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B

Wissenschaftliche Mitteilungen

Wahrscheinlichkeitstheoretische Kriterien
für die Beurteilung der Güte der Ausgleichung

einer Sterbetafela)

Von Hans Ammeter, Zürich

Einleitung

Unmittelbar ans Beobachtungen abgeleitete Sterbetafeln verlaufen
— entgegen der intuitiven Erwartung — erfahrungsgemäss mehr oder

weniger unregelmässig und sind daher für die versicherungstechnische
Praxis nicht ohne weiteres verwendbar. Die auftretenden
Unregelmässigkeiten erscheinen gewissermassen als Beobachtungsfehler, die
den wahren Verlauf der Sterbetafel entstellen. Man versucht deshalb,
diese Unregelmässigkeiten durch einen geeigneten Prozess — eben die

Ausgleichung — zu eliminieren, um die «wahre» Sterbetafel zu erhalten.
Im Verlaufe der Zeit sind eine ganze Reihe von Methoden entwickelt
worden, die mit mehr oder weniger Erfolg zu einer Ausgleichung der
Sterbetafel führen.

Von einer guten Ausgleichung verlangt man, dass die ausgeglichenen
Werte eine möglichst glatte Kurve bilden, und ferner, dass sie möglichst
getreu die Beobachtungen wiedergibt und nicht etwa charakteristische
Eigentümlichkeiten verwischt. Ob und inwieweit diese letztere Forderung
im konkreton Eall erfüllt werden konnte, lässt sich genau genommen
nicht feststellen, weil die «wahre» Tafel selbst stets unbekannt bleibt.
Man musste sich deshalb lange Zeit mit einer mehr oder weniger ge-
fühlsmässigen Überprüfung der Ausgleichung begnügen.

0 Anm. der Red.: Die vorliegende Arbeit wurde auf ein Preisausschreiben
der «Vereinigung schweizerischer Versicherungsmathematiker» hin eingereicht und
mit dem höchstmöglichen Preis ausgezeichnet.
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Die Entwicklung der mathematischen Statistik im laufenden
Jahrhundert hat hier zu einem wesentlichen Fortschritt geführt. Die
im folgenden zu erörternden Kriterien der mathematischen Statistik
berechtigen allerdings im konkreten Fall auch nicht zu zwingenden
Schlüssen. Gegenüber einer rein gefühlsmässigen Beurteilung weisen

die von der mathematischen Statistik entwickelten Verfahren jedoch
den grossen Vorteil auf, dass bei ihrer Anwendung die Wahrscheinlichkeit

eines richtigen oder falschen Urteils stets in einem bestimmten,
dem verfolgten Zweck angepassten Rahmen gehalten werden kann. Die

Festlegung dieses Rahmens bleibt allerdings dem subjektiven Ermessen
vorbehalten.

Bei der Anwendung der Kriterien der mathematischen Statistik
ist stets der Umstand wichtig, welche Ausgleichungsmethode benützt
wurde. Im folgenden werden daher zuerst die wahrscheinlichkeitstheoretische

Bedeutung der verschiedenen Ausgleichungsmethoden und erst
anschliessend die Kriterien für die Güte der Ausgleichung behandelt.
Diesen Ausführungen wird eine kurze Darstellung der
wahrscheinlichkeitstheoretischen Grundlagen dieser Verfahren vorausgeschickt.

I. Wahrscheinlichkeitstheoretische Grundlagen

Die Erfahrung lehrt, dass die bei unausgeglichenen Sterbetafeln
auftretenden Unregelmässigkeiten um so mehr ins Gewicht fallen,
je kleiner das zugrunde liegende Beobachtungsmaterial ist. Die

Unregelmässigkeiten in der unausgeglichenen Sterbetafel scheinen somit
irgendwie eine Folge des begrenzten Umfanges des Beobachtungs-
materials zu sein. Diese Erklärung lässt sich noch näher präzisieren
und schliesslich in ein wahrscheinlichkeitstheoretisches Modell
ausbauen, das die in der Wirklichkeit auftretenden Vorgänge hinreichend

genau beschreibt.

A. Das grundlegende Stichprobenmodell

Könnte man das verfügbare Beobachtungsmaterial in allen
Altersklassen gleichmässig und beliebig vermehren, so würde man
schliesslich zu einem hypothetischen Beobachtungsbestand gelangen,
der Grundgesamtheit genannt werden soll. Aus der Grundgesamtheit
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könnte ohne Ausgleichung die wahre Sterbetafel abgeleitet werden.
Von der wahren Sterbetafel wird vorausgesetzt, dass sie keinerlei
Unregelmässigkeiten aufweist und daher durch glatte Kurven darstellbar
ist. Die wirklich vorhandenen Beobachtungen Easst man demgegenüber
als eine blindlings ausgewählte Stichprobe aus der Grundgesamtheit
auf. Die Unregelmässigkeiten in der Stichprobe erklären sich dann

zwanglos durch den begrenzten Umfang der Stichprobe.
Im Kähmen dieses Stichprobenmodells entspricht der Ausgleichung

die Aufgabe, aus den Daten der Stichprobe die Sterblichkeit der
Grundgesamtheit zu ermitteln. Der Überprüfung der Ausgleichung entspricht
anderseits dio Frage, ob die gegebenen Beobachtungen eine Stichprobe
aus der Grundgesamtheit sein könnten.

ß. Das Verteilungsgesetz der beobachteten Sterbefälle

Aus der Grundgesamtheit könnte man nicht nur die gegebene,
sondern unendlich viele andere, analoge Stichproben entnehmen. Jede

dieser Stichproben würde zu einer etwas anderen Sterbetafel führen.
Fasst man die gleichartigen Stichproben zusammen, und »bestimmt

man für jede Konstellation der Sterbefälle TT2 Tx Tn
den relativen Anteil in der Gesamtheit aller Stichproben, so gelangt
man zur Frequenzfunktion der Sterbefälle f(J\, T2 Tx Tn).
Diese n-dimensionale Frequenzfunktion der n zufälligen Variablen
2\, Tj; Tx Tn ist für die nachstehenden Betrachtungen von
grundlegender Bedeutung. Sie lässt sich mit den Hilfsmitteln der

Wahrscheinlichkeitsrechnung ermitteln, wenn die Grundgesamtheit und
die Methoden der Stichprobenauswahl eindeutig gegeben sind. Diese

Kinzelheiten im Stichprobenmodell sollen möglichst im Einklang mit
den wirklichen Verhältnissen festgelegt werden, soweit dies bei dem
rein hypothetischen Charakter der ganzen Konstruktion überhaupt
möglich ist.

Zunächst sei angenommen, in der Grundgesamtheit gelte in jeder
Altersklasse eine bestimmte und feste Sterbenswahrschoinlichkeit qx.
Ferner erfolge die Auswahl der Stichproben getrennt nach Altersklassen
so, dass jedes Element die gleiche Chance hat, in die Stichprobe
aufgenommen zu werden. Für eine einzelne Altersklasse x gilt dann bei Rx

unter Kisiko stehenden Personen für die Anzahl der beobachteten
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Sterbefälle Tx die aus dem klassischen Urnenschema folgende Binomial-
J Verteilung
' f(Tx) (fyqfH l-qj*'-*'. (1)

Die gewählten Pestsetzungen tragen dem Umstand nicht Rechnung,

dass die Sterblichkeit als ein in der Zeit ablaufender Vorgang
zu betrachten ist und dass die einjährige Sterbenswahrscheinlich-
keit qx sich ausdrücklich auf das Jahr als Beobachtungszeit bezieht,
während beim Urnenschema die Ziehungsdauer gar keine Rolle spielt.
Den Verhältnissen in der Wirklichkeit kommt man näher, wenn man
nicht eine einzige, sondern eine kontinuierliche Folge von Ziehungen
in jedem Zeitelement annimmt, wobei gleichzeitig an Stelle der
einjährigen Sterbenswahrscheinlichkeit qx die entsprechende Wahrscheinlichkeit

pro Zeitelement
Ix
TO

(m-»oo) in Rechnung zu stellen ist. Unter diesen etwas mehr an die
wirklichen Verhältnisse angepassten Annahmen geht die Frequenzfunktion

(l) in die Poisson-Verteilung

g-^'x TjiTx

m - »
über, in der die Sterbenswahrscheinlichkeit qx nicht mehr direkt,
sondern nur noch indirekt im Erwartungswert Tx Rxqx auftritt.
Für grosse Werte von Tx, wie sie bei den Anwendungen gewöhnlich
auftreten, darf die diskontinuierliche Poissonverteilung (2) durch die

stetige Normalverteilung
1 (TS-TJP

Kfx) (2nTxyie~' (8)

ersetzt werden, bei der Mittelwert und Streuung, wie bei der

Verteilung (2), gleich dem Erwartungswert Tx sind.

Die Formeln (2) und (3) gelten zunächst für den Fall, dass die
Sterbenswahrscheinlichkeit pro Zeitelement qjm fest bleibt. Es lässt sich

jedoch zeigen, dass sie auch unter weit allgemeineren Voraussetzungen

gültig bleibt, nämlich auch, wenn die Wahrscheinlichkeit qjm während
der Beobachtungsperiode sich stetig oder sogar sprunghaft verändert.
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Der Erwartungswert Tx ist in diesem allgemeineren Fall gleich der Summe
aller in den einzelnen Zeitelementen aufgetretenen Erwartungswerte.
Die sogenannte «übernormale Dispersion» bei den Sterblichkeitsschwankungen,

welche sich aus den sprunghaften Veränderungen der Sterblichkeit

ergibt, spielt somit imvorliegenden Problem gar keine Rolle, während
sie umgekehrt bei risikotheoretischen Fragestellungen die Anwendung
der Formel (2) oft nicht zulässt. Diese unterschiedliche Bedeutimg der
«übernormalen Dispersion» bei sterblichkeitsstatistischen Untersuchungen

einerseits und bei risikotheoretischen Fragestellungen anderseits
rührt davon her, dass bei sterblichkeitsstatistischen Untersuchungen
nur die zufälligen Abweichungen von der mittleren Sterblichkeit mit
Einschluss von wesentlichen Schwankungen der Beobachtungsperiode
von Interesse sind, während in der Risikotheorie stets nach den
Abweichungen von einer erwarteten, normalen Sterblichkeit unter Ausschluss
von wesentlichen Schwankungen gefragt wird.

Die unter recht wirklichkeitsnahen Voraussetzungen abgeleitete
Verteilung (8) darf somit als Verteilungsgesetz der Sterbefälle für eine
einzelne Altersklasse gelten. Nimmt man an, dass die Sterbefälle in
den verschiedenen Altersklassen untereinander stochastisch unabhängig
sind, so lässt sich das gesuchte w-dimensionale Verteilungsgesotz der
Sterbefälle ohne weiteres als Produkt der Verteilungen vom Typus (8)

darstellen, d. h. man hat dann „ _
V (Tz—Ta)a

f(Tlt Tn) (2* T! % ...Tx... Tny'e
'

*=> (4)

Die Annahme der Unabhängigkeit erleichtert die Rechnung wesentlich;

sie ist gerechtfertigt durch statistische Untersuchungen (siehe
z. B. die Arbeit [9]) und durch die plausible Überlegung, dass eine

allfällige Abhängigkeit der Sterbefälle untereinander innerhalb jeder
einzelnen Altersklasse noch stärker in Erscheinung troten müsste als

in voneinander verschiedenen Altersklassen. Die Verteilungen (2) und
(3) stützen sich jedoch wesentlich auf die Annahme der Unabhängigkeit

der einzelnen Sterbefälle. Es wäre daher geradezu abwegig,
Unabhängigkeit der Sterbefälle innerhalb einer einzelnen Altersklasse

vorauszusetzen, nicht aber innerhalb verschiedener Altersklassen.
Die Verteilungen (3) und (4) gelten nur für Persononsterblichkeit.

Für Sterbetafeln, die sich auf Policen- oder gar Summensterblichkeit
stützen, sind sie mit Rücksicht auf das ungleiche Gewicht der einzelnen
Sterbefälle nicht anwendbar. Die Entwicklung von geeigneten Methoden,
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welche auch in diesen allgemeineren Fällen anwendbar wären, bleibt
weiteren Forschungen vorbehalten. Als Ausgangspunkt könnte dabei das

in der Arbeit [23] hergeleitete Verteilungsgesetz der Policensterbefälle
dienen.

II. Die Methoden für die Ausgleichung der Sterbetafeln

Die verschiedenen Methoden für die Ausgleichung von Sterbetafeln
lassen sich in drei Hauptgruppen einteilen, nämlich in

A. analytische Methoden,
B. mechanische Methoden,
C. graphische Methoden.

Die letztgenannten Methoden überlassen dem subjektiven Ermessen
des Ausgleichers einen zu weiten Spielraum und können daher nicht
Anspruch darauf erheben, als wissenschaftlich begründete Methoden
zu gelten, obschon sie für manche praktische Zwecke durchaus
genügen. Die nachstehenden Erörterungen berücksichtigen daher nur
die analytischen und mechanischen Methoden, wobei nur die
wahrscheinlichkeitstheoretischen Eigenschaften dieser Methoden und nicht
das praktische Vorgehen behandelt wird.

A. Die analytischen Methoden

Bei analytischen Ausgleichungen geht man von der Annahme aus,
die wahren Werte der Sterbenswahrscheinlichkeiten qx lassen sich durch
eine analytische Funktion von der Form

~tx rO> Öl, Öa • • • Öt) (5)

darstellen, worin Ö1; Ö2 Ök k Parameter sind, die in der
Grundgesamtheit ganz bestimmte Werto annehmen. Hauptaufgabe einer

analytischen Ausgleichung ist es, aus den Daten der vorhandenen

Stichprobe möglichst plausible Näherungswerte 0[, 0% 0'k zu finden.
Die Ausgleichung führt dann auf die Funktion

q'x - - y>(x, d{, 0!z 0'k), (5a)

welche je nach der gewählten Ausgleichungsmethode von der durch
(5) gegebenen wahren Tafel abweicht.
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1. Übersicht über die klassischen Methoden

der Parameterbestimmung

a) Die Methode der ausgewählten Punkte

Am naheliegendsten und einfachsten ist es, die Parameter 0- so

zu bestimmen, dass die durch die Gleichung (5 a) gegebene Kurve
durch k geeignet gewählte Punkte hindurch geht. Diese Methode lässt
den grössten Teil des verfügbaren Beobachtungsmaterials ausser acht
und überlässt die Wahl der gegebenen Punkte dem subjektiven
Ermessen des Ausgleichers. Die Methode der ausgewählten Punkte ist
daher wie dio nahe mit ihr verwandte Methode der graphischen Ausgleichung

für die wahrscheinlichkeitstheoretische Behandlung ungeeignet.

b) Die Methode der Momente

Nach der Methode der Momente werden die k Parameter 0\ so

bestimmt, dass k Gleichungen von der Form

2 [<A (°'i) — 2»] ®r 0 (6a)

oder
o (ßb)

x

erfüllt sind. Die notwendigen k Gleichungen werden erhalten, indem
man r nacheinander dio Werfe von 0 bis k—1 annehmen lässt, oder

auch, indem man r nur die Werte von 0 bis k'<k — 1 annehmen
lässt und gleichzeitig die Summen (6) in mehrere Teilsummen zerlegt,
so dass wiederum k Bestimmungsgleichungen entstehen. Nach diesem
letzteren Prinzip verfährt z. B. die Methode von King-Eardy für
Ausgleichungen nach der Makehamschen Formel.

c) Die Methode der kleinsten Quadrate

Die Methode der kleinsten Quadrate geht aus von der Bedingung

2 [T'z (0'i) — Minimum; (7a)
X — l

dio gesuchten Parameter erhält man dann durch Differenzieren der
in (7a) links stehenden Funktion nach den k Parametern 0\, d.h. aus
den Bestimmungsgleichungen

^ aCMj-Tj» t~\ /' in „2 rr; -=0 (t l,2 ...k). (7a)
2 1 Öü:
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Aus praktischen Gründen wird oft an Stelle der Bedingung (7 a)
mit dem Ansatz n

2 K (°i) — 2*]2 Minimum, (7b)
2=1

d.h. ohne Berücksichtigung des Gewichts der Beobachtungen, gerechnet.
Ferner werden an Stelle der absoluten Abweichungen zwischen Erwartung
und Beobachtung gelegentlich auch die sogenannten standardisierten
Abweichungen T' (fl'\ Tx \"i) -*• xx'~ KM
in Rechnung gestellt. Man gelangt dann zur £2-Minimum-Methode mit
dem Ansatz

n n rT'{f)[)_Ty
2 z5 2

1 jL Xi
Minimum (7c)

1 1 x l J-xiPi)

oder etwas vereinfacht

n n \T'(6'-)—T l2

2 z« 2 t (7d)
2=1 2 1 -l x

Für hinreichend grosse Stichproben führen alle vier Ansätze (7)

zum gleichen Resultat. Braktisch ergeben sich jedoch stets gewisse
Unterschiede. Die Bedingung (7 a) führt zur stärksten Anpassung der

Ausgleichung an die Beobachtungen in den Altern mit den grössten
Anzahlen an beobachteten Sterbefällen. Anderseits führt der Ansatz
(7b), der von den Sterbenswahrscheinlichkeiten ausgeht, zur stärksten
Anpassung bei den hohen Altern, wo die grössten Sterbenswahrscheinlichkeiten

auftreten. Die Formeln (7c) und (7d) der ^-Minimum-
Methode weisen den Vorzug auf, dass die Genauigkeit der Ausgleichung
in allen Altern gleichmässig wird.

2. Die Fisherschen Kriterien

Die oben angegebenen Bedingungen (6) und (7), welche zu den

für die Parameterberechnung notwendigen k Gleichungen führen,
erscheinen zunächst ziemlich willkürlich. Es stellt sich die Frage,
welcher der verschiedenen Ansätze als der beste zu gelten hat, oder
ob gar irgendwelche weiteren Bedingungen noch besser wären. Diese

Fragestellung führt auf die von R. A. Fisher herrührende statistische
Schätzungstheorie [15J.
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Nimmt man an, man könnte an jeder der unendlich vielen
Stichproben, welche blindlings aus der Grundgesamtheit entnommen werden

könnten, die k Parameter nach einer bestimmten Methode — z. B.
der Methode der Momente — berechnen, so würden sich bei jeder
Stichprobe etwas andere Parameterwerte ergeben. Die Parameter 0\

haben somit als Punktionen der n zufälligen Variablen Tx ihrerseits
den Charakter von zufälligen Variablen, die je nach der gewählten
Ausgleichungsmethode einem bestimmten Verteilungsgesetz/(0() folgen.
Die Eigenschaften dieser Verteilungsgesetze erlauben es, die verschiedenen

Ausgleichungsmethoden gegeneinander abzuwägen, wobei die

nachstehenden Kriterien massgebend sind.

a) Eine Ausgleichungsmethode heisst folgerichtig (consistent), wenn
die aus dem Verteilungsgesetz f{0'f) des Parameters 0- zu entnehmende

Wahrscheinlichkeit, dass der berechnete Wert 0- um mehr als einen

beliebig kleinen Betrage vom wahren WertÖj abweicht, bei wachsendem

Stichprobenumfang beliebig nahe gegen Null sinkt. Etwas weniger präzis,
aber einfacher ausgedrückt bedeutet dies, dass bei einer folgerichtigen
Ausgleichungsmethode die berechneten Parameterwerte 0[ mit
wachsendem Stichprobenumfang gegen die wahren Werte 0; streben. Die

Folgerichtigkeit ist somit eine für grosse Stichproben geltende
Grenzwerteigenschaft.

b) Eine folgerichtige Ausgleichungsmethode ist frei von systematischen

Fehlern (unbiased), wenn auch bei endlichem Stichprobenumfang
der Erwartungswert „

em fm om
— oo

identisch ist mit. dem wahren Wert (j^

c) Die Wirksamkeit (efficiency) einer Ausgleichungsmethode lässt
sich durch die Streuung der Parameterverteilungen

oo

om im [0;2-s2(ö;)]do:
— oo

messen. Von zwei konkurrierenden Ausgleichungsmethoden ist diejenige
wirksamer, bei der die Parameterstreuung kleiner ist.

d) Eine Ausgleichungsmethode heisst hinreichend (sufficient), wenn
keine weitere Methode existiert, die eine zusätzliche Information über
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den wahren Wert 0( des Parameters 0\ liefern könnte. Ist z. B. 0[

nach einer hinreichenden Methode und 0'- nach irgendeiner anderen,
nicht funktional von der hinreichenden Methode abhängigen Methode
bestimmt worden, so lässt sich das simultane Verteilungsgesetz von 0[

und Ö'i in der Form

iM-w'i.nuß'ofd
darstellen, d. h. als Produkt von zwei Funktionen, von denen die

erste vom hinreichend bestimmten Parameterwert 0- und vom wahren
Wert 0( abhängt, während die zweite Funktion den wahren Wert nicht
enthält und daher auch keine zusätzlichen Informationsquellen über
den wahren Wert bieten kann.

Hinreichende Methoden sind stets am wirksamsten, sofern überj
haupt eine wirksamste Methode existiert. Leider lassen sich hinreichende
Methoden nur unter ganz bestimmten Voraussetzungen angeben; im
allgemeinen existieren keine hinreichenden Methoden.

3. Die Likelihoodmethode

Die Fisherschen Kriterien erlauben einen objektiven Vergleich der
verschiedenen Ausgleichungsmethoden und führen darüber hinaus zu
einer optimalen Methode, die unter dem Namen Likelihoodmethode
bekannt ist. Nach dieser Methode werden die Parameter 0 - so bestimmt,
dass die Wahrscheinlichkeit für das Auftreten der beobachteten
Konstellation der Sterbefälle ein Maximum erreicht. Dies führt zur Bedingung

x _ t
/('A, A A • • • A) IJ [27f

2 Ti[°l) Max., (8)

die durch Logarithmieron in die handlichere Form

« \T.— T'(0',)12
— 1 y; In [2 Jt A(0'f)] — i 2 1

„,.77: Maximum (8a)
*=i x=r Jx(0i)

übergeht. Die Likelihoodmethode ist folgerichtig, wenigstens für grosse
Stichproben am wirksamsten und hinreichend, wenn überhaupt eine
hinreichende Methode existiert. Die Verteilungsgesetze der Parameter
0[ streben für grosse Stichproben gegen Normalverteilungen.
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Für grosse Stichproben verliert das erste Glied links in Formel (8a)
immer mehr an Bedeutung gegenüber dem zweiten Glied. Berücksichtigt

man nur dieses, für grosse Stichproben allein wesentliche
Glied, so geht die Bedingung (8a) in die Bedingung (7c), die der

%2-Minimum-Methodo entspricht, über. Die ^2-Minimum-Methode darf
daher im Sinne der Fishorschen Kriterien als beste Ausgleichungsmethode

gelten. Die nahe mit der %2-Minimum-Mothodo verwandten,
aus dem Prinzip der kleinsten Quadrate folgenden Bedingungen (7a),
(7 b) und (7d) weisen für grosse Stichproben nahezu die gleichen
Vorzüge auf wie die Bedingung (7c). Die durch die Bedingungen (6)

charakterisierte Methode der Momente hingegen ist im allgemeinen
weniger wirksam als die %2-Minimuin-Methode. Tn gowissen Spezialfällen

können beide Methoden zum gleichen Ergebnis führen.

Abschliessend sei noch festgestellt, dass die Fisherschen Kriterien
nur Aussagen über die Stichprobenverteilungen der Parameter 0[

geben. Daraus folgt, dass diese Kriterien über den Erfolg einer
Ausgleichung im konkreten Fall keine Anhaltspunkte liefern. Die
^-Minimum-Methode führt demuach nicht immer zur besten Ausgleichung,
sondern nur bei häufiger Anwendung im Durchschnitt zu besseren

Besullaten als andero Methoden.

B. Die mechanischen Methoden

Die analytischen Verfahren bewähren sich trotz ihrer wahrschein-
lichkeitsthooretischen Vorzüge in der Praxis oft nicht, weil keine

geeigneten analytischen Sterbogesetze gefunden werden können, die

für die ganze Sterbetafel gelten und ausserdem nur wenige Parameter
enthalten. Unter diesen Umständen wird oft einem der zahlreichen
mechanischen Verfahren der Vorzug gegeben, die stets zu ziemlich
befriedigenden, wenn auch nicht erstklassigen Ausgleichungen führen.

Nach den mechanischen Methoden worden die ausgeglichenen Worte
der Sterbenswahrscheinlichkeiten r/(, stets mit Hilfe von Ausdrücken
von der Form

k

(9)
v -k

d. h. als gewogenes Mittel von 2/c -)- t Werten berechnet. Die
verschiedenen, wohlbekannten mechanischen Formeln unterscheiden sich



— 30 —

untereinander nur durch die Anzahl und den Verlauf der
Gewichtskoeffizienten av, die ihrerseits stets der Bedingung

2«.-1 (90

genügen. " k

Die beobachteten Werte qx kann man aufteilen in den wahren
Wert qx und in die Abweichung Ax, d. h. man hat

<7* 3«+ 4.-

Für den ausgeglichenen Wert qx erhält man somit

-We +ft
% 2 a> s«+» + 2a" A*+> • (9a)

v~—k v=—k

Führt die Ausgleichungsformel (9), auf die wahren Werte qx angewendet,
zu richtigen Ergebnissen, d. h. ist

_ +4 _
3x 2a»2«+»> (10)

» -*

so liegen die wahren Werte qx auf einer analytischen Kurve, die aus
der Differenzengleichung (2ft + l)-ter Ordnung (10) bestimmt werden
kann. Unter diesen Voraussetzungen stellt das erste Glied rechts in
Formel (9 a) den wahren Wert qx dar und das zweite Glied den Fehler
des ausgeglichenen Wertes. Gilt die Differenzengleichung (10) nicht,
so führt die mechanische Ausgleichsformel (9) zu gewöhnlich wellenartig

verlaufenden, systematischen Abweichungen zwischen den wahren
Werten qx und den ausgeglichenen Werten q'x.

Wenn die Differenzengleichung (10) erfüllt ist, so ist die

Abweichung Ax eine zufällige Variable, die um den Mittelwert Null mit
der Streuung _

-fr
normal verteilt ist. Der durch das zweite Glied rechts in Formel (9a)
gegebene zufällige Fehler des ausgeglichenen Wertes Aqx ist somit
ebenfalls normal verteilt um den Mittelwert Null. Für die Streuung
gilt die Formel

°2(Ai'x) 2°J2 dx-hv

v ~k R'x + v
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Zu beachten ist ferner, class die Fehler der ausgeglichenen Werte
innerhalb eines gewissen Bereichs von Nachbarwerten teilweise aus
den gleichen Elementen aufgebaut sind. Die Fehler der ausgeglichenen
Werte sind daher untereinander stochastisch abhängig. Dieser
Umstand ist bei der Überprüfung von Ausgleichungen bedeutsam.

Die mechanischen Ausgleichungen führen im allgemeinen nicht
zu wirklich glatten Kurven; das zweite Glied in Formel (9a) rechts
bewirkt stets einen unregelmässigen Verlauf. Dieser Nachteil lässt
sich vermeiden, wenn man, wie beispielsweise nach der Methode von
King, die Ausgleichsformel nur auf äquidistante, sogenannte Kardinalpunkte

anwendet und die fehlenden Werte durch oskulatorische
Interpolation ergänzt. Dieses Vorgehen weist anderseits den Nachteil auf,
dass die Genauigkeit der ausgeglichenen Werte untereinander
verschieden wird, und dass das Ausgleichungsergebnis von der willkürlichen

Wahl der Kardinalpunktfolge abhängt.

Einen interessanten Weg, um im konkreten Fall eine möglichst glatte
Kurve und gleichzeitig einen engen Anschluss an die Beobachtungen zu
erreichen, schlägt Whittaker vor [8]. Von der Überlegung ausgehend,
dass bei einer gut ausgeglichenen Reihe die Differenzen höherer Ordnung
Amql. klein sind, berechnet er die Gewichtskoeffizienten av in Formel (9)

so, dass der Ausdruck

x=l x—l

ein Minimum wird; gm bedeutet dabei einen willkürlichen Gewichtsfaktor.

Zu einer wirklich glatten Kurve führt die Whittakersche Methode

allerdings auch nicht; immerhin kann man die Glätte durch eine

geeignete Wahl des Gewichtsfaktors gm innerhalb eines gewissen Rahmens

steigern. Vom wahrscheinlichkeitstheoretischen Standpunkt aus nimmt
die Whittakersche Methode eine Mittelstellung zwischen den analytischen
und mechanischen Verfahren ein. Ihre wahrscheinlichkeitstheoretischen
Eigenschaften sind noch nicht genügend abgeklärt.
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III. Die Uberprüfung der Güte von Ausgleichungen

Von einer guten Ausgleichung verlangt man

a) einen glatten Kurvenverlauf;
b) gute Übereinstimmung mit den Beobachtungen, d. h. möglichst

kleine Abweichungen zwischen Beobachtung und Ausgleichung;

c) einen nicht systematischen, zufallsartigen Verlauf dieser

Abweichungen.

Im folgenden sei versucht, die Methoden zur Überprüfung dieser
drei Eigenschaften zusammenzustellen und ihre Vor- und Nachteile
gegeneinander abzuwägen.

A. Die Glätte der Ausgleichung

Bei den analytischen Ausgleichungen und bei mechanischen
Ausgleichungen in der Art der Methode von King steht zum vorneherein
fest, dass die Ausgleichung zu einer glatten Kurve führt. In diesen

Fällen ist die Überprüfung der Glätte der Ausgleichung nicht
notwendig, weil es wohl keinen Sinn hat, den Unterschied in der Glätte
zu untersuchen, welcher zwischen verschiedenen analytischen Kurven,
z. B. Parabeln und Exponentialkurven, besteht. Anders verhält es

sich bei den meisten mechanischen Verfahren, weil bei diesen keine
wirklich glatten Kurven entstehen, sondern günstigstenfalls scheinbar

glatte Kurven, bei denen nur noch Unregelmässigkeiten im Kähmen

von Bundungsfehlern auftreten.
Bei einer glatten Kurve sind die Differenzen höherer Ordnung,

z. B. Amq'x, gewöhnlich klein. Die Quadratsumme der mten Differenzen
der ausgeglichenen Beihe eignet sich deshalb als Mass für die Glätte
einer Kurve. Für die unteren Alter genügt es in der Bogel, auf die
dritten Differenzen abzustellen; für die höheren Alter mit ihren
progressiv wachsenden Sterbenswahrscheinlichkeiten empfiehlt es sich,
eine Differenz m > 8 in Betracht zu ziehen. Je kleiner die Quadratsumme

der mten Differenzen ausfällt, desto besser ist die Glätte der
untersuchton Kurve. Als befriedigend darf die Glätte immer dann

gelten, wenn die Quadratsumme kleiner ausfällt als

£+ tt-1

y>[AmiY
X

n 22'"-2, (11)
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gemessen in Einheiten der letzten Dezimale von q'x. Der Grenzwort (11)

ergibt sich unter der Annahme, dass die m-te Differenz A"'q'x an sich

verschwindet, aber den maximalen Rundungsfehler aufweist. Dieser

tritt auf, wenn die letzte Dezimale der ausgeglichenen Werte
alternierend den Rundungsfehler + aufweist.

Beispiel: Die nach der Methode von Woolhouse mechanisch
ausgeglichene Sterbetafel SM 1901/10 führt in dem 30 Alter umfassenden
Intervall 10 <£<39 zu einer Quadratsumme der dritten Differenzen

von 2-293 gemessen in Einheiten der letzten (fünften) Dozimale. Nach
Formel (11) wäre bei einer glatten Kurve nur ein Betrag von 30 2'1 — 480

zulässig. Die Ausgleichung nach Woolhouse führt demnach nicht zu
einer genügend glatten Kurve.

B. Grundsätzliche Bemerkungen über Testverfahren

1. Allgemeine Festsetzungen

Bei der Überprüfung einer Ausgleichung hinsichtlich der Grösse

der Abweichungen zwischen Beobachtung und Ausgleichung in den
einzelnen Altern und des unsystematischen Verlaufs dieser

Abweichungen bedient man sich mit Vorteil eines sogenannten
Testverfahrens. Diese Verfahren stützen sich auf das im Kapitel I
geschilderte Stichprobenmodell und auf die Annahme, dass die
Ausgleichung auf die wahre Sterbetafel geführt habe. Die gegebenen

Beobachtungen werden somit als eine blindlings ausgewählte Stichprobe

aus der Grundgesamtheit aufgefasst, in der die Sterblichkeit
durch die gefundene Ausgleichung gegeben ist. Die Frage nach der

Übereinstimmung zwischen Ausgleichung und Beobachtung geht dann
in die andere Frage über, ob die vorhandenen Beobachtungen eine

Stichprobe aus der angenommenen Grundgesamtheit sein könnten.
Um dies abzuklären, teilt man die Gesamtheit aller Stichproben, deren
Struktur durch das ri-dimensionale Verteilungsgesetz (4) gegeben ist,
in zwei Untergesamtheiten auf, nämlich in die Untergesamtheit der

praktisch vorkommenden Stichproben und in die Untergesamtheit
der theoretisch an sich möglichen, praktisch aber nicht auftretenden
Stichproben. Dieso beiden Untergesamthoiten sollen so abgegrenzt
werden, dass auf die letztere ein praktisch zu vernachlässigender
Anteil P — z. B. 5% — und auf die erstere ein Anteil 1 — P —• z. B.

3
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95% — aus der Gesamtheit aller Stichproben entfällt. Man betrachtet
dann die Übereinstimmung zwischen Ausgleichung und .Beobachtung als

genügend oder ungenügend, je nachdem die gegebenen Beobachtungen
zur einen oder andern Untergesamtheit gehören. Wie hoch der Anteil
P, die sogenannte Wesentlichkeitsschranke, zu bemessen ist, hängt vom
subjektiven Ermessen dos Ausgleichers und von den Folgen eines

allfälligen Fehlurteils ab. Bei Sterbetafeln empfiehlt es sich in der Regel,
P nicht allzu klein zu wählen, weil sonst auch recht schlechte

Ausgleichungen noch als zulässig angesehen werden müssten. Im allgemeinen
wird P im Bereich zwischen 5% und 1% als angemessen betrachtet.

Im Interesse einer möglichst klaren Darstellung ist es

zweckmässig, die Gesamtheit aller Stichproben geometrisch zu veranschaulichen.

Die n beobachteten Anzahlen der Sterbefälle rJ.\, T2 Tn
lassen sich als rechtwinklige Koordinaten eines Punktes in einem
n-dimensionalen euklidischen Raum deuten. Die Punkte der beiden oben
erwähnten Untergesamtheiten der Stichproben erfüllen dann jede einen

gewissen Teil dieses Raumes. Die Untergesamtheit der praktisch
vorkommenden Stichproben führt auf Punkte in einem Raumbereich,
welchen man den Annahmebereich (region of acceptance) nennt. Die

Punkte der Untergesamtheit der praktisch nicht vorkommenden
Stichproben liegen im restlichen Raum; den Bereich dieser Punkte nennt
man den kritischen Bereich (critical region).

Durch die Wahl der Wesentlichkeitsschranke P sind die beiden

genannton Raumbereiche, nämlich der Annahmebereich und der kritische
.Bereich, keineswegs eindeutig gegeben. Es liessen sich vielmehr
unendlich viele derartige Bereiche angeben, die sich alle auf dio gleiche
Wesentlichkeitsschranke P stützen. Jeder einzelnen derartigen
Abgrenzung entspricht dabei ein bestimmtes Testverfahren. Unter diesen

unendlich vielen kritischen Bereichen sind jedoch nicht alle in gleicherweise

geeignet. Bei der Auswahl von geeigneten kritischen Bereichen
sind zwei Gesichtspunkte massgebend, nämlich

a) der kritische Bereich muss, wenn immer möglich, so gewählt
werden, dass die Feststellung, ob eine konkrete Stichprobe in
den kritischen Bereich fällt oder nicht, nach einer einfachen,

möglichst universal gültigen Regel erfolgen kann.

b) der kritische Bereich muss so gewählt werden, dass die Chance,
eine ungenügende Ausgleichung als solche zu entdecken, möglichst
gross wird.
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.Diese beiden Gesichtspunkte führen dazu, eine im Sinne von h)
möglichst leistungsfähige Masszahl M zu bilden, die aus den beobachteten

und erwarteten Sterbefällen zu berechnen ist. Im konkreten
Dali liegt dann eine gegebene Stichprobe im kritischen Bereich oder

nicht, je nachdem die Masszahl einen gewissen kritischen Wert M*
überschreitet oder nicht.

2. Das Verteilungsgesetz der Masszahl M

Die Masszahl M ist, da sie aus den zufälligen Variablen T1,T2... Tn

aufgebaut sein soll, ihrerseits eino zufällige Variable, die einem
Verteilungsgesetz mit der Frequenzfunktion f(M) folgt. Der gesuchte kritische
Wert M* ergibt sich dann als Funktion der Wesentlichkeitsschranke P
aus der Beziehung M

P f f(M) dM (12)
M*

und ist somit gegeben, sobald das Verteilungsgesetz f(M) bekannt ist.
Dieses Verteilungsgesetz lässt sich grundsätzlich aus dem w-dimensionalen

Verteilungsgesetz der Sterbefällo (4) durch Summation der Wahrscheinlichkeiten

für alle Wertkonstellationen der Sterbezahlon Tlt T2 Tn
bilden, welche auf die gleiche Masszahl M führen. Analytisch ist somit
f(M) durch das «-fache Integral

r r r x
__ _ i (fls-'i'»)8

f(M) J J J II (2 7t Tx)~^e
2 t, d'l\ (18)

gegeben, wobei über ein Gebiet zu integrieren ist, so dass die Masszahl M
als Funktion clor beobachteten und erwarteten Sterbefälle stets den

gegebenen Wert M annimmt. Die Auflösung des «-fachen Integrals (13)
führt fast immer auf grosse, wenn nicht unüberwindliche Schwierigkeiten.

Diese lassen sich unter Umständen vermeiden oder doch
verkleinern, wenn man an Stelle der Frequenzfunktion zuerst die
zugehörige charakteristische Funktion

oo

J'eUMt(M)dM (14a)
— oo

bestimmt. Die Frequenzfunktion selbst lässt sich anschliessend aus
der charakteristischen Funktion zu
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(14b)

— oo

bestimmen oder noch einfacher ans einer Transformationstabolle
entnehmen, in cler wie in einem Wörterbuch charakteristische Funktionen
zu gegebenen Frequenzfunktionen und umgekehrt nachgeschlagen werden

können.
Die charakteristische Funktion (14a) kann direkt aus der Verteilung

(4) berechnet werden, nämlich als Erwartungswert der Funktion ellM

bezüglich der w-dimensionalen Verteilung der Sterbefälle (4). Es ist

oo oo oo

/ / • • • ßUM(Tl>F* •''T,ä /(A' A • • • A) näTx. (15)
— oo — oo — oo

Die Formeln (13) und (15) tragen dem Umstand noch nicht
Rechnung, dass die Ausgleichung aus den gegebenen Beobachtungen
berechnet wurde. Die Berücksichtigung der Ausgleichungsmethode
erfolgt in verschiedener Weise, je nachdem ob eine mechanische oder
eine analytische Methode vorliegt.

Bei mechanischen Ausgleichungen sind in der Masszahl M durch
Substitution der mechanischen Ausgleichsformel (9) die nach der

Ausgleichung erwarteten Toten zu ersetzen durch Ausdrücke, die
ausschliesslich von den beobachteten Toten abhängen. Die
charakteristische Funktion kann dann ohne weiteres berechnet worden. Fin-
die näheren Einzelheiten der Methode sei auf die Arbeit [10] verwiesen.

Bei analytischen Ausgleichungen ist in folgender Weise

vorzugehen: Die k Parameter 0'r des analytischen Sterbegosetzes ip(x,0'r)
sind als Funktionen der beobachteten Sterbefälle 1\, T2 Tn ihrerseits

zufällige Variable und folgen zusammen mit der Masszahl M einem

(fc + 1) dimensionalen Verteilungsgesotz, dem die (Zc-|-t) dimensionale
charakteristische Funktion

oo oo * (14a')
ilo'f °i x

J Je ^ /(TpTj... Tn)rid'Tx
- oo — oo — oo

zugeordnet ist, die analog wie in Formel (15) als Erwartungswert von
k

e r=l
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bezüglich der Verteilung (4) zu berechnen ist. Durch Inversion ergibt
sich anschliessend das zugehörige simultano Verteilungsgesetz der
k -h 1 zufälligen Variablen M, 0[ 0'k und schliesslich -- nachdem

man über die k Parameter 0'r integriert hat — das allein verlangte
Vorteilungsgesotz der Masszahl M zu

Oö CO OO
y

f(M) j f... o[, o:2...o'k)rido:.
— oo — OO — OO

Aus diesen Darlegungen dürfte zur Genüge hervorgehen, dass die

Herleitung des Verteilungsgesetzes einer beliebigen Masszahl M im
allgemeinen recht schwierig ist. Es ist daher nicht verwunderlich, dass

derartige Verteilungsgesetze bis jetzt nur für verhältnismässig wenige
Masszahlen gefunden werden konnten. Man ist daher gezwungen, sich

auf die wenigen Masszahlen zu beschränken, bei denen das zugehörige
Verteiluugsgesetz bekannt ist.

Oft wird man sich auch mit dem Vorteilungsgesetz begnügen,
das die verwendete Ausgleichungsmethode ausser acht lässt. Dieses

vereinfachte Vorgehen ist allerdings nur dann statthaft, wenn die
Anzahl der Parameter im analytischen Sterbegesetz im Vergleich zur
Anzahl der berücksichtigten Alter in der Storbetafel klein ist.

Im allgemeinen hängt das Verteilungsgesetz der Masszahl M
bei analytischen Ausgleichungen nicht nur von der Anzahl der aus
den Beobachtungen bestimmten Parameter ab, sondern auch von der
Methode der Parameterberechnung. Beispielsweise ist das Verteilungsgesetz

verschieden, wenn bei der Makehamschen Formel die drei
Parameter nach der Methodo von King-Hardy oder nach der
^2-Minimum-Methode von Cramer-YVold bestimmt werden, und zwar ist die

Streuung von M bei Anwendung der Methodo von King-Hardy grösser
als bei der Mothode von CJramer-Wold. Dies bedeutet nichts anderes,
als dass dio Ausgleichung nach King-Hardy mit Eücksicht auf die

weniger leistungsfähige Ausgleichungsmethode nicht so streng
beurteilt wird, wie die Ausgleichung nach Cramer-Wold. Eine derartige
Beurteilung mit ungleichen Massstäben, die dazu führen könnte, dass

die schlechtere Ausgleichung als die bessere erscheint, befriedigt nicht.
Sinnvoller ist es, stets auf das Verteilungsgesetz abzustellen, das für
die leistungsfähigste Methode der Parameterbestimmung, d. h. für dio

%2-Minimum-Methode gilt.
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3. Übersicht über die gebräuchlichsten. Masszahlen

Die gebräuchlichsten Masszahlen lassen sich in drei Hauptgruppen
einordnen, nämlich in

a) Masszahlen, welche die Güte der Übereinstimmung zwischen

Ausgleichung und Beobachtung in den einzelnen Altern ohne

Berücksichtigung der Reihenfolge dieser Alter messen;

b) Masszahlen, welche den unsystematischen, regellosen Verlauf
dieser Abweichungen messen;

c) kombinierte Masszahlen, welche sowohl die Abweichungen in
den einzelnen Altern als auch deren regellose Folge erfassen.

Mit diesen Masszahlen lässt sich nicht nur die Frage beantworten,
ob eine bestimmte Ausgleichung genügt oder nicht, sondern auch, wie
verschiedene Ausgleichungen nach ihrer Güte zu klassieren sind, und
schliesslich, welche unter den vorliegenden Ausgleichungen die beste

ist. Als ein objektives Mass für eine derartige Klassierung darf die
Wahrscheinlichkeit

oo

P(M) I' f(M)dM (IG)
k

angesehen werden, in der M die bei der einzelnen Ausgleichung
aufgetretene Masszahl bedeutet. Je grösser die Wahrscheinlichkeit P(M)
ausfällt, desto besser wird die Ausgleichung beurteilt. Die Ausgleichung
mit dem grössten Wert von P(M) wird als die beste angosehen. Diese

Schlussweise ist allerdings im konkreten Fall nicht unbedingt
stichhaltig; bei häufiger Anwendung trifft man jedoch in der Regel damit
das richtige.

Im folgenden sollen die Masszahlen, die den wichtigsten Test-
verfahren zugrundo liegen, kurz erörtert werden. Auf eine Ableitung
der Formeln wird im allgemeinen verzichtet; für diese Ableitungen
sei auf die im Literaturverzeichnis angeführten Werke und Arbeiten
verwiesen.



C. Testverfahren für die Güte der Übereinstimmung
zwischen Ausgleichung und Beobachtung

in den einzelnen Altern

1. Die Quadratsumme der Abweichungen

Es liegt nahe, die Güte der Übereinstimmung zwischen

Ausgleichung und Beobachtung durch die Quadratsummen

n • v i,'',

AT* y](T'x-Tx)* (17a)
x=1 V ' ''' '

oder

rr/,)
zu messen. Diese Masszahlen verschwinden, wenn Beobachtung und

Ausgleichung zusammenfallen, und werden um so grösser, je mehr die

Ausgleichung von den Beobachtungen divergiert. Die Verteilungsgesetze

der Masszahlen (17) könnten mit Hilfe der im Abschnitt B, 2,

skizzierten Methoden verhältnismässig einfach berechnet werden. Diese

Rechnung würde zeigen, dass die Verteilungsgesetze der Masszahlen

(17) zwei für die Anwendungen nachteilige Eigenschaften aufweisen,
nämlich dass

a) die unbekannten n Erwartungswerto Tx der wahren Sterbetafel
als Parameter auftreten, und dass

b) die Verteilungsgesetze der Masszahlen (17) von den besonderen

Daten der Sterbetafel und des Beobachtungsmaterials abhängen
und daher bei jeder Anwendung wieder neu berechnet werden
müssten.

Die praktische Anwendung der Masszahlen (17) stösst somit auf
beträchtliche Schwierigkeiten. Für grosse n (n Anzahl der
Altersklassen in der Sterbetafel) lassen sich die Verteilungsgesetze der
Masszahlen (17) immerhin näherungsweise ermitteln, wenn man
berücksichtigt, dass diese Verteilungsgesetze gegen Normalverteilungen mit
den Mittelwerten

E(AT>)=yiTx und .E(^) =2-^ (17')
X=> 1 X—t

-k'\ i'y ^x~X

'H«) '
f(Tx),-ß4,
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und den Streuungen

6*(A T2) 2 V, Tl + 2 Tx und o*(A g2) £ (2 -il + |v\ (17")
X—l X=l «=»l\ ±ix

streben.

Ersetzt man die wahren Werte Tx und qx durch die aus der

Ausgleichung hervorgegangenen Werte T'x und q'x, so kann man die

Verteilungsgesetze der Masszahlen (17) wenigstens in erster Näherung
berechnen. Die Güte der Näherung im konkreten Fall bleibt allerdings
ziemlich ungewiss.

2. Der ^2-Test

Die unter Abschnitt 1 behandelten Kriterien zlT2 und zlr]2 lassen

sich durch eine einfache lineare Transformation, die sogenannte
Standardisierung, so umgestalten, dass ihr Verteilungsgesetz von den «lästigen»
Parametern 'l\, T2 • Tn (nuisance parameters) befreit wird. Man
ersetzt die absoluten Abweichungen Tx—Tx durch die standardisierten

Abweichungen
J-X 1X*- m ' (1

die für alle Alter einheitlich normal verteilt sind um den Mittelwert
Null mit der Streuung Eins. Man erhält dann die Quadratsumme

n n (Ii —. T l2

a:=i x=i Tx

welche nach Helmert (1876) [16] und K. Pearson (1900) [20] dem

Verteilungsgesetz y2 n

m ' {fil\ • {Wb)

der sogenannten ^2-Verteilung mit n Freiheitsgraden folgt. Dank der

Standardisierung hängt die %2-Verteilung (18b) nur von der Anzahl n
der Altersklassen ab. Die Anzahlen der unter Eisiko stehenden

Personen, die Sterbetafel und andere von Fall zu Fall ändernde Daten
spielen dagegen keine Eolle mehr. Die Masszahl %2 erlaubt somit eine

Beurteilung von Sterbetafeln auf einer universal gültigen Grundlage.
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a) Anwendung auf analytische Ausgleichungen

Die 'Formeln (18) gelten zunächst nur für Sterbetafeln, die nicht
aus den gegebenen Beobachtungen hergeleitet worden sind. Wie
ß. A. Fisher (1924) [15] gezeigt hat, darf jedoch die ^-Methode ohne

weiteres auch auf analytische Ausgleichungen angewendet werden,
wenn folgende Voraussetzungen erfüllt sind:

a) Die Anzahl der Beobachtungen ist in allen Altersklassen gross.

ß) Die Parameter dos analytischen Sterbegesotzos sind nach der

Likelihoodmethodo oder der nahe mit diesem Verfahren verbundenen

^-Minimum-Methode oder auch der Methode der kleinsten

Quadrate bestimmt worden.

y) die Anzahl der Freiheitsgrade n wird für jeden aus den Beob¬

achtungen ermittelten Parameter um je eine Einheit reduziert.

Wird somit eine Sterbetafel nach einem Sterbegesetz mit k
Parametern ausgeglichen, so gilt für die aus den beobachteten (Tx) und
erwarteten (T'x) Anzahlen der Sterbefälle gebildete Masszahl

n n (T'—T)2
rpi

d8a')
x L x~ 1 jL v

das Verteilungsgesetz

& 2 (y'2) 2

fix'2) —7\ ' (18b')
_t± j %—k\

2 2 r
die %2-Verteilung mit (a — k) Freiheitsgraden.

Im Abschnitt II, A, wurde gezeigt, dass die ^2-Minimum-Methode
die leistungsfähigste Methode für die Parameterbestimmung ist. Nach
den Ausführungen am Schlüsse des Abschnittes III, B, 2, darf daher
die Verteilung (18 b') für alle analytischen Ausgleichungen schlechthin
angewendet werden, selbst wenn die Parameter nicht nach der leistungsfähigsten

Methode bestimmt wurden.

b) Anwendung auf rnechanische Ausgleichungen

Entgegen einer weit verbreiteten Übung gilt die Verteilung (18 b')
nicht, wenn eine mechanische Ausgleichung vorliegt. Wie in der
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Arbeit [101 gezeigt wird, folgt die Masszahl %'2 [Formel (18a')] bei
mechanischen Ausgleichungen einem allgemeineren Verteilungsgesetz,
dessen charakteristische Funktion in der Form

9V.(«) - [l + <h(— 2ii) + ca(— 2A)2 cB(- 2h)»]-4 (19)

darstellbar ist.

Die charakteristische Funktion der gewöhnlichen ^-Verteilung (18 b)

9V(<) [(l-2<]"4 (20)

ist in der allgemeineren Verteilung (19) als Spezialfall enthalten. Die

Frequenzfunktion der verallgemeinerten ^-Verteilung (19) scheint
nicht in expliziter Form darstellbar zu sein, hingegen lassen sich ihre
Momente direkt aus der charakteristischen Funktion (19) berechnen.

Für den Mittelwert gilt z. B. die Formel

(21)

für v ^ 0

1 für v — 0,

d. h. der Mittelwert der y2-Verteilung (19) ist gleich der «-fachen
Quadratsumme der Koeffizienten a„, die ihrerseits durch die
Gewichtskoeffizienten a„ der mechanischen Ausgleichsformel (9) gegeben sind.
Der Mittelwert (21) entspricht der Anzahl der Freiheitsgrade n — k

bei den analytischen Ausgleichungen. Bemerkenswert ist der (Jmstand,
dass die Anzahl der Freiheitsgrade bei mechanischen Ausgleichungen
durch proportionale Kürzung der Anzahl n und bei analytischen
Ausgleichungen durch Subtraktion der Parameterzahl Ic aus der Anzahl n,
hervorgeht.

In erster Näherung darf für mechanische Ausgleichungen mit der

gewöhnlichen ^-Verteilung (18 b') gerechnet werden, wobei der Mittelwert

(21) für die Anzahl der Freiheitsgrade in .Rechnung zu stellen ist.
In der nachstehenden Tabelle sind die Mittelwerte von %'2 für einige
bekannte mechanische Formeln zusammengestellt.

+k
E(X2) =n^r nX,

v —k

mit a„
>a,.—
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Ausgleichsformel
(Koeffizientenfolge a„)

Mittelwert
E'ü:'2)

Formel (21)

5-Punkte-Formel von Wittstein

1(1,1,-4
0,800 n

9-Punkte-Formel von Finlaison

£(1,2, 3, 4,-20
0,736 n

15-Punkte-Formel von Woolhouse

0,-2,3, 7, 21,24,-100
0,779 n

19-Punkte-Formel von Karup

lisö (~4> ~12> ~18> ~16> °' 42> 106»174> 228> -1000 • • •)

0,763 n

15-Punkte-Formel von Spencer

(-3,-6,-5, 3, 21,46, 67,-246
0,730 n

21-Punkte-Formel von Spencer

Üb? (-1» ~3' -5> -2- 6> 18' 33> 47> 57> -290 • • •)

0,800 n

30-Punkte-Formel von King für Ausgleichungen vom
2-ten Kardinalpunkt an

0,825 n

c) Bemerkungen

Die ^-Methode nimmt unter den verschiedenen bereits bekannten
Testverfahren eine dominierende Stellung ein. Diese Stellung verdankt
sie folgenden Vorzügen:

a.) Die Masszahl %2 ist leicht und mit elementaren Hilfsmitteln
berechenbar.

ß) Die x2'Verteilung (18 b') ist analytisch verhältnismässig
einfach aufgebaut und lässt sich auch leicht anwenden.

y) Der %2-Test ist eigentlich das einzige Testverfahren, bei dem die

Auswirkungen der angewendeten Ausgleichungsmethode auf das

Verteilungsgesetz der Masszahl genau bekannt sind. .Bei den analytischen
Ausgleichungen ist überdies die dabei zur Anwendung gelangende,
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von R. A. Fisher herrührende Freiheitsgradregel so einfach, dass sie

selbst von Personen angewendet werden kann, welche die
mathematischen Grundlagen des Verfahrens nicht restlos beherrschen.

8) Die numerischen Untersuchungen im IV. Kapitel zeigen, dass

das Verfahren unter allen Umständen zu einem einigermassen
brauchbaren Resultat führt; Fälle, bei denen dio ^-Methode gänzlich
versagt, wie sie bei andern Verfahren auftreten, kommen nicht vor.

Diesen Vorzügen stehen anderseits gewisse Nachteile gegenüber;
insbesondere ist es eine Schwäche des ^2-Tests, dass er das Vorzeichen
und die Reihenfolge der einzelnen Abweichungen unberücksichtigt
lässt. Unter besonderen Voraussetzungen ist es daher oft möglich,
schärfere Kriterien anzugeben als die Masszahl ^2.

Die gegenüber der wahren Tafel berechneten standardisierten
Abweichungen [Formel (18)] wären untereinander stochastisch
unabhängige, zufällige Variable, die alle ein und demselben normalen
Verteilungsgesetz ^

fix) (2 nyhe~* (22)

folgen würden. Werden die standardisierten Abweichungen gegenüber
einer aus den gegebenen Beobachtungen abgeleiteten Ausgleichung
berechnet, so sind sie untereinander nicht mehr unabhängig; hei

langen Beobachtungsreihen und wenn bei analytischen Ausgleichungen
das Sterbegesetz nur verhältnismässig wenige Parameter aufweist,
fällt diese Abhängigkeit jedoch nicht stark ins Gewicht. Man darf
dann die einzelnen Werte von %x als untereinander unabhängig
betrachten; die Anzahl der Freiheitsgrade der Ausgleichung lässt sich
überdies näherungsweise berücksichtigen, indem man an Stelle der

Verteilung (22) mit der Verteilung

rechnet. Dieser theoretischen Verteilung kann man die Verteilung der
in den einzelnen Altern wirklich aufgetretenen Werte von %'x gegenüberstellen.

Ergibt dieser Vergleich eine genügende Übereinstimmung, so

darf die zu prüfende Ausgleichung als befriedigend gelten.

3. Der ^-Test
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Bei der praktischen Durchführung empfiehlt es sich, die
beobachteten Werte von %x nach einigen zweckmässig abgegrenzten Klassen

auszuzählen. Beispielsweise könnte folgende Klasseneinteilung in
Frage kommen:

Klasse Intervalle für x'x

Beobachtete | Erwartete
Anzahlvon standardisierten

Abweichungen im
gegebenen Intervall

1 ^ < —1.0 nL »i
2 1,0 < Xx 0,5 n2 «2

3 -0,5 < X'x<0 «3 «3

4 0<X*< 0,5 »4 »4

5 0,5 < xl < 1.0 «6 «5

6 OHA ih n6

Total — 00 < Xx < + 00 n n

Die an sich willkürliche Klasseneinteilung muss so gewählt werden,
dass stets nr > 6 ist.

Die Übereinstimmung der beobachteten und der erwarteten
Verteilung von x'x kann schliesslich mit Hilfe der Masszahl

k {n — nrff (28)

geprüft werden, die — wenn k Klassen gebildet worden (im Beispiel
oben sechs Klassen) —• einer £2-Verteilung mit k — 1 Freiheitsgraden
folgt. Die Güte der Ausgleichung beurteilt sich so schliesslich nach
der Wahrscheinlichkeit P(%2), mit der ein grösserer Wert für f als
der nach Formel (23) berechnete, zu erwarten ist.

Grundsätzlich bedeutet das im vorliegenden Abschnitt geschilderte

Verfahren einen Fortschritt gegenüber der im vorigen Abschnitt
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geschilderten gewöhnlichen ^-Methode, weil das Verteilungsgesetz
der standardisierten Abweichungen selbst und nicht nur sein zweites
Moment überprüft wird. Praktisch erhält man aber kaum ein

zuverlässigeres Resultat, weil die Klasseneinteilung bei höchstens 100 Altern
zu grob gewählt werden muss. Nicht befriedigend ist ferner der
Umstand, dass die für das Ergebnis nicht unwesentliche Klasseneinteilung
ziemlich willkürlich vorgenommen werden muss. Ob und wie der ^-Test
auch auf mechanische Ausgleichungen angewendet werden darf, wäre
noch abzuklären.

4. Der co2-Test

Der unter Abschnitt 3 erläuterte %-Test gipfelt im Vergleich der
theoretischen und beobachteten Frequenzfunktionen f(%'c) der
standardisierten Abweichungen. Dieser Vergleich kann nach einer von Gramer

(1928) [12] und v. Mises (1931) [7] unabhängig voneinander entwickelten
Methode noch besser an Hand der Verteilungsfunktion

m //(*) dX
— OO

erfolgen; dabei kann insbesondere auf eine willkürliche Bildung von
Klassen wie beim %-Test verzichtet werden. Die eu2-Methode stützt
sich auf die Masszahl

©o

rf -c J[F(X)-Ftf)?äx, (24)

— oo

die aus den theoretischen F(%) und den beobachteten F(%')
Verteilungsfunktionen der standardisierten Abweichungen berechnet wird.
Nach v. Mises gelten, wenn die theoretische Verteilung eine

Normalverteilung ist, für Erwartungswert und Streuung der Verteilung von
Co2 die Formeln

°>12
J5(ft)2) l und cr2(co2) 0,b3 (25)

71

Das Verteilungsgesetz von co2 selbst konnte bisher noch nicht gefunden
werden.
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Smirnoff (1936) [25] hat eine interessante Modifikation der

«2-Methode vorgeschlagen. An Stelle der Masszahl (24) definiert er

oo

0>l j[m-F(x')YdF(x) (26)
— oo

und erreicht damit, dass das Verteilungsgesetz von co2 unabhängig
wird von der theoretischen Verteilung F(%). Nach Cramer [2] gelten
für Mittelwert und Streuung von co2 die Formeln

e«) A «Hl <*)

Für grosse n strebt die Verteilung von a>2 gegen eine Grenzverteilung,
deren P-Funktion durch den Ausdruck

2Jen

1 oo f Q-wvlfa
IimP(co2)=-2 / IL (28)

«-»-oo n k=i J [/—zmxz
(2/c—l)w

dargestellt werden kann. Formel (28) sieht für die praktischen
Anwendungen nicht gerade verlockend aus und ist scheinbar noch nicht
numerisch ausgewertet worden.

Die et>2-Tests sind zweifellos dem ^-Tost überlegen. Für die
praktischen Anwendungen ist das Verfahren aber noch zu wenig entwickelt.

5. Die P(H)-Tests

a) Die Verteilungsfunktionstransformation

Mit Hilfe der Standardisierung konnte erreicht werden, dass die
Abweichungen zwischen Beobachtung und Erwartung in allen Altern
einer einheitlichen Normalverteilung folgen. Neben der Standardisierung

gibt es eine weitere Methode, nach der sich eine Reihe von
zufälligen Variablen mit untereinander verschiedenem, aber stetigem
Verteilungsgesetz so transformieren lässt, dass eine einheitliche
Verteilung entsteht. Diese, Verteilungsfunktionstransformation genannte,
Operation ordnet der zufälligen Variablen mit der Frequenzfunktion
fix) die neue Variable

V / fix) dX Fix) (29)
zu. -U
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Die neue Variable y genügt stets der Rechtecksverteilung (oft auch

Gleichverteilung genannt)

/ 1 für 0 < y < "1

Ky) \nt- i I (29')\ 0 fur y < 0 und y > 1 J

Substituiert man ferner
X — 2 In y, (30)

so folgt die Variable X der Exponentialverteilung

f(X)=\e~T X>0. (30')

Führt man die beiden Transformationen (29) und (30) an einer Folge

von stochastisch unabhängigen zufälligen Variablen XnXz %»durch>

und vereinigt man anschliessend die neuen Variablen Xx zur Masszahl

X, 2 | In77^| 2^. (31)
X

so erhält man eine zufällige Variable, die dem Verteilungsgesetz

-T 5n_l
6 2 X

f{X) (81')
r(n) 2"

V

d. h. einer £2-Verteilung mit 2n Freiheitsgraden, folgt.

b) Anivenclung auf Sterbetafeln

Bei der Anwendung auf Sterbetafeln ist folgende Rechnung
durchzuführen:

1. Berechnung der standardisierten Abweichungen

T' — T
Xx -^—±; (32)

1/T't

2. Verteilungsfunktionstransformation von %x\

Man bestimmt mit Hilfe einer Tabelle über das Gausssche

Wahrscheinlichkeitsintegral die der Rechtecksverteilung (29')
folgenden Variablen

Xx

y* ®(x*) (Wfe'^dx; (82a)
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3. Man ermittelt) die Hilfsgrössen

K — 2ln?A;

und bildet die Masszahl

h=^h\ (32b)
X

4. Man berechnet die Wahrscheinlichkeit P (Xj) auf Grund der ^-Verteilung

mit 2n Freiheitsgraden und zieht aus dorn berechneten

Wort die üblichen Schlüsse über die Güte der Ausgleichung.

Zu beachten ist, dass man an Stelle der Transformation (32a)
ebensogut mit der Transformation ^

rechnen könnte, die ebenfalls auf die Rechtecksverteihmg (29') führen
würde. Geht man an Stelle von (32a) von (32a') aus, so erhält man
eine andere Masszahl Xn, die dem gleichen Verteilungsgesetz (31')
folgt wie die Masszahl X1. Die beiden Masszahlen Xj und Xn haben

jede für sich eine besondere Bedeutung. Die Masszahl Xj ist nur wirksam

für schlechte Ausgleichungen, bei denen die zu prüfonde Tafel
zu tief verläuft und umgokehrt die Masszahl Xu, wenn die zur Prüfung
vorgelegte Tafel zu hoch verläuft. Diese Eigenschaft der beiden Tests
ist eine Folge der logarithmischen Transformation (29), die für gegen
Null strebende Worte von yx zu progressiv wachsenden Beträgen für Xx

führt, während umgekehrt Xx für gegen Eins strebende Werte von yx

nur schwach reagiert. Weiss man nicht zum voraus, in welcher Richtung
die zu prüfende Tafel eventuell von der wahren Tafel abweichen könnte,
so ist es ratsam, beide Masszahlon Xl und Xn nebeneinander anzuwenden.

Die Formeln (32) tragen dem Umstand nicht Rechnung, dass die

standardisierten Abweichungen dank dor Ausgleichung nicht
vollständig unabhängige Variable sind. Bei langen Beobachtungsreihen
und wenn nur wenige Parameter des analytischen Sterbegesetzes aus
den Beobachtungen bestimmt worden, kann man näherungsweise an
Stolle der standardisierten Abweichungen gemäss Formel (32) die Werte

Xx

in Rechnung stellen.

4
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c) Die Verbindung von mehreren unabhängigen Tests

in einen einzigen Test [19]

Die P(A)-Tests können nicht nur zur direkten Überprüfung von
Sterbetafeln benutzt werden, sondern auch, um mehrere untereinander
unabhängige Tests in einen einzigen Test zu kombinieren. Bei Sterbetafeln

können z. B. einzelne einander nicht überschneidende
Abschnitte nach verschiedenen Methoden ausgeglichen werden. Für jeden
Abschnitt kann ferner ein besonderer Test auf Grund einer nicht
notwendig einheitlichen Masszahl angewendet werden. Im Iten Abschnitt
sei z. B. auf Grund einer Masszahl M( eine Wahrscheinlichkeit P(Mt)
berechnet worden. Aus allen Wahrscheinlichkeiten P(Mt) zusammen
lässt sich dann die kombinierte Masszahl

V2|lnP(Mj)| (31?)
1 1

aufbauen, die einer %2-Verteilung mit 2r Freiheitsgraden folgt. Die
Wahrscheinlichkeit P(XU) beurteilt dann die Ausgleichung über die

ganze Sterbetafel.
Die P(d)-Tests setzen bei ihrer Anwendung bedeutende wahr-

scheinlichkeitstheoretische Kenntnisse voraus. Sie werden deshalb
leider nur verhältnismässig selten praktisch angewendet, obschon
sie — wie im nächsten Abschnitt gezeigt werden soll —• in gewisser
Hinsicht das schärfste nur denkbare Kriterium darstellen. Unbefriedigend

ist es, dass der Test für mechanische Ausgleichungen mit
Rüoksicht auf die starke Abhängigkeit der einzelnen Abweichungen
untereinander nicht anwendbar ist. Auch für analytische
Ausgleichungen ist die Anwendung der Ausgleichungsmethode auf das

Verteilungsgesetz der Masszahlen Xx und Xu eigentlich noch nicht
einwandfrei abgeklärt.

6. Die Likelihood-Kriterien von Neyman und Pearson [5]

a) Grundsätzliche Erwägungen

Die bisher geschilderten Tests wurden im wesentlichen auf intuitiver

Grundlage gefunden. Bs stellt sich die Frage, welcher dieser
Tests am leistungsfähigsten ist, oder ob gar irgendwelche weiteren
Kriterien noch leistungsfähiger wären. Um diese Frage beantworten

zu können, muss zuerst abgeklärt werden, ob und allenfalls wie die

Leistungsfähigkeit eines Tests beurteilt werden kann.
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Bei der Anwendung eines Testverfahrens bestehen zwei Möglichkeiten,

ein Fehlurteil zu fällen, nämlich
1. das Fehlurteil erster Art, bei dem man eine richtige Hypothese

H0 über die Sterbetafel verwirft, weil zufällig eine Masszahl über dem

kritischen Wert aufgetreten ist. Geht man bei allen Tests stets von
der gleichen Wesentlichkeitsschranke P aus, so ist ein Fehlurteil
erster Art bei allen Tests gleich wahrscheinlich.

2. das Fehlurteil zweiter Art, bei dem man eine falsche Hypothese
H0 hber die Sterbetafel annimmt, weil zufällig eine Masszahl unter
dem kritischen Wert aufgetreten ist. Die Wahrscheinlichkeit für
ein Fehlurteil zweiter Art ist je nach dem gewählten Testverfahren
verschieden. Das Komplement dieser Wahrscheinlichkeit, d. h. die

Wahrscheinlichkeit, die Hypothese H0 als falsch zu entdecken, ist
daher ein Mass für die Leistungsfähigkeit der verschiedenen Verfahren.
Je grösser diese Wahrscheinlichkeit ausfällt, um so leistungsfähiger
ist der betreffende Test.

Geht man von einer bestimmten Annahme über die zu prüfende
falsche Hypothese H0 und die richtige Gegenhypothese H1 aus, so

besteht die Möglichkeit, eine geeignete Masszahl so zu wählen, dass

1. die Wahrscheinlichkeit eines Fehlurteils erster Art einen

bestimmten, durch die gewählte Wesentlichkeitsschranke gegebenen
Wert P annimmt, und dass

2. die Wahrscheinlichkeit eines Fehlurteils zweiter Art gleichzeitig
ein Minimum erreicht.

Neyman und Pearson haben gezeigt, dass optimale Masszahlen dieser

Art stets durch das Verhältnis der Likelihoods

Tn)

f(Hi', Tlt T2 Tn)
' {i ]

berechnet für die zu prüfende Hypothese H0 und die Gegenhypothese
Hi, gegeben sind. Testverfahren, die sich auf die Masszahl (34) stützen,
nennt man leistungsfähigste (most powerful) Tests.

Zu beachten ist, dass die Masszahl (34) nur definiert ist, wenn
die Hypothese H0 und die Gegenhypothese Iix vollständig gegeben
sind. Genaue Aussagen über allfällige Gegenhypothesen sind bei

Anwendungen in der Regel nicht möglich. Es stellt sich deshalb die Frage,
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ob man nicht einen leistungsfähigsten Test bei beliebiger Gegenhypothese

IIX angeben könnte. Die diesbezüglichen Untersuchungen von
Neyman und Pearson haben leider gezeigt, dass derartige Universal-
Masszahlen nicht existieren. Hingegen ist es in vielen Pällen möglich,
Masszahlen zu finden, die für eine ganze Klasse von Gegenhypothesen

am wirksamsten sind; diese Tests nennt man gleich massig leistungsfähigste

(uniformly most powerful) Tests. F. S. Pearson [19] hat z. B.

gezeigt, dass die beiden P(A)-Tests gleichmässig leistungsfähigste Tests

sind, wenn angenommen wird, die Hypothese H0 sei durch die Rochtecks

Verteilung (29') und die Gegenhypothese durch Verteilungen von
der "Form

f(y) {m + 1) ?/" (155a)

oder
iiii) — (m +1) (i — y)m (35 h)

mit —• 1 < m < 0

gegeben, wobei (35a) für den P(A/)- und (35b) für den P(Hw)-Test gilt.

b) Anwendung auf Sterbetafeln

Um die Theorie von Neyman und Pearson auf Sterhotafeln
anwenden zu können, muss man zuerst prüfen, was für Gegenhypothesen
bei Sterbetafeln in Frage kommen. Für eine einzelne Altersklasse

betrachtet, ist stets damit zu rechnen, dass nicht der aus der

Ausgleichung hervorgegangene Wert T'x richtig ist, sondern irgend oin

anderer Wert T"x. Ist T"x tatsächlich richtig, wird aber bei den

Verteilungsfunktionstransformationen (32a) und (32a') mit T'x gerechnet,
so resultiert nicht mehr die Rechtocksverteilung (29') als Verteilung
von y, sondern eine Verteilung von der Form

x
1 f _*!

f(y) e mit y — — Je 2 d% (36a)
]/2Ti J

oo

i c
oder y —= e 2 dx, (36b)

[2jt J
X

wobei die Konstanten a und b aus den Werten T'x und T"x berechnet
werden können. In der Figur 4 ist der Verlauf der Frequenzfunktion (36a)
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graphisch dargestellt, wenn T'x 1000 und T"x 1010 angenommen
wird. Die auftretendo Kurve lässt sich in der Tat - wenigstens in
erster Näherung — durch Kurven des Typs (35) darstellen. Daraus

folgt, aber, dass die beiden P(A)-Tests im Sinne der Theorie von Neyman
und Pearson — jeder nach einer Seite — als schärfste Kriterien zu
gelten habon, deren Leistungsfähigkeit von keinem anderen Kriterium
übertroffen werden kann.

Besonders zu beachten ist der Umstand, dass jeder der beiden

P(A)-Tests nur nach einer Eichtling hin wirksam ist, d. h. sie sind
nur wirksam, wenn ausschliesslich Gegenhypothesen berücksichtigt
werden, bei denen in allen Altern grössere oder kleinere Sterblichkeit

vorausgesetzt wird als in der zu prüfenden Tafel. Für Gegenhypothesen,

bei denen alterszonemvoise beide Arten von Abweichungen
auftreten, sind die beiden P(A)-Tests keineswegs gleichmässig am
leistungsfähigsten.

7. Die Smooth-Tests von Neyman [17]

Die beiden P(A)-Tests sind nur bei Gegenhypothesen von der
Form (85) gleichmässig am leistungsfähigsten. Neyman hat deshalb

versucht, weitere Tests aufzustellen, welche unter allgemeineren
Voraussetzungen am leistungsfähigsten sind. Als Gegenhypothesen
zur Eechtecksverteilung (2!)') zieht er ein System von Verteilungen
in Betracht, das durch Frequenzfunktionen von der Form

k

ü °t "t (y)

f(y) cßt=°L (37)

darstellbar ist. In Formel (37) sind die Grössen 0t beliebige Parameter,
die von Fall zu Fall geeignet gowählt werden können, und nt(y) ein
System von im Intervall 0 < y < 1 orthogonalen Polynomen. Die ersten
dieser Polynomo lauton

^i(y) ]/ 12 — -I)

*a(y) 1/5 {% —£)a —H

n3(y) 1/7" {20 (7/ — ^)3 — B (y — i)}.

(37')



Neyman postuliert für seine Smooth-Tests folgende Eigenschaften:

1. Die Wahrscheinlichkeit für ein Fehlurteil erster Art ist wie
üblich gleich der Wesentlichkeitsschranke P.

2. Für grosse n ist bei allen Gegenhypothesen von der Form (37),
bei denen der Ausdruck

/ fc \ 2

einen kleinen, aber bestimmten Wert annimmt, die Wahrscheinlichkeit

eines Fehlurteils zweiter Art gleich gross.

3. Die Wahrscheinlichkeit eines Fehlurteils zweiter Art ist für
grosse n und kleine Werte von 1 minimal.

Diese Forderungen führen auf die Masszahlen

ip\ u\

W2 ^1 '^2

vi u\ + u\ + u\

vi S '

(38)

worin die Flilfsgrössen uR durch die Formeln

u\ 12 n'1 2
1=1

u\ 180w_1 2
X—i

->}

7«"1 202^-32^

(38')

gegeben sind. In den Formeln (38') ist z y —11 und y die aus der

Verteilungsfunktionstransformation (32a) hervorgegangene Hilfsvariable.
Die Masszahlen ip\, ip\ tpl genügen ^-Verteilungen mit k Freiheitsgraden

und erlauben somit eine analoge Überprüfung der
Sterbetafelausgleichung wie die Masszahlen co2, Xu usw. Zu beachten ist,
dass nicht alle 1/^-Tests miteinander anzuwenden sind, sondern nur ein
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ranziger, nämlich derjenige, welcher den in Erwägung zu ziehenden

Gegenhypothesen genügend Rechnung trägt. Lässt sich die Gegen-
Hypothese (37) durch ein Polynom k-ter Ordnung im Exponenten von
(37) genügend genau erfassen, so ist nur der Test fc-ter Ordnung
anzuwenden.

Bei Sterbetafeln sind Gegenhypothesen von der Form (36) zu
berücksichtigen, für die ein Beispiel in Figur 4 graphisch dargestellt
ist, In erster Annäherung darf hier mit dem Test erster Ordnung
gerechnet werden. Numerische Untersuchungen bestätigen überdies,
dass man mit den Tests zweiter und dritter Ordnung praktisch auf
die gleichen Resultate kommt wie mit dem Test erster Ordnung.
Wollte man wirklich einen engen Anschluss an die Verteilung (36)

gewährleisten, so inüssto ein Test von sehr hoher Ordnung gewählt
werden.

Zu beachten ist ferner, dass der Smooth-Test k-ter Ordnung nur
dann die oben postulierten Eigenschaften 1-3 aufwoist, wenn für alle n
Altersklassen eine beliebige, aber immer die gleiche Gegenhypothese
k-ter Ordnung von der Form (37) auftritt. Dieser Fall kann bei
Sterbetafeln nur vorkommen, wenn in allen Altern eine gleichartige
Abweichung auftritt. Fälle, bei denen die zu prüfende Sterbetafel
teils zu hoch und teils zu tief verläuft, eignen sich daher nicht zur
Überprüfung durch die Neymanschen Smooth-Tests.

D. Testverfahren für den unsystematischen,
regellosen Verlauf der Abweichungen

Alle unter C behandelten Tests nehmen keine Rücksicht auf die

Reihenfolge der einzelnen Abweichungen innerhalb der Sterbotafel.
Eine Ausgleichung, bei der z. B. alle Abweichungen zuerst negativ und
später positiv sind, wird genau gleich bourteilt wie eine Ausgleichung,
bei der an sich die gleichen Abweichungen auftreten, diese aber regellos
über alle Alter verstreut sind, obschon offensichtlich die letztere den
Vorzug verdient. Es ist daher notwendig, die im vorigen Abschnitt
behandelten Verfahren zu ergänzen durch besondere Tests, welche
die Regellosigkeitsfolge der Abweichungen überprüfen. Derartige Tests
gibt es eine ganze Reihe. Die wichtigsten dieser Kriterien sollen im
folgenden kurz behandelt werden.
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1. Die Anzahl der ZeichenWechsel

Die Anzahl der Zeichenwechsel in der nach steigenden Altern
geordneten Roihe der Abweichungen q'x — qx stellt ein einfaches und

naheliegendes Kriterium für die Regellosigkeitsfolge der Abweichungen
dar. Bei schlechten Ausgleichungen ist die Anzahl der Zeichenwechsel

gewöhnlich abnormal klein oder gross; bei guten Ausgleichungen
bewegt sich diese Anzahl in einem mittleren Rahmen, der durch das

Verteilungsgesetz der Zeichenwechsel abgegrenzt werden kann. Dieses

Verteilungsgesetz lässt sich bestimmen, wenn man annimmt, dass die

Wahrscheinlichkeit für eine positive oder negative Abweichung zwischen

der beobachteten und der erwarteten Tafel in allen Altern gleich ist.
Bei n Altersklassen beträgt dann die Wahrscheinlichkeit für das

Auftreten von 2 Zeichenwechseln

Für Mittelwert und Streuung der Verteilung (39) gelten ferner die

Formeln
und o*(z) (39')

Bei einer 100 Altersklassen umfassenden Sterbetafel sind demnach im
Mittel 49,5 Zeichenwechsel zu erwarten. Einer Wesentlichkeitsschranke
von beispielsweise 5% entspricht näherungsweise ein Schwankungsbereich

von + 2cr. Demnach wären bei 100 Altersklassen alle
Ausgleichungen mit 40 < z < 60 als befriedigend zu betrachten.

In der nach steigenden Altern geordneten Reihe der standardisierten

Abweichungen nennt man alle Abweichungen eine Spitze, bei
denen die beiden Nachbarwerte entweder beide grösser oder beide
kleiner sind als der Spitzenwert. Die Anzahl dieser Spitzen in der
Sterbetafel ist ein Kriterium, das sich ebenfalls zur Beurteilung der

Regellosigkeitsfolge der Abweichungen eignet. Für grosse n ist diese

Anzahl s eine zufällige Variable, die um

(39)

2. Anzahl der Spitzen

den Mittelwert E(s) j(n — 2)

16 n — 29
mit der Streuung u2(s) —

(40)
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normal verteilt ist. Bei 100 Altersklassen wären demnach 65,3 Spitzen
zu erwarten. Lässt man Abweichungen im Bereich 4 2a zu, so wären
alle Ausgleichungen mit 57 < s < 74 Spitzen als befriedigend zu
beurteilen.

3. Der Test von Stevens

Unter den Abweichungen zwischen Ausgleichung und Beobachtung
weisen Werte das gleiche Vorzeichen auf wie die Abweichung im
untersten Alter und n2 n—nl Werte das entgegengesetzte Vorzeichen.
Uie nt Abweichungen mit dein gleichen Vorzeichen zerfallen im ganzen
ui X Folgen mit dem gleichen Vorzeichen, und die rs2 Abweichungen
mit dem entgegengesetzten Vorzeichen in X — 1 Teilfolgen. Man kann
dann aus den Werten n, n1, n2 und X die Vierfeldertafel

X X Wi

n2 + 1 — X X — 1 n2

n2 + 1 nL — 1 11 — Iti | -p 1l>2

bilden, die für gegebene Werte von und n2 nur einen Freiheitsgrad
aufweist. Die Grösse X ist eine zufällige Variable mit der Frequenzfunktion

(Stevens)

•nW)
/w -——,-—7—• (4i)

n

Für Mittelwert und Streuung der Verteilung (41) gelten die Beziehungen

»iK + l)
2/,x «lK —l)(»a + l)»a

1L(X) • und a2(X)
n n*(n— 1)

Vergleicht man den beobachteten Wort von X mit seinem
Erwartungswert, so kann man an ITand der Verteilung (41) wiederum
die üblichen Schlüsse über die Güte der Ausgleichung ziehen. An
Stelle dieser direkten Methode kann man auch von der oben angegebenen

Vierfeldertafel ausgehen und für jede der vier auftretenden
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Häufigkeiten einen erwarteten und beobachteten Wert und schliesslich

die Grösse y2 berechnen, die für alle vier Fälle zusammen einer

y2-Verteilung mit einem Freiheitsgrad folgt.

4. Allgemeine Bemerkungen über die Regellosigkeitstests

Die Nützlichkeit der Regellosigkeitstests wird im allgemeinen
überschätzt. In der Regel sagen diese Tests nicht mehr aus, als was
schon aus einer flüchtigen Durchsicht der Abweichungen zwischen

Ausgleichung und Beobachtung erkennbar wäre. Eine Ausgleichung
muss sehr deutlich von den Beobachtungen abweichen, bis ein

Regellosigkeitstest das Ungenügen der Ausgleichung anzeigt.

Ein Beispiel: Das unter 1 behandelte Zeichenwechsel-Kriterium
werde auf eine ungenügende Ausgleichung angewendet; das Auftreten
von positiven oder negativen Abweichungen ist dann nicht mehr wie
bei der guten Ausgleichung gleich wahrscheinlich, sondern mit
voneinander verschiedenen Wahrscheinlichkeiten p und q (p -f- q 1) zu
erwarten. Die erwartungsmässige Anzahl der ZeichenWechsel beträgt
dann E(z) 2(n—l)p? unc^ ^ somit tatsächlich etwas kleiner als

bei einer guten Ausgleichung mit p q -J. Bei einer 100
Altersklassen umfassenden Sterbetafel müssten jedoch die Wahrscheinlichkeiten

um mehr als 0,225 vom Normalwert 0,5 abweichen, bis die

erwartungsmässige Zahl der Zeichenwechsel unter die angegebene
kritische Anzahl von 40 Zeichenwechseln fällt. Dieser Fall kann erst

auftreten, wenn die Ausgleichung einseitig um wenigstens 60% der

Streuung von der wahren Tafel abweichen würde, d. h. wenn die

Ausgleichung derart offensichtlich von den Beobachtungen abweicht,
dass jeder andere Test ebenfalls zur Verwerfung der Ausgleichung
führt. Unter diesen Umständen ist es nur von geringem Nutzen, neben

einem der üblichen Tests noch einen Regellosigkeitstest anzuwenden.

E. Kombinierte Tests

Die Prüfung der Abweichungen und der Regeilosigkeitsfolge dieser

Abweichungen durch gesonderte Tests kann nur dann zu einem
befriedigenden Ergebnis führen, wenn die beiden Tests übereinstimmend

zum gleichen Urteil führen. Oft ergeben sich aber entgegengesetzte
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Schlüsse, z. B. kann der P(X)-Test zur Verworfung und gleichzeitig ein

Regellosigkeitstest zur Annahme der Ausgleichung führen. In derartigen,
ziemlich oft auftretenden Fällen, möchte man gerne die beiden Urteile
in ein einziges Gesamturteil kombinieren. Im allgemeinen ist dies jedoch
nicht ohne weiteres möglich, weil die beiden getrennten Urteile
voneinander abhängig sein könnten. Es stellt sich deshalb die Frage, ob
man nicht geeignetere Masszahlen aufstellen kann, die gleichzeitig die
Grösse der Abweichungen und ihre Begollosigkeitsfolge messen.

1. Der ^-Smooth-Test von David [14]

F. N. David hat gezeigt, dass die im Abschnitt C, 2 eingeführte
klassische Prüfgrösse %2 (18a) und irgendwelche andere Prüfgrössen,
die ausschliesslich auf das Vorzeichen der einzelnen Abweichungen
abstellen, als gegenseitig unabhängige zufällige Variable zu betrachten
sind. Diese Eigenschaft erlaubt es, den klassischen £2-Test und
beispielsweise den Test von Stevens in einen einzigen Test zu kombinieren,
wobei nach dem im Abschnitt C, 5, c), dargelegten Prinzip verfahren
wird. Diese Methode gestaltet sich bei der praktischen Anwendung
allerdings etwas mühsam, weil die beim Test von Stovens auftretende
Prüfgrösse X keine stotige Verteilung aufweist. Einen eleganten Weg,
«in diese Schwierigkeit zu überwinden, hat H. L. Seal [24] gewiesen.
Kr schlägt vor, von der unter D, 3, eingeführten Vierfeldertafel
auszugehen und nach der üblichen Methode mit Hilfe der erwarteten und
beobachteten Anzahl X eino Prüfgrösse %2(X) zu berechnen. Diese der-

massen berechnete Grosso %2{X) genügt einer ^2-Verteilung mit einem

Kreiheitsgrad und ist unabhängig von der nach Formel (18 a') berechneten

Grösse %2(T), die aus den erwarteten und beobachteten
Anzahlen der Gestorbenen gefunden wurde. Die Summo der beiden
Prüfgrössen folgt somit einer £2-Verteilung mit n—-Ii 1 Freiheitsgraden
und erlaubt so eine gleichzeitige Überprüfung der Abweichungen in
don einzelnen Altern und ihrer regellosen Folge.

2. Das (Ix)2-Verfahren [11|

Ein weiteres Kriterium, das sowohl die Grösse der Abweichungen
m den einzelnen Altern als auch ihre regellose Folge berücksichtigt,
erhält man, wenn man die standardisierten Abweichungen von beiden
I'afelenden her aufsummiert und die aufsummierten Werte quadriert.
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Man gelangt so zur Masszahl

(42a>

die sich in die übersichtliche Doppelsamme

{h)' S £ (" +1 -I *- y I) *- *» est)
% {n r i J x=*i y= i

überführen lässt. Der Nenner n(n 1) wird eingeführt, damit die
Masszahl den Brwartungswert Eins aufweist.

Die Masszahl (1%)2 hängt im Gegensatz zur Grösse %2 wesentlich von
der Reihenfolge der standardisierten Abweichungen ab. Systematisch
verlaufende Abweichungen bewirken stets eine Vergrösserung der Masszahl.

Bei hinreichend langen Beobachtungsreihen ist der (I%)2-Test stets
dem gewöhnlichen ^2-Test überlegen. Besonders empfindlich ist die
Masszahl (I%f gegen einseitig abweichende Ausgleichungen, bei denen
die ausgeglichene Tafel systematisch zu hoch oder zu tief verläuft.

Das Verteilungsgesetz von {l%}2 selbst kann nicht in expliziter
Form dargestellt werden. Die zugehörige charakteristische Funktion
lässt sich hingegen angeben; es ist

?>[/#(') {1 + + a2(2ff)2 a^ityyK (43)

Für grosse n strebt der Ausdruck (43) gegen die Grenzfunktion

00 r +1 22r 1-A
hm |i + 2 „ vrvr ^'i

n-*~ oo r=l 2 (2r)! j

j/ 2 {cos j it —• JI it sin [/ it (44b)

die selbst für verhältnismässig bescheidene Werte von n schon recht
gut mit der genauen Funktion (43) übereinstimmt.

Die Verteilungs- und Frequenzfunktion von (I"/)2 für grosse n
lässt sich durch gewisse asymptotische Ausdrücke hinreichend genau
darstellen. Für manche praktische Zwecke genügt es, wenn man von
der Grosse

^ 0^gg2 ^ + ^ + 0^886 ^
ausgeht, die näherungsweise dem gleichen Verteilungsgesetz genügt
wie die Grösse (I%)2 für grosse n. In Formel (45) folgen die Grössen

X* und xt c^en %2-Verteilungen mit einem und zwei Freiheitsgraden.
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Für die Anwendungen genügt es, wenn man die kritischen Werte
der Masszahl für einige in Betracht fallende Werte der Wesentlich-
keitsschranke P kennt. Diese können aus der nachstehenden Tabelle
entnommen werden: 7> /r„,\2

Die angeführten Formeln über die (/^-Verteilung beziehen sich
eigentlich auf den Fall, wo die zur Prüfung vorgelegte Tafel nicht aus
den vorhandenen Beobachtungen abgeleitet worden ist. Würde man
die angewendete Ausgleichungsmethode berücksichtigen, so ergäbe
sich eine gewisse Modifikation der (I%)2-Verteilung. Die neue
Verteilung würde dabei von den Daten des konkreten Falls abhängig und
daher für die praktische Anwendung schwerfällig. Ob und wie die
Masszahl (Ix)2 modifiziert werden muss, damit sie der angewendeten
Ausgleichungsmethode Rechnung trägt, ist noch abzuklären.

Die Masszahl (L%)2 ist besonders empfindlich gegenüber einseitigen
Abweichungen, bei denen die ausgeglichene Tafel durchwegs zu hoch
oder zu tief verläuft. Divergiert jedoch die zur Prüfung vorgelegte
Ausgleichung von der wahren Tafel so, dass ein oder gar mehrere
Schnittpunkte zwischen der wahren und der ausgeglichenen Tafel
auftreten, so heben sich bei der Aufsuminierung die mit verschiedenen
Vorzeichen auftretenden Abweichungen ganz oder teilweise auf und
die Masszahl (l%)2 wächst nicht über einen gewissen Rahmen hinaus.
Es lässt sich leicht einsehen, dass dieser Nachteil des (I%)2-Verfahrens
vermieden werden könnte, wenn man an Stelle der einfachen Sum-

mierung der standardisierten Abweichungen mit der doppelten,
dreifachen JV-fachen Summe rechnen würde. Auf diese Weise würde
man zu den (ll%)2, (H1%Y • • (A%)2-Tests gelangen, deren Verteilungsgesetze

in ähnlicher Weise bestimmbar wären wie dasjenige der
(1%)2-Verteilung. In dieser Richtung kann die Theorie der kombinierton
Tests, die erst am Anfang ihrer Entwicklung steht, noch beträchtlich
ausgebaut werden.

10%
5%
1%
0,1%

(W
2,19

2,96

4,85

7,60

3. Weitere Methoden
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F. Numerische Untersuchungen

Die Leistungsfähigkeit der verschiedenen Testverfahren lässt sich

theoretisch mit Hilfe der im Abschnitt C, 6, skizzierten Theorie von
Neyman und Pearson überprüfen. Numerische Untersuchungen auf
dieser Grundlage sind aber bei Sterbetafeln mit einem unverhältnismässig

grossen Zeitaufwand verbunden. Im folgenden werden daher
die wichtigsten der oben behandelten Testverfahren auf einer etwas
anderen Grundlage untersucht.

Diese Untersuchungen gehen aus vom Makehamschen Gesetz

px a + btf (46)

und vom Material, das der schweizerischen Volkssterbetafel SM 1989/44
in den Altersstufen von 40 < x < 89 zugrunde liegt. Variiert man die

drei in (46) auftretenden Parameter systematisch, so kann man ein

ganzes System von Sterbetafeln erzeugen und anhand der geschilderten
Testverfahren mit den Beobachtungen vergleichen. Geht man ferner

von einer einheitlich gewählten Wesentlichkeitsschranke P aus, so ist
für jedes Kriterium ein bestimmter Bereich von Parameterwerten a, b

und c gegeben, der auf Sterbetafeln führt, die im Sinne des betreffenden

Kriteriums als annehmbar zu betrachten sind. Die Länge dieser

Parameterintervalle ist dann ein Mass für die Leistungsfähigkeit des

betreffenden Kriteriums, wobei ein Test um so leistungsfähiger ist,
je kürzer die Parameterintervalle ausfallen.

Aus der Fülle der beim Makehamschen Gesetz denkbaren
Parametervariationen werden nur die nachstehenden fünf Typen in
Betracht gezogen:

Typ I: Variationen von a allein.

Typ II: Variationen von b allein.

Typ III: Gleichgerichtete simultane Variationen von a und b:

Variation (a-\-b).
Typ IV: Entgegengesetzte simultane Variationen von a und b:

Variation (a — b).

Typ V: Simultane Variationen von et, b und c, wobei die Para¬

meter a und b für gegebene Werte von c nach der Methode
der Momente aus den Beobachtungen berechnet werden:
Variation [c — (a — 6)].
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Für die wahre Sterbetafel sind die Mittelwerte der standardisierten
Abweichungen alle gleich Null. Für andere Sterbetafeln liegen diese

Mittelwerte auf bestimmten Kurven, die man Rogressionslinien der
standardisierten Abweichungen nennen kann. In der beiliegenden
Figur 1 sind jo zwei derartige Rogressionslinien für die
Parametervariationen I bis V graphisch dargestellt. 7m beachten ist vor allem
der Umstand, dass die Rogressionslinien der Typen I, II und III die
^-Achse nie schneiden, während bei Typ IV stets ein und bei Typ V
stets zwei Schnittpunkte mit der x-Achse auftreten.

Wendet man die erläuterten Testverfahren auf das durch die
Parametervariationen I bis V erzeugte System von Sterbetafeln an,
so ist die dem gewählten Tostverfahren zugrunde liegende Masszahl
eine Funktion der Makeham-Parameter der zu prüfenden Sterbetafel.
Diese Funktionen sind für die fünf Variationstypen und für die stetig
verlaufenden Masszahlen y2, (ly)2, Xls Xu und ipl in der Figur 2

graphisch dargestellt. Eine nähere Betrachtung dieser
Masszahlfunktionen führt zu folgenden Feststellungen:

Die nach Formel (18 a) berechnete klassische Masszahl y2 und die
Masszahl (ly)2 [Formel (42)] liegen stets auf nach oben geöffneten
parabelähnlichen Gebilden. Für die Variationen I, II und III steigt
die Masszahl (ly)2 stets steiler an als die Masszahl y2; bei den Variationen

IV und V wächst mit Rücksicht auf die Schnittpunkte zwischen
den Regressionslinien und der onAchse die Masszahl (ly)2 langsamer
als die Masszahl y2.

Die beiden Masszahlen Xt und Xu hegen für die Variationen I,
II und III auf monoton von -f- oo bis 0 sinkenden, resp. von 0 bis

+ °o ansteigenden Kurven. Im Gegensatz zu den Masszahlen y2 und
(ly)2 ergibt sich bei den Masszahlen Xt und Xu immer nur je ein
Parameterwert, bei dem die Masszahl einen gegebenen kritischen Wert
erreicht. Die Masszahlen Xj und Xu sind daher nur nach einer Seite
hin wirksam, und zwar ist, wie bereits gezeigt wurde, Xt wirksam für
Parametervariationen nach unten und Xn für Paramotervariationen
nach oben. Wenn man nicht zum voraus sicher weiss, in welcher
Bichtung eino zu prüfende Tafel von der wahren Tafel abweichen
könnte, muss man daher stets beide P(A)-Tests nebeneinander
anwenden.

Die Parametervariationen IV und V führen auf Sterbetafeln, die
verglichen mit der wahren Tafel teils zu hoch, teils zu tief verlaufen.
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In derartigen Fällen können die beiden, nur auf einseitige
Abweichungen zugeschnittenen P(A)-Tests versagen. Im vorliegenden Fall
liegt z. 13. auf der A7/-Kurve der Variation IV überhaupt kein kritischer
Wert der Masszahl Xn.

Der Smooth-Test erster Ordnung von Neyman stützt sich auf
die Masszahl ip\, die durch die erste Formel (38) gegeben ist. Diese

Masszahlen liegen stets auf nach oben geöffneten parabelähnlichen
Kurven, die für einseitige Variationen (Typ I, II und III) verhältnismässig

steil ansteigen. Bei den Typen IV und V dagegen verlaufen
diese Kurven ziemlich flach, beim Typ V sogar nahezu horizontal, so

dass der Test praktisch unbrauchbar wird. Die Smooth-Tests von
Neyman sind somit wie die P(A)-Tests nur wirksam, wenn einseitige
Abweichungen von der wahren Tafel vorliegen.

Die Leistungsfähigkeit der verschiedenen Testverfahren
untereinander bei bestimmten Variationstypen lässt sich in einfacher Weise

an Hand der Sehnen beurteilen, welche einer bestimmten Wesentlich-
keitsschranke P entsprechen. Die Länge dieser Sehnen (für P 5 %
und P 1 % sind sie in der Figur 2 eingezeichnet) gibt das

Parameterintervall an, das nach dem betreffenden Test auf zulässige
Sterbetafeln führt. Je kürzer diese Sehne ausfällt, desto weniger
läuft man Gefahr, irrtümlich eine falsche Tafel als richtig anzunehmen,
und desto leistungsfähiger ist demzufolge der betroffende Tost. In der

beiliegenden Figur 3 sind die Längen dieser Sehnen, die den
Parameterintervallen der annehmbaren Tafeln entsprechen, als Funktionen
der Wesentlichkeitsschranke P graphisch dargestellt. Interessant in
dieser Graphik ist weniger die absolute Höhe der einzelnen Kurven
als deren relative Lage zueinander und insbesondere die Keihenfolge
der Testkurven von unten nach oben innerhalb eines Variationstyps.
Dieser Keihenfolge der Kurven entspricht nämlich die Rangfolge in
der Leistungsfähigkeit der verschiedenen Tests. Beim Typ I ergibt
sich folgendo Rangfolge:

1. Die beiden P(A)-Tests.
2. Der Smooth-Test von Neyman ipf.

3. Der (J^)2-Test.
4. Der klassische ^2-Test.
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Bei den Typen II und III, bei denen wie bei I ebenfalls nur einseitige
Variationen vorkommen, ergibt sich nahezu das gleiche Bild, nur
class die praktisch fast auf die gleichen Resultate führenden tp\- und
(I^)2-Tests ihre Ränge vertauschen. Charakteristisch ist es, dass die
beiden P(A)-Tosts bei einseitigen Variationen stets das schärfste
Kriterium abgeben. Dieses Resultat war zu erwarten, weil — wie im
Abschnitt C, 6, ausgeführt wurde — nach der Testtheorie von Neyman
und Pearson die P(A)-Tests unter gewissen, praktisch erfüllten
Voraussetzungen die absolut schärfsten Kriterien darstellen, die von
keinem andern Verfahren übertroffen werden können.

Anders verhält es sich bei den Variationstypen IV und V. In
diesen Fällen sind die besonderen Voraussetzungen des P(X}-Tests
und auch der Smooth-Tests von Neyman nicht mehr erfüllt. Der
Smooth-Test von Neyman führt hier auf die schlechtesten Resultate,
die praktisch nicht mehr brauchbar sind. Die ZJ(A)-Tests stehen im
dritten resp. zweiten Rang. Diese verhältnismässig günstige
Klassierung scheint mehr durch das benützte Beobachtungsmaterial als

durch die Eigenschaften des Verfahrens bedingt zu sein.

Beim Typ IV liefert das (I"/)2-Verfahren noch nahezu gleich gute
Resultate wie das klassische Kriterium %l, beim Typ V ist jedoch
das letztere Verfahren mit Abstand dem (/^-Verfahren überlegen.
Dies erklärt sich ohne weiteres aus den besonderen Eigenschaften des

(Z%)2-Verfahrens, das sich nicht mehr eignet, wenn — wie beim Typ V
— zwei Schnittpuukte zwischen den Regressionslinieu und der «-Achse
auftreten.

Von besonderem Interesse ist schliesslich der Umstand, dass bei
den Typen IV und V das klassische Verfahren am besten abschneidet.
Es zeigt sich somit, dass der ^2-Test in komplizierter gelagerten Fällen,
bei denen verschiedenartige Abweichungen innerhalb derselben Tafel

auftreten, immer noch allen andern Verfahren überlegen ist. Der
%2-Test darf somit gewissermassen als ein «Allround-Test» betrachtet
werden, der allerdings im Einzelfall nicht das schärfste Kriterium
abgibt, dafür aber in allen Fällen zu einem einigermassen brauchbaren
Resultat führt und niemals gänzlich versagt.

5
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Zusammenfassung

Es sei versucht, die wichtigsten Resultate der in dieser Arbeit
dargestellten wahrscheinlichkeitstheoretischen und numerischen
Untersuchungen zusammenzufassen und insbesondere auf dio wichtigsten
noch nicht oder nicht vollständig gelösten Fragen hinzuweisen.

1. Die Frage nach der Güte der verschiedenen Ausgleichungsmethoden

ist durch die Fisherschen Kriterien — wenigstens für die

analytischen Methoden — im wesentlichen abgeklärt. Es zeigt sich,
dass bei analytischen Ausgleichungen die ^2-Minimum-Mothode als

leistungsfähigste Methode zu gelten hat.

2. Im Laufe des zwanzigsten Jahrhunderts sind eine ganze Reihe

von Testverfahren entwickelt worden, welche die wahrscheinlichkeitstheoretische

Überprüfung von Ausgleichungen hinsichtlich

a) der in den einzelnen Altern auftretenden Abweichungen zwischen

Ausgleichung und Beobachtung,

b) der Regellosigkeitsfolge dieser Abweichungen oder

c) beider Gesichtspunkte gleichzeitig
erlauben. Mit Hilfe dieser Tests lässt sich die relative Güte von
verschiedenen Ausgleichungen in objektiver Weise überprüfen.

3. Von den bis heute bekannten Kriterien zur wahrscheinlichkeitstheoretischen

Überprüfung von Ausgleichungen ist eigentlich nur das

klassische %a-Verfahren von K. Pearson theoretisch genügend
entwickelt, so dass es den bei analytischen und mechanischen

Ausgleichungen auftretenden besonderen Verhältnissen Rechnung zu

tragen vermag. Es ist wohl eine der wichtigsten Aufgaben für die
weiteren Forschungen, die anderen Verfahren so auszubauen, dass

auch sie die bei Ausgleichungen auftretenden Abhängigkeiten
theoretisch einwandfrei berücksichtigen können.

4. Die Theorie von Neyman und Pearson lehrt, dass es keinen
«Univorsal-Test» gibt, der bei beliebiger Gegenhypotheso das schärfste
Kriterium darstellt. Dieses theoretische Ergebnis wird durch dio im
Abschnitt III, F, dargestellten numerischen Untersuchungen bestätigt.
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5. Leistungsfähigste Tests lassen sich angeben, sobald ihre
Anwendung auf ganz bestimmte Arten von Gegenhypothesen beschränkt
wird. Für einseitige Abweichungen (durchwegs zu grosse oder zu kleine

Sterblichkeit) stellen die beiden P(A)-Tests die leistungsfähigsten
Kriterien dar. Die Entwicklung von leistungsfähigsten Tests für
allgemeinere Gegenhypothesen, z. B. für den Fall, wo zwischen der zu
prüfenden und der wahren Sterbetafel einer oder mehrere Schnittpunkte

auftreten, bleibt weiteren Untersuchungen vorbehalten.

6. Dem klassischen ^2-Verfahren von K. Pearson kommt in dem
Sinne der Charakter eines«Universal-Tests» zu, als es in allen Fällen zu
einem einigennassen brauchbaren Ergebnis führt und niemals gänzlich
unbrauchbar wird. Dieser universellen Anwendungsmöglichkeit steht
der Nachteil gegenüber, dass für bestimmte Gegenhypothesen leistungsfähigere

Spezialtests gefunden werden können.
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Figur 1

Reyressionslinien der standardisierten Abweichungen
für Parametervariationen bei Makehamschen Sterbetafeln

Typ I Variationen von a

Typ II Variationen von b

Typ III Variationen (a + b)

Typ IV Variationen (o — b)

Typ V Variationen c —(o — b)
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Figur 2

Verlauf der Masszahlen XIt Xn und ip\ für Parameter -

Variationen bei Malcehamschen Sterbetafeln



Figur 3

Intervallbreite der zulässigen Makeharnparameter
als Funktion der Wesentlichkeilsschranke P

Typ 1

Typ II

Z2-Test (J^-Test

P(A)-Tests —..—.. Smooth-Test erster Ordnung von Neyman
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Tiqur 4

Verteilungsfunktionstransformation bei der Verteilung

_1 (Tx-2'x)2

/(?',) f*

bei richtiger und falscher Annahme über den Erwartungswert Tx
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