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Eine praktische Interpolationsformel
des Zinsfussproblemes von hoher Präzision

Von Jvo Lö/i, Ljubljana

Das Zinsfussproblem ist mit der verallgemeinerten Poukkaschen
Formel

I i) g(«- i)
'
^,0)2

(1)

eng verbunden in dem Sinne, dass sich die meisten und darunter die
besten Näherungsformeln des Zinsfussproblemes aus (1) herleiten las-

sen i). Bei der praktischen Anwendung dieser Näherungsformeln, spe-
ziel] wenn grössere Präzision verlangt wird, sind in der Regel entweder
die Logarithmentafeln (so z. B. bei den Formeln von Christen, Evans,
Franckx, Frucht, Güttinger, Hantsch, Meideil, .Palmqvist usw.) oder
aber die zweiten oder sogar die höheren Summen der diskontierten
Zahlen, welche meistens in den Sterbetafeln nicht enthalten sind, not-
wendig (so z. B. bei den Formeln von Berger, Böhmer, van Dorsten,
Poukka usw.). Wenn wir von der Inversion des Zinsfussproblemes, d.i.
von der Berechnung des Zinsfusses eines gegebenen Versicherungswertes,
absehen, dann müssen wir den praktischen Wert solcher, theoretisch
ohne Zweifel sehr interessanten Näherungsformeln ziemlich reduzieren,
denn mit den heutigen Rechenmaschinen kann der Barwert einer Rente
oder irgendein anderer Versicherungswert mittels Konnnutationszahlen
oder Rekursionsformeln in kurzer Zeit exakt berechnet werden. In-
folgedessen sind praktischere, schneller und leichter zum Ziele führende

D Siehe Autors Abhandlung «Das Zinsfussproblem», Mitteilungen der Vor-
einigung schweizerischer Versicherungsmathematiker, 47. Band. Heft 1, 1947,
V 167-247.
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Näherungsformeln des Zinsfussproblemes erwünscht,. Im folgenden ge-
hen wir eine solche Interpolationsformel von hoher Präzision, bei welcher
die Logarithmentafeln sowie die höheren Summen der diskontierten
Zahlen überflüssig sind, ungeachtet, ob man tien Versicherungswert zu
einem gegebenen Zinsfusse oder umgekehrt den Zinsfuss zu einem ge-
gebenen Versicherungswerte zu berechnen hat. Wir bemerken vorweg,
dass die neue Interpolationsformel ebenfalls mit der Poukkaschen
Funktion (1) eng verknüpft ist.

Gegeben sind zwei Barwerte der konstanten nachschüssigen lebens-

länglichen Leibrente zu Zinsfüssen

'io < 'i|, d.i. a,.0o) "« und «,(»,) Vi.

Gesucht wird der Barwert dieser Rente, welcher dem Zinsfusse f ont-
spricht, d. i. - a.

Die lineare Interpolation der Rentenbarwerte und hi, d. i.

«a(i'i — /) -L bi(-i — g
5 -- - r -

- (2)
Ol" '»)

gibt bekanntlich zu grossen Näherungswert «. Die lineare Interpolation
1 1

der reziproken Rentenbarwerte und —, d.i.^ »rt hl

o« Vi O'i — ' o)

a — - (15)

°«0 — (o) + M'i
gibt dagegen zu kleinen Näherungswert n. Wir wollen nun zeigen, dass

die Summe der Produkte

a 1 — /i'i) r " /'h u 1)

wo fcj die Poukkasche Funktion

^.l A',.
l.o -A (5)

(A'* i i)"

bedeutet, einen vorzüglichen Näherungswert von « darstellt. Der

Rechnungsvorgang zur Ermittlung des Näherungswertes a ist also tat-
sächlich äusserst leicht und einfach, setzt aber die Kenntnis der Werte
der Poukkaschen Funktion (5) voraus, welche wir in der Tafel im



Anhange geben. Dieselben sind auf Grund der slowenischen Volks-
Sterbetafel, männliches Geschlecht, Beobachtungsperiode 1931—1938

berechnet und können auch an anderen Sterbetafeln ohne weiteres

angewendet werden, nachdem die Poukkasche Funktion von Tafel zu
Tafel nur wenig ändert ').

Die Werte von /c, für die in der Tafel fehlenden Alter und Zinsfüsso
können mittels Interpolation leicht berechnet werden.

Zunächst wollen wir ('2) und (SS) vereinfachen. Zu diesem Zwecke
schreiben wir

/, — „ /I

i — i'u zl a (6)

I, f — /I (1. —• a).

Nach Einsetzung von ((>) in (2) und (SS) bekommen wir

a °a(l —-a) -f- Via, (7)

"rt Vi

°«a + Vf(1 — a)
(«)

Nach dieser Vereinfachung der Schreibweise greifen wir zur Taylor-
sehen Reihenentwicklung des Rentenbarwertes a, welche bekanntlich
lautet

« - ['kv,,, - <•>„(; - g % M + »SO' - '«)" l - "»(' - <o)« |

(<))

Die Reihe ist konvergent für alle zwischen 0 % und 100 % liegenden
Zinsfüsse. Wenn 7 > ist die Reihe alternierend und so a fortiori
konvergent. In (9) vertauschen wir nun i mit d. h. wir wollen den
Wert von "rt in bezug auf « mittels der Taylorschen Reihe darstellen

Onn u
S .S'"> S'-"

/• ,u,. -V (j a?-|-l 8/" "\'i ®"f"l
1 ~~ ~ ' 0 F ' ('o <)" ,7 —'"'('o -'0 —~

N,-+i
(10)

*) Siehe diesbezüglich auch «Die Tafel der verallgemeinerten Poukkaschen
Zahlen» /<'„(.r, i) für » 0, 1, 2, 3, 4, 5, für ,r l. ü, 11, '21, 81, 41, 51, 61, 71, 81,
91, für i (I %, 1 %, '2 %, 3 %, 4 %, 5 %, (i %, Mitteilungen der Vereinigung
schweizerischer Versieherungsnuitheniatiker. 47. Band, Heft 1, 1947, Ö. 244—24(».
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Zufolge (1) ist,

v,.,
afti
•V,:,
S'(4)
'+r + l
.v.

&"(^
A', A

2 + 1

Q 3
2 +14+')* 2+ '

/ s.

*2 + 1

,S' *
2 + 1

(11)

Wenn wir (11) in (10) einsetzen und der Kürze halber

'"('•t '0) 1

.V
(12)

2} 1

schreiben, dann geht (10) in

'Vi n |1 -f- «4 -f- A, er.44- A[ AgoF-d" | (18)

über. Auf dieselbe Art und Weise bekommen wir

Vi - ri 11 — (1 — a) /I + A,(1—a)M* —AfA^l—a)M»...|. (14)

(18) und (14) in (7) eingesetzt, gibt

« — « |1 -f- fci«(l —a) .1" + 7cf fcg« (1 — «) (2a — 1) 4" |. (15)

in (15) fehlt das Glied mit der ersten Potenz von .1. Der Fehler
der linearen Interpolation der Kentenbarwerte "11 und '« entspricht also

der zweiten Ordnung der Kleinheit. Im Intervalle (vb) sind a und
(I — a) positiv, sonst ist aber das Produkt a(l — a) negativ. Die lineare

Interpolation der Kentenbarwerte und Vi gibt also zu grosse, die
lineare Extrapolation dagegen zu kleine Näherungswerte n.

Um die Keihe von « zu finden, schreiben wir (8) wie folgt

1 a a1

Aus (18) und (14) finden wir

1 1

[ 1 — a.4 + (l-A,)aM» -(1-2/,-, f A?A,,)aP4"

(16)

(17)

I

|1-| (1 a)4 (- (1 - A,) (1 -a)G4^ 4 (1 2A, 4 A;A,)4- a)WP..+
r/,

(18)



(17) unci (18) ia (16) eingesetzt, gibt

1 1

- [1 + (1 A,)a(l a) N - - 1 - '2 A:f A\>) a.( 1 *)d -2a) ,1-' I.
« a

Daraus folgt

a a [1 -- (1 — A,)a( 1 — a) ."1 - -(- t — 2A', + A-;A»)a(l-a) (2a- 1)/I». ].

In (20) fehlt das Glied mit der ersten Potenz von N. Der Fehler
I 1

der linearen Interpolation der reziproken Rentenbarwerte und
°a 'a

entspricht also der zweiten Ordnung der Kleinheit. Im Intervalle
(io.'ii) ist das zweite Glied in (20) negativ, sonst ist es aber positiv.IIDie lineare Interpolation der reziproken Rentenbarwerte — und

»a 6/

gibt also — im Gegensatz zu « — zu kleine, die lineare Extrapolation
dagegen zu grosse Näherungswerte a. Bei der Interpolation, d. h. wenn

\ < t < Ii. haben wir die Ungleichung

a > a > a. (2 t)

Bei der Extrapolation, d. h. wenn I < oder wenn i > I,, haben wir
dagegen

o<«<a. (22)

Wenn wir (15) mit (1 — /.-,) und (20) mit k, multiplizieren und beide
Produkte addieren, haben wir die Taylorsehe Reihenentwicklung
unserer neuen Interpolationsformel

« u(l A,) [- uA, a [1 + fc, (1 - 2A, f A, A,)a( l a) (2a -1) .F> |.

In (28) fehlen die Glieder von N und Der Felller der neuen
Näherungsformel entspricht also im allgemeinen der dritten Ordnung
der Kleinheit, in speziellen Fällen sogar der vierten Ordnung der
Kleinheit, wie wir im folgenden sehen werden.

Das zweite Glied der Reihe (28), d. i.

R., Ml -2*i + A[fcg) a(l-«) (2a- 1).F', (24)

wird in folgenden Fällen gleich Null:



1. Wenn /vj A\> 1. Das kommt aber nur im Schlussalter (d. i.

im Alter, mit welchem die Sterbetafel abgeschlossen ist) vor, weil alle
/.:„(<«,•£) — 1. In diesem Falle ist ("2d) exakt, nämlich a « « ,(•*)

— r(l — Im vorletzten Alter j: « - 1 gibt die lineare Inter-
1 1

polation der reziproken Kentenbanverte — und — exakte Resultate.
<Y« Vt

l
2. Wenn fc» 2 Das kann aber nur bei höheren Zinsfüssen

/<!

i > 5% und bei niederen Altern :r< 20 vorkommen. In solchen Fällen
ist a nicht exakt, weil nur fig 0, nicht aber die folgenden Glieder.
Der Interpolationsfehler entspricht dann nicht mehr der dritten, son-
dem nur noch der vierten Ordnung der Kleinheit.

3. Wenn a 0, d. i. wenn i ig. In diesem Falle ist « exakt, nam-
lieh gleich "n, weil die Interpolationskurve durch den Punkt (ig,"«) geht.

4. Wenn a 1, d. i. wenn I In diesem Falle ist a exakt,
nämlich gleich Vi, weil die Interpolationskurve durch den Punkt
(Ii, Vf) geht.

5. Wenn 2a - 1, d. i. wenn i 0.5 (ig |- /,). In diesem Falle wird
« nicht exakt, weil nur Eg 0, nicht aber die folgenden Glieder. Der

Interpolationsfehler entspricht dann nicht mehr der dritten, sondern

nur noch der vierten Ordnung der Kleinheit. Die Präzision der Formel

(23) ist also besonders gross, wenn der Zinsfuss i in der Mitte zwischen
i'o und ij liegt, was in der Praxis sehr oft vorkommt. Eben darin steckt
tier besondere Vorzug der neuen Interpolationsformel (23), wie wir es

nun zeigen werden.

Das Produkt

(' 'n) Oi" " 0 (2i ig <i)
a(l — a) (2a — 1) • — — (2o)

Oi— <<>)•'

ist im Intervalle (— -x>, positiv, im Intervalle [ig, 0.5(i, + >\)| negativ,
im Intervalle [0.5 (ig + i,), i,[ positiv und im Intervalle (ij, + «=) negativ.
Unter der Voraussetzung, dass (1 —2fcj -f />;._>) > 0, ist der Näherungs-
wert aim Intervalle (—°o,i„) zu gross, im Intervalle [ig, 0.5 (ig -[- i-,)]

zu klein, im Intervalle [0.5 (ig -(- v). 'h[ zu gross und im Intervalle
(»i, +•.>.) zu klein. Die Interpolationskurve ist also innerhalb des
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Intervalls (7„,7j) wenigstens einmal exakt, und zwar in der nächsten
Umgebung von 0.5(7,, |- /,). Siehe das folgende Graphikon der Funk-
Hon a — « /(7)

XI-a

Fs kann aber auch vorkommen, dass der Trinom (1—2/c, | - /, „)
im Intervalle (7„,7,) das Vorzeichen ändert, wenn die unter Punkt '2

erwähnte Bedingung erfüllt ist. In diesem Falle gibt es noch einen
weiteren Punkt zwischen 7„ und 7,, in welchem « exakt wird.

Aus der Tatsache, dass die Kurve («---«) im Intervalle (7„,7,) die
Abszisse ; wenigstens einmal, eventuell auch zweimal schneidet, folgt,
dass der Fehler von a bei der Interpolation nicht gross sein kann.
Bei der Extrapolation ist die Präzision von n allerdings geringer, aber
Jedenfalls bedeutend grösser als die Präzision von «. und «.

Bei obigen Reihenentwicklungen haben wir die Glieder nur bis
zur dritten Potenz von /I angegeben, weil die weiteren Glieder zuviel
Platz in Anspruch nehmen. Im folgenden geben wir das dritte Glied
der Reihe (23), d. i. das Glied der vierten Potenz von /!,

V-[a(l a)(1-11/c, + 4Af j 3A7/,:.]//.,) l+3V/,'f-2/,f
•/>',a( I — a) .T'. (20)

Wenn 2a 1, d. i. wenn 7 0.5(7,, | 7,), dann ist R., i) und

«4 J' (1—2A,A\, + /v,AoA'3) .1'
K)

(27)

; [g- -W+mkvIi»
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Meistens ist feg > fcj und deshalb R,, > 0. Im Falle i 0.5(1,, -f i,) ist
der Interpolationsfehler der vierten Ordnung der Kleinheit meistens

positiv, der Näherungswert von g also etwas zu gross. Bei höheren
Zinsfüssen und niederen Altern ist frg< fr,. In solchen Fällen kann der

Interpolationsfehler der vierten Ordnung der Kleinheit negativ und der

Näherungswert a etwas zu klein ausfallen.

ü in folgenden Fällen: wenn fr, fr^ fr., 1, wenn a 0,

wenn a 1 usw.

Die Formel (4) bzw. (23) lautet ausgeschrieben

(1-fci) +*«('-<o)| fri»a%(ix-»o)
« H • (23)

h- "»(i- 'o) + M'r~ 0

Diese Schreibart der neuen Nälierungsformel eignet sich für die Inver-
sion des Zinsfussproblemes, d. i. für die Berechnung des Zinsfusses,
welcher einem gegebenen Rentenbarwerte a entspricht. Um den Nähe-

rungswert von I zu finden, setzt man in (28) : « anstatt «, ig, I,, °«, fr,.
Nach einigen Umformungen geht (28) in eine quadratische Gleichung

G F •»»» « (29)

über, aus welcher i leicht und mit grosser Präzision berechnet werden
kann. Man bekommt zwei Wurzeln, von welchen die richtige nicht
schwer zu wählen ist. Auch bei der Umkehrung des Zinsfussproblemes
sind also weder Logarithmentafeln noch höhere Summen der diskon-
Herten Zahlen notwendig.

Nachdem alle Versicherungswerte Funktionen von «„ sind, ist es

leicht, die neue Interpolationsformel mit Vorteil auch an Prämien,
Reserven usw. anzuwenden.

Schliesslich bemerken wir noch, dass man aus drei Rentenbar-
werten "o, a, Lg welche den Zinsfüssen £„, I, I, entsprechen, mittels (28)
den Wert der Poukkaschen Funktion fc,(.i; -f l,i) näherungsweise be-

stimmen kann. Der Näherungswert von fr,(a;-[-lyi) wird besonders

gut, wenn I 0.5 (Ig + ù) • I» diesem Falle haben wir folgende ein-
fache Formel

(°a — « + '(()"' — <r
fr,(:r+ 1,0 ~ — - (80)

("a — *«)•*



Wenn wir 7„ 7 — 7t

7 ~|~ 7t
(31)

setzen, dann können wir die Taylorsclien Reihen der ßentenbarwerto
und ht aucli folgendermassen schreiben

t? a 7t^ cZ^a
°a « - 7t — + - - —

(77 2 .7 7-

(7 a 7t" d® a
ht : (6 "f 7t k —

(Z / 2 (Z i"

(32)

Nach Einsetzung der Reihen (32) in (30) findet man

('« — tt + Vi) 2

("et

27t^a
tZt^

Bs ist aber

ht)« '2/t
(7 a W

(77/

tZtt S«+t 'y

iZ7
>

tZ" a 2S<V
c772

Also
a —• a + a) — a

limes — -- — - --W U± /g. _|_ j ;).
io=i=ii ("Vi —V»)® ^
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Anhang

Die Tafel der Poukkaschen Zahlen

berechnet auf Grund der slowenischen Volkssterbetafel, männliches

Geschlecht, Beobachtungsperiode 1981-1983, für die Alter .r 1, 6,

11, 16, 21, 91, 96, 100 und für die Zinsfüsse 1 0%, 1 %, 2 %.
» %, 4 %, 5 %, 6 %.

\i*\ 0% I % 2 % :s % 4 % ^ % ') % </

t 0.71 0.75 0.80 0.84 0.87 0.90 0.93 i

6 0.71 0.75 0.79 0.83 0.811 0.89 0.92 6
11 0.71 0.75 0.79 0.83 0.86 0.81) 0.91 11

Iii 0.72 0.75 0.79 0.82 0.85 0.88 O.Di) 16

'21 0.72 0.75 0.78 0.82 0.84 0.87 0.89 21

26 0.72 0.75 0.78 0.81 0.84 0.86 0.88 26
!U 0.711 0.75 0.78 0.81 0.83 0.85 0.87 31

36 0.71! 0.76 0.78 0.80 0.83 0.85 0.87 36
41 0.7 1 0.76 0.78 0.80 0.82 0.84 0.86 41

46 0.75 0.77 0.78 0.80 0.82 0.84 0.85 46

51 0.76 0.77 0.79 0.81 0.82 0.83 0.85 51

56 0.77 0.78 0.80 0.81 0.82 0.84 0.85 56
61 0.71) 0.80 0.81 0.82 0.83 0.84 0.85 61

66 0.81 0.82 0.83 0.83 0.84 0.85 0.86 66
71 0.83 0.84 0.85 0.85 0.86 0.87 0.87 71

76 0.86 0.87 0.87 0.88 0.89 0.8!) 0.89 76
Hl 0.8!) 0.90 0.90 0.91 0.91 0.91 0.92 81

H6 0.92 0.92 0.92 0.92 0.93 0.93 0.93 86
01 0.93 0.93 0.93 0.93 0.94 0.94 0.94 91

1)6 0.93 0.94 0.94 0.94 0.94 0.94 0.94 96

100 1.00 1 .1)0 1.00 1.00 1.00 1.00 1.00 100
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