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Noch einige praktische Interpolationsfonneln
des Zinsfussproblerues von holier Präzision1)

Von Ivo Lah, Ljubljana

Gegeben sind zwei Barwerte der konstanten nachschüssigen

lebenslänglichen Leibrente zu Zinsfüssen i0<ilt d.i.

'R('o) •- °rt 1111(1 axih) =- l«-

Aus diesen Barwerten kann man jeden anderen, dem Zinsfusse i
entsprechenden Lcibrentenbarwert

ax(i) - a

mittels Interpolation bzw. Extrapolation näherungsweise bestimmen.
Zwei Forderungen sind an diese Interpolations- bzw. Extrapolationsaufgabe

gestellt:
1. Der Näherungswert muss möglichst genau sein.

2. Die Rechenarbeit soll minimal sein.

Wir wollen nun zeigen, dass man durch passende Kombinationen
der üblichsten und der einfachsten Interpolationst'ormeln neue, ebenfalls

sehr einfache Formeln herleiten kann, welche den gestellten Forderungen

voll entsprechen. Wenn wir zur Vereinfachung der Schreibart

1 — 'o° - a (1)
R — 'o

R — i
-. - 1—a (2)

R ~— 'o

setzen, dann können die üblichsten Interpolationsfonneln geschrieben
werden, wie folgt:

R Diese Abhandlung ist, eine Ergänzung bzw. Verallgemeinerung des
Aufsatzes «Eine praktische Interpolationsformel des Zinsfussprohlemes von hoher
Präzision», Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker,

51. Hand, lieft l, 30. April 1951, Seiten 91-100.
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Das arithmetische Mittel, cl. i. die lineare Interpolation der Renten-
barwerte

4 —a) + 1o«. (3)

Das harmonische Mittel, d. i. die lineare Interpolation der
reziproken Rentenbarworte

H - ^ (4)
°aa. -|- ^(1 — a)

Das geometrische Mittel, d. i. die lineare Interpolation der
Logarithmen der Rentenbarwerte

G Oft1-011«". (5)

Das antiharmonische Mittel, d. i. die lineare Interpolation der

Quadrate der Rentenbarwerte, dividiert durch das arithmetische Mittel

°a2(l — a) + V«AI \ t 1 /p\
°a(l —a) + La

Es gibt selbstverständlich unendlich viele andere Interpolationsformeln,

mit weichen wir uns jedoch in dieser Abhandlung nicht
befassen werden. Mutatis mutandis können unsere Ausführungen auch
auf dieselben angewendet werden.

Zunächst wollen wir °a und 1os als Funktionen von a darstellen.
Zu diesem Zwecke greifen wir zur Taylorschen Reihe des Rentenbar-
wertes °a in bezug auf a, welche bekanntlich lautet

°° TT ^l+l +e8(t-i'o)aS?{i + ®3(t-'io)3S<+i + • • •] (7)

oder

Q ,Q(2) S(3)

l + »(i-'o)^ + ^-^a^±i+«s(i-g3^±i + • (8)
ivx-+l ^x+L IV®+1

Aus der generalisierten Poukkaschen Formel

o(n + l) o(n-i)
-M «+1 ^K{x + 1>i) K (9)
(Sit)2
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folgt

Nx+l 4U.Y
CC-f-1

N.x+

°x+t

L klkj x-

2U*
er \3°x+ l

fl

N„
x+l Sx+i^
x + L N,X-f-l

(10)

Bei Ausscheideordnungen, bei welchen durchweg lx>lx+1, sind die

Grenzwerte der Funktion kn durch die Ungleichung

n + 1

n -\- 2
< K < l (11)

bestimmt. Nur bei sehr starkem Gefälle der diskontierten Zahlen Dx
kann kn>l. Solche Fälle kommen jedoch recht selten vor, so dass

wir von ihnen absehen können.

Wenn wir (10) in (8) einsetzen und der Kürze halber

S,
— ?0)

JX-\-1

N
S (12)

X+l

schreibon, bekommen wir

°ci a [1 -b <xS + l^oPS2 + 7c27c2a3S3 + ...]. (13)

Auf dieselbe Art und Weise finden wir

la a [1 — (1 — «) S + K (1 — a)2S2 — fc2/r2(l — a)3 S*+ ...]. (14)

Die Werte von °a (13) und la (14) wollen wir nun in die Gleichungen
(3) bis (6) einsetzen und der Kürze halber schreiben

(p — a(l — a)
(h — *o)2

V a(l —• a) (2a — 1)
(i — i0) (ij, — i) (2i — f0 — ix)

(h — h)*

(15)

(16)
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So bekommen wir:

A a [1 + k^S* + klk.2ipS3 + J

II --- a [1 - - (1 — /tj) ipS2 + (1 — 2/tj -f- /cjfe2) fSs + •.. ]

G a [1 + (lh -j) <pS2 + k - + /c?/c2) wS* ]

A' a [1 + (1 + K) <P& + (2^ + fe?fc2) V'S'3 + • • •]

(17)

In den Näherungsformeln (17) fehlen die Glieder von S. Die

Interpolationsfehler sind also durchweg der zweiten Ordnung der
Kleinheit. Im Intervalle (i0,ii) ist <p positiv, ausserhalb dieses Intervalls

ist es negativ, wie aus (15) ersichtlich ist. Gemäss (11) ist

|-< kt < 1. Meistens wird A:x 0-84 genommen. Daraus folgt, dass

im Intervalle der Näherungswert von H zu klein, die Näherungswerte

Ä,G,A' dagegen zu gross sind. Ausserhalb des Intervalls
ist gerade umgekehrt der Fall. Dem absoluten Betrage nach ist der
Felder von H am kleinsten, etwas grösser ist der absolute Fehler von
G und am grössten ist er bei A'. Bei der Interpolation haben wir also

II < ci <G < A < A' (18)

bei der Extrapolation dagegen

H>u>G>A> A'. (19)

Als zahleninässiges Beispiel geben wir einige .Resultate anhand
der slowenischen Volkssterbetafel 1931-1933, männliches Geschlecht,
und zwar für x 20, i0 3%, i 4%, i± 5%, daher <z — y.
Es ist °a «20(3%) 22-775

a %,(4%) 19-183 (20)

Vt a20 (5%) 16-454

Der Fehler bedeutet im folgenden die Differenz zwischen dem

Näherungswerte und dem exakten Werte.

Näherungswert von «20 (4%) Der Fehler Tabelle 1

A 19-615 + 0-432

H 19-105 —0-078
G 19-358 + 0-175

A' 20-124 + 0-941



Die Formeln (17) ermöglichen die Abschätzung der Grösse des

Interpolationsfehlers. Dazu sind jedoch die Werte von 7cx notwendig.
So z. B. ist der Fehler von A

wo °S und 1S aus (12) durch Umtausch von % mit i0 bzw. mit i1
berechnet werden. In unserem Beispiele haben wir

Das ungewogene arithmetische Mittel beider Grenzwerte von FA ist
0-463, wogegen der exakte Fehler nach der Tabelle 1 etwas weniger,
nämlich 0-432 ausmacht. Der Fehler von H ist

In unserem Falle haben wir

0-150
F„ ~ 0-463 —0-086, anstatt exakt —0-078.

11 0-844

wie aus der Tabelle 1 ersichtlich ist. Usw. usw.

Jo zwei Näherungsformeln in (17) können wir so kombinieren, dass

in der Kombination das Glied von S2 verschwindet. Wir bekommen

oder
Fa ~ cil^cpS2

Oalc^S2 > Fa > ki/ijyN2

0-633 > FA > 0-293.

neue genauere Interpolationsformeln. Zu diesem Zwecke

schreiben wir:
(AH) A(l~-70 +Hl
(AG) A( 1 — 270 + 2 Gkt

(AA') - A(1 4- /O - A'kt
(HG) ^ H(2k! — 1) + 2(7(1 — 70

(21)
1 In 1 — k,

71
'

- -t' 1
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So finden wir:

(AH) a [1 + (h — 2fcJ + k\k2) y>S3 + .]

(AG) a 1 + f~g" 2/Cj + k\k^j fS3 +

(AA') a [1 + (0 — 2&? + Äjfcj) i/+'3 + ...]
4fex — 1

(HG) a

(HA') a

(GA') a

1

1 +

8

l + K

2k\ HliptAfS3 +

Zkl+l^kArpS3 +

,2 + 2 k, 0 „1 + —L—L - 2Ä® + VS3 +

(22)

In den Näherungsformeln (22) fehlen die Glieder von S und S3.

Die Interpolationsfehler sind also durchweg der dritten Ordnung der
Kleinheit.

Wenn i j(iQ + ix), dann ist ip 0, wie aus (16) ersichtlich ist.
In diesem speziellen Falle, welcher in der Praxis oft vorkommt,
verschwinden in den Formeln (22) auch die Glieder von S3. Die
Interpolationsfehler werden dann nur noch der vierten Ordnung der Kleinheit.

Die Funktion f ist im Intervalle [+, y(I(> ++)] ne&a^v> 4m

Intervalle [y(I0 ~k+)>+] positiv. Die Interpolationskurven (22) sind
also nicht nur an beiden Grenzen des Intervalls (vu)» sondern auch
innerhalb dieses, meistens sehr schmalen Intervalls und zwar in der,
nächsten Umgebung von y(f0 + +) exakt. Daraus schliessen wir,
dass die Fehler der Näherungswerte (21) bei der Interpolation im
allgemeinen nicht gross sein können. Dies gilt selbstverständlich nicht
für die Extrapolation.

Bei den Näherungsformeln (AH), (HG), (HA') in (22) kann es

auch vorkommen, dass die Polynome von fex und k2 in den runden
Klammern gleich Null werden. Auch in solchen, seltenen Fällen
reduzieren sich die Fehler auf die vierte Ordnung der Kleinheit, oder

sogar auf Null, so z. B. wenn k1 1.

Die Näherungsformeln (22) unterscheiden sich untereinander
merkwürdigerweise nur im ersten Summand der Polynome in den runden
Klammern wenn man natürlich von den Gliedern S'4, S5, S°,
absieht. Der zweite und der dritte Summand sind bei allen sechs Formeln



— 167 —

gleich, nämlich (—2/cj + kVh)- Infolge (11) kann die Differenz zweier

Näherungswerte (22) bzw. (21) nicht grösser sein als

aipSs.

Die Punktion (16)
ip — 2 a3 8 a2

hat im Intervalle (i0Di) zwei Extrema, und zwar

V3
^Minimum

V^Maxi ^ +

18

Ii18

(23)

(24)

(25)

Die absolute Differenz zweier Näherungswerte (21) kann also bei der

Interpolation nicht grösser sein als

]/J
18

aS3 (26)

Praktisch können wir die Näherungswerte (21) bei der Interpolation
als gleich genau betrachten, wenigstens wenn die Bentenbarwerte auf
drei Dezimalen abgerundet sind. Für die Extrapolation gilt dies

natürlich nicht, weil ausserhalb des Intervalles (v^) die Punktion ip,
welche eine kubische Parabel darstellt, auch sehr grosse Werte
annehmen kann. Auch die Rechenarbeit ist bei allen Näherungsformeln
(21) beinahe dieselbe, nur bei (AG), (HG), (GA') sind Logarithmentafeln
notwendig, was allerdings zeitraubend ist. Jedoch im Falle « m + 2",

wo m und n ganze positive oder negative Zahlen oder Null bedeuten,

erübrigt sich das Logarithmieren, weil man Quadratwurzeln
bekanntlich auch mit Bechenmaschinen rasch und leicht ziehen kann.

Die Kombination der Näherungswerte A, H, G, A' in der Tabelle 1

gemäss (21), wobei wir kl 0'844 genommen haben, führt zu folgenden
verbesserten Näherungswerten:

Näherungswert von a20 (-t %) Der Fehler

(AH) 19-185 + 0-002

(AG) 19-182 —0-001

(AA') 19-185 + 0-002

(FIG) 19-184 + 0-001

(HA') 19-185 + 0-002

(GA 19-183 0-000

Tabelle '2
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Die geringen Differenzen in der letzten Dezimale stammen
wenigstens zum Teil auch von den vernachlässigten Dezimalen der

Grundwerte °a, Vi,

Aus zwei Bentenbanverten °a, la und aus k1 können wir also mit
Hilfe der Formeln (21) vorzügliche Werte von a interpolieren. Wir
können aber auch umgekehrt aus drei Bentenbanverten °a, a, xa den

Wert von kL näherungsweise berechnen. Dazu braucht man nur in (21)
die Näherungswerte von (AH) bis (GA') mit a zu vertauschen. Die

Rechnung wird am einfachsten und die Präzision am grössten, wenn
a j. Die einzelnen Formeln (21) führen in diesem Falle zu folgenden
Resultaten:

(Orj rf
1 1/A2 /-#2

(AH), (HA'), (AA') k, ~ i > (27)
(ua — Vi)2

°ci —'2a 4- Vi
(AG) r= (28)v ' 1

2([/°a —• |/i(j)2
^

(°rt 4- hi) (2I/o«ia — a) —• 2°a Vi
(HG) lh ~

V '
„ (29)v ' 1

2(°a + Vi) (/OrtJa — 4°aVi
v

°a2 + Vi2 — (°a + Vi) (3 ci — 2 J/ ö^Vi")
(GA k-i r^j ; =—. (oO)v ' 1

2(°a2 + Vi2) —2(°fi + 1a)l/oaia
v

Nach Einsetzung der numerischen Werte von °a, u, Vi aus (20)

in (27) bis (30) bekommen wir folgende Näherungswerte von kx:

Formel Der Näherungswert von fc1(21,4%) Der Fehler Tabelle 3

(27) 0-847 + 0-003

(28) 0-841 — 0-003

(29) 0-846 + 0-002

(30) 0-843 — 0-001

Der exakte Wert, auf drei Dezimalen abgerundet, ist k1 0*844,

wie wir bereits oben bemerkt haben. Obwohl die Spannung der Zins-
fiisse i0, i, in unserem Falle verhältnismässig gross ist, dennoch
haben wir aus drei Rentonbarwerten °«, n, Vi ohne Summen der
diskontierten Zahlen iV^, Sx+Il, den Wert von für den Bedarf
der Praxis ausreichend genau berechnet. Je kleiner dio Spannung der

Zinsfüsse, desto grösser ist die Präzision des Näherungswertes von kv
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fc, - lh(x + 1, i) MMMr1 (31)

(32)

Im Grenzfalle i0 i i1 bekommen wir aus (27) bis (30) den exakten
Wert

- S*lNt
('Vi)2

wie man sich durch Einsetzung von

oa a — ha' +\h*a"— + |
hi a + ha' + l-h2a" + j

in (27) bis (30) und nachherigen Grenzübergang limes h — 0

überzeugen kann. Dabei bedeutet a' bzw. a" die erste bzw. die zweite

Ableitung von a nach i.
Wir müssen noch bemerken, dass man bei der praktischen

Anwendung der Formeln (27) bis (30) auf Schwierigkeiten stösst,
insofern i0 und nicht viel von i verschieden sind. In solchen Fällen
werden nämlich die Zähler als auch die Nenner in (27) bis (30) gleich
oder beinahe gleich Null. Nur wenn die Bentenbarwerte °a, a, la mit
vielen Dezimalen vorliegen, können derartige Berechnungen bei kleinen

Zinsspannungen einen praktischen Erfolg haben.

* **

Analog unserem bisherigen Vorfahren können wir nun je zwei

Nähorungsformoln in (22) so kombinieren, dass in der Kombination

das Glied von S3 verschwindet. Wir bekommen so 15 weiter

vorbesserte Näherungsformeln, bei welchen die Fehler durchweg von
der vierten Ordnung der Kleinheit sind. Von diesen 15 Formeln wollen
wir einige niederschreiben:

(AH, AG) (AH) (-2 + 6^-3^fc2) + (AG) (3-6lh + 3^)
4H, AA') (AH) (2/^ —/%/i'a) -b (A/f) (1 — 2/^ -\-k1k2)

1—4 k, -f- 6 k\ — 3 L\ fc2 3 k, — 6 k\ -f- 3 k\ k2
[AH, HG) - (AH) M—r 1 + (HG) — LT- "

1 — ki 1 — kx

iH,HA') (AH) l+hrPt + 2fc^
.(HA') 2^Z_4fc?±^L1—1—\

— 2 —2Ä, + 18Äf — 9Ä?A:a 9fc1-18fc?+9fc?fca«, GA.} (AH) r + -t-7ijr±-ni

12
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Es ist (AH, AG) a [1 + l^S* + •..]
J (g4)

wo E4 eine ziemlich komplizierte Funktion von klt fc2, fe3 unci von a

darstellt, welche wir nicht aufschreiben wollen, weil sie zu viel Raum
in Anspruch nimmt unci ausserdem nichts interessantes aufweist.

Die Formeln (83) kommen praktisch nur für die Extrapolation
in Betracht. Bei der Interpolation ist nämlich, wie wir bereits gesagt
haben, das Glied von Sa entweder exakt oder wenigstens annähernd

gleich Null, so dass die Formeln (22) durch die Elimination von S3

entweder gar nicht oder nur unwesentlich verbessert werden. Aus der
Tabelle 2 ist ausserdem ersichtlich, class die interpolierten Näherungswerte

nur in der dritten Dezimale geringe Abweichungen aufweisen,
was für die Praxis belanglos ist. Wenn auch weitere Dezimalen
verlangt werden sollten, dann müssten wir, um unsere Formeln mit
Erfolg anwenden zu können, auch genauere mehrziffrige A^-Werte zur
Verfügung haben.

Die zahlenmässigen Beispiele, welche wir bisher gegeben haben,
beziehen sich lediglich auf die Interpolation. In der Tabelle 4 geben
wir nun einige numerische Resultate für die Extrapolation, und zwar
die Näherungswerte von ai0(%%), berechnet aus a20(4%), aw(5%),
unci die Näherungswerte von a20(5 %), berechnet aus a20(3 %), c%>(4%),

welche in (20) enthalten sind. In den Formeln (21) bzw. (83) haben wir

Ai %) 0-8152, 0-8417

und At (5%) 0-8700, Mß%) 0-8758 genommen.

Tabelle 4

Näherungswert Der Näherungswert Der
von «20 (3%) Fehler von a20 (5 %) Fehler

A 21-912 — 0-863 A 15-591 — 0-863

H 22-997 ; 0-222 H 16-570 -! 0-116
G 22-365 -0-410 G 16-158 — 0-296

A' 21-232 - -1-543 A' 13-936 — 2-518

(AH) 22-797 0-022 (AH) 16-443 — 0-011

(AG) 22-650 — 0-125 (AG) 16-577 0-123

(AA') 22-466 — 0-309 (AA') 17-031 1- 0-577

(HG) 22-763 —-0-012 (HG) 16-463 -1 0-009

(HA') 22-834 [• 0-059 (HA') 16-399 — 0-055

(GA') 22-603 - 0-172 (GA') 16-706 0-252

(AH, AG) 22-772 — 0-003 (AH, AG) 16-452 — 0-002

(.AH, AA') 22-778 !- 0-003 (AH,AA') 16-456 0-002

(AH, HG) 22-772 — 0-003 (AH, HG) 16-452 - -0-002

(AH, HA') 22-779 I- 0-004 (AH, HA') 16-456 1- 0-002

(AH, GA') 22-776 I 0-001 (AH, GA') 16-454 0-000
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Die Fehler von (AH, HG) bis (AH,GA') in der Tabelle 4 sind

etwa von derselben Grösse wie die Fehler in der Tabelle 2. Das kommt

davon, weil die Interpolations formein (22) im Falle y 0 genau so

wie die Extrapolationsformeln (33) keine S, S2, S3 enthalten und ausserdem,

weil die Entfernung des Zinsfusses i von den Grundzinsfüssen

i0 und i1 bei der Interpolation als auch bei der Extrapolation nicht
allzusehr verschieden ist.

Oben haben wir gezeigt, wie man mittels (21) den Näherungswert

von fe1 berechnen kann. Auf ähnliche Weise können wir mittels (33)

den Näherungswert von k1 und zugleich von k2 aus °a, a, 1a berechnen.

Aus (AH, AG) in (33) bekommen wh¬

et — (AH)
3-6k, + ~ (36)

oder durch Substitution (21)

o, /*'7.2 i '>7,2/. a-A+lh(A~H)3 ki — b % + 3 % k2 ~ ______ (36)

Desgleichen bekommen wir aus (AH, AA') in (33)

a-(AA')2 Je, — /i'i k2 ~ 1 — (37)1 1 2

(AH) — (AA')
[ 1

oder
a — A — le,(A' — A)

2 Je\ — ie\ fc2 ~ (38)1 1 2 H+A' — iA K '

Die Grössen A,H,G,A' in (36) und (38) können aus °a,la und a
nach (3) bis (6) berechnet werden. Wir bekommen so zwei Gleichungen
mit zwei Unbekannten lex und fc2. Einen praktischen Erfolg haben

solche Rechnungen jedoch nur dann, wenn die Spannung der Zins-
füsse i0, i, i1 hinreichend gross ist, oder wenn die Rentenbarwerte
°a, es, la mit vielen Dezimalen vorliegen. Die Differenz a — (AH) im
Zähler (35) beträgt bei 1 5% nach der Tabelle 4 nur 0*011. Aus
solchen kleinen Zahlen können selbstverständlich nicht hinreichend

genaue Werte von kL und fc2 bestimmt werden.
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Die Interpolations- und Extrapolationsformeln (21) und (33),
welche an cler Einfachheit der numerischen Rechnungen kaum etwas

zu wünschen übrig lassen, dürften den Bedürfnissen der Versichorungs-
praxis voll entsprechen. Theoretisch dagegen können wir aus zwei

Rentenbarwerten °a, la und aus den generalisierten Poukkaschen
Zahlen k1, fc2, fc3... durch sukzessive Elimination von S4, S'5, Ss

weitere, unendlich viele, beliebig präzise Näherungsformeln für die

Bestimmung eines jeden Rentenbarwertes aufstellen, jedoch mit jeder
weiteren Elimination komplizieren sich die Formeln so sehr, dass ihr
praktischer Wert schon bei der Elimination des Gliedes von S4

problematisch erscheint.
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