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Fine neue Funktion der Versicherungsmathematik
und ihre Anwendung

Von Ivo Lah, Ljubljana

1. Definition der neuen Funktion

In der Mathematik spielen eine wichtige Rolle die Ifunlktionen
f.(z), welche die Figenschaft haben

d’f,
- i(a?" == fﬂ,l;-v(w) !

da”

d. h. die Ableitungen und die Integrale von f,(z) werden einfach durch
N, ; ” . T
Anderung von n gebildet. liine bekannte derartige Funktion ist —-
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i
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Im folgenden wollen wir eine neue I'unktion M, v" konstruieren, deren

v-te Abteilung (M, o)
" (M, v

7 Ay
=M, v

und nachher werden wir zeigen, wie diese I'unktion in der Versiche-
rungsmathematik mit Vorteil angewendet werden kann.

Die neue Funktion wollen wir mittels der Summen der diskon-
tierten Zahlen definieren. Unter der m-ten Summe der diskontierten

Zahlen verstehen wir
wfsc t
s =S ) (1)

o\ ™



In der Versicherungspraxis ist » = —1, 0, 1, 2. Also
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Theoretisch dagegen kann n eine beliebige positive, negative, rationale,
irrationale, trangzedente, sogar imaginére oder komplexe Zahl sein.
Vom theoretischen Standpunkt ist also S™ eine kontinuierliche Funk-
tion des Argumentes n und als solche wollen wir sie bei unseren Aus-
fihrungen betrachten. So z. B. haben wir
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und weiter
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Wenn n << —1, kann die Summe der diskontierten Zahlen negativ
ausfallen, und zwar auch dann, wenn alle D, , positiv sind. Dagegen
186 die Summe der diskontierten Zahlen stets positiv, wenn n > —1
und wenn zugleich alle
Dm-r—t = O
Unter der diskontierten Zahl D, ., verstehen wir im folgenden das
Produkt irgendeiner positiven Zahl I, , mit der (z - f)-en Potenz des
Diskontfaktors ».
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Dy = boyy ™ = Ly (U 97,

Die Folge der positiven Zahlen /,, , nennen wir die Ausscheideordnung.
Bei Absterbeordnungen ist Z,,, > {,,,,,. In der Versicherungspraxis
kommt es aber auch lovt < 1y, g vor. Unsere Ausfithrungen gelten
tir alle Falle 1, , == lx +141- Um die Ausdrucksweise zu vereinfachen,
fithren wir folgende Bezeichnungen ein: Die Ausscheideordnung ist
«abnehmend», wenn durchweg D, ,, > D, — ¢zunehmendy, wenn
durchweg D, , < D, — «konstant», wenndurchweg D, , =D, , |
— «gemischt», wenn D, , = D, , . Wir bemerken noch, dass unsere
Ausfithrungen keine Geltung haben, wenn [, , eine Funktion des Zins-
fusses ¢ ist, was z. B. bei der Berechnung der Anwartschaften auf
Invaliden-, Witwen- und Waisenrenten in der Pensionsversicherung
der Fall 1st.

Nach diesen Iirklirungen definieren wir

st
M, = (—1)nl —k, )
Speziell fat ’
¥ M = oo, (3)
N
M ey e, iy
0 D g (4)
M, =— - — —(Ia),, (5)
252
My = —1== (6)
Die neue Funktion lautet somit
St w
Mo" = (—1)'nlo" —
e ) L (i_‘\n 75_1+t D
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1" & (-t
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z  i=1
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Die erste Ableitung von (7) nach dem Zinsfusse ¢ ist

d ﬂ/jn’l)" __1 nt-1 w-
( ) = ( ) T Z ( _'}_ t)n»H ZJ,H(l "i_ ’i)—(il-l-lh}_t) — ﬂLrH vn+1’

dr l i=1

T

Daher allgemein & (M, ")

— M, o, (8)

dv”

M, " ist eine Funktion von =, 7, @, [,,,. Nachdem unsere Aus-
tithrungen fiir alle Alter z und fiir alle Ausscheideordnungen /,, , gelten
— insofern /., nicht eine Funktion von11ist — wollen wirim folgenden
M, v" als eine kontinuierliche Funktion nur von » und 4 betrachten.

2. Ableitungen der Versicherungswerte

Mittels der neuen unktion kénnen leicht und einfach die Ver-
sicherungswerte nach dem Zinsfusse differenziert werden. Dazu braucht
man nur den Versicherungswert durch die Funktion M,+" auszu-
driicken. So lautet z. B. die Ableitung von a, (4):

] ] !
(m"j . C,H‘,/[oﬁ = Mp = —wv Ez)'i = —v(la) . (9)

ds dv D,

Desggleichen findet man die Ablettung von (la), (5):

; 4 (10)
d(la), d\M,v(1l -+ v .
L = — | l(. ) = —o(M; + My) = — (8,,,—25%,).
d dr D,

Die Jahresprimie der lebenslinglichen Ablebensversicherung ist be-
kanntlich

. 1 % i (]

Pome 2 S I (11)
a, 14 a, 141 1 -+ M, 14

Daraus folgt
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T
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Die Priimienveserve der lebenslinglichen Ablebensversicherung mit
gleichbleibenden Jahresprimien nach Ablauf von ¢ Versicherungsjahren

18t bekanntlich
e -t )y — y |-t -ZV[O - ‘Dﬁo
A PR LB .. i .. (13)
’ a, l+a, 1+ M,
Daher dVv,, v
B d;fg - agﬂ [a.v([ ”‘).L' Bt ai? ) (1 a)m] (14)

In der Versicherungsmathematik werden ausser dem Zinsfusse 2
noch folgende Zinsmasse verwendet: der Aufzinsungsfaktor », der Dis-
kontfaktor » und die Zinsintensitiit 0. Zwischen diesen Gréssen be-
stehen folgende Beziehungen:

I SO

Daher _ ” dv .
dt = dr = — — = ¢°4d§.
’UZ
Die neue Funktion kann also auch dann mit Vorteil angewendet
werden, wenn die Versicherungswerte nach » oder nach » oder nach ¢

zu differenzieren sind.

Die neue I"unktion st sozusagen ein «Logarithmus» der Versiche-
rungsmathematik in bezug auf die Infinitesimalrechnung. Der Ver-
sicherungswert ¥ wird in eine Funktion von M, ", d. i.

V =I(M,")
umgewandelt, an welcher die notwendigen Differentiationen und Inte-
grationen nach dem Zimsmasse vorgenommen werden. Nach Beendigung
dieser Operationen kehrt man von den M, v"-Werten zu den Versiche-

rungswerten wieder zuriick.

3. Die Taylorschen Reihen der Versicherungswerte

Mittels der neuen Funktion konnen die Versicherungswerte leicht

und rasch in die Taylorsche Rethe

f(z) = i _,(’f__—L(ﬂg f(l')(wu) (15)

0l
. y=p v!
entwickelt werden.



— 106 —

Wenn wir in (15) g == §
Ty = 1o
f(@) = a,(t) = M,
f(wo) = a,(t) = "M,

setzen, so bekommen wir die Taylorsche Reihe des Barwertes der
konstanten lebenslinglichen nachschussigen Leibrente «, (4)

M, = Z “'—T_ 0M (16)

oder wenn wir mittels (2) zu den Summen der diskontierten Zahlen
zuriickkehren .

a,(t) = kﬁ‘ﬁu < [___ i—1p) vy|” 28V, . (17)
Wenn wir (16) nach ¢ differenzieren, bekommen wir die Taylorsche
Reihe des Barwertes der steigenden Rente (La), (5)

oo (3 —1g)""
M, 5= T S )JM,v;; (18)
=1 (v—1)!
bzw. [ y=1 0w 19
(, (&)x foi)—— _,U“ VZ‘I [“" b e ’10 Dy ’Sw-l-l . ( )

Im folgenden geben wir noch die Anfangsglieder der Taylorschen Reihe
der Jahrespriimie der lebenslinglichen Ablebensversicherung P, (11)
und der Primienreserve V,, (13) dieser Versicherung

(20)
OM, (—1g)%02 /20M3  OM,
P, =°F,— (L"bo)%( oaz + ’Uo) + —20 "_( oé_i '—O.él,;‘ +2”o> walll
(i) (5~ i)t}
o = W = (M, =W ) o =g
* [Oam(oMz %a,,,— "M, %,)—2°M, (°M, %a,, ,— "IN, a,) | I g e (21)
Dabei bedeutet o 038, ., aiif 208"311
111 = ~ on °? i) 9 = **6’*"
D, D,
N 9,0512)
O}, e ekl e o : 2
ml OD;E-H , Og:nz ODI-H
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4, Integration der Versicherungswerte
Wenn n > 1, kann die neue FFunktion leicht inteoriert werde
’ S aer,

Es ist nimlich ‘
j ﬂd“ v de = Iwn—i Uk +- C »

wo O die Integrationskonstante bedeutet. So z. B. ist
fﬂ@”ﬁzrwjkMHN1+ﬂdi:——ﬂ%u%4y+fﬂ%dﬂho
= —7ra, + J ' a,di -+ C.
Dagegen M, konnen wir nicht auf diese Art integrieren, weil M ™
unendlich ist (3). Die Versicherungswerte sind aber meistens funk-

tionen eben von M, In solchen Iillen greift man zur Taylorschen
Reihe des Versicherungswertes. Aus (16) findet man leicht

d , = ([f—ig*
] a, dv = j Myde = > - —— M vy + C
x =0 (v 1)!

Ahnlich findet man aus (20)

. L — )2, /M
j P.dv = OP, (i — 1) — —(———0)——0 ( kS -+ 1)0) +...+C,

oai

und aus (21)

e ev (=) v o o
mmlzuwﬂ@+w%¥wumamann%Ha”+a

“ &€

In der Versicherungsmathematik kommen aber auch Grissen vor,
welche I'unktionen von ¢, My, M, v, Myv* ... M, v" sind. In solchem
Falle heisst es die Differentialgleichung

I, My, M,v, Myo?%, ... M,0") =0

integrieren. Die Losung einer solchen Aufgabe, nimlich die Integration
der generalisierten Poukkaschen Ifunktion (23), wollen wir spiter

15
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5. Grenzwerte der generalisierten Poukkaschen Funktion

Poukka hat géfunden, dass sich der Wert des folgenden Doppel-
verhaltnisses der Summen der diskontierten Zahlen

SN,
(52)*

mit dem Alter z, mit dem Zinsfusse ¢+ und mit der Ausscheideordnung
l,., nur wenig dndert und deshalb k,(z,7) als Konstante betrachtet
werden kann. Der Wert dieser Konstante wird von verschiedenen
Autoren meistens mit 0.84 angenommen. Die Poukkasche Formel

wollen wir generalisieren, wie folgt

S:(':rl-i-l) JS(n—l)

@

(1)

= ky(z,7) (22)

— k,(2,1) . (23)

Mit der neuen Funktion M,»" konnen leicht die Grenzwerte von
k,(x,1) bestimmt werden. Dabei betrachten wir k,(z,7) als eine kon-
tinuierliche Funktion von n, jedoch nur im Bereiche 0 < n <{ oo, denn
im Falle n << 0 kann der Wert einer oder mehrerer Summen der dis-
kontierten Zahlen in (23) negativ ausfallen, wie wir eingangs erwihnt
haben, obwohl alle D,,, in der Versicherungspraxis nur positiv sein
konnen. Unter dieser Voraussetzung ist stets k,(z,7) > 0.

Zungchst erhohen wir in (23) das Alter 2 um eine Einheit, damit
wir die generalisierte Poukkasche Formel gemiiss (2) als Funktion von
M, ausdriicken kdénnen.

Sfﬁﬁ” varf;}) (L M, M, , :
—(‘;S;g‘{)}:;)é“' wes - ,,I__ 1 iwi e kn (ZL‘ —I— 1,'l) == ]ﬁn .
Daraus folgt M, M, n 41 _
) -*:Z:/lg : - kn = h’n (24)
A )
oder , IVIn-H ,Unu}-l *B/In—l ,Un—l -
by = R : (25)

Die Grenzwerte von h, in bezug auf » und ¢ ergeben sich aus den
Gleichungen
© dh
= O, — T

dn a3

n
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Da das Argument n in der Funktion M,»" unter anderem auch als
Faktorielle auftritt (7), kénnen wir nicht %, nach n differenzieren.
Diese Schwierigkeit kann aber leicht umgangen werden. Die erste
Ableitung von h, nach v kann geschrieben werden

dhn Mn-l—l ,Un+1

= (h, 4 h,—2h, + 1) —
di (n-H n + ) Mn 2

Die Bedingung fiir das Bestehen eines Grenzwertes von h, in bezug
auf ¢ ist also gegeben durch die Differenzengleichung

h‘wl—l h’n _ zhn + 1=0, (26)

welche nicht nur vom Alter und der Ausscheideordnung, sondern auch
vom Zinsfusse frei ist. Die aus ihr hergeleiteten Grenzwerte gelten also
fiir alle Alter , fiir alle Ausscheideordnungen [, und fir alle Zins-
fiisse 1. Die Ableitung von h, nach n, welche rechnerisch undurchtithrbar
186, wie wir oben bemerkt haben, ist nun iiberfliissig geworden, da wir
die Grenzwerte vom h, in bezug auf n aus der Differenzengleichung (26)
leicht herleiten kénnen. Die vollstéindige Liosung von (26) lautet

1
hy =14, (27)
n -+ c
wo ¢ die Summationskonstante bedeutet, welche wir so bestimmen
wollen, dass h, in bezug auf n die Grenzwerte darstellen wird. Vorweg
bemerken wir, dass h, (27) eine kontinuierliche Funktion ven = ist,
und zwar eine gleichseitige Hyperbel mit den Asymptoten h, —1 = 0
und n ¢ = 0.

Die untere Grenze von h, finden wir offensichtlich so, dass wir

in (27) ¢ == oo setzen, also
27) a 1<k, (28)

'l

— < k,. (29)
n-+1

Die untere Grenze (28) bzw. (29) gilt fiir alle Ausscheideordnungen
gleichwohl, ob sie abnehmend, zunehmend, konstant oder gemischt sind,
Jedoch unter der Bedingung, dass n > 0 und zugleich alle D, , > 0.
Nur wenn # < 0 oder wenn einzelne D, , < 0, gelten obige Grenz-
werte nicht. In diesem Falle gibt es itberhaupt kein allgemein giiltiges
Minimum von k, und h,,.
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Fiir abnehmende Ausscheideordnungen (Absterbeordnungen) kann
O o]
eine strengere untere Grenze gezogen werden. Im hochsten Alter o 1st
gir+l) gy D D
. w w TTw T w =
kn(ﬂ), J,) == _W'j’*‘ = B 5 ¢ == L
(g (D)
Infolgedessen muss k,(z,7) ~ 1 sein, wenn D, gross ist, die folgenden
D_ ., als auch ihre iterierten Summen dagegen im Vergleiche zu D,
T+t ovo o a
verhiltnismissig klein sind. Daraus schliessen wir, dass k, bei starkem
Gefille der diskontierten Zahlen gross, bet schwachem Gefille dagegen
o lohtel
klein sein muss. Die strengere untere Grenze von k, fitr abnehmende
te] n
Ausscheideordnungen findet man also aus der Annahme D_ ., — kon-
o x4
stant, d. h. es gibt keine Verzinsung und keine Ausscheidung. Fiir
solche konstante Ausscheideordnungen haben wir gemiiss (1) und (23
te) te]

&n+14 t) G m—1-+t
—1( n+1 /] =\ n—1

; t=0 ke
k:z("l’."l) = w-r /, Fot 12
S ( n )l
=AU
42+ w— :L’) ('n +w— :L‘)
( n -+ 2 ] " /
B (n—}—l—}-w——:v A
n -1
n+1 / 1 \
= —f—ﬂj::#'"‘ ( 1 _I_ ) . (SO)
n -+ 2 nt1+o-—z

Die strengere untere Grenze (30) ist eine Funktion nicht nur von %,
sondern auch vom Alter  und . Sie hat keine Beziehung zur Diffe-
renzengleichung (26). Fiir die in der Lebensversicherung tiblichen Alter
x ist der Wert des Bruches in (30) rechts von nicht allzugrosser Be-
deutung und kann weggelassen werden. Die Formel (30) biisst so ein
wenig an der Strenge ein, sie wird aber dadurch viel einfacher. Iir
abnehmende und konstante Ausscheideordnungen haben wir also fol-
gende nur von n abhliingige untere Grenze

n 41 (n - 1)2

—<k,. (31) s o8 o (32)
n+9 n(n -+ 2)
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Eine obere Grenze von k, bzw. h, existiert gar nicht. Wenn wir
nimlich in (27) die Konstante ¢ = —n setzen, dann ist h, = co und
damit auch k, — co. Dies ist allerdings eine sonderbare, paradoxe
Tatsache, weil Poukka selbst als auch zahlreiche andere Autoren nach
ihin k,, speziell k, als eine Grosse betrachteten, die sich nur wenig
in bezug auf z,1,1,., indert und deshalb praktisch als Konstante
angenommen werden kann.

Dass es tatsiichlich keine obere Grenze von k, und h,, gibt, wollen
wir noch auf eine andere Art zeigen. Nehmen wir folgende Aus-
scheideordnung

D, =1,

I);v—i-l o I).U—FZ = I) e = ]'):L‘Alﬁn = &,

z+3
wo ¢ eine kleine positive Zahl darstellt. In diesem Falle haben wir

N, =1-+me,

S,=1-4|m 4+ (m ; 1)'3,

S® 1 --m n (m ;|— 1) n («m :;F 2) .
Also ' 17m -} 6m? - m3 11m? 4 6m® 4 mt
(5,)° 1+ (8m +m? & + ?_'_nz_!—_Gﬁs_l_"_Ld &2
4 (33)

Wenn wir in (83) setzen
m = 6-100 6. 10%,
e = 10720, 10740, i

d( 2K ) ir
ann bekommen wir .- 109, 1019, L

1

Fiir noch grossere m und noch kleinere positive ¢ liefert (33) noch
grossere Werte von k,. Bei sehr kleinem & und entsprechend grossem
m sind in (33) die Glieder von ¢ massgebend. Das Glied von ¢ im



Zahler (33) ist ein Polynom der dritten, im Nenner dagegen nur der
zweiten Potenz von m. Ahnliche Situation haben wir auch bei analogen
Formeln fiir k,, ks, ky usw. Hine obere Grenze von k, und h, existiert
theoretisch tatsichlich nicht.

In der Versicherungspraxis kommen solche «anormale» Ausscheide-
ordnungen selbstverstindlich gar nicht vor. I'ir den Bedarf der Ver-
gicherungspraxis konnen auch obere Grenzen von k, und h, festgesetat
werden, welche jedoch zum Teil mit gewissen Reserven zu nehmen sind.

Wir haben schon gesagt, dass bet zunehmenden Ausscheide-
ordnungen die Werte von £k, kleiner sind als bei abnehmenden Aus-
scheideordnungen. Den gréssten Wert von £k, bei zunehmenden Aus-
scheideordnungen haben wir im Schlussalter w, nimlich

ki (,3) = 1.

Die obere Grenze von k, und h, bei zunehmenden Ausscheideordnungen

st in jedem Ialle
k, < 1. (34)

B, & e, (35)

Den Wert in (35) findet man auch so, dags man in (27) die Konstante
¢ = 0 setzt.

Bei abnehmenden Ausscheideordnungen sind die Werte von k,
verhiltnismiissig gross. Aber auch bei diesen Ausscheideordnungen
kommt es in der Praxis nur selten vor, dass k, > 1 wird, so dass man
(34) und (35) im allgemeinen auch bei abnehmenden Ausscheide-
ordnungen als obere Grenze betrachten kann, jedoch mit gewissen
Ausnahmen, welehe nur bei sehr starkem Gefiille der diskontierten
Zahlen auftreten konnen. So z. B. ist die Sterblichkeit in den ersten
Altersjahren gross, das Gefille der diskontierten Zahlen Dy, Dy, D,, . .
stark, und so kann es vorkommen, dass ky(0,7) > 1. Ahnlich ist die
Sterblichkeit der Invaliden im niedrigsten Produktivalter von 15—25
Jahren gross, das Getille der diskontierten Zahlen DI, Dii Dii ...
stark, und so kann es auch hier vorkommen, dass &y > 1, k; > 1 usw.

Unsere Ausfithrungen wollen wir nun tibersichtshalber kurz zu-
sammenfassen.
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Bei zunehmenden Ausscheideordnungen sind die Grenzwerte von
k, und h, ohne Ausnahme

— <k, <1 (36)
n -1
n 41
1 < hn i = 2 (37)
n

Bei abnehmenden Ausscheideordnungen haben wir folgende ohne
Ausnahme giiltige untere Grenze, wogegen die obere Grenze bei sehr
starkem Gefiille der diskontierten Zahlen problematisch werden kann.

n—+1
— <k, < 1(? 38
_ 9 =~ fy ( ) ( )
1) 1
ok O WS R (39)
n(n -+ 2) n

Bei der oberen Grenze (38) bzw. (39) ist also Vorsicht geboten.
Deshalb haben wir das Fragezeichen (?) dazugeschrieben.

Wir bemerken noch, dass hohe Zinsfiisse eine stiirkere Diskon-
tierung und damit ein stirkeres Gefille von D, , zur Folge haben.
Infolgedessen wird die obere Grenze bei hohen Zinsfiissen ofter und
tiefer tiberschritten wie bei niedrigen Zinsfiissen.

6. Integration der generalisierten Poukkaschen Funktion

Die in der generalisierten Poukkaschen Formel (23) erscheinenden
Summen der diskontierten Zahlen haben wir mittels (2) durch die
neue Funktion M, v" ersetzt und so die Gleichung (25) erhalten, welche
eine homogene quadratische Differentialgleichung (n + 1)-ter Ordnung
darstellt.

Die Grosse h, in (25) ist eine Funktion des Zinsfusses 7, denn
nur an den Grenzen (27) ist %, unabhingig von 4, sonst aber nicht.
Bei der Integration von (25) miisste daher, streng genommen, die
funktionelle Abhiingigkeit der Grosse h, von 4 beriicksichtigt werden.
In diesem Falle stellt das vollstindige Integral von (25) den exakten
Wert My = a,(i) dar, d. h. bei Kenntnis der Funktion h, = h,(3) ist
es moglich, aus der generalisierten Poukkaschen Formel den Barwert
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der gleichbleibenden lebenslénglichen Leibrente a,(?) exakt zu be-
rechnen. Wir kennen aber die F'unktion h,(7) nicht, welche iibrigens
auch vom Alter x als auch von der Ausscheideordnung /., , abhingt.
Wir kennen nur ihre untere und obere Grenze (37) bzw. (39). Mit
Riicksicht auf die schmale Spannung zwischen der unteren und der
oberen Grenze wollen wir &, bei der Integration von (25) als Konstante
betrachten. Das vollstindige Integral von (25) wird deshalb nur einen
Niherungswert von a,(i) darstellen, welchen wir mit «, bezeichnen

wollen.
Die Gleichung (25) kénnen wir schreiben
n4-1
M, v

— M, " =h,.

(M, 0"y

Daraus findet man mittels teilweiser Integration

ﬂ/jnvl ,Un—l ] 3
= W "E— pe=—4 —I- h;“ ("
i
oder
M, " i

M, vt A (1—h)i

-

Nach weiteren Integrationen findet man der Reihe nach

1

M, ot = (4 + Bi)l™,

n-1
2—!&7;,

M, 0" = C + (4 + Bi)™,

n-2 noln-l)n
Oy = Z]OOV'L'" 4 (4 + Ba) Mo, (40)

Die Integrationskonstanten 4, B, ¢, (4, ... C, , kénnen durch

Anfangswerte, welche uns zur Verfiigung stehen, bestimmt werden.

Aus (40) kann auch die Grosse des Fehlers abgeschitat werden,
welchen wir begangen haben, indem wir bei der Integration h, als
Kongtante betrachtet haben, und zwar so, dass man einmal die untere,
das zweitemal die obere Grenze von h, in (40) einsetzt.
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Man kann zeigen, dass in (40) die meisten und darunter die besten
bisher bekannten Niherungstormeln von a, als Spezialtille enthalten
sind V). Wenn wir z. B. in (40) h, = 0 setzen, bekommen wir fir Uy
einen Polynom n-ten Grades von 1, welchen wir schreiben kinnen

tyy = Cop + Crt +Co* + ... +C,¢", (41)

das ist aber nichts anderes als die Taylorsche Rethe des Rentenbar-
wertes a,(¢) (17), welche beim Gliede 4" abgebrochen ist. In (40) ist
also auch die Taylorsche Reihe von «, als Spezialfall enthalten. Die
Prizision der gekiwrzten Taylorschen Rethe (41) lisst tibrigens zu
wiinschen iibrig, weil #, = 0 entschieden zu klein genommen ist.

Bei der Integration der Differentialgleichung (25) haben wir still-
schweigend » fir eine ganze positive Zahl angenommen. g kann aber
n auch eine nicht ganze positive Zahl sein. In diesem Falle ist das
Findresultat der Integration der generalisierten Poukkaschen Funktion
ein Niherungswert von M, v", wo 0 << & << 1. Hg ist also moglich, Nihe-
rungsformeln auch fiir die Berechnung der Summen der diskontierten
Zahlen SY¥) aufzustellen.

7. Pensionsversicherung

Unsere Ausfithrungen gelten selbstverstindlich auch fiir die Aus-
scheideordnungen der Aktiven und fiir die Absterbeordnungen der
Invaliden, Witwen, Waisen, Aszendenten und Deszendenten in der
Pensionsversicherung. Beziiglich der Anwartschaften der Aktiven auf
Invalidenrente, weiters beziiglich der Anwartschaften der Aktiven und
Invaliden auf Witwen-, Waisen-, Aszendenten- und Deszendenten-
renten sind noch einige Frklirungen notwendig.

Zur Vereinfachung der Rechnung suponieren wir, dass die Inva-
lidenrente erst am Iinde des Jahres, in welchem die Invaliditit ein-
getroten ist, flissig wird. Der Wert der Anwartschaft eines x-jihrigen
Aktiven auf Invalidenrente ist somit

1y Siehe Autors Abhandlung «Das Zinsfussproblem», Mitteilungen der Ver-
einigung schweizerischer Versicherungsmathematiker, 47. Band, Teft 1, 1947,
5. 167-247.
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1 ww

aai — Z Dm’
z Tt
D2 =

[4) Rt

)~
= T :ZJ S g 1t A )V

T

t

w-T

1
== >_11/1m 1 4™
Dabei bedeutet *

I}* = die Zahl der Aktiven im Alter z in der Tafel der Ausscheide-
ordnung der Aktiven;

1, = die einjihrige Wahrscheinlichkeit eines z-jihrigen Aktiven, in-
valid zu werden und als Invalide das Alter von (2 4 1) Jahren
zu erreichen;

al — der Barwert der vorschiissigen lebenslinglichen konstanten
Leibrente des Invaliden.

Die Grosse Aot = B i 1 Vi1 At
ist eine Funktion des Zinstusses 7, mit welchem der Wert a¥, , berechnet
it, was bei der Differentiation der Gleichung (7) beriicksichtigh werden
muss. Die Formel (8) gilt also in diesern Falle nicht. Dieses Hindernis
der Anwendung der Funktion M, v" im Gebiete der Anwartschaften
kann jedoch leicht umgangen werden.

Bezeichnen wir mit I, die Zahl der Invaliden, welche sich aus
der Gesamtheit der Aktiven J* im Laufe von ¢ Jahren rekrutiert
haben und welche das Alter von (x +¢) Jahren erreicht haben. Der
Wert der Anwartschaft eines z-jihrigen Aktiven auf Invalidenrente
kann also auch geschrieben werden

w—T

1
= 2 Lo L
Die Grosse I, , ist aber keine Funktion des Zinsfusses. Auf dieselbe
Art und Weise kann der Wert aller anderen in der Pensionsversicherung
vorkommenden Anwartschaften berechnet werden. Dadurch ist die
Méglichkeit geschaffen, die neue Funktion M, »" auch in der gesamten
Pensionsversicherung anwenden zu koénnen. So z. B. ist gemiiss (9)

ai
dag

= —o(la™, . 42
T (La™), (42)
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Zu beachten ist, dass die Grosse (Ia®), in (42) den Wert der An-
wartschaft auf steigende Leistungen bedeutet, welche allen Invaliden
ohne Riicksicht, wann die Invaliditit eingetreten ist, im gleichen Be-
trage gezahlt werden. So z. B. bekommen die Invaliden aus dem ersten
Versicherungsjahre die Rente 1, 2, 8, 4, 5 usw., die aus dem zweiten
Versicherungsjahre 2, 8, 4, 5 usw., die aus dem dritten Versicherungs-
jahre 3, 4, 5 usw. usw. Iis ist also

W t s
D#
)22

Ta"), > ;
(La®) D

Nach den Vorschriften der Pensionsversicherungsgesetze wird aber
die Hohe der Invalidenrente mit Riicksicht auf die Dauer der Pensions-
versicherung vor dem FEintritte der Invaliditdt bestimmt, nachher
bleibt aber die Invalidenrente konstant, d. h. die Invaliden aus dem
ersten Versicherungsjahre bekommen die gleichbleibende Rente im
Betrage 1, die aus dem zweiten Versicherungsjahre bekommen die
gleichbleibende Rento im Betrage 2, die aus dem dritten Versicherungs-
jahre bekommen die gleichbleibende Rente im Betrage 8 usw. usw.
Ganz dasselbe gilt auch fir die Witwen-, Waisen-, Aszendenten- und
Degzendentenrenten.

Die Grenzwerte von k, und h,, welche iibrigens vom Zinsfusse
unabhingig sind, wie wir oben gezeigt haben, gelten selbstverstindlich
auch bei den Anwartschaften, denn jede Anwartschaft kann auch
mittels einer vom Zinsfusse unabhiingigen Ausscheideordnung ., , be-
rechnet werden. Nachdem die diskontierten Zahlen, mit welchen die
Anwartschaften berechnet werden, in niedrigen Altern rasch zunehmen,
in héheren Altern aber langsam abnehmen, sind bei den Anwart-
schaften die Grenzen von k, und h, (86) bzw. (37), d. L.

n
<k < 1,

n -1
n+1

1<h < —00n.
n

Bis jetzt sind wenigstens unseres Wissens die Poukkaschen Zahlen
nur fiir Absterbeordnungen der Versicherten und der Bevélkerung be-
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rechnet bzw. verdtfentlicht worden. In der folgenden Tafel geben wir
die Werte von k, fir die Ausscheideordnung der Akfiven ki, fir die
Absterbeordnung der Invaliden kY, fiir die Anwartschaften der Aktiven
auf Invalidenrente £, auf Witwenrente £f* und auf Waisenrente bis
zum erreichten 18. Lebensjahre &, berechnet mit den Rechnungs-
orundlagen der jugoslawischen Pensionsversicherung, und zwar fir die
Zinsfiisse 2 = 0%, 1%, 2%, 3%, 4%, 5%, 69 und fiir die Alter
x = 16, 21, 26, 81, ... 76, 81, um dadurch unsere theoretischen Aus-
fithrungen mit konkreten rechnerischen Resultaten zu begriinden.

Die Tafel

der Poukkaschen Zahlen k,(x,7), berechnet mit den

Rechnungsgrundlagen der jugoslawischen Pensionsversicherung

Saa(Z) N‘rm
kim(m’,b') - =R : &
(S92
N 0% | 1% | 2% | 8% | 4% | 5% | 6% %

16 0.72 0.75 0.77 0.80 0.82 | 0.84 0.86 16
21 0.73 0.75 0.77 0.79 0.81 0.83 0.85 21
26 0.73 0.75 0.77 0.79 0.81 0.83 1 0.85 26
31 0.7 | 076 | 0,78 | 0.79 | 0.81 | 0.82| 0.84 31
36 0.7 ( 0.77 | 0.78 | 0.80 | 0.81 0.82 | 0.84 36
41 0.77 | 078 0.79] 0.81 0.82 0.83| 0.84 41
46 0.79 | 0.80] 0.81] 0.8 0.83 | 0.84 | 0.85 46
51 0.82 | 0.83( 0.83] 0.84| 0.85] 0.85| 0.86 51
56 0.86 0.86 0.87 0.87 0.88 0.88 | 0.89 56
61 0.89 0.90 [ 0.90 0.91 0.91 0.92 | 0.92 61
66 0.91 0.91 0.92 0.92 0.92 0.93 0.93 66
71 0.93 0.93 0.93 0.93 0.94 | 0.94 | 0.94 71
76 0.93 0.93 | 0.93 0.94 0.94 0.94| 0.94 76
81 0.98 0.98 0.98 0.98 0.98 0.98 0.98 81
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) qi2) pyii
B, 1) = ———
(552
N 0% | 1% | 2% | 3% | 4% | 5% | 6% @/{

16 1.01 1.05 1.09 1.12 1.13 1.14 1.14 16
21 0.90 0.94 0.97 1.00 1.03 1.04 1.05 21
26 0.84 0.88 0.91 0.93 0.95 0.97 0.98 26
31 0.82 0.85 0.87 0.89 0.91 0.93 0.95 31
36 0.81 0.83 0.85 0.87 0.89 0.9 0.92 36
41 0.80 0.82 0.84 0.86 0.88 0.89 0.91 41
46 0.80 0.82 0.83 0.85 0.87 0.88 0.89 46
51 0.80 0.82 0.83 0.85 0.86 0.87 0.88 51
56 0.80 0.82 0.83 0.84 0.85 0.87 0.88 56
Gl 0.81 0.83 0.84 0.85 0.86 0.87 0.87 61
66 (.83 0.84 0.85 0.86 0.87 0.87 0.88 66
71 0.85 0.86 0.87 0.87 0.88 0.89 0.89 Tl
76 0.88 0.89 0.89 0.90 0.90 0.91 0.91 76
81 0.89 0.89 0.90 0.90 0.91 0.91 0.91 81

. ‘ S;i('&) I Tfri

k(2,0 = ——

(53)*
\ 00 19 29/ }0 L9 Ko/ 69 ) ol
x % 0 L% =70 3% 0 2 /0 3% q'//.b

16 0.57 0.57 0.58 0.59 0.60 0.61 0.62 16
21 0.58 0.59 0.60 0.61 0.62 0.63 0.65 21
26 0.60 0.61 0.62 0.63 0.64 0.65 0.67 26
31 0.62 (.62 0.63 0.64 0.66 0.67 0.68 31
36 0.64 0.64 0.66 0.66 0.67 0.68 0.69 36
41 0.66 0.67 0.68 0.68 0.69 0.70 0.71 41
46 0.70 0.70 0.71 0.72 0.72 0.73 0.74 46
51 0.73 0.74 0.75 0.75 0.76 0.76 0.77 51
H6 0.80 0.80 0.81 0.81 0.81 0.82 0.82 56
61 0.88 0.88 0.89 0.89 0.89 0.90 0.90 61
66 0.91 0.91 0.92 0.92 0.92 0.92 0.93 66
Tl 0.93 0.93 0.93 0.93 0.93 0.94 0.94 71
76 0.93 0.93 0.93 0.93 0.94 0.94 0.94 76
81 0.98 0.98 0.98 0.98 0.98 0.98 0.98 81
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112
Sgwgfqﬁy>

c;w(,’,v,’t) = ———(ﬁ’;?,,
(u)

N 0% | 1% | 2% | 3% | 4% | 5% | 6% %
16 0.58 0.58 0.59 0.59 | 0.60 0.61 0.62 16
21 0.60 | 0.61 0.61 0.62 1 0.63 ] 0.65| 0.66 21
26 0.62 0.63 0.64 0.65 0.66 0.68 0.69 26
31 0.64 0.65 0.66 0.67 0.68 0.69 0.70 31
36 0.66 0.66 0.67 | 0.68 0.69 | 0.70 0.71 36
41 0.68 0.69 0.69 0.70 0.71 0.72 0.73 41
46 0.71 0.72 0.72 0.7: 0.74 0.75 0.75 46
51 0.75 0.75 0.76 0.76 0.77 | 0.77 0.78 51
56 0.80 0.81 0.81 0.82 0.82 0.82 0.83 56
61 0.88 0.88 0.88 0.89 0.89 0.89 0.90 61
66 0.91 0.91 0.92 0.92 0.92 0.92 0.93 66
71 0,921 0.92| 0,92 0.92 | 0.93| 0.93 0.93 71
76 0.93 0.94 | 0.94| 0.94 | 0.94 0.94 0.94 76
81 0.98 0.98| 0.98 ] 0.98] 0.98 | 0.98 | 0.98 81

S'a(2) Nu

K4 (w,0) = — 2
(5gwﬂ2
N 0% | 1% | 2% | 3% | 4% | 5% | 6% | i %
/

16 0.59 0.60 0.60 0.61 0.61 0.61 0.62 16
21 0.63 0.63 0.64 | 0.65 0.66 | 0.66 | 0.67 21
26 0.66 0.67 0.68 0.70 0.71 0.72 0.73 26
31 0.69 0.71 0.72 | 0.7¢ 0.74 | 0.75 0.7 31
36 0.73 0.73 0.75 0.76 0.77 0.78 0.79 36
41 0.75 0.7 | 0.77 | 0.78 0.80 | 0.81 0.82 41
46 0.78 0.7 ] 0.80] 0.81 0.81 0.82 0.83 46
51 0.80 0.81 0.82 | 0.83 0.84 | 0.84 0.85 51
56 0.84 0.85 0.86 0.86 0.87 1 0.87 0.88 56
61 0.89 0.89 ] 0.90( 0.90 0.90 | 0.91 0.91 61
66 0.91 0.92 | 0.92| 0.92 0.93 0.93 | 0.9¢ 66
71 0.92 0.92 0.92 | 0.92 0.92 1 0.92 ] 0.92 71
76 0.96 0.96 0.96 0.96 0.96 | 0.96 | 0.96 76
81 1.00 | 1.00| 1.00| 1.00 | 1.00 1.00 | 1.00 81
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