gewdhlt sind, dass im einzelnen Abschnitt je entweder kein
oder nur ein Schadenfall eintritt. Man hat es dann mit einer Folge von
Alternativen zu tun, was die mathematische Frfagsung vereinfacht.

Da man sich dabei von der Betrachtung einzelner Policen los-
gelost hat und einfach einen irgendwie zusammengesetzten Versiche-
rungsbestand ins Auge fasst, der sich stédndig &ndern kann durch Zu-
und Abgénge, so darf man jede FElementar-Rechnung als von allen
ibrigen unabhéngig ansehen.

Nun 1st ein zweiter glicklicher Ansatz von Lundberg zu erwéhnen:
Er wéhlt als Einheit des Geldwertes, in dem die Versicherungsleistung
zu zahlen ist, stets gerade den Durchschnittswert der Risikosummen.
Dann bedeutet d P nicht nur die Primieneinnahme im Risikoelement,
sondern geradezu die Wahrscheinlichkeit fiir den Eintritt eines Scha-
dens im Risikoelement; und (1 —dP) ist die Gegenwahrscheinlichkeit,
dass kein Schaden eintritt.

Wenn ein Schaden eintritt, so ist eine Risikosumme zu zahlen,
die ausgedriickt ist in Vielfachen der mittleren Risikosumme. Diese
Schadensumme kann verschieden gross sein; die Haufigkeit mit der
eine bestimmte Summe z auftritt, sei festgelegt durch die Frequenz-
funktion s(z). Diese Frequenz bildet die Schadensummenverteilung.
$(2) dz kann auch aufgefasst werden als die Wahrscheinlichkeit, dass
eine fillige Summe zwischen 2z und z + dz liegt.

Wenn fiir das Risikoelement die Wahrscheinlichkeit d P bekannt
ist, dass ein Versicherungsfall eintrifft, und zudem die Wahrscheinlich-
keit s(z) dz, dass dieser Fall eine Schadensumme zwischen z und z - dz
auslost, so konnen fiir das Risikoelement die Belastung und auch der
Elementar-Gewinn bestimmt werden. Die Verteilung des Gesamtgewin-
nes fiir eine bestimmte Geschaftsdauer P lasst sich dann berechnen
durch fortgesetzte Faltung der Elementarverteilung.
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4.

Die Integration tiber die Hrgebnisse der Elementarvorginge, die
zahlreiche Faltungen verlangt, wirde umstdndlich, wenn nicht die
bequeme Hypothese beniitzt werden diirfte, dass trotz der Verdnde-
rungen des betrachteten Bestandes die Frequenzfunktion der Schéden
$(#) unverdndert bleibt. Diese fiir die praktische Anwendbarkeit aus-
schlaggebende Hypothese scheint mit der Wirklichkeit — sogar fiir
laingere Zeitspannen — gut iibereinzustimmen, wie praktische Nach-
prifungen gezeigt haben.

Als Beispiel diene die Zeichnung 2, in der die Frequenzfunktionen
der Schiden dargestellt sind, wie sie bei den Einzel-Kapitalversicherun-
gen der Rentenanstalt in den Jahren 1928, 1938 und 1948 festgestellt
wurden. Wenn man bedenkt, dass in den zwischenliegenden 20 Jahren
der betrachtete Versicherungsbestand eine starke Umschichtung und eine

. Zeichnung 2
Frequenzfunktion der Schadensumme d

abgeleitet aus dem Bestand der grossen Einzel-Kapitalversicherungen
bei der Rentenanstalt

*/oo

300

I Beobachtung 1928 (375 Fille)

II » 1938 (461 Falle)
IIT » 1948 (416 Falle)
= Ausgleichung (z. T. nach Pareto)

200

100

1 !
Ya 1 1, 2 2,

Schadensumme in Vielfachen der mittleren Schadensumme
des Beobachtungsjahres
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Verdoppelung erfuhr, die Sterblichkeit zuriickging, die durchschnittliche
Versicherungssumme zunahm und das Deckungskapital fiir die Berech-
nung der Risikosumme auf andere Grundlagen umgestellt wurde, so
muss die nahe Ubereinstimmung der drei beobachteten Frequenz-
funktionen der Schéden tatséchlich uberraschen.

5.

Ein besonders wichtiger Umstand ist noch hervorzuheben. In der
individuellen Risikotheorie wird die Wahrscheinlichkeit, dass gerade
eine bestimmte Zahl von Schadenfillen eintritt, nur im Grenzfall eines
Versicherungsbestandes mit unendlich vielen Versicherungen durch die
wohlbekannte Verteilung von Gauss erfasst. Ganz anders liegen die
Verhéltnisse in der kollektiven Risikotheorie. Weil nicht auf die Zahl
der Versicherungen abgestellt wird, sondern auf das Elementargeschift
d P, ist ein Grenziitbergang fir jeden beliebigen — auch schon fir einen
kleinen — Versicherungsbestand und fir jede praktisch interessierende
Geschiftsperiode P zulissig. Dieser Grenziibergang fithrt bei gleich-
grossen Schadensummen ebenfalls zu einer wohlbekannten Verteilungmit
besonders giinstigen Eigenschaften, ndmlich zu derjenigen von Poisson.
Die Moglichkeit, diese ausfithrlich tabellierte Verteilungsfunktion bei
der Untersuchung praktisch vorkommender Versicherungsbestéinde zu
beniitzen, bringt bedeutsame Hrleichterungen fiir die Auswertung.

6.

An einem einfachen Beispiel soll die praktische Anwendung der
kollektiven Risikotheorie angedeutet werden. Fiir einen beliebigen
Versicherungsbestand seien — bezogen auf eine Periode P — die beiden
Frequenzfunktionen bekannt:

w(n) = Wahrscheinlichkeit, dass » Schadenfille eintreten,

$(2) = Wahrscheinlichkeit, dass ein Fall die Schadensumme z auslost.

Dann ist die Wahrscheinlichkeit, dass # Fille einen Gesamtschaden
auslosen, erfasst durch die Funktion ™s(z), die durch n-fache Faltung
aus s(z) hervorgeht. Die Frequenzfunktion der Belastung ist dann
dargestellt durch

8

b(z) = > win) Ws(2) .

n=0
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Hier tritt eine &hnliche praktische Schwierigkeit auf, wie in der
individuellen Risikotheorie, weil die Auswertung der Frequenzfunktion
fiir die Schadenverteilung s(z) die rechnerische Durchfithrung von n
Faltungen erfordert, was bei einem grossen Versicherungsbestand zu
einer riesigen Rechenarbeit fithren miisste. Vermutlich kénnte dieses
Hindernis mit Hilfe der modernen Rechenmaschinen tiberwunden
werden. Von verschiedenen Versuchen, diese Klippe mit mathemati-
schen Mitteln zu bewiltigen, scheint sich die von Fsscher mit asympto-
tischen Funktionen ausgebildete Methode durchgesetzt zu haben. Es
handelt sich allerdings um eine Approximation, die sich jedoch im
Bereich der Spitzenrisiken, der fiir praktische Probleme bedeutsam ist,
durch einen hohen Grad von Genauigkeit auszeichnet. Mit Hilfe dieser
asymptotischen Approximation lasst sich die Frequenzfunktion der
Belastung auswerten.

Das erste Moment der Belastungsverteilung

o0

[2b@) de =P
0
ist gleich der Risikopramieneinnahme. Wie in der individuellen Risiko-

theorie bringt auch hier das erste Moment das Aequivalenzprinzip zum
Ausdruck.

Die Verteilungsfunktion der Belastung kann unmittelbar als ri-
sikotheoretische Masszahl dienen. Beispielsweise lidsst sich sogleich die
Wahrscheinlichkeit angeben, dass die Belastung der Gesellschaft eine
bestimmte Grenze K nicht {ibersteige:

B(E) = [ b(z) dz.

Setzt man K = P, der gesamten Hinnahme an Risikoprdmien in der
Periode P gleich, so ist B(P) die Wahrscheinlichkeit, dass die Summe
aller Schiden die Einnahme an Risikopriamien nicht ibersteigt. Ist S
eine Sicherheitsreserve, die entweder von Anfang an vorhanden ist
oder wihrend der Periode durch die Sicherheitszuschldge eingenommen
wird, so ist die Wahrscheinlichkeit, dass die Mittel S 4 P ausreichen
B(S 4+ P); oder die Wahrscheinlichkeit, dass die Periode mit einem
Verlust abschliesst, 1 — B(S 4 P); wobei offen bleibt, wann im Verlauf
der Periode dieser Verlust entsteht. Umgekehrt ldsst sich die Frage



beantworten, wie gross muss die Sicherheitsreserve sein, damit die
Wahrscheinlichkeit eines Verlustes kleinerist als eine gewiinschte Grosse:
beispielsweise kleiner als 59, so dass auf 20 Jahre nicht mehr als ein
Verlustjahr entfallt.

Im wesentlichen ist also der Geschéftsverlauf durch die Frequenz-
funktion der Belastung b(2) charakterisiert. Diese ist ohne Ricksicht
auf die Bestandeszusammensetzung bestimmt durch nur zwei Bestan-
desmerkmale:

a) durch die gesamte Risikopridmie P, die bei der gewihlten Geld-
einheit identisch ist mit der Anzahl der zu erwartenden Versiche-
rungsfille und

b) durch die Frequenzfunktion der Schadensummen s(z).

Stimmen zwei Bestinde in diesen Merkmalen iiberein, so sind sie vom
Standpunkt der kollektiven Risikotheorie gleichwertig.

Die zweite Hélfte des Zahlenbeispieles auf Tabelle 1 stiitzt sich
auf die nach der erwihnten Methode von Hsscher ausgewertete Be-
lastungsverteilung. Dabei ist angenommen, dass die einzelnen Schaden-
summen oder Risikosummen nicht alle gleich gross sind, sondern einer
Frequenzfunktion der Schiiden entsprechen, die als Ausgleichung aus
den Beobachtungen der Rentenanstalt unter Anwendung der Funktion
von Pareto ermittelt und in Zeichnung 2 als ausgezogene Kurve ein-
getragen ist. Die Verlustfrequenz (oder Haufigkeit der Verlustjahre) fallt
in diesem allgemeinen Fall b) asymmetrisch aus und zeigt deutlich eine
breitere Streuung als im idealisierten Fall ), wo alle Summen gleich
sind. Die in Klammern beigefiigten Zahlen der Tabelle 1 zeigen, wie die
Streuung durch Riickversicherung der Spitzenrisiken verschmélert wird.

Untersuchungen iiber den Selbstbehalt nach der in dieser Hinsicht
genaueren kollektiven Risikotheorie zeigen ubrigens, dass bei Anwen-
dung der individuellen Theorie die Stabilitit des selbst behaltenen Ver-
sicherungsbestandes iiberschitzt wird.

7.

Besonderes Interesse im Gebiet der kollektiven Risikotheorie hat
das sogenannte Rutnproblem gefunden. Fs kann durch die von Cramér
beniitzte Zeichnung 3 charakterisiert werden.
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Schema eines stochastischen Prozesses Zeichnung 3
P = Risikoprimieneinnahmen
AP = Sicherheitszuschlag
S, = Anfingliche Sicherheitsreserve
U(P) = Verlauf des Einnahmeniiberschusses
S(P) = S, + AP = Sicherheitsreserve

U(P)

T

']‘ Ruin

Fir irgendeinen Versicherungsbestand sei zu Beginn der Operation
eine Sicherheitsreserve S, vorhanden. P sei die ausreichende Risiko-
pramie, die eingenommen wird. Daneben wird mit der Primie ein
Sicherheitszuschlag AP erhoben. Die aufgelaufene Risikoprimienein-
nahme P dient in Zeichnung 3 als Abszisse. Als Ordinate wird der Stand
der Einnahmeniiberschiisse (ohne Sicherheits-Mittel) aufgetragen. Hine
Zeitlang stellt sich kein Schaden ein; der Einnahmeniiberschuss U
steigt vom Nullpunkt als Gerade mit 450 an. Tritt ein Schadenfall ein,
so fillt U senkrecht ab um die fillige Schadensumme, steigt dann wie-
der als Gerade mit 45° weiter an, und so fort. Wird U negativ, so be-
deutet dies nicht den Ruin der Gesellschaft, denn diese verfiigt noch
iiber die Sicherheitsreserve, die durch die eingenommenen Sicherheits-
zuschlige linear angewachsen ist, wenn der Einfachheit halber von der
Verzinsung abgesehen wird. Die kritische Grenze lasst sich also durch
eine Gerade darstellen, die bei —S, beginnt und in der Periode P um
AP sinkt. Féllt nun der Streckenzug U unter diese kritische Linie S,
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dann ist die Gesellschaft zahlungsuntihig. Dabei kann man auch an
die Moglichkeit denken, dass die Gesellschatt die peinliche Lage irgend-
wie uberbriickt und U in der Folge wieder tiber die Grenzlinie S an-
steigt. Aus diesem Schema lassen sich nun — je nach der Fragestellung —
verschiedene Masszahlen ableiten: beispielsweise die Wahrscheinlich-
keit, dass der Ruin nie eintritt bis zu einem bestimmten Moment P
(beispielsweise im Laufe von 10 Jahren).

In diesem Zusammenhang soll nicht dargestellt werden, wie die
auftretenden Wahrscheinlichkeiten zu berechnen sind, die unmittelbar
als Masszahl dienen zur Beurteilung der Stabilitdt eines Versicherungs-
bestandes unter Beriicksichtigung der getroffenen Sicherheitsmass-
nahmen. Es sei etwa auf die im Anhang zitierte Abhandlung von Crameér
verwiesen. Die Ableitungen sind vielleicht nicht besonders einfach, doch
stehen die erforderlichen mathematischen Hilfsmittel zur Verfiigung.
Dabei leistet oft die Laplace-Transformation gute Dienste, iiber die
Professor Sazer in Band 45 dieser Mitteilungen einen meisterhaften
Uberblick gegeben hat.

Die Zeichnung 8 gibt tbrigens das typische Bild eines stochasti-
schen Prozesses. Sie charakterisiert auch eine sprunghafte Bewegung,
aus deren wahrscheinlichkeitstheoretischen Betrachtung Saxén das
Ruinproblem behandelt. Das gleiche Schema gilt fiir alle méglichen,
grossen und kleinen, irgendwie zusammengesetzten Versicherungs-
bestdande. Bei der Riickiibertragung auf konkrete Falle muss allerdings
Jeweilen die richtige Interpretation angewandt werden. Beispielsweise
bedeutet die Strecke P (die Zeit, bis die Gesellschaft die Risikopramie P
eingenommen hat) bei einer grogsen Gesellschaft vielleicht eine kurze
Spanne von wenigen Monaten, bei einer kleinen Kasse unter Umstén-
den eine Zeit von mehreren Jahren.

8.

Als theoretisches Ergebnis des Ruinproblems ergibt sich die Wahr-
scheinlichkeit fiir den Ruin der Gesellschaft irgendwann in der Zukunft:

p(Se) = (1 —e) ™%,

wo & eine sehr kleine Zahl bedeutet, die gewGhnlich vernachlissigt
werden kann. Der Ausgleichskoeffizient R ist bestimmbar aus

1—[—(1—]—}L)R:fest(z)dz
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und héngt also nur ab von der Frequenzfunktion der Schiaden s(2)
und vom Sicherheitszuschlag A. Fir die Ruinwahrscheinlichkeit spielt
dann noch die anfédngliche Sicherheitsreserve S, eine Rolle.

Merkwiirdig erscheint, dass die Ruinwahrscheinlichkeit nicht un-
mittelbar abhingig ist vom Umfange des Bestandes, sondern nur von
der Risikostruktur und den Sicherheitsmitteln. Es ist aber zu beachten,
dass die anféngliche Sicherheitsreserve in absolutem Betrag auftritt.
Die Wahrscheinlichkeit (S) bel einer grossen und einer kleinen Kasse
wire also nur dann gleich, wenn die kleine Kasse in absolutem Betrag
eine gleich grosse Sicherheitsreserve besdsse wie die grosse.

&

Die angedeuteten Ableitungen der kollektiven Risikotheorie stiit-
zen sich auf die Schadenwahrscheinlichkeiten. Far die Anwendung der
Theorie st es daher von entscheidender Bedeutung, ob im konkreten
Fall iberhaupt Wahrscheinlichkeiten vorliegen, die auf das klassische
Urnenschema zurtickzufithren sind.

In der Lebensversicherung diirfte dies annéhernd der Fall sein.
Bei anderen Versicherungsarten reicht jedoch das einfache Urnen-
schema nicht aus, beispielsweise fiir Unfall- oder Hagelversicherungen.
Oft machen sich auch das Kumulrisiko oder die Wahrscheinlichkeits-
ansteckung storend geltend. Deswegen darf aber die Anwendung der
Wahrscheinlichkeitstheorie — und damit der Risikotheorie — nicht ein-
fach verworfen werden. Verschiedene Untersuchungen — erwihnt seien
Polya, Eggenberger, Ove Lundberg, Nolfi und Ammeter — haben gezeigt,
dass in solchen Fillen das Urnenschema in geeigneter Weise erweitert
werden muss. In seiner Arbeit im Band 49 unserer Mitteilungen hat
Ammeter gezeigt, dass an Stelle zufillig schwankender Grundwahr-
scheinlichkeiten auch mit festen Grundwahrscheinlichkeiten gerechnet
werden kann, wenn zuerst eine mathematisch festgelegte Transformation
der Schadenverteilung vorgenommen wird. Damit lasst sich die Risiko-
theorie auch auf den ganz allgemeinen Fall des erweiterten Urnenmodells
fiir die Schadenwahrscheinlichkeiten anwenden.

IV. Zusammenfassung

Die am Anfang dieser Betrachtung aufgeworfenen Fragen lassen
sich nun vielleicht durch folgende Feststellungen beantworten:
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1.

Die Risikotheorie fithrt nicht zu einem neuen Aufbau der Ver-
sicherungsmathematik. Sie stellt vielmehr den Ubergang von ihr zur
Wirklichkeit her, indem sie das mathematische, starre Modell, das mit
festen Durchschnittswerten rechnet, mit dem angemessenen Schwan-
kungsbereich umgibt, der dem stochastischen Charakter der dar-
gestellten Vorgéinge gerecht wird.

2.

Die individuelle Risikotheorie ist wegen der Schwierigkeiten ihrer
Ubertragung auf allgemeine Versicherungsbesténde und auch wegen
der thr innewohnenden ungeniigenden Approximationen nur beschrinkt
brauchbar.

3.

Die kollektive Risikotheorie ist der individuellen inhaltlich und
methodisch tberlegen. Die praktische Auswertung der theoretischen
Hrgebnisse ist im allgemeinen einfach, weil sie nur die Kenntnis zweier
Bestandesmerkmale verlangt, die meist leicht zu beschaffen sind. Die
Urteile iiber die individuelle Risikotheorie diirfen daher nicht auf die
kollektive tibertragen werden.

4.

Die Fragen, die von der kollektiven Risikotheorie beantwortet
werden konnen, wiren fiir die Lebensversicherung — und in noch stér-
kerem Magse fiir alle anderen Versicherungszweige — wichtig; besonders
wertvoll sind die Aufschliisse tiber die notwendigen Sicherheitsvorkeh-

rungen, die sich aus dem Modell der Versicherungsmathematik nicht
ergeben.

5.

Die ziemlich junge kollektive Risikotheorie scheint in verschiedener
Hinsicht noch weiterer Abklirung zu bediirfen. Die meisten bekannt-
gewordenen Abhandlungen iiber diese Theorie begniigen sich mit for-
malen Resultaten. Anwendungen auf bestimmte Fragen und Fille sind
bisher wenig untersucht worden. Studien in dieser Richtung kénnten
zu Krgebnissen von willkommener praktischer Bedeutung fithren.
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