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Bet achtungen ither konsekutive \-"erteilungcn

Von Padrot Nolfi, Ziirich

In der Statistik hat man mit stochastischen Erschemnungen zu
tun, die verschiedenen, zum Teil bekannten, zum Teil aber auch
unbekanuten Finfliissen ausgesetzt sind. So sind Sterblichkeit und
Morbiditit Funktionen des Alters, der Zeit, dazu aber auch anderer,
meistens unbekannter Bestimmungsgrissen, wie Gesundheitszustand,
Konstitution, Witterungseinfliisse, usw. — Dieser Tatbestand zelgth
schon, dass man in Wirklichkeit wohl nie mit unabhingigen stochasti-
schen Irscheinungen, wie das theorvetisch oft vorausgesetzt wird, zu
tun hat. Die Abhiingigkeit kann eine direkte oder eine indivekte sein.
Der erste Fall liegt vor, wenn das Zustandekommen eines Iireignisses
vom Zustand abhiingt, der von frither eingetretenen oder nicht ein-
getretenen Freignissen gleicher oder auch anderer Art abhiingt. Man
spricht in solchen I%illen nach Reichenbach von einer Nachwirkung.
Der zweite Fall liegt vor, wenn verschiedene stochastische Frschei-
nungen durch gememsame Ursachen bedingt werden. So kann der
Auftritt einer Iipidemie in verschiedenen Personengruppen eine
erhohte Sterblichkeit hervorrufen, obwohl keine divekte Abhingigkeit
zwischen den einzelnen Betrachtungsobjekten besteht.

Wer sich diese in der Realitit bestehenden Verhiltnisse vor
Augen fiihrt, ist eigentlich verwundert, dass die Wahvscheinlichkeits-
rechnung trotzdem mit einem oft erstaunlichen Frfolg zur Deutung
des erfahrungsmiissicen (ieschehens ausreicht. Dieses Riitsel erscheint
noch grisser, wenn man bedenkt, dass der Grossteil des wahrschein-
lichkeitstheoretischen Formelapparates unter sehr restriktiven An-
nahmen, wie sie bei einem Urnenschema bestehen, abgeleitet wird.
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Man versteht, dass die Ubereinstimmung zwischen schematischer
Dargtellung und den empirischen Daten manchmal eine unbefriedi-
gende ist, dagegen igt man erstaunt, dass sie in vielen Fillen doch
eine recht gute ist. Iis wiire zweifellos wertvoll, iiber die hier herr-
schenden inneren Zusammenhiinge Klarheit zu gewinnen, da man
damit einen Hinweis fiir die Brauchbarkeit eines wahrscheinlichkeits-
theoretischen Ansatzes erhalten wiirde. Die nachfolgenden Ausfiih-
rungen iiber konsekutive Verteillungen gestatten eine gewisse Klirung
des bestehenden Sachverhaltes.

Angenommen, es seien fiir zwel verschiedene aufeinanderfolgende
Zeitabschnitte ¢; und ¢, die Wahrscheinlichkeiten fiir den Kintritt von
ry bzw. r, Ereignigsen bekannt und es werde nach der Wahrscheinlich-
keit gefragt, dass in der Zeit ¢, 4 t, gerade r Ireignisse eintreten.
Hs fragt gich, wie und unter welchen Voraussetzungen diese gesuchte
Wahrscheinlichkeit, die wir zur besseren Kennzeichnung Swummen-
wahrschewnlichkeit nennen wollen, sich aus den fiir die einzelnen Zeit-
intervalle ¢, und ¢, vorgegebenen Grundwahrscheinlichkeiten be-
rechnen lisst. Nehmen wir zuniichst einmal an, auf Grund von Be-
obachtungen oder Uberlegungen sei festgestellt worden, dass im ersten
und zweiten [Malle die Potssonsche Verteilung zutreffe. Dann wird,
wenn wir mit %, bzw. u, die Zahl der withrend des ersten bzw. zweiten
[ntervalls za erwartenden Freignisse bezeichnen, die Wahrscheinlich-
keit fiir den Llintritt von r, Kreignissen im ersten bzaw. r, im zweiten
gegeben durch: s

e bzw. w, = — ¢
il 1 a o
)l. ):A".
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Wy =

und die gesuchte Swmmenwahrscheinlichkeit fir den EKintritt von
r Kreignissen withrend des ersten oder des zweiten Intervalls ergibt

den Ausdruck Y
Ww = \“ Wy Wy = (lff|_ “_",_ o (W) (l)

b=y vl

Man sieht, dass sich in diesem alle die Summenwahrscheinlich-
keit aus den Girossen w, und u, berechnen lisst. Das ist eine besondere
und wertvolle Iigenschaft der Poissonschen Verteilung. Man sagt,
sie geniige der Faltungsbedingung: F' (x;u)* ' (2;0y) = I (030, 1),
wie das durch direktes Ausrechnen oder in bekannter Weise mit Hilfe
der charakteristischen Funktion gezeigt werden kann. Iis gibt noch



verschiedene andere Verteilungen, die diese wertvolle liigenschaft
husitm-:n, so insbesondere die Normalvertetlung, die ¥? Vertetlung, die
'\'ertoilung von (auchy, die Binomialvertellung usw. Bei der Bino-
mialverteilung ist die genannte Bedingung jedoch nicht in gleichem
Masse erfiillt wie bei der Poissonschen. Betrachtet man die Faltungs-
bedingung fiiv unabhiingige Binomialverteilangen

(10" 4 p)" (que” +p)" = (qe” + p)",

S0 erkennt man, dass sie nur unter der Voraussetzung, dass q, = q,==q
1st, zu Recht besteht. Es ist also nicht so, dass zwei Binomialver-
tethingen mit verschiedenen Grundwahrscheinlichkeiten ohne weiteres
cefaltet werden konnten, wie das im Ifalle der Poissonschen Verteilung
zutrifft. Indessen gibt es merkwiirdigerweise doch Fille von Binomial-
vertetlungen, wo eine Faltung auch bei verschiedenen Grundwahr-
scheinlichkeiten méglich ist. Fs sind das die konsekutiven Verteilungen,
die nachstehend eingefithrt werden sollen. Der Nachweis ihrer [ixistenz
konnte mit Hilfe der charakteristischen I'unktion, unter Beriicksichti-
gung der bestehenden Abhiingigkeit, erbracht werden. Fr gestaltet
fich aber ebenso einfach auf divektem Wege, in welechem Falle man
gleichzeitig cine bessere Ubersicht gewinnt. Zwei Binomialverteilungen
heissen konsekutiv, wenn sie in folgender Weise zusammenhingen:

; R\ . on
Erste Verteilung iy i) == (T )q’llp'{ o,
o

/ WA
Ziweite Verteilung 1w, (rp3q,) = (H' rll) gL e tate,
L Ty

Wie man sieht, sind beide Verteilungen binomial und besitzen
verschiedene Grundwahrscheinlichkeiten ¢, bzaw. ¢,; aber sie sind nicht
Unabhiingig. In der zweiten tritt die Vevinderliche r, wieder auf.
Die zweite Verteilung ist damit in bestimmter Art mit der ersten ver-
kniiptt. Diese Abhiingigkeit ist indessen eine fiir die Praxis besonders
bedeutungsvolle.

Wir zeigen nun zuniichst, dass die oben angefithrte IFaltungs-
bediu;_;‘ung fiir zwel konsekutive Binomialverteilungen tatsiichlich erfiillt
15t Bezeichnen wir die resultierende Verteilung mit 1w, (r;q), so ist der
Ausdruck

—im M ) 3 o
1 1 r ro .. .N=r T
w, (r:e o Ny ( )( )( Lgha g))imre gyl-ri=ra
u( f) _Tl ,'.2 ' [t 42" Py Ps
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zit berechnen. Die Summation erstreckt sich hier iitber siimtliche Werte
von r; und ry, wobet r; 4 ry = r sein muss. Man erhilt dafir

r

‘ J)L:\ n-r
w(rsg) = () + e} (o) (2)

¥
Damit 1st tatsiichlich bewtesen, dass zwel konsekutive Binomial-
verteilungen der Faltungsbedingung geniigen. Der angeschriebene
Augdruck ist ja wieder eine Binomialverteilung, mit den neuen Wahr-

und ¢, + p, = 1 folgt, dass die Sumune der neuen Wahrscheinlich-
ketten ¢y + pyqe und pypy, wieder eins ist. Die erste Grosse kann
als die Wahrscheinlichkeit, dass eine Person entweder in einer ersten
oder dann in der darauffolgenden zweiten Zeitperiode stirbt, die
zweite als die Wahrscheinlichkett, dass die Person beide Perioden
itberlebt, gedeutet werden. Man sieht, die erhaltene Formel lisst eine
in der Lebensversicherungsmathematik geliufige Interpretation zu.
Tatsichlich lisst sich diese Analogie noch weiter verfolgen, und e
zeigt sich, dass gestittzt auf die Figenschatt der konsekutiven Ver-
teilungen sich die Grundformeln der Versicherungsmathematik direkt
aus den Axiomen der klagsischen Wahrscheinlichkeitsrechnung herleiten
lagsen. Wie das geschehen kann, soll kurz gezeigt werden.

Da die Grosse w, (ir;q) wieder eine Binomialverteilung ist, lisst
sich diese mit einer zu ihr konsekutiven wieder falten. Sind die Wahr-
scheinlichkeiten der letzteren ¢, und pj, so erhilt man fiir die Grund-
wahrscheinlichkeit der neuen Verteilung den Ausdruck o, 4 p,q,
+ pyPeqy oder ganz allgemein, wenn man diese Operation n-mal
auskithrt o

(3)

1= @ +P1Ge+PiPels+ - - FP1PaPso s Put @ = L—=1P2- - Do

Werden hier die Finzelgrossen qg;q, ... q, als Sterbenswahr-
scheinlichkeiten fir die einzelnen Zeitintervalle ¢,;¢, ... ¢, gedeutet,
so stellt ¢ die Sterbenswahrscheinlichkeit fiir das ganze Infervall
ty +t -+ ... +t, dar. Unsere Entwicklung zeigt, dass, wenn die
Binomialverteilung fiir jedes einzelne Intervall gilt, sie dann auch
fiir das gesamte Intervall Giiltigkeit besitzt, unabhingig von den Ver-
dnderungen, welche die Wahrscheinlichkeit im Laufe der Zeit erfihrt.

Damit wird ein Beitrag zum Geltungsproblem der Wahrscheinlich-
keitsrechnung geliefert. Unter dem Geltungsproblem versteht Reichen-
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bach den Fragenkomplex, weleher sich mit der Giiltigkeit der Walr-
scheinlichkeitstheorie im  Naturgeschehen befasst 1. I sucht dio
],"ru.ge abzukliren, mit welchem Recht wir Naturerkenntnisse mit
Hilte des Wahrscheinlichkeitsbegriffes aussprechen kénnen oder in-
wieweit wir berechtigt sind, bei der Beschreibung von Naturerschei-
nungen die (riltigkeit der Wahrscheinlichkeitsgesetze vorauszusetzen,
Tatsiichlich ist diese Irage von zentraler Bedeutung, denn von ihr
hiingt es ab, ob und inwieweil die aus der Theorie gewonnenen -
kenntnisse in Wirklichkeit zutreffen. Wenn man ein axiomatisches
System auf die Wirklichkeit anwendet, so wird man sorgfiltig priifen
miissen, ob die realen Gegebenheiten die in den Axtomen enthaltenen
Voraussetzungen in befriedigendem Masse erfiillen. lirst wenn das
autrittt, wivd man mit gentigender Sicherheit annehmen diirfen, dass
die sich durch tautologische Umformungen ergebenden Schlussfol-
gerungen ebenfalls zutreffen. Bei der Priifung dieser Frage stogst man
allerdings auf mannigfache Schwierigkeiten. Grundsitzlich wird man
nie behaupten konnen, dass bei irgendwelchen Naturerscheinungen
die Voraussetzungen eines Axiomensystems restlos erfiillt sind. Nicht
selten trith man aber bei solchen Uberpriifungen auf devartige Unter-
schiede, dass man geneigh witre, jede Anwendbarkeit von vornherein
au verneinen, wenn nicht die Iirfahrung eines anderen belehren wiirde.
Diese Irscheinung hiingt wohl damit zusammen, dass nicht alle
apriorisch feststellbaren Unterschiede zwischen 'Theorie und Wirl-
lichkeit, von Belang sind; die Theorie ist oft so beschatfen, dass sie
gewisse Divergenzen gegeniiber der Wirklichkeit toleriert. Gelingt
s, den wahren Grund solcher Toleranzerscheinungen aufzudecken, so
erhiillt man damit auch ecine Erklirang fiiv die mitunter feststellbare
gute Brauchbarkeit der Theorie und gleichzeitig auch einen niitzlichen
Hinweis fiir die Beurteilung ihrer Anwendbarkeit.

In der Versicherung tithrt die Untersuchung des Geltungsproblems
vor allem auf zwel grundsiitzliche Unterschiede zwischen der axio-
matischen Bagis und den empirischen Gegebenhetiten. Die mit Hilfe
eines Urnenschemas ableitbaren Sitze werden bekanntlich unter der
Voraussetzung der Gleichwahrscheinlichleit und der Konstanz des
Mischungsverhdlinisses withrend der Auslosungen erhalten. Beide
Voraussetzmlgon sind bei einem Versicherungsbestand nicht erfiillt.

1) Reichenbach, Wahrscheinlichkeitslehire, 1935.
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lirstens bestehen z. B. bei einer Personengruppe, selbst wenn es sich
um die Angehorigen deg gleichen Jahrganges handelt, bei den Sterbens-
wahrscheinlichkeiten erhebliche Unterschiede, wie das die Ergebnisse
der drztlichen Uberpriifungen des (esundheitszustandes jeweils sehr
eindriicklich erkennen lagsen. Zweitens bleibt die Sterbenswahrschein-
lichkeit wiihrend eines Jahres nicht konstant. Sie steigt nicht nur
mit zunehmendem Alter an, sondern kann innert emer kurzen Zeit-
spanne ganz erheblich sinken oder in die Hohe schnellen.

Uber das erste Teilproblem ist bekanntlich sehr viel geschrieben
worden, ohne dass es bis heute zu einer befriedigenden Abklirung
hitte gefithrt werden konnen. Immerhin konnten gewisse wertvolle
Sittze, so liber die Griilltigkeit der Poissonschen Verteilung!), und in
neuester Zeit gewisse Frgebnisse iiber die Giiltigkeit des zentralen
Grenzwertsatzes gewonnen werden ?).

Dag zweite Teilproblem, das die zeitlichen Verinderungen der Grund-
wahrscheinlichketten betrifft, erfihrt durch die hier nachgewiesene
[Nigenschaft konsekutiver Verteilungen eine weitgehende Klirung.

Betrachten wir zunichst das Urnenschema: Die Ziehungsergeb-
nisse aus einer Urne zeigen, dass bel konstant bleibenden Grundwahr-
scheinlichkeiten die Binomialverteillung gilt. Die Voraussetzung der
Konstanz der Grundwahrscheinlichkeiten ist aber nicht notwendig,
die Binomialverteilung bleibt erhalten, auch wenn withrend der
Ziehungsoperation das Mischungsverhiiltnis und damit die Grund-
wahrscheinlichkeit nach der folgenden Vorschrift geindert wird.
[is wird zuniichst bet konstant gehaltenen Mischungsverhiltnissen
aus einer Urne mit weigsen und schwarzen Kugeln n-mal eine Kugel
unter Zuriicklegung derselben in die Urne gezogen. Nach » Ziehungen
mogen 7, schwarze und n-—», weigse Kugeln erschienen sein. Die
Wahrscheinlichkeit dafiir ist w0, (r;q,), wenn g, die Wahrscheinlich-
keit fiir das Hrscheinen einer schwarzen Kugel angibt. Nun wird eine
zweite Auslosung vorgenommen, bei welcher vorgiingig das Mischungs-
verhiltnis irgendwie geiindert wird und dann n-—», Ziehungen voll-
zogen werden. Die Wahrscheinlichkeit, bet dieser zwelten Auslosung
ry schwarze Kugeln zu ziehen, wird dureh 2w, , (ry;q,) ausgedriickt.

1) Siehe « Schweizerische Zeitschrift fiir Volkswirtschaft und Statistiks: «Iiin
Beitrag zur mathematischen Darstellung statistischer Vorgingey.

%) Annals of Mathematics, vol. 21, 1950. Fundamental Timit Theorems of
Probability Theory by M. Loéve.
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Man erkennt ohne weiteres, dass die so erzeugte zweite Verteilung
Zur ersten konsekutiv ist.

Das Wesentliche ist nun aber, dass dieser Prozess strukturell
gewissen wichtigen Vorgingen in der Wirklichkeit entspricht. Be-
trachtet man eine geschlossene C(tesamtheit gleichartiger Dinge, die
irgendeinem Risiko ausgesetat sind, wie etwa eine Gruppe von u auf
den Todestall versicherten Personen, so haben wir gerade einen solchen
konsekutiven Vorgang vor uns, Wenn angenommen werden kann,
dass withrend eines wenn auch nur sehr kleinen Zeitabschnittes die
Grundwahrscheinlichkeiten unveriindert bleiben, so entspricht das
wahrscheinlichkeitstheoretisch einer m-maligen Auslosung aus einer
Urne bei konstant gehaltenem Mischungsverhiiltnis. Nach Ablauf des
ersten Zeitabschnittes sind nur noch n— i, versicherte Risiken vor-
handen, wenn in », Millen der Versicherungsfall eingetreten ist. Die
" —r, Risiken stehen nun withrend eines zweiten Zeitabschnittes mit
Verinderten, konstant bleibenden Gefahren unter Risiko, was einer
Zweiten n — r -maligen Auslosung aus einer zweiten Urne gleichkommd.
Hieraus erkennt man, dass der Abfall einer geschlossenen Cesamtheit
genau dem Vorgang entspricht, der durch die Vorschrift fir die
Brzeugung von konsekutiven Verteilungen an einem Urnensystem
2ustande kommt.

Damit 186 wohl gezeigt, dass es moglich ist, ein Urnenschema zu
konstruieren, das unter Hrhaltung der Binomialverteilung die lir-
Scheinungen bei geschlossenen Gesamtheiten und verdanderlichen Wahr-
scheinlichkeiten in adiiquater Weise wiedergibt. Tndessen zeigt es sich,
dass in solchen illen die Summenwahrscheinlichkeit nach einer be-
Sonderen Vorschrift berechnet werden muss. Iis geniigh nicht, z. B.
einfach das arithmetische Mittel anzusetzen. Dazu tritt noch der
weitere Umstand, dass man im konkreten Falle die Verinderungen
der Chrundwahrscheinlichkeiten in der iberwiegend grossen Zahl der
Fille gar nicht kennt. lig ist durchaus moglich, dass z. B. die Unfall-
Wahrscheinlichkeit plétzlich von einem Zehntausendstel auf cinen
Zehntel ansteigh, num dann wieder auf den Ausgangswert zuriick-
2usinken, ohne dasgs ein solcher Vorgang registriert werden kann. Die
Auswertung der abgeleiteten Formel setzt jedoch die Kenntnis solcher
Schwanlu‘mgeu voraus. Nur bei Kenntnis der Grundwahrscheinlich-
keit in jedem Zeitintervall erscheint die Summenwahrscheinlichkeit
hach der Sehlussformel berechenbar. — Is zeigt sich, dass diese
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Schwierigkett verhiltnismissig leicht iberwunden werden kann. Fine
weitere Umformung des erhaltenen Wertes fiir die Gesamtwahrschein-
lichkeit ¢ fithrt zu bekannten Grossen, deren Zusammenhang mit der
Wahrscheinlichkeitsrechnung erst dureh diese Analyse in Frscheinung
tritt. Um diesen Zusammenhang nachzuweisen, nehmen wir vorerst
an, es sel moglich, ein Zeitintervall 44 so klein zu withlen, dass die
Wahrscheinlichkeit withrend seines Ablaufs wnverindert bleibt. (Da
nach den gegenwiirtigen physikalischen Frkenntnissen alle Anderungen
sprungweise erfolgen, ist es durchaus moglich, dass eme solche An-
nahme der Wirklichkeit -auch entspricht. Ste muss indessen fir die
nachfolgenden Betrachtungen nicht vorausgesetzt werden.) Wir den-
ken uns das kleine Intervall ¢ in m Teile unterteilt, was ber emem
Intervall auch fitr beliebig grosses m stets moglich ist. Ist die Grund-
wahrscheinlichkeit fitr das ganze Intervall At gleich ¢, so wollen wir
dafite ¢ == p At setzen. Die Wahrscheinlichkett fitr das Tetlintervall
At

st dann — da die Grundwahrscheinlichkeit q withvend der Zoit ¢
m
konstant bleibt — g —— . Setzt man diese Werte in die Formel (3)
m

cin, so erhilt man zunichst fiir die Grundwahrscheinlichkeiten

m

o udb
PIP‘J "']"m ": (l_“ )
\ mo/

Da, wie ausgefithrt, die Finteilung beliebig verfeinert werden kann,
erhiilt man dureh den Ubergang zum Limes den Ausdruck:

r‘rg;” (!';1;’[.

B == A0 Byl oo i =o€ und g = 1—

i 0o
Nun kann an das erste Intervall ein zweites angehiingt und auf Grund
des Satzes iiber konsekutive Verteilungen mit dem ersten zusammen-
gefasst werden usw. Sind die Intervalle von der Liinge At Aty ... At,
und pog;zy; ..y, die entsprechenden Bestimmungsgrossen der Grund-
wahrscheinlichkeiten, so erhiilt man, wie man leicht bestiitict, als
Intervallwahrscheinlichkeiten die bekannten Ausdriicke:

p=rc¢"D baw. q-=1—0c"® ()

wobel u(t) sich wie folgt zusammensetzt :

w(t)y = p A+ pa Aty - oo At it L= At + Aty + ...+ 4A¢,.
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!
Hiefiiv kann man auch schreiben lf) == _I'Ju.(r) dr, wobei nach der
0
vorgetithrten Ableitung w(r) eine Treppenfunktion ist. Diese letzte
Finschriinkung ist indessen nicht notwendig, da die Intervalleinteilung
beliebig verfeinert werden kann, I kénnen — wie man in der Integral-
theorie zeigt — auch Iille, da u(7) eine allgemeinere IMunktion ist,
erfasst werden. Die cinzige Voraussetzung ist, dass u(r) integrierbar
bleiben muss.

Selbstverstindlich war nicht das Ziel dieser Abhandlung, bekannte
elementare Beziehungen der Versicherungsmathematik einmal mehr
abzuleiten. Was mit der gegebenen Darstellung bezweckt wird, ist
vielmehr, den Nachweis zu erbringen, dass diese bekannten Beziehun-
gen auf die axiomatische Basis der klassischen Wahrscheinlichkeits-
technung zuriickgefithrt werden kénnen und dadurch eine viel tiefere
und sinnvollere Bedeutung erlangen.

Tatsiichlich zeigt das zuletzt erhaltene Resultat, dass die auf
Grund der ersten Ansiitze erhaltene Regel fiir die Berechnung der
Summenwahrscheinlichkeit, Formel (4), eine fir den praktischen G-
brauch verwertbare Gestalt annimmt. Wie oben ausgefiithrt, bestand
Noch eine prinzipielle Schwierigkeit in der Frmittlung der Summen-
wahrscheinlichkeit, weil diese die Kenntnis der Iiinzelwerte der sich
verindernden Grundwahrscheinlichkeit erforderte,

Das mit (4) gewonnene Resultat zeigt jedoch, dass eine solehe
Kenntnis oliicklicherweise nicht verlangt werden muss. Die Funktion
w(t) ist additiv. Sie setat sich aus den einzelnen Summanden g, ;g . . .
Zusammen. Dabet 18t es nicht notwendig, den emmzelnen Wert dieser
Summanden zu kennen; die Kenntnis ihres Integrals oenligt. Mit
anderen Worten, der eigentliche Verlaut der 1"unktion g (f) ist nicht
Massgebend, sondern lediglich deren Zeitintegral, das im Prinzip divelkt
aus dem Beobachtungsmaterial entnommen werden kann. Dieses
Resultat ist iiberraschend. Tatsichlich méchte man meinen, dass eine
geschlossene  (resamtheit, die grossen Schwankungen der Risiko-
gefahren ausgesetst ist, auch eine grossere Zahl von Ilillen (Todes-
tillen usw.) zu gewiirtigen hat als eine solche, die einer gleichmissigen,
konstanten Risikogefahr unterliegt. Das 1st, wie die Resultate unserer
Untersuchung darlegen, nicht so. Ts kommt nicht einmal auf die
Verteilung der Schwankungen an, obwohl man rein gefithlsmiissig
geneigt wiire, anzunchmen, dass ein grosser Anstieg der Risikooefahren



su Beainn eines Zeitintervallg stirker ing Gewicht fallen sollte, als ein
soleher am Fnde.

Zusammenfassend darf somit folgendes festgehalten werden: Iis
kann gezeigt werden, dass die Anwendbarkeit der Wahrseheinlich-
kettsrechnung auf geschlossene (vesamtheiten mit stochastisch be-
dingten Abgangsursachen trotz den in den meisten Fillen bestehenden
erheblichen zeitlichen Schwankungen gewahrt bleibt. Fin soleher Nach-
wels erscheint im Hinblick auf die Skepsis, die hinsichtlich dev An-
wendbarkert der Wahrscheinlichkettstheorie auf Gegenstinde der Wirk-
lichkett besteht, wertvoll. — Sicher sind derartige Bedenken nicht
unbegriindet. Stellt man sich auf den Boden «der geeigneten Gegen-
standswahly, d. h. wiirde man die sehr verbreitete Auffassung ver-
treten, die Grundsiitze der Wahrscheinlichkeitsrechnung dicfen ser
auf Gegenstinde der Wirklichkeit angewendet werden, bei denen an-
genommen werden kann, das Axiomensystem sei erfiillt, so miisste
die Frage, ob bei verinderlichen empirischen Grundwahrgcheinlich-
keiten eine Anwendung gewagt werden darf, vorsichtshalber verneint
werden. Die soeben abgeleiteten Formeln zeigen aber, dass eine solche
Schlussfolgerung doch voreilig wire. Diese Feststellung deckt sich
mit der allgemeinen Hrfahrung, wonach die Mathematik trotz allen
Diskrepanzen zwischen Wirklichkeit und Theorie zur Deutung des
Naturgeschehens meistens weiter reicht, als dies vorerst angenommen
werden diirfte. Der Grund ist oft nicht von vornherein ersichtlich
und kann mitunter durch die Wetterentwicklung und bessere Be-
aritndung der Theorie autfgedeckt werden. Seine Kenntnis bildet aber
fiir den Fortschritt der Wissenschaft emne wesentliche Voraussetzung,
da ste zu den Vorbedingungen tiir die Begreiflichkeit des (ieschehens
gehoren.

Abschliessend set noch bemerkt, dass m gleicher Weise wie die
Bimomiale auch die Pascalsche Verteilung die Bildung von konsekutiven
Folgen gestattet. Auch bei der letzteren ergeben sich interessante
Resultate, die mit dem realen Geschehen in engem Zusammenhang
stehen.
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