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B
Wissenschaftliche Mitteilungen

Wahrscheinlichkeitstheoretische Kriterien
fir die Beurteilung der Giite der Ausgleichung
einer Sterbetafel )

VYon Hans Ammeter, Ziirich

Einleitung

Unmittelbar aus Beobachtungen abgeleitete Sterbetafeln verlaufen
— entgegen der intuitiven Erwartung — erfahrungsgemiiss mehr oder
weniger unregelmissig und sind daher fir die versicherungstechnische
Praxis nicht ohne weiteres verwendbar. Die auftretenden Unregel-
misgigkeiten erscheinen gewissermassen als Beobachtungstehler, die
den wahren Verlauf der Sterbetafel entstellen. Man versucht deshalb,
diese Unregelmassigkeiten durch einen geeigneten Prozess — eben die
Ausgleichung — zu eliminieren, um die «wahre» Sterbetafel zu erhalten.
Im Verlaufe der Zeit sind eine ganze Reihe von Methoden entwickelt
worden, die mit mehr oder weniger Frfolg zu einer Ausgleichung der
Sterbetafel fithren.

Von einer guten Ausgleichung verlangt man, dass die ausgeglichenen
Werte eine moglichst glatte Kurve bilden, und ferner, dass sie moglichst
getreu die Beobachtungen wiedergibt und nicht etwa charakteristische
Figentiimlichkeiten verwischt. Ob und inwieweit diese letztere Forderung
im konkreten Fall erfillt werden konnte, lisst sich genau genommen
nicht feststellen, weil die «wahre» Tafel selbst stets unbekannt bleibt.
Man musste sich deshalb lange Zeit mit einer mehr oder weniger ge-
fithlsmissigen Uberpriifung der Ausgleichung begniigen.

Y Anm. der Red.: Die vorliegende Arbeit wurde auf ein Preisausschreiben
der «Vereinigung schweizerischer Versicherungsmathematiker» hin eingereicht, und
mit dem hochstmaglichen Preis ausgezeichnet.



Die Entwicklung der mathematischen Statistik im laufenden
Jahrhundert hat hier zu einem wesentlichen Fortschritt gefithrt. Die
im folgenden zu erdrternden Kriterien der mathematischen Statistik
berechtigen allerdings im konkreten Fall auch nicht zu zwingenden
Schliissen. Gegentiber einer rein gefiihlsmissigen Beurteilung weisen
die von der mathematischen Statistik entwickelten Verfahren jedoch
den grossen Vorteil auf, dass bei ihrer Anwendung die Wahrscheinlich-
keit eines richtigen oder falschen Urteils stets in einem bestimmten,
dem verfolgten Zweck angepassten Rahmen gehalten werden kann. Die
Festlegung dieses Rahmens bleibt allerdings dem subjektiven Ermessen
vorbehalten.

Bei der Anwendung der Kriterien der mathematischen Statistik
ist stets der Umstand wichtig, welche Ausgleichungsmethode beniitzt
wurde. Im folgenden werden daher zuerst die wahrscheinlichkeitstheo-
retische Bedeutung der verschiedenen Ausgleichungsmethoden und erst
anschliessend die Kriterien fiir die Giite der Ausgleichung behandelt.
Diesen Ausfithrungen wird eine kurze Darstellung der wahrscheinlich-
keitstheoretischen Grundlagen dieser Verfahren vorausgeschickt.

I. Wahrscheinlichkeitstheoretische Grundlagen

Die Erfahrung lehrt, dass die bei unausgeglichenen Sterbetafeln
auftretenden Unregelméssigkeiten um go mehr ins Gewicht fallen,
je kleiner das zugrunde liegende Beobachtungsmaterial ist. Die Un-
regelmissigkeiten in der unausgeglichenen Sterbetafel scheinen somif
irgendwie eine Iolge des begrenzten Umfanges des Beobachtungs-
materials zu sein. Diese Frklirung lasst sich noch néher prizisieren
und schliesslich in ein wahrscheinlichkeitstheoretisches Modell aus-
bauen, das die in der Wirklichkeit auftretenden Vorgiinge hinreichend
genau beschreibt.

A. Das grundlegende Stichprobenmodell

Konnte man das verfiigbare Beobachtungsmaterial in allen
Altersklassen gleichmissig und beliebig vermehren, so wiirde man
schliesslich zu einem hypothetischen Beobachtungsbestand gelangen,
der Grundgesamtheit genannt werden soll. Aus der Grundgesamfheit



koénnte ohne Ausgleichung die wahre Sterbetafel abgeleitet werden.
Von der wahren Sterbetatel wird vorausgesetzt, dass sie keinerlei Un-
regelmissickeiten aufweist und daher durch glatte Kurven darstellbar
ist. Die wirklich vorhandenen Beobachtungen fasst man demgegeniiber
als eine blindlings ausgewiihlte Stichprobe aus der Grundgesamtheit
auf. Die Unregelmissigkeiten in der Stichprobe erkliren sich dann
zwanglos durch den begrenzten Umfang der Stichprobe.

Im Rahmen dieses Stichprobenmodells entspricht der Ausgleichung
die Aufgabe, aus den Daten der Stichprobe die Sterblichkeit der Grund-
gesamtheit zu ermitteln. Der Uberpriifung der Ausgleichung entspricht
anderseits die I'rage, ob die gegebenen Beobachtungen eine Stichprobe
aus der Grundgesamtheit sein konnten.

B. Das Verteilungsgesetz der beobachteten Sterbefille

Aug der Grundgesamtheit kénnte man nicht nur die gegebene,
sondern unendlich viele andere, analoge Stichproben entnehmen. Jede
dieser Stichproben wiirde zu einer etwas anderen Sterbetafel fithren.
Fasst man die gleichartigen Stichproben zusammen, und bestimmt
man fiir jede Konstellation der Sterbefdlle 7', 7T, ... 1T, ... T,
den relativen Anteil in der Gesamtheit aller Stichproben, so gelangt
man zur Frequenzfunktion der Sterbefille f(I',,T, ... T, ... T).
Diese m-dimensionale Frequenzfunktion der m zufiilligen Variablen
T, Ty...T,... T, ist fiw die nachstehenden Betrachtungen von
grundlegender Bedeutung. Sie lisst sich mit den Hilfsmitteln der
Wahrscheinlichkeitsrechnung ermitteln, wenn die Grundgesamtheit und
die Methoden der Stichprobenauswahl eindeutig gegeben sind. Diese
Finzelheiten im Stichprobenmodell sollen moglichst im Einklang mit
den wirklichen Verhiltnissen festgelegt werden, soweit dies bei dem
rein hypothetischen Charakter der ganzen Konstruktion tberhaupt
moglich 1ist,.

Zuniichst sel angenommen, in der Grundgesamtheit gelte in jeder
Altersklasso eine bestimmte und feste Sterbenswahrscheinlichkeit ¢, .
Ferner erfolge die Auswahl der Stichproben getrennt nach Altersklassen
s0, dass jedes Itlement die gleiche Chance hat, in die Stichprobe auf-
genommen zu werden. I'iir eine einzelne Altersklasse 2 gilt dann bei R,
unter Risiko stehenden Personen fiir die Anzahl der beobachteten



Sterbefille 7', die aus dem klassischen Urnenschema folgende Binomial-
verteilung

() = () T — 2% 0

Die gewiihlten Festsetzungen tragen dem Umstand nicht Rech-
nung, dass die Sterblichkeit als ein in der Zeit ablaufender Vorgang
zu betrachten ist und dass die einjihrige Sterbenswahrscheinlich-
keit ¢, sich ausdriicklich auf das Jahr als Beobachtungszeit bezieht,
withrend beim Urnenschema die Ziehungsdauer gar keine Rolle spielt.
Den Verhiiltnissen in der Wirklichkeit kommt man niher, wenn man
nicht eine einzige, sondern eine kontinuierliche Folge von Ziehungen
in jedem Zeitelement annimmt, wobei gleichzeitiz an Stelle der ein-
jihrigen Sterbenswahrscheinlichkeit ¢, die entsprechende Wahrschein-
lichkeit pro Zeitelement _

P
m

(m— =<) in Rechnung zu stellen ist. Unter diesen etwas mehr an die
wirklichen Verhéltnisse angepassten Annahmen geht die Frequenz-
funktion (1) in die Poisson-Verteilung

e-i?.t Tg'x

(T)! )

fT,) =

iiber, in der die Sterbenswahrscheinlichkeit ¢, nicht mehr direkt,
sondern nur noch indirekt im Erwartungswert 7, = R,q, auftritt.
Fiir grosse Werte von 7', wie sie bei den Anwendungen gewdéhnlich
auftreten, darf die diskontinuierliche Poissonverteilung (2) durch die
stetige Normalverteilung

_y Ta-ta?

AT = @nTyte ~ T (3)

ersetzt werden, bei der Mittelwert und Streuung, wie bei der Ver-
teilung (2), gleich dem Erwartungswert 7T, sind.

o
Die Formeln (2) und (3) gelten zuniichst fiir den Fall, dass die
Sterbenswahrscheinlichkeit pro Zeitelement q,/m fest bleibt. Is lisst sich
jedoch zeigen, dass sie auch unter weit allgemeineren Voraussetzungen
giiltig bleibt, niimlich auch, wenn die Wahrscheinlichkeit ¢,/m withrend
der Beobachtungsperiode sich stetig oder sogar sprunghatt verdindert.
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Der Erwa,rtungswert',ic 18t in diesem allgemeineren Fall gleich der Summe
aller in den einzelnen Zeitelementen aufgetretenen Erwartungswerte.
Die sogenannte «iibernormale Dispersion» bei den Sterblichkeitsschwan-
kungen, welche sich aus den sprunghaften Verinderungen der Sterblich-
keit ergibt, spielt somitim vorliegenden Problem gar keine Rolle, wihrend
sie umgekehrt bei risikotheoretischen Fragestellungen die Anwendung
der Formel (2) oft nicht zuldsst. Diese unterschiedliche Bedeutung der
«iitbernormalen Dispersion» bei sterblichkeitsstatistischen Untersuchun-
gen einerseits und bei risikotheoretischen Fragestellungen anderseits
rithrt davon her, dass bei sterblichkeitsstatistischen Untersuchungen
nur die zufdlligen Abweichungen von der mittleren Sterblichkeit mif
Finschluss von wesentlichen Schwankungen der Beobachtungsperiode
von Interesse sind, withrend in der Risikotheorie stets nach den Abwei-
chungen von einer erwarteten, normalen Sterblichkeit unter Ausschluss
von wesentlichen Schwankungen gefragt wird.

Die unter recht wirklichkeitsnahen Voraussetzungen abgeleitete
Verteilung (3) darf somit als Verteilungsgesetz der Sterbefille fiir eine
einzelne Altersklasse gelten. Nimmt man an, dass die Sterbefiille in
den verschiedenen Altersklassen untereinander stochastisch unabhiingig
sind, so lisst sich das gesuchte n-dimensionale Verteilungsgesetz der

Sterbefille ohne weiteres als Produkt der Verteilungen vom Typus (8)

darstellen, d. h. man hat dann .
=4 % (T2—Tx)?
. H —

[Ty, Ty... T, ... T) =@ T\ Ty... T, ... Tyte ==t T& (4

Die Annahme der Unabhiingigkeit erleichtert die Rechnung wesent-
lich; sie ist gerechtfertigh durch statistische Untersuchungen (siehe
z. B. die Arbeit [9]) und durch die plausible Uberlegung, dass eine
allfillige Abhiingigkeit der Sterbefille untereinander innerhalb jeder
einzelnen Altersklasse noch stiirker in Erscheinung treten miisste als
In voneinander verschiedenen Altersklassen. Die Verteilungen (2) und
(8) stiitzen sich jedoch wesentlich auf die Annahme der Unabhiingig-
keit der einzelnen Sterbefiille. Iis wiire daher geradezu abwegig, Un-
abhiingigkeit der Sterbefille innerhalb einer einzelnen Altersklagse
vorauszusetzen, nicht aber innerhalb verschiedener Altersklassen.
Die Verteilungen (3) und (4) gelten nur fiir Personensterblichkeit.
Fir Sterbetafeln, die sich auf Policen- oder gar Summensterblichkeit
stittzen, sind sie mit Riicksicht auf das ungleiche Gewicht der einzelnen
Sterbefille nicht anwendbar. Die Entwicklung von geeigneten Methoden,
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welche auch in diesen allgemeineren Ifillen anwendbar wiiren, bleibt
weiteren f'orschungen vorbehalten. Als Ausgangspunkt kénnte dabei das
in der Arbeit [23] hergeleitete Verteilungsgesetz der Policensterbefille
dienen.

IL. Die Methoden fiir die Ausgleichung der Sterbetafeln

Die verschiedenen Methoden fiir die Ausgleichung von Sterbetafeln
lassen sich in drei Hauptgruppen einteilen, nimlich in
A. analytische Methoden,
B. mechanische Methoden,
C. graphische Methoden.

Die letztgenannten Methoden iiberlassen dem subjektiven Frmessen
des Ausgleichers einen zu weiten Spielraum und koénnen daher nicht
Anspruch darauf erheben, als wissenschaftlich begriindete Methoden
zu gelten, obschon sie fiir manche praktische Zwecke durchaus ge-
niigen. Die nachstehenden Erorterungen beriicksichtigen daher nur
die analytischen und mechanischen Methoden, wobei nur die wahr-
scheinlichkeitstheoretischen Higenschatten dieser Methoden und nicht
das praktische Vorgehen behandelt wird.

A. Die analytischen Methoden

Bei analytischen Ausgleichungen geht man von der Annahme aus,
die wahren Werte der Sterbenswahrscheinlichkeiten ¢, lassen sich durch
eine analytische Iunktion von der Form

.(?a: = ’fp(ﬂ), 6.].’ 52 A afc) (5)

darstellen, worin 0, 0, ... 0, k Parameter sind, die in der Grund-
1 Ug K
gesamtheit ganz bestimmte Werte annehmen. Hauptaufgabe einer
analytischen Ausgleichung ist es, aus den Daten der vorhandenen
. i . . % - ’ 7 .
Stichprobe moglichst plausible Niherungswerte 0, 0, . .. 0, zu finden.
Die Ausgleichung fithrt dann auf die Funktion

G = (2, 01, 05 ... 0p), (52)

welche je nach der gewithlten Ausgleichungsmethode von der durch
(5) gegebenen wahren Tafel abweicht.
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1. Ubersicht iiber die klassischen Methoden

der Parameterbestimmung

a) Die Methode der ausgewdihlten Punlkte

Am naheliegendsten und einfachsten ist es, die Parameter 0; so
zu bestimmen, dass die durch die Gleichung (5a) gegebene Kurve
durch k geeignet gewithlte Punkte hindurch geht. Diese Methode lisst
den grogsten Teil des verfiigbaren Beobachtungsmaterials ausser acht
und iiberlisst die Wahl der gegebenen Punkte dem subjektiven Ii-
messen des Ausgleichers. Die Methode der ausgewihlten Punkte ist
daher wie die nahe mit ihr verwandte Methode der graphischen Ausglei-
chung fiir die wahrscheinlichkeitstheoretische Behandlung ungeeignet.

b) Die Methode der Momente

Nach der Methode der Momente werden die k Parameter 0; so
bestimmt, dass k Gleichungen von der Form

D 0) —gq] 2" =0 (6a)
oder “ .o ) ‘

erfillt gind. Die notwendigen k Gleichungen werden erhalten, indem
man r nacheinander die Werte von 0 bis k—1 annehmen lisst, oder
auch, indem man »r nur die Werte von 0 bis k' < k—1 annehmen
ligst und gleichzeitig die Summen (6) in mehrere Teilsummen zerlegt,
so dasgs wiederum k Bestimmungsgleichungen entstehen. Nach diesem
letzteren Prinzip verfihrt z B. die Methode von King-Hardy fiir
Ausgleichungen nach der Makehamschen Formel.

¢) Die Methode der kleinsten Quadrate

Die Methode der kleinsten Quadrate geht aus von der Bedingung

n
<1 ] ! .o
ST (0;) — T,]? = Minimum; (Ta)
=1
die gesuchten Parameter erhilt man dann durch Differenzieren der
in (7a) links stehenden Funktion nach den k Parametern 0, d. h. aus
den Bestimmungsgleichungen
! / I 2

)
] !
r=1 805

= 0 (fi:1’2"'k)‘ (TH”)
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Aus praktischen Griinden wird oft an Stelle der Bedingung (7a)
mit dem Ansatz

E:] [Qx (0;) ) — ¢,]* = Minimunn, (7b)

d. h. ohne Beriicksichtigung des Gewichts der Beobachtungen, gerechnet.
Fernerwerdenan Stelle derabsoluten Abweichungenzwischen Erwartung
und Beobachtung gelegentlich auch die sogenannten standardisierten
Abwelchungen T (0) — T

Ae = it
J 0}

in Rechnung gestellt. Man gelangt dann zur y2-Minimum-Methode mit

T

24k = 2, 7 @) = Minimum (Te)
oder etwas vereinfacht
Z_, ya = 2_] 7 — Minimum. (7d)

€T

Fiir hinreichend grosse Stichproben fiithren alle vier Ansétze (7)
zum gleichen Resultat. Praktisch ergeben sich jedoch stets gewisse
Unterschiede. Die Bedingung (7a) fihrt zur stirksten Anpassung der
Ausgleichung an die Beobachtungen in den Altern mit den grossten
Anzahlen an beobachteten Sterbefillen. Anderseits fithrt der Ansatz
(7b), der von den Sterbenswahrscheinlichkeiten ausgeht, zur stirksten
Anpasgsung bei den hohen Altern, wo die grossten Sterbenswahrschein-
lichkeiten auftreten. Die Formeln (7¢) und (7d) der yx*Minimum-
Methode weisen den Vorzug auf, dass die Genauigkeit der Ausgleichung
in allen Altern gleichmigsig wird.

2. Die Fisherschen Kriterien

Die oben angegebenen Bedingungen (6) und (7), welehe zu den
fir die Parameterberechnung notwendigen k Gleichungen fiihren,
erscheinen zunichst ziemlich willkiilich. Es stellt sich die Irage,
welcher der verschiedenen Angitze als der beste zu gelten hat, oder
ob gar irgendwelche weiteren Bedingungen noch besser wiren. Diese
Fragestellung fithrt auf die von R. A. Fisher herriihrende statistische
Schiitzungstheorie [15].



Nimmt man an, man kénnte an jeder der unendlich vielen Stich-
proben, welche blindlings aus der Grundgesamtheit entnommen werden
kénnten, die k Parameter 0; nach einer bestimmten Methode — z. B.
der Methode der Momente — berechnen, so wiirden sich bel jeder
Stichprobe etwas andere Parameterwerte ergeben. Die Parameter 6,
haben gomit als Funktionen der n zufilligen Variablen 7', ihrerseits
den Charakter von zufilligen Variablen, die je nach der gewihlten
Ausgleichungsmethode einem bestimmten Verteilungsgesetz f(0;) folgen.
Die Eigenschaften dieser Verteilungsgesetze erlauben es, die verschie-
denen Ausgleichungsmethoden gegeneinander abzuwigen, wobei die
nachstehenden Kriterien massgebend sind.

a) Eine Ausgleichungsmethode heisst folgerichtrg (consistent), wenn
die aus dem Verteilungsgesetz £(0;) des Parameters 0; zu entnehmende
Wahrscheinlichkeit, dass der berechnete Wert 0; um mehr als einen
beliebig kleinen Betrag ¢ vom wahren Wert ¢, abweicht, bei wachsendem
Stichprobenumfang beliebig nahe gegen Null sinkt. Etwas weniger prizis,
aber einfacher ausgedriickt bedeutet dies, dass bei einer folgerichtigen
Ausgleichungsmethode die berechneten Parameterwerte §; mit wach-
sendem Stichprobenumfang gegen die wahren Werte §; streben. Die
Folgerichtigkeit ist somit eine fiir grosse Stichproben geltende Grenz-
werteigenschaft.

b) Eine folgerichtige Ausgleichungsmethode ist fres von systema-
tvschen I'ehlern (unbiased), wenn auch bei endlichem Stichprobenumfang
der Erwartungswert

B(0) = [ {07 0;d0;

identisch ist mit dem wahren Wert §,.

¢) Die Warksamkest (efficiency) einer Ausgleichungsmethode lisst
sich durch die Strenung der Parameterverteilungen

a*(07) = [ 1(0}) [0; — E=(0)] o

messen. Von zwei konkurrierenden Ausgleichungsmethoden ist diejenige
wirksamer, bei der die Parameterstreuung o2(f;) kleiner ist.

d) Eine Ausgleichungsmethode heisst hinreichend (sufficient), wenn
keine weitere Methode existiert, die eine zusitzliche Information iiber



den wahren Wert f; des Parameters 0; liefern konnte. Ist z. B. 0;
nach einer hinreichenden Methode und 6} nach irgendeiner anderen,
nicht funktional von der hinreichenden Methode abhéingigen Methode
bestimmt worden, so lisst sich das simultane Verteilungsgesetz von 0
und 0 in der Form

f(0:, 0%) = £,(05, 05) 1,(05, 03)

darstellen, d.h. als Produkt von zwei Funktionen, von denen die
erste vom hinreichend bestimmten Parameterwert 0; und vom wahren
Wert 9, abhiingt, withrend die zweite Funktion den wahren Wert nicht
enthilt und daher auch keine zusitzlichen Informationsquellen itber
den wahren Wert bieten kann.

Hinreichende Methoden sind stets am wirksamsten, sofern iibers
haupt eine wirksamste Methode existiert. Leider lassen sich hinreichende
Methoden nur unter ganz bestimmten Voraussetzungen angeben; im
allgemeinen existieren keine hinreichenden Methoden.

3. Die Likelihoodmethode

Die Fisherschen Kriterien erlauben einen objektiven Vergleich der
verschiedenen Ausgleichungsmethoden und fithren dariiber hinaus zu
einer optimalen Methode, die unter dem Namen Iakelthoodmethode
bekannt ist. Nach dieser Methode werden die Parameter 0; so bestimmt,
dass die Wahrscheinlichkeit fiir das Auftreten der beobachteten Kon-
stellation der Sterbefille ein Maximum erreicht. Dies fithrt zur Bedingung

1 e Ta (03]

z b e
2 Iz (03)

HOW Ty Ty Ty = [[[2m TL0)] e

die durch Logarithmieren in die handlichere Form

= Max., (8)

n

— 3D [RaT0)] —3

i1 =1 T(0)

[T, — T, (0)]°

& €T

= Maximum  (8a)

iibergeht. Die Likelihoodmethode ist folgerichtig, wenigstens fir grosse
Stichproben am wiwrksamsten und hinreichend, wenn iiberhaupt eine
hinreichende Methode existiert. Die Verteilungsgesetze der Parameter
0; streben fiir grosse Stichproben gegen Normalverteilungen.
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Iir grosse Stichproben verliert das erste Glied links in Formel (8a)
immer mehr an Bedeutung gegeniiber dem zweiten Glied. Beriick-
sichtiot man nur dieses, fitv grosse Stichproben allein wesentliche
Glied, so geht die Bedingung (8a) in die Bedingung (7e¢), die der
%2-Minimum-Methode entspricht, iiber. Die y2-Minimum-Methode darf
daher im Sinne der Fisherschen Kriterien als beste Ausgleichungs-
methode gelten. Die nahe mit der y*-Minimum-Methode verwandten,
aus dem Prinzip der kleinsten Quadrate folgenden Bedingungen (7a),
(7b) und (7d) weisen fiir grosse Stichproben nahezu die gleichen
Vorziige auf wie die Bedingung (7¢). Die durch die Bedingungen (6)
charakterisierte Methode der Momente hingegen ist im allgemeinen
weniger wirksam als die y2-Minimum-Methode. In gewissen Spezial-
fillen konnen beide Methoden zum gleichen Frgebnis fithren.

Abschliessend sei noch festgestellt, dass die Iisherschen Kriterien
nur Aussagen iiber die Stichprobenverteilungen der Parameter 0
geben. Daraus folgt, dass diese Kriterien iiber den Erfolg einer Aus-
gleichung im konkreten Fall keine Anhaltspunkte liefern. Die %2-Mini-
mum-Methode fithrt demnach nicht immer zur besten Ausgleichung,
sondern nur bei héufiger Anwendung im Durchschnitt zu besseren
Resultaten als andere Methoden.

B. Die mechanischen Methoden

Die analytischen Verfahren bewihren sich trotz ihrer wahrschein-
lichkeitstheoretischen Vorziige in der Praxis oft nicht, weil keine
geeigneten analytischen Sterbegesetze gefunden werden konnen, die
fiir die ganze Sterbetafel gelten und ausserdem nur wenige Parameter
enthalten. Unter diesen Umstinden wird oft einem der zahlreichen
mechanischen Verfahren der Vorzug gegeben, die stets zu ziemlich
befriedigenden, wenn auch nicht erstklassigen Ausgleichungen fithren.
Nach den mechanischen Methoden werden die ausgeglichenen Werte
der Sterbenswahrscheinlichkeiten ¢, stets mit Hilfe von Ausdriicken
von der [form i
e = 2\ ty Gy s 9)

v=—k
d. h. als gewogenes Mittel von 2k + 1 Werten berechnet. Die ver-
schiedenen, wohlbekannten mechanischen Formeln unterscheiden sich



untereinander nur durch die Anzahl und den Verlauf der Gewichts-
koeffizienten a,, die ihrerseits stets der Bedingung

a, =1 9
geniigen. =k
Die beobachteten Werte g, kann man aufteilen in den wahren
Wert ¢, und in die Abweichung 4,, d. h. man hat

Fiir den ausgeglichenen Wert ¢, erhiilt man somit

+k +k

4 = Zka'v Qx-i-v + Zkav A:c+v . (93’)
Tithrt die Ausgleichungsformel (9), auf die wahren Werte ¢, angewendet,
zu richtigen Krgebnissen, d. h. ist

—_ Tk s

¢ = Ekau ot » (10)
g0 liegen die wahren Werte ¢, auf einer analytischen Kurve, die aus
der Differenzengleichung (2k + 1)-ter Ordnung (10) bestimmt werden
kann. Unter diesen Voraussetzungen stellt das erste Glied rechts in
Formel (9a) den wahren Wert ¢, dar und das zweite Glied den Fehler
des ausgeglichenen Wertes. Gilt die Differenzengleichung (10) nicht,
go fithrt die mechanische Ausgleichsformel (9) zu gewohnlich wellen-
artig verlaufenden, systematischen Abweichungen zwischen den wahren
Werten ¢, und den ausgeglichenen Werten g, .

Wenn die Differenzengleichung (10) erfiillt ist, so ist die Ab-
weichung A, eine zufillige Variable, die um den Mittelwert Null mit

der Streuung :

R

€

o*(d,) =

normal verteilt ist. Der durch das zweite Glied rechts in Formel (9a)
gegebene zufillige Fehler des ausgeglichenen Wertes Aq, ist somit
ebenfalls normal verteilt um den Mittelwert Null. Fir die Streuung
gilt die Formel

-+
-

AAg) = > a2

z-v

N7

Il
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Zu beachten ist ferner, dass die Fehler der ausgeglichenen Werte
innerhalb eines gewissen Bereichs von Nachbarwerten teilweise aus
den gleichen FElementen aufgebaut sind. Die Fehler der ausgeglichenen
Werte sind daher untereinander stochastisch abhingig. Dieser Um-
stand ist bei der Uberpriifung von Ausgleichungen bedeutsam.

Die mechanischen Ausgleichungen fithren im allgemeinen nicht
zu wirklich glatten Kurven; das zweite Glied in Formel (9a) rechts
bewirkt stets einen unregelmiéssigen Verlauf. Dieser Nachteil ldsst
sich vermeiden, wenn man, wie beispielsweise nach der Methode von
King, die Ausgleichsformel nur auf dquidistante, sogenannte Kardinal-
punkte anwendet und die fehlenden Werte durch oskulatorische Inter-
polation erginzt. Dieses Vorgehen weist anderseits den Nachteil auf,
dass die Genauigkeit der ausgeglichenen Werte untereinander ver-
schieden wird, und dass das Ausgleichungsergebnis von der willkiir-
lichen Wahl der Kardinalpunktfolge abhéngt.

Einen interessanten Weg, um im konkreten Fall eine moglichst glatte
Kurve und gleichzeitig einen engen Anschluss an die Beobachtungen zu
erreichen, schligt Whittaker vor [8]. Von der Uberlegung ausgehend,
dass bel einer gut ausgeglichenen Reihe die Differenzen héherer Ordnung
A™q, klein sind, berechnet er die Gewichtskooffizienten a, in Formel (9)
$0, dags der Ausdruck

n n

2 (6 —4)* + gn >, (A" )"

T=1 r=1
ein Minimum wird; ¢, bedeutet dabei einen willkiirlichen Gewichts-
faktor. Zu einer wirklich glatten Kurve fithrt die Whittakersche Methode
allerdings auch nicht; immerhin kann man die Glitte durch eine ge-
eignete Wahl des Gewichtstaktors ¢,, innerhalb eines gewissen Rahmens
steigern. Vom wahrscheinlichkeitstheoretischen Standpunkt aus nimmt
die Whittakersche Methode eine Mittelstellung zwischen den analytischen
und mechanischen Verfahren ein. Ihre wahrscheinlichkeitstheoretischen
Kigenschaften sind noch nicht geniigend abgeklirt.
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ITI. Die Uberpriifung der Giite von Ausgleichungen

Von einer guten Ausgleichung verlangt man

a) einen glatten Kurvenverlauf;

b) gute Ubereinstimmung mit den Beobachtungen, d. h. méglichst
kleine Abweichungen zwischen Beobachtung und Ausgleichung;

¢) einen nicht systematischen, zufallsartigen Verlauf dieser Ab-
weichungen.

Im folgenden sei versucht, die Methoden zur Uberpriifung dieser
drei Figenschaften zusammenzustellen und ihre Vor- und Nachteile
gegeneinander abzuwigen.

A. Die Gldtte der Ausgleichung

Bei den analytischen Ausgleichungen und bei mechanischen Aus-
gleichungen in der Art der Methode von King steht zum vorneherein
fest, dass die Ausgleichung zu einer glatten Kurve fithrt. In diesen
Fillen ist die Uberpriifung der Glitte der Ausgleichung nicht not-
wendig, weil es wohl keinen Sinn hat, den Unterschied in der Glitte
zu untersuchen, welcher zwischen verschiedenen analytischen Kurven,
z. B. Parabeln und Fxponentialkurven, besteht. Anders verhiilt es
sich bei den meisten mechanischen Verfahren, weil bei diesen keine
wirklich glatten Kurven entstehen, sondern giinstigstenfalls scheinbar
glatte Kurven, bei denen nur noch Unregelméssigkeiten im Rahmen
von Rundungsfehlern auftreten.

Bei einer glatten Kurve sind die Differenzen hoherer Ordnung,
z. B. A" q., gewohnlich klein. Die Quadratsumme der mten Differenzen
der ausgeglichenen Reihe eignet sich deshalb als Mass fiir die Glitte
einer Kurve. I'tir die unteren Alter geniigh ey in der Regel, auf die
dritten Differenzen abzustellen; fiwr die hoheren Alter mit ihren pro-
gressiv wachsenden Sterbenswahrscheinlichkeiten empfiehlt es sich,
eine Differenz m > 3 in Betracht zu ziehen. Je kleiner die Quadrat-
summe der mten Differenzen ausfillt, desto besser ist die Glitte der
untersuchten Kurve. Als befriedigend darf die Glitte immer dann
gelten, wenn die Quadratsumme kleiner ausfillt als

2-

-+

n—L

Z Am qa’:]z - nQZm—-ZJ (11)
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gemessen in Finheiten der letzten Dezimale von ¢, . Der Grenzwert (11)
ergibt sich unter der Annahme, dass die m-te Differenz A™¢, an sich
verschwindet, aber den maximalen Rundungsfehler aufweist. Dieser
tritt auf, wenn die letzte Dezimale der ausgeglichenen Werte alter-
nierend den Rundungsfehler + § aufweist.

Beispiel: Die nach der Methode von Woolhouse mechanisch aus-
geglichene Sterbetafel SM 1901/10 fithrt in dem 30 Alter umfassenden
Intervall 10 < 2 <39 zu einer Quadratsumme der dritten Differenzen
von 2:293 gemessen in Kinheiten der letaten (finften) Dezimale. Nach
Formel (11) wiire bei einer glatten Kurve nur ein Betrag von 30 - 2% = 480
zulissig. Die Ausgleichung nach Woolhouse fithrt demnach nicht zu
einer geniigend glatten Kurve.

B. Grundsitzliche Bemerkungen iiber Testverfahren

1. Allgemeine Festsetzungen

Bei der Uberpriffung einer Ausgleichung hinsichtlich der Grésse
der Abweichungen zwischen Beobachtung und Ausgleichung in den
einzelnen Altern und des unsystematischen Verlaufs dieser Ab-
welchungen bedient man sich mit Vorteil eines sogenannten Test-
verfahrens. Diese Verfahren stittzen sich auf das im Kapitel I ge-
schilderte Stichprobenmodell und auf die Annahme, dass die Aus-
gleichung auf die wahre Sterbetafel gefithrt habe. Die gegebenen
Beobachtungen werden somit als eine blindlings ausgewihlte Stich-
probe aus der Grundgesamtheit aufgefasst, in der die Sterblichkeit
durch die gefundene Ausgleichung gegeben ist. Die Frage nach der
Ubereinstimmung zwischen Ausgleichung und Beobachtung geht dann
in die andere Frage iiber, ob die vorhandenen Beobachtungen eine
Stichprobe aus der angenommenen Grundgesamtheit sein konnten.
Um dies abzukliren, teilt man die Gesamtheit aller Stichproben, deren
Struktur durch das n-dimensionale Verteilungsgesetz (4) gegeben ist,
in zwei Untergesamtheiten auf, nimlich in die Untergesamtheit der
praktisch vorkommenden Stichproben und in die Untergesamtheit
der theoretisch an sich moglichen, praktisch aber nicht auttretenden
Stichproben. Diese beiden Untergesamtheiten sollen so abgegrenzt
werden, dags auf die letzatere ein praktisch zu vernachlissigender
Anteil P —. z. B. 59, — und auf die erstere ein Anteil 1 — P — z. B.

3
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959, — aus der Gesamtheit aller Stichproben entfillt. Man betrachtet
dann die Ubereinstimmung zwischen Ausgleichung und Beobachtung als
geniigend oder ungeniigend, je nachdem die gegebenen Beobachtungen
zur einen oder andern Untergesamtheit gehoren. Wie hoch der Anteil
P, die sogenannte Wesentlichkeitsschranke, zu bemessen ist, hiingt vom
subjektiven Irmessen des Ausgleichers und von den Folgen eines all-
filligen Fehlurteils ab. Bei Sterbetafeln empfiehlt es sich in der Regel,
P nicht allzu klein zu wihlen, weil sonst auch recht schlechte Aus-
gleichungennoch als zuléissig angesehen werden miigsten. Imallgemeinen
wird P im Bereich zwischen 59, und 19, als angemessen betrachtet.

Im Interesse einer mdéglichst klaren Darstellung ist es zweck-
miigsig, die Gesamtheit aller Stichproben geometrisch zu veranschau-
lichen. Die m beobachteten Anzahlen der Sterbefille 1", T, ... T,
lassen sich als rechtwinklice Koordinaten eines Punktes in einem
n-dimensionalen euklidischen Raum deuten. Die Punkte der beiden oben
erwithnten Untergesamtheiten der Stichproben erfiillen dann jede einen
gewissen Teil dieses Raumes. Die Untergesamtheit der praktisch vor-
kommenden Stichproben fithrt auf Punkte in einem Raumbereich,
welchen man den Annahmebereich (region of acceptance) nennt. Die
Punkte der Untergesamtheit der praktisch nicht vorkommenden Stich-
proben liegen im restlichen Raum; den Bereich dieser Punkte nennt
man den kritischen Bereich (critical region).

Durch die Wahl der Wesentlichkeitsschranke P sind die beiden
genannten Raumbereiche, nimlich der Annahmebereich und der kritische
Bereich, kemeswegs eindeutig gegeben. Hs liessen sich vielmehr un-
endlich viele derartige Bereiche angeben, die sich alle auf die gleiche
Wesentlichkeitsschranke P stiitzen. Jeder einzelnen derartigen Ab-
grenzung entspricht dabei ein bestimmtes Testverfahren. Unter diesen
unendlich vielen kritischen Bereichen sind jedoch nicht alle in gleicher
Weise geeignet. Bei der Auswahl von geeigneten kritischen Bereichen
sind zwei Gesichtspunkte massgebend, néimlich

a) der kritische Bereich muss, wenn immer moglich, so gewiihlt
werden, dass die I'eststellung, ob eine konkrete Stichprobe in
den kritischen Bereich fillt oder nicht, nach einer einfachen,
moglichst universal giiltigen Regel erfolgen kann.

b) der kritische Bereich muss so gewihlt werden, dass die Chance,
eine ungeniigende Ausgleichung als solche zu entdecken, moglichst
gross wird.



Diese beiden Gesichtspunkte fithren dazu, eine im Sinne von b)
moglichst leistungsfiihige Masszahl M zu bilden, die aus den beobach-
teten und erwarteten Sterbefillen zu berechnen ist. Im konkreten
Fall liegt dann eine gegebene Stichprobe im kritischen Bereich oder
nicht, je nachdem die Masszahl einen gewissen kritischen Wert M*
itberschreitet oder nicht.

2. Das Verteilungsgesetz der Masszahl M

Die Magszahl M ist, da sie aus den zufélligen Variablen 1", Ty ... T,
aufgebaut sein soll, ihrerseits eine zufillige Variable, die einem Vertei-
lungsgesetz mit der Frequenzfunktion f(M) folgt. Der gesuchte kritische
Wert M* ergibt sich dann als I'unktion der Wesentlichkeitsschranke P
aus der Beziehung o

P = [ f(M) dM (12)
M+
und ist somit gegeben, sobald das Verteilungsgesetz f(M) bekannt ist.
Dieses Verteilungsgesetzlisst sich grundsitzlich aus dem n-dimensionalen
Verteilungsgesetz der Sterbefille (4) durch Summation der Wahrschein-
lichkeiten fir alle Wertkonstellationen der Sterbezahlen 7'\, T, ... T,
bilden, welche auf die gleiche Magszahl M fiihren. Analytisch ist somit
f(M) durch das n-fache Integral

y Be-ta2
f(M) fj fII 2n 1) T, 4T, (13)

gegeben, wobel iiber ein Gebiet zu integrieren ist, so dass die Masszahl M
als I'unktion der beobachteten und erwarteten Sterbefille stets den
gegebenen Wert M annimmt. Die Auflésung des n-fachen Integrals (13)
fithrt fast immer auf grosse, wenn nicht uniitberwindliche Schwierig-
keiten. Diese lassen sich unter Umstéinden vermeiden oder doch ver-
kleinern, wenn man an Stelle der Frequenzfunktion zuerst die zuge-
horige charakteristische Funktion

@a(t) = J M f(M) dM (14a)

— o0

bestimmt. Die Frequenzfunktion selbst lisst sich anschliessend aus
der charakteristischen Funktion zu



1 — M /
(M) = " e @ (1) di (14h)

bestimmen oder noch einfacher aus einer Transformationstabelle ent-
nehmen, in der wie in einem Wérterbuch charakteristische F'unktionen
zu gegebenen Frequenzfunktionen und umgekehrt nachgeschlagen wer-
den konnen.

Die charakteristische Funktion (14a) kann direkt aus der Verteilung
(4) berechnet werden, niimlich als Frwartungswert der Funktion ¥
beziiglich der n-dimensionalen Verteilung der Sterbetille (4). s ist

o oo oo
z
pyut) = f f...fe“M(Tl'Tﬁ“‘ T Ty wn Y HAT, . (15)
mgebe o

Die TFormeln (13) und (15) tragen dem Umstand noch nicht
Rechnung, dass die Ausgleichung aus den gegebenen Beobachtungen
berechnet wurde. Die Beriicksichtigung der Ausgleichungsmethode
erfolgt in verschiedener Weise, je nachdem ob eine mechanische oder
eine analytische Methode vorliegt.

Bel mechanischen Ausgleichungen sind in der Masszahl M durch
Substitution der mechanischen Ausgleichsformel (9) die nach der Aus-
gleichung erwarteten Toten zu ersetzen durch Ausdriicke, die aus-
schliesslich von den beobachteten Toten abhingen. Die charak-
teristische Funktion kann dann ohne weiteres berechnet werden. Iiir
die niheren Kinzelheiten der Methode sei aut die Arbeit [10] verwiesen.

Bei analytischen Ausgleichungen ist in folgender Weise vorzu-
gehen: Die k Parameter 0, des analytischen Sterbegesetzes v(x,0,)
sind als 'unktionen der beobachteten Sterbefille T',, T, ... T', ihrer-
seits zufillige Variable und folgen zusammen mit der Masszahl M einem
(k1) dimensionalen Verteilungsgesetz, dem die (k- 1) dimensionale
charakteristische Funktion

o0 (=] o? (14:&[)
”ﬂf[ﬂd F\ !!0 0; 2
; . r—l £(7] m 1Al qm
‘P(tmr»ta;---to,;)— fTy,Ty... T,) 14T,
—00 —o0 — o0
zugeordnet ist, die analog wie in Formel (15) als Iirwartungswert von
%
iy M+ Eilo}ﬂ}
r=1

e



beziiglich der Verteilung (4) zu berechnen igt. Durch Inversion ergibt
sich anschliessend das zugehérige simultane Verteilungsgesetz der

k-1 zufilligen Variablen M, 0, ... 0, und schliesslich — nachdem
. . P /. . .
man iiber die k& Parameter 0, integriert hat — das allein verlangte

Verteilungsgesetz der Masszahl M zu

f(M) = j T ff(M,O[,Oé... o) 110’ .

Aus diesen Darlegungen diirfte zur Geniige hervorgehen, dass die
Herleitung des Verteilungsgesetzes einer beliebigen Masszahl M im
allgemeinen recht schwierig ist. Fs ist daher nicht verwunderlich, dass
derartige Verteilungsgesetze bis jetzt nur fiir verhiltnismissig wenige
Masszahlen gefunden werden konnten. Man ist daher gezwungen, sich
auf die wenigen Masgszahlen zu beschrinken, bei denen das zugehorige
Verteilungsgesetz bekannt ist.

Oft wird man sich auch mit dem Verteilungsgesetz begniigen,
das die verwendete Ausgleichungsmethode ausser acht lisst. Dieses
vereinfachte Vorgehen ist allerdings nur dann statthaft, wenn die
Anzahl der Parameter im analytischen Sterbegesetz im Vergleich zur
Anzahl der beriicksichtigten Alter in der Sterbetafel klein ist.

Im allgemeinen hingt das Verteilungsgesetz der Masszahl M
bei analytischen Ausgleichungen nicht nur von der Anzahl der aus
den Beobachtungen bestimmten Parameter ab, sondern auch von der
Methode der Parameterberechnung. Beispielsweise ist das Verteilungs-
gesetz verschieden, wenn bei der Makehamschen Formel die drei
Parameter nach der Methode von King-Hardy oder nach der y* Mini-
mum-Methode von Cramér-Wold bestimmt werden, und zwar ist die
Streuung von M bei Anwendung der Methode von King-Hardy grosser
als bel der Methode von Cramér-Wold. Dies bedeutet nichts anderes,
als dass die Ausgleichung nach King-Hardy mit Riicksicht auf die
weniger leistungsfihige Ausgleichungsmethode nicht so streng be-
urteilt wird, wie die Ausgleichung nach Cramér-Wold. Fine derartige
Beurteilung mit ungleichen Massstiben, die dazu fithren konnte, dass
die schlechtere Ausgleichung als die bessere erscheint, befriedigt nicht.
Sinnvoller ist es, stets auf das Verteilungsgesetz abzustellen, das fiir
die leistungstihigste Methode der Parameterbestimmung, d. h. fiir die
x®-Minimum-Methode gilt.
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3. Ubersicht iiber die gebriiuchlichsten Masszahlen

Die gebriauchlichsten Masszahlen lassen sich in drei Hauptgruppen
einordnen, nimlich in

a) Magszahlen, welche die Giite der Ubereingtimmung zwischen
Ausgleichung und Beobachtung in den einzelnen Altern ohne
Beriicksichtigung der Reihenfolge dieser Alter messen;

b) Masszahlen, welche den unsystematischen, regellosen Verlauf
dieser Abweichungen messen;

¢) kombinierte Masszahlen, welche sowohl die Abweichungen in
den einzelnen Altern als auch deren regellose Folge erfassen.

Mit diesen Masszahlen ldsst sich nicht nur die Frage beantworten,
ob eine bestimmte Ausgleichung geniigt oder nicht, sondern auch, wie
verschiedene Ausgleichungen nach threr Giite zu klagsieren sind, und
schliesslich, welche unter den vorliegenden Ausgleichungen die beste
ist. Als ein objektives Mass fiur eine derartige Klassierung darf die
Wahrscheinlichkeit

P(M) = ff(M) aM (16)

M

angesehen werden, in der M die bei der einzelnen Ausgleichung auf-
getretene Masszahl bedeutet. Je grosser die Wahrscheinlichkeit P (M)
austillt, desto besser wird die Ausgleichung beurteilt. Die Ausgleichung
mit dem grossten Wert von P (M) wird als die beste angesehen. Diege
Schlugsweise ist allerdings im konkreten Iall nicht unbedingt stich-
haltig; bei hiufiger Anwendung trifft man jedoch in der Regel damit
das richfige.

Im folgenden sollen die Masszahlen, die den wichtigsten Test-
verfahren zugrunde liegen, kurz erdrtert werden. Auf eine Ableitung
der Formeln wird im allgemeinen verzichtet; fiir diese Ableitungen
sei auf die im Literaturverzeichnis angefithrten Werke und Arbeiten
verwiesen.
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C. Testverfahren fiir die Giite der Ubereinstimmung
zwischen Ausgleichung und Beobachtung
in den einzelnen Altern

1. Die Quadratsumme der Abweichungen

Fs liegt nahe, die Giite der Ubereinstimmung zwischen Aus-
gleichung und Beobachtung durch die Quadratsummen

Fl

AT =3 (@, — T, (Ta)
oder =
=2\ l—a)’ (17h)

zit messen. Diese Magszahlen verschwinden, wenn Beobachtung und
Ausgleichung zusammentallen, und werden um so grosser, je mehr die
Ausgleichung von den Beobachtungen divergiert. Die Verteilungs-
gesetze der Masszahlen (17) konnten mit Hilfe der im Abschnitt B, 2,
skizzierten Methoden verhiltnisméssig einfach berechnet werden. Diese
Rechnung wiirde zeigen, dass die Verteilungsgesetze der Masszahlen
(17) zwei fir die Anwendungen nachteilige Higenschaften aufweisen,
niamlich dass

a) die unbekannten n Hrwartungswerte 7, der wahren Sterbetafel
als Parameter a,uftreten, und dass

b) die Verteilungsgesetze der Masszahlen (17) von den besonderen
Daten der Sterbetatel und des Beobachtungsmaterials abhéingen
und daher bei jeder Anwendung wieder neu berechnet werden
miissten.

Die praktische Anwendung der Magszahlen (17) stosst somit auf
betriichtliche Schwierigkeiten. Fiir grosse n (n = Anzahl der Alters-
klagsen in der Sterbetafel) lassen sich die Verteilungsgesetze der Mass-
zahlen (17) immerhin néherungsweise ermitteln, wenn man beriick-
sichtigt, dass diese Verteilungsgesetze gegen Normalverteilungen mit
den Mittelwerten

R(AT?) = >‘ T, wd B =D Iq% (17)



und den Streuungen

(ATH = 2D T2+ DT, und o*(4¢?) = D (2 —,q% + ﬁ) (17")
z=1 z=1 z=1 R“L' Rz

streben.

Frsetzt man die wahren Werte 7', und ¢, durch die aus der Aus-
oleichung hervorgegangenen Werte 7, und ¢, so kann man die Ver-
teillungsgesetze der Masszahlen (17) wenigstens in erster Niherung
berechnen. Die Giite der Naherung im konkreten Fall bleibt allerdings
ziemlich ungewiss.

2. Der y%-Test

Die unter Abschnitt 1 behandelten Kriterien AT? und A¢?* lassen
sich durch eine einfache lineare Transformation, die sogenannte Stand-
ardisierung, so umgestalten, dags ihr Verteilungsgesetz von den ¢listigen»
Parametern 7', Ty ... T, (nuisance parameters) befreit wird. Man
ersetzt die absoluten Abweichungen 7, —T', durch die standardisierten

Abweichungen T

Xx:_ﬁ’

die fiir alle Alter einheitheh normal verteilt sind um den Mittelwert
Null mibt der Streuung Kins. Man erhilt dann die Quadratsumme

(18)

n 8 {7, —LP
== _(__:ﬁ)A, (18a)
z=1 =1 Tx

welche nach Helmert (1876) [16] und K. Pearson (1900) [20] dem
Verteilungsgesetz

g—§ A2%—l
(%) = —; ) (18b)

X] F(ﬁ)
)

der sogenannten y% Verteilung mit n T'reiheitsgraden folgt. Dank der
Standardisierung hingt die y2-Verteilung (18b) nur von der Anzahl n
der Altersklassen ab. Die Anzahlen der unter Risiko stehenden Per-
sonen, die Sterbetafel und andere von Fall zu Fall &ndernde Daten
gpielen dagegen keine Rolle mehr. Die Masszahl 4? erlaubt somit eine
Beurteilung von Sterbetafeln aut einer universal giiltigen Grundlage.
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a) Anwendung auf analytische Ausgleichungen

Die Formeln (18) gelten zunichst nur fir Sterbetafeln, die nicht
aus den gegebenen Beobachtungen hergeleitet worden sind. Wie
R. A. Fisher (1924) [15] gezeigt hat, darf jedoch die y2-Methode ohne
weiteres auch auf analytische Ausgleichungen angewendet werden,
wenn folgende Voraussetzungen erfiillt sind:

«) Die Anzahl der Beobachtungen ist in allen Altersklassen gross.

f) Die Parameter des analytischen Sterbegesetzes sind nach der
Likelihoodmethode oder der nahe mit diesem Verfahren verbun-
denen y2-Minimuam-Methode oder auch der Methode der kleinsten
Quadrate bestimmt worden.

y) die Anzahl der Freiheitsgrade n wird fiir jeden aus den Beob-
achtungen ermittelten Parameter um je eine Kinheit reduziert.

Wird somit eine Sterbetafel nach einem Sterbegesetz mit & Para-
metern ausgeglichen, so gilt fiir die aus den beobachteten (7)) und
erwarteten (7)) Anzahlen der Sterbefille gebildete Masszahl

2 O '9 Q (T'imTQ) ’ 4
e 1609
=1 =1 T:L‘
das Verteilungsgesetz - .
%2 L
, e * (% /
M = — = (18t
9 1’(* )
2

die y2-Verteilung mit (n— k) Freiheitsgraden.

Im Abschnitt II, A, wurde gezeigt, dass die y2-Minimum-Methode
die leistungstihigste Methode fiir die Parameterbestimmung ist. Nach
den Ausfithrungen am Schlusse des Abschnittes 111, B, 2, darf daher
die Verteilung (18b") fiir alle analytischen Ausgleichungen schlechthin
angewendet werden, selbst wenn die Parameter nicht nach der leistungs-
fahigsten Methode bestimmt wurden.

b) Anwendung auf mechanische Ausgleschungen

Fntgegen einer weit verbreiteten Ubung gilt die Verteilung (18b”)
nicht, wenn eine mechanische Ausgleichung vorliegt. Wie in der
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Arbeit [10] gezeigt wird, folgt die Masszahl y'2 [Formel (18a’)] bei
mechanigchen Ausgleichungen einem allgemeineren Verteilungsgeseta,
dessen charakteristische Funktion in der Iform

Pall) = [1 -+ er(—2il) + oy(— 201 ... o, (— 2T (19)

darstellbar ist.

Die charakteristische Funktion der gewéhnlichen y*-Verteilung (18b)

palt) = [(1 — 2ty (20)

ist in der allgemeineren Verteilung (19) als Spezialfall enthalten. Die
Frequenzfunktion der verallgemeinerten #2-Verteilung (19) scheint
nicht in expliziter Form darstellbar zu sein, hingegen lassen sich ihre
Momente direkt aus der charakteristischen Funktion (19) berechnen.
I'ir den Mittelwert gilt z. B. die Formel

+k
E(yH) =nD 05 =nl, (21)
y=—Fk
_ a, fir » = 0
mib «, = e
\av—l tir % =18,

d. h. der Mittelwert der x%-Verteilung (19) ist gleich der n-fachen
Quadratsumme der Koeffizienten o, , die ihrerseits durch die Gewichts-
koeftizienten a, der mechanischen Ausgleichsformel (9) gegeben sind.
Der Mittelwert (21) entspricht der Anzahl der Ireiheitsgrade n—Fk
bei den analytischen Ausgleichungen. Bemerkenswert ist der Umstand,
dass die Anzahl der Freiheitsgrade bet mechanischen Ausgleichungen
dureh proportionale Kiwrzung der Anzahl » und bel analytischen Aus-
gleichungen durch Subtraktion der Parameterzahl k aus der Anzahl n,
hervorgeht.

In erster Niherung darf fiir mechanische Ausgleichungen mit der
gewohnlichen y2-Verteilung (18b’) gerechnet werden, wobei der Mittel-
wert (21) fiir die Anzahl der Freiheitsgrade in Bechnung zu stellen ist.
In der nachstehenden Tabelle sind die Mittelwerte von 2 fiir einige
bekannte mechanische Formeln zusammengestellt.



N Mittelwert
Ausgleichsformel 1 (%)
(Koeftizientenfolge o) j[*‘o;mgedl @1
5-Punkte-Formel von Wittstein 0,800 n
1
S (L1, =4 ..)
9-Punkte-Iormel von Iinlaison 0,736 n
1 ¢
5 (1,2,8,4,-20 ...)
15-Punkte-Formel von Woolhouse 0,779 n
o (—8,0,-2,8,7,21,24,-100 ...)
19-Punkte-Formel von Karup 0,763
1'2}56 (—4, —12,—18, —186, 0, 42, 106, 174, 228, —1000 . . .)
15-Punkte-Formel von Spencer 0,730 n
oo (—8,—6,—5, 8,21, 46, 67, -246 ...)
21-Punkte-Formel von Spencer 0,800 n
L - C 1 Qa _.OC
e (1, -8, ~8, 8, -8, 6, 18, B8, 47, 57, — 290 ... .)
30-Punkte-I'ormel von King fiir Ausgleichungen vom | 0,825 #
2-ten Kardinalpunkt an

¢) Bemerkungen

Die %-Methode nimmt unter den verschiedenen bereits bekannten
Testverfahren eine dominierende Stellung ein. Diese Stellung verdanks
sie folgenden Vorziigen:

«) Die Masgszahl #* ist leicht und mit elementaren Hilfsmitteln
berechenbar.

#) Die y*Verteilung (18b") ist analytisch verhiltnismissig ein-
fach aufgebaut und lisst sich auch leicht anwenden.

y) Der y2-Test ist eigentlich das einzige Testverfahren, bei dem die
Auswirkungen der angewendeten Ausgleichungsmethode auf das Ver-
teilungsgesetz der Masszahl genau bekannt sind. Bei den analytischen
Auggleichungen ist tberdies die dabei zur Anwendung gelangende,
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von R. A. Fisher herrithrende Freiheitsgradregel so einfach, dass sie
selbst von Personen angewendet werden kann, welche die mathe-
matischen Grundlagen des Verfahrens nicht restlos beherrschen.

6) Die numerischen Untersuchungen im [V. Kapitel zeigen, dass
dag yx?-Verfahren unter allen Umstinden zu einem einigermassen
brauchbaren Resultat fithrt; Ille, bei denen die y2-Methode giinzlich
versagh, wie sie bei andern Verfahren auftreten, kommen nicht vor.

Diesen Vorziigen stehen anderseits gewisse Nachteile gegeniiber;
insbesondere ist es eine Schwiiche des y2-Tests, dass er das Vorzeichen
und die Reihenfolge der einzelnen Abweichungen unberiicksichtigt
ligst. Unter besonderen Voraussetzungen ist es daher oft mdglich,
schiirfere Kriterien anzugeben als die Masszahl 2.

3. Der y-Test

Die gegeniiber der wahren Tafel berechneten standardisierten Ab-
weichungen y, [Formel (18)] wiiren untereinander stochastisch unab-
hiingige, zufillige Variable, die alle ein und demselben normalen
Verteilungsgesetz e

() = @m) e (22)
folgen wiirden. Werden die standardisierten Abweichungen gegeniiber
einer aus den gegebenen Beobachtungen abgeleiteten Ausgleichung
berechnet, so sind sie untereinander nicht mehr unabhingig; bei
langen Beobachtungsreihen und wenn bei analytischen Ausgleichungen
das Sterbegesetz nur verhiltnismissig wenige Parameter aufweist,
fillt diese Abhingigkeit jedoch nicht stark ins Gewicht. Man dart
dann die einzelnen Werte von yz, als untereinander unabhiingig be-
trachten; die Anzahl der Freiheitsgrade der Ausgleichung lisst sich
itherdies nitherungsweise beriicksichtigen, indem man an Stelle der
Verteilung (22) mit der Verteilung

) = (zni)%e_ 22)

n

rechnet. Dieser theoretischen Verteilung kann man die Verteilung der
in den einzelnen Altern wirklich aufgetretenen Werte von y, gegeniiber-
stellen. Firgibt dieser Vergleich eine geniigende Ubereinstimmung, so
darf die zu priifende Ausgleichung als befriedigend gelten.
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Bei der praktischen Durchfithrung emptfiehlt es sich, die beob-
achteten Werte von y, nach einigen zweckmiissig abgegrenzten Klassen
auszuzihlen. Beispielsweise konnte folgende Klasseneinteilung in
Frage kommen:

Beobachtete ‘ Erwartete
Klasse Itervalle fir ; oot
gegebenen Intervall
1 o = —1,0 Ry ny
) —1,0 < 4. <—0,5 Ny Ny
3 05 < g <0 ny iy
4 0 < g4 <05 Ny n,
5 0,5 < 5, <1,0 Mg Mg
6 e > 1,0 g g
Total —oo < g < F oo n "

Die an sich willkiirliche Klasseneinteilung muss so gewithlt werden,
dass stets n, > 6 ist.

Die Ubereinstimmung der beobachteten und der erwarteten Ver-
teilung von g, kann schliesslich mit Hilfe der Masszahl

ko (g —m,)?
o= 2

gopriift werden, die — wenn & Klagsen gebildet werden (im Beispiel
oben sechs Klassen) — einer y2-Verteilung mit k— 1 I'reiheitsgraden
folgt. Die Giite der Ausgleichung beurteilt sich so schliesslich nach
der Wahrscheinlichkeit P(x2), mit der ein grésserer Wert fiir 42 als
der nach Formel (23) berechnete, zu erwarten ist.

Grundsitzlich bedeutet das im vorliegenden Abschnitt geschil-
derte Verfahren einen Fortschritt gegeniiber der im vorigen Abschnitt



geschilderten gewohnlichen y2-Methode, weil das Verteilungsgeseta
der standardisierten Abweichungen selbst und nicht nur sein zweites
Moment iiberpriift wird. Praktisch erhilt man aber kaum ein zuver-
lissigeres Resultat, weil die Klasseneinteilung bei hochstens 100 Altern
zu grob gewihlt werden muss. Nicht befriedigend ist ferner der Um-
stand, dass die fiir das Krgebnis nicht unwesentliche Klasseneinteilung
ziemlich willkiirlich vorgenommen werden muss. Ob und wie der y-Test
auch auf mechanische Ausgleichungen angewendet werden darf, wire
noch abzukliren.

4. Der w?Test

Der unter Abschnitt 3 erliuterte y-Test gipfelt im Vergleich der
theoretischen und beobachteten Frequenzfunktionen f(y,) der stand-
ardisierten Abweichungen. Dieser Vergleich kann nach einer von Cramér
(1928) [12] und v. Mises (1931) [ 7] unabhiingig voneinander entwickelten
Methode noch besser an Hand der Verteilungsfunktion

F(z) = | () dz

erfolgen; dabei kann insbesondere auf eine willkiirliche Bildung von
Klassen wie beim y-Test verzichtet werden. Die w?-Methode sbiibzt
sich auf die Masszahl

1 i :
o = — | [P — () Py, e

-0

die aus den theoretischen F(y) und den beobachteten I'(y") Vertei-
lungsfunktionen der standardisierten Abweichungen berechnet wird.
Nach v. Mises gelten, wenn die theoretische Verteilung eine Normal-
verteilung ist, fitr Krwartungswert und Streuung der Verfeilung von
w? die Formeln

0,12

B(w?) =1 und 0% (W% ~ 0,63—»n . (25)

Dag Verteilungsgesetz von w? selbst konnte bisher noch nicht gefunden
werden.
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Smirnoff (1936) [25] hat eine interessante Modifikation der
®®-Methode vorgeschlagen. An Stelle der Masszahl (24) definiert er

9 1 INEF T 2
w0l = [ [FG) —F ()] dF(y) (26)
und erreicht damit, dass das Verteilungsgesetz von o? unabhiingig
wird von der theoretischen Verteilung F(y). Nach Cramér [2] gelten
fir Mittelwert und Streuung von wi die Formeln
(o 1 | (o) 4n —3 @
T (w?) = — unc (W) = ———.
() 6n 8 180n3
Fiir grogse n strebt die Verteilung von w? gegen eine Grenzverteilung,
deren P-Funktion durch den Ausdruck

2kn

1 e et On dy
lim P} = - [ % (28)
fh-=c0 7 =1 [/—- z8inz
k)

dargestellt werden kann. Formel (28) sieht fiir die praktischen An-
wendungen nicht gerade verlockend aus und ist scheinbar noch nicht
numerisch ausgewertet worden.

Die w?-Tests sind zweifellos dem y-Test iiberlegen. Fiir die prak-
bischen Anwendungen ist das Verfahren aber noch zu wenig entwickelt.

5. Die P(1)-Tests
a) Die Verteislungsfunktionstransformation

Mit Hilfe der Standardisierung konnte erreicht werden, dass die
Abweichungen zwischen Beobachtung und Erwartung in allen Altern
einer einheitlichen Normalverteilung folgen. Neben der Standardi-
slerung gibt es eine weitere Methode, nach der sich eine Reihe von
zufilligen Variablen mit untereinander verschiedenem, aber stetigem
Verteilungsgesetz so transformieren lisst, dass eine einheitliche Ver-
teilung entgteht. Diese, Verteilungsfunktionstransformation genannte,
Operation ordnet der zufilligen Variablen mit der Frequenzfunktion
(%) die neue Variable .

y = [ 1) dg = F(z) (29)

—oo

0.
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Die neue Variable y geniigt stets der Rechtecksverteilung (oft auch
Gleichverteilung genannt)

ol i 0<y <1 1

" ’l — 29[
) N0 fir y<0 und y>1 J (29
Substituiert man ferner
A= —2Iny, (30)
so folgt die Variable 4 der Exponentialverteilung
A
f(A) = e 2 A=0. (30")

Fithrt man die beiden Transformationen (29) und (30) an einer Folge
von stochastisch unabhingigen zufilligen Variablen y,, ¢, . . . %, durch,
und vereinigh man anschliessend die neuen Variablen A, zur Masszahl

T
21:2[1nnyw|:21w, (31)
so erhiillb man eine zufiillige Variable, die dem Verteilungsgesotz

{1 T 91’
f(A) = T (31")

d. h. einer y%-Verteilung mit 2n Freiheitsgraden, folgt.

b) Anwendung auf Sterbetafeln

Bei der Anwendung auf Sterbetafeln ist folgende Rechnung
durchzufithren:

1. Berechnung der standardisierten Abweichungen

T
—t (32)

1
2. Verteilungsfunktionstransformation von yx,:
Man bestimmt mit Hilfe einer Tabelle iiber das Gausssche
Wahrscheinlichkeitsintegral die der Rechtecksverteilung (29’)
folgenden Variablen

Xz 42
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3. Man ermittelt die Hilfsgrdssen
Zz = —2In Yes
und bildet die Masszahl

- \.
Ars= 2 4, (32h)
&
4. Man berechnet die Wahrscheinlichkeit P (4;) auf Grund der 42-Ver-
teilung mit 2n Freiheitsgraden und zieht aus dem berechneten
Wert die iiblichen Schliisse tiber die Giite der Ausgleichung.

Zu beachten ist, dass man an Stelle der Transformation (32a)
ebensogut mit der Transformation a5

.
b 1 — Bl = Ca)t [Ty 2w

rechnen konnte, die ebenfalls auf die Rechtecksverteilung (29°) fithren
wiirde. Geht man an Stelle von (32a) von (32a’) aus, so erhilt man
eine andere Masszahl 1,,, die dem gleichen Verteilungsgesetz (31')
folgt wie die Masszahl 4,. Die beiden Masszahlen 4, und 2,, haben
Jjede fiir sich eine besondere Bedeutung. Die Masszahl 2, ist nur wirk-
sam fiir schlechte Ausgleichungen, bei denen die zu priifende Tafel
zu tief verliuft und umgekehrt die Masszahl 4,,, wenn die zur Priifung
vorgelegte Tafel zu hoch verlauft. Diese Figenschaft der beiden Tests
ist eine Tolge der logarithmischen Transformation (29), die fiir gegen
Null strebende Werte von 3, zu progressiv wachsenden Betriigen fiir A,
fithrt, withrend umgekehrt 1, fiir gegen Eins strebende Werte von y,
nur schwach reagiert. Weiss man nicht zum voraus, in welcher Richtung
die zu priifende Tafel eventuell von der wahren Tafel abweichen konnte,
80 186 es ratsam, beide Masszahlen 4, und 1,; nebeneinander anzuwenden.

Die Formeln (32) tragen dem Umstand nicht Rechnung, dass die
standardisierten Abweichungen dank der Ausgleichung nicht voll-
stiindig unabhiingige Variable sind. Bei langen Beobachtungsreihen
und wenn nur wenige Parameter des analytischen Sterbegesetzes aus
den Beobachtungen bestimmt werden, kann man nitherungsweise an
Stelle der standardisierten Abweichungen gemiiss Formel (32) die Werte

—
n T,—T,

2 39"
Y k|7 (327)

in Rechnung stellen.
4
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¢) Die Verbindung von mehreren unabhdngigen Tests
wm einen ewnzigen Test [19]

Die P(2)-Tests konnen nicht nur zur direkten Uberpriifung von
Sterbetafeln beniitzt werden, sondern auch, um mehrere untereinander
unabhiingige Tests in einen einzigen Test zu kombinieren. Bei Sterbe-
tateln konnen z. B. einzelne einander nicht iiberschneidende Ab-
schnitte nach verschiedenen Methoden ausgeglichen werden. 't jeden
Abschnitt kann ferner ein besonderer Test auf Grund einer nicht not-
wendig einheitlichen Masszah]l angewendet werden. Im 2ten Abschnitt
sei z. B. auf Grund einer Masszahl M; eine Wahrscheinlichkeit P(M,)
berechnet worden. Aus allen Wahrscheinlichkeiten P(M;) zusammen
lisst sich dann die kombinierte Masszahl

.
Ay = Elz |In P(M)) | (33)
s
aufbauen, die einer y2-Verteilung mit 2r Freiheitsgraden folgt. Die
Wahrscheinlichkeit P(4,;) beurteilt dann die Ausgleichung iiber die
ganze Sterbetafel.

Die P(1)-Tests setzen bei ihrer Anwendung bedeutende wahu-
scheinlichkeitstheoretische Kenntnisse voraus. Sie werden deshalb
leider nur verhiltnisméssig selten praktisch angewendet, obschon
sie — wie im nichsten Abschnitt gezeigt werden soll — in gewisser
Hingicht das schirfste nur denkbare Kriterium darstellen. Unbefrie-
digend 1ist es, dass der Test fiir mechanische Ausgleichungen mif
Riicksicht auf die starke Abhéngigkeit der einzelnen Abweichungen
untereinander nicht anwendbar ist. Auch fiir analytische Ausglei-
chungen ist die Anwendung der Ausgleichungsmethode auf das Ver-
teilungsgesetz der Masszahlen A; und 4;; eigentlich noch nicht ein-
wandfrei abgeklért.

6. Die Likelihood-Kriterien von Neyman und Pearson [5]
a) Grundsdtzliche Erwdgungen

Die bisher geschilderten Tests wurden im wesentlichen auf intui-
tiver Grundlage gefunden. Es stellt sich die Frage, welcher dieser
Tests am leistungsfihigsten ist, oder ob gar irgendwelche weiteren
Kriterien noch leistungstihiger wiiren. Um diese I'rage beantworten
zu konnen, muss zuerst abgeklirt werden, ob und allenfalls wie die
Leistungstihigkeit eines Tests beurteilt werden kann.
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Bei der Anwendung eines Testverfahrens bestehen zweir Moglich-
keiten, ein Fehlurteil zu fillen, nimlich

L. das Fehlurteil erster Art, bei dem man eine richtige Hypothese
H iiber die Sterbetatel verwirtt, weil zufiillig eine Masszahl iiber dem
kritischen Wert aufgetreten ist. Geht man bei allen Tests stets von
der gleichen Wesentlichkeitsschranke P aus, so ist ein Fehlurteil
erster Art bei allen Tests gleich wahrscheinlich.

2. das Fehlurteil zweiter Art, bei dem man eine falsche Hypothese
H, iiber die Sterbetafel annimmt, weil zufillig eine Masszahl unter
dem kritischen Wert aufgetreten ist. Die Wahrscheinlichkeit fiir
ein Fehlurteil zweiter Art ist je nach dem gewihlten Testverfahren
verschieden. Das Komplement dieser Wahrscheinlichkeit, d. h. die
Wahrscheinlichkeit, die Hypothese H, als falsch zu entdecken, ist
daher ein Mass fiir die Leistungsfihigkeit der verschiedenen Verfahren.
Je grogser diese Wahrscheinlichkeit ausfallt, um so leistungstihiger
ist der betreffende Test.

(teht man von einer bestimmten Annahme iiber die zu priifende
talsche Hypothese H, und die richtige Gegenhypothese H, aus, so
besteht die Moglichkeit, eine geeignete Masszahl so zu wiihlen, dass

1. die Wahrscheinlichkeit eines Fehlurteils erster Art einen be-
stimmten, durch die gewiihlte Wesentlichkeitsschranke gegebenen

Wert P annimmt, und dass

2. die Wahrscheinlichkeit eines Fehlurteils zweiter Art gleichzeitig
ein Minimum erreicht.

Neyman und Pearson haben gezeigt, dass optimale Masszahlen dieser
Art gtets durch das Verhiltnis der Likelihoods
f(‘EIOJ Tl’ T2 Ce Tn)

, (34
f(Hy; Ty, Ty ... T) )

§ =

berechnet fiir die zu priifende Hypothese H, und die Gegenhypothese
H,, gegeben sind. Testverfahren, die sich auf die Masszahl (34) stiitzen,
nennt man leistungstihigste (most powerful) Tests.

Zu beachten ist, dass die Masszahl (84) nur definiert ist, wenn
die Hypothese H, und die Gegenhypothese H, vollstindig gegeben
sind. Grenaue Aussagen iiber allfillige Gegenhypothesen sind bei An-
wendungen in der Regel nicht moglich. Es stellt sich deshalb die Frage,
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ob man nicht einen leistungsfihigsten Test bei beliebiger Gegenhypo-
these H, angeben konnte. Die diesbeziiglichen Untersuchungen von
Neyman und Pearson haben leider gezeigt, dass derartige Universal-
Masszahlen nicht existieren. Hingegen ist es in vielen Fillen moglich,
Masgszahlen zu finden, die fitr eine ganze Klasse von (regenhypothesen
am wirksamsten sind; diese Tests nennt man gleichmiissig leistungs-
fihigste (uniformly most powerful) Tests. . S. Pearson [19] hat z. B.
gezeigh, dass die beiden P(2)-Tests gleichmiissig leistungstihigste Tests
sind, wenn angenommen wird, die Hypothese H, sei durch die Recht-
ecksverteilung (29) und die Gegenhypothese durch Verteilungen von

der Form
fy) = (m 1)y (35)

oder fy) = (m + 1) (1 — )™ (35b)
mit —1<m <0

gegeben, wobei (35a) fiir den P(4;)- und (35b) fiir den P(4;;)-Test gilt.

b) Anwendung auf Sterbetafeln

Um die Theorie von Neyman und Pearson auf Sterbetafeln an-
wenden zu kénnen, muss man zuerst priifen, was fiir Gegenhypothesen
bei Sterbetafeln in Irage kommen. IMiir eine einzelne Altersklasse
betrachtet, ist stets damit zu rechnen, dass nicht der aus der Aus-
gleichung hervorgegangene Wert 7' richtig ist, sondern irgend ein
anderer Wert 7. Ist 7" tatsichlich richtig, wird aber bei den Ver-
teilungsfunktionstransformationen (32a) und (32a’) mit 7, gerechnet,
so resultiert nicht mehr die Rechtecksverteilung (29°) als Verteilung
von 7, sondern eine Verteilung von der Form

x
[
fly) = e @) iy y=—= | e 2dy (36a)
|/2n
1 i LA
oder y=-—— | ¢ 2 dy, 36b)
/27 (

wobei die Konstanten o und b aus den Werten 7', und 7" berechnet
werden konnen. In der Figur 4 ist der Verlauf der Frequenzfunktion (36a)
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graphisch dargestellt, wenn 7, = 1000 und 1" — 1010 angenommen
wird. Die auftretende Kurve lisst sich in der Tat — wenigstens in
erster Niherung — durch Kurven des Typs (35) darstellen. Daraus
folgt aber, dass die beiden P(A)-Tests im Sinne der Theorie von Neyman
und Pearson — jeder nach einer Seite — als schérfste Kriterien zu
gelten haben, deren Leistungsfihigkeit von keinem anderen Kriterium
ibertroffen werden kann.

Besonders zu beachten ist der Umstand, dass jeder der beiden
P(A)-Tests nur nach einer Richtung hin wirksam ist, d. h. sie sind
nur wirksam, wenn ausschliesslich Gegenhypothesen beriicksichtigt
werden, bei denen in allen Altern grossere oder kleinere Sterblichkeit
vorausgesetzt wird als in der zu prifenden Tafel. Fir Gegenhypo-
thesen, bei denen alterszonenweise beide Arten von Abweichungen
auftreten, sind die beiden P(A)-Tests keineswegs gleichmissig am
leistungstihigsten.

7. Die Smooth-Tests von Neyman [17]

Die beiden P(A)-Tests sind nur bei Gegenhypothesen von der
Form (35) gleichmiissig am leistungsfihigsten. Neyman hat deshalb
versucht, weitere Tests aufzustellen, welche unter allgemeineren
Voraussetzungen am leistungsfiihigsten sind. Als Gegenhypothesen
zur Rechtecksverteilung (29°) zieht er ein System von Verteillungen
in Betracht, das durch Frequenzfunktionen von der Form

k
X 0y (v)

) = gt~ (37)

darstellbar ist. In Tormel (37) sind die Grossen 0, beliebige Parameter,
die von Fall zu Fall geeignet gewiihlt werden kénnen, und 7, (y) ein
System von im Intervall 0 < y < 1 orthogonalen Polynomen. Die ersten
dieser Polynome lauten

/12 (y
m(y) = |5 {6y — 42— 1} (37)
]/ 0

Q

2

=

~—
l
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Neyman postuliert fiir seine Smooth-Tests folgende Figenschaften:

1. Die Wahrscheinlichkeit fiir ein Fehlurteil erster Art ist wie
iiblich gleich der Wesentlichkeitsschranke P.

2. Fiir grosse m ist bei allen Gegenhypothesen von der Form (37),
bei denen der Ausdruck '
k \ 2
(i)
i=1

einen kleinen, aber bestimmten Wert annimmt, die Wahrscheinlich-
keit eines Fehlurteils zweiter Art gleich gross.

3. Die Wahrscheinlichkeit eines Fehlurteils zweiter Art ist fiir
grosse n und kleine Werte von 4 minimal.

Diese Forderungen fithren auf die Masszahlen

Wi = ui
vy = ui +uy
‘ (38)
w2 = uf +ul + u;
k
Yi = 2\, )
i=1
worin die Hilfsgrossen «? durch die Formeln
2
uj = 12n7! EZI]
r=1
n 12 _
uy = 180n™ {Z BH— N > (38)
r=1 ’ J
n n o2
’LL% == 7%_1 {20 2 Zz —3 3 ZT} )
r=1

r=1

gegeben sind. In den Formeln (38') ist z = y — § und y die aus der Ver-
teilungsfunktionstransformation (32a) hervorgegangene Hilfsvariable.
Die Masszahlen pf, 95 ... 9} geniigen y2-Verteilungen mit & Freiheits-
graden und erlauben somit eine analoge Uberpritfung der Sterbetatel-
ausgleichung wie die Masszahlen %2, ®?, 4;, A;; usw. Zu beachten ist,
dass nicht alle 1p2—1’ests miteinander anzuwenden sind, sondern nur ein
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einziger, niimlich derjenige, welcher den in Frwigung zu ziehenden
Gegenhypothesen geniigend Rechnung trigt. Lisst sich die Gegen-
hypothese (37) durch ein Polynom k-ter Ordnung im Iixponenten von
(37) geniigend genau erfassen, so ist nur der Test k-ter Ordnung
anzuwenden.

Bei Sterbetafeln sind Gegenhypothesen von der Form (36) zu
beriicksichtigen, fiir die ein Beispiel in Figur 4 graphisch dargestellt
ist. In erster Anniherung darf hier mit dem Test erster Ordnung
gerechnet werden. Numerische Untersuchungen bestétigen iiberdies,
dags man mit den Tests zweiter und dritter Ordnung praktisch auf
die gleichen Resultate kommt wie mit dem Test erster Ordnung.
Wollte man wirklich einen engen Anschluss an die Verteilung (36)
gewithrleisten, so miisste ein Test von gehr hoher Ordnung gewihlt
werden,

Zu beachten ist ferner, dass der Smooth-Test k-ter Ordnung nur
dann die oben postulierten Figenschaften 1-3 aufweist, wenn fiir alle n
Altersklassen eine belicbige, aber immer die gleiche Gegenhypothese
k-ter Ordnung von der Form (37) auftritt. Dieser Fall kann bei
Sterbetafeln nur vorkommen, wenn in allen Altern eine gleichartige
Abweichung auftritt. Tille, bei denen die zu prifende Sterbetatel
teils zu hoch und teils zu tief verliuft, eignen sich daher nicht zur
Uberpriifung durch die Neymanschen Smooth-Tests.

D. Testverfahren fiir den unsystematischen,
regellosen Verlauf der Abweichungen

Alle unter C behandelten Tests nehmen keine Riicksicht auf die
Reihenfolge der einzelnen Abweichungen innerhalb der Sterbetafel.
Kine Ausgleichung, bei der z. B. alle Abweichungen zuerst negativ und
spiiter positiv sind, wird genau gleich beurteilt wie eine Ausgleichung,
bei der an sich die gleichen Abweichungen auftreten, diese aber regellos
tiber alle Alter verstreut sind, obschon offensichtlich die letztere den
Vorzug verdient. Iis ist daher notwendig, die im vorigen Abschnitt
behandelten Verfahren zu ergiinzen durch besondere Tests, welche
die Regellosigkeitstolge der Abweichungen iiberpriifen. Derartige Tests
gibt es eine ganze Reihe. Die wichtigsten dieser Kriterien sollen im
folgenden kurz behandelt werden.
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1. Die Anzahl der Zeichenwechsel

Die Anzahl der Zeichenwechsel in der nach steigenden Altern
geordneten Reihe der Abweichungen ¢, —q, stellt ein einfaches und
naheliegendes Kriterium fiir die Regellosigkeitsfolge der Abweichungen
dar. Bei schlechten Ausgleichungen ist die Anzahl der Zeichenwechsel
gewohnlich abnormal klein oder gross; bei guten Ausgleichungen
bewegt sich diese Anzahl in einem mittleren Rahmen, der durch das
Verteilungsgesetz der Zeichenwechsel abgegrenzt werden kann. Dieses
Verteilungsgesetz lisst sich bestimmen, wenn man annimmt, dass die
Wahrscheinlichkeit tiir eine positive oder negative Abweichung zwischen
der beobachteten und der erwarteten Tafel in allen Altern gleich ¥ ist.
Bei n Altersklassen betrigt dann die Wahrscheinlichkeit fiir das Auf-
treten von z Zeichenwechseln

fe = ("7 1), (39)

2

Fir Mittelwert und Streuung der Verteilung (39) gelten ferner die

Formeln —— n—1

(Z) = MQ— und 0‘2(2) — e . (39!)

5

Bel einer 100 Altersklassen umfassenden Sterbetafel sind demnach im
Mittel 49,5 Zeichenwechsel zu erwarten. Finer Wesentlichkeitsschranke
von beispielsweise 59, entspricht néiherungsweise ein Schwankungs-
bereich von + 2¢. Demnach wiren bei 100 Altersklassen alle Aus-
gleichungen mit 40 < z < 60 als befriedigend zu betrachten.

2. Anzahl der Spitzen

In der nach steigenden Altern geordneten Reihe der standardi-
sierten Abweichungen nennt man alle Abweichungen eine Spitze, bei
denen die beiden Nachbarwerte entweder beide grosser oder beide
kleiner sind als der Spitzenwert. Die Anzahl dieser Spitzen in der
Sterbetafel ist ein Kriterium, das sich ebenfalls zur Beurteilung der
Regellosigkeitsfolge der Abweichungen eignet. Fiir grosse n ist diese
Anzahl s eine zufillige Variable, die um

den Mittelwert — E(s) = +(n—2) l
16m — 29 l (40)

mit der Streuung o%(s) = 50
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normal verteilt ist. Bei 100 Altersklassen wiren demnach 65,3 Spitzen
z2u erwarten. Lisst man Abweichungen im Bereich + 20 zu, so wiiren
alle Ausgleichungen mit 57 < s < 74 Spitzen als befriedigend zu
beurteilen,

3. Der Test von Stevens

Unter den Abweichungen zwischen Ausgleichung und Beobachtung
weisen n, Werte das gleiche Vorzeichen auf wie die Abweichung im
untersten Alter und n, = n—n, Werte das entgegengesetzte Vorzeichen.
Die n, Abweichungen mit dem gleichen Vorzeichen zerfallen im ganzen
In 1 Tolgen mit dem gleichen Vorzeichen, und die n, Abweichungen
mit dem entgegengesetaten Vorzeichen in 4 —1 Teilfolgen. Man kann
dann aus den Werten n, n,, n, und A die Vierfeldertafel

/1 ’ﬂ'l—— 11 %1
ny +1—24 A—1 Mg
Ny 1 n,— 1 n = Ny | 1y

bilden, die fiir gegebene Werte von n, und n, nur einen I'retheitsgrad
aufweist. Die Grosse A ist eine zufillige Variable mit der Frequenz-

funktion (Stevens) 1 -1
Ny — By -
) (/1 —1 ) ( A )
) = - i : (41)
N,

Fiir Mittelwert und Streuung der Verteilung (41) gelten die Beziehungen

B(l) = ﬁg?_(ﬁ?_j_Arlﬁ)__ und  0%(d) = ﬂ(ﬁl_:l_)i”"’_}—_l_)ng i
n n*(n—1)

Vergleicht man den beobachteten Wert von A mit seinem Iir-
Wwartungswert, so kann man an Hand der Verteilung (41) wiederum
die iiblichen Schliisse itber die Giite der Ausgleichung ziehen. An
Stelle dieser direkten Methode kann man auch von der oben angegebe-
hen  Vierfeldertafel ausgehen und fiir jede der vier auftretendon
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Hiufigkeiten einen erwarteten und beobachteten Wert und schliess-
lich die Grosse %% berechnen, die fiwr alle vier I'dlle zusammen einer
z2-Verteillung mit einem Freiheitsgrad folgt.

4. Allgemeine Bemerkungen iiber die Regellosigkeitstests

Die Niitzlichkeit der Regellosigkeitstests wird im allgemeinen
iiberschiitzt. In der Regel sagen diese Tests nicht mehr aus, als was
schon aus einer fliichtigen Durchsicht der Abweichungen zwischen
Ausgleichung und Beobachtung erkennbar wiire. Fine Ausgleichung
muss sehr deutlich von den Beobachtungen abweichen, bis ein Regel-
losigkeitstest das Ungentigen der Ausgleichung anzeigt.

Fan Beispiel: Das unter 1 behandelte Zeichenwechsel-Kriterium
werde auf eine ungeniigende Ausgleichung angewendet; das Auftreten
von positiven oder negativen Abweichungen ist dann nicht mehr wie
bei der guten Ausgleichung gleich wahrscheinlich, sondern mit von-
einander verschiedenen Wahrscheinlichkeiten p und ¢ (p + ¢ = 1) zu
erwarten. Die erwartungsmissige Anzahl der Zeichenwechsel betriigt
dann I (2) = 2(n—1)pq und ist somit tatsichlich etwas kleiner aly
bei einer guten Ausgleichung mit p = ¢ = &. Bei einer 100 Alters-
klassen umfassenden Sterbetafel miissten jedoch die Wahrscheinlich-
keiten um mehr als 0,225 vom Normalwert 0,5 abweichen, bis die
erwartungsmissige Zahl der Zeichenwechsel unter die angegebene
kritische Anzahl von 40 Zeichenwechseln fillt. Dieser Iall kann erst
auftreten, wenn die Ausgleichung einseitig um wenigstens 609, der
Streuung von der wahren Tafel abweichen wiirde, d.h. wenn die
Ausgleichung derart offensichtlich von den Beobachtungen abweicht,
dass jeder andere Test ebenfalls zur Verwerfung der Ausgleichung
fithrt. Unter diesen Umstinden ist es nur von geringem Nutzen, neben
einem der iiblichen Tests noch einen Regellosigkeitstest anzuwenden.

F.. Kombinierte Tests

Die Priifung der Abweichungen und der Regellosigkeitsfolge dieser
Abweichungen durch gesonderte Tests kann nur dann zu einem befrie-
digenden Ergebnis fithren, wenn die beiden Tests iibereinstimmend
zum gleichen Urteil fithren. Oft ergeben sich aber entgegengesetzte
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Schliisse, z. B. kann der P (2)-Test zur Verwerfung und gleichzeitig ein
Regellosigkeitstest zur Annahme der Ausgleichung tithren. In derartigen,
ziemlich oft auftretenden Fillen, méchte man gerne die beiden Urteile
n ein einziges (tesamturteil kombinieren. Im allgemeinen ist dies jedoch
nicht ohne weiteres méglich, weil die beiden getrennten Urteile von-
emander abhingig sein konnten. s stellt sich deshalb die Frage, ob
man nicht geeignetere Masszahlen aufstellen kann, die gleichzeitig die
Grosse der Abweichungen und ihre Regellosigkeitsfolge messen.

1. Der y*Smooth-Test von David [14]

F. N. David hat gezeigt, dass die im Abschnitt C, 2 eingefiihrte
klassische Priifgrosse »* (18a) und irgendwelche andere Priifgréssen,
die ausschliesslich auf das Vorzeichen der einzelnen Abweichungen
abstellen, als gegenseitig unabhiingige zufillige Variable zu betrachten
sind. Diese Figenschaft erlaubt es, den klassischen y2-Test und bei-
spielsweise den Test von Stevens in einen einzigen Test zu kombinieren,
wobet nach dem im Abschnitt C, 5, ¢), dargelegten Prinzip verfahren
wird. Diese Methode gestaltet sich bei der praktischen Anwendung
allerdings etwas mithsam, weil die beim Test von Stevens auftretende
Priifgrosse A4 keine stetige Verteilung aufweist. Hinen eleganten Weg,
um diese Schwierigkeit zu tiberwinden, hat H. L. Seal [24] gewiesen.
Ex schligt vor, von der unter D, 3, eingefithrten Vierfeldertafel aus-
zugehen und nach der iiblichen Methode mit Hilfe der erwarteten und
beobachteten Anzahl A eine Priifgrosse #2(4) zu berechnen. Diese der-
massen berechnete Grosse x*(4) geniigh einer y2-Verteilung mit einem
Freiheitsgrad und ist unabhiingig von der nach Formel (18a") berech-
neten Grosse y%(1'), die aus den erwarteten und beobachteten An-
zahlen der Grestorbenen gefunden wurde. Die Summe der beiden Priif-
grossen folgt somit einer y%Verteilung mit n— k& - 1 Freiheitsgraden
und erlaubt so eine gleichzeitige Uberpriifung der Abweichungen in
den einzelnen Altern und ihrer regellosen olge.

2. Das (I y)*Verfahren [11]

Ein weiteres Kriterium, das sowohl die Grésse der Abweichungen
in den einzelnen Altern als auch ihre regellose Folge beriicksichtigt,
erhéilt man, wenn man die standardisierten Abweichungen von beiden
Tafelenden her aufsummiert und die aufsummierten Werte quadriert.



Man gelangt so zur Masszahl

(Iy)* = ,—1~w{2 (Z xr) + 2 (E ,c)} (42a)

n,('n _}“ a=1 \r=1 =1 \7="n
die sich in die tibersichtliche Doppelsumme
1 non

nin+1) ; :Z (m+1—|e—y)) r  (42D)

(Iy)? =

itberfithren lédsst. Der Nenner n(n 4 1) wird eingefithrt, damit die
Masszahl den Erwartungswert Hins aufweist.

Die Masgszahl (I)? hingt im Gegensatz zur Grosse 3 wesentlich von
der Reihenfolge der standardisierten Abweichungen ab. Systematisch
verlaufende Abweichungen bewirken stets eine Vergrosserung der Mass-
zahl. Bei hinreichend langen Beobachtungsreihen ist der (1y)2-Test stets
dem gewohnlichen y2-Test tiberlegen. Besonders empfindlich ist die
Masszahl (Lx)? gegen einseitig abweichende Ausgleichungen, bei denen
die ausgeglichene Tafel systematisch zu hoch oder zu tief verldauft.

Das Verteilungsgesetz von (Iy)* selbst kann nicht in expliziter
Form dargestellt werden. Die zugehorige charakterigtische Funktion
lisst sich hingegen angeben; es ist

Puge(®) = {1+ a,(20t) 4+ a,(21%) ... a,(21)"} (43)
Iar grosse n strebt der Ausdruck (43) gegen die Grenzfunktion
o +1 28 -4
lim @ (t) =11 + Z — (— *it)’l : (44a)
n—» oo 27’) .
= /2 {cos [/?Jt — |/t sin at ) (44b)

die selbst tir verhiltnismissig bescheidene Werte von » schon recht
gut mit der genauen Iunktion (43) tibereinstimmt.

Die Verteilungs- und Frequenzfunktion von (Iy)? fiir grosse n
lisst sich durch gewisse asymptotische Ausdriicke hinreichend genau
darstellen. I'iir manche praktische Zwecke geniigh es, wenn man von

dor Grdsse+ _ 0 4559 42 40,1781 2 40,1886 (45)

ausgeht, die niherungsweise dem gleichen Verteilungsgesetz geniigh
wie die Grosse (Iy)? fir grosse m. In Formel (45) folgen die Grossen
%1 und y2 den y2-Verteilungen mit einem und zwei Freiheitsgraden.
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Fir die Anwendungen geniigh es, wenn man die kritischen Werte
der Masszahl tfiir einige in Betracht fallende Werte der Wesentlich-
keitsschranke P kennt. Diese konnen aus der nachstehenden Tabelle

éntnommen werden: P (L)
109%, 2,19

59, 2,96

1%, 4,85

0,1% 7,60

Die angefiihrten Formeln itber die (Iy)2-Verteilung beziehen sich
eigentlich auf den Fall, wo die zur Priifung vorgelegte Tafel nicht aus
den vorhandenen Beobachtungen abgeleitet worden ist. Wiirde man
die angewendete Ausgleichungsmethode beriicksichtigen, so ergibe
sich eine gewisse Modifikation der (Iy)2-Verteilung. Die neue Ver-
teilung wiirde dabei von den Daten des konkreten Falls abhiingig und
daher fiir die praktische Anwendung schwerfillig. Ob und wie die
Masszahl (Iy)? modifiziert werden muss, damit sie der angewendeten
Ausgleichungsmethode Rechnung triigt, ist noch abzukliren.

3. Weitere Methoden

Die Masszahl (1y)? ist besonders empfindlich gegeniiber einseitigen
Abweichungen, bei denen die ausgeglichene Tafel durchwegs zu hoch
oder zu tief verliuft. Divergiert jedoch die zur Priifung vorgelegte
Ausgleichung von der wahren Tafel so, dass ein oder gar mehrere
Schnittpunkte zwischen der wahren und der ausgeglichenen Tafel
auftreten, so heben sich bei der Aufsummierung die mit verschiedenen
Vorzeichen auftretenden Abweichungen ganz oder teilweise auf und
die Masszahl (Iy)? wiichst nicht iiber einen gewissen Rahmen hinaus.
Es lisst sich leicht einsehen, dass dieser Nachteil des (Iy)2-Verfahrens
vermieden werden konnte, wenn man an Stelle der einfachen Sum-
mierung der standardisierten Abweichungen mit der doppelten, drei-
fachen ... N-fachen Summe rechnen wiirde. Auf diese Weise wiirde
man zu den (I1y)? (I11yx)? ... (Ny)*Tests gelangen, deren Verteilungs-
gesetze in dhnlicher Weise bestimmbar wiren wie dasjenige der
(Ix)2-Verteilung. In dieser Richtung kann die Theorie der kombinierten
Tests, die erst am Anfang ihrer Entwicklung steht, noch betrichtlich
ausgebaut werden.



F. Numerische Untersuchungen

Die Leistungstihigkeit der verschiedenen Testverfahren lisst sich
theoretisch mit Hilfe der im Abschnitt C, 6, skizzierten Theorie von
Neyman und Pearson iiberpriifen. Numerische Untersuchungen auf
dieser Grundlage sind aber bei Sterbetafeln mit einem unverhéltnis-
missig grossen Zeitaufwand verbunden. Im folgenden werden daher
die wichtigsten der oben behandelten Testverfahren auf einer etwas
anderen Grundlage untersucht.

Diese Untersuchungen gehen aus vom Makehamschen Gesetz
U, =a-+bc* (46)

und vom Material, das der schweizerischen Volkssterbetafel SM 1939/44
in den Altersstufen von 40 < z < 89 zugrunde liegt. Variiert man die
drei in (46) auftretenden Parameter systematisch, so kann man ein
canzes System von Sterbetafeln erzeugen und anhand der geschilderten
Testverfahren mit den Beobachtungen vergleichen. Geht man ferner
von einer einheitlich gewihlten Wesentlichkeitsschranke P aus, so ist
titr jedes Kriterium ein bestimmter Bereich von Parameterwerten a, b
und ¢ gegeben, der auf Sterbetafeln fithrt, die im Sinne des betreffen-
den Kriteriums als annehmbar zu betrachten sind. Die Linge dieser
Parameterintervalle ist dann ein Mass fir die Leistungsfihigkeit des
betreffenden Kriteriums, wobei ein Test um so leistungsfihiger ist,
je kiirzer die Parameterintervalle ausfallen.

Aus der Fille der beim Makehamschen Gesetz denkbaren Para-
metervariationen werden nur die nachstehenden fiint Typen in Be-
tracht gezogen:

Typ I: Variationen von a allein.

1

Typ 1I: Variationen von b allein.

Typ III: Gleichgerichtete simultane Variationen von « und b:
Variation (a - b).

Typ IV: Entgegengesetzte simultane Variationen von a und b:
Variation (a—b).

Typ V: Simultane Variationen von «, b und ¢, wobei die Para-
meter ¢ und b fir gegebene Werte von ¢ nach der Methode
der Momente aus den Beobachtungen berechnet werden:
Variation [¢— (a—b)].



— 83 —

Faar die wahre Sterbetafel sind die Mittelwerte der standardisierten
Abweichungen alle gleich Null. Fiir andere Sterbetafeln liegen diese
Mittelwerte auf bestimmten Kurven, die man Regressionslinien der
standardisierten Abweichungen nennen kann. In der beiliegenden
Figur 1 sind je zwei derartige Regressionslinien finr die Parameter-
variationen I bis V graphisch dargestellt. Zu beachten ist vor allem
der Umstand, dass die Regressionslinien der Typen I, IT und IIT die
Z-Achse nie schneiden, withrend bei Typ IV stets ein und bei Typ V
stets zwei Schnittpunkte mit der z-Achse auftreten.

Wendet man die erliuterten Testverfahren auf das durch die
Parametervariationen I bis V erzeugte System von Sterbetafeln an,
S0 1st die dem gewiihlten Testverfahren zugrunde liegende Masszohl
eie Funktion der Makeham-Parameter der zu priifenden Sterbetafel.
Diese Tunktionen sind fiir die fiinf Variationstypen und fiir die stetig
verlautenden Masszahlen ¥2, (Iy)% A;, A; und v} in der Figur 2
graphisch dargestellt. Kine nihere Betrachtung dieser Masszahl-
funktionen fithrt zu folgenden Feststellungen:

Die nach Formel (18a) berechnete klassische Masszahl 4% und die
Masszahl (Iy)® [Formel (42)] liegen stets auf nach oben gedtineten
parabelihnlichen Gebilden. Fiir die Variationen I, IT und IIT steigt
die Masszahl (I)? stets steiler an als die Masszahl »%; bei den Varia-
tionen IV und V wichst mit Riicksicht auf die Schnittpunkte zwischen
den Regressionslinien und der z-Achse die Masszahl (Iy)? langsamer
als die Masszahl 2

Die beiden Masszahlen 4, und 1, liegen fiir die Variationen I,
II und TIT auf monoton von - co bis 0 sinkenden, resp. von 0 bis
+ oo ansteigenden Kurven. Im Gegensatz zu den Masszahlen 2 und
(Lx)? ergibt sich bei den Masszahlen 1, und A;, immer nur je ein Para-
meterwert, bei dem die Masszahl emmen gegebenen kritischen Wert
erreicht. Die Masszahlen A, und 4,; sind daher nur nach einer Seite
hin wirksam, und zwar ist, wie bereits gezeigh wurde, A wirksam fiir
Parametervariationen nach unten und 4, fiir Parametervariationen
nach oben. Wenn man nicht zum voraus sicher weiss, in welcher
Richtung eine zu prifende Tafel von der wahren Tafel abweichen
kénnte, muss man daher stets beide P(A)-Tests nebeneinander an-
wenden.

Die Parametervariationen IV und V fithren auf Sterbetateln, die
verglichen mit der wahren Tafel teils zu hoch, teils zu tief verlaufen.
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In derartigen IFillen konnen die beiden, nur auf einseitige Abwei-
chungen zugeschnittenen P(1)-Tests versagen. Im vorliegenden Iall
liegt z. B. auf der A,,-Kurve der Variation IV {iberhaupt kein kritischer
Wert der Masszahl 4.

Der Smooth-Test erster Ordnung von Neyman stiitzt sich auf
die Masszahl »}, die durch die erste Formel (38) gegeben ist. Diese
Masszahlen Jiegen stets auf nach oben gedéffneten parabelihnlichen
Kurven, die fir einseitige Variationen (Typ I, II und III) verhéltnis-
missig steil ansteigen. Bei den Typen IV und V dagegen verlaufen
diese Kurven ziemlich flach, beim Typ V sogar nahezu horizontal, so
dass der Test praktisch unbrauchbar wird. Die Smooth-Tests von
Neyman sind somit wie die P (4)-Tests nur wirksam, wenn einseitige
Abweichungen von der wahren Tafel vorliegen.

Die Leistungsfihigkeit der verschiedenen Testverfahren unter-
einander bei bestimmten Variationstypen lisst sich in einfacher Weise
an Hand der Sehnen beurteilen, welche einer bestimmten Wesentlich-
keitsschranke P entsprechen. Die Liinge dieser Sehnen (fiir P = 59
und P =19, sind sie in der Figur 2 eingezeichnet) gibt das Para-
meterintervall an, das nach dem betreffenden Test auf zulissige
Sterbetateln fithrt. Je kiirzer diese Sehne ausfillt, desto weniger
lduft man Gefahr, irrtitmlich eine falsche Tafel als richtig anzunehmen,
und desto leistungsfihiger ist demzufolge der betreffende Test. In der
beiliegenden Figur 3 sind die Léngen dieser Sehnen, die den Para-
meterintervallen der annehmbaren Tafeln entsprechen, als I'unktionen
der Wesentlichkeitsschranke P graphisch dargestellt. Interessant in
dieser Graphik ist weniger die absolute Hohe der einzelnen Kurven
als deren relative Lage zueinander und insbesondere die Reihenfolge
der Testkurven von unten nach oben innerhalb eines Variationstyps.
Dieser Reihenfolge der Kurven entspricht nimlich die Rangfolge in
der Leistungsfihigkeit der verschiedenen Tests. Beim Typ L ergibt
sich folgende Rangfolge:

L. Die beiden P(1)-Tests.

2. Der Smooth-Test von Neyman 7.
3. Der (Iy)2-Test.

4. Der klassische y2-Test.
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Bei den Typen 1T und III, bei denen wie bei I ebenfalls nur einseitige
Variationen vorkommen, ergibt sich nahezu das gleiche Bild, nur
dass die praktisch fast auf die gleichen Resultate fithrenden - und
(Ix)%-Tests ihre Riinge vertauschen. Charakteristisch ist es, dass die
beiden P(2)-Tests bei einseitigen Variationen stets das schirfste
Kriterium abgeben. Dieses Resultat war zu erwarten, weil — wie im
Abschnitt C, 6, ausgefithrt wurde — nach der Testtheorie von Neyman
und Pearson die P(2)-Tests unter gewissen, praktisch erfullten Vor-
aussetzungen die absolubt schirfsten Kriterien darstellen, die von
keinem andern Verfahren iibertroffen werden konnen.

Anders verhilt es sich bet den Variationstypen IV und V. In
diesen Tillen sind die besonderen Voraussetzungen des P(1)-Tests
und auch der Smooth-Tests von Neyman nicht mehr erfiillt. Der
Smooth-Test von Neyman fithrt hier auf die schlechtesten Resultate,
die praktisch nicht mehr brauchbar sind. Die P(1)-Tests stehen im
dritten resp. zweiten Rang. Diese verhiltnismiissig giinstige Klas-
sierung scheint mehr durch das beniitzte Beobachtungsmaterial als
durch die Figenschaften des Verfahrens bedingt zu sein.

Beim Typ LV liefert das (Iy)2 Verfahren noch nahezu gleich gute
Resultate wie das klassische Kriterium 2 beim Typ V ist jedoch
das letztere Verfahren mit Abstand dem (Iy)%-Verfahren iiberlegen.
Dies erklirt sich ohne weiteres aus den besonderen Iigenschaften des
(Lx)2-Verfahrens, das sich nicht mehr eignet, wenn — wie beim Typ V
— zwel Schnittpunkte zwischen den Regressionslinien und der z-Achse
auftreten.

Von besonderem Interesse ist schliesslich der Umstand, dass bei
den Typen IV und V das klassische x2-Verfahren am besten abschneidet.
Iis zeigt sich somit, dass der y2-Test in komplizierter gelagerten Fillen,
bei denen verschiedenartige Abweichungen innerhalb derselben Tafel
auftreten, immer noch allen andern Verfahren iiberlegen ist. Der
x2-Test dart somit gewissermassen als ein « Allround-Test» betrachtet
werden, der allerdings im Iinzelfall nicht das schirfste Kriterinm
abgibt, dafiir aber in allen Tillen zu einem einigermassen brauchbaren
Resultat fithrt und niemals giinzlich versagt.

(w1
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Zusammenfassung

Iis sei versucht, die wichtigsten Resultate der in dieser Arbeit
dargestellten wahrscheinlichkeitstheoretischen und numerischen Unter-
suchungen zusammenzufassen und insbesondere auf die wichtigsten
noch nicht oder nicht vollstindig gelosten Fragen hinzuweisen,

1. Die Frage nach der Giite der verschiedenen Ausgleichungs-
methoden ist durch die Fisherschen Kriterien — wenigstens finr die
analytischen Methoden — im wesentlichen abgeklirt. Hs zeigt sich,
dags bei analytischen Ausgleichungen die #*Minimum-Methode als
leistungsfahigste Methode zu gelten hat.

2. Im Laufe des zwanzigsten Jahrhunderts sind eine ganze Reihe
von Testverfahren entwickelt worden, welche die wahrscheinlichkeits-
theoretische Uberprifung von Ausgleichungen hinsichtlich

@) der in den einzelnen Altern auftretenden Abweichungen zwischen
Ausgleichung und Beobachtung,

b) der Regellosigkeitsfolge dieser Abweichungen oder

¢) beider Gesichtspunkte gleichzeitig
erlauben. Mit Hilfe dieser Tests ldsst sich die relative Giite von ver-
schiedenen Ausgleichungen in objektiver Weise iiberpriifen.

3. Von den bis heute bekannten Kriterien zur wahrscheinlichkeits-
theoretischen Uberpriifung von Ausgleichungen ist eigentlich nur das
klassische 4% Verfahren von K. Pearson theoretisch geniigend ent-
wickelt, so dass es den bei analytischen und mechanischen Aus-
gleichungen auftretenden besonderen Verhiltnissen Rechnung zu
tragen vermag. s ist wohl eine der wichtigsten Aufgaben fir die
weiteren Forschungen, die anderen Verfahren so auszubauen, dass
auch sie die bei Ausgleichungen auftretenden Abhéingigkeiten theo-
retisch einwandfrei beriicksichtigen konnen.

4. Die Theorie von Neyman und Pearson lehrt, dass es keinen
« Universal-Test» gibt, der bei beliebiger Gegenhypothese das schirfste
Kriterium darstellt. Dieses theoretische irgebnis wird durch die im
Abschnitt I1I, F, dargestellten numerischen Untersuchungen bestitigt.
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5. Leistungsfihigste Tests lassen sich angeben, sobald ihre An-
wendung auf ganz bestimmte Arten von Gegenhypothesen beschriinkt
wird. Fiir einseitige Abweichungen (durchwegs zu grosse oder zu kleine
Sterblichkeit) stellen die beiden P(4)-Tests die leistungsfihigsten
Kriterien dar. Die Entwicklung von leistungsfihigsten Tests fiir all-
gemeinere (tegenhypothesen, z. B. fiir den Ifall, wo zwischen der zu
prifenden und der wahren Sterbetafel einer oder mehrere Schnitt-
punkte auftreten, bleibt weiteren Untersuchungen vorbehalten.

6. Dem klassischen y2-Verfahren von K. Pearson kommt in dem
Sinne der Charakter eines « Universal-Tests» zu, als es in allen Féllen zu
einem einigermassen brauchbaren Frgebnis fithrt und niemals ginzlich
unbrauchbar wird. Dieser universellen Anwendungsmaéglichkeit steht
der Nachteil gegeniiber, dass fiir bestimmte Gegenhypothesen leistungs-
tihigere Spezialtests gefunden werden kénnen.



Figur 1

Regressionshinien der standardisierlen Abweichungen
fiir Parametervariationen ber Makehamschen Sterbetafeln
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Figur 2

Verlauf der Masszahlen 2% (I9)2 A, Ay und yi fiir Parameter-

variationen bei Makehamschen Sterbetafeln
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gur 3

Intervallbreite der zulissigen Makehamparameter
als Funktion der Wesentlichkeitsschranke P
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Figur 4

Verteilungsfunktionstransformation bei der Verteilunyg
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