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Ftude statistique du risque nmth(:nmti([uc
dans 'assurance collective sur la vie

Par K.-G. Hagstroem, Stockholm

I. Introduction

Dans ce qui suit, nous présenterons une série de reésultats émanant
de recherches faites sur un portefeuille d’assurances de groupes en cas
de déees et d'imvalidite. Ces résultats sont destinés & illustrer les ques-
tions de risque qui sont caractéristiques pour de telles assurances. Les
données statistiques utilisées dans nos recherches nous ont ¢té fournies
Par la « Biloise» a laquelle nous tenons a exprimer ici notre gratitude
pour son obhgeance. Une communication préalable sur une statistique
analogue d’une compagnie américaine sera publice ailleurs.

Apres quelques préliminaires sur le mode de présenter une sta-
tistique de cette espoce — v qu'il 8'agit d’une question stochastique,
en empruntant le terme général de Jacques Bernoully —-, nous allons
donner la statistique dans un état assez rudimentairve, par des tables
et a aide de graphiques. Quant & P'ntilisation finale du matériel pour
la théorie abstraite du risque mathématique, nous la laisserons & des
recherches futures. Nous ajouterons quelques mots sur «l'agsurance
des grands écartsy, qui serait bien désirable, mais dont la eréation pré-
sente beaucoup d'obstacles, dignes d’étre profondément scrutés.

Lie probleme fondamental de la théorie du risque mathématique
Peut s’énoncer de la manicre suivante. Soit # la variation de la réserve
Mathématique calewléde pour une période d’observation quelconque
(dans le cas le plus simple: le nombre caleulé de déces) et soit & la
Valeur correspondante observéde. Fin supposant qu'on a passablement
réussi 3 prévoir en moyenne la quantité &, quelle sera la dustribution &
conjecturer pour la variable & autour de la valeur probable #, ou bien
quel est I"errewr probable du pronostic stochastique de la variation de la



réserve ? Il est ¢vident que la connaissance de la distribution rendrait
possible la formation de réserves appropriées & couvrir le risque mathé-
matique de U'industrie de Uassurance, sans que 'on ettt besoin de recourir
& des procédés mécaniques et grossiers pour la formation d'un fonds
de stireté sutfisant. Nous nous restreignons ict au risque mathématioque
proprement dit, causé par le hasard de la mortalité et de la morbidité,
en écartant la question de l'intérét. Or les considérations de cette es-
pece donnant lien a des réserves de risque assez modiques, si l'onapplique
les théorémes de la théorie classique des probabilités, on se demande
st cette théorie est suffisante ou s’il faut la compliquer en acceptant
par exemple d’autres lois combinatoires que celles adoptées dang la
théorie classique. Le seul moyen d’étudier & fond ces questions, ¢’est
dle multiplier les expériences et de faire des statistiques étendues. I.'as-
surance collective présente 'avantage de fournir des séries de groupes
naturelles ot U'on peut étudier simultanément la correspondance des
résultats réels avee les pronostics. Il y aura done un intérét général
& amasser beaucoup de statistiques de cette branche et de les présenter
(’'une maniere accessible. Cest ce que nous avons cherché & faire dans
ce travail.

II. La fonction statistique a étudier

Iin observant deux ¢variables statistiquesy, disons & et  (dans ce
qui suit elles seront: le nombre réel de déces et le nombre caleulé
correspondant), on étudie I'une en «fonction statistique»r de lautre,
en donnant la fonction de corrélation I'(x, y), telle que la ditférentielle

(@, y) da dy

exprime la probabilité pour que, simultanément, & et » se trouvent
dans les intervalles § =z ... 2 +de, n = y...y |-dy. La géné-
ralisation aux cag discontinus, partiellement ou totalement, an moyen
d'intégrales de Stieltjes, n’offre aucune difficulté sérieuse. D'une fagon
oénérale on peut, de denx manieres différentes, séparver la ditférentielle
en deux facteurs, a savoir

[z, y)dedy = p(x)yde  alz,y) dy,
ou bien, selon 'autre des axes de coordonnées,

Fla,y)dedy = qy)dy By, z) dx,
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oWt ac(, ) et B(y, x) sont des fonctions «génératrices» de 5 par rapport
& & ou de & par rapport & %, ou bien, les «probabilités conditionnelles»
respectives. L fonction «(z, 1) est la distribution de % sous la condition
que & ait pris la valewr x ow une valewr dans Uintervalle z ... x | dux.

Dans les recherches théoriques, on peut souvent construire une
fonction schématique ou & espérer, en ayant recours i ¢(y) et LA, )
par exeraple. Ayant calculé ainsi la fonction £'(x, ), on peut désormais
caleuler p(z) ot a(x,y). On a par exemple

SN
p() = [F(zy)dy,

Pintégrale étant, comme toujours lorsque les bornes ne sont pas an-

notéey, étendue & l'espace entier des variables d’intégration, ol les

fonctions & intégrer resteront définies. D’'une manicre générale on a

Supposé que -
] j oy dedy = 1;

et Pon aura aussi [ p(«)da = 1. Une relation correspondante aura
liew pour ¢ (y).

La fonction bien connue de Bravais
[/ d

7T

F(w,y) = - oxp — (@2 —2fay | yy?)

avec § == ay — f2 >0 représente une approximation premicre de la
corrélation observée dans la nature, de la méme maniére que la cloche
gaussienne, ou disons plus simplement la gaussienne, représente Uap-
proximation quasi-universelle de la distribution des obgervations d’une
constante naturelle. Fin posant

on exprime la propriété fondamentale de la forme quadratique d’étre
définie et positive en disant que — 1 << r < -1, r étant le fameux
¢coefticient de corrélationy et I'on obtient

1—92 1(/2\? T e
I'(z,y) = V)~ exp — - — 3 — ) —2r — i3 -+ A ,

: p
2mo 0, 2 (\o,. oy Oy gy

)



. 66 —

ce qui exprime que 'on ne restreint pas la généralité d’une maniére
essentielle en prenant o, = o, = 0, ¢’est-a-dire en étudiant le cas sy-
métrique. Cela équivaut & des transformations homothétiques. I'im posant

7,0y ( x oy ) 0,0y ( gy ) d(@,y) | o+
N = —————| — ‘-}* — g W =B | e e )y, e | R
Vol +o \ou o Voi+o; \ou o

d(u,v) 20,0 ’
on trouve cependant que deux variables statistiques, corrélées par la
fonction de Bravats, peuvent toujours étre exprimées comme des com-
binaisons linéaires de deux variables indépendantes, le coefficient de
wv ¢'annulant dans la nouvelle forme qui, par conséquent, se décom-
pose en deux carrés. On voit immédiatement que dansg le cas de la
fonction de Bravais les «distributions marginales» p(z) et ¢(y) ainsi
que les fonctions génératrices o (x,y) et f(y, x), seront des gaussiennes
trés simples, p. ex.

Lo1/6 -2 V]_h:ﬁ 1— 2
p(e) = — |/ —e " == “= OX] 22,
V?I Y - 0y V2T£ 20’1

ce que nous pouvons exprimer de fagon agsez commode par

£=0 (d' L )
= 18p. e B
l/ .

et en outre

a(z,y) = ——e == e @XP — —— (Y — — 12,

V = o, |[2n 208 0|

Vv g (o %)

ce que nous désignons par la notation

Ces généralités, qui montrent que les génératrices dans notre cas sont
des gaussiennes avec une dispersion constante, justifient notre jugement
que la fonction de Bravais est un instrument trop simple pour des
recherches un peu au-dessus des pures estimations. Dans le méme sens
ou I'on peut dire que la dispersion est une mesure assez grossiére d’une
distribution, ne donnant qu’une premiére estimation de la condensation,
la corrélation de Bravars ne donne qu’une image assez vague de la
réalité. Ce qui ne nous empéchera pas d’ailleurs d’étudier avec un grand
intérét les indications que peuvent donner, d’un point de vue philo-
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sophique, les valeurs des constantes d'une fonction de Bravais, adoptée
comme premidre approximation des observations sur deux variables &
ot n 1).

III. La fonction de corrélation basée sur la distribution de Poisson

Lorsqu'il s’agit de comparer le nombre caleulé de sinistres, disons
7, et le nombre observé, & on sait que les recherches de Jacques Ber-
noully et d’autres ont justifié I'hypothese que la dispersion des valeurs
obgervées autour de la vraie valeur augmente dans la proportion de la
racine carrée de la valeur calculée. 1l ne peut done pas étre question de
représenter la fonetion de corrélation de & et de % par une fonetion de
Bravais ou, comme nous avons constaté, cette dispersion resterait
constante. Seulement dans un voisinage assez petit de 'origine, cette
approximation grossiére rendrait des services, et ¢’est précisément ce
qui n’est pas intéressant du point de vue de la théorie du risque mathé-
matique. Dans U'dtude de cette théorie il faut done abandonner la
fonction de Bravais.

Or s1 l'on étudie exclusivement le jeu instantané du hasard autour
du nombre caleulé do sinistres, le schome simple de Bernowlls ou bien,
81 le taux d’accident n’est pas grand, celui dit de Poisson, peut dtre
admis comme point de départ. La derniére distribution, facilement
Maniable, est exprimée par la fonetion

y*

P(x) = —
a!

¢, S P(a) = 1,
x=0

O  est le nombre de sinistres & craindre, z le nombre observé. Les pro-
briétés simples de cette fonction sont bien connues; on a par exemple

‘\TJ‘O.L(L —1) ... (@—n-+1)P(z) = y",
ot en posant M, = S\ a" P(x),

=0

M, =y, My=y*+y, My=y"+34*+y, ...,

2 (@ —y)" P(a@) = .
=0

( ') Voir Der Begriff der statistischen Funktion, Svenska Akbuarief. Tidskr,
‘l-:)lf), L; Bemerkungen zur Theorie der statistischen IPunktion, Ibidem, 1919,
204; Connaissance et statistique, Dialectica, Neuchatel, 1949, 153.




On trouve donc spécialement pour la ("lis;persion quadratique

&£

S Y
} (x — y)? ;e” ]/J,
1--0
ce qui exprime la propriété citée plus haut.

Il est évident que la fonction P(x) doit jouer ict le rdle d’une fone-
tion génératrice B(y, ) et qu’il suffira de connaitre, en outre, la fone-
tion ¢(y), pour pouvoir construire la fonction de corrélation I'(z, y).
En premier lieu, admettons pour ¢(y) une simple exponentielle décrois-
sante, ce qui peut aussi inclure le cas d'une fréquence quasi-constante
selon l'axe des y. Posons donc

qiy) dy = ee¥dy = eV d(ey).

Lia constante est donnée par la condition j q(y)dy = 1. On peut
simplement garder le caracteére discontinu de P (x) si 'on pose
x y“:
By, ) de = d > —e
0 X
et si l'on convient par exemple de construire 'échelle en plagant les
sauts dans les demi-entiers ou bien dans les entiers ecux-mémes, en
admettant la continuité de 'un seul des deux cobés, p. ex. d’en haut.
Au moins préalablement, ce sera un procédé plus avantagoeux que l'inter-
polation analytique & l'aide de la formule, valable pour des @ positifs,

,Um'
By, x) de = —————e¥dz.
I'(z +1)
On a done, en écrivant de maniere simplifiée, mais facile & comprendre,
- o U
F(z,y)dedy = e d(ey) — e?,
2!

Pour obtenir p(z), il faut intégrer par rapport & y et on aura

p(x) = & : (14 &)
L’autre fonction génératrice w(x, y) s’obtient en divisant F'(x, y) par p(x),
ce qui donne une autre décomposition de la différentielle fondamentale
[(L+ &)y

&
F(z,y)dedy = S g (1 4 e) gy,
(z,y) dz dy (19" Tail) e d|(1 + &)y




On trouve pour les moments de cette distribution

o0

M = ] YVe(x,)dy = (x-+1)(@+2) ... (@-+n): 1+ "

0
La moyenne devient M, = (2 1) : (1 |- ) et lo carré de la dispersion
se calcule ainsi:

| = Myrage,g)dy — (@ +1) @ +2) : (1 + 2= M2 — (@ 1) : (L+ 84
0

d’ott I'on conclut que la courbe donnant les dispersions quadratiques
devient .
g +1+ a1
14 ¢

Y =

La courbe correspondante dans la direction des x est, d’autre part,

r=y+|y.

I's’agit de deux paraboles dont on trouve la construction dans la figure
L ot dont les équations sont

[y + &) — @+ DP—(@+1) =0, (@—y*—y 0.

Le résultat que nous avons trouvé nous semble assez remarquable: la
distribution e« (z, %) garde la qualité caractéristique que nous avons ad-
mise pour A(y, z), & savoir que la dispersion quadratique eroit comme la
racine carrée. Mais la «droite de régression», ¢’est-d-dire le lieu des M,
devient, tout comme dans le cas simpliste de la fonction de Bravars,
plus ou moins inclinde, suivant que varie le nombre ¢. Pour ¢ = 1, on
trouve la construction dans la figure.

Ajoutons quelques curiosités. Soit ¢(y) une fonction arbitraire, pour

oo

lacquelle g(y) = q(—y) et [ q(y) dy =1, doltils’ensuit que [ q(y) dy = }.
La dittérentielle de corrélation sera pour x>0, y > 0 ’

XL

1
FWWMWWZQWWU%W#
€.
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Iigure 1. Régressions et dispersions dans le cas d'une distribution de
Poisson et d'une fréquence exponentielle en y. (On a posé ¢ = 1)

Dans le troisitme quadrant du plan, << 0, y << 0, elle sera donnée par
réflexion linéaire & travers l'origine, tandis qu’elle sera nulle dans les
deuxiéme et quatriéme quadrants. Pour un 7 quelconque, on aura, en
sommant par rapport & x seulement de 0 a oo,

[F(2,9)dwdy = qly)dy, [y dedy = yaly)dy,

[y dedy = y2qn) dy, [l dudy = yqly)dy,
['fv”" dzdy = (y*+ y) q(y) dy, j'wyF drdy = y*q(y) dy.

o

On trouvera les moments en sommant ces différentielles par rapport &
y de — oo & + oo. Mais puisque 'on a pris [ yq(y)dy = 0, on aura
tout simplement

Myy =1, Myy = My = 0, My = My = My, = f’Uzq(U) dy .



—_— T

Par conséquent 12 = M2, : My, My, =1, et on voit que dans ce cas,
un peu singulier mais d'une certaine généralité, le coefficient de corréla-
tion est égal & 1 sans que Pimage de la fonction statistique se réduise
& une couche & une seule dimension (une droite pesante).

D’autre part, on peut se demander quelle valeur prendra le coeffi-
cient r dans le cas asymétrique que nous venons de traiter. Formons
donc ce coefficient dans deux cas particuliers: (1) ¢(y) étant = 1 dans
le cas des n entiers 1,2, . . .,n et nul ailleurs, (2) ¢(y) étant = ¢ exp — e y.
On trouve dans le premier cas 2 = (n—1):(n 4 5), dans le second cas
"™ =1: (14 &). Lo nombre r tendra vers 1 lorsque %-»co ou &- 0.

IV. La distribution de Pareto

Il est bien connu que la distribution des revenus s’exprime régu-
licrement par la loi de Pareto, la probabilité pour que le revenu z d’'un
citoyen soit au moins égal & z étant donnée par

( 2 )—k

b
“
ol 2, représente un revenu minimum (choisi presque arbitrairoment)
et & est U'indice d’égalité, variant normalement entre 1,3 et 2. Le nivelle-
ment des revenus causé par la derniére guerre mondiale a amené des
valeurs de k inconnues autrefois, croissant de la valeur quasi-normale
L5 jusqu’d 2,4 (pour la Sutcde en 1947) 1), Parmi les essais de donner
une interpretation adéquate de la loi en question citons la définition
suivante. En désignant par le degré dsmpossibilité d’'un événement le
nombre In "113" olt p signifie la probabilité, et par la valeur morale ou
subjective d’un revenu z le nombre In 2, introduit par Daniel Bernowll
en 1731 (1738), la loi de Pareto s’exprime en disant que le degré d’impos-
sibilité powr que la valewr morale du revenu dun citoyen atteigne ou
surpasse une certaine limate est proportionnel a cette limate. Lie facteur de

1 Voir p. ex. La loi de Pareto et la réassuwrance, Skand. Akt. Tidskr. 1925,
p. 65, Inkomstinflation och inkomstnivellering 1 Sverige, Skand. Bankens Kvartals-
skr, 1949, Avril, Den socialekonomiska generalplanen, Gjallarhornet 1945 (nr 19).
Je vais démontrer ailleurs que sous certaines hypothéses la somme d’un nombre
de variables statistiques aux distributions parétoénnes aura une distribution de
la. méme espdce, d'une maniére asymptotique.
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proportionnalité, ¢’est l'indice d’égalité k. Iividemment, si la distri-
bution des revenus privés d'un pays est représentée par une loi de
Pareto, on doib espérer la méme fonction de distribution pour les capi-
taux assurés, en négligeant en premieére approximation la possibilité
d'une sélection spéciale.

Tachons donc de choisir pour ¢(y) dy une fonction de Pareto, en

posant
\ —k-1

. =k ’ ‘
a(y) dy = d ][_ (;’1) } 2 (_?j/_) - _:_
. 0 0 Yo

Nous prenons y, << 1 (arbitrairement petit mais > 0) et k> 1, co qui
donne [q(y)dy = 1. On obtient

. kyt = I'(z—k)
W(x) = | Fe,y)dy = —— | y*ely*ldy = ko ———°
p(e) = [ F(wy)dy I’(sv~|—1)OJJ Ry =R
donc
a(z, ) dy = ——— gV
(=, ) di ran ! Y

Pour les moments de «(x,y) on obtient done

I'(x—1k 1 n)

M= falo)ydy = —p—pm

'Ml =z—k+1, J (y — M)?e(z,y) dy = My— M? = x — i .

Dans ce cas, la droite de régression correspondante devient
y=z—k+1,

et la courbe donnant les dispersions quadratiques devient la parabole
y=go—k+1+)o—k+1

L’inclinaison de la droite de régression reste constante, mais la position
de la parabole avance dans la direction des 2 positifs lorsque l'indice k
augmente. Dans ce cag aussi, on peut cependant constater que la dis-
persion garde son caractére général d’augmenter & la mesure de la
racine carrée.
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V. Les phases d’une assurance

On a étudié ') les phases successives qui peuvent étre discernées
dang une assurance sur la vie, embrassant un nombre de personnes. La
transition d’une phase & une autre est, en général, accompagnée d’une
augmentation ou d'une diminution brusque de la réserve mathéma-
tique de Passurance, et ¢’est surtout ce changement discontinu de la
réserve qui caractérise I'assurance. Il est la conséquence d’un change-
ment analogue dans le revenu de I'agsuré, qui justement doit étre com-
pensé par les stipulations de la police d’assurance.

Dans la maniére de traiter la statistique et la comptabilité en ma-
tiere d’assurance, on tient souvent séparées des phases des contrats:
P. ox. les rentes viageres différées avant et apres la date de pension, les
rentes de survie avant et aprés le déees du mari, ete. — phases qui
dans certains cas seulement correspondent avee les phases théoricues.
Dans la théorie du risque mathématique, il faut séparer en outre cor-
taines des phases en pt—'\riodeq différentes, caractérisées par le signe du
montant de risque, ¢’est-d-dire selon les cas ou le sinistre entraine une
augmentation ou une diminution de la régerve. On peut classifier les
contrats d’apres le signe du changement calculé de la réserve, et on
obtient de cette manicre deux différents domaines, dont chacun est
conforme au cas simple que nous venons d’étudier, en parlant seulement
des cas de déees, caleulés et observés. Dans ce cas plus général, le résul-
tat a un caractére continu. Nous avons va quo les deux cas, colul des
variables continues ¢t celui des variables discontinues, peuvent bien
Gtre agsimilés Pun & Pautre au moyen de Pintégrale de Stieltjes.

La pratique actuarielle introduit souvent une séparation plus dé-
taillée des parties de I'assurance, en considérant p. ex. une agsurance
de pension comme 'ensemble de trois contrats, & savoir: 10 la pension
de retraite, 20 la pension d’invalidité, 3¢ la protection de famille. Certes,
on peut trouver peu naturel que la méme personne assurée figure comme
membre de plusieurs collectives différentes. Mais I'existence de tels
cas ne doit pas en général fausser 'image de I'ensemblo des risques
courus. D’autre part, erreur, s'il y en a, doib exagérer le nombre de
déviations considérables. On peut remarquer que I'exagération a une
Signification objective, représentant les conditions d'une affaire ol

Y Voir The General l}),fe Assurance, Skand. Akt. Tidskr. 1941, p. 137, La
Yiserva, pr ospettiva dell’ assicurazione generale swlla wite e lo misura del contenuto
Ussicurativo del contratto, Giorn. dell’ Ist. Ital. degli Attuari, 1941, p. 103.



e T eea

toutes les parties discernées seraient réellement portées par ditférents
assureurs, ce qui peut bien s'établir.

VI. Résultats calculés et observés

La comparaison des résultats espérés et des observations suppose
que l'on a calculé ces premiers pour chaque cas observé, donc lorsqu’il
s’agit d'une assurance collective pour chaque groupe et pour chaque
exercice considéré. Quand D'agsurance est du type le plus simple, tel
qu'on la pratique souvent aux Etats-Unis, il faut seulement calculer
le nombre probable de déces, et on peut directement comparer ce
nombre au nombre enregistré. Si 'on veut que la somme des nombres
calculés soit égale & celle des déces observés, 1l suffit d’établir simple-
ment une proportion. Mais dans la plupart des contrats d’assurance
collective, 1l s’agit de formes mixtes plus compliquées. Remarquons
seulement que les limites des différentes phases qu'il faut séparer dé-
pendent du changement de la mortalité, effectué par la réduction ordi-
naire cdont nous venons de parler.

Envisageons le cas d’une assurance mixte, p. ex. une assurance de
pension compléte. D'une maniére générale, I'économie d'une assurance
mixte peut étre interprétée par un systéme de relations thieléennes,

disons pour une phase P, par la relation

Al v, - 1, 1,
lt = = (5 m(t) _}‘ p(t)'m’ (t) B OV g = Moy OV — ’
a
ol . . représentent les intensités de transition de la phase 2. aux phases
ll”lb }. ne
suivantes I’, qui sont possibles, dV, =V, —V, T'augmentation de la

réserve 1015 du changement de I, a I, Vm la réserve mathématique
dans la phase P, p(f) la prime par unité de temps, »(f) la rente &
payer par unité de temps — p(t) s’annulant en général dans ce cas —,
0 lintensité d’'intérét (que nous avons renoncé & considérer commne
fonction du temps). Pour intégrer définitivement un tel systeme il faut
introduire un ensemble de «discumulateurs», comprenant les intensités
d'intérét o et celles des trangitions u,,, . Mais on peut approximativement
intégrer la relation pour V (f) sur un petit intervalle, disons un an,
et I'on obtient alors

> Ofl e WVt = V(1) (1 +%)—V,,,(t + 1)(1 _-‘--3-) + p(t + 3);,(\3 v .9
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D v . .
Pour la phase initiale I, des actifs, on a r = 0 et il faut regarder les

transition
01 = larrivée de I'age de retraite,

02 = cessation des primes,
08 = invalidité,
04 — déees de Passurd actif.

\ [N . ye s A v . ’ .
Ecartant les doux premieres qui n’ont pas d'intérét iei, on peut éerive
AVEC pgq = poy,, b prog = v, , (@ représentant pour I'mmstant I'age)

1 1 / O\ \

v ! )
~1= v 4 e ¥ e - 1] —— —t=
6] My AV, dit (.)f v, AV, dl oD (1 | : ) Wt 1) (l 5 ) Fp.

/

[l est facile de caleuler, par un simple enregistrement,

L

0
Ol p est la prime, § la vente d’invalidité assurée, f(x + ) 2) la valour
de la rento viagere, payable en cas d’activité, de lage @ - § jusqu’a
l’fbgu z de retraite. Done, dans ce cas on obtient par une simple sous-
braction, en caleulant toujours an méme temps les deux réserves V (1)
8t V(£ - 1) (pour la méme date, bien entendu), 'expression importante

(

f Py AV dE

0
¢'est-d-dive la croissance caleulée de la réserve pour les déeds probables.
lei on peut done séparer les visques. Iin général c’est plus difficile,
Pour les questions de la théorie du risque mathématique, il n'est pas
Nécossaire de séparer les risques différents. Mais il faut le faire si Pon
veut approfondir la recherche.

Dans la pratique de la «Bailoise», on a introduit un caleul tres
détaillé des changements probables de véserves, séparé suivant les
Composantes. [l me semble que le systéme est d’'une perfection presque
Parfaite. Si I'on veut contrebalancer les résultats particuliers d’un
méme groupe pour une certaine année, il me semble qu'il faut toujours
tenir séparés les résultats des différents sexes et ceux qui se rapportent
a4ux pensionnaires retraités et aux membres de famille des décédés.
Bien que I'arrangement ne soit pas tout & fait rationnel, j’ai adopté la
division suivante:
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- Assurés du sexe masculin:

10 Assurances de pension de retraite (42), d’invalidité (50), de
veuvage (41), d’orpheling (60), assurances de capitaux et d’annuités
au déces (11, 04) et en cas de vie (20) ou d’invalidité (30), rentes d’in-
validité actuelles (80). ‘

20 Pensions de retraite actuelles (72).

Assurés du sexe femaman:

30 Agsurances de pension de retraite (47), d'invalidité (55), d’orphe-
ling (60), assurances de capitaux sur le déceés (16) et sur le cas de vie (25)
ou d'invalidité (35), rentes d’invalidité actuelles (85).

40 Pensions de retraite actuelles (77).

Vewves et orphelins:
50 Rentes de survie actuelles (71, 90).

Les numéros figurant dans ce tableau sont les chiffres de code
adoptés par la «Baloise» elle-méme. En soldant les résultats qui se
rapportent au méme groupe et au méme exercice, ce qui est fait dang
une des recherches suivantes, j’ai négligé le fait que les assurances
de protection familiale pour les retraités restent dans le méme détail
que celles qui se rapportent aux actifs. La petite erreur qui en résulte
n’a aucune importance. Sauf dans les cas particuliers 20, 40 et 5°, on
fera done 'addition algébrique de tous les résultats d’un méme groupe,
en séparant seulement les deux soxes.

VII. La théorie perfectionnée du risque mathématique

et la réassurance des grands écarts

En traitant le schéma théorique, nous nous sommes limités & une
étude du cas particulier représenté, en ce qui concerne le nombre pos-
sible de sinistres, par la distribution de Posson. Or il faut avouer que
¢’est 13 une spécialisation bien restreinte. Klle ne regarde que des
pertes d'une méme grandeur, tandis qu’il faudra toujours prendre égard
a la distribution réelle des capitaux assurés; elle néglige la possibilité
d’une autre fréquence des cas multiples que celle supposée par 'hypo-
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these d’indépendance de Bernoulli. Mais elle nous a semblé suffisante
lorsquil ne s'agit que d’esquisser le fond, sur lequel se dessinerait la
statistique & présenter. Pour le moment nous resterons dans ce
schématisme imparfait, sans aborder les questions plus profondes qui
ont été traitées avee tant de succes par MM. Filip Lamdberg, Harald
Cramér et d’autres.

Le probléme pratique qui nous semble particuliérement attrayant
est celui d'une construction satisfaisante de la «réassurance des grands
doartsy. Sans aucun doute, elle représenterait, st on pouvait la réaliser,
la forme la plus parfaite de réassurance. Supposons cependant que
on ait trouvé la probabilité f(y, x) da pour que le payement soit entre
& et « -+ dao sous la forme d’une gaussienne f, (v) dv, ot v = 2 — y est
Pécart du payement réel x sur le payement caleulé y,

dv 2

f (v)dv = ———exp — ——.
[<(v) NTE p =

On peut alors caleculer la prime » d’une réassurance do tout éeart
> s = U, les écarts plus petits que U étant couverts par un fonds
Q’ajustement de cette grandeur, appartenant & Uassureur primaire
lui-méme. On obtient
» -
L= L1t —Q0)

avee

i [
Q) = j/l(a) dz = V; j ez,

T oo

Supposons que l'agsureur primaire puisse, pendant quelques années,
disposer de 40 %, de la prime de risque (brute) comme profit, dont
20 9, sont mis & cOté comme fonds d’ajustement U et 20 %, sont
employés pour couvrir la prime de réassurance et pour béndfice aux
agsurés. Posons en outre s = 25 %, de la prime de rigque. Si la somme
des primes de risque rentrant chaque année est prise pour unité, le
développement de laffaive se caleule comme il suit,
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Fonds En fraction Caleul de la prime de I"onds
'a- > I : e
_‘1 a “[( [‘f réassurance des grands dearty de bénéfices
An juste- dispersion avant | apreés
ment - le payement de
U o F) i 0 g
l=U/s f1(D) Q) /s r la prime 7

1 0,2 0,8 0,28969 | 0,78814 | 0,12020 | 0,03000 [ 0,200 | 0,170
2 0,4 1,6 0,11092 | 0,94520 | 0,02324 | 0,00581 | 0,370 | 0,364
: 0,6 2,4 0,02239 | 0,99180 | 0,00271 | 0,00068 | 0,564 | 0,563
<+ 0,8 3,2 0,00239 | 0,99931 | 0,00017 | 0,00004 [ 0,763 | 0,763
5 1,0 4,0 0,00013 | 0,99997 | 0,00001 | 0,00000 | 0,963 | 0,963

Par ce tabelau il est clairement visible qu’un réassureur ne peut
éprouver qu'un intérét assez médiocre pour une telle réassurance, si
elle ne peut étre antrement organisée. lin effet, en échange d'une res-
ponsabilité assez sévere au commencement de activité, le réassureur
n’obtient qu'une participation tres limitée, grace & la qualité de Iassu-
rance de se dissiper automatiquement dans peu d’années. Ille ne serait
done guére praticable que si I'on réussissait & y introduire des clauses
plus favorables pour le réassureur. On peut réfléchir & une lunitation
inférieure de la responsabilité.

VIII. Présentation de la statistique

Lorsqu’on veut comparer la réalité, représentée par une statis-
tique de résultats caleulés et observés & un sechéma théorique — plus
ou moins perfectionné — tel que nous avons examiné, il semble tout
d’abord indispensable de faire quelques transformations des donndes
statistiques. Désignons pour le moment les quantitéy réelles par des
astérisques, done &%, n*, z*, y*, I'*, etc., on a comme point de dé-
part une table de corrélation réelle, olt la masse totale est représentée
par un nombre N de cas traités ou de points, chacun étant mesuré par
v de la masse totale. Lia base de caleul étant toujours plus ou moins
arbitraire, la somme calculée de changements de réserve (ou le nombre
total calculé de sinistres) ne correspondra pas aux sommes observées.
Pour adapter la réalité au schéma théorique, il faudrait done en premier
licu réduire les données atin de rétablir cette correspondance. Or, comme
nous avons déja remarqué plus haut, la question d'une telle réduction,
trés simple dans le cas d’une agsurance de décés collective & une somme
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constante, peut étre plus délicate dans les cas plus généraux. On peut
faire une réduction pour les cas aux changements caleulés positifs et
une autre (peut-étre en sens opposé) pour les cas aux changements
négatifs. On pout aussi éviter cette réduction et chercher & faire une
altération correspondante dans le sehéma théorique, qui serait alors
plus compliqué. Pour une comparaison préalable il peut suffive de se
figurer un changement proportionnel des y*, ¢’est-d-dire d’introduire
une nouvelle unité dans la direction des y*, de fagon que la droite
de régression soit transformée dans la diagonale y* = 2* du premier
quadrant de coordonnées. Sans faire expressément ce changement —
ce qui altérerait les statistiques primaires d’une maniere non désirable
— on peut constater que la recherche de la variation de la dispersion
en o* avec la grandeur de y* (ou vice versa) ne doit pas étre dissimulée
si 'on omet la réduction. Dans une statistique plus étendue, on pourrait
pousser plus loin cet examen: dans une statistique restreinte il fant
se borner & une estimation grossiére,

Nous préférons done, en présentant la statistique dans quelques
tables et graphiques qui sont aisément compréhensibles par eux-
mémes, nous borner & une recherche préliminairve et asses grossiere de
la variation de la dispersion. Cependant, nous avons poursuivi nos
vrecherches théoriques assez loin, & ce qu'il nous semble, pour étre per-
suadés du résultat probable suivant. Si le schéma basé sur la distri-

bution do Poisson est approximativement valable, la dispersion dans
toutes les deux directions des z* et des y* varie proportionnellement,
\ . ’ ’

4 la racine carvée de la coordonnée correspondante.

La fonetion de corrélation obtenue, I (2*, y*) — nous omettons
dans les tables et graphiques les astérisques — présente une couche

discontinue sur U'axe des y*, qui figure comme une ligne singulicre.
Cest ce qui n'est pas conforme aux conditions dans un schéma
Stochastique ordinaive. L’attraction exercée par cette ligne singuliore
doit dépendre d’un minimum de changement de réserve dans un
Sroupe.
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Higure 2
I'mage macroscopique de la corrélation entre observations x et calenl y
Le carré central est donné en plus grande échelle dans la figure 3

Laxe des y (@ = 0) est représenté dans la figure 4
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Figure 3. Image aggrandie du centre de la figure 2
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Pigure 4. Distribution de masse stochastique swr la droite d’accroissement
observé de réserves disparaissant, ¥ = 0

La hauteur de la courbe représente le nombre de cas observés,
correspondant aux points dans les figures 2 et 3

6
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Table de corrélation
entre changements de la réserve mathématique observés () et caleulés (1)
{Paxe des y (changements s’anmulant) exchu )

Changements Changements calculés en milliers, p
observés | = _—
@ ~50 | 45 | —40 | —a8 | —31 | —27 } 23 r ~20 } —17 ’ ~15 | ~13 | -1
-+ 43 400
-+ 24 700
-+ 14 400
+ T 800
+ 4900
-+ 2450
-+ 990
e 20 : ‘ ; ; ’ 3 ; : ; ; 1
— 1040 ;
— 2340 : ; . ; ; : : ; . 1
— 4900 ; ; ; ; ; ; 4 ; 1 3
— 7900 g : . ; : ; : ; ; 1
— 14 000 1 ‘ : ; ; 2 ; ; 1 : 2
— 24 500 ; 2 3 ; 1 1 | 2 1
— 44 100 4 1 ; 1 2 1 2 3
Total 5 3 0 1 3 4 0 2 2 1 3] 11
Changements Changements caleculés en milliers, ¥
observés - o .
@ il ‘-45’ ~6 | =4 | - . sl ‘ - ‘ 0 , +1 | +z| +3 | a4
-+ 43 400 H ; . ; i 8 ; 1 2 1 1 |
-+ 24 700 ; ; ‘ ; ; ’ . 2 2 2 2 3
-+ 14 400 : ; ; ; : . : 5 3 2 7 2
- 7 800 . 3 : ; ; s : 3 D 7 1 3
44900 : : : ; ; ; ; 4 | 11 3 2 5
-+ 2450 : : : ; : : 112 ] 14 2 2 3
- 990 : . e ; : . L] 10 8 5 4 2
— 20 1 . i : i 1 3028 118 | 19 8 4
— 1040 1 3 1 2 ; 4 110 | 12 3 1 1 1
— 2340 1 L 3 g 2 6 | 16 6 <k ; 2
— 4900 L1 1 4 3 2 6 4 2 1 2 2
— 7900 2 | 1| 8| 4| 4| 8| 3| 1| .| 1] .
— 14000 T 3 4 ik 3 3| 14 9 : 2 1 1
— 24 500 1 3 5 1 2 3 3 2 ; L
— 44 100 1 L 3 5 4 2 7 4
Total 15 1 12 15019 [ 18 |25 | 64 [105 | 78 | 46 | 34 | 27
F
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Changements Changements calculés en milliers, y
observiés e
x +6 ’ +74| w0 | 41 | | 41 | 417 | +20 | 423 | w7 ) +31
L 1.,
43400 | . 3 12 3 9 L1 3
+o4700 | 3 | 2 | 8 [ 2 | L .28 ..
+ 14400 | 1 3 SR 5 1 6 [ L1 1
L7800 | 1 1 1 3 L 3 1 | 1
+ 4900 | 1 . 5 1 1 2 2 : 2 .
L9450 1 ) 1 . 1 [ [
990 | . 1 , _ 1 Lo . .
— 20| 1 . D) 1 2 ) 1 |
— 1040 | 1 1 I 1 2 1 .
— 2340 | 2 L . t l 1 1
— 4900 L2 1 . ; 2
— 7900 S | L | 2 2 | .
— 14000 | . 1 R 1 4
— 24500 | L : ‘ . i
— 44,100 L. 1
Total | 11 | 13 | 21 ) 13 (14 |16 |15 | 6 |1t [10 | 3
o
| v R . 5 Hlara 1 Dispersions
(;h(l:gg:rn‘:g:ts Changements calculés en millicrs, ¥ l‘lT)(lJlOll Moyi1111ea q:;udm-
. e —! totaux v tiques
+35 | +40 [ +45 | +50 i +56 moyennes
!
43 400 1 ! ( o 25 15716 | 13 900
- 24700 ! | 27 L8059 6 050
114 400 45 + 7065 6 850
L7800 ‘ 31 6108 6 050
L4900 39 45959 6 350
L2450 41 L3565 6 200
L990 , | 34 2 978 4800
— 20 . s 0 ‘ 92 21921 4 900
1040 I . AT | osss | 7900
2840 1 . | 1 ‘ 48 - 3185 | 11400
— 4900 . 39 Lo298 9 400
— 7900 . 29 | - 1369 9 050
14 000 . . | oo 63 2939 | 10 900
— 24 500 L - 31 7542 | 12900
— 4100 o Cl 43 | 11469 | 16800
Total 3 1 i 1 | 634 2411
(r-— —-1818) |
I
|
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IX. Résultats et interprétation

Dans la figure 5 on a donné une esquisse des résultats caleulés des
dispersions quadratiques dans le cas olt 'on n’a pas encore soldé les
nombres suivant les indications du n® VI. On voit immédiatement que
Uallure des courbes de dispersions ne contredit point la vue que les
dispersions vont en se reserrant, comparées aux variables elles-mémes,
dans la mesure de la racine carrée. C'est le résultat qu’on a attendu, et
qui ne manque pas d’'intéret.

Lorsqu’il s'agit d'interpréter les résultats numériques d’apres un
schéma abstrait, des ambiguités se présentent. Nous avons déja ob-
servé que la maniére dont doit se faire la réduction & 'équivalence
totale des résultats observés et caleulés n'est pas évidente, Il serait A
priori préférable d'mtroduire dewz constantes de réduction, I'une pour
les sommes de risque positives, Pautre pour les sommes négalives.
D’antre part, on perd ainst le caractére univoque de la véduction.
Lorsquil s’agit d’'une premiere orientation, on peut négliger la difté-
rence. lin désignant par M* le moment de la distribution observée
en z* et y*,

‘/[; = f ’ :L.:kr y:ks 1,1(11;:&, ?}*) ([.’L'* (ZU*,

. o/

1l est évident que le coefficient de régression k détini par

[ ’ (x* — k y*)2F (z*, y*) do* dy* = minimum,

v o/

est donné par ko MY MR

sang qu'on ait besoin de faire auparavant la réduction qui annule les
premiers moments. On obtient dans notre cas

k = 0,66.

Il s’ensuit que la droite @ = ky™, approximation grossiére de la ligne
de régression, peut-étre transformée en

_’L‘* s y,

st l'on pose ky* — 4. in méme temps, lautre ligne de régression tombera
vers l'axe des a*. Or nous avons vu que dans nos schémes abstraits
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Figure 5. Lisquisse des courbes de régression avec lewrs dispersions



une inclinaison arbitraire peut étre obtenue en adoptant pour q(y)
une exponentielle ou une paretoénne convenable. La recherche de la
variation des dispersions avec la distance de l'origine peut étre effec-
tuée en étudiant directement la distribution observée.

Supposons maintenant que la dispersion de la droite de régression
en question soit donnée par 'expression

o¥ = |/ ey*,
¢'est-d-dire ‘
E® == { (2* — bk y*) 2o (y*, z*) de*.
Pour obtenir la meilleure valeur de ¢, on doit multiplier par q(y*) dy*
et intégrer, ce qui donne

c“ y*Fdatdy* = [ [ (@ —ky*2F da* dy*

o/ o/

ou bien . R el .
¢ Moy = (Moy Mgy -— Myy)*: My, .

Dans le cas d'une distribution s’étendant aux deux edtés de l'origine,
on changera le moment figurant comme facteur de ¢ en prenant la
valeur absolue de y* dans I'intégrale. Caleculons ¢; il se monte &

¢ =108 ou ¢ = 8,29.

Dans certaing raisonnements, on peut s'intéresser au multiplicateur
de la racine carré de y, ¢’est-a-dire aprés la transformation y = & y*.
Alors on obtient le multiplicateur modifié

Lies observations rudimentaires des dispersions quadratiques dans
les distributions «(x*, y*) et f(y*, +*) sont représentées dans le dia-
gramue de la figure 6. On y voit aussi les approximations paraboliques
obtenues par le calcul dont nous venons de donner la description. Dans
la direction des =¥, on obtient pour le coefficient l/‘x de |/—L7 la valeur
3,68, si la ligne singuliere est ineluse, mais la valeur 2,78, si elle est
exclue. On voit d’ailleurs, par la dispersion des points autour des para-
boles, il ne s'agit que d'une estimation grossiere.
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Frigure 6. La variation des dispersions quadratiques

Les remarques que nous avons faites sur I'influence de la sépara-
tion des phases — plus ou moins propres — de l'assurance, nous a
foreé A faire aussi un caleul supplémentaire, aprés avoir soldé les résul-
tats d’apres les conventions établies au n® VI. On a obtenu, en excluant
161 d’une maniére adéquate la ligne singuliére z = 0, qui ne jone aucun
role dans ce raisonnement, les valeurs suivantes.

Dispersions quadratiques dans B (y, ) powr des valeurs différentes de y

Dispersion des Dispersion des
v valeurs non soldées valeurs soldées
— 35,5 23 4 24,0
— 18,9 15,5 13,1
— 7 14,6 14,2
16 12,2 13,
0 15,3 15,4
+ 1,6 9,0 10,0
L6 13,7 14,2
-+ 13,2 16,6 13,4
-+ 27 23 4 23,0




Les dispersions sont exprimées en milliers. Il est bien visible que
les observations ne suffisent pas & mettre en évidence I'angmentation
de la dispersion & laquelle on devrait s'attendre en soldant les résultats,
ou, moins encore, de révéler une allure différente de la courbe quasi-
parabolique étudiée.

Exprimons le résultat de notre investigation dans quelques points:

1° La distribution pratique contient une couche singuliére sur I'axe
z = 0, dont la masse relative dépendra probablement de I'unité choisie
pour 'exercice et du mimvmum de changement causé par un seul cas
d’assurance.

20 La dispersion semble varier, tout comme dans les modeles
schématiques étudiés, dans la mesure de la racine carrée du changement
croigsant.

30 Tandis que, dans le cas le plus simple d’assurance collective sur
la vie, on peut étudier directement le nombre de déces, il faut, dans
le cas plus général, admettre une «unité» assez arbitraire, on la dis-
persion deviendra égale & un. Pour la détermination de cette unité,
nous n’avons pas trouvé d'indications théoricues.

40 Le procédé qui consiste & faire Paddition algébrique des résul-
tats qui se rapportent au méme groupe, mais qui concernent diffé-
rentes parties d’une méme assurance, ne semble pas changer I'image
générale.

5° Rien ne contredit 'hypothése que la recherche de l'allure géné-
rale de la variation des dispersions peut étre effectuée sur les droites
x = const., si cela g’avére plus commode pour la statistique.

(Les graphiques ont été mis au point pour I'impression avec I'aimable collaboration
de M. Hang Zimmermann)



Table de la densité sur Uaxe des y

39

x =10

( Aucun changement observé)

Nombre de cas Nombre Nombre de cas Nombre
I} par intervalle total Y par intervalle total
de cent unités de cas de cent unités de cas
25 000 0,053 4 — 400 102 102
£ 20 000 0,2 5 — 500 96 96
+ 17 500 0,24 6 — 600 85 85
+ 15 000 0,72 18 — 700 69 69
+ 13 000 0,47 7 — 800 58 a8
+ 11 500 0,47 7 — 900 45 45
-+ 10 000 1,47 292 — 1000 44 44
+ 8500 1,47 22 — 1 100 36 35
+ 7000 2,0 30 — 1200 31 31
- 5500 2,8 492 — 1400 23,7 71
- 4 500 4.6 23 — 1700 12,7 38
- 4000 7.2 36 — 2000 14,3 43
- 3500 8,0 40 — 2300 14,7 44
-+ 3000 12,4 62 — 2600 97 29
- 2600 20,7 62 — 3000 6,4 32
-+ 2300 240 T2 — 3500 6,4 32
-+ 2000 24 0 72 — 4000 4.6 23
+ 1700 29,3 88 — 4500 3,8 19
-+ 1400 4,3 163 — 5500 2,0 30
1200 49 49 — T 000 0,73 11
- 1100 5o B — 8500 0,40 6
- 1000 T 77 — 10 000 0,53 8
}- 900 94 94 — 11 500 0,27 4
- 800 110 110 — 13 000 0,40 6
{- 700 137 137 — 15 000 0,20 5
b 600 166 166 — 17 500 0,20 D
|- 500 194 194 — 20 000 0,08 2
|- 400 192 192 — 25 000 0,00 0
-+ 300 296 296 — 32 500 0,01 1
-+ 200 464 464 — 50 000 |
F 100 1021 1021
0 1640 1640 Nombre total de cas GO2T
— 100 351 351
— 200 191 191
- 300 134 134

Dispersion quadratique moyenne —

Moyenne 3

= 280

2440
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Correction

concernant

I'Etude statistique du risque mathématique dans I'assurance collective

sur la vie par K.-G. Hagstroem, publié dans le volume 51, 1951, p. 63.

Par une erreur de signe, on a malheureusement été6 amené & une
conelusion fausse sur la page 71, en disant que dans le cas singulier
considéré, on aurait le coefficient de corrélation r = 1 sans que I'image
se réduisit & une droite pesante. On peut exprimer » & l'aide des intégrales
[y qy) dy et [y*q(y) dy selon laxe des y positifs, b 'on obtient
comme toujours r* < 1.

Remarquons encore que les formules aux pages 65 et 66 seront
mieux en conformité avec 'algebre usuelle de la théorie de corrélation,
si I'on remplace partout o, et oy par o |/1-—2% et g, [/1—72. On aurait

alovs & — 0 (disp. o) et 5 = 7 —> & (disp. o, [/T—1%).
0

K.-G. Hagstroem
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