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Eine neue Funktion der Versicherungsmathematik
und ihre Anwendung

Von /do Ln/t, Ljubljana

1. Definition der neuen Funktion

In der Mathematik spielen eine wichtige Holle die Funktionen
/„(a;), welche die Eigenschaft haben

d"/„(a;)

«2/

d. h. dio Ableitungen und die Integrale von /„(«) werden einfach durch
a;"

w!
Änderung vou « gebildet. Eine bekannte derartige Funktion ist

weil
-, / z"

d"
M / ar

(Ar" (w— r)!

Im folgenden wollen wir eine neue Funktion konstruieren, deren

r-te Abteilung

di

und nachher werden wir zeigen, wie diese Funktion in der Versiehe-

rungsmathematik mit Vorteil angewendet werden kann.

Die neue Funktion wollen wir mittels der Summen der diskon-
Merten Zahlen definieren. Unter der rc-ten Summe der diskontierten
Zahlen verstehen wir

o»
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In der Versicherungspraxis ist « —1, 0, 1, 2. Also

!')».« s.

Theoretisch dagegen kann w ehie beliebige positive, negative, rationale,
irrationale, transzedente, sogar imaginäre oder komplexe Zahl sein.

Vom theoretischen Standpunkt ist also eine kontinuierliche Punk-
tion des Argumentes w und als solche wollen wir sie bei unseren Aus-
führungen betrachten. So z. B. haben wir

- 2 0 A+, A - ßx+i
*=0

A" 2 (~® Ï" 0 A-m A-2A+1 + A+a
(=o V /

und weiter

£o\ 0-5 / — ^ ür(l-5)

^ /— 0-5 + A
_ ^ ^(0-5 + 0

M -0-5 / <!P(0-5)
"

Wenn « <—1, kann die Summe der diskontierten Zahlen negativ
ausfallen, und zwar auch dann, wenn alle positiv sind. Dagegen
ist die Summe der diskontierten Zahlen stets positiv, wenn w > —1
und wenn zugleich alle

A-m>O.

Unter der diskontierten Zahl verstehen wir im folgenden das

Produkt irgendeiner positiven Zahl 1^.^, mit der (a: -f- <)-en Potenz des

Diskontfaktors ».
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ß^ w^' u(i+r<*+'>.
Die Folge der positiven Zahlen Z^ nennen wir die Ausscheideordnung.
Bei Absterbeordnungen ist 1^, > In der Yersicherungspraxis
kommt es aber auch Z^., < Zj+j+i vor. Unsere Ausführungen gelten
für alle Fälle Zx+jS^+i+i- Um die Ausdrucksweise zu vereinfachen,
führen wir folgende Bezeichnungen ein: Die Ausscheideordnung ist
«abnehmend», wenn durchweg Z)^, —«zunehmend», wenn
durchwegD,..,., < Am-m-i— «konstant», wenn durchweg,
—• «gemischt», wenn Wir bemerken noch, dass unsere
Ausführungen keine Geltung haben, wenn Z^, eine Funktion des Zins-
fusses f ist, was z. B. bei der Berechnung der Anwartschaften auf
Invaliden-, Witwen- und Waisenrenten in der Pensionsversicherimg
der Fall ist.

Nach diesen Erklärungen definieren wir

g(")

=(-!)»»! ^ (2)

Speziell ist
M_j= oo, (g)

W,. i
(4)

^z+ l•U, (5)

d"
•^2 ,r', (6)

Die neue Funktion lautet somit

4"ii
M„u" (— 1)"»!«"-

A.

^
1

A "
o>-x

(_l)-n!t^—S(" I '

")D.+, (I)

(— 1)"
2(n-l+0„W<(l + 0-"'+".

z« '=1
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Die erste Ableitung von (7) nach dem Zinsfasse d ist

d(M,y) -ir
di Z, i i

.Daher allgemein rZ"(M,,0
«»•". (8)

M„b" ist eine Funktion von «, i, a:, Z^,. Nachdem unsere Aus-

führungen für alle Alter .r und für alle Ausscheideordnungen Z,gelten
— insofern Z,, nicht eine Funktion von d ist — wollen wir im folgenden

Af„v" als eine kontinuierliche Funktion nur von rt und d betrachten.

2. Ableitungen der Versicherungswerte

Mittels der neuen Funktion können leicht und einfach die Ver-

sicherungswerte nach dem Zinsfusse differenziert werden. Dazu braucht
man nur den Versicherungswert durch die Funktion auszu-
drücken. So lautet z.B. die Ableitung von a, (4):

du, dM„ S',,i
--- — MjU - —-B —B(I«) er. (9)

dd dt d),

Desgleichen findet man die Ableitung von (Zu), (5):
(10)

d(dci) d [Mj-r(l +1)1 bL_iA n;.\/, + Mg) ------(.S, |_i 2S)f{i).
dt dt /J,

Die Jahresprämie der lebenslänglichen Ablebensversicherung ist be-

kanntlich
1 ^ 1 '< ^/(. — ;. (H)

3-:C 1 + «X 1 + ' 1 ~f" Ado 1 -(- 'i

Daraus folgt

______
Afi« 1 B(Jo),

^ ^
dt ~

(1 + Ado)'
~

(1 10' ~
a«
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Die Prämienreserve der lebenslänglichen Ablebensversicherung mit
gleichbleibenden Jahresprämien nach Ablauf von < Versicherungsjahren
ist bekanntlich

eL. i / ^ Mo 3^0
i:, l- —- - --—— - (is)

a, 1+«, 1+Mo
Daher d F., »

/ ia,f/"),.r a,.,Du),| (14)
at a;

In der Versicherungsmathematik werden ausser dem Zinsfusse -t

noch folgende Zinsmasse verwendet: der Aufzinsungsfaktor r, der Dis-
kontfaktor » und die Zinsintensität d. Zwischen diesen Grössen be-
stehen folgende Beziehungen:

Daher du
dt dr dd

tr
Die neue Punktion kann also auch dann mit Vorteil angewendet
werden, wenn die Versicherungswerte nach r oder nach u oder nach d

zu differenzieren sind.
Die neue Funktion ist sozusagen ein «Logarithmus» der Versiehe-

rungsmatheinatik in bezog auf die Infinitesimalrechnung. Der Ver-
sicherungswert F wird in eine Punktion von M„u", d. i.

F /<' (M„ u")

Umgewandelt, an welcher die notwendigen Differentiationen und Inte-
grationen nach dein Zinsmasse vorgenommen werden. Nach Beendigung
dieser Operationen kehrt man von den M„u"-Werten zu den Versiehe-

rungswerten wieder zurück.

3. Die Taylorschen Reihen der Veisicherungswerte

Mittels der neuen Punktion können die Versicherungswerte leicht
Und rasch in die Taylorsche Reihe

~ (œ —«o)'
/W S- -/"'(«») (15)

,.=o r!
entwickelt werden.
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Wenn wir in (15) a; i
'o

/('•) a«(î)

/(®o) — ®x('o) ~ »Mo

setzen, so bekommen wir die Taylorsche Eeihe des Barwertes der

konstanten lebenslänglichen nachsohüssigen Leibrente (4)

(i — ?o)*
Mo y "M,'-- (16)

r 0 ?>!

oder wenn wir mittels (2) zu den Summen der diskontierten Zahlen
zurückkehren

1

o*w -7fr- s [— (*—*o) »or»4+i • (i?)
v=0

Wenn wir (16) nach i differenzieren, bekommen wir die Taylorsche
Eeihe des Barwertes der steigenden Eente (/«).,. (5)

—in)""'
Ml» 2-7- (18)

» =i (v—1)

bzw. 1 u, ~
(i«)x =— (i9)

"Dj, » v=i

Im folgenden geben wir noch die Anfangsglieder der Taylorschen Eeihe
der Jahresprämie der lebenslänglichen Ablebensversicherung 2). (11)

und der Prämienreserve F„, (13) dieser Versicherung
(20)

P op / ^ /'\ (*-W/2»M? °M \

K., + ~ (»Mi °a,+, - »Olli °a,) +—•
•[«a,(«M/a^,-öan/a,)-20Mi(»Mi%.H-»aili»a,)] + (2D

Dabei bedeutet
_ _ ^ ^ 2°^

'
»/>,

' "
"/>,

'

00 0 00(2)

ogjîj -"''h.,
»£>*+, ' »£,+<
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4. Integration der Versicherungswerte

Wenn « > 1, kann die neue Funktion leicht integriert werden.
Es ist nämlich

[i¥,yd'i .1/, V ' +c,

wo 0 die Integrationskonstante bedeutet. So z. B. ist

J (Ia)j.f/i — | (Mjr) (1 + i) di — M„(l + i) -f- J Modi + C

— ru -f- | «j. di + C.

Dagegen Mg können wir nicht auf diese Art integrieren, weil M.yir'
unendlich ist (3). Die Versicherungswerte sind aber meistens Punk-
tionen eben von M„. In solchen Fällen greift man zur Taylorschen
.Reihe des Versicherungswertes. Aus (IG) findet man leicht

/* /* oo //£ V'"H1

V - — ; M
./ J r=o (r -(- 1)

Ähnlich findet man aus ('20)

f (Ä—io)"»o /"M, \
J + Ai) + • • + C»

und aus (21)

| f^di °F^(i-g f --~3+ +0.

In der Versicherungsmathematik kommen aber auch Grössen vor,
welche Funktionen von i, M„, M, «, M.,4 M„r" sind. In solchem

Falle heisst es die Differentialgleichung

/•'(', Mo > Mj.d, My«Ä M„r") 0

integrieren. Die Lösung einer solchen Aufgabe, nämlich die Integration
der generalisierten Poukkaschen Funktion (23), wollen wir später
feigen.

lö



— 198 —

5. Grenzwerte der generalisierten Poukkaschen Funktion

Poukka hat gefunden, dass sich der Wert des folgenden Doppel-
Verhältnisses der Summen der diskontierten Zahlen

i (22)
(SJ»

mit dem Alter mit dem Zinsfusse f und mit der Ausscheideordnung

nur wenig ändert und deshalb 7<ü(a:,i) als Konstante betrachtet
werden kann. Der Wert dieser Konstante wird von verschiedenen

Autoren meistens mit 0.84 angenommen. Die Poukkasche Formel
wollen wir generalisieren, wie folgt

$»+0 $»-0
' (23)

(W
Mit der neuen Funktion M„«" können leicht die Grenzwerte von

k„(a;,i) bestimmt werden. Dabei betrachten wir /r„(;c,f) als eine kon-
tinuierliche Funktion von w, jedoch nur im Bereiche 0 < w < », denn
im Falle w < 0 kann der Wert einer oder mehrerer Summen der dis-

kontierten Zahlen in (23) negativ ausfallen, wie wir eingangs erwähnt
haben, obwohl alle in der Versicherungspraxis nur positiv sein

können. Unter dieser Voraussetzung ist stets &„(»>*) >0.
Zunächst erhöhen wir in (23) das Alter a; um eine Einheit, damit

wir die generalisierte Poukkasche Formel gemäss (2) als Funktion von
M„ ausdrücken können.

s£H>S<£> «
— Aua; 4- 1,'i) /c„.

(S(»ii)' » + 1 ^
Daraus folgt -^n+i ^n-i +1

AC
A» - (24)

oder

" -. (25)
(M„F>) 2

Die Grenzwerte von in bezug auf w und i ergeben sich aus den

Gleichungen
«"n «

0, l).
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Da das Argument » in der Funktion M„r" unter anderem auch als

Faktorielle auftritt (7), können wir nicht /t„ nach w differenzieren.
Diese Schwierigkeit kann aber leicht umgangen werden. Die erste

Ableitung von nach -i kann geschrieben werden

dÄ«
_(^A„-2Ä„ + 1)

di '

M„ u"

Die Bedingung für das Bestehen eines Grenzwertes von in bezug
auf i ist also gegeben durch die Differenzengleichung

Vu 'ht ~ + 1 0
» (26)

welche nicht nur vom Alter und der Ausscheideordnung, sondern auch

vom Zinsfusse frei ist. Die aus ihr hergeleiteten Grenzwerte gelten also

für alle Alter x, für alle Ausscheideordnungen und für alle Zins-
füsse f. Die Ableitung von /j„ nach », welche rechnerisch undurchführbar
ist, wie wir oben bemerkt haben, ist nun überflüssig geworden, da wir
die Grenzwerte vom in bezug auf « aus der Differenzengleichung (26)
leicht herleiten können. Die vollständige Lösung von (26) lautet

1

A„ l+ —-, (27)

wo c die Summationskonstante bedeutet, welche wir so bestimmen
wollen, dass 7t„ in bezug auf » die Grenzwerte darstellen wird. Vorweg
bemerken wir, dass /t„ (27) eine kontinuierliche Funktion von « ist,
und zwar eine gleichseitige Hyperbel mit den Asymptoten /«„—1 0

und » -f- c 0

Die untere Grenze von 7t„ finden wir offensichtlich so, dass wir
in (27) c -To setzen, also

1<A„. (2b)

n
—— <V (29)
» 4-1

Die untere Grenze (28) bzw. (29) gilt für alle Ausscheideordnungen
gleichwohl, ob sie abnehmend, zunehmend, konstant oder gemischt sind,
jedoch unter der Bedingung, dass » > 0 und zugleich alle > 6.

Nur wenn » < 0 oder wenn einzelne D.^, < 0, gelten obige Grenz-

Werte nicht. In diesem Falle gibt es überhaupt kein allgemein gültiges
Minimum von fc„ und 7t„.
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Für abnehmende Ausscheideordnungen (Absterbeordnungen) kann
eine strengere untere Grenze gezogen werden. Im höchsten Alter co ist

£(« + l) ß(»-l)
fc„(w, 0 -

(,SM)2 CU*
1.

Infolgedessen muss A:„(a:,t) ~ 1 sein, wenn D,. gross ist, die folgenden
-Dz+j als auch ihre iterierten Summen dagegen im Vergleiche zu /),-

verhältnismässig klein sind. Daraus sc. h Hessen wir, dass /c„ bei starkem
Gefälle der diskontierten Zahlen gross, bei schwachem Gefälle dagegen
klein sein muss. Die strengere untere Grenze von für abnehmende

Ausscheideordnungen findet man also aus der Annahme D
31 / kon-

stant, d. h. es gibt keine Verzinsung und keine Ausscheidung. Für
solche konstante Ausscheideordnungen haben wir gemäss (1) und (23)

V
/-o M -f- 1 y

*-0

l + <

— l
+ A 2

M «

« -f- 2 -(- cü — x
w -f- 2

7t 4- co — x

7t -(-14" m -

m 4-1
a;

"-+1(1+---
?t -[- 2 \ 7« 1 -[- CO

(30)

Die strengere untere Grenze (30) ist eine Funktion nicht nur von 7t,

sondern auch vom Alter x und co. Sie hat keine Beziehung zur Diffe-

reu'Ungleichung (26). Für die in der Lebensversicherung üblichen Alter
x ist der Wert des Bruches in (30) rechts von nicht allzugrosser Be-

deutung und kann weggelassen werden. Die Formel (30) büsst so ein

wenig an der Strenge ein, sie wird aber dadurch viel einfacher. Für
abnehmende und konstante Ausscheideordnungen haben wir also fol-

g'ende nur von 7t abhängige untere Grenze

71 4" 1

7t 4- 2
- < (31)

(» + 1)-

7t (tt -f- 2)
<V (32)
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Eine obere Grenze von Zc„ bzw. 7t„ existiert gar nicht. Wenn wir
nämlich in (27) die Konstante c —» setzen, dann ist oo und
damit auch /£„ =o. Dies ist allerdings eine sonderbare, paradoxe
Tatsache, weil Poukka selbst als auch zahlreiche andere Autoren nach
ihm speziell /.^ als eine Grösse betrachteten, die sich nur wenig
in bezug auf :r,t, ändert und deshalb praktisch als Konstante

angenommen werden kann.

Dass es tatsächlich keine obere Grenze von Zc„ und /»„ gibt, wollen
wir noch auf eine andere Art zeigen. Nehmen wir folgende Aus-

scheideordnung

wo e eine kleine positive Zahl darstellt. In diesem Falle haben wir

'
• I — Ac+2 — AC + 3 — • • • — Ac + ro — 6,

1 + me,

1 + m +

Also
17m -f- (im- -f- m® llm^ -|- 6m® -j- m*

p J c-2

1 -f- (3 m -f- wr) e -|-

(33)

Wenn wir in (33) setzen

m 6 • 10«, 6 • 10»,

£ 10~»>, |() w

dann bekommen wir ^ -j qs

Für noch grössere m und noch kleinere positive c liefert (33) noch

grössere Werte von A:,. Bei sehr kleinem e und entsprechend grossem
sind in (33) die Glieder von e massgebend. Das Glied von s im
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Zähler (83) ist ein Polynom der dritten, im Nenner dagegen nur der

zweiten Potenz von ra. Ähnliche Situation haben wir auch bei analogen
Formeln für feg, feg, fe,, usw. Eine obere Grenze von fc„ und fe„ existiert
theoretisch tatsächlich nicht.

In der Versicherungspraxis kommen solche «anormale» Ausscheide-

Ordnungen selbstverständlich gar nicht vor. Für den Bedarf der Ver-

Sicherungspraxis können auch obere Grenzen von fe„ und fe„ festgesetzt
werden, welche jedoch zum Teil mit gewissen Eeserven zu nehmen sind.

Wir haben schon gesagt, dass bei zunehmenden Ausscheide-

Ordnungen die Werte von fe„ kleiner sind als bei abnehmenden Aus-

scheideordnungen. Den grössten Wert von fe„ hei zunehmenden Aus-

scheideordnungen haben wir im Schlussalter co, nämlich

fe„(«,i) 1

Die obere Grenze von fe„ und fe„ bei zunehmenden Ausscheideordnungen
ist in jedem Falle

fe„<l. (34)

M + 1

/'<„<- • (35)
w

Den Wert in (35) findet man auch so, dass man in (27) die Konstante
o 0 setzt.

Bei abnehmenden Ausscheideordnungon sind die Werte von fe„

verhältnismässig gross. Aber auch bei diesen Ausscheideordnungen
kommt es in der Praxis nur selten vor, dass fc„ > 1 wird, so dass man
(34) und (35) im allgemeinen auch bei abnehmenden Ausscheide-

Ordnungen als obere Grenze betrachten kann, jedoch mit gewissen
Ausnahmen, welche nur bei sehr starkem Gefälle der diskontierten
Zahlen auftreten können. So z. B. ist die Sterblichkeit in den ersten

Altersjahren gross, das Gefälle der diskontierten Zahlen D„, D(, Dg,
stark, und so kann es vorkommen, dass fe'o(0,i) > 1. Ähnlich ist die

Sterblichkeit der Invaliden im niedrigsten Produktivalter von 15—25
Jahren gross, das Gefälle der diskontierten Zahlen Dji, Z)jJ, Djj,
stark, und so kann es auch hier vorkommen, dass fc„ > 1, fey > 1 usw.

Unsere Ausführungen wollen wir nun übersichtshalber kurz zu-
sammenfassen.
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Bei ^wne/imenden Ausscheideordnungen sind die Grenzwerte von
fc„ und /(„ ohne Ausnahme

ft
——- < < 1

• (36)
« -)- 1

« + 1

1<Ä„< • (37)
w

Bei aftrtc/wwewde« Ausscheideordnungen iiaben wir folgende ohne
Ausnahme gültige untere Grenze, wogegen die obere Grenze bei sehr

starkem Gefälle der diskontierten Zahlen problematisch werden kann.

to -f- 1

<fc„<l(?) (38)
to 4- "

(to + 1)® to + 1

—__<Ä„< (39)
M (w + 2) TO

Bei iler oberen Grenze (38) bzw. (39) ist also Vorsicht geboten.
Deshalb haben wir das Fragezeichen dazugeschrieben.

Wir bemerken noch, dass hohe Zinsfüsse eine stärkere Disken-
tierung und damit ein stärkeres Gefälle von zur Folge haben.

Infolgedessen wird die obere Grenze bei hohen Zinsfüssen öfter und
tiefer überschritten wie bei niedrigen Zinsfüssen.

6. Integration der generalisierten Poukkaschen Funktion

Die in der generalisierten Poukkaschen Formel (23) erscheinenden

Summen der diskontierten Zahlen haben wir mittels (2) durch die

neue Funktion ersetzt und so die Gleichung (25) erhalten, welche
eine homogene quadratische Differentialgleichung (to + l)-ter Ordnung
darstellt.

Die Grösse in (25) ist eine Funktion des Zinsfusses i, denn

nur an den Grenzen (27) ist unabhängig von i, sonst aber nicht.
Bei der Integration von (25) müsste daher, streng genommen, die

funktionelle Abhängigkeit der Grösse von i berücksichtigt werden.
In diesem Falle stellt das vollständige Integral von (25) den exakten
Wert Mo a,.('i) dar, d. h. bei Kenntnis der Funktion k„(i) ist
es möglich, aus der generalisierten Poukkaschen Formel den Barwert
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der gleichbleibenden lebenslänglichen Leibrente «,,(!) exakt zu be-

rechnen. Wir kennen aber die Funktion /»„(») nicht, welche übrigens
auch vorn Alter ;c als auch von der Ausscheideordnung abhängt.
Wir kennen nur ihre untere und obere Grenze (157) bzw. (159). Mit
Rücksicht auf die schmale Spannung zwischen der unteren und der
oberen Grenze wollen wir /t„ bei der Integration von (25) als Konstante
betrachten. Das vollständige Integral von (25) wird deshalb nur einen

Näherungswert von n^(f) darstellen, welchen wir mit bezeichnen
wollen.

Die Gleichung (25) können wir schreiben

— ^4 ; L '

Daraus findet man mittels teilweiser Integration6

,,n-l

M„r"
oder

-|- i - - — M /t,j v.,

MF' 1.

M + (i—/gl
Nach weiteren Integrationen findet man der Reihe nach^6

1

•M«-iv"-' + L'O' S
2-/&n

C + (A + BipL

11-2 n-(«-!)/in

«(„ ^,'" + (^5®) (40)
v 0

Die Integrationskonstanten A, B, C'„, C'j, C„_2 können durch

Anfangswerte, welche uns zur Verfügung stehen, bestimmt werden.

Aus (40) kann auch die Grösse des Fehlers abgeschätzt werden,
welchen wir begangen haben, indem wir bei der Integration /«„ als

Konstante betrachtet haben, und zwar so, dass man einmal die untere,
das zweitemal die obere Grenze von ä„ in (40) einsetzt.
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Man kann zeigen, class in (40) die meisten und darunter die besten
bisher bekannten Näherungsformeln von a* als Spezialfälle enthalten
sind *). Wenn wir z. Ii. in (40) 0 setzen, bekommen wir für
einen Polynom «-toi Grades von i, welchen wir schreiben können

«(„) Co + Cpi + C.pC + • •. + C„i", (41)

das ist aber nichts anderes als die Taylorsche Eeihe des Rentenbar-
wertes a,.(i) (17), welche beim Gliede i" abgebrochen ist. In (40) ist
also auch die Taylorsche Reihe von <"«„ als Spezialfall enthalten. Die
Präzision der gekürzten ïaylorschen Reihe (41) lässt übrigens zu
wünschen übrig, weil /t„ 0 entschieden zu klein genommen ist.

Bei der Integration der Differentialgleichung (25) haben wir still-
schweigend « für eine ganze positive Zahl angenommen. Es kann aber

« auch eine nicht ganze positive Zahl sein. In diesem Falle ist das

Endresultat der Integration der generalisierten Poukkaschen Funktion
ein Näherungswert von Mgr', wo 0 < e < 1. Es ist also möglich, Nähe-

rungsformeln auch für die Berechnung der Summen der diskontierten
Zahlen aufzustellen.

7. Pensionsversicherung

Unsere Ausführungen gelten selbstverständlich auch für die Aus-

scheideordnungen der Aktiven und für die Absterbeordnungen der

Invaliden, Witwen, Waisen, Aszendenten und Deszendenten in der

Pensionsversicherung. Bezüglich der Anwartschaften der Aktiven auf
Invalidenrente, weiters bezüglich der Anwartschaften der Aktiven und
Invaliden auf Witwen-, Waisen-, Aszendenten- und Deszendenten-

renten sind noch einige Erklärungen notwendig.

Zur Vereinfachung der Rechnung suponieren wir, dass die Inva-
lidenrente erst am Ende des Jahres, in welchem die Invalidität ein-

getreten ist, flüssig wird. Der Wert der Anwartschaft eines «-jährigen
Aktiven auf Invalidenrente ist somit

') Siehe Autors Abhandlung «Das Zinsfussproblem», Mitteilungen der Ver-
einigung schweizerischer Versicherungsmathematiker, 47. Band, Heft 1, 1947,
S. 107-247.
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I aj-x

~ TW Zj (^+<-1 L+i-1 ^x+i)"'
tj. i i
1

-çg^.d +')-'
Dabei bedeutet
Z"" die Zahl der Aktiven im Alter « in der Tafel der Ausscheide-

Ordnung der Aktiven;
die einjährige Wahrscheinlichkeit eines «-jährigen Aktiven, in-
valid zu werden und als Invalide das Alter von (« -)-1) Jahren
zu erreichen;

a" der Barwort der vorschüssigen lebenslänglichen konstanten
Leibrente des Invaliden.

Die Grösse 3 — /««
Ab-H x+i—1 £-H—1 £-M

ist eine Funktion des Zinsfusses i, mit welchem der Wert a",., berechnet

ist, was bei der Differentiation der Gleichung (7) berücksichtigt werden

muss. Die Formel (8) gilt also in diesem Falle nicht. Dieses Hindernis
der Anwendung der Funktion M„-ü" im Gebiete der Anwartschaften
kann jedoch leicht umgangen werden.

Bezeichnen wir mit I^j die Zahl der Invaliden, welche sich aus
der Gesamtheit der Aktiven Z"" im Laufe von Z Jahren rekrutiert
haben und welche das Alter von (« -f- Z) Jahren erreicht haben. Der
Wert der Anwartschaft eines «-jährigen Aktiven auf Invalidenrente
kann also auch geschrieben werden

1 co-x

< wr2Wi + <r'-
/=1

Die Grösse ist aber keine Funktion des Zinsfusses. Auf dieselbe

Art und Weise kann der Wert aller anderen in der Pensionsversicherung
vorkommenden Anwartschaften berechnet werden. Dadurch ist die

Möglichkeit geschaffen, die neue Funktion auch in der gesamten
Pensionsversicherung anwenden zu können. So z. B. ist gemäss (9)

cZ a
(42)

ar
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Zu beachten ist, class clie Grösse (Ia"% in (42) den Wert der An-
wartschaft auf steigende Leistungen bedeutet, welche allen Invaliden
ohne Rücksicht, wann die Invalidität eingetreten ist, im gleichen Be-

trage gezahlt werden. So z. 13. bekommen die Invaliden aus dem ersten

Versicherungsjahre die Rente 1, 2, 3, 4, 5 usw., die aus dem zweiten
Versicherungsjahre 2, 3, 4, 5 usw., die aus dem dritten Versicherungs-
jähre 3, 4, 5 usw. usw. Es ist also

Nach den Vorschriften der Pensionsversicherungsgesetze wird aber

die Höhe der Invalidenrente mit Rücksicht auf clie Dauer der Pensions-

Versicherung vor clem Eintritte der Invalidität bestimmt, nachher
bleibt aber die Invalidenrente konstant, d. h. die Invaliden aus dem

ersten Versicherungsjahre bekommen die gleichbleibende Rente im
Botrage 1, clie aus dem zweiten Versicherungsjahre bekommen die

gleichbleibende Rente im Betrage 2, die aus dem dritten Versicherungs-
jähre bekommen die gleichbleibende Rente im Betrage 3 usw. usw.
Ganz dasselbe gilt auch für die Witwen-, Waisen-, Aszendenten- und
Deszendentenrenten.

Die Grenzwerte von Zc„ und /»„, welche übrigens vom Zinsfusse

unabhängig sind, wie wir oben gezeigt haben, gelten selbstverständlich
auch bei den Anwartschaften, denn jede Anwartschaft kann auch

mittels einer vom Zinsfusse unabhängigen Ausscheideordnung be-

rechnet werden. Nachdem die diskontierten Zahlen, mit welchen die

Anwartschaften berechnet werden, in niedrigen Altern rasch zunehmen,
in höheren Altern aber langsam abnehmen, sind bei den Anwart-
Schäften die Grenzen von /c„ und (36) bzw. (37), cl. i.

(.Za»), >

vi 4-1
< fc, < 1,

M + 1

1 < Ä» <

Bis jetzt sind wenigstens unseres Wissens die Poulckaschen Zahlen

nur für Absterbeordnungen der Versicherten und cler Bevölkerung be-
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rechnet bzw. veröffentlicht worden. In der folgenden Tafel geben wir
die Werte von 7q für die Ausscheideordnung der Aktiven 7c, für die

Absterbeordnung der Invaliden 7c", für die Anwartschaften der Aktiven
auf Invalidenrente /cf, auf Witwenrente 7t" und auf Waisenrente bis

zum erreichten 18. Lebensjahre ftf, berechnet mit den Eechnungs-
grundlagon der jugoslawischen Pensionsversicherung, und zwar für die

Zinsfüsse i 0%, 1%, 2%, 3%, 4%, 5%, 6% und für die Alter
® 16, 21, 26, 81, 76, 81, um dadurch unsere theoretischen Aus-

führungen mit konkreten rechnerischen Resultaten zu begründen.

Die Tafel

der Poukkaschen Zahlen 7c^(a;,f), berechnet mit den

Rechnungsgrundlagen der jugoslawischen Pensionsversicherung

craa(2) at««

7cf(agi)

a; 0% 1% 2% 3% 4% 5% 6%

16 0.72 0.75 0.77 0.80 0.82 0.84 0.86 16
21 0.73 0.75 0.77 0.79 0.81 0.83 0.85 21
26 0.73 0.75 0.77 0.79 0.8t 0.83 0.85 26
31 0.74 0.76 0.78 0.79 0.8t 0.82 0.84 31
36 0.75 0.77 0.78 0.80 0.81 0.82 0.84 36
41 0.77 0.78 0.79 0.81 0.82 0.83 0.84 4L
46 0.79 0.80 0.81 0.82 0.83 0.84 0.85 46
51 0.82 0.83 0.83 0.84 0.85 0.85 0.86 51
56 0.86 0.86 0.87 0.87 0.88 0.88 0.89 56
6t 0.89 0.90 0.90 0.91 0.91 0.92 0.92 61

66 0.9t 0.91 0.92 0.92 0.92 0.93 0.93 66
71 0.93 0.93 0.93 0.93 0.94 0.94 0.94 71
76 0.93 0.93 0.93 0.94 0.94 0.94 0.94 76
81 0.98 0.98 0.98 0.98 0.98 0.98 0.98 81
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ST'P) 2V?

a; 0% 1% 2% 8% 4% KO/•-> /o 6% a;

16 1.01 1.05 1.09 1.12 1.13 1.14 1.14 16
21 0.90 0.94 0.97 1.00 1.03 1.04 1.05 21
26 0.84 0.88 0.91 0.93 0.95 0.97 0.98 26

ill 0.82 0.85 0.87 0.89 0.91 0.93 0.95 31
36 0.81 0.83 0.85 0.87 0.89 0.91 0.92 36
41 0.80 0.82 0.84 0.86 0.88 0.89 0.91 41
46 0.80 0.82 0.83 0.85 0.87 0.88 0.89 46
51 0.80 0.82 0.83 0.85 0.86 0.87 0.88 51
56 0.80 0.82 0.83 0.84 0.85 0.87 0.88 56
61 0.81 0.83 0.84 0.85 0.86 0.87 0.87 61

66 0.83 0.84 0.85 0.86 0.87 0.87 0.88 66
71 0.85 0.86 0.87 0.87 0.88 0.89 0.89 71
76 0.88 0.89 0.89 0.90 0.90 0.91 0.91 76
81 0.89 0.89 0.90 0.90 0.91 0.91 0.91 81

0% 1% 2% 2% 4% KO/^ /o 6%

16 0.57 0.57 0.58 0.59 0.60 0.61 0.62 16
21 0.58 0.59 0.60 0.61 0.62 0.63 0.65 21
26 0.60 0.61 0.62 0.63 0.64 0.65 0.67 26
31 0.62 0.62 0.63 0.64 0.66 0.67 0.68 31
36 0.64 0.64 0.66 0.66 0.67 0.68 0.69 36
41 0.66 0.67 0.68 0.68 0.69 0.70 0.71 41

46 0.70 0.70 0.71 0.72 0.72 0.73 0.74 46
51 0.73 0.74 0.75 0.75 0.76 0.76 0.77 51
56 0.80 0.80 0.81 0.81. 0.81 0.82 0.82 56
61 0.88 0.88 0.89 0.89 0.89 0.90 0.90 61
66 0.91 0.91 0.92 0.92 0.92 0.92 0.93 66
71 0.93 0.93 0.93 0.93 0.93 0.94 0.94 71
76 0.93 0.93 0.93 0.93 0.94 0.94 0.94 76
81 0.98 0.98 0.98 0.98 0.98 0.98 0.98 81
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»S3«:,.

-i
œ 0% 1% 2% 3% 4% K 0//o 6%

16 0.58 0.58 0.59 0.59 0.60 0.61 0.62 16
21 0.60 0.61 0.61 0.62 0.63 0.65 0.66 21

26 0.62 0.63 0.64 0.65 0.66 0.68 0.69 26
31 0.64 0.65 0.66 0.67 0.68 0.69 0.70 31

36 0.66 0.66 0.67 0.68 0.69 0.70 0.71 36
41 0.68 0.69 0.69 0.70 0.71 0.72 0.73 41

46 0.71 0.72 0.72 0.73 0.74 0.75 0.75 46
51 0.75 0.75 0.76 0.76 0.77 0.77 0.78 51
56 0.80 0.81 0.81 0.82 0.82 0.82 0.83 56
61 0.88 0.88 0.88 0.89 0.89 0.89 0.90 61

66 0.91 0.91 0.92 0.92 0.92 0.92 0.93 66
71 0.92 0.92 0.92 0.92 0.93 0.93 0.93 71

76 0.93 0.94 0.94 0.94 0.94 0.94 0.94 76
81 0.98 0.98 0.98 0.98 0.98 0.98 0.98 81

*?M

0% 1% 2% 3% 4% 5% 6% &

16 0.59 0.60 0.60 0.61 0.61 0.61 0.62 16
21 0.63 0.63 0.64 0.65 0.66 0.66 0.67 21
26 0.66 0.67 0.68 0.70 0.71 0.72 0.73 26
31 0.69 0.71 0.72 0.73 0.74 0.75 0.77 31
36 0.73 0.73 0.75 0.76 0.77 0.78 0.79 36
41 0.75 0.76 0.77 0.78 0.80 0.81 0.82 41
46 0.78 0.79 0.80 0.81 0.81 0.82 0.83 46
51 0.80 0.81 0.82 0.83 0.84 0.84 0.85 51
56 0.84 0.85 0.86 0.86 0.87 0.87 0.88 56
61 0.89 0.89 0.90 0.90 0.90 0.91 0.91 61
66 0.91 0.92 0.92 0.92 0.93 0.93 0.93 66
71 0.92 0.92 0.92 0.92 0.92 0.92 0.92 71
76 0.96 0.96 0.96 0.96 0.96 0.96 0.96 76
81 1.00 1.00 1.00 1.00 1.00 1.00 1.00 81
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