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Uber eine speziellc Klasse von Frequenzfunktionen

Yon E. Rufener, Ziirich

A. Sommerfeld hat fiir seine Herleitung des GauBschen Fehler-
gesetzes symmetrische Verteilungen herangezogen, die sich durch
Faltung gleichbreiter rechteckiger Frequenzfunktionen ergeben [1]1).
Derartige Funktionen gehen auch in die Losungsformeln fiir die gleich-
wahrscheinliche Aufteilung [2] und den Mittelwert der mittleren Breite
zufallsartig gestalteter Polygone ein [3].

Die I"altung rechteckiger Frequenzfunktionen verschiedener Breite
fithrt auf eine allgemeinere Klasse von symmetrischen TFrequenz-
funktionen. Ilinblick in ihr Verhalten vermittelt ihre Darstellung durch
bestimmte Integrale. Wie in derartigen Fillen iiblich, benutzen wir
die Touriertransformation, um das Faltungsprodukt in ein bestimmtes
Integral iiberzufithren und dessen Wert explizite anzugeben. Dem zen-
tralen Grenzwertsatz entnehmen wir schliesslich eine Grenzwertformel,
die bemerkensworte Sondertille enthiilt. Die Bedeutung, die einzelne
der angefithrten Relationen als Hilfsmittel fiir das Losen von Problemen,
namentlich aus der Wahrscheinlichkeitsrechnung, haben, rechtfertigt
unseres lirachtens eine zusammenfassende Darstellung ihrer Kigen-
schaften in dieser Mitteilung 2).

L. Integraldarstellung des Faltungsproduktes
von n elementaren Frequenzfunktionen 3)

Die Verteilungen der n unabhiingigen Variabeln ¢, seien durch die
é? to] 2
Frequenzfunktionen

1) Die Zahlen in [ ] beziehen sich auf das Literaturverzeichnis.

) Ableitungen der von uns betrachteten Funktionen treten auch auf als
Kerne einer gewissen Integralgleichung unendlich hoher Ordnung, die mit einer
gewohnlichen linearen Differentialgleichung zweiter Ordnung, fiir deren Haupt-
losungen man das asymptotische Verhalten kennt, eng verkniipft ist (vgl. R. Jost,
Helv. Phys. Acta 20 [1947], S. 256).

%) Vgl. etwa . Ditsch, Handbuch der Laplace-Transformation I (Basel 1950),
insbes. S.104-131 und 191-209.



1 Fi(t)
s |£,[ < a
2a,
1
F(y—={ 1 TR T
————— 5 It"| == ( L4
4a, - - L
o—._qll i
0, [k]>a Fig. 1

gegeben. Wir bezeichnen sie als «elementare rechteckige Verteilungenn.
Thr Bild ist in I'ig. 1 festgehalten.
=] o

Das I'altungsprodulct
B lraptny «.op) = BO*EMY ., 200, (2)

das von n Parametern a,(i = 1,2, ..., n) abhingt, ist IF'requenz-

funktion der Summe
b=ty 4ty ... -t

n

der als stochastisch unabhéingig vorausgesetzten Variabeln ¢, mit den
Frequenzfunktionen (1).

Die Fouriertransformation algebraisiert die transzendente Integral-
bildung der Faltung. Mit den Bezeichnungen

Fl,t;0.)5y) = oly) und  FFWO);y) = fiy)

folgt dann

Mw=gﬂw

oder, weil

b 1 ’ " g$in a1
fy) = | Bt = —— | etap = 5
Qat, ;Y
— o0 _'“i
ist, nosina,y
w(y) = (3)

Q.(t; a;) ist in ¢t gerade Funktion; der Inversionssatz (I'ouriersche
Cosinustransformation) fithrt zur Integraldarstellung

[eo]

L [ 2 singe
- 2
Q. ay,a,,...,0,) = -— [] oos fpdy =
2

Sy Aylg oo Oy

I

Btiar,ay, .. 0)

- (4)
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DL, gy v oo ly) = — —— cos txdx,

D =1 T
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durch das Produkt a,a, ... a, normiert, ist Frequenzfunktion. Thre
Fouriertransformierte §{®@,(t;a,);y} sei mit p(y) bezeichnet. Das

Integral . ]t' <n
[ore) Y ?, g 1
D (bray) = 21 FROE cos tx dx = ilf’ U{ = @
7 &
~oo 0, Itl > iy

ist als Dirichletscher Diskontinuititsfaktor bekannt [4].

2. Integralrekursionen

(6)

Da das Faltungsprodukt assoziativ igt, lassen sich in (2) die ersten

m und die n-—m {brigen Faktoren zu Funktionen £,

zZusammenfassen:

¥ Qn(t;a’l: aza L] ‘-a a7

. A . 5 ®
(Dn(t’alﬂa'z’ LR 'Ja'n) - d)m(t’al’az’ 2 m) Q)n m(t (Lm |-l’am|25 o

>3

5;(11,052, * .,C‘Ln) :‘:J(bm(t—’ﬂ;dl,&z, s 'Ja’m) (ﬁnnm(';;”m! {24 m}Z’ R
[s2e]

Insbesondere igt

‘Qn(t ) al’ dz’ LR a’n) = ‘Qn--l(t; yy a’2’ 2 Al a’n~1) Ql(t;a‘n) )

ﬂJlSO an
S0 5 By 5 Uy 5 5 0 ) == o L, C—7501,09,...,0,4
n
—ln
oder I+an
»
1
Qa4 0, ..., 0) = '2 . D (rsa, 0y, ... 0,,)de
(
n
l—ap
und

an
1
D.(t;ay,8y, ...,4,) = n D, (t—7;0y,0,...,0,,)dT

!

z) = 'Qm(t:ali “27 TRy a’m) ‘Qn—m(‘i: am-H’ a’m-{—Z! '

i (‘En) 1

L ('L,”) 3

YdT

und 2, _,,

(M
|

a,) dv.
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Q(t;ay, ay, ..., a) st Integralmittel von £, (6 ay,ay, ..., a,,) der
symmetrischen Nachbarschaft von ¢ iber ein Intervall der Breite 2a,,.
Q¢ ay, 09, ...,a,) entsteht aus £, (t;0q,ay, ..., 6, ) durch einen
«Glittungsprozess». £2,(¢; a4y, ¢y, . . ., @,) ist Frgebnis der n-ten Glittung
von £2,(t; @) und kann durch fortgesetztes Bilden des Integralmittels
aus £2,(t; a,) explizite berechnet werden.

3. Die Polynomdarstellungen der Funktionen @, (t; a))

Die rekursive Berechnung der £2,(¢; a;) oder der @,(¢; a,) 18t nur
fitr kleine n geeignet; sie wird fiir » > 3 uniibersichtlich und mithsam.

Um @,(t; a,) explizite darzustellen, kénnen wir beispielsweise eine
der gebrivuchlichen funktionentheoretischen Methoden zur irmittlung
derartiger Integrale heranzichen.

Nahezu auf triviale Weise lisst sich die Polynomdarstellung von
D, (t; a;) jedoch durch geschicktes Ausniibzen der Figenschaften der
Fouriertransformation finden. Wir fithren zuniichst die Funktionen

tn’ =0 (1"
J“T[ n=12 ...
(4] 1 0. t <0 ( )
‘ 1, >0 )
[1]% = -:, fe=z1) ¢
0
] 0, t<<0 1
ein. : o
i 1
Flt+ ]yl =T'n+1 o i
3 15Y : ' ('i:y)””"l - !
entnehmen wir die Inversionsformel Iig. 2
e'iccy [t + CL]" -
cig,—l [ e ; ,51 st e (1())
] N ] n!

Die Fouriertransformierte ¢(y) von @,(t; a;) wird auf zwei Arten
dargestellt. Dag Produkt der Sinusfaktoren,

nooay
S a, Yy

o) = [[ (3)

fithrt in der Inversion auf das bestimmte Integral (5) fir @,(t;a,).



Stellt man in (3") die sina,y durch die Kulerschen Formeln dar,
80 lisst sich @(y) als Summe sehreiben, nimlich:

L 1 . pileraitesag e+ enanly
[11 R, R
ply) = — ) 31 -
A=1 211] o &j (‘Ly)"’

&; ist der Werte |- 1 und — 1 fithig; summiert wird itber 2" Summanden
(itber alle 2 Vorzeichenanordnungen in der Klammer); 4 ist die Anzahl
der negativen ¢; in jedem Summand. Mittels (10) entsteht jetzt durch
gliedweise Inversion eine Polynomdarstellung tiw @,(t; a,), die wegen
der Tindeutigkeit der inversen Fouriertransformation das Integral (5)
explizite darstellt:

—

1 SN @y
D (L0109, ..., 0,) = —— —Z_gos il dr =
2@ ) =1 @
1 - (11)
B ek ey >_‘J (= 1)’1 [31“_1 + g9+ ... + &,a, T+ L]”"‘
2Mn—-1)! %
(e; == -+ 1, 2 Anzahl der negativen &)

In der Klammer gelten beide Vorzeichen fiir ¢, da @ (t;a;) in ¢
gerade unktion 1sh.

(11) lehrt, dass @,(t; ;) aus Parabeln der Ordnungen << (n-—1)
zusammengesetbzt 1st und dass

D (t;0:,a9, ...,a,) = 0 fiir ]t| >0 a4 ... Fa, (19
wird.

4. Eine anschauliche geometrische Interpretation
lar 1 . ) i
der Funktionen @ (t;a;) [1], [5]
Wir betrachten im Fuklidischen n-dimensionalen Raum den Hyper-

(uader mit Mittelpunkt 0 und den Kantenlingen 2a;(i = 1,2, ..., n).
Seine Kanten seien zu den Koordinatenachsen z; parallel.
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g bezeichne

0,1t das Volumen des Quaders
zwischen den (n - 1)-dimen-
sionalen Hyperebenen
T+ 2t o 2= 4,

A (1) das (n— 1)-dimensionale
Scehnittvolumen zwischen
Quader und Hyperebene,

A(t) seine Projektion in eine der
n Koordinatenhyperebenen

Fig. 3 g =1s
Das Schnittvolumen 0,(t) ist dann bestimmt durch
“.l. [Elg an
6, (1) = J j oy [@dmn v s o BBy dtby.
01 —G2 —an

Tithrt man tiir den Dirichletschen Faktor

Tt @yt o,

| (1, =
D =20 (x)+ x5+ ... +2,5t) = 10 z, + x5 + R |>!5
) T A

die Integraldarstellung (6) ein und integriert nach den a; aus, so folgt

1 ("sina, & sinayé sina, & sinté
oy =i | P R (1)
7T & & & &
/l;(t) und /,(t) entstehen aus 0,(t) durch Differentiation:
00 1 90, ; 1 ﬁ sin a, ¢ - 2
/ = e — = " — — cosizdr = 2D (1;a;
8 2 dJt 2750 v x
o o (14)
L) yn 00, o 4 ﬁ 8in @, & , P Bt
Al = — —— = L)1 — ———costzdr = 2"/ n D, (t;a,).
( 2 0t Qm J = €

2|/ n @,(t; a;) ist mithin (n— 1)-dimensionales Schnittvolumen
zwischen Quader und Fbene z, + z, + ... -}z, = t; 2D, (¢; a;) isb
Projektion des Schnittvolumens in eine der Koordinatenhyperebenen
(E'i =z 0.
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Wir bemerken noch, dass aus der Integralrekursion (8), wenn sie
fOl‘tgcsotzt auf sich selbst angewendet wird,

15
fl,n 1 (lg ( )
1
—27: D(E—T,—Tpyy— - - —Tg30y) ATy . . . d7, 1 dT, = m
“On ~an-1 *ﬂa

folgt. Ilbenso fithrt die geometrische Methode zur Berechnung von Fre-
quenz- und Wahrscheinlichkeitsfunktionen einer Summe stochastisch
unabhiingiger Variabeln im Iall der elementar rechteckigen Vertei-
lungen auf unsere geometrische Interpretation.

Die geometrische Deutung ermdég- %y
licht wuns, in anschaulichen Tillen, }
Integrale @, (t; ;) durch geometrisch
einfache Uberlegungen zu ermitteln. I
Aus Fig. 4 folgt z B. ohne Rechnung

a,
Dy(0; @y, ag) == i L “
0

N

Ig. 5, konstruiert unter den Voraussetzungen a, << ay, << ay,
ay -} &y << ay, entnehmen wir, dags in den Intervallgrenzen fiwr ¢, die
den Schnittebenen

und hieraus das Integral

00

1 (" sina, 2 sinay )

— | ——————dz == Min. (a,, ay).
7 2 '

" I'ig. 4

T+ 223 = ay+ay-ay

-+ g+ %y =—0a;, -+t az=1T1,
T+ Ty 2y = @ —aygtay=4,
T+ Ty B3 = —0,— 0y + 3= L,
-zt 2= 0+ ay,—a;=1I
Xy + Ly + X3 = —a, +ay—ag =4,
T+ Xyt %3 = Oy—ag—0ay =T}
Tyt Ty + Xy = — 0 —ay—ay

entsprechen, die Darstellungspolynome fitr @4(t; ay, ay, ay) indern.



o4 —

I'ig. 5

Dy(t; 1),y ity) =

Fig. 6

Den expliziten Funktions-
verlauf (Fig. 6) erhalten
wir durch Berechnung der

Schnittfiguren:

l t | > o tfagt (]

0

(g + ag + a3 —1)?, ay+ay+ag > | t] > —ay, +ay +8

't (a,ay + a,a3—a, ), —a, +a,+az > | 4 | = Uy — + 0

L[Bayay— (4 +ag—ag + 1], ay—ay + a3 > |t| > —a;—ap+%

(L) Gy N
- »ﬁul+ag+a3,;>|t|>0.
| 4]
ay < ay<<a
Dy(tiay, ay,a;): : ! !
@ + ay < ay
0
I I ] r :’ T = |
:;. :.3-1 u,-: “ ': ::ﬂ o ™
=1
| | | B t t o
él él é.‘l i ;’;‘I aI = u-
5] -
‘ | + . | | il *_
3 s £} = e s s ?
| | | |
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5. Die Ableitungen nach t; Differentialrekursionen.

Abschitzungsformeln
Aus op _
1 n_SIN 4, @
o, (ta) =— | [] cos tx dx
2 | =1 @

folgt durch Ableiten nach ¢ mittelst einer naheliegenden trigonometri-
schen Umformung des Integranden, zunichst die Differentialrekursion

oD, (t;a 1
x—( ) S -{@“_1@ a0, 000y @) — D, (t—ay;0s, ..., a,n)} (16)

o 2
und hieraus
D, (t;a, 1
;ir ) = Ef_ 2 (_'1)1 q}n—r(t + & ay + ..o Ep 3y qs v 'Ja’n) (17)
e

(4 = Anzahl der negativen ;).

@, (t; a;) hat nach (17) hochstens (n—2) stetige Ableitungen;
exisbiert die (n— 1)-te, so ist sie unstetig.

Die Kanten des Parallelepipedes seien in der Reihenfolge
Uy, Ay, Ag, - .. der Grosse nach angeordnet: a; < a, < ay < ... < q,.
Die in der Koordinatenhyperebene z; = 0 liegende « Grundfliche» des
Quaders ist also kleinste begrenzende «Seitenflichey.

Weil die Projektion des Schnittvolumens, A (#), in eine Koordi-
natenhyperebene hochstens die in ihr liegende « Grundfliche» austiillen
kann, folgen die Abschitzungen

Polb301,0g -+ 8,) < S0y oo lyy < 5 (0105 - . a, ) " = .(tl%iv_‘,_‘aﬂ
mit w (18)
und N = '/ (y by« v v
' (1o .

?‘%Efj(i@z = %Cblaz v e S ; CLOTER an)—-—nﬁ— o algj\%f.-lgf(fﬁ (19)
oder

OP,(ta;) | 1 et

et <glnay...a) ™, (n—r—1<m<mn). (20)
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6. Die Grenzfille unendlich grosser Kantenlingen

Um den Finfluss der Grossenbeziehungen zwischen den Kanten
2a, auf das Aussehen der Funktion @,(t;«;) zu untersuchen, ist es
zweckmissig, die Quaderecke (—a,, —ay, ..., —a,) als neuen
Ursprung 0% des Koordinatensystems zu wiihlen. Bezeichnen wir die

Kantenlingen dure )
Kantenl g ch o = 2(1,“ (’), — 1,2, .. _,'n),

s0 hat im neuen Koordinatensystem die Schnittebene > den Achsen-

absehnitt n

n
T=t4+ D0 =1t+5>x
A=—=1

A=1
3
\
A\
e \
T \

: Tig. 7
. -
-2
und es wird
L (" »n singo
D(t;0;) == — r[ ——-—co8 tx dx
An A T
I 1 (" » sinegz n _
T - cOs 21—}_,% xdr (21)
1 9% J 3=1 = Poms
1

= S [0y Oy - A Oy, 7] = D))



oder
B¥(v; ;) :
( ’f ; i e . )
n( % 2»(% . [) ! (21 )
' { [,r])hl »Z [’L" __oci]u--l _F_'E [,5 _a-il _Ocig]fbl S . (__1 )n [‘L’ —0L— O+ __an]n—l }
¥ s

n
; : : , 3 sl |
D¥(r;e;) ist monoton in den «;, symmetrisch zu -2——>_Joc,t und

i=1

n
verschwindet fiir 7 << 0 und 7 > > «,.
A=t
Werden einzelne der «; unendlich gross, 4. B. ., 1, %, 4, ..., 0,, 50
erhiilt man die entsprechende Funktion @) (75 0ty 00y, ..., 0, , 00,00, .., 00)
dadurch, dass in (21') die Klammerausdriicke, die eines der unendlich
grossen o; enthalten, weggelassen werden. Wir betrachten zwei Sonder-

fiille:

a) oy =y = ... == 0o, = oo (in der Integralformel geniigt es,

®; == 7 zu setzen): oo
. 11 [ /sin7z\" _ 7+
D (1;00,00, .. .,00) = —— ( —— ) ¢o8 (2—n) T dt = ——u-—o,
2" 7 @ 2"n—1)!

-0

Die geometrische Interpretation dieser Formel ist offensichtlich. (22)
enthilt fiir feste v die Abschitzung

,Cn—l

D By ooy () B e /
W 1 By 2" (n— 1)! 22

(das Gleichheitszeichen gilt, falls o, > 7, (1 = 1,2, .. ., n)), sowie eine
Integraldarstellung der reziproken Fakultiit

oo
»

1 sin 2 \" , i
~ ——— )cos (m— Q) zdx == -, (23)

T X

/

— 00

b) &, = oo ((ln = ou).

Die Projektion der Schnittfigur in die Hyperebene &, = 0 (x, = 0)
fallt fir 7 > oy oy + ... o, (¢ beliebig) ganz mit der in ihr
liegenden «Grundfliche» des Quaders zusammen.

(22)
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s foleen die Relationen
te)
0y K+ v » Oy g

@;:(75“1: Ugs « ooy Oyoy s O0) = ——'“‘2‘;““'"“‘ y T2y oyt oy,
24)
D (150, Oos s 0 5 Bpgwoo) = DA030y Uy 0 vnlhpys o) (
By Gy < By
= D A0 yillgs «ns s By nily b lly b v w Frllyy) =

und aus thnen die Integrale

o0
1 ol sinay @ 8in (G a4 o ) T 7 -
. — O == @yl s w Gy s (20)
A A=1 €T T

o0

1 sina \" sinnw ' ’
o ( da = 1. (25")
T i

7. Beispiele 1)

a) =2
I oy < oy {Fig. 8)
l T, 0<tr <y
o oy < T <&
o 1 i s % S g
4D, (150, 0tp) == )
0, OLL ""l’" az \<\ T
I oy = ay = o (Fig. 9)
%, <<
# R
4D, (v;a,0) = { 2a— 7T, o <7< 2
0, _ 20 < T
/ ay, a3
——© ———y — ®5
Po(r. % )
Doty og)
i T } T
% oy o) F oy 0 o 2a
I'ig. 8 Fig. 9

1) Die Funktionskurven zu unendlich grossen Parametern o; sind entsprechend
mit o bezeichnet.
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b) n=3
[ ooy < oy < atg; oy + oy <ag (IFig. 10 und 11)
72, <K oy
— 72 Doty - ) T*O“% - “é’ Uy << T << oy oty
G(l)* 20(10(2, OC]. "*I"‘ a2<7<a3
8(7;0(1,0(.2,0(3) = 2| 9 9 a o s
— T 207 - 2oy oy — oty Uy < TS oy oy
= 20(11 *|_ QJC(I_ 0(2 _|" 20(1 0C3 "l" a% y OC]_ "l" 0(3 5\\: T :\ CC., I’" CC}
0, o Foatoay<T
‘ v/, '
i by
J;/{;/
Wi
[/ “
: / —_—

BY(rioy oy, )

} | ) r

Dt @, ny)

v A ay oy by ay @y by g bag o eyt 0 20wy ata, 2atau
Fig. 10 Tig. 11
I oy << oy < atg; otq + oy > ag (Fig. 12 und 13)
(% 0<r<ay
Do, T—a, By 5 T Wy
— 12 2y + o) Tt} — ot Uy < T < Uy

— 222+ oty + oty F o) T Fod 02, g < T < oy F- %y
— 7% 4 0057 - 20ty 0ty — 2,
— Doty v+ Lot oty + 2oty oty - o oy < T < oy oy
(7 oty — oty —otg)?, otg oty < T < oty ot - 0tg
0, oty <

S(b*( .
Py(T50y, 0, 05) =

Yy
N/ ;
/’ ./,—\ ¢ N
:/ DYriay, ag, ) DY(tio, o, 0y)
' U T T T £ 1 t i r
0 ) %, Xy kg @y bayay oy ay ey ey 0 a  wy  da wtay Jat oy

Mo, ] Mo ¢
I 1g. 12 ]_d]g. 13
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III. oy << ety << etg; oy -+ oty = g (I"ig. 14 und 15)

74, I
Qot, T~ P A
9 DY D)
. — 7% 2(atg - otg) T—tf —otg Oy < T 55 00y - o
16 DY (750, , 0, ) == ¢ e e g = L
‘ ‘ . ‘ 2 g - oy
(720 20)% = = (T 23", oy | oty T oy fop T

’f‘t(r:z, %, 2,)

Ptz ay,u,)

%k 2o by

IMig. 14 I'ig. 15

D (1; oy, oy, og) sebat sich aus quadratischen Parabeln und Geraden-
stiicken mit gemeinsamen Tangenten in den Nahtstellen zusammen.
In den Fillen [ und TII (e; # ay) folgen sich diese abwechslungsweise.
Das horizontale Scheitelstiick verschwindet, wenn oty + oty == oy ist (111);
in Il ist es ebenfalls durch einen parabolischen Bogen ersetzt. Die
linearen Stiicke im aufsteigenden und im absteigenden Ast arten fiir
) = oy aus. Die Vertikale dureh («, | oy -+ og)/2 ist Syminetrieachse.

8. Der Grenzfall n»~ ~
Hornich hat gezeigt [6], dass die Integrale

1 [ .» sinagx
o ——— costzdx
27 J A=t

- 00

$2.083 Gy o By o« « )i 2

fiir n-—>oc stets gleichmiissig in ¢ konvergieren und dass die Grenz-
(8]
. 1 3 5
frequenzfunktion Q2(t;ay, ay, .. .), falls > af konvergiert, eine von Null
i
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o0
verschiedene analytische Funktion ist (divergiert > a3, so verschwindet

Qt; ay, a,, ...) identiseh). Die Funktionen £(t;ay, ay, ...) sind von
unendlich vielen Parametern abhéngig.

Der zentrale Girenzwertsatz (Central Limit Theorem) gibt uns die
notwendigen und hinreichenden Bedingungen fiir eine Gaubsche Kon-

vergenz. Iis gei ) 2
IV[ = \‘ / 1 o (‘La
n== 2y My UNG My= —=

A=1

das zweite Moment der elementaren Verteilungen (1). Dann ist

lim |/ M, @, () M, t;a;) = 1/1 o (26)

n—» co 27’[

falls %——»O(l —=1,2,...,n), und ]/M; nicht beschrinkt ist. HFur

n
die in der Tabelle

y My M,
0 " 3 3
A n-1)n
m | ya | - Lol
] ()
AR on 4 1) (n -+ 1
(I11) ) A @nt1) (et On
3 18

enthaltenen Beispiele ergeben sich daher die Grenzwertformeln:

o - 1/ .3
(1 li n @ ) = |/ —e 2
) nEHwV L "(Vn ) 2m ‘ ’ (27}
o o - . 3
(I lim Yo +-D)n 2, (f(n+1)nt;1,)/2, ..., [n) = l/ja“‘w,
N=» 0o A
A T , 3
(II1)  lim Y@n+1) (n + DnQ, (f@n+1) (n+1)nt;1,2, ..., 0) = ——e"
A

N—» co
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und an der Stelle ¢t = 0:

. sin &
(L)  lim [/n j( )ch = |/ 6, (28)
n—» 0o T
________ sin)/ A x
(IT)  lim [/ n+1n fﬂ————y————_t T = ]/127:,
n=» 0o A=1 V
T on sm/lz, ,
(L1T) lim j/ Zn kl (n + 1 U —dx = ()l/n
n-»oco A=1

9. Der Sommerfeldsche Fall: ¢ = ay = ... =a, =1
G (11,1, ..01) = B0, (n=1,2...) (29

sind symmetrische Frequenzfunktionen. Sommerfeld hat ihr Grenz-
verhalten benutzt zu seiner anschaulichen Herleitung des GauBlschen
Iehlergesetzes [1]. Die nachfolgend erwiihnten Iormeln sind Sonder-
tille der far die @,(¢; a;) hergeleiteten Relationen:

(e8]

D, (1) = Lo[(simey b d (30)
D (1) = cos tx dx :
ol Q7 ( T S

— 00

ist Losung der Faltungsfunktionalgleichung

(Dn}-m() = @ *(pm f® m )CZT (31)
und erfillt die Integralrekursionen
L1 1 t
=1 f @, = L j G, (1-8)dE = | [ B, (1+ &) ds. (32)
-1 -1
(11) geht wegen a,e; + agey + ... 4 a,¢6, £t =n—22 + ¢ nach

n ; v
Zusammenfassen der ( ) gleichen Summanden iiber in die erstmals von

/’l/
Laplace [T] angegebene Formel

oo [nit

]

1 sin z'\" 1 3 A
(Dn(t) [ — (EE‘:L) costedr — I ,}__‘J (__1)1 (ﬂ) (72,—2;{ i t)'""i
Q7 T 2"n—1)! 1o \/1/ (39

_—o

N+t -
*) [*Q—J ist die GauBsche Klammer und bedeutet die grosste ganze Zahl < e
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(17) oibt d"d (1 1l
A U ‘<~1>*("”) @, (1 +r—27), (34)
dt” 2" i=0 A
woraus
|20 < ,.,0) (34)
folgt,

@ (1) wird stiickweise durch Polynome (n-—1)-ten Grades, die
sich mit wachsendem n an den Nahtstellen inniger zusammenschliessen,
dargestellt. @, (t) ist unstetig, @,(f) stetig, @,4(1) stetig differenzierbar;
allgemein hat @, (f) (n—1) Ableitungen, wovon die (n-—2) ersten
stetig sind. Das Verhalten der @, () nihert sich mit wachsendem n dem
Verhalten einer analytischen Tunktion. Bei geeigneter Normierung gilt
die Grenzwertformel [5]

n-» 00 T

li |/ @, (J/n {) = l/é* P I T Y

die I.. Maurer zum Beweis seines Grenzwertsatzes fiir iterierte Mittel-
werte herangezogen hat [8].

1) Ohne strengen Grenziibergang kann (27) aus der von Laplace [7] angege-
benen  Beziehung

(0]

1 sin @\ » - T8 3 3 7
- — VeosrVnade=1/-2—6"T3 11— (1-6r2+ 84y L [:: S
nf( . )(,()sr |/n, zdw S e 32 1I T (1-6r2-- 3r) 4 = ‘Dn(}no)

abgelesen werden.
Im Lichte des zentralen Grenzwertsatzes ist Formel (27) trivial. Ohne diesen Satz
vorauszusetzen, zeigt man z. B. mittels des Ergiinzungssatzes der Gammafunktion,

ra-yra4y =" O
(=9 Cosinamt’ () v,
dass fiir die charakteristische Funktion «in Y \n
> /
I - &
F{Vn @ (Ynt);y} = on(y) = | s
,,'l,/,‘;,
gllt;: . 1 2 - 1 P
Lim @n(y) = - l; (1) = - },
7 6

n—» 00

woraus (27) folgt.

*) Die zur Richtung (1,1, ...,1) nonnalqI-Iypere_l)ene im Abstand d vom
VV(‘;}:felxI'littelgunkt schnetdet aus dem n-dimensionalen Finheitswiirfel die Fliche
2Yn @, (2 Vn d). Nach (27) betriigt die entsprechende Schnittfliche am unendlich-
vieldimensionalen Einheitswiirfel V}l  Bag!
7T
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Wir benutzen (33), um die 'unktionen @, (f) bis @,,(t) explizite
anzuschreiben:

1
— o<l
) 0<t<1)
G, () = 1
= 1=1
T (1=1)
L0, (1<)
92—t
e 0<t<92)
Dy(t) = 4
0, (2 <)
3 — 12
s O<t<)
8
By(t) = 9—6¢ - 2
o <t
16 U<i<d
0, (B8 <1)
89— 122 - 843 0<t<9)
96 ’ O<i<
Dy () = ¢ 64— 481 4 1202 — 13
_ s 2<t<4
= ( )
0, (4 <)
1158042 + 314 0<i<1)
34 o
55 + 10t — 8042 1043 — 4 d<i<8)
By (1) = 192 o
6255001+ 15082 — 208 ¢t - 5)
768 Y
0, (5<t)
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3 0 3
L 1
! @ (1)
st 0 4
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Fig. 16
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7680
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Tafel der Funktionen A, ®,(t) = > CP¢*  fir n = 8, 9 und 10
i=0
t ci o ci i ci ct cy c | e | o
2 bl [
n=28, A;=1290240
[0,2] 309 248 0 - 53760 0 4 480 0 — 280 35
[2,4] 316 416 —25 088 -16128 - 31 360 20 160 -4 704 504 -21
[4,6] —142 336 T77 728 —-61 824 219 520 —42 560 4704 — 280 7
[6.8] 2097 152| -1 835008 688 128 —143 360 17 920 —1 344 56 =1
n=19, Ay=20643840
[0,1] 2337 507 0 — 364 140 0 27 090 0 -1260 0 35
[1,3] 1168 722 252 -182152 1764 11 340 1764 -1512 252 | -14
[3,5] 1 306 503 — 367 164 245 700 —284 004 130 410 —29 988 3780 — 252 7
[5,7] -2209 122 5257836 -3 691 800 1 290 996 - 263 340 33 012 -2 520 108 -2
[7.,9] 43 046 721| —-38263 752] 14 880 348| -3 306 744 459 270 —-40 824 2 268 -T2 1
n =10, A,, = 185794560

[0,2] 39 984 640 0 -5644800 0 383 040 0| —-16 800 0] 63 -63
[2,4] 19 965 440 120 960; -3 064 320 282 240 —-20 160 105 840 | —43 680 7560 | - 630 21
[4.6] 27829 760| —-17 573 760] 14 630 400{ —10 039 680 3 850 560 — 861 840 1176001 -9720 | 450 -9
[6,8] |—342 177280/ 609 949 440| —394 974 720; 136 200 960 | — 28 687 680 3 900 960 | —346 080 19440 | -630 9
[8,10] | 1 000 000 000| —900 000 000 360 000 000| —84 000 000 | 12600000 | —1 260 000 84000 -3600 90 —1

LTI
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Die Maximalwerte der Funktionen @, (#) sind bestimmt durch

. 1 (" /sinz '"Z 1 [g‘l o (m -
( — — S o _ . =D n-
(0) . ( y )c:o ST aZé( ) (l>(n A)

—_0d

und in einer Tabelle zusammengestellt:

1 - sin ¢\ »
n _,ﬁj (ww---- dx
2r L@ )
1
1 s = (.b
9
1
2 - == 0,5
2
3
3 s = (.875
8
4 1 0.338
4 S —— e " oe e
115
5 = 0.299 479 17
884
6 i == 0.275
40 S
5887
7 e = 0.255 512 152
23:040
151 _
8 . = 0.289 682 539
630
259-723
9 ER—— = 0.226 460 484
1:146-880
15619
10 = 0.215 208 884
72576
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Gronzwertformel (27) gibt fir ¢ =

lim |/n f (Sni)nd;n = |/ 6x- (28)

n—» oo €T
— 00
Das Potenzmoment k-ter Ordnung von @,(f), M%, ist nach dem

Momentensatz gegeben durch
My = i ¢l2(0). _
- ; sin "
Iiir die k-te Ableitung der charakteristischen 'unlktion ¢, (y) = (-------—
Yy
erhalten wir mittels der Integralformel von Cauchy in y = 0 die Be-
zlehung

_ ! sin (\" d¢ *kL & ‘n ,
D(0) = — ) O Y| 2\ -1y (l) (220,
Qi ¢ J& 2"(n + k)! i=o

woraus

K i 36
' R Z (~1)1 (Z) (7),—2},)"4'16, k= 9% ( )
(=0,1,2,...)

0, I = 2% 41
folgt.
Sonderfille (k = 2x):

1 2 3 4

1 of+1 3 gtz _q Qh+3 (k2 _ 1)

Rt | rr D) (kt2) | 4 btk t2)(kt8) | (- 1) (b+2) (k+8) (b + 4)

M? ist Fliche zwischen Abszissenachse und Funktionskurve; mit-

hin wird {
S Z (—1)* <,§> (n—24)" = !

Mn! i=o
oder

A afP\(R ”_ﬂ ¢
%0(~1) (l><2 l) = n! (37)
u) !
W(+t) = f D (& dE = + j D,(&) dé = 5 G, (t>0)

O 0
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18t die Wahrseheinlichkeit, dags die zufallsartige Variable & mit der
Frequenzfunktion @, (&) kleiner als + ¢ austalle;

1 sin £ \"sintx
fr (1) == dax
27 X 1

ist Wahrscheinlichkeit einer Abweichung zwischen 0 und ¢. Insbeson-
dere ist (1) = @, ,(0), d. h. der Maximalwert der Funktion @, (f)
ist gleichzeitig Wahrscheinlichkeit, dass die nach @, (&) verteilte zufalls-
artige Variable & ins Intervall [0,1] falle. Bekannte Methoden (vgl. 3)
ergeben fir G, (¢) die Polynomdarstellung

. 1 [ /sin 33)” sin Z 1 1 L lﬂ% 1)4 ”) - t—22)"
)= — [ () e e e S n=24)
(1) 2 ( T T 2 2nl i-‘:’lo( ) <l/ (

Y (38)

von der wir noch die beiden Sonderfille t == 1 und ¢t = n festhalten:

1 [ /sin o\ 1 1 L5 - _
6ult) = B0 = o | () o = gt e B () -2

o) \ @ 2 2 ln—1)! =

- =12 ...) (39)

{ ,
G (n) = = also 2 — =1, (40)
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