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Noch einige praktischc Intcrpolationsformeln
des Zinsfussproblemes von hoher Prizision?')

Von Ive Lah, Ljubljana

Gegeben sind  zwei Barwerte der konstanten nachschiissigen
lebenslinglichen Leibrente zu Zinstiissen 15 <<1,, d. 1.

(’l-J: (’io) it 0(1’ l‘l Il (l (LJ: ( lll) _— l(lp .

Aus diesen Barwerten kann man jeden anderen, dem Zinstusse 2
entsprechenden Leibrentenbarwert
mittels Interpolation bzw. Extrapolation niherungsweise bestimmen.
Ziwei Forderungen sind an diese Interpolations- bzw. Extrapolations-
aufgabe gestellt:

1. Der Nitherungswert muss moglichst genau sein.

2. Die Rechenarbeit soll minimal sein.

Wir wollen nun zeigen, dass man durch passende Kombinationen
der iiblichsten und der einfachsten Interpolationsformeln neue, ebenfalls
sehr einfache Formeln herleiten kann, welche den gestellten Forderun-
aen voll entsprechen. Wenn wir zur Vereinfachung der Schreibart

i i
— = (1)
="
iy —1
Tl__( =1—u (2)
1 0

setzen, dann kénnen die tiblichsten Interpolationstormeln geschrieben
werden, wie folgh:

1) Diese Abhandlung ist eine Iirginzung bzw. Verallgemeinerung des Auf-
satzes «Bine praktische Interpolationsformel des Zinsfussproblemes von hoher
Priizision», Mitteilungen der Vereinigung schweizerischer Versicherungsmathe-
matiker, 51. Band, Heft 1, 30. April 1951, Seiten 91-100.
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Das arithmetische Mattel, d. 1. die lineare Interpolation der Renten-

barwerte
A = %1 —«) + laa. (3)

Das harmonasche Mattel, d.1i. die lineare Interpolation der rezi-
proken Rentenbarwerte
bole

H= (4)

%0 4 la(l — &)

Das geometrische Mattel, d. 1. die lineare Interpolation der Loga-
rithmen der Rentenbarwerte

G = % 1”, (5)

Das anttharmonische DMattel, d.1i. die lineare Interpolation der
Quadrate der Rentenbarwerte, dividiert durch das arithmetische Mittel

04201 — o) b 102
4 — a?(1—a) |—Ct0t. (6)

Op(1 — o) + laa

Iis gibt selbstverstindlich unendlich viele andere Interpolations-
formeln, mit welchen wir uns jedoch in dieser Abhandlung nicht
befassen werden. Mutatis mutandis kénnen unsere Ausfithrungen auch
auf dieselben angewendet werden.

Zuniichst wollen wir % und e als Funktionen von a darstellen.
Zu diesem Zwecke greifen wir zur Taylorschen Reihe des Rentenbar-
wertes % in bezug auf @, welche bekanntlich lautet

1 : > f ' ' | ! R h
O — 5 [V, +0(i—ig) Sypq + 021 —10)2 8P, +o¥(i—10)3SE), + .. .]
&
oder
| oy Oy L e SR o a S
0 = @ |14 v(i—1p) —F> + 021 —1g)2 =L 4 ¥ —ip)P =L ...
1 a1 N:c—i-l Va:vl-l

Aus der generalisierten Poukkaschen Formel

S Sl |
(S“(tnll)z = ky(z+1,7) =k, )

(7)

(8)
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folgt *_85'23“_1_ = Ik, ( _Sm-H )2
N:J:-I—l Na:»l-l /
S(g) S‘ .
0 o 3 ( ”‘-)
Nyt Nyyr, (10)
S : /8 \A
=t = 13 ks,( £+l )
N:L'+1 z1 7

Bei Ausscheideordnungen, bei welchen durchweg I, >1,,, sind die
Grenzwerte der Funktion k, durch die Ungleichung

n -1

bestimmt. Nur bei sehr starkem Gefille der diskontierten Zahlen D,
kann k, > 1. Solche Fille kommen jedoch recht selten vor, so dass
wir von ihnen absehen kénnen.

Wenn wir (10) in (8) einsetzen und der Kiirze halber

S

Wty — i) —A = § (12)
! ’ N‘Ji—l—l .
schreiben, bekommen wir
O = afl + wS + kyo®S? 4 kky0®S3 4 .. o] s (13)

Auf dieselbe Art und Weise finden wir
o =a[l—(1—®)S+k(1— )2 8% — 3k, (1 — a)35% 4 .. . (14)

Die Werte von % (13) und *a (14) wollen wir nun in die Gleichungen
(3) bis (6) einsetzen und der Kiirze halber schreiben

(1 —1p) (13 —1)
G — ig)®
(1 — 1) (g —1) (20 —1g—1y)

(’i1 — )3

(15)

p =l —a) =

p =l —o) Ba—1) =

(16)
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So bekommen wir:

A= a[l +keS?+kikypS:+ ...]

H o= a[t—(1—k) 8%+ (1— 2%y - Kk pS® 1 ...]
G=al[l+(k—7) oS24+ (z—k + Kk pS2+ ...]
A" = a[l + (1 + k) @S% + 2k, + KFky) pS® + .. ]

In den Niherungsformeln (17) fehlen die Glieder von S. Die
Interpolationsfehler sind also durchweg der zweiten Ordnung der
Kleinheit. Im Intervalle (¢y,1,) ist ¢ positiv, ausserhalb dieses Inter-
valls 1st es negativ, wie aus (15) ersichtlich ist. Gemiss (11) ist
:< ky < 1. Meistens wird k, = 0:84 genommen. Daraus folgt, dass
im Intervalle (24, 7,) der Niherungswert von H zu klein, die Niherungs-
werte 4,G, A" dagegen zu gross sind. Ausserhalb des Intervalls (4,,4%,)
ist gerade umgekehrt der Fall. Dem absgoluten Betrage nach ist der
'ehler von [ am kleinsten, etwas grosser ist der absolute Fehler von
G und am grossten ist er bet 4’. Bei der Interpolation haben wir also

(17)

H<a<G<A< A’ (18)
bei der Extrapolation dagegen
H>a>G>4>4". (19)
Als zahlenmiissiges Beispiel geben wir einige Resultate anhand
der slowenischen Volkssterbetafel 19311933, miinnliches Geschlecht,

und zwar fiv ¢ =20, 1, =289%, +=49%, 1, =59%, daher « = %

s ist O = ay(3 %) 22:775 l
a = ay(49,) 19-183 (20)
ta = ay (5 %) 16454 I

Der Fehler bedeutet im folgenden die Differenz zwischen dem Nihe-
rungswerte und dem exakten Werte.

Naherungswert von ay, (4 %) Der Fehler Tabelle 1
A =19615 -+ 0-432,
H = 19105 — 0078
¢ = 19068 + 0-175

A" = 20124 + 0-941
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Die Formeln (17) ermoglichen die Abschitzung der Grosse des
Interpolationsfehlers. Dazu sind jedoch die Werte von k; notwendig.
So z. B. ist der Fehler von 4

Iy~ ak,pS?

oder Ouk, @S2 > I\ > lak, ot S?

wo °S und 1S aus (12) durch Umtausch von 4 mit 2, bzw. mit 7, be-
rechnet werden. In unserem Beispiele haben wir

0633 > F, > 0293,
Das ungewogene arithmetische Mittel beider Grenzwerte von I, ist

0-463, wogegen der exakte I'ehler nach der Tabelle 1 etwas weniger,
nimlich 0432 ausmacht. Der Ifehler von I ist

_ 1—k
g 53 e ! By
1
In unserem Ialle haben wir
I, 01560463 0-086 tatt kt — 0-078.
! fird, e = = C d dKly —
gn I , anstatt exa

wie aus der Tabelle 1 ersichtlich ist. Usw. usw.

* *
%

Je zwel Niherungsformeln in (17) kénnen wir so kombinieren, dass
in der Kombination das Glied von S? verschwindet. Wir bekommen

4 : : L.
S0 ( 2) = 6 neue genauere Interpolationsformeln. Zu diesem Zwecke

gschreiben wir:

(m) 4(1 k) uml
(AA) Al + )ﬁ A’k
1) 26—k
(HG) = Hhky—1) +2G(1—1Ty) | ai)
HAYy — AT & A i |
( ) = 9 9
2 -} 2k, 1 —2k,

A"y — G- T gt
() g T4 3
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So finden wir:

(AH) = a[l 4 (ky— 2K + Kk pS® + ...]
2k |
(AG) = a |1 + (—811 — 2K} + h‘f]c2> PS® 4 .. l

(A4") = a1 + (0— 2kF + K2ky) 9 S® - . . :

i 4k, — 1 |
(HG) = a 1+<~1—3—~—2k§ o k%kz)qpss s l (22)
’ 1 [_ 1 2 2 /3
(HA") = a 4 g 2K Rk St
’ ] 2—}_ 1 9 9 3
(@4 = a 1-|—(—~T—~2k1 K2y ) S -

In den Naherungsformeln (22) fehlen die Glieder von S und S2
Die Interpolationstehler sind also durchweg der dritten Ordnung der
Kleinheit.

Wenn 4 = (15 +4;), dann ist y = 0, wie aus (16) ersichtlich ist.
In diesem speziellen Falle, welcher in der Praxis oft vorkommt, ver-
schwinden in den Formeln (22) auch die Glieder von S% Die Inter-
polationstehler werden dann nur noch der vierten Ordnung der Klein-
heit. Die Funktion % ist im Intervalle [7,0, (o + )] negativ, im
Intervalle [ (19 -t %1), ;] positiv. Die [ntbrpolablomkurven (22) sind
also nicht nur an beiden Grenzen des Intervalls (2, 1,), sondern auch
imnerhalb dieses, meistens sehr schmalen Intervalls und zwar in der,
niichsten Umgebung von -;-—(1:0—[—-1;1) exakt. Daraus schliessen wir,
dass die Fehler der Niherungswerte (21) bei der Interpolation im
allgemeinen nicht gross sein konnen. Dies gilt selbstverstindlich nicht
fir die Extrapolation.

Bei den Naherungstormeln (4H), (HG), (HA') in (22) kann es
auch vorkommen, dass die Polynome von k; und k, in den runden
Klammern () gleich Null werden. Auch in solchen, seltenen Fillen
reduzieren sich die Fehler auf die vierte Ordnung der Kleinheit, oder
sogar auf Null, so z. B. wenn k; =k, = 1.

Die Néherungsformeln (22) unterscheiden sich untereinander merk-
witrdigerweise nur im ersten Summand der Polynome in den runden
Klammern (), wenn man natiirlich von den Gliedern S%, S5, S8, ...
absieht. Der zweite und der dritte Summand sind bei allen sechs Formeln
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gleich, nimlich (— 2k% 4- k¥ k,). Infolge (11) kann die Differenz zweier
Niherungswerte (22) bzw. (21) nicht grosser sein als
apS3. (23)
Die Funktion (16) p = — %03 4 8o —« (24)

hat im Intervalle (¢4,%,) zwel lixtrema, und zwar

YMaximum = + 18

Die absolute Differenz zweier Niherungswerte (21) kann also bei der
Interpolation nicht grosser sein als

VS aS3 (26)

Praktisch kénnen wir die Niherungswerte (21) bei der Interpolation
als gleich genau betrachten, wenigstens wenn die Rentenbarwerte auf
drei Dezimalen abgerundet sind. Fir die Extrapolation gilt dies
natiirlich nicht, weil ausserhalb des Intervalles (14,7,) die Funktion ,
welche eine kubische Parabel darstellt, auch sehr grosse Werte an-
nehmen kann. Auch die Rechenarbeit ist bei allen Niherungsformeln
(21) beinahe dieselbe, nur bei (4G), (HG), (GA') sind Logarithmentafeln
notwendig, was allerdings zeitraubend ist. Jedoch im Falle « = m + 27,
wo m und n ganze positive oder negative Zahlen oder Null bedeuten,
eritbrigt sich das Logarithmieren, weil man Quadratwurzeln be-
kanntlich auch mit Rechenmaschinen rasch und leicht ziehen kann.

Die Kombination der Néherungswerte A, H, (i, A’ in der Tabelle 1
gemiss (21), wobel wir k; = 0'844 genommen haben, fithrt zu folgenden
verbegserten Niherungswerten:

Nitherungswert von ag,(4%)  Der I'ehler Tabelle 2
(AH) — 19-185 1 0:002
(AG) = 19182 — 0001
(AA") = 19185 1 0002
(HG) = 19-184 1 0:001
(HA") — 19185 1 0:002

(GA") = 19183 0-000
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Die geringen Differenzen in der letzten Dezimale stammen
wenigstens zum Teil auch von den vernachlissigten Dezimalen der
Grundwerte °a, ta, k.

Aus zwei Rentenbarwerten %, 'a und aus &, konnen wir also mit
Hilfe der Formeln (21) vorziigliche Werte von @ interpolieren. Wir
konnen aber auch umgekehrt aus drei Rentenbarwerten %, a, a den
Wert von &y niherungsweise berechnen. Dazu braucht man nur in (21)
die Néherungswerte von (4H) bis (GA’) mit @ zu vertauschen. Die
Rechnung wird am eimnfachsten und die Prizision am grogsten, wenn
o == é Die einzelnen Formeln (21) fithren in diesem Falle zu folgenden
Resultaten:

¢ — a + la)® — a®

(AH), (HA"), (AA") ... Ty ~ , 27)

(Oa . 1(6)2

0g —2a -+ 1o _
AGY ..k ~ - = 8
(A - Iy i ()
(% + 'a) (2)/%ats — a) — 2% 'a

I v , 29
(HG) key 2 (% + lu) Voa, lg — 4% g )

%2 + ta® — (% + a) (30 — 2|/ %ala)

GA" ... Iy ~ —
(4 E 2 (% + ta?) — 2 (% + 'a) |/ %0l

(30)

Nach Einsetzung der numerischen Werte von %, a, 'a aus (20)
in (27) bis (30) bekommen wir folgende Niherungswerte von ky:

Formel Der Néiher(mgswert von k(21,4 %) Der Iehler Tabelle 3
(27) 0-847 -+ 0-003
(28) 0-841 — 0-003
(29) 0846 -+ 0-002
(30) 0-843 —0-001

Der exakte Wert, auf drei Dezimalen abgerundet, 18t &, = 0-844,
wie wir bereits oben bemerkt haben. Obwohl die Spannung der Zins-
fitsse 79, 7, 7, in ungerem Falle verhiltnismissig gross ist, dennoch
haben wir aus drei Rentenbarwerten %, a, ' ohne Summen der dis-
kontierten Zahlen N, S,.,, S¥.,, den Wert von k, fiir den Bedarf
der Praxis ausreichend genau berechnet. Je kleiner die Spannung der
Zinstiisse, desto grisser ist die Priizision des Nédherungswertes von k.
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Im Grenzfalle 1, = 4 = 1, bekommen wir aus (27) bis (30) den exakten

Wert
. S.’E:z%-i N r--1

k :] 4 1,’L — L 31
1 (x4 1,9) (S;E-H)z (31)
wie man sich durch Einsetzung von
Uy = g —hie" o 2h¥@” — I+ i s
v i d l (32)
o = a + ha' + Jh*a" 4 ... J

in (27) bis (30) und nachherigen Grenzitbergang limes h = 0 iiber-
zougen kann. Dabei bedeutet o’ bzw. o'’ die erste bzw. die zweite
Ableitung von @ nach 1.

Wir miissen noch bemerken, dass man bei der praktischen An-
wendung der Formeln (27) bis (30) auf Schwierigkeiten stosst, in-
sofern 1, und %, nicht viel von i verschieden sind. In solchen Fillen
werden niimlich die Zihler als auch die Nenner in (27) bis (30) gleich
oder beinahe gleich Null. Nur wenn die Rentenbarwerte %, a, ' mit
vielen Dezimalen vorliegen, kénnen derartige Berechnungen bei kleinen
Zinsspannungen einen praktischen Erfolg haben.

s #
w®

Analog unserem bisherigen Verfahren kénnen wir nun je zwei

Niiherungsformeln in (22) so kombinieren, dass in der Kombination
. . : 6 , ;

das Glied von 8% verschwindet. Wir bekommen so ( o) = 15 weiter

verbesserte Niherungsformeln, bei welchen die Fehler durchweg von
der vierten Ordnung der Kleinheit sind. Von diesen 15 Formeln wollen
wir einige niederschreiben:

(AH, AG) —= (AH) (—2 + 6k, — 3k  ky) 4 (AG) (83— 6k, + Bk, ky)

4H, AA") = (AH) (%ﬁkl ky) -+ (AA") (1 =2k, + Ty ky)

—4k 6k —8kik 3k —6k® - 8k2k
(AH, HG) — (Apy — ORI S i + Skiky
T—ky BT
ke — 4 K2 2KEE, 2 212 (33
1H,HA") = (AH) _1_E_t.lﬁ,ﬂ___i_'_i F ARl —(HA") iy — 4]“1 |- 2R 1oy (33)
"k1 1-— ]‘71
—22k, - 18K —9K3k 18K - 92K
{H, Q4" — (AH) 220 + 18K =0k, ) 9%, — 18K% -+ 9k e,
Tk —2 Thy,—2

---------------------------
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Es ist (AH, AG) = a[1 + B,S* + .. .] } (34)
wo R, eine ziemlich komplizierte Funktion von ki, ky, kg und von «
darstellt, welche wir nicht aufschreiben wollen, weil sie zu viel Raum
in Anspruch nimmt und ausserdem nichts interessantes aufweist.

Die Formeln (33) kommen praktisch nur fiir die Fxtrapolation
in Betracht. Bel der Interpolation ist ndmlich, wie wir bereits gesagt
haben, das Glied von S? entweder exakt oder wenigstens annihernd
gleich Null, so dass die Formeln (22) durch die Elimination von S®
entweder gar nicht oder nur unwesentlich verbessert werden. Aus der
Tabelle 2 ist ausserdem ersichtlich, dass die interpolierten Néherungs-
werte nur in der dritten Dezimale geringe Abweichungen aufweisen,
wag fiir die Praxis belanglos ist. Wenn auch weitere Dezimalen ver-
langt werden sollten, dann miigsten wir, um unsere Formeln mit
firfolg anwenden zu kénnen, auch genauere mehrziffrige k,-Werte zur
Vertiigung haben.

Die zahlenméssigen Beispiele, welche wir bisher gegeben haben,
beziehen sich lediglich auf die Interpolation. In der Tabelle 4 geben
wir nun einige numerische Resultate fiir die Fxtrapolation, und zwar
die Niherungswerte von ay,(3%), berechnet aus ay(4%,), de(5%),
und die Niherungswerte von ay (5 %,), berechnet aus ayy (3 %), ta0(4%),
welche in (20) enthalten sind. In den Formeln (21) bzw. (33) haben wir

ky (3%) = 0-8152, ko (39,) = 0-8417

und k, (5%, = 08700, ky(59,) = 0:8758  genommen.

Tabelle 4
Niherungswert -~ Der Niherungswert Der

von dy, (3 %) Irehler VON gy (5 %) Fehler

4 =21"912 —0-863 A =159 — 0863
H = 29997 L0222 H =16:570 -+ 0116
G = 22:365 — 0410 (G = 16158 — 0296
A’ =21-232 —1-543 A’ =18-986 — 2518
(AH) = 22:T97 - 0022 (AH) = 16443 —0-011
(AG) = 22-650 — 0125 (AG) = 16577 + 0-123

(AA) = 22-466 —0-309 (44" = 17031 + 0-577
(HG) = 22-763 —0-012 (HC’) = 16463 + 0009
(HA") = 22834 + 0059 (HA") = 16399 — 0055
(GA") = 22603 — 0172 (GA”) = 16:706 + 0252
(AH, AG) = 22-T72 — 0003 (AH, AG) = 16:452 — 0-002
(AH,AA") = 22-778 - 0-003 (AH,AA") = 16456 4- 0-002
(4H, HG) = 22-T72 — 0003 (4H, HG) = 16452 — 0-002
(AH,HA") = 22779 -+ 0004 (AH,HA'") = 16:456 -+ 0002

1"} =
(AH, GA'Y =922776 -+ 0-001 (AH, GA") = 16-454 0-000
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Die Fehler von (AH, HG) bis (AH,GA’) in der Tabelle 4 sind
etwa von derselben Grosse wie die Fehler in der Tabelle 2. Das kommt
davon, weil die Interpolationsformeln (22) im Falle y = 0 genau so
wie die Iixtrapolationsformeln (33) keine S, S2, 5% enthalten und ausser-
dem, weil die Entfernung des Zinsfusses 4+ von den Grundzinsfiissen
o und 4, bei der Interpolation als auch bei der Fxtrapolation nicht
allzusehr verschieden ist.

Oben haben wir gezeigt, wie man mittels (21) den Niherungswert
von k, berechnen kann. Auf dhnliche Weise konnen wir mittels (33)
den Niherungswert von k; und zugleich von k, aus %, @, '@ berechnen.
Aus (AH, AG) in (33) bekommen wir

38— 6k, + kyky ~

oder durch Substitution (21)

a— A 4k (4 — H)

3k, — 6k% + 83k, ~ _ 36
o, vy A SRRy 00— A1 (36)
Desgleichen bekommen wir aus (4H, 44") in (33)
, a— (44’
Zkl — kl kz ~ ( ) e (37)
(AH) — (44"
oder
ok — Ik, o L AT — ) (38)

H4 A 24

Die Gréssen A, H, G, A" in (36) und (38) kénnen aus %, e und «
nach (8) bis (6) berechnet werden. Wir bekommen so zwei Gleichungen
mit zwei Unbekannten &y und k,. Minen praktischen Iirfolg haben
solche Rechnungen jedoch nur dann, wenn die Spannung der Zins-
fiisse 44, 1, 2, hinrveichend gross ist, oder wenn die Rentenbarwerte
%, a, ' mib vielen Dezimalen vorliegen. Die Differenz a — (AH) im
Zishler (35) betright bel 1 = 5% nach der Tabelle 4 nur 0-011. Aus
solchen kleinen Zahlen konnen selbstverstindlich nicht hinreichend
genaue Werte von k; und k, bestimmt werden.

sk W
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Die Interpolations- und Extrapolationsformeln (21) und (33),
welche an der Hinfachheit der numerischen Rechnungen kaum etwas
zu witnschen iibrig lagsen, diirften den Bediirfnissen der Versicherungs-
praxis voll entsprechen. Theoretisch dagegen konnen wir aus zwei
Rentenbarwerten %, 'a und aus den generalisierten Poukkaschen
Zahlen ki, ke, kg ... durch sukzessive Elimination von S% S5, 5%...
weitere, unendlich viele, beliebig priizise Niherungsformeln fiir die
Bestimmung eines jeden Rentenbarwertes aufstellen, jedoch mit jeder
weiteren Elimination komplizieren sich die Formeln so sehr, dass ihr
praltischer Wert schon bei der Ilimination des Gliedes von S* pro-
blematisch erscheint.
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