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Über eine spezielle Klasse von Frequenzfunktionen
Von E. Rufener, Zürich

A. Sommerfeld hat für seine Herleitimg des Gaußschen
Fehlergesotzes symmetrische Verteilungen herangezogen, die sich durch
Faltung gleichbreiter rechteckiger Frequenzfunktionen orgeben [1] J).

Derartige Funktionen gehen auch in die Lösungsformeln für die gleich-
wahrscheinliche Aufteilung [2] und den Mittelwert der mittleren Breite
zufallsartig gestalteter Polygone ein [3],

Die Faltung rechteckiger Frequenzfunktionen verschiedener Breite
führt auf oino allgemeinere Klasse von symmetrischen
Frequenzfunktionen. Einblick in ihr Verhalten vermittelt ihre Darstellung durch
bostimmto Integrale. Wie in derartigen Fällen üblich, benutzen wir
die Fouriertransformation, um das Faltungsprodukt in ein bestimmtes
Integral überzuführen und dossen Wert explizite anzugeben. Dem
zentralen Grenzwertsatz entnehmen wir schliesslich eine Grenzwortformel,
die bemerkenswerte Sonderfälle enthält. Die Bedeutung, die einzelne
der angeführten Relationen als Hilfsmittel für das Lösen von Problemen,
namentlich aus der Wahrscheinlichkeitsrechnung, haben, rechtfertigt
unseres Erachtens eine zusammenfassende Darstellung ihrer
Eigenschaften in dieser Mitteilung 2).

I. Integraldarstellung des Faltungsproduktcs
von n elementaren Frequenzfunktionen :i)

Die Verteilungen der n unabhängigen Variahein q seien durch die
Frequenzfunktionen

x) Die Zahlen in [ ] beziehen sich auf das Literaturverzeichnis.
2) Ableitungen der von uns betrachteten Funktionen treten auch auf als

Kerne einer gewissen Integralgleichung unendlich hoher Ordnimg, die mit einer
gewöhnlichen linearen Differentialgleichung zweiter Ordnung, für deren Ilaupt-
lösungen man das asymptotische Verhalten kennt, eng verknüpft ist (vgl. R. Jost,
Helv. Phys. Acta 20 [1947], S. 256).

3) Vgl. etwa G.Dötsch, Handbuch der Laplace-Transformation I (Basel 1950),
insbes. S. 104-1:31 und 191-209.
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gegeben. Wir bezeichnen sie als «elementare rechteckige Verteilungen».
Ihr Bild ist in Big. 1 festgehalten.

Das Baitangsprodukt

üß; a t ,ci2, ...,an) Fß) * Fß) * * Fß), (2)

das von n Parametern aßi — 1, 2, n) abhängt, ist Frequenz-
funktion der Summe

t -1-12 -|- -[- tn

der als stochastisch unabhängig vorausgesetzten Variabein tt mit den

Frequenzfunktionen (1).

DiePouriertransformation algebraisiert die transzendente Integralbildung

der Faltung. Mit den Bezeichnungen

3f {üß;«,); y} - ßy) und 5 {Fß); y] fß,)

folgt dann tt t / \co(y) jj fx{y)
A=1

oder, weil ^
1

• sin a,- ii
tß'j) <'1 /',(')r": •

J Zeil) a4y

ist, " sina,j/
°>(.y)-n- (3)

a=i chy

üß;af) ist in t gerade Funktion; der Inversionssatz (Fouriersche
Cosinustransformation) führt zur Integraldarstellung

oo

1 f » sina.s 0Jt;a,,a2, ,a„)
at, a2, a„) —- // — cos fa: cZz -=

"v 1 3

—. (4)
2n J x axa2 an
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oo

1 f " sin a,x
0n(t a{, a2, an) — Jj cos Ix dx, (5)

2 TT J A 1 ®
— OO

durch das Produkt a1a2 an normiert, ist Frequenzfunktion. Ihre
Fouriertransformierte 'S {0„{t;cii);y} sei mit <p(y) bezeichnet. Das

k1'"81 - b M<»>
1 C sincs^

0. (t:ch) --- I cos IxdxU v 1 x
0, | < | > %

ist als Dirichletscher Diskontinuitätsfaktor bekannt [4],

2. Integralrekursionen

Da das Faltungsprodukt assoziativ ist, lassen sich in (2) die ersten
m und die n—m übrigen Faktoren zu Funktionen Qm und Qn_m

zusammenfassen:

^
^Jd > (,'l> (!j2 ' • • > ^n) ~= ^m(J Cly, Cl2, CSm) m (t, U/n_|. j, llm (tn) |

0n{t;aua2, ,,an) ----- 0m(t;au a2, am) * 0n_m{t; aM+1, am+2, |

oo

t\al,a2, ,,an) J0m(t-r;al,a2, .,am) 0„.m(r;am+l,am+2, .,a^dr.

(7)

Insbesondere ist

ßn(t;ai,a2>

also

QJl-,a0a%,

oder

Qn{f>auai>

und

$»(<;«i>«2. • •

• > %) Qn-itt' ai> a2, %-i) * ; oj

• o«)

>an)

2
^n-i{t-x;aL,a2, • --.a^dr

•f (in

2a,
t-a-n

— J 0„-1(t-x;a1,a2, ..a^dr
~(bl

(8)
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Qn(b\ax, a2, aj ist Integralmittel von ünA(t; ax,a2, der

symmetrischen Nachbarschaft von t über ein Intervall der Breite 2cin.

ün(t; alt a2, aj entsteht aus a„_i) durch einen

«Glättungsprozess». ün(t; ax,a2, ist Ergebnis der w-ten Glättung
von üx(t;ai) und kann durch fortgesetztes Bilden des Integralmittels
aus Qx(t\ ax) explizite berechnet werden.

3. Die Polynomdarstellungen der Funktionen <Pn(t;a;)

Die rekursive Berechnung der ßn(i;a() oder der 0n(t;a>) ist nur
für kleine n geeignet; sie wird für n > 3 unübersichtlich und mühsam.

Um (Pn{t\a.D explizite darzustellen, können wir beispielsweise eine

der gebräuchlichen funktionentheoretischen Methoden zur Ermittlung-
derartiger Integrale heranziehen.

Nahezu auf triviale Weise lässt sich die Polynomdarstellung von
jedoch durch geschicktes Ausnützen der Eigenschaften der

Fouriertransformation finden. Wir führen zunächst die Funktionen

M"
[ tn, t > o

I 0, t < 0

1, t> 0

W° - 7' *-:0
I 0, / <0

(n 1,2,

(9)

01 II.

%\[t + *]»;y} P!n r l)
(w)"+1

entnehmen wir die Inversionsformel

„iay

0

1

1

0

Fif?.2

[<]"

\

5
[< -f- a]"

n\
(10)

Die Fouriertransformierte q>(y) von $>„(!; a,•) wird auf zwei Arten
dargestellt. Das Produkt der Sinusfaktoren,

" sin aj iiII (3')

führt in der Inversion auf das bestimmte Integral (5) für 0n(t,,ai).



Stellt man in (Sä') die s'ma^y durch die Eulerschen .Formeln dar,
so lässt sich cp(y) als Summe schreiben, nämlich:

n / e'«»/) — e-iaif

ist der Werte + I. und — 1 fähig; summiert wird über 2" Summanden
(über alle 2" Vorzeichenanordnungen in der Klammer); X ist die Anzahl
der negativen e- in jedem Summand. Mitteis (10) entsteht jetzt durch
gliedweise Inversion eine Polynomdarstellung für 0n(t;ai), die wegen
der Eindeutigkeit der inversen Fouriertransformation das Integral (5)

explizite darstellt:

In der Klammer gelten beide Vorzeichen für t, da 0K(<;<h) in t

gerade Funktion ist.

(11) lehrt, dass 0n(t;at) aus Parabeln der Ordnungen < (n—1)
zusammengesetzt ist und dass

0n(t;ava2, ...,«„) 0 für \t\ > at + aa + + aH (12)

4. Eine anschauliche geometrische Interpretation
der Funktionen 0fl(t;o.) [I], [5]

Wir betrachten im Euklidischen M-dimensionalen Kaum den Hyper-
quader mit Mittelpunkt 0 und den Kantenlängen 2ai(i 1,2, n).
Seine Kanten seien zu den Koordinatenachsen x( parallel.

(g. +1, X Anzahl der negativen e.()

wird.
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Fig. 3

Ks bezeichne

0a(t) das Volumen des Quaders
zwischen den (n—l)-dimen-
sionalen Hyperebenen

X± -|- %2 I" • ' ' ~l~ Xn ~ it Q

An(i) das (n — l)-dimensionale
Schnittvolumen zwischen

Quader und Hyperebene,

A'n(t) seine Projektion in eine der

n Koordinatenhyperebenen
X; =0.

Das Schnittvolumen 0n(t) ist dann bestimmt durch

«i «2 dn

°n(>) / J f 0dxn dx^dx^
-ci\ -o,<i -ein

Führt man für den Dirichletschen Faktor

(ß —- 20l(;£j -|- x% |~ xn \ t) -
xj<t[ 1, | xL -1- x2 -I- •

I 0, | xx + x2 + + xn \ > t

die Integraldarstellung (6) ein und integriert nach den x.t aus, so folgt

1 /"sin a, ij sinn„| sin et,,£ sint£

— CO

A'n(t) und An(t) entstehen aus QJt) durch Differentiation:
oo

1. 80n 1 (' » sin a,a;
An(t) • • 2"—- I [I costxdx =--- 2n0n{t\ai)

2 dl 2?c a=i x

(13)

In 80 1

/1„(0
" --"=2"lIn
2 8 t ' 2 it

» sina, x
] [ cos Ix dx ----- 2" [/ n (ßn{t; a{).

A 1 X

(14)

2" J n 0n(t; at) ist mithin (n—l)-dimensionales Schnittvolumen
zwischen Quader und Ebene xx -|- x2 + + xn t; 2n(ßn(t; at) ist

Projektion des Schnittvolumens in eine der Koordinatenhyperebenen

X; =0.
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Wir bemerken noch, class aus der Integralrekursion (8), wenn sie

fortgesetzt auf sich selbst angewendet wird,
(15)

;cii)
1

&n n?i-i

&i(t- r„ - Vi - • • • - r2; «i) dx2... drtt_x chn — Än{l)

-an -(ifi-i ~«2

folgt. Rbenso führt die geometrische Methode zur Berechnung von
Frequenz- und Wahrscheinlichkeitsfunktioneu einer Summe stochastisch

unabhängiger Variabein im Fall der elementar rechteckigen Verteilungen

auf unsere geometrischo Interpretation.

Die geometrische Deutung ermög- *2

licht uns, in anschaulichen Fällen,
Integrale 0n(t;ai) durch geometrisch £
einfache Überlegungen zu ermitteln.
Aus Fig. 4 folgt z. B. ohne Rechnung

«l
^2(Ol ai> na)

und hieraus das Integral

sm axx sin a2x
dx - Min. (d(,ff8).

I.'ig. 4

Fig. 5, konstruiert unter den Voraussetzungen a1<a2<as,
-| - a2 < a3, entnehmen wir, class in den Intervallgrcnzen für t, die

den Schnittebenen

xx -| a;2 -|- a;3

x i b "I" x3

x 1 -|- x2

+ %2 + x3

--ft,
I- «3

-l-a3 I\
-b«3 Ax

+ «3 I'h

X1 + X2 Ü X'i — ßL H- a2 _ " a:t s ^2

Xl + x2 + — —at + c/2--a3-= zl2

ii'i -[- " ax &2 et-j ^
"I- Xg —f- Xj} ~ " —— Cl| Ctg

entsprechen, die Darstellungspolynome für $3(£; «x, a2> a3) ändern.
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</>:,(< ;a,,rt2,a3)

in("t l~ "a I" as 0">

7(«ifla + «ta3
I

1«

<ha2
9

[8a,r<2 — (a, + a2 — + /)2], a, — a2 + n:,;

- — a, -f- a2 -f- a3 s

Den expliziten Funktions-
verlauf (Fig. ß) erhalten
wir durch Berechnung der

Schnittfiguren:

\t\> «l + «2+"ä

[
I • «2 + <h > |11 > — "i + a2 + "3

> a, — «„-k"3

> ——a2 +"3

>0.

-h«2+«3> '
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5. Die Ableitungen nach t; Differentialrekursionen.
Abschätzungsformeln

Aus 2*
1 / « sindji

ai) — 11 cos tx dx
2 71 / A 1 X

— oo

folgt durch Ableiten nach t mittelst einer naheliegenden trigonometrischen

Umformung des Integranden, zunächst die Differentialrekursion

d(K(t;ai) 1

dt 2

und hieraus

+ a1;«a, • —^i(< —aiia2> •••>«„)} (16)

5 0n(t; a<) _L ^ (- 1)A ^ «i + • • + G «, 5 «r+,, aj (17)

(2 Anzahl der negativen e,2).
8tr 2r

f^»(G ai) hat nach (17) höchstens (n — 2) stetige Ableitungen;
existiert die (n — l)-te, so ist sie unstetig.

Die Kanten des Parallelepipedes seien in der Iteihenfolge
a1( a2, a3, der Grosso nach angeordnet: ax < a2 < a3 < < an.
Die in der Koordinatenhyperebene xi 0 liegende «Grundfläche» des

Quaders ist also kleinste begrenzende «Seitenfläche».
Weil die Projektion des Schnittvolumens, A„(t), in eine

Koordinatenhyperebene höchstens die in ihr liegende «Grundfläche» ausfüllen
kann, folgen die Abschätzungen

1 1 w-t
* ,1 L x— cua2...gl0n(<;a,,a2, .,a„) an_, < --(ata2... a^) " - -

2 y
mit » (^®)

,i « )/«,%...»,

> ai)

dl'

oder

n-r-l
Cli Clq Ct.,

<-ala2...a1l_r_i<--{ala2...an) " - " (1!))

dl'
< - (a^a am) m (w —r — 1 < w < n). (20)
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6. Die Grenzfälle unendlich grosser Kantenlängen

Um den Einfluss der Grössenbeziehungen zwischen den Kanten
2ctj auf das Aussehen der Punktion (Pn(t;at) zu untersuchen, ist es

zweckmässig, die Quaderecke (—ax,—«2, —a„) als neuen

Ursprung 0* des Koordinatensystems zu wählen. Bezeichnen wir die

Kantenlängen durch
a. 2a_; (i i, 2>

so hat im neuen Koordinatensystem die Schnittebene V} den Achson-

absehnitt n n

r * + y.'h t -h it >>A
X — t

und es wird
Oö

l /" » sin«Aa;
fAi(G «,)=•" " I [J cos tx d/x

2 n I Ä=i x

ldg. 7

» sin aA a;

[J cos | 2t — «A J x dx (21)
1 1

2"~l 2n _) tA x

"on/-1
~t- 25 (— 1)* + °a«a -I- • • • d- 0„«H htr1-® *(*;«,)

2 (n — 1)1 0j

ei ~1 10
0, A Anzahl der negativen 0-
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<P*(r;aj)
2"(w — 1)! (21')

[T_a(]'-i+\][T-aii-aiJ^1-+...+ (-l)»[T-ai-a2-.. .-aj"'1}

n

0*(r;a;) ist monoton in don a;, symmetriscli zu lUKl
n A t

verschwindet für r < 0 und r >
A 1

Werden einzelne der a; unendlich gross, z. 13. ar ht, ar+2, so
erhält man die entsprechende Funktion 0*(x;a.1, aa,..., a,, oo, oo, oo)

dadurch, dass in (21') die Klammerausdrücke, dio eines der unendlich
grossen otj enthalten, weggelassen werden. Wir betrachten zwei Sonderfälle:

a) a.l — a2 an — oo (in der Integralformel genügt es,

otj -= t zu setzen):

Li/* /sin Tic\w Tn~*

0*{x; oo, oo, oo) ~— I -) cos (2 — n) xx dx - — (22)
2"nJ V x 2"(w —1)!

^ ;
— oo

L)io geometrische Interpretation dieser Formel ist offensichtlich. (22)
enthält für feste t die Abschätzung

x"~l
(K(r; «i > «2 > • a„) < (22')

2"(« — 1)!

(das Gleichheitszeichen gilt, falls a; > x, (i — 1, 2, .,n)), sowie eino

Integraldarstellung tier reziproken Fakultät

oo

l sin x \ 1

„J(", 003 "(,---!)!• <2S>

— oo

b) a„ oo (gn oo).

Die Projektion der Schnittfigur in die Hyperobeno 0 (xn — 0)
fällt für r > a2 ~h a2 -|- • • + <*„_! (< beliebig) ganz mit der in ihr
liegenden «Grundfläche» dos Quaders zusammen.
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Es folgen die Relationen
ala2 • • • K»-l ^ i i I

$„(*;<*!, a2, ...a^.oo) r>a1 + a2-h -f a„ l;
2

(Pn(t; nt, a2, a,,.! ,«.)== <£„(0; a2, an_x, °o)

0„(O; at, a2, ax + a2 + + aK_i) =•-"

und aus ihnen die Integrale

(24)

1 r n-i sin ax x sin (0[ + <h + • + Vi) x
7 ,or,- /I äx -= aL a,, «,,-i, (25)

71 A=1 X X

1 C / sin a: \" sin nx
clx -- 1.

X X
(25')

a) n 2

I. «! < «a (Eig. 8)

t
40.*(T;a1,a2)

7. Beispiele

0 < T

<*1, CC| T <X2

ax + a2 — T ' aa < T < at + a2

0, at + a2 < T

IL. a.l -- a2 a (Eig. 9)

f >

40*(r;a, «) j 2a— r,

Eig. 8 Fig. 9

0"(r.2. o<)

l) Die Funktionskurven zu unendlich grossen Parametern a; sind entsprechend
mit o£° bezeichnet.
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b) n — 8

I. ax < oc2 < a3; ax + a2 < a;) (Fig. 10 unci IL)

t2,

T'ai'aa>a3) - -

2aLr — a(,

- r2 -|- 2(a1 -|- a2) r - a? - «%,

2axa2,

- r2 + 2a3 t + 2ax a2 - a2,

- 2a x T + 2a t a2 + 2ax a3 + a2

(r — at — a2 -a3)2,

o,
'

<

0 < r < at

«I < r < a2

a2 < t < aL -|- a2

ax + a2 < r < a3

a3 < r < ax -(- a3

«i -|~ a3 < t < a2 a3

a 2 + a3 IÖV/V/

a2 "I" a8 < T

I «2 «j <*i I *j «j I-«j «i i «• I «j 2a a. a I-«» 2a |-a.

[L.

Fig. 10 Fig. 1 L

; a2 < a.,; ax -|- a2 > a3 (Fig. 12 unci LB)

T;aL,a2,a3)

T2,

2a t r — a2

-r2-|- 2(a t -|- a2) r — a2 — a2,

- 2r2 + 2(aj + a2 + a3) t-a? + a2 -|- a2 a3 < r < aL + a2

0 < T < ax

ax < r < a2

a2 < r < a3

- t2 2a3 r -|- 2a
L a2 — a2,

- 2a, r -f- 2ax a2 + 2ax a3 -f- a?,

(r —aL —a2 —a3)2,

0,

a [ -j- a2 < r < ax -|- a3

a, + a3 < r < a2 |- a3

a2 + a3 < T < ax | a2

«1 + «2 + <*3< T

[\
<f>3(r,a,«,*,)

*1 1 a2 al f «j *> K*| «I t «2 1 aj 0

Fig. 12

a aj 2a a -f o

Fig. 13
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III.

l(i0*(T;a, ,a2,a;!)

< a.j ; at |- a2 a., Gg. hl und IS)

T2, 0 * ' T <aL
2a, r af, a, x : a2

- T2 - 2(at -|- a2) t -aj
o

a2 a2 r * ai «3
-2«, T | 4a,a2 + :ia'f, a. «, ' T - a2 •a:J

(T 2a, 2a2)2 - (t 2«., 2, «2 T • aL [«2
o, a, I a2 -a., T

-[-«3

0*(r; a,, a2, a.,) setzt sich aus quadratischen Parabeln und Geraden-
stücken mit gemeinsamen Tangenten in den Nahtstellen zusammen.
In den Fällen 1 und III (a, /-. a2) folgen sich diese abwechslungsweise.
Das horizontale Schoitelstiick verschwindet, wenn a, + a2 -= a3ist (I II);
in II ist es ebenfalls durch einen parabolischen Bogen ersetzt. Die
linearen Stücko im aufsteigenden und im absteigenden Ast arten für

a, a2 aus. Die Vertikale durch (a, [• a2 (- a.,)/2 ist Symmetrieachse.

11. Der Grenz fall n-- ^
Hornich hat gezeigt |ß|, dass die Integralo

1 /' " sinuA.r
ün(l; u,, «„, «J - III - (!0S äx

2 TZ J fj[ axx
- OJ

für n--oo stets gleichmässig in t konvergieren und dass die Grenz-
oo

frequenzfunktion ü(t;aiia2, • • •)' ^ ai konvergiert, eine von Null
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verschiedene analytische Funktion ist (divergiert ^ a\, so verschwindet

ß(£; a1; u2, identisch). Die Funktionen ü(t;aL,a2, sind von
unendlich vielen Parametern abhängig.

Der zentrale Gronzwertsatz (Central Limit Theorem) gibt uns die

notwendigen und hinreichenden Bedingungen für eine Gaußsche

Konvergenz. Es sei „ n2

Mn - y mx und mx
—*•

ö

das zweite Moment der olementaren Verteilungen (1). Dann ist

(26)

in,
'alls—---*-0(A l, 2, und I/Mn nicht beschränkt ist. Für

K v

die in der Tabelle

<h mx K

(I) 1

1

O

n

g

(II) fx
X

O
o

(n -|- l)n
6

(III) X
X*

T
(2rt -|- 1) (n + 1) n

18

enthaltenen Beispiele ergeben sich daher die Grenzwertformeln:

(1) lim 1 n $>„(}/7i t)

3(2

(27)

(11) lim j (n + 1) »ß„| (n + 1) n t; 1, ^ 2, [/w)

(Hl) lim |/(2rt + l) (w + l)wß}((|/(2'ra + l) (n + i)nt;l,2, ...,«) —
n oo 1/ 71
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und an der Stelle t 0:
oo

/' / sin x \"
(I) lira \jn I I dx — [/Htt, (28)

J \ X /
— oo

oo

r sin 1/ 1 x
(II) lim |/(n + l)rs I jf'f dx [/12jr,

n->-oo A 1

— CO
oo

(' " sin Air
(III) lim |/(2n + l)(n+l)« fj — r/® ß|/rc.

»- >- oo / ä=i A er

9. Der Sommerfeldsche Fall: at — a2 • • • a» - 1

$,,(<; 1,1, ...,1) (» 1,2,...) (29)

sind symmetrische Frequenzfunktionen. Sommerfeld hat ihr
Grenzverhalten benutzt zu seiner anschaulichen Herleitung des Gaußschen

Fehlergesetzes [11. Die nachfolgend erwähnten Formeln sind Sonderfälle

der für die #>,,(< ;a() hergeleiteten Relationen:
oo

1 { sin x Y"
<pn(t) coülxdx (80)

2 7i J \ x J
— oo

ist Lösung der Faltungsfunktionalgleichung
oo

0,.+mW «A.W * f - r) A» dr (81)
— oo

und erfüllt die Integralrekursionen
/-hi l i

*„(«) t / A,-i(f) d* T f | f <Kx(t + |) (32)

i-i -l -l
(11) geht wegen ale1 + n2e2 + • + anen -Vi — n — 21 + t nach

Zusammenfassen der gleichen Summanden über in die erstmals von

Laplace [7 ] angegebene Formel

0 (t) — f COSlxdx V (—1)A ((71 — 21 + t)n
1

"W 2n J \ x ' 2"(«-1)!a=o W ~ '
-oo ("3)

JM I (I »)

27t J \ x 2"(« — 1)!a=o

n
*)

71 1- t

2
"

71-1 t
ist die Gaußsche Klammer und bedeutet die grössto ganze Zahl <j

2
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l4yi)fhJl+"'Uh
I ®{r) (01 < ^,(0)

(34)

(34')

(17) gibt d'0n(l)

df " 9/ lj U,
woraus

folgt.

<ßn(t) wird stückweise durch Polynome (n—l)-ten Grades, die
sich mit wachsendem n an den Nahtstellen inniger zusammenschlössen,
dargestellt. Ö>1(<) ist unstetig, <P2(t) stetig, 03(<) stetig differenzierbar;
allgemein hat 0„(t) (n—1) Ableitungen, wovon die (n— 2) ersten

stetig sind. Das Verhalten der <Pn{t) nähert sich mit wachsendem n dem
Verhalten einer analytischen Funktion. Bei geeigneter Normierung gilt
die Grenzwertformel [5]

r2). (27)

die L. Maurer zum Beweis seines Grenzwertsatzes für iterierte Mittelwerte

herangezogen hat [8].

l) Ohne strengen Grenzübergang kann (27) aus der von Laplace [71 angegebenen

Beziehung
oo

t r /sin x\n '^ri f 3 i

W"7 cos'' in xdx y ^!' ~ aö« (1_0''2 h 3''J) + • • •

I
">n Un r)

abgelesen werden.
Im Lichte des zentralen Grenzwertsatzes ist Formel (27) trivial. Ohne diesen Satz

vorauszusetzen, zeigt man z. B. mittels des Ergänzungssatzes der Gammul'unktion,
n t r' (t)

/'(i-o p(i -i-1) ;. msin n t 1 (t)

dass für die charakteristische Funktion / V

j sin ~=
5 { jn 0„ (in t); i/J <p,,(n)

V

in
gilt

~ '/( ')=lim tpn(n) --

oo 21

woraus (27) folgt.
2) Die zur Richtung (1,1, 1) normale Hyperebene im Abstand d vom

Würfelmittelpunkt schneidet aus dem n-dimensionulen Einheitswürfel die Fläche
2 in 0ii (2 in d). Nach (27) beträgt die entsprechende Schnittfläche am unendlich-

lG--"vieldimensionalen Einheitswürfel
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Wir benutzen (88), um die Funktionen ^(i) bis 0lo(i) explizite
anzuschreiben:

&AI)

<pa(0

03(t)

<h(t)

<h(t)

1

2 '

1

4 '

0,

2-t
4 '

0,

3 —£2

8

9-6 t + t2

16 '

0,

82 —12 £2 + 3£3

96 '

64 — 48 £ +12 £2-£3

96"

0,

H5-30£2 + 3£4

384 '

55 + 10 i — 30 i2 + 10 £3 — £4

192

(0 < t < 1)

(1 0

(1 < J)

(0 < l < 2)

(2 <£)

(0 < £ < 1)

(1 < t < 3)

(3 < <)

(0 < t < 2)

(2 < t < 4)

(4<£)

(0<£<1)

(1 < t < 3)

625 - 5001 + 15012 - 20 £3 + £4

768
5)

0, (5<£)
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0 1

t

[2

J_ \ "M<)

I \

2 0 2

1 \
\ f/w

— 3 0 3

1 \\ "MO

1 1) l

1 \\ "MO

— 3 0 :>

Kig. 16



- 116 —

1056 - '240 P h 30P - 5 P

3840

1632 + 1 at)0f — 1680P + 600Z3 — 90 Z4 + 5Z5

0B(O =<j 7680
'

7776 - 6480/ -|- 2160Z2 — 36013 + 30 Z4 — Z5 (6-Z)5
7680

^
7680

'

0,

5587 U55<2 + 105 Z4-5 Z«

23-040
~ '

23-583 -2101- 4095P - 700 P + 945 Z4 - 210 Z5 + 15 Z6

92-160

07(Z) -- 4137 + 15*204Z —14-805Z2 -|- 5320 <3-- 945 Z4 + 84Z5— 3Z8

46-080

(2 <t

(4 <<

(6 < 0

(0 < t< ^

(1 < t

(3 < t

I 17-649 -100-842 f-

0,

36-015 Z2- 6860 P + 735 Z4 — 42 Z5 + Z(i 7-Z« .f
- -

v

-- ,(5<K'-
92-160 00-1 (;n'v92-160

(7<0
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Tafel der Funktionen An &n(t) y\ Cf tx für n 8, 9 und 10
;.=o

t Cg« Cln) cf> CM C(«) cw C<*)L 6
C<"> C(*> c9w

n 8, -4 s 1-290-240

[0,2]
[2,4]
[4,6]
[6,8]

309 248
316 416

-142 336
2 097 152

0
-25 088
777 728

-1 835 008

-53 760
-16 128
-61 824
688 128

0

- 31 360
219 520

-143 360

4 480
20160

-42 560
17 920

0
-4 704

4 704
-1 344

-280
504

-280
56

35
-21

7
-1

n 9, _49 20-643-840

[0,1]
[1,3]
[3,5]
[5,7]
P,9]

2 337 507
1 168 722
1 306 503

-2 209 122
43 046 721

0
252

-367164
5 257 836

- 38 263 752

-364140
-182 152

245 700
-3 691 800
14 880 348

0
1 764

-284 004
1 290 996

-3 306 744

27 090
11 340

130 410
-263 340

459 270

0
1 764

-29 988
33 012

-40 824

-1 260
-1 512

3 780
-2 520

2 268

0
252

-252
108
-72

35
-14

7

-2
1

n 10, 410 185-794-560

[0,2]
[2,4]
[4,6]
[6,8]
[8,10]

39 984 640
19 965 440
27 829 760

-342177 280
1 000 000 000

0
120 960

-17 573 760
609 949 440

-900 000 000

-5 644 800
-3 064 320
14 630 400

-394 974 720
360 000 000

0
282 240

-10 039 680
136 200 960
-84 000 000

383 040
-20160

3 850 560
-28 687 680

12 600 000

0
105 840

-861 840
3 900 960

-1 260 000

-16 800
-43 680
117 600

- 346 080
84 000

0
7 560

-9 720
19 440
-3 600

630
-630

450
-630

90

-63
21

-9
9

-1



Die Maximalwerte der Funktionen <ß„(0 sind bestimmt durch

f f"l
1 r/sinaA" 1 I a

I ,/n\
*«(P) — —)dx= m -m- ^(-J) (i J^-äAr1

J V as / 2 (« — 1)! a=o \4/
— oo

und in einor Tabelle zusammengestellt:

oo

n ±f(
— oo

sin®\»
— clx

x j

1

1

2
0.5

2
1

~2
0.5

3
3

¥ 0.375

4
1

3
0.333

5
115

384
0.299 479 17

6
11

40
0.275

7
5887

23-040
0.255 512 152

8
151

630
0.239 682 539

9
259-723

1-146-ssO
" 0.226 460 484

10
15-619

72-576
0.215 208 884
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Gronzwertformol (27) gibt für t 0

oo

__ C / sin x \"
lim |/n I — I dx J 6 n •

n-*- oo J \ X /
(28)

Das Potenzmoment fe-ter Ordnung von &n(l),Mk, ist nach dorn

Momentensatz gegeben durch

0).
/ sin y

Mk
n

Pur die fc-te Ableitung der charakteristischen Funktion <pn(y)

\ y
erhalten wir mittels der Integralformel von Cauchy in y — 0 die

Beziehung

kl r/sm£\ncl£ ik k! » /n\
<P(n:) (0) i — - - S (-1) i («~ U) •nK> 2ni j \ C J C 2»(« + /c)!a4j„v \Xj
woraus

—! - 2 (-1)1 (?)(«-22)"+*, h « 2*
('%)

i0,

folgt.

Sonderfälle (k 2«):

k -- 2 k + 1

1 2 3 4

1 l2'i+1 8 8*+a-l 2fc+3 (24+a — 1)

fc + 1 (fc -f-1) (k -(- 2) 4 (fc + l)(fc + 2)(fc + 8) (k + l)(k + 2) (fc+8) (fc + 4)

M° ist Fläche zwischen Abszissenachse und Funktionskurve; mithin

wird
1 "

oder

(37)

IF(± 1) f &„(£) d£ }± f &„(£) -i + Gn(t), (f > 0)
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ist die Wahrscheinlichkeit, class die zufallsartige Variable | mit der

.Frequenzfunktion &„(£) kleiner als + t ausfalle;
oo

1 C sin a;\" sin tx
Gn{t) fi®

%7l J \ X J X
— oo

ist Wahrscheinlichkeit einer Abweichung zwischen 0 und t. Insbesondere

ist C?n(l) 0,1+i(O), d. h. der Maximalwert der Funktion (bn+±{t)

ist gleichzeitig Wahrscheinlichkeit, class die nach <£„(£) verteilte zufallsartige

Variable f ins Intervall j 0,1 ] falle. Bekannte Methoden (vgl. 8)

ergeben für Gn(t) che Polynomdarstellung

7. lnMl
1 /sma;\"sin tx 1 1 Pa 1 /v\

Gn(t) - - - dx b y (-1)* (n +1-U)n,27iJ\xJ x 2 2"n! Ö, W
-°° (38)

von der wir noch che beiden Sonderfälle t -= 1 und t n festhalten:

1 ('/am x\n 1 1 M /« —1\ „-i
<UU-•.»>---J (_)fa—- +^c )<"->#

— CO

(n — 1, 2, (39)

1 » (-1)A (n-A)"
«„(«)= also £ I. (40)

2 a=o AI (n — A)\
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