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Eine praktische Interpolationsformel

des Zinsﬁlsspr(_)blemes von hoher Prizision

Von Ive Lah, Ljubljana

Das Zimstussproblem ist mit der verallgemeinerten Poukkaschen
Formel ‘
SUrt1) g1y

= fo () e 0 T oas 50 (1
(St)2 :

\

eng verbunden i dem Sinne, dass sich die meisten und darunter die
besten Nitherungsformeln des Zinsfussproblemes aus (1) herleiten las-
sen 1), Bei der praktischen Anwendung dieser Néherungsformeln, spe-
ziell wenn grogsere Priizision verlangt wird, sind in der Regel entweder
die Logarithmentafeln (so z. B. bei den Formeln von Christen, Fvans,
Franckx, Frucht, Guttinger, Hantsch, Meidell, Palmqvist usw.) oder
aber die zweiten oder sogar die héheren Summen der diskontierten
Zahlen, welche meistens in den Sterbetafeln nicht enthalten sind, not-
wendig (so z. B. bei den Formeln von Berger, Béhmer, van Dorsten,
Poukka usw.). Wenn wir von der Inversion des Zinsfussproblemes, d. 1.
von der Berechnung des Zinsfusses eines gegebenen Versicherungswertes,
absehen, dann miissen wir den praktischen Wert solcher, theoretisch
ohne Zweifel schr interessanten Niherungsformeln ziemlich reduzieren,
denn mit den heutigen Rechenmaschinen kann der Barwert einer Rente
oder irgendein anderer Versicherungswert mittels Kommutationszahlen
oder Rekursionsformeln in kurzer Zeit exakt berechnet werden. In-
folgedessen sind praktischere, schneller und leichter zum Ziele fithrende

1) Siehe Autors Abhandlung «Das Zinsfussproblemy, Mitteilungen der Ver-
“Inigung  schweizerischer Versicherungsmathematiker, 47. Band, Heft 1, 1947,
S, 167-247,
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Niherungstormeln des Zinstussproblemes erwiinscht. Im folgenden ge-
ben wir eine solche Interpolationsformel von hoher Priizision, bei welcher
die Logarithmentafeln sowie die hoheren Summen der diskontierten
Zahlen tiberfliissig sind, ungeachtet, ob man den Versicherungswert zu
einem gegebenen Zinsfusse oder umgekehrt den Zinsfuss zu einem ge-
gebenen Versicherungswerte zu berechnen hat. Wir bemerken vorweg,
dass die neue Interpolationsformel ebenfalls mit der Poukkaschen
Funktion (1) eng verkniipft ist.

(regeben sind zwei Barwerte der konstanten nachschiissigen lebens-
linglichen Leibrente zu Zinsfiissen

Yo Lty dele @ (8)=% tnd @) =1a.
(resucht wird der Barwert dieser Rente, welcher dem Zinsfusse ¢ ent-
spricht, d. 1. a,(?) = «.
Die lineare Interpolation der Rentenbarwerte % und 'a, d. i.
iy 1) -+ (i — o
o == S S i (2)
(1 —19)

aibt bekanntlich zu grossen Niherungswert . Die lineare Interpolation

_ 1 1 .
der reziproken Rentenbarwerte — und -, d. 1.
{t )
Ot gy (1, -— 1)
B e e e
= Oafi —1g) + ta(i,—1)

: (3)

gibt dagegen zu kleinen Naherungswert . Wir wollen nun zeigen, dass
die Summe der Produlkte

a(l—k) +ak, —=a, (4)

wo k, die Poukkasche Funktion
12)  NT
'S.t‘-?'-l*\.l.' |

(S:v + l)g

bedeutet, einen vorziiglichen Niherungswert von a darstellt. Der

ki = ke +1;7) =

Rechnungsvorgang zur Frmittlung des Niherungswertes a ist also tat-
siichlich dusserst leicht und einfach, setzt aber die Kenntnis der Werte
der Poukkaschen [Punktion (5) voraus, welehe wir in der Tafel i
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Anhange geben. Dieselben sind auf Grund der slowenischen Volks-
sterbetafel, miinnliches Geschlecht, Beobachtungsperiode 1931-1933
berechnet und kénnen auch an anderen Sterbetafeln ohne weiteres
angewendet werden, nachdem die Poukkasche Funktion von Tafel zu
Tafel nur wenig indert !).

Die Werte von k, fiir die in der Tafel fehlenden Alter und Zinstiisse
konnen mittels Interpolation leicht berechnet werden.

Zuniichst wollen wir (2) und (3) vereinfachen. Zu diesem Zwecke
schreiben wir

i, —1y = /I ]
i — 1y = Ao : (6)
h—1 =401 —a). ]

Nach Kinsetzung von (6) in (2) und (3) bekommen wir

¢ = %a(l —a) + laa, (7)
4= ()

Nach dieser Vereinfachung der Schreibweise greifen wir zur Taylor-
schen Reihenentwicklung des Rentenbarwertes a, welche bekanntlich
lautet

a = “[E_ [ON, = vp(i—19) 05, | + v3(i—1)2OSE) | — vi(i—ig)2 S . . .].

| ()
Die Reihe ist konvergent fivr alle zwischen 09/ und 100 %, liegenden
Zingtiisse. Wenn 1 > 1, 1st die Reihe alternierend und so a fortiori
konvergent. In (9) vertauschen wir nun 4 mit 7y, d. h. wir wollen den
Wert von % in bezug auf a mittels der Taylorschen Reihe darstellen

S S’, i 8
Yo = a |1 —o@;—1)— S + v¥(1g—1)2 LI v3(ig —1)3 o N

R | o

1) Siehe diesbeziiglich auch «Die Tafel der verallgemeinerten Poukkaschen
Zahleny k W2, t) firn=0,1,2,8,4,5, firz = -1, 6, 11, 21, 31, 41, 51, 61, 71, 81,
9, fir 1 =09, 1 %, 2%, 8%, 4%, 6 ‘}(,, 6 %., \{1ttmlun|rm der eremlglmg
“Jt‘h\wl/,mlnchm Versicherungsmathematiker, 47. Band, Heft 1, 1947, S. 244-246,
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‘VJE'FI ! N N.’E-Fl
S(‘?‘ = k? ]ﬂg(’,f_gi;_‘ )i (11)
Nt N
S(ﬁ‘ ,,,,, 132 L (Si’;’ )
N 1 g g N

Wenn wir (11) in (10) emsetzen und der Kiirze halber
v (% — %) S,y

A =5 4 12)
N, (

schretben, dann geht (10) in
%0 = a|l +ad + kjo*A? + kikyoa A3 .| (13)
ither. Auf dieselbe Art und Weise bekommen wir

@ o=t (l—o) A 4 Jy(1 —a)2 A2 I3 hy (1 — )3 49 .|, (14)

I

(13) und (14) mn (7) eingesetzt, gibt
a = a|l +ko(l—o) 4>+ kikyoa(l— o) (20-~1) A% .. .].  (15)

In (15) fehlt das Glied mit der ersten Potenz von 4. Der Fehler
der linearen Interpolation der Rentenbarwerte % und 'e entspricht also
der zweiten Ordnung der Kleinheit. Im Intervalle (14,%,) sind « und
(1 — &) positiv. sonst ist aber das Produkt « (1 — o) negativ. Die lineare
Interpolation der Rentenbarwerte % und 'a gibt also zu grosse, die
lineare lixtrapolation dagegen zu kleine Niherungswerte «.

Um die Reihe von @ zu finden, schreihon wir (8) wie folgt

1 1l —a o
' (16)

« Oy Ly

Aus (18) und (14) finden wir

1
o= [lmad (L= k)e? A2 = (1= 20+ RRg)ad 43 ], (17)
¢ a

L1
o= [ () A (k) (1= 2) A2+ (12 4 K k) (L =P 48]
(l i

(18)
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(17) und (18) in (16) eingesetzt, gibt

1

a

Daraus folgt
@ = a |l (1=kp)a(l —a) 42 + (L= 2k, + k2kga(l —a) (20— 1) A3, .||

In (20) fehlt das Glied mit der ersten Potenz von 4. Der [Fehler

: 1

der linearen Interpolation der reziproken Rentenbarwerte - und
14y
2 (2

entspricht also der zweiten Ordnung der Kleinheit. [m Intervalle
(19,7,) 1st das zweite Glied in (20) negativ, sonst ist es aber positiv.
1 1

Die lineare Interpolation der reziproken Rentenbarwerte — und
0 1
a u

gibt also — im Gegensatz zu « — zu kleine, die lineare Kxtrapolation
dagegen zu grosse Nitherungswerte a . Bei der [nterpolation, d. h. wenn
ty << 1 << 2,, haben wir die Ungleichung

a4 >a>a. (21)
Bei der Extrapolation, d. h. wenn © <4, oder wenn ¢ > 1,, haben wir
dagegen o 2l
a<<a<<a. (22)

Wenn wir (15) mit (1 - £)) und (20) mit £, multiplizieren und beide
1 L
Produkte addieren, haben wir die Taylorsche Reihenentwicklung
unserer neuen Interpolationsformel

@ = a(l k) +aky = a[l +k (1 -2k + kk)a(l—a)(2e—1)4%...].

In (23) fehlen die Glieder von 4 und A2 Der Fehler der neuen
Niherungstormel entspricht also im allgemeinen der dritten Ordnung
der Kleinheit, in speziellen Fillen sogar der vierten Ordnung der
Kleinheit, wie wir im folgenden sehen werden.

Das zwette Glied der Rethe (23), d. 1.
Ry = k(1 -2k + ki ky) a(1—ct) (200 —1) .43, (24)

wird in folgenden Fillen gleich Null:

1
= - |14+ (1-k)a(l-o)d%+ (1 -2k + kikg)a(l ) (1 -2c) 43 .. (1
(1]

)

(20)

—
[

.
——



1. Wenn k; = ky, = 1. Das kommt aber nur im Schlussalter (d. 1
im Alter, mit welchem die Sterbetafel abgeschlossen ist) vor, weil alle
k,(w,1) = 1. In diesem Falle ist (23) exakt, nimlich ¢ = ¢ = a, (7)

(1 —ay, ). Im vorletaten Alter 2 = w — 1 gibt die lincare Inter-
. . 1 |
polation der reziproken Rentenbarwerte — und — exakte Resultate.
O L
2. Wenn k, = 2 — ——. Das kann aber nur bei hoheren Zinsfiissen
ke
1

1 > 5 9%, und bei niederen Altern z << 20 vorkommen. In solchen Fillen
ist @ nicht exakt, weil nur B3 = 0, nicht aber die folgenden Glieder.
Der Interpolationstehler entspricht dann nicht mehr der dritten, son-
dern nur noch der vierten Ordnung der Kleinheit.

3. Wenn o = 0, d. 1. wenn 1 = 1,. In diesem alle 1st @ exakt, nim-
0 g
lich gleich %, weil die Interpolat,lonskurve dureh den Punkt (7,, %) geht.

4, Wenn « =1, d.1. wenn 1 = 1¢,. In diesem Falle ist a exalkt,
nivmlich gleich 'a, weil die Interpolationskurve durch den Punkt
(1, a) geht.

5. Wenn 2« = 1, d. i. wenn 7 = 0.5(25 4 2,). In diesem Falle wird
o mcht exalt, weil nur Ry = 0, nicht aber die folgenden Glieder. Der
Interpolationsfehler entspricht dann nicht mehr der dritten, sondern
nur noch der vierten Ordnung der Kleinheit. Die Prizision der Formel
(23) ist also besonders gross, wenn der Zinsfuss 4 in der Mitte zwischen
ip und 7, liegt, was in der Praxis sehr oft vorkommt. Eben darin steclt
der besondere Vorzug der neuen Interpolationsformel (23), wie wir es
nun zeigen werden.

Das Produkt

ol — o) Qe 1) = (’“'_)_?.'_a:__,i__"?_(ij__’_9j_f1> 25)
(1 —19)°

st im Intervalle (— >, 4y) positiv, im Intervalle |4, 0.5 (¢ +- i,)| negativ,
im Intervalle [0.5 (4, + 1), 1,| positiv und im Intervalle (3;, + ) negativ.
Unter der Voraussetzung, dass (1 —2k, + £ k,) > 0, ist der Nidherungs-
wert @ im Intervalle (— =o,7y) zu gross, im Intervalle [z, 0.5 (1, -+ 7,)]
su klein, im Intervalle [0.5 (i +2)), 7, zu gross und im Intervalle
(1;, f o) zu klein. Die Interpolationskurve ist also innerhalb des
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Intervalls (iy,7,) wenigstens einmal exakt, und zwar in der nichsten
Umgebung von 0.5(1, +i,). Siehe das folgende Graphikon der Funk-
tion ¢ — a4 — f(2)

a-a
iR

lis kann aber auch vorkommen, dass der Trinom (1— 2k, -k, ky)
i Intervalle (i, 7)) das Vorzeichen iindert, wenn die unter Punkt 2
erwihnte Bedingung erfillt ist. In diesem Falle gibt es noch einen
weiteren Punkt zwischen 4, und 1,, In welchem “ exakt wird.

Aus der Tatsache, dass die Kurve (@ a) im Intervalle (45,4,) die
Abszisse ¢ wenigstens einmal, eventuell auch zweimal schneidet, folgt,
dass der I%ehler von a bei der Interpolation nicht gross sein kann,
Bei der Extrapolation ist die Priizision von a allerdings geringer, aber
Jedenfalls bedeutend grosser als die Pritzision von @ und “.

Bet obigen Rethenentwicklungen haben wir die Glieder nur bis
2ur dritten Potenz von A angegeben, weil die weiteren Glieder zuviel
Platz in Anspruch nehmen. Im folgenden geben wir das dritte Glied
der Reihe (23), d. 1. das Glied der vierten Potenz von A,
B - oo (1 - o) (4~ 11K, -+ 4% + 6k3 ke, BRYRG kg) ~ 1 + Bk, ~ k3 - 2k2k, K3 k3 k|

“hyoe(l o) A%, (206)

Wenn 2 1, . i. wenn ¢ — 0.5ty +1;), dann ist By = 0 und

Ry = ' (1 — 2k, ky + Ky h2ky) A1 l

(1 — Ky hig)? + by k2 (g — k)| A2,
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Meistens 1st ky = k, und deshalb E; > 0. Im Falle + = 0.5(3, + 1,) 15t
der Interpolationsfehler der vierten Ordnung der Kleinheit meistens
positiv, der Niherungswert von @ also etwas zu gross. Bei hoheren
Zinsfitssen und niederen Altern ist ks << k,. In solchen Fillen kann der
[nterpolationstehler der vierten Ordnung der Kleinheit negativ und der

Niherungswert ¢ etwas zu klein ausfallen.

wenn o« = 1 usw.

Die Formel (4) bzw. (23) lautet ausgeschrieben

(1= k) [Paiy—i) + a(i—ig)| e O ta (i, — i)

@ TN TNV T T o)
" L1 O (i—1g) + (i —1)

Diese Schreibart der neuen Niaherungsformel eignet sich fiwr die Inver-
sion des Zinsfussproblemes, d.1. fiwr die Berechnung des Zinsfusses,
welcher einem gegebenen Rentenbarwerte o entspricht. Um den Nihe-
rungswert von ¢ zu finden, setzt man in (28): @ anstatt o, i), 1,, %, ‘o, k, .
Nach einigen Umformungen geht (28) in eine quadratische (tleichung

124+mi=mn (29)

itber, aus welcher 4 leicht und mit grosser Prizision berechnet werden
kann. Man bekommt zwei Wurzeln, von welchen die richtige nicht
schwer zu withlen ist. Auch bei der Umkehrung des Zinstussproblemes
sind also weder Logarithmentafeln noch hohere Summen der digkon-
tierten Zahlen notwendig.

Nachdem alle Versicherungswerte Funktionen von a, sind, st es
leicht, die neue Interpolationstormel mit Vorteil auch an Primien,
Reserven usw. anzuwenden.

Schliesslich bemerken wir noch, dass man aus drei Rentenbar-
werten %, o, ta, welche den Zinstiissen 1y, 1, v, entsprechen, mittels (28)
den Wert der Poukkaschen Funlktion k,(z -+ 1,7) niherungsweise be-
stimmen kann. Der Niherungswert von k,(x - 1,7) wird besonders
gut, wenn % = 0.5(3, +4,). In diesem Falle haben wir folgende ein-
fache Formel

¢ — a + Ya)? — a®
~ —

("a — 1a)®

k(x4 1,1) (30)
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Wenn wir iy =1—h l
S (31)
9w=1%+h [

setzen, dann kénnen wir die Taylorschen Reihen der Rentenbarwerte

% und % auch folgendermassen schreiben

d 2 da?

(32)
1 da h? d?a
=+ h ;}7 -+ E T

Nach Einsetzung der Rethen (32) in (30) findet man

2
Oy o 1)2 . 2 2 __‘z___“__
(% — a + ta) a 2h2q —— + ...
1A
C dane '
(%0 — 1a)* (Qh m;—_—) + ...
du
Fs ist aber v
da Sepq?
di D,
d?a 282 v
diz D,
Also 1,)2 (2
% — a + ta)? — a? SN,
limes ( - ) R - ak . ky(z +1,7).

tg=1=1y (% — ta)? (S:u—i-l)z



Die Tafel der Poukkaschen Zahlen

i, ®, %) =

100

Anhang

S N
z X

2]

berechnet auf Grund der slowenischen Volkssterbetafel, minnliches
(zeschlecht, Beobachtungsperiode 1931-1933, fie die Alter x — 1, 6,

11, 16, 21,

o2 91, 96, 100 und fiir die Zinsfiisse @ — 09, 19, 2%,

89 &% 6% 6%
N “ i 0/ 0/ 9 0/ o 0 0/ £ 0/ 1) i /
‘JI\ 07 15 250 3% 19 v /o 6 % /:L
L 0.71 0.75 0.80 0.8k 0,87 0.90 0.93 [
G 0.71 0.75 0.79 (.83 0.86 0.89 0.92 6
11 0.71 0.75 0.79 0.83 0.86 0.89 0.91 L1
16 0.72 0.75 0.79 0.82 0.85 0.88 0.90 16
21 0.72 0.75 0.78 0.52 0.84 0.87 0.89 21
26 0,72 0.75 0.78 0.81 0.84 0.86 0.88 20
31 0.73 0.75 0.78 0.81 (.83 0.85 0.87 31
36 0.73 0.76 0.78 .80 0.83 0.85 0.87 36
41 0.74 0.76 0.78 0.80 0.82 0.84 0.86 41
46 0.75 0.77 0.78 0.80 0.82 0. 84 0.85 | 46
ol 0.76 0.77 0.79 0.81 0.82 0.83 0.85 51
Ht 0.77 0.78 0.80 0.81 0.82 0.84 0.85 56
61 0.79 0.80 0.81 0.82 0.83 0.84 0.85 61
66 0.81 0.82 0.83 0.83 0. 84 0.85 0.86 66
Tl 0.83 0.81 0.85 0.85 0.86 0.87 0.87 71
76 0.86 0.87 0.87 0.88 0.89 0.89 0.89 76
81 0.89 0.90 0.90 0.91 0.91 0.91 0.92 Sl
856 0.92 0.492 0.92 0.92 0.93 0.93 0.93 86
91 0.93 0.93 0.93 0.93 0.91 0.94 0.94 91
06 0.93 0.94 0.94 0.94 0.94 0.94 0.9 96
100 1.00 .00 1.00 .00 .00 1.00 1.00 | 100
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