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La distribution des revenus

dans la technique mathématique de la sécurité sociale

Par Ernest Kaiser, Berne

Introduction

On ne saurait pratiquer de nos jours une politique sociale avisée
sans connaitre la répartition de la population selon le montant des
revenus. Cette constatation se vérifie tout spécialement dans le domaine
de la sécurité sociale qui constitue I'une des branches les plus impor-
tantes de cette politique. Il n’est des lors pas étonnant que des socio-
logues et des économistes de renom aient abordé 'étude de ce probleme
en utilisant en premier lieu les méthodes de la statistique descriptive.
Puis, Uanalyse des observations faites ayant permis de déceler certaines
regularités dans le phénomene étudié, on s’avisa de proposer des for-
mules analytiques pour ajuster plus ou moins fidelement les fréquences
expérimentales. C'egt ainsi que d’éminents mathématiciens-— M. Fréchet,
par exemple — n'ont pas dédaigné d’étudier le probleme dans le cadre
des mathématiques appliquées.

Lies estimations financieres concernant la sécurité sociale rendent
particulierement manifeste la nécessité de connaitre les distributions
de revenus. Iin effet, le but poursuivi par la séeurité sociale est, avant
tout, de venir en aide aux personnes dont les ressources sont faibles.
Or, la notion d’économiquement faible ne pourra étre définie, au point
de vue mathématique, qu'a l'aide de la répartition des revenus. Pour
traiter ce probléme on s’est contenté, jusqu’alors, dutiliser la distri-
bution des revenus propre & U'ensemble de la population. Cependant,
les revenus variant sensiblement avec 'Age, qui est I'élément essentiel
pour la détermination du risque, la résolution de certains problemes
rend nécessaire de connaitre, non seulement cette distribution globale,
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mais encore celle particuliere a chaque classe d’age. Ce fut preecisé-
ment le cas lorsqu’il s’est agl de calculer les rentes moyennes de as-
surance-vieillesse et survivants suisse [22]1), pour la détermination
desquelles on a supposé que les revenus des personnes appartenant a
une classe d’age donné se répartissent selon la distribution semi-
normale. Nous avons constaté par la suite que la méthode utilisée dans
ce cas particulier pouvait se généraliser et s'appliquer a n'importe
quelle distribution. Ainsi, nous avons été amené & étudier le probleme
de la répartition des revenus a 'aide de deux ou méme trois variables.

Y Voir liste bibliographique a annexe 1.



Chapitre 1

Bases mathématiques de la théorie

§ 1. Variables et fonctions dans I'espace bio-économétrique (f,u,x)

1. Les questions financieres de la sécurité sociale se rameénent
essentiellement a des problemes dépendant de trois variables, le temps t,
le revenu w et Udge x. D'une part, les prestations ne sont souvent
attribuées qu'a la portion de leffectit L,(x) dr vivant & l'instant ¢ et
d'dge x & r-+dr dont les membres ne disposent que d'un revenu in-
férieur & une certaine limite w, et, d’autre part, le montant méme de
ces prestations est calculé selon une fonction plus ou moins compliquée
du revenu u. Nous donnerons des exemples au chapitre 111 de ce travail.
Dés lors, 1l ne suffit plus de connaitre Ueffectif L,(z) dx; 1l faut savoir
quelle est sa distribution selon le revenu w. Pour effectuer correctement
les calculs, on est donce conduit a envisager des effectifs L,(u,x) du dx,
vivant a linstant {, ayant I'dge x & x4 dr et possédant un revenu
de 2 & u -+ dw. Nous sommes done en présence de fonctions & trois
variables réelles qu’on attachera & un point A(ta,z) de I'espace, ou
l'on mesurera ces trois variables sur les axes de référence d'un triedre
orthogonal (voir graphique n° 1 de 'annexe I1). De cet espace, nous
pouvons extraire des plansg particulierement intéressants au point de
vue actuariel. D'une part, nous auvons le plan démographique ou bio-
métrique (t,r) dans lequel nous convenons de porter ¢ en abscisse et
en ordonnée; ainsi, les effectifs vivant au méme mstant ¢ seront dis-
posés le long de droites verticales: t = constant; en revanche, les
eftectifs dont les membres sont nés au méme instant ¢, c’'est-a-dire
appartenant & la méme génération, évolueront dans le plan biométrique
le long de leur ligne de vie représentée par une droite diagonale d’équa-
tion x = t—1¢,. Ainsi, certains auteurs parlent de probléme vertical
et de probleme diagonal. Nous désignerons les effectifs situés sur la
méme diagonale de parametre {, comme étant liés biométriquement
entre eux. D’autre part, nous envisagerons la famalle des plans écono-
métriques (u,x),, ces derniers étant, au point ¢, perpendiculaires a 'axe
du temps. Ces remarques nous autorisent & désigner 'espace entier



— 252

considéré comme lespace bro-économétrique. lies etfectifs L,(u,x) liés
biométriquement se trouveront alors sur des plans orthogonaux au
plan biométrique et dont les traces dans ce dernier seront les lignes de
vie diagonales.

Pour le caleul des effectifs [,(x) lactuaire dispose des fonctions
biométriques, avant tout des fonctions de survie et de renouvellement.
Les théories scientifiques de 'actuariat ont été presque exclusivement
consacrées a ce sujet et constituent un édifice pour ainsi dire terminé.
FEn revanche, la technique de calcul relative aux effectifs L,(u,x) n’a
guére été traitée dans son ensemble. Nous y consacrerons done 'es-
sentiel de cette étude. Cette technique repose avant tout sur des fone-
tioms economéiriques que nous allons tirer entierement de la théorie de
la distribution des revenus.

D’autres critéres, avant tout le sexe et I'état civl, jouent un role
mportant dans ces questions. De méme que 'on est amené sur le plan
démographique & diviser la population en différents groupes, d’in-
dice », relatifs au sexe et & 'état civil, et & considérer leur structure
d’dge séparément, 1l est indiqué de procéder d'une maniere analogue
sur le plan économétrique et d’associer une distribution de revenus
propre & chaque groupe d'indice 7.

2. Le probleme de la répartition des revenus de la population
entiere a été considéré jusqu'ici par tous les auteurs sous I'angle d’une
distribution continue & une seule variable. Comme nous 'avons déja
fait remarquer, la résolution des problemes les plus importants relatifs
a l'équilibre financier de certaines branches de la sécurité sociale
nécessite de traiter cette question & l'aide de distributions continues
a deux ou méme trois variables. Cependant, I'aspect économétrique
de notre théorie étant déterminé par l'introduction de la variable u,
il est indiqué d’envisager d’abord les distributions de revenus a une seule
rartable. On sera d’ailleurs souvent amené a extraire ces derniéres du
probléme & deux ou trois variables. Rappelons donc les propriétés
fondamentales des distributions & une variable et mtroduisons en
méme temps les notations convenant a notre théorie. Nous nous borne-
rons toutefois & relever les fonctions qui nous seront indispensables
dans la suite, tout en renvoyant le lecteur désireux de trouver de plus
amples détails et de connaitre les autres notions, aux traités récents
sur la statistique mathématique moderne, parmi lesquels nous signalons
ceux de Cramér [8], de Féraud [10] et de Linder [27].
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En introduisant le revenu u comme variable indépendante, prenant
toutes les valeurs de 0 & oo, nous envisagerons comme donnée fondamen-
tale de la distribution des revenus la fonction de fréquence f(u), sup-
posée non négative, continue et dérivable. Celle-ci dépendra, en général,
de un ou de plusieurs parametres que nous introduirons au fur et &
mesure des besoins. Nous aurons soin de noter f(u) sous sa forme
canonique ou normée, ¢’est-a-dire que les parametres seront déterminés
de telle sorte que soit satisfaite la lo1 des aires:

ff('u) du = 1. (1)

La fonetion f(u) ayant ainsi la dimension dune fréquence relative, il
convient de rappeler que pour passer, dans les applications pratiques,
aux fréquences absolues, 1l faut la multiplier par le nombre I, de per-
sonnes formant I'ensemble dont on étudie la distribution des revenus.

Partant de f(u), on défmit la fonction de répartition ow fonction
cumulative I'(u) de la maniere classique suivante:

U

Flu) = | () dy: (2)

5

sous cette forme, elle donnera la proportion des personnes dont le re-
venu est inférieur ou égal & u. 11 est évident que F(u) est une fonetion
Jamais décroissante, bornée inférieurement par I(0) = 0 et supérieure-
ment, par ['(s<) = 1. Comme nous le verrons au chapitre Il a propos
de la distribution de Pareto, il est parfois plus simple d'opérer avee la
fonction cumulative complémentaire H(u) qui donne la proportion des
personnes dont le revenu est supérieur a u et qui est done définie par:

oo

H) = J fgydy = 1—F(u). (2%
(1
Aussi bien au point de vue théorique qu'au point de vue pratique,
les moments de la distribution jouent un réle primordial. Les moments
ordre I:: M, par rapport & un point a de I'abscisse u, sont donnés par
Pexpression:

My = [ (w—a) ju) du. ()
0

17
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On sait que la suite complete des moments peut caractériser enticre-
ment une distribution. Lorsque les moments seront pris par rapport
a l'origine, nous omettrons l'indice @ = 0 et nous noterons M, ; de plus
nous négligerons l'indice ki =1 de sorte que M wndiquera la moyenne
de la distribution par rapport & l'origine. Lies moments par rapport i
@ = M seront notés par la lettre gothique I, ; rappelons que la dis-
persion (écart quadratique moyen, «standard deviation») est définie
par u, = |/ 9, . Dans les applications, on sera souvent obligé de passer
des moments pris par rapport & un point a a ceux prig par rapport a
un autre point b et inversement. En supposant b > «, les formules de
passage peuvent s’éerire de la maniere symbolique suivante [10]:

M, = [ M- (b—a)], )

J

M, = [[M+ ®—a)]; (3)

on aura somn de substituer dans le développement des binomes les
moments M, aux puissances }M'. Relevons le cas particulier impor-
tant ot @ = 0 et b = M, pour lequel (3') donnera Wi, & l'aide des
moments M., (1 <21 < k), par rapport a lorigine. Rappelons & ce
propos, la relation bien connue: Wi, — M, — M.

En plus de ces notions, importantes pour tous les problemes re-
levant du caleul des distributions, nous introduirons encore deux
quantités ayant une signification spéciale pour les distributions de
revenus. Les fonctions @(u) désignant la somme réduite des revenus < u
et O(u) la somme réduite complémentaire des revenus > u, doivent étre
caleulées o aide des deux formules suivantes:

U

D) — [ 7 i) dn, (4
0
O@w) = | nf(n) dn = M — ®(u); (4')

U

il est évident que @(~) = @(0) = M. Rappelons que nous avons de-
signé par L le nombre total des personnes composant la population
considérée; la somme effective des revenus < w sera alors donnée par
I @), la somme des revenus > u par L @(u) et le revenu total de
toute la population envisagée par L M. (Cest pourquoi nous avons in-
troduit plus haut 'appellation de «somme réduite» pour désigner les
fonctions @ et 6.



Plusieurs auteurs ont proposé encore d'autres notions pour carac-
tériser la distribution des revenus. Cependant toutes ces grandeurs
typiques peuvent étre deéfinies a 'aide des fonetions introduites ci-
dessus. Ainsi, on pourrait obtenir les moyennes partielles, par exemple,
cn divisant soit (4) par (2), soit (47) par (2). Dans le méme ordre d’idées
il nous parait utile de rappeler la notion d'wndice de concentration in-
troduite par Corrado Gimi [17] et qui a récemment fait I'objet d’un
travail en Suisse [4]. En partant de (4'), on peut définir la fonction

O(u)
Y

Ou) = —; (4"

A
puisque 0(0) = 1, on peut désigner cette quantité, donnant la pro-
portion de la somme des revenus supérieurs a « par rapport au revenu
fotal de la population, comme somme complémentaire normée. I.'in-
dice de concentration «(u) est alors détermime par la relation:

0 ) = H(u), (5)
o, ce qui revient au meéme, par

log H(u)

u)y = ——on 15”
) log O(u) '

La signification concrete de ¢ vessort de (5) s1 U'on se rappelle quausst
bien 0 que H varient de 0a 1; en effet, s1 la distribution envisagée donne

1 N O O 1 1
enun point u: 0 = — et H = -——, on peut écrire (—) ——
10 100 10 100

¢'est-a-dive ¢ = 2. Ainsi, un dixicme de la somme totale des revenus

est détenu par un centieme des personnes envisagées, ce centieme ap-
partenant aun groupe des personnes a revenus éleves.

D’autres quantités sont encore utilisées pour la description d’une
distribution ; cependant, elles ne la déterminent en général pas entiére-
ment. Signalons & ce titre les quantiles définis par les abscisses u de

maniére & ce que F'(u) = —, ot j << v sont des nombres entiers (médiane
!

st = 2 quartiles si ¢ = 4, déciles si 7 = 10, percentiles si ¢ = 100).
Une autre grandeur typique est le mode ou la dominante, abscisse du
maximum de f(u); on suppose ainsi I'existence dun seul maximum:
les distributions jouissant de cette propriété sont appelées unimodales.
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3. Considérons maintenant un ensemble de personnes dont chacune
d'elles est caractérisée simultanément par deux variables, le revenu
et Udge r. Noug situons ainsi le probléme & I'intérienr d'un plan écono-
metrique (w,x). Dans ce plan nous délimitons d’abord un domaine D
obéissant aux négalités: 0 << u <<= et zy < & < x,, ol x, signifie la
limite d’ige inférieure et @, la mite dage supérieure entrant en ligne
de compte. A I'mtérienr de D nous définissons la fonction de fréquence
@(u,x), non négative, continue et dérivable par rapport aux deux
variables. Nous chowsissons demblée pour ¢(u,r) la forme canonique.
¢est-d-dire nous exigeons que ¢ soit normé dans le plan (w,x), de
sorte que: o
‘ ’ @(u,r) dudr == 1. (6)

0

Nous dirons que @(u.r) définit la distribution simultanée de la popu-
lation considérée suivant les deux variables uw et .

De cette distribution & deux dimensions dont la fonction de fré-
quence est g(u.x) nous allons tiver, d'une part. par projection sur les
deux axes dewx distributions marginales [ 8] et, d’autre part, en con-
sidérant & tour de role chacune des deux variables comme parametre,
dewx famalles de dustributions conditionnelles. 11 g’agit iei du probleme
classique du ealenl des distributions a deux variables dont nous jugeons
doalement utile de rappeler les grandes lignes. Par la suite — et en
cela réside le fond méme de ee travail — nous aborderons par un autre
cOté le lien existant entre ces fonetions. Mais examinons d’abord com-
ment s'effectuent les opérations clagsiques dont 1l vient d’étre question.

Commencons par la projection de ¢(u,x) sur I'axe des ordonnées z
qui est obtenue par l'intégration suivante en w:

i
A = ] g () du . (7)

0

La masse statistique compléte est ainst rangée selon dge x de sorte
que A(x) donne la structure d’dge de la population envisagée, et cecl
sans egard aux revenus. Cette fonetion de fréquence marginale & une
variable Z(r) est normdée sur axe des z puisque ¢ (w,r) est dans le
plan.

Nous sommes maintenant & méme de définiv la distribution des
revenus d'un ensemble d'dge . Fn considérant r pour un moment
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comme une constante, 11 vient pour la fonction de fréquence de cette
digtribution conditionnelle:

il s s e, (3)

Iin faisant varier o entre ses deux hmites x, et ;. nous obtenons une
famille de distributions conditionnelles de revenus relatives aux dif-
férents ages r. La nouvelle fonction a deux variables f(u.r) définit
ainst des distributions de revenus sur des droites paralleles & axe
des 2. I'n intégrant (8) en w entre 0 ¢f o« on voit que les fonctions fu,x)
sont normdées sur ces drottes. De fu,z) on pourra déduire toutes les
quantites que nous avons mtroduites sous le n® 2.

En projetant g(u,r) sur Iaxe des w, nous détfinissons la fonction
de fréquence de la distribution globale des revenus de la maniere que
voiel:

fu) = ’ @(,x) dr. (9

E)

Cette distribution margmale ne dépend plus de Fage v En intégrant
enw de 0 & ~, on retrouve (6), ce qui signific non seulement que f(u)
est norme sur axe des u, wais encore que toute la masse statistique
compléte est rangée zelon la variable «. Ainsi, on a bien la distribution
globale des revenus de Uensemble complet des personnes considérées,
quel que soit leur dage. Ier encore, nous pouvons appliquer la théorie
des distributions & une variable, exposée sous 12 2. Nous reviendrons
d'ailleurs sur cette question an § 4 ci-apres. — I va sans dive qu'on
pourra encore obtenir, a part les fonctions fu,x), une deuxieme
famille de distmbutions conditionnelleg dont les fonctions de fréquence
s'obticnnent en divisant (u.z) par f(u), ce qui nous donne la structure
d’age spéeifique relative & un revenu w donné.

4. Comme nous avons veleve au n@ 1, les problemes financiers
de la sécurité sociale introduisent, outre les variables w et e, la variable
du temps . Les distributions & deux dimensions envisagées an 1o 3
varieront, en général, d'un plan ¢conométrique a Uautre; en d’autres
termes on sera amené i ctudier co quiose passe a Uintérieur de dif-
férents plans paralleles (rer), de Uespace (fagr). Ainst, Lo distribution

des revenus dans les plaons (i,r), sera caractérisée par la fonetion & trois
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variables ¢, (1,2) et qui donne la densité des personnes vivant a I'ins-
tant ¢, ayvant le revenu uw et I'dge a. On en tive, & Naide des formules (7)
a(9), éerites avee U'indice ¢, les trois distributions suivantes a une seule
dimension, dont les fonetions de fréquence seront notées par:

Ay définissant des distributions marginales donnant la structure
d’dge de la population a I'mstant ¢ (fonctions de fréquence
normees sur des droites paralleles & Naxe des o a Pintérieur
du plan w = 0);

filuor): déterminent des distributions conditionnelles qui définissent
la répartition des revenus d'un ensemble ddge x vivant a
stant ¢ (fonetions de fréquence normeées sur des droites
paralleles a 'axe des u):

fwy: défimssant des distributions marginales donnant la répar-

tition globale des revenus de la population vivant & Uinstant ¢

(fonetions de fréquence normeées sur des droites paralleles &
1

[axe des w o U'intérieur du plan x = 0).

11 sera utile de consulter & propos de ces distributions le eraphique
n° 1 de lannexe 1L

Les observations statistiques ne donnant pour amsi dire jamais
la fonetion ¢, (i.r), nous ne pouvons pas procéder de la mamere directe
envisagée ci-dessus. Les données empiriques sont méme nsuffisantes
pour déterminer toutes les fonetions nécessaires pour caleuler ¢, (uw.2).
Pour résoudre ce probléme fondamental, il est des lors indispensable
d'imtroduire & ¢6té des quelques fonetions fournies par Uobservation
statistique des hyvpotheses plausibles. Dailleurs, méme s 'observation
statistique nous permettait de déterminer completement la fonetion
¢, (u,x), elle ne serait valable que pour le passé. Or, le role essentiel de
lactuaire est de s’occuper de avenir; 1l est vrai quil tire son mstru-
ment de caleal numdérique des observations statistiques, mais il dott
souvent v apporter des modifications qui tiennent compte des ten-
dances d’évolution déja constatées. Comme on effectue en général les
caleuls démographiques séparément des estimations économétriques,
il est plus indiqué et plus simple de procéder aux moditications men-
tionndes en faisant des hypotheéses sur les éléments constitutifs de la
tonetion ¢,(u,). Ainsi, la méthode que nous exposerons par la suite
cardera toujours, du moins dans ses prineipes. toute son utilité.



§ 2. L’échelle des revenus moyens et son inversion

5. Avant d’aborder le probleme qu nous preoccupe, 1l est néces-
saire d'introduire une fonction importante, I'une des trois fonctions
fondamentales qui serviront précisément a calculer ¢,(u,z), les deux
autres découlant sans plus de ce qui a été dit au no 4. Il s’agit de
la lo1 de variation du revenu moyen avee I'age © que nous appellerons
«échelle des revenus moyens», conformément & la terminologie em-
ployée par les actuaires anglais, King [24 ), par exemple. Plagons-nous
a U'mtérieur du plan vertical ¢ — 0 de 'espace (tu,x) et considérons
les distributions de revenus le long de deux droites paralleles & 'axe
des w, I'une correspondant a 'age et autre & la himite d’age inférieure
Ty. En omettant I'indice £ = 0, les deux fonctions de fréquence cor-
respondantes s'écrivent f(u,r) et f(u,xy). Calculons les moyennes de

qu'on néghegera, comme convenu. Il vient pour la moyenne de la dis-
tribution concernant lage x:

(e8]
May == f w f(w,x) du. (10)
0
Le revenu moyven relatif a age de référence x, se caleulant d’une
maniére analogue, nous pouvons rapporter les movennes M(x) a M (x,)
et définir ainsi la fonetion:

M(x)
Sip) = ( -

— (11)
M(xg)

Cette fonction donne précisément Céchelle des revenus moyens. Pour le
moment, elle n’est définie que dans le plan ¢ = 0: mais nous verrons
par la suite que grice aux hypotheses introduites au § 3 ci-apres, elle
ne dépend pas de t. de sorte qu’il «'agit bien d'une fonction de r seul.
proportionnelle & M(x). in vertu des hypotheéses admises la fonction
s(x) est continue et dérivable. Notons encore la relation ¢vidente:

slagl == 1. (117

Si les données empiriques concernant les fonetions de fréquence f(u,x)
manquent, on dispose, en revanche, de quelques observations uant
aux moyennes des revenus par age et, partant, quant & s(2). I'étude
de la variation de s(z) donne comme image classique de cette fonetion
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une courbe croissante de 1 a s" entre x, et 2, ce dernier age étant com-
pris entre x; et z, puis légerement décroissante de s a s, entre 2 et z;
sa concavité est tournée vers le bas. Il est cependant des cas ou s(x)
croit d’une maniére monotone sur tout U'intervalle z,, x,, le maximun
s’ = s, nétant alors attemnt qu’au point z,.

Iin partant de s(x), on pourrait définir d’autres grandeurs, en
particulier Uwnfensité o(x) de la variation des revenus moyens; elle
serait alors calculée selon une méthode analogue & celle utilisée pour
déterminer le taux mstantané de mortalité a partir de la fonction de
survie [(x). On peut établir ainsi un parallélisme analytique presque
complet entre la fonction économétrique s(x) et la fonetion bio-
métrique ().

6. S1 la fonction s(x) est monotone entre x, et x,, il existe wune
fonction wnverse a determanation unwoque:

— (s). (12)
Cependant, s1 s(z) présente en 2" < r, un maximum s, la fonction
mverse p(s) est d determination double. Pour fixer les idées admettons
que l'on ait 1 <Cs; <Cs". Notons la premiere détermination de (s) qul
correspond a la branche croissante de s(x) par y,(s), et la seconde qui
correspond a la branche décroissante par y,(s). De la sorte, nous pou-
vons écrire les relations suivantes, dont nous nous servirons a plusieurs
reprises par la suite:

£

pi(l) = 2 l
) = o) = o | 12)
Walsy) = oy

relations qui se réduiront, dans le cas particulier monotone on &’ = x, a:

p(l) = |

| (127)
w(s) = 2. ,

7. Nous avons fait remarquer plus haut que la notion de I'échelle
s(x) a déja été utilisée par des actuaires anglais, en particulier par
King [24]. (e sont des problémes actuariels ayant trait aux caisses de
pensions qui ont incité cet auteur a introduire «the salary scale». Le
meémoire de King se borne & définir une échelle de salaire tirée des
statistiques d'une caisse de pensions pour une année donnée, en com-
parant les movennes de salaires suivant 'dge des membres de la caisse.



261

1l suppose par la suite que les salaires moyens relatifs & un age z se
développent dans le temps swivant 'échelle observée; il passe ainsi
d'une notion «verticale» & une notion «diagonale» (ef. n°1). Comme
King admet une proportionnalité rigoureuse entre les prestations de
la caisse et les salawres, 1l Il suffit, comme nous le montrerons au
chapitre I1I, de travailler avec les movennes sans faire appel a des
distributions de salaires autour de ces moyennes. [Vessentiel de 'étude
de King est d’ailleurs consacré a 'introduction du «salary scale» dans
les formules actuarielles classiques. L’auteur de ce mémoire releve qu'un
développement tres rapide d'une entreprise peut faire changer la com-
position du personnel de telle sorte que les salaires moyvens relatifs &
an dage donné s’en trouvent affecteés, généralement dans le sens d'une
baisse, du fait que le reerutement du personnel nouveau s’effectue
avant tout pour les occupations subalternes. CUest done un renouvelle-
ment non homogene qui trouble dans ce cas la structure des salaires
de I'entreprise. Dans le cadre de la sécurité sociale, il est rare d’observer
des phénomenes semblables. Chez King, la fonction s(x) se réfere
essentiellement a une notwon collective, de méme que notre définition
initiale selon (11) établie a 'aide des revenus moyens, et non individuels,
dun groupe dage .

Ces applications aux caisses de pensions mises a part, on peut
dire que la notion de l'échelle s(r) a été quelque peu néghgée par les
actuaires. Iin Suisse, on a envisagé des cas particuliers inéaires dans
les travaux [22] et [29] relatifs & 'équilibre financier de 'assurance-
vielllesse et survivants (AVS), ainsi que dans I'étude avant trait a la
situation des caisses de pensions considérée dans le cadre de TAVS [30].
On trouvera dans ces ouvrages, comme dailleurs dans un exposé de
I'Office fédéral de U'industrie, des arts et métiers et du travail sur les
ouvriers accidentés de la (faisse nationale suisse en cas d'aceidents [9],
des indications numériques et graphiques. 1'allare numérique de s(r)
est évidemment différente suivant le sexe, 'état civil, le genre des
revenus considérés (salaive, revenu mixte, ete.) et suivant les groupes
economiques (ouvriers. employés, ete.). Un premier dépouillement des
comptes individuels de 'AVS o permis de déceler pour le revenu du
travail de la population masenline suisse les valeurs saivantes, cecl
en posant s(20) = 1:

$(30) = 2,29; s(40) == 2,65; s(50) = 2,71; s(60) = 2,43.
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§3. Le calcul de la distribution des revenus dans 'espace (t,u,x)
a partir de trois fonctions fondamentales

8. Nous avons déja montré, au n® 4, qu’aussi bien au point de vue
statistique qu'an point de vue actuariel. la fonetion ¢,(u,r) définissant
la répartition des revenus dans tous les plans économétriques (u,z),
nest en général pas donnée a avance. [l taut la caleuler a partir d’élé-
ments plus simples. Montrons comment on peut résoudre ce probleme
en supposant connues les trows fonctions fondamentales suivantes:

10 fo(u,ry) = g(u). qui détermine la distribution des revenus de
I'ensemble d’age r, vivant au moment { = 0, c¢’est-a-dive la
distribution des revenus sur la droite x = z,, parallele a Paxe
des u, du plan £ = 0: nous supposons ¢ (u) normé sur cette droite.

20 s(r), I'échelle des revenus moyens qui définit la loi de variation
des revenus movens avec l'age et qui a été introduite au no 5;
on sait que s(zy) = 1.

30 Z,(xr), fonction a deux variables donnant, a U'instant ¢, la structure
d'dge de la population envisagée: nous admettons qu'elle soit
normée sur toute droite parallele & axe des o du plan bio-
métrique (t,x).

On peut résoudre le probléme en dewx étapes successives. Dans la
premiére, nous déduivons, & l'intérieur du plan ¢ = 0., toutes les dis-
tributions situées sur des drottes paralleles a axe des w et, dans la
deuxiéme étape, nous caleulerons, a partiv de ces distributions celles
se rattachant & tous les plans paralléles au plan initial ¢ = 0.

9. La premiere étape de la résolution consiste done a calculer les
fonctions de fréquence des distributions sur les droites paralléles a Uaxe
des u, et ceci a Uintérieur du plan ¢ = (0. Nous associons, pour un ins-
tant, & la droite x = 1, la variable de revenus «’ et a une droite paral-
[ele quelconque concernant age r la variable w. Nous admettons le

changement de variable swivant:
w=s(z) u'; (13)

en appliquant (13) a la fonction de fréquence g(u’). sa transformée
v 8 ; w
s'eerit, sous sa forme normeée:

x(z) I . 5(7)

nant que cette transformée coimerde précisement avee la fonction

. Nous supposons mainte-
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relative @ la droite parallele de I'ige x: cela constitue notre hypo-

thése A, en vertu de laquelle nous pouvons done écrive:
1 U

folt,2) = —— g

s(x) s(x)

Relevons d’abord que toutes les fonctions de fréquence condition-

nelles fo(u,x) s’cxpriment en w par la méme fonction g. En effet, (14)

montre que c¢’est toujours la méme opération ¢ qui s'applique a la

(14)

variable w, quel que soit r, cette derniére variable n’avant, pour une
droite donnée, que la signification d'un parametre. Certains auteurs.
par exemple Haller [19], considerent les fonctions de fréquence de-
duites de I'une d’entre elles par une substitution linéaire et homogene,
dans le genre de (13). comme appartenant a des distributions «sem-
blables au sens étroity.

(ette appellation nous mene a I'interprétation géométrique des
relations (13) et (14). L’adjectif «semblabley ne parait pas convenir
el pulsquil pourrait laisser sous-entendre que nous sommes en pre-
sence d'une transformation par homothétie, ce qui n'est manifeste-
ment pas le cas. Dans le plan (u.f), les relations (13) et (14) définissent
simplement une dilatation, différente suivant leg deux axes, de la courbe
de fréquence g(u). Nous avons done plutot un cas élémentaire de trans-
formation par affinité. Notons encore que le produt (13) > (14) donne
pour tous les points « correspondant & un «” donné une aire de rectangle
constante et égale a «" g(u'): 1l est ainsi facile de construire une courbe
folr.r) quelconque & partir de la courbe g(u’).

(‘aleulons encore la movenne de la distribution définie par (14):
il vient, en tenant compte de la transformation (13):

:

, 1 (7
M) = —— | uy|l—-|du=s(z) | 4 g)du, de sorte que:
‘ s(r) "1 s(x)

1] 0
Mgy == (o) M%) (147

ce qui prouve que la distribution définie par (14) admet précisement s(r)
comme lov de variation dw vevenu moyen. Ce résultat n'a d’ailleurs rien
détonnant lorsqu'on se rapporte & Uinterprétation individuelle de la
transformation (13) sur laquelle nous reviendrons brievement au n® 11
Cl-apres,
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10. Lia deuxieme ¢tape condutsant a la solution de notre probleme
consiste a passer des distributions dans le plan ¢t = 0 a celles des plans
paralléles se rattachant & un instant ¢ quelconque. Pour opérer ce pas-
sage, nous admettons que 'on puisse éerire:

flum) = folu.z) = flu,z), (15)

ce qui revient a introduire Uhypothése B, selon laquelle toutes les dis-
tributions de revenus sur les droites concernant un age x donné restent
les mémes, quel que soit I'mstant ¢ envisagé. Leurs fonctions de fre-
quence, indépendantes de ¢, se calculent donc directement a partir des
deux fonctions fondamentales ¢ et s, selon la formule (14). IEn passant
du plan t = 0 & un plan parallele. nous effectuons done une simple
translation des courbes de fréquence: ces dernieres sont ainsi normeées
sur toutes les droites paralleles & l'axe des .

Nous pouvons immédiatement trouver le lien entre les fonctions
polu,x) et @ (u.x) concernant les distributions dans les plans paralléles
au plan t = 0; en vertu de (7) et (8) notés avee 'indice ¢, (15) permet
déerire: )

@ ,x] = AI(—L)— Polu,x) . : (106)
Z(L)
Reste & montrer que ¢,(u,x) se caleule directement & partir des trois
fonctions fondamentales. De (16) on tire d’abord:

p(w,x) = A(x) f(u.x); (17)

en substituant a fu,x) son expression selon (14), nous trouvons

finalement:
Al i -,
(‘[:l(‘“‘rl? s ’(l §|—1. (TI )
s(r) s(r) |

Adnst, le caleul de ¢, (u,xr) & partiv des trois fonctions fondamentales
Alr). s(x) et gu') Seffectue dune maniere simple pour tout point
de espace bio-¢econométrique. Fin intéorant (17) en w ot en & sur tout
le domame de définition, on voit mmmédiatement que la fonction ¢,
est normée dans le plan (u,z),, 4, et f ¢tant normes sur des droites,
comme nous l'avons admis au n° 8.

Connaissant deés lors la distribution des revenus dans tout Uespace,
nous sommes maintenant & meme d'en déduirve les distributions globales
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relatives awx personnes vivant a lnstant t. I1 suffit pour cela d'appliquer
la formule de projection (9) éerite avee l'indice #; aingsi, il vient. en
tenant compte de (17):

f,(a) = f ' iy () AT = J Ax) flu.x) dor, (18)

ou l'on peut, le cas échéant, remplacer f(u,x) par son expression (14).

11. Résumant les résultats acquis grace a Uintroduction de nos dew.r
hypothéses A (dilatation) et I3 (translation), nous pouvons affirmer
(ef. graphique n° 1):

10 La fonetion ¢,(u,x), donnant la distribution des revenus dans
un plan parallele quelconque au plan t = 0, se caleule en chaque
point de I'espace par (17) a laide des trois fonctions fonda-
mentales 4,(x), s(x) et gu’). Elle ne dépend de t que par I'inter-
mediaire de la fonction biométrique 4,(x) seule.

20 La fonetion f(u,x), déterminant la distribution des revenus sur
toutes les droites paralléles a I'axe des u. se ramene & une fone-
tion de fréquence f(u,z), indépendante de t, valable pour tous
les ensembles d’age x; elle se calcule par (14) & l'aide des deux
fonctions fondamentales s(x) et g(w') et s’exprime, par rapport
a la variable w, par la méme fonetion ¢, ceci quel que soit ..
Les courbes de fréquence pour un age z s’obtiennent par dilata-
tion a deux dimensions & partir de la courbe de fréquence de
I'age x,.

30 La fonction f,(u), définissant la distribution globale des revenus
de la population vivant & 'instant ¢, se calcule selon (18), et ne
dépend de 1 que par Iintermédiaire de la fonetion biométrique
A1) seule.

Par la formule (147), nous avons mis en évidence que la distribution
définie par f, (u,r) admettait s(z) comme loi de variation des revenus
moyens avee 'dge. Du fait de la relation (15), qui n’est autre que l'ex-
pression de I'hypothése 3, nous pouvons maintenant affirmer que
toutes les distributions de revenus sur des droites paralleles a Iaxe
des w admettent, quel que soit ¢, s(x) comme échelle des revenus moyens.
L’échelle s(x) est done bien une fonction de x seul. En particulier, ce
qu précéde est aussi vrai pour des effectifs liés biométriquement,
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¢'est-a-dive qui évoluent, dans le plan (f,2) sur une diagonale (¢f. no 1).
Considérons, pour fixer les idées, un etfectif L,(x,) qui deviendra,
t années plus tard, Ueffectif L,(xy +t). les deux se trouvant sur la
diagonale x = x,+4t; c¢’est dlailleurs dans ces conditions qu’a été

¢tabli le graphique n° 1 de Pannexe I1. Le premier de ces effectifs se
distribuera en w selon f(u,xy) et le second selon f(u,x). Fn reprenant
le caleul aboutissant a (147), on aura encore: M(x) = s(x) M(x,), de
sorte que ces effectifs lics biometriquement admettent ausst la loi s(x).
De cette maniere, la transformation (13) peut étre interprétée a titre
mdividuel; elle signifie alors que le revenu de chaque mdividu d'age &
se dilate au cours de sa carriere selon (13). Ainsi, la notion s(x), définie
au § 2 comme notion «verticale» et valable pour t = 0, se transforme
en notion «diagonale», d'une maniere d'ailleurs analogue & ce qui a
¢té fart par King, comme nous avons déja relevé au no 7.

Reste & savorr st nos hypothéses A et B sont plausibles. Nous venons
de voir que I'hypothése 4 revient a admettre une dilatation s(z) uni-
forme pour tous les revenus au cours des carrieres individuelles. [i'hypo-
these B n'est pas moins plausible; en effet, lorsqu’on admet une unité
monétaire intrinseque a pouvoir d’achat constant, ce qui est habituelle-
ment le cas dans une méme série de caleuls actuariels, le mveau moyen
des salaires pour un dage donné ne subit, en regle générale, que des
fluctuations relativement faibles au cours des années. Les variations
des revenus moyens dues a un changement brusque dans le renou-
vellement, tel qu’il a été signalé par King (ef. no 7) dans le cas parti-
culier d'une entreprise industrielle, jouent, pour I'ensemble de la popu-
lation, un role beaucoup moing marqué. Il serait d’ailleurs bien dif-
ficile de remplacer I'hypothese BB par une autre, plus plausible encore;
il faudrait alors faire ceuvre de prophete et prédire I'évolution éco-
nomique elle-méme.

La formule (17) montre que les calculs démographiques de T'ac-
tuariat peuvent étre effectués imdépendamment des calculs ceono-
métriques. Ainsi, on est a méme de calculer I'élément démographique
ou biométrique A,(x) selon toutes les finesses de I'actuariat classique
en mettant en jeu les intensités de sortie et de renouvellement. Lorsque
les effectits L,(x) = [, 2,(x) sont ainst détermimés, on leur appliquera
les fonetions économétriques f(u,x). On voit par la méme formule (17)
de quelle maniere on tend vers ['édtat stationnaire. Fn vertu de
I'hypothése B, la composante économétrique relative & un age x est



stationnaire des 'instant ¢ == 0. En revanche, la composante brométrique
relative au méme dage r ne tend, en général, vers I'é¢tat stationnaire,
caractérise par la structure d'ige de lordre de survie I(x), que lente-
ment et par oscillations successives. De ce fait, 'état stationnaire
économétrique concernant ensemble de la population. et non plus
pour un seul age x, n'est réalisé qu'en méme temps que 'état station-
naire biométrique. Ainsi, par exemple, la somme des revenus de la
population qui est caleulée selon (4) & laide de f,(u), déterminé lui-
méme par (18), vartera avec ¢ en méme temps que A, (z).

§ 4. Le calcul de la distribution globale des revenus a I'époque ¢

12. Nous venons de voir que les distributions de revenus dans
deux plans économetriques (w.r), et (w,r), ne different entre elles
que par les deux fonctions biométriques A4,(x) et A,(r). Or, comme
nous nous proposons de dégager ['aspect économeétrique du probleme,
nous pouvons concentrer notre attention sur un seul de ces plans; il
est en effet facile de passer ensuite, & laide de (16), de I'étude faite
dans un des plans, & celle entreprise dans un autre. Nous supposons,
cependant, que ¢,(u.x) n'est pas donné d'emblée, mais reconstruit a
l'aide des tonctions fondamentales 4, s et ¢ comme le veut la méthode
exposee au § precédent; ¢, se caleule done selon les formules (17) ou
(177). Pour simplifier I'écriture, nous omettrons dans la suite l'indice ¢
et nous noterons, en particulier. A(r) a la place de 4,(r). Iin plus de
cette fonction, nous supposons la fonction de fréquence conditionnelle
fu,x) également connue; nous la noterons directement sous cette
forme, sans cependant oublier qu'elle est calculée selon la formule (14).
Nous sommes done en possession de toutes les données permettant
de caleuler, outre g(u,r), la fonction de fréquence ]T(fu), pour laquelle
nous avons déja établi la formule (18). Le caleul de ¢ ne posant plus
de problémes spéciaux nous examinerons dans ce § le caleul de la dis-
tribution marginale sur Uaze des u, & partir des distributions condition-
nelles sur les droites paralleles & cet axe: nous étudierons d'une maniere
plus approfondie, non seulement les fonctions de fréquence. mais
encore, les autres fonctions statistiques ayant trait a la distribution
globale des revenus, telles que les fonctions cumulatives, les sommes
de revenus et les moments.
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Jusqu'icl, nous avons toujours suppos¢ que la variable des re-
venus % prenait toutes les valeurs comprises entre 0 et ~ en admettant
cependant (cf. n°2) pour la fonction de fréquence certaines valeurs
nulles. Parmi les fonctions de fréquence, 1l en est dont I'intervalle de
définition ne commence qu'aveec un point d'abscisse a positive, et
d'autres dont l'intervalle est borné supérieurement par un point
d’abscisse b, également positive. Cette remarque vaut en particulier
pour les distributions dites tronquées [8]. Aussi, pour ne pas limiter
I'étude du probléme par le choix des bornes particulieres 0 et ~, nous
supposons que 'intervalle de définition de la fonction de fréquence
fondamentale f(u', x,) soit donné par le segment «, <= u’ < by, ol a,
et by, sont des nombres positifs; f est alors normé sur ce segment,
puisqu’a 'extérieur de celui-ci la masse statistique est indentique-
ment nulle. Il est évident que I'intervalle de définition d'une fonetion
de fréquence f(u.r) quelconque subit alors la dilatation (13), de sorte
que f(u,x) sera défint dans un intervalle ays(r) < w << by s(x). En
faisant varier z, les bornes inférieures deéfiniront dans le plan (wu,z)
une courbe (a) et les bornes supérieures une courbe (b), dont les équa-
tlong sont respectivement: 7

€ =1, 5(x); (19)

&=y 8l2) s (19)

Lie domaine de deéfmition D de la fonction g(u,x) prend alors la forme

imdiquée au graphique n® 2 de l'annexe II. Il vient en particulier. si
I'on se reporte au n° 5:

Gy == g BlE)» Oy == by 80}, |

8 = 3@y, U= b 88, |

(197)

Dans la suite, ce sont avant tout les relations inverses, introduites au

& =
S 6 ; -
n% 6 avee s = — = ——, qui seront utilisées:
a, by
£ e
FoE N ; (3
g == 1{”[( E—— ) == '1;,!2.( e ) . (20)
e \ by

ol 1 =1 ou 2, suivant la détermination entrant en ligne de compte;
ainsi 'on aura les valeurs particuliéres ci-apres qui découlent aussi
de (127):
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B = wm() - wl,z(m) (20')

Uy b()
o b

Ty = Y2 (Z—l) = Yy (b_l)
s B L by

Rappelons que dans le cas on s(x) croit d'une maniére monotone, x,
coincide avec ', de sorte que w(s) est a détermination univoque.

En admettant pour f(u,x,) des distributions classiques (voir par
exemple la liste des distributions établie par Haller [19]), le domaine
de défination D ainsi établi se simplifie évidemment; souvent on a une
des trois possibilités: 10 ay =0, by = oc; 20, > 0, by = ~ et 39 @, =0,
0 << by << ~. Ainsi, la courbe (a) peut se confondre avec I'axe des
et la courbe (b) étre repoussée a 'infini. II est cependant toujours pos-
sible de reporter a un point «, situé a gauche de I'origine une fonction
de fréquence dont I'mtervalle de définition commence a 0; il suffit
pour cela de passer & la nouvelle variable w’ par: w =« —a,. De la
sorte, le cas 20 ci-dessus peut étre aisément réalisé. Il faut souligner
que le cas géneral 0 <<, << b, << ~ correspond beaucoup mieux a la
nature de la variable u«, puisque le revenu ne devrait pas descendre
au-dessous d'un certain minimum vital @, d’une part, et ne saurait
dépasser un certain maximum, si grand fut-il, d’autre part. Cest la
drailleurs un des postulats avancés par M. Fréchet [14] et sur lequel
nous reviendrons au chayp. L

13. Conmnaissant la configuration exacte du domaine de définition
de @(u,r) = A(x) f(u,z), nous pouvons caleuler explicitement la fonc-
tion de fréquence f(u) donnant la distribution globale des revenus.
Nous dégagerons ainsi le lien entre les fonctions de fréquence condition-
nelles f(u,x) et la marginale résultante f(u). 11 ressort du graphique
n% 2 quil faut distinguer sur 'axe des u cing intervalles qui ont été
désignés par (1), (17, (2), (3) et (3"). L'intégrale de la formule (18),
prise entre les limites x, et x, doit étre remplacée, selon l'intervalle
envisagé, par les intégrales ci-apres ; on notera, par exemple, une intégrale

el
! Ax) f(u,x) de par le symbole | zy,2,] et on se rappellera les relations

Jn

18
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(20) avee & respectivement J = w. Kn désignant par ]7]- (u) la tonction
de fréquence sur I'intervalle (7), on aura en admettant de plus o' << b,:

- I U
g << U <dy: fy(u) = |z, %( )
)
: i, T | u- =)
ap =L <Zals fr(u) = | o, 1/)1(' " ) + 1.1’2( - )5 &y
o Ll
a < u<<b, }72 () = [.1*0, 4] 91)

b << Toto = ol
0 v Y0

Ces formules permettent done de déterminer la fonction de fréquence
marginale f & partir des fonctions de fréquence conditionnelles, en
pondérant ces dernieres avec la fonetion de fréquence donnant la
structure d’age; nous pouvons alors désigner A(x) comme fonction
pondératrice. Lorsque s(x) croit d'une maniére monotone avec .,
w, se confond avec a’ et by avec b, de sorte que les cinq intervalles
se réduisent & trois: (1), (2) et (3). Dans ce cas on peut caleuler sur
I'intervalle (1) par exemple, la fonction de fréquence de I'ensemble
mixte par la formule explicite ci-apres:
“la)
fi(u) = fﬂ(m) fu,x) dx. (22)
o
Cette formule nous servira encore au § suivant. Sur les autres ter-
valles, cette fonction se calculera d’ailleurs d'une maniére tout a fait
analogue, méme dans le cas non monotone, amnsi que nous l'avons
montré symboliquement par les formules (21).
14. I’ analyse des cing expressions (21) trouvées pour f(u) montre
(que nous sommes bien en présence de cing fonctions différentes de u.
Ainsi, la courbe de fréquence de la distribution globale des revenas
se compose de cing branches différentes. Les formules font ressortir
que les ordonnées aux points de jonction comcident. Quel est main-
tenant la nature du contact en ces pomnts? En général, ce contact est
de lordre 0, ¢’est-d-dire qu'il y a, comme nous venons de le faire
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remarquer, simple raccord non-tangentiel entre les différentes branches.
Nous pouvons cependant examiner les conditions de raccord tangentiel
entre les cing branches de la courbe de fréquence, ¢’est-a-dire les con-
ditions de contact du 1er ordre. Nous attachons une certaine impor-
tance & ce probléme, vu que quelques auteurs ontl essayé de trouver,
dans le cas particulier des distributions de Pareto, un raccord satis-
faisant entre une courbe de Pareto pour les revenus supérieurs et une
autre courbe pour les revenus inférieurs. Ces essals n'ont guére été
fructueux: M. Fréchet [15] a proposé, dans ce cas particulier, une
formule qui réalise un simple raccord, sans cependant étre tangentiel.
Nous allons montrer que les conditions de raccord tangentiel sont
simples et souvent réalisables dans les applications. Pour obtenir ces
conditions pour les quatre points de jonetion a,, @', by et b, il suffit
de calculer les dérivées premieres des cing branches a partir de leurs
équations (21) et de les égaler deux a deux aux quatre points de con-
tact. kn ce qui concerne les calculs, il convient d’appliquer les régles
de dérivation d’une intégrale définie, dont aussi bien les limites que
la fonection sous le signe de somme dépendent du parametre .

(Considérons, par exemple, le contact au point w = a,. D’apres
(21) les deux branches concernant les intervalles (1) et (1) ont res-
pectivement les deux équations explicites que voien:

f—. 1 (1) = f Alx) f(u,x) de et
folu) = ' A(JIL) fluw,x) dr + f M) fur) de,

b}

. i L
ot les limites y, et , sont fonctions du rapport - . Pour les dérivées
0,

premieres il vient: 0
W' )
R A 7 R
filw) = } AMz) ————dx + Myy) flup) —. et
. o (o
.(?1 | |
- ) ¢ f(u,x) P,
fow) = | Ax) ———dw + Ayy) flu,yy)
. cu g
Lo
3 ¢ f(u,x) ‘ N
+ | Hm) — dr — Apy) f(1,py)
(el (y



— 272 —

81 l'on écrit les valeurs de ces dérivées en w = a, et si l'on égale les
y 3 P = . .
résultats, on voit que les deux premiers termes de f,, sont identiques

oy
T . s N 1
aux deux termes de f;: de plus, on sait d’apres (207) que y, t ——-) == 4
X (10 ¥
4 s 11 7 B § 3 ' ”1 ]
de sorte qu’il suffit d’annuler le prodwit A(ay) f(ay,x,) %(, ) pour
@
g

obtenir I'égalité des dérivees premieres en . lin procédant d’une ma-
niere analogue pour les autres points de contact, nous obtenons dés
lors les quatre conditions suivantes pour les raccords tangentiels en:

’ ”l
s Amy) flagxg) vy (ﬁ) =0
\ g /
) a’ / a’
a’t AxT) flaaf) wl( )‘%("*) = (]
g (ty /

(23)

) (o
bo: Axo) [(bo-ro) ¥y (b ) =0

0

N\

: /b
by Aay) flbyay) %( bl) 0.

0

Pour obtenir les raccords tangentiels, 1l suffit d'annuler dans les quatre
conditions ci-dessus un seul des trois facteurs. On examinera dans
chaque cas concret, s1 la jonction tangentielle peut étre réalisée en un
seul ou simultanément en plusieurs, voire en tous les points envisagés.
En particulier, on regardera de pres ce qui se passe an point o’ ol
w, - w, peut amener une indétermination. Cette étude se simplifie
évidemment dans le cas monotone de s(). les quatre conditions se
réduisant alors & deux, ¢’est-a-dire a celles concernant «a, et b,. Nous
verrons au chapitre 11 quelques exemples concrets.

15. Nous avons démontré, au n® 9, que les fonctions f(u,x) s’ex-
primaient toutes, grace a la dilatation effectuée selon hypothese A,
par une méme fonetion en w. Il est deés lors naturel de se demander s
la courbe de fréquence marginale f(u) peut également appartenir a la meme
famille de fonctions en w que les fonctions de fréquence conditionnelles
flu,r). Nous allong montrer que tel est effectivement le cas sur
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I'intervalle (2) lorsque la fonction fondamentale g(u’) se présente sous

la forme suivante: . B
fl(’ \

g(—) =4 (—)- (24)

\ S N\ S

De cette fagon, 1l viendra pour la fonction de fréquence a deux
dimensions @(u,z), en tenant compte de (17) et (14):

plu,x) = 4 Ax) s B r) ub (25)

Iin effectuant la projection sur 'axe des 1, nous obtenons des lors pour
la marginale sur Uintervalle (2):
.f"l

folu) = Au® ] Ay 575 (%) das

*o
Pintégrale a limites fixes iy et @, se réduit & une constante K, de sorte
que f, est de la forme: = .
e f» fo i} == Oy®, (26)
et appartient done a la méme famille de courbes que ¢ et, partant,
que f(u.x). Kn revanche, sur les autres itervalles (7) ~ (2), les inté-
orales de (21) dépendent au moins d’une limite variable avec wu; ainsi
on arrive & une expression de la forme:

filw)y = Lufhy(u): (26")

sur quatre intervalles done, la courbe de fréquence marginale n’ap-
partient en général plus a la méme famille de courbes que les con-
ditionnelles. Dans le cas d'un s(x) monotone, il ne demeure que deux
intervalles olt f ne 8’exprime plus & laide de la méme fonction que
flu,x). Nous avons insisté ici sur cette forme particuliere (24) de
la fonetion fondamentale ¢, vu que nous examinerons, au chapitre 11,
deux distributions dont les fonctions de fréquence prennent précise-
ment la forme dont il vient d’étre question: 1l s’agit des distributions
hyperbolique et parabolique.

16. Nous avons rappelé au n® 2, outre la fonction de fréquence,
les principales fonctions statistiques caractérisant les distributions a
une seule dimension. Indiquons ainsi les liens qui existent entre ces
autres fonctions de la distribution marginale sur l'axe des %, d'une
part, et celles des distributions conditionnelles paralleles a cet
axe, d’autre part. Qu'en est-il d’abord des fonctions cumulatives?
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Introduisons, conformément aux formules (2) et (2'). les définmitions

que voicl: solent "
P = ] f(n,z) dn, (27)
Hur) = [ f(n.x) dn, (27")

la fonction cumulatwe pour les distributions conditwnnelles et sa com-
plémentarre, les limites & et £ étant définies selon (19) et (19). Notons

u
que pour u > by F(u.x) =1, pour autant que 1 <y, ( — 1 et

L0
U 70
T =, ( I; ) . On a, d’'une maniére analogue pour certaines valeurs de 2

Q
H{u,z) =1 & condition que w <Ca'. — Signalons encore les lois de
transformation de I'(u,xz) et H(u,z) par rapport a la substitution (13).
[in partant, pour Uage xz,, de '(x, x;) on trouvera sans plus:

7

R
et une relation analogue pour H(u,z). Les fonctions cumulatives des
distributions conditionnelles se déduisent donc d'une maniére tres
simple de la cumulative relative a Idge z,. Géométriquement, dans
le plan (u,F), (28) revient a une dilatation dans une seule direction,
celle de I'axe des u. En dérivant (28) par rapport & w, on retrouve
évidemment (14).

Flug)y = F

b

Pour les fonctions cumulatives de la distribution marginale, 1l vient:

U
.

Flw) = [ f(n) dn, (29)
y
H(w) = | F(n) do. (29)

81 nous remplagons dans (29) f(n) par ses expressions (21), et si nous
mdiquons par x(u) le chemin d’intégration H x, de longueur variable
avee le w considéré. la cumulative s’obtient par l'intégrale double gue

VOICT "

Flu) = [ dn [ i) fi,r) dr = (3@ as f jo.) dy

0 ,r"u 2o
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Pour comprendre I'alternative { ou u de la limite supérieure de I'in-
tégrale en » reportons-nous & la configuration exacte du domaine
d’intégration reproduit au graphique n° 2. Choisissons un point % dans
Iimtervalle (3") et menons par cette abscisse une parallele & 'axe des .
Cette parallele est décomposée par la courbe (b) en segments désignés
par e (extérieurs) et ¢ (intérieurs). Pour les dges x relatifs aux segments ¢
1l suffit de prendre la limite ¢ va qu’il n'y a pas de masse statistique
a droite de la courbe (b); ainsi les intégrales correspondantes égalent
I'nmité, les fonetions j étant normées. En revanche, pour les x con-
cernant le segment 1 la limite sera donnée par le « considéré; les in-
tégrales en 3 se réduisent done grace a (27) a F'(w,z). Silon décompose
Fintégrale en x selon les segments © et e, il vient:

() = [,t(r) Fw,r) dr -+ ’"/1(;15) dx. (30)

1 (Tu) e(w)

Les segments ¢ et e sont évidemment fonctions de w. 81w << by, 1l 0’y a
gque des segments 1 de sorte que le deuxieme terme de (30) disparait.
Amnsi, et vu qu’a gauche de (a): F(u,x) = 0, 'intégrale le long de 2(u)
est limitée, dans les intervalles (1), (17) et (2), de la méme maniére
que dans les troig premieres formules (21). En revanche, dans les inter-
valles (3) et (37). 1l vient s’ajouter aux intégrales le long de o(u), limitées
comme dans les deux dernieres formules (21), une, respectivement deux
mtégrales le long de e(u). — Un raisonnement analogue permet d’écrire
la relation suivante pour la cumulative complémentaire, en remarquant
toutefoils que ¢’est la courbe (@) qui détermine cette fois les segments
1 et e

() — | M) Hur) do = [ M) de, (30
lLu) qu‘w
ou, cependant, le deuxieme terme disparait dés que u > a’. — Dans

le cas banal ot le domaine D est rectangulaire (30) et (307) se réduisent
a la premieére intégrale, limitée par x, et x;. — Les fonctions ;' et [
auront ainsi dans le cas général, suivant I'intervalle envisagé, une autre
expression et partant donneront lien a cing branches de courbes dif-
férentes. On vérifie aisément, pour chacun des cing intervalles (7). les
relations /7 (u) = f,(u) et [ (u) = f;(w): ainsi les contacts awx points
de jonction des cing branches de la cumulative marginale ne sont pas
seuleinent tangentiels, c¢’est-a-dire d'ordre 1, mais encore dordre 2,
pourvu que les conditions (23) soient remplies.
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17. Nous pouvons raisonner d'une maniere semblable sur les
sommes rédutes des revenus, telles qu’elles ont été définies par les for-
mules (4) et (4'). On aboutira ainsi au lien entre @(u,z), relatif aux
distributions conditionnelles, et @ (u), relatif & la marginale, ainsi qu'a
celui entre O(u,x) et @(u):

Bu) — j A(@) D(u,z) do + j'z(.q,-) M(x) dur (31)
i{2) efu)

Aw) = fﬂ(a (u,x) dx +j A(x) dx, (31"
e(u)

ou M (x) représente la moyenne d’une distribution conditionnelle paral-
lele a T'axe des u. — Indiquons encore la loi de transformation des
fonctions @(u.x) par rapport a la substitution (13):

U
———, ;L-O

s(x)

18. Il reste a étudier les relations entre les moments de la distribution
sur 'axe des w et ceux des distributions sur les droites paralleles. Nous
nous bornerons & exposer le cas des moments par rapport a absecisse
u = 0, les moments par rapport & une abscisse quelconque étant alors
obtenus par les formules (3") et (3”). Sotent M, (z) les moments
d’ordre & pour un age r quelconque; nous aurons en appliquant la
substitution (13):

D(u,x) = s(x) D (32)

bo
M, (z) = J w¥ flu,x) du = s"(x) [ W gy du,
de sorte ' ) K .
¢ sorte que M, (x) = $*(z) M, (z,); (33)

cette relation donne la loi de transformation des moments a partir
de ceux correspondant a I'dge de référence z,. La formule (14") n’est
qu'un cas particulier de cette relation générale. — Désignant main-
tenant par 3, les moments de la distribution marginale sur l'axe
des u, nous obtenons:

b’ bl 3
fu f(u) du = u dufl () flam)de = f& ) dx ]u f(uw,x) du:

ansl, 1l vient:
&y

M, = j'z(ac) M, (x) dw — [ M) () do. (34)

To Ly



— 217 —

De la sorte, les moments de la distribution marginale apparaissent
comme les moyennes pondérées des moments des distributions con-
ditionnelles. Comme nous l'avons vu, cette propriété est d’ailleurs
commune aux autres fonctions statistiques f, F et @ définies a l'in-
térieur du plan (w,z),, ce qui justifie bien lappellation de fonction
pondératrice pour A(x).

§ 5. Les équations intégrales d’un probléme connexe

19. Posons-nous la question s'1l est possible de calculer la fonction
de fréquence a deux dimensions g(u,x) & partir d'un couple quel-
conque de fonctions choisies parmi f(u,x), A(z) et f(u). Seul le premier
des trows problémes possibles a été envisagé jusquici, ¢'est-a-dire la
détermination de ¢ a l'aide des conditionnelles f(u,x) et de la marginale
A(x); la solution est alors donnée par (17). La deuxiéme possibilité
ot on se donne les deux marginales A(x) et f(u) méne, en général,
& un probleme indéterminé; on sait, en effet, que celui-el n'a une
solution déterminée que dans le cas de distribution indépendante des
variables = et wu et ot ¢(u,xr) est par définition le produit des deux
marginales 4 et f. Or ceci est en général exclu dans notre méthode,
vu la dépendance des distributions postulées par hypothése 4 (cf. n© 9):

Reste le troisieme cas ot 'on se doune les deux fonetions f(u,x) et f(u).
Comme le montre (17), 1l suffirait de déterminer d’abord A(x) pour
connaitre ensuite @(u,z). Nous allons montrer que A(x) peut précise-
ment étre calenlé & partiv de f(u.r) et f(u) & l'aide d'une équation
mtégrale.

N’oublions cependant pas quiil sagit 1a d'un probleme d'intéret
plutdt théorique. Iin effet, on peut admettre que dans les applications
la structure d’dge A(x), done 1'élément démographique, est toujours
donnée avant les distributions des revenus f et surtout f(w,x). Au
point de vue théorique, en revanche, on peut se donner pour j une
certaine fonction en u (par exemple une semi-normale) et pour f(u.x)
une autre (par exemple une hyperbolique), cette derniere dépendant
en méme temps d'un paramétre 2. On recherchera alors la fonction A(x)
qui amene la compatibilité statistique des dewx fonctions connues f et
fw,). Vu la nature théorique de la question, nous nous bornerons a
envisager quelques cas simples et, en particulier, nous admettrons



pour s(x) une fonction monotone. Amsl, le domaine de définition
de @(u.,z) se simplifie, puisque @, se confond aveec ' et b, avec b’

20. Ainsi que nous l'avons dit au n°® 12, le domaine ) dépend,
non seulement de s(z), mais aussi de I'intervalle de définition de la
fonetion fondamentale f(u,x,). Invisageons d’abord le cas ott I'on a:
0 < u < ~. Les relations (21) se réduisent alors a:

flu) = ] Ax) flu,x) d. (35)

8
i

En se donnant f(u) ainsi que f(u.z), qui sera pris comme novau, l
pondératrice A(x) sera la fonction anconnue de Uéquation a limates fixes
de premaére espéce (type de Fredholm). Ce genre d’équations est, parmi
les tvpes classiques, le plus difficile & résoudre. On trouvera quelques
mdications quant aux méthodes de résolution par exemple chez
Goursat [18] ou chez Paul Lévy [26]. Il faut évidemment écarter les
solutions négatives sur z, << x < 2,. celles-c1 signifiant I'ilncompati-
bilité statistique des fonctions f(u) et f(u,z). Il n'est done pas certain
que toutes les solutions admises au point de vue analytique aient un
sens statistique. Notons encore que si Pon s'impose pour f(u) ainsi que
pour f(u.r) la forme normée, la solution A(x) sera normée également.

21. Considérons maintenant le cas le plus fréquemment rencontre
dans les applications ou I'on a pour la fonetion fu,zy): ay << w << ~.
Pour I'intervalle (1) nous sommes alors en présence de 'équation (22)
et pour lintervalle (2) c’est la formule (35) quiil sied d'envisager.

Opérons sur (22) le changement de variable: 2 = vp( : ) Les
!
limites d’intégration en & seront alors, pour v = x,: & = a, et pour

i 1/){ ): £ — . I’on obtient ainsi, en posant au préalable:

a
: ) £ NERW £\
ME) = A ?/:( ) fqr( ) et flu,&) = f|u, zp(—)
| ay tay ' g NG/
la relation que voiel:
Frlu) = [ 2(8) fu.8) ds. (36)
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[’équation (22) a, de la sorte, pu étre ramenée au type classique
d'équation de Volterra de premiére espéce, dont la solution pourra étre
trouvée en la transformant en une équation de deuxiéme espece.
relativement facile & résoudre par la méthode du noyvau résolvant.
Si I'on se donne pour f,(u) et fy(u) la méme courbe d’ensemble,
I'équation (35) devient le cas limite de (22) et se trouve résolue du
méme coup. Autrement il faut caleuler f, & I'aide des 4 obtenus &
partir de f,.

Un cas élémentaire de solution se présente lorsque le noyau f(u,x)
YT 5 s o » .
est dégenére. Cecl arrive en particulier si 'on admet pour la fonction

fondamentale ¢ la forme (24), puisqu’on a alors:

Huz) = A 4% 5% (a). (37)

Substituons cette expression dans (22) et effectuons le changement de

ariable & = y)( _); I'on obtiendra amsi I'équation de Volterra &
novau dégénéré:
(1 i
Fum) = Aaf*'uP [ A& EFag. (37"

Qo

En ultipliant des deux cotés par w™” et en dérivant par rapport & .
la solution s’exprime comme suit:

- (37"

ol I'on passera de u & x par le changement de variable (19). Si le numé-
rateur esl positif, les fonctions f, et f(u,z) sont compatibles au point
de vue statistique. — Lorsque (24) respectivement (37) a lieu. la
deuxieme branche f,(u) doit étre une méme fonction en w que flu.)
et différe donc, en géndral, de f, (u). La solution A(x) trouvée par (37")
doit alors servir a calculer fz(u) a laide de (35), puisqu’alors on ne
saurait se donner f,(u) arbitrairement.
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Chapitre 11

Formules de répartition des revenus

§ 1. Postulats, méthodes déductives et vue d’ensemble

22. [’étude mathématique de la théorie de la répartition des re-
venus date d’un demi-siccle environ. A Torigine de cette nouvelle
orientation des recherches, on trouve le nom de Vilfredo Pareto [31].
Fin effet, ce dernier a proposé une formule analytique simple pour
exprimer la fonetion cumulative complémentaire de la distribution
des revenus. Appliquée a des données d’obgervation nombreuses pro-
venant de plusieurs payvs, cette formule s’avéra excellente pour inter-
préter la répartition des revenus, pour le moins celle des revenus moyens
et élevés. Depwis lors, de nombreux auteurs ont essayé d’améliorer
cette expression analytique, dans le sens d’une adaptation plus par-
faite anux observations statistiques, surtout en ce qui concerne les petits
revenus pour lesquels la formule de Pareto ne peut guére s’appliquer.
(‘e n'est que tout récemment que ces recherches ont été orientées
dans une direction nouvelle. Cest & Maurice Fréchet [14] que revient
le mérite d’avoir donné un fondement probabiliste a cette théorie,
esquissee tres brievement cl-apres au no 23. Les recherches effectuées
dans les deuwz directions dont 1l vient d’étre question n'ont cependant
pour objet que la distribution globale des revenus; en revanche. nous,
nous plagons dans les ensembles d’ige x les formules analytiques don-
nant la répartition des revenus, ainsi que le veut notre théorie mathe-
matique exposée an chap. I. Nous nous proposons done, dans la suite,
d’étudier quelques formules concrétes que nous adopterons ensuite
pour l'interprétation analytique des distributions conditionnelles; a
'alde de ces derniéres, nous déterminerons la répartition globale des
revenus. Il est alors évident que lallure de celle-ci doit obéir aux exi-
gences que les observations ont permis de découvrir jusqu’icl.

C’est encore Maurice Fréchet |1 c.] qui a dégagé le plus nettement
ces exigences ; nous pouvons les considérer comme de véritables postulats
auxquels doit obéir la distribution globale des revenus. Résumons-les
de la maniére suivante:
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10 Le champ de variation de la variable u doit satisfaire & I'inégalité
a < u < b, a étant le revenu minimum vital et b le plus grand
revenu individuel observé: du fait que ce dernier est générale-
ment inconnu, on suppose souvent b = ~.

20 La fonction de fréquence f(u) doit s’annuler en a et en b.

30 La distribution des revenus est unimodale; en d’autres termes,
f() n’a qu'un seul maximum.

Le premier de ces postulats résulte du fait incontestable que, d’une
part, «un individu ne peut vivre de rien» [14] et que, d’autre part,
les revenus d’'une personne ne sauralent dépasser un montant fini,
choist suffisarmment grand. Lie second postulat, moins évident que le
précédent, découle des observations statistiques, de méme que le
troisieme. - Ces postulats ne s"appliquent qu’a la distribution globale
des revenus. Lies composantes pour les ages x peuvent fort bien ne pas
obéir aux points 20 et 30, mais l'intervention de la pondératrice A(x)
peut conduire a une distribution globale satisfaisant ces deux con-
ditions.

23. De nombreux auteurs ont essayé d'expliquer, par des méthodes
déductwes. la théorie de la répartition des revenus. On peut classer
ces explications déductives en quatre groupes:

10 lixplication probabiliste, ches Fréchet [14].

20 lixplication a l'aide des particularités ou facultés personnelles,
chez Iréchet [l ¢.], Rhodes [34| et Ammon [2].

30 Fxplication par 'hyvpothese du tamisage [20].

40 Fxplication par Uhypothese de Deffet proportionnel. chez
(ribrat [16].

lissavons de résumer 'essentiel de ces méthodes. La seule explica-

tion probabiliste que nous avons rencontrée se trouve chez IFréchet

L ¢.]: nous avons ici en vue celle que cet auteur déduit des jeux de

hasard modeles. Il envisage le tirage de noms dune urne contenant

les noms de L personnes. Fn remettant chaque fois le nom tiré dans

Furne, on sait que la probabilité p,, d’extraire le nom m fois au cours
n\ 1N\ 1\

de n tirages est donnée par le terme (m ) (71:) ( I— T ) de la

distribution binomiale. Iin prenant » suffisamment grand, la distribution
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bimomiale selon m tendra vers la distribution normale N(z;0,1), de

ml—mn

moyenne 0, de précision | et on z = . Le revenu u

/ 2n (L —1)
attribué a une personne sera alors une fonction u(m) du nombre m de
tirages amenant le nom de la personne. Si le revenu u est proportionnel
au nombre m des tirages favorables au nom considéré, c’est-a-dire si
u(m) = cm, la distribution selon u est elle-méme normale; cette pro-
priétée subsiste méme st w(m) == em - L. Or, on constate que la dis-
tribution normale ne convient que tres approximativement au pro-
bléme de la répartition des revenus. (el n’a rien d’étonnant puisqu’une
personne dont les moyens sont déja importants pourra, comparée a
une personne ne disposant que de faibles ressources, accroitre plus
facilement ses revenus; il est alors naturel de supposer ue le revenu
u augmente sensiblement plus vite que le nombre m des circons-
tances favorables; un changement de variable linéaire w = c¢m - L ne
saurait donc convenir. Pour cette raison, Fréchet admet une croissance
en progression arithmétique pour m, tandis que w augmentera selon
ane progression géomeétrique, de sorte que 'on appliquera & la dis-
tribution N le changement de variable suivant w—u, = ¢*™"% On
trouvera ainsi la distribution logarithmique normale que nous en-
visagerons au § 3. Hn choisissant convenablement d’autres fonctions
u(m), on peut retrouver les différentes formules proposées pour inter-
préter la répartition des revenus, en particulier la loi de Pareto. Ainsi,
contrairement a ce qu’affirme Pareto lui-méme [31], toutes les dis-
tributions de revenus peuvent étre considérées comme un des effets
du hasard.

Dans le méme travail, Fréchet propose une explication «plus
rationnelle» reposant sur les particularités ou facultés personnelles. Pour
cecl, 1l envisage alternativement deux hypotheses, soit une hypotheése.d,
selon laquelle «le revenu de chacun est parfaitement déterminé quand
on connait les particularités propres & l'individu considéré», et une
hypothése B admettant «que la connaissance des particularites re-
latives & cet individu ne déterminent que les probabilités qu’a cet
imdividu de dépasser des revenus respectifs donnesy». Ces hypotheses,
soumises au caleul, conduisent & des formules trés générales, difficiles
a appliquer, puisqu'il est rare de pouvoir obtenir, simplement par des
observations statistiques, les éléments dont elles se composent. Fréchet
fournit cependant un exemple «synthétique» d’application, dont les
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résultats verifient approximativement la loi de Pareto. On trouve
déja des explications de la méme nature, cependant sans caleuls préeis,
dans un travail ancien d’Ammon [2] et, plus récemment, chez Rhodes
184]. Ce dernier. en particulier, fait remarquer que ce sont certains
caractéres essentiels d'une personne qui la situent & une abscisse dé-
terminée de la distribution des revenus. Notre théorie, par laquelle
nous assoclons a un groupe de caracteres (dge, sexe, état civil) une
distribution propre, ne fait quappliquer 'affirmation de Rhodes en
deux étapes: la premiere consiste a placer I'individu & Iintérieur d’une
distribution répondant & ses caractéres fondamentaux (par exemple:
une jeune femme célibataire n’a généralement pas les mémes possi-
bilités économiques qu’'un homme marié dans la force de 1'dge), la
seconde, a lui assigner, dans le cadre de cette premiere distribution,
une abscisse conforme a ses aptitudes mentales ou physiques parti-
culieres.

L’explication reposant sur Chypothése du tamisage [20] suppose
que les personnes disposant d'un revenu > w; sont «tamisées» et que
seules celles qui traversent le tamis accédent au revenu u,,,. Cette
méthode comporte des hypotheses sur la finesse des tamisages succes-
sifts. Enfin, 'explication par Uhypothése de Ueffet proportionnel de
Gibrat [16] admet que I'accroissement, du, du revenu est proportionnel
a u, ¢’est-a-dire que du = u dz; elle peut étre ramenée visiblement &
Ihypotheése de Fréchet selon laquelle la progression en m est arith-
metique, tandis que celle en w est géométrique. Si cette derniére hypo-
theése est, dans ses grandes lignes, conforme & Iexplication probabiliste
de Fréchet, celle du tamisage semble pouvoir se ramener & 'explication
fondée sur les facultés personnelles, ces derniéres étant déterminantes
pour permettre le passage & travers les tamis.

24. Si les distributions classiques entrant en ligne de compte pour
représenter la répartition globale des revenus sont déja nombreuses,
nous en aurons encore davantage a disposition pour rendre I'image
de la répartition propre aux groupes d’age «, du fait qu'on peut
mposer & ces derniéres moins de conditions restrictives, quant & leur
forme. Si 'on veut étudier toutes les distributions powvant étre prises
en considération pour les problemes envisagés iei, 1l faudra analyser,
par exemple, les courbes de Pearson, auxquelles Odhnoff [28] a
consacré un travail récent, ou encore le systeme déduit par Risser
[35J d'une ¢quation différentielle, plus simple que celle de Pearson.



— 284 —

De méme, on pourra consulter la liste établie par Haller [19] compre-
nant 70 distributions, pour la plupart déja connues. Il ne saurait étre
question de passer en revue, dans le présent travail, toutes ces dis-
tributions qui, d’ailleurs, sont souvent peu maniables tant au point
de vue analytique que numérique, ni méme de reprendre toutes celles
qui ont été proposées par différents auteurs pour décrire d’une maniére
plus ou moins appropriée la répartition globale des revenus. (itons ici,
en particulier, les noms de March, de Vineil, d’Amoroso, de Benini [20]
et de Krimer [25]. La encore, Maurice IFréchet a résumé dans un
. les principales formules de

mémoire, antérieur a celur déja cité [15
répartition des revenus. Il y étudie, avant tout, les formules de Pareto
et de la distribution logarithmique normale, désignée par le nom de
ceux qui I'ont introduite ou améhorée: McAlister, Kdgeworth, Kapteyn
et Gibrat. En outre, Fréchet y propose, pour les petits revenus, de
corriger la distribution de Pareto, sur laquelle nous aurons occasion
de revenir plus tard. Mentionnons encore que Fréchet attache, com-
parativement a d’autres auteurs, une plus grande importance & la
notion de «somme des revenus supérieurs & une certaine abgcisse ».

[l nous a paru opportun de limiter notre étude a lapplication de
le méthode générale exposée dans le chapitre T & quelques distributions
importantes et, avant tout, a celle de Pareto qui, a notre avis, jou
dans ce domaine de la méme situation privilégiée de départ que la
distribution normale dans les problémes stochastiques. Si tous les
auteurs modernes sont unanimes a souligner, dune part, la remar-
quable coincidence de la distribution de Pareto avec les observations
statistiques pour les revenus dépassant un certain niveau, ils relevent
tous, d’autre part, son insuffisance pour les petits revenus et essalent
de la corriger dans ce dernier secteur. L’application de notre méthode
permettra précisément d’obtenir une distribution globale corrigeant
'une maniere naturelle et souple ce grave défaut de la distribution
de Pareto. Cette nouvelle distribution corrigée sera comparée aux
distributions semi-normale et logarithmique normale; toutes les trois
obéissent aux postulats énoncés au n® 22 et dépendent de trois para-
metres, dont 'un d'entre eux a une signification commune et donne
le point d'attache @, sur I'abscisse. De plus, 'étude de la fonction de
Pareto conduira & un type voisin de cette derniére, hmité a droite
par un point fini by, dont on tirera parti dans certains problemes parti-
culiers relatifs & la sécurité sociale. Relevons encore que toutes les
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distributions envisagées dans ce chapitre peuvent étre déduites ana-
Ivtiquement soit de la distribution normale, soit de la semi-normale.
Dans les problémes pratiques, on choisira parmi toutes les dis-
tributions celle qui ajustera le plus exactement le matériel statistique
donné. Telle distribution, bien qu'interprétant fidelement la distri-
bution des revenus complets ne saurait convenir, par exemple, a celle
des salaires ou des revenus aftérents a tel groupe économique détermine,
Pour l'ajustement, on utilisera avee fruit la méthode des moments.
Ce n'est qu’en comparant le résultat de 'ajustement aux observations
statistiques qu'on pourra vérifier la valeur de l'instrument mathé-
matique choisi et Uexactitude des hypotheses dont 1l est fait mention
au n° 23. Parmi le matériel statistique disponible en Suisse, citons les
publications relatives a I'impot pour la défense nationale [1], ainst
quune enquéte spéciale sur les salaires des militaires effectuée par
I’Administration des fonds centraux de compensation & Geneéve [13];
c'est d'ailleurs de cette enquéte que I'Office féderal des assurances
sociales o dédwt les distributions théoriques utilisées dans les caleuls
relatifs & VAVS [29]. Des observations plus completes concernant le
revenu du travail pourront ¢tre désormais tirées des comptes individuels
de cotisations établis pour 'AVS. Mentionnons encore 'enquéte de
Brischweiler |5] relative aux salaires des employés de cominerce.

§ 2. Les distributions hyperbolique (Pareto) P et semi-hyperbolique P

25. Admettons maintenant que la fonction fondamentale ¢ qui
défiit dans un plan (w,z), quelconque la distribution des revenus sur
la droite & = x, soit donnée par la fonction de fréquence de Pareto.
Des lors, il est nécessaire de rappeler brievement les principales fone-
tions statistiques relatives a cette distribution classique. A cette fin,
nous reprenons d’abord les notations figurant au n° 2. La fonction
de fréquence s'éerit, sous sa forme normeée, de la maniere suivante:

) = oo u®, (35)

Résumons rapidement les principales proprictés analytiques de cette

fonction de fréquence, en précisant d’abord que ses deux parameétres o

et o sont positifs (¢ > 0 résulte de 'existence de I'intégrale des aires:

nous verrons qu'au point de vue statistique il faut que « >1). Le

champ de variation répond & l'inégalité a < 1 << ~, d'olt ressort la
19
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signification du parametre «. A droite de «, f décroit toujours de

o
fla) = — & f(>) = 0, sa concavité étant constamment tournée vers le
7

haut. Cramér [8] la classe ainsi parmi les distributions tronquées (voir
agraphique n° 3). Nous voyons d’emblée que la distribution de Pareto
ne satistait pas les postulats 20 et 30 énoncés au n° 22. Nous verrons
plus loin comment on peut se servir, en revanche, de cette distribution
pour en construire d’autres répondant entierement aux trois postulats
en question. Notons encore qu’on peut dédwire f(u), pour « = 1, d’une
distribution semi-normale particuliere [ 10], par la substitution 2z -~ In ,
et que cette fonetion de fréquence découle également de I'équation
différentielle de Pearson. — Il est parfois utile de noter la distribution
définie par (88) par le symbole P(u:a,e) qui met ainsi en évidence

les deux parameétres.

La fonction cumulative complémentarre H(u) mérite une attention
spéciale; elle s’obtient a partir de (38) par (2') et s’éerit:

Elle est du type hyperbolique, comme d’ailleurs la fonction de fré-
quence elle-méme, ce qui justifie appellation de P. (39) fournit, en
prenant les logarithmes, la droite logarithmique de Pareto bien connue
des économistes; on écrira cette derniere de la maniére suivante, en
posant: logu = y, log H =z et aloga =d

2= d—ay. (397

De cette formule, se dégage la signification du parametre — o comme
coefficient angulaire de la droite logarithmique (voir graphique n° 5).
(Cest d’ailleurs en appliquant la méthode des moindres carrés a cette
droite que les économistes ajustent presque toujours le matériel
statistique.

Les moments par rapport a Uorigine s’expriment d'une maniere
plus simple que ceux par rapport a a ou par rapport & la moyenne:

(3) donnera pour a — 0:
oL
M =— a, (40)
o —k

Pour que M, existe, il faut o > /.



A partir de (4"), on caleulera encore la somme réduite des revenus
superteurs a 1 1 vient alnsi:

lod
Ow) = ——— atu (41)

Pour avowr une somme finie de revenus, 1l est done bien nécessaire
que « > 1, ce qui revient a exiger, au point de vue statistique, au
moins 'existence du moment d’ordre 1, c¢’est-a-dire de la moyenne.
Notons que l'on a @(a) = M. De (41), on peut d’ailleurs tirer une
nouvelle droite logarithmique. IFréchet [14| en propose encore une
autre, llant log @ a log H, relation facile a déduire en éliminant u de
(39) et (41).

L andice de concentration ¢ défim par la formule (5) se présente
et sous une forme particuliérement simple. On voit que:

@(u) ‘a a1
o) = o = (), e
) = o= =] |
de sorte que I'on obtiendra pour l'indice introduit par Gini [17]:
U- ;
b (42)
o — 1

ainsi, pour la distribution de Pareto cet indice est indépendant de
Pabscisse u considérée. C'est d’ailleurs cette mvariance, constatée
empiriquement pour beaucoup de distributions de revenus. qui a
impos¢ 'indice en question & lattention des statisticiens.

26. Comme nous lavons laissé entendre, nous supposons que
la fonction fondamentale g, associée a l'age x,, se présente sous la
forme (38). Conformément au n® 9, nous pouvons poser:

gu') = aagu’ (43)

cette fonetion étant définie sur Uintervalle @, << w’ < >. Opérons le
changement de variable (183): u = s(x)%’; en ayant soin de garder
la forme normée, on aura pour la transformée de (43):

1 u o F gy gl »
“iff = g |——| = wag s*(x) u™;

sty hs 1 st st
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$1 nous posons maintenant:
By == Ay BT s (43")

nous pouvons écrire, grace aux deux hypotheses 4 (dilatation) et 3
(translation):
‘ flus ) == waf oL (43"
Par (13). on passera donce d'une distribution P(u;ay2) a une autre
Plusa,,o) . Interprétant ce résultat, nous pouvons affirmer, que les
revenus de chaque ensemble d’'dge x se répartissent selon une distribution
de Pareto, de paramétres o (vnvariant) et a, = a, s(x). Cet énoncé ne
nous surprend pas, pusquil ne s’agit que d'un cas particulier des
formules (14) et (15). Nous pouvons également examiner si1 les
movennes des distributions sur les droites paralleles a l'axe des u
sutvent ['échelle s(x); pour ceci, il suffit d’écrire la relation (40),
pour k — 1. tantdt avec a, ce qui donne M(x), et tantot avee aq ce
qui détermine M (r,); nous voyvons bien que de la division M(x) par
M(z,y) résulte la loi s(x).

Grace a notre hypothese 3, nous connaissons également la distribu-
tion des revenus dans nimporte quel plan paralléle an plan mitial 1 == 0;
en effet, nous savons par la formule (17) que

@, (1, x) = o A, (z) alw*, (44)

de sorte que nous pouvons ainsi aborder. dans un plan ¢conométrique
quelconque, la projection de ¢, sur I'axe des u de ce plan.

27. Kin nous reportant aux remarques du n° 12, nous savons que
Pintervalle de définition a, < " < o~ pour la distribution relative
a lage x, crée pour la distribution & deux dimensions ¢(u,z) un
domaine de défingtion limité & gauche par une courbe (a), d’équation
a, = & = ay s(x): la limite de droite donnée dans le cas général par
la courbe (b) est repoussée a U'infini (cef. graphique n® 2 de annexe 1),
De cette maniére, nous avons & envisager pour la fonction de fréquence
de la distribution globale des revenus trois wntervalles sur l'axe des u:
(1), (1) et (2) dont le nombre se réduit méme & deux, dans le cas ou
s(x) croit dune maniere monotone. Pour la projection, il sied dap-
pliquer les trois premicres formules (21), dans lesquelles on substituera
A @(u,x) son expression selon (44). Nous aurons dés lors pour les
trois branches de courbe et selon les intervalles:
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i
ty < u<<ety: fo(u) = aagu? ‘ A(®) $5(8) d s (45)
Lo
V1 il
tpwu<<da s f(w)— wufuw! ’ A(r) s*(x) dxr + f A(x) s*(x) dx |, (457)
J:"O Qfl’z
1
0 s <<~ folu) == aafuw fﬁ(.zr) s*(r) da; (45")
e
U
les Imites variables y, et p, sont a caleuler au point . Lies équations
(lO

(45) et (457) sont ainst de la forme (26%), et (45") se présente comine
cas particulier de (26). Cecl ne doit guere nous étonner puisque (43)

U
montre que la fonetion fondamentale _(/(— ) de Pareto est bien de la
; 8 /
_ w ¥ . - . ,
forme A4{ |. De ce fait, la branche fo(u) de la marginale représente
ts

elle-meme une fonction de fréquence d'une distribution de Pareto P(u: )
ott Fon a pour la constante «:
";l
B = iy { A(x) s*(r) du . (4577
.l"]
Quoique 'allure de la courbe d’ensemble déepende avant tout du choix
des deux fonctions fondamentales A(x) et s(x). on voit cependant
facilement que, méme si ces fonetions ne sont pas précisées, la fonetion
de fréquence § sannule au point a,, ot elle est croissante, pour atteindre

|

au point ' la valeur x "o et décroitre ensuite d’une maniere
monotone comme le veut la loi de Pareto. Cette distribution marginale
est entierement déterminée si Pon connait les deux parametres -
et @y ainsi que les deux fonetions A(x) et s(x). Nous sommes done en
présence d'une mowvelle distribution P(w:1.s,ag,0) que nous proposons
dappeler semi-hyperbolique, du fait que la branche droite de la fonction
de fréquence constitue une courbe hyperbolique de Pareto. En général,
@, et a” sont les abscisses de points singuliers de la courbe d’ensemble
puisque celle-c1 v présentera deux tangentes différentes. Cependant,
les deux premicres conditions (23) nous enseignent comment on peut
operer en ces points le raccord tangentiel; f(ay,x,) ainsi que f(a’, 1) étant
positifs dans le cas considéré ici, il faut essayer d’obtenir le contact
du Ler ordre a I'aide des fonctions 1 et o’. En a; la jonction sera
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tangentielle s1 x; = w, I'on a amst A(w) =0. En «, la question est
plus délicate puisqu’en général A(2') > 0; il faudrva alors examiner
P (s") —py(s"), ce qui peut donner lieu a une indétermination que 'on
essalera de lever,

Les autres fonctions statistiques lides @ |7 s’obtiennent directement
de nos formules générales. Ainsi la cumulative complémentaire 7 se
caleule selon (30") ot H(u.x) = aj s“(x) «™: la somme réduite @ des

a 1
revenus > u découle de (317) avec Q(u,x) = - ’ ol lm) vt ok
a_._.
o _ _
M(x) = —— ags(x): dans les expressions donnant [/(u) et @(u),

on mettra en évidence pour u > «’ le parametre o défini par (45”).
[infin, les moments sont donnés par (34) en se rappelant que

M, (x) = - ag s*(r).
x—k

28. En choisissant pour A(x) et s(x) des fonctions convenable
on pourra effectuer les integrations indiquées par les formules (45
Nous allons considérer un cas particulierement simple o A(x) et s(x)
sont des fonctions linéaires. Supposons que A(x) soit de la forme A — Bz
et déterminons 4 et B de fagon que, d'une part. A(x,) = 0 et. d’autre
part. A(xr) soit normé entre xz, et x,; ainsi 1l vient:

5,
\
b

Ay — &
Ar) = 2 —— (46)
(2 — )"
Pour s(x) nous admettons I'expression que voiel:
s() = 1 4+ Clx— i), (47)
, - _ @y
de sorte que s(x,) = 1. kn =e souvenant que s(x;) = — on trouvera
_ . . . _ y
encore une expression utile pour la suite des calculs:
&, —a
’ 1 0 =t
Cley—xp) = ————; (47")
g
(47) donne heu a la fonction inverse smivante:
s—1 o
e 7/;(.5‘) == Ly + ———. (48)

Cr
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Le domaine d'intégration decrit au début du no 27 se simplifie
encore; d’abord x" et &, coincident (cas monotone) et la courbe («)
se réduit & la droite & = ag[1 + C(x-—1)]. Pour le calcul des inté-
grales (45) et (45") on effectuera le changement de variable indiqué
soit par (19), soit par (20), c¢'est-a-dire & = qys(x) ou x = ’fp( f)

g
Tous calculs faits, on trouvera powr la fonction de fréquence marginale
une courbe d’ensemble a deur branches, dont voici les équations:

- 2o a u a 7
Foles gt Do Jurt|, (49)
(aj—ag)® e +1 «42 a+1 a2
5) 7 S = | a+2 o2
_ 2ot aq (af ag ) aj ag 1
T i e s f 2 S P (49)
(a,—ag)? o+ 1 o+ 2

Alors que fy(u) est bien une courbe de Pareto, valable pour u > a;.
la branche 7, (u) se présente sous la forme d’une différence entre une
droite décroissante et une courbe de Parcto: la droite est une corde
de cette courbe, lenrs ordonnées coincidant en «,. [i’étude des dérivées
premiére et seconde montre que la fonction f, a sa concavité tournée
vers le bas et qu'elle croit en a, et décroit en «; la premiére branche
a done un maximum entre @, et «,. Le sens de concavité de la courbe
d’ensemble change d’ailleurs au point @, . Nous savons d’avance qu’en
ce point les deux courbes se raccordent tangentiellement, puisque nous
avons choisi A(z,) — 0: on le vérifiera d’ailleurs directement a partir
de (49) et (49"). Cette fonction de fréquence définit une distribution
semt-hyperbolique particuliére P(usagaq,2): en effet, trois parametres
suffisent pour la déterminer completement, ainst qu’il ressort des
formules ci-dessus. Lallure de la fonction de fréquence d'une telle
distribution est donnée au graphique n° 3 de Pannexe [l

Pour les applications il est utile de connaitre encore les autres
fonctions statistiques. Nous les déduisons directement de (307), (317)
et (34) en procédant comme indiqué a la fin du n° 27 et en effectuant

toujours le méme changement de variable r = ?/)( ,7)_ Nous aurons
\ &
0

ainsl successiverent, soit pour l'intervalle (1), soit pour (2):
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Cumulative complémentaire:

2

2 [« w? a a; , iy g N ]
iy (u) = R e el L
(0, —ag)? | a+2 2 o+ 1 2 o+l at2/
o 2 a arx+1 - au+l au+2_ a(1.+2"
[{2 (’M,) . 1( 1 0 ) o 1 0 :u'_(‘t.
(0—a)? | a1 o2
Somme complémentaire réduite:
A 2o ai a—1 w2  a—1 ud o/ o
G, (1) = s B, el wow sl
il @ U(a—a)?| 6 ‘atl 2 o238
_ u a, (a¢t —ag™? AT e
s (u) = - [ L o 2 e ° w et
(a— 1) (a; — ag)? o+ 1 o -+ 2
Moments d’ordre k:
- ot [al(a-’f*'1~aﬁ“) B a-’f”—a’é“l
T a—k) (@ —ag? | k41 k2

(52)

En particulier, les trois premiers moments peuvent se mettre sous la
torme des relations suivantes qui sont utiles si I'on veut déterminer
les trois parametres a,, @, et o & partir des données empiriques:

o 2ay 4 a, )
o—1 3

« 3a2 + 2a9a, + ol
o«—2 6

a  4ad+3aia, + 2000} + a
x—8 10 '

Ces expressions rappellent d’ailleurs celle de la formule (40) ou l'on
aurait remplacé a, a® ou a® par les moyennes indiquées dans les
deuxiémes fractions de (52'). I’existence des moments de P est liée
a la condition « > k, comme cela est le cas pour P.
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29. Aujourd’hui encore on se sert, pour représenter la distribation
des revenus de la population entiére, de la loi de Pareto, en ne 'appli-
quant cependant qu’a des revenus qui dépassent un certain niveau.
Ainsi, M. Winkler, par exemple, a présenté trés récemment un travail
sur cette loi au congres de I'Institut international de statistique qui
eat lieu en 1949 &4 Berne [37]. Plusieurs auteurs ont essayé d’apporter
a la loi de Pareto des corrections artaficielles pour les petits revenus.
Dans ce but, Rhodes [34] également soucieux de garder pour la branche
de droite (queue) la digtribution de Pareto, a imaginé un procédé pour
substituer a cette derniere une branche (téte) d'une autre courbe.
Cependant, le résultat de ce procédé ne saurait étre considéré comme
satisfaisant, du moment qu’au point de jonetion il y a une discontinuité
et que la loi des aires n’est pas rigoureusement observée par la courbe
d’ensemble. — Bignalons encore un travail de Cockfield |7] qu dé-
montre a 'aide d’observations fiscales anglaises récentes que la distri-
bution de Pareto s’adapte fort bien, du moins & partir des revenus
dépassant £ 200. Pour les revenus mférieurs, il «casse» d'une manicre
empirique la droite logarithmique. — Maurice Iréchet [15] a exposé,
antérieurement & Rhodes, une autre méthode destinée a corriger la digtri-
bution de Pareto pour les petits revenus. A cette fin, il part de la distri-
bution qui représente la premiere loi de Laplace a fonction de fréquence

| R ‘ : . . ;
¢ 75 en lu appliqguant la transformation: z = aln (u-—uy) + b,

il trouve une courbe & deux branches (une pour z <20, Pautre pour
> 0), dont celle de droite est encore une courbe classique de
areto, valable & partir de la médiane m, celle de gauche étant du type
«parabolique» que nous mtroduisons au § 4 cr-apres. Fréchet montre

2
P

la continuité de la courbe d’ensemble, méme au point de jonction m
des deux branches; en revanche, elles n’ont pas la méme tangente en ce
point. Toutes ces améliorations sont cependant réalisées par des arti-
fices. 11 suffit, pour obtenir une correction naturelle de supposer que les
ensembles d’age x se distribuent selon P, ce qui conduit pour I'ensemble
de la population & la distribution semi-hyperbolique. Dans ce cas les
branches de la courbe de fréquence se raccordent toujours sans aucune
discontinuité et méme dans de nombreux cas peuvent se joindre
tangentiellement.

St la distribution P(u:a,e) de Pareto donne la répartition des
revenus en premiére approrimation, notre distribution semi-hyper-
bolique P(u:ay,a,,2) déerite au n° 28 résout le probleme en deuziéme
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approxmation. Kn effet, on aurait pour I'ensemble de la population
également une distribution de Pareto s1 I'on admettait dans notre
méthode que s(x) se réduit a une constante = 1. FEn introduisant
I'hypothése de linéarité pour A(x) et s(xz). on s’approche déja un peu
plus de la réalité. On trouverait une approximation encore meilleure,
s1 I'on choisissait, par exemple, pour A(z) une structure d’age observée
et pour s(x) un polynome convenable. La courbe de fréquence proposée
en deuxiéme approximation répond déja aux trois postulats du no 22,
ce qui n’est pas encore le cas pour la premiere approximation. Relevons
encore que la semi-hyperbolique permet également de calculer par une
mtégration simple la somme des revenus dépassant une certaine
abscisse w; ainsi, cette distribution satisfait une exigence fondamentale
enoncée par I'réchet.

Nous avons constaté an no 26 lineariance du paramétre o par
rapport & la substitution w = ' s(x) ol l'on pourrait aussi attribuer
a a d'autres significations que l'dge. Ce fait explique peut-étre le
phénoméne remarquable que les droites logarithmiques concernant
tous les pays observés par Pareto étalent presque paralleles. Cette
constatation ne doit cependant étre valable que pour des époques
pendant lesquelles la situation économique reste stable. Kn effet,
la dépréciation continue de la monnaie semble provoquer une augmenta-
tion de «; tel est du moins le résultat des observations statistiques
4] et selon lesquelles lindice de concentration

faites par Billeter

o
( = —— a diminué au cours des dernieres décennies, surtout lors
x—1

des dévaluations marquées faisant suite aux guerres.

Nous pouvons évidemment considérer les distribations semi-
hyperboliques comme représentant & leur tour la répartition de
revenus des ensembles d’age x. On prendra alors, par exemple, comme
fonction fondamentale la distribution P(u': ag,e ). En lul appliquant
la substitution u = " s(x) . ¢, et aq se transformeront encore selon le
modele (43'), tandis que ¢ reste de nouveau invariant. Si 'on étudie
la nouvelle distribution globale correspondante, on trouvera aisément
que la branche droite pour w = ay, ol ay = s, 4, = ] @,, sera encore
une courbe de Pareto. On se trouve en présence d uue wtération qu'on
pourra continuer indéfiniment et pour laquelle il subsistera toujours
une courbe de Pareto & droite du pomt a, = s a,.
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§ 3. Les distributions semi-normale G et logarithmique normale .J

30. Dans ce § nous allons étudier les lois de transformation et
les propriétés projectives de deux distributions qui se sont avérées
également utiles dans la théorie de la répartition des revenus. Con-
sidérons d’abord la fonction de fréquence de la distribution sema-normale
Guia,y,e), qui depend de trois paramctres comme le montre son
expression sous forme normée:

&

-

fu) — [j’( ) (e, (53)

Le parametre « > 0 définit 'abscisse initiale de D'intervalle de dé-
finition: a < w < ~: nous verrons ci-apres le sens des deux autres
parametres, y et e, ainst que les propriétés essentielles de la fonction
eulérienne de deuxieme espece [ La relation (53) se déduit, par une
substitution linéaire, de I'équation de la courbe de Pearson du type TTL.
("est Steffensen [36] qui a introduit la dénomination de «semi-normaley,
en prenant toutefois comme variable 3?2 = «w— a. La formule (53) est
une généralisation de la forme que nous trouvons chez Iéraud [10]
pour @ = 0. [l est d’ailleurs bien connu que G(u;0,1,7) est la distri-
bution du #? = u. Steffensen montre que tend,_ POUEF € = ex,
vers une distribution normale N. Avant de rappeler les propriétés
analytiques et statistiques de 7, notons que leur étude introduit les
fonctions eulériennes de deuxiéme espeéce, a savoir:

la fonetion I" complete: I'e) = f

la fonction [7 incompléte: ['(z,¢) == } et de.

{')
Pour la premiere, on utilisera ici la relation:
e+ k) = e(e+1) ... (e+b—1)1"e),

ok est un entier positif. Cette formule de récurrence permet égalenment
de ramener le calecul de ['(e-+k) & celui de [(1 < &< 2) qu'on
rencontre dans les tables de Pearson [33].
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Les valeurs numériques de la seconde de ces fonctions peuvent
I I
¢tre déduites de Iintégrale: I(z,¢—1) = - -—— qu'on trouvera dans
I'(¢)

un autre recueil de tables de Pearson [52], dans les colonnes a para-

. N\ *
metre p = ¢—1 et a Pargument 4 = —.

/l
Ve
La formule (53), ot y et e sont positifs, comporte dewr famalles

principales de courbes, suivant la valeur de e:

19 & < 1 eourbe toujours décroissante, rappelant celle de Pareto;
deux cas sont & distinguer: ¢ << 1 (asymptotique aux deux
droites: f =0 et w = a) et ¢ =1 (asymptotique a f =10,
mals valeur finie en u — a).

20 ¢ >~ | courbe unimodale, s’annulant en v =a et w = ~. avec

g—1
mode u, = ——— + a dont les deux points d’'inflexion sont
7 \ . el
symeétriques par rapport a u, et distants de —————_ Trois
%
/

cas sont & distinguer suivant les tangentes a la courbe en
u=a: & <2 (tangente verticale), ¢ = 2 (tangente bissec-
trice) et ¢ > 2 (tangente horizontale).

Considérons maintenant les autres fonetions statistiques intro-
duites au n® 2. Pour la fonction cumulative, il vient:

Fou) = — ik G [[,},(u*”j), g 1]; (54)

le calcul de I'(x) se raméne ainsi & une simple lecture des tables de

- o y(u—a) U —

Pearson [32] en prenant comme argument 4 = ——— = — —:
lf“ & s

on voit que Pearson a pris comme unité d’argument la dispersion i,

(voir ci-apres).

Les moments par rapport & a prennent ici la forme simple que voici:

1 I'le+k ele+1) ... (e4+k—1
v LT et ey

Y T ¥*
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Relevons en particulier les expressions obtenues, pour certaines grandeurs

. . 5 2 &
typiques, a partir des moments pris par rapport a la moyenne M — - :
7
- . » _r f— ]/e:
Dispersion (standard deviation): u, = l m, = —,
b
. . N, 2
Dissymétrie (skewness): My = —— = =,
;
o | &
Al N . 9}t4 ) b
lixees (kurtosis): g = B
: 1
s £

On en déduit les deux nombres de Pearson indiquant le type de courbe
de son svsteme:

¢ 6 )
o= +3 =—+3.
e

Pour la somme réduite @(w) des revenus <

U, ON QUra Une expres-
ston qui se ramene également aux fonctions eulériennes:
i I'[y(u—a), e + 1] .
D) = al'(u) + (56)
y1'(e)
Nous pouvons maintenant examiner les lois de transformation de (5.
Nous admettons d’abord pour l'age x, une distribution (/(u;a4,4.€) .

On voit aisément qu’elle se transforme par la substitution w = s(x) u’
en une distribution G(u;a,,y,,¢); les nouveaux parametres se déduisent
de la maniere suivante de ceux concernant la fonction fondamentale
f(u' x), caleulée d’apres (53):

s = g T (57)
y, = —o (57

s(x)

e parametre ¢ est invariant. Les distributions conditionnelles paralleles

PP —

=

v Faxe des w sont définies par une famille de courbes semi-normales,
ce qui est également conforme a notre théorie générale exposée au
n° 9. Méme si a, = 0, les courbes de fréquence seraient dilatées en
vertu de la relation (577).



— 208 —

Les propriétés projectives de (¢ sont moins simples. La fonction
de fréquence & deux dimensions @(u,x) = A(x) f(u,z) se trouve mainte-
nant définie dans un domaine D, limité & gauche par la courbe (a)
d’équation & = «a,, et ouvert vers la droite. Pour la fonction de fré-
quence concernant la distribution globale on obtient, comme dans le
cas Pareto, une courbe & trois branches, sauf dans le cas particulier
o a, =0, qui ne comporte qu'une seule branche. Cependant, les
intégrales de la formule (21) ne peuvent plus se ramener aux fonc-
tions classiques, méme pour le cas linéaire de s(x) et A(x). En particulier,
ces marginales ne s’expriment plus par les fonetions /7 incompleétes.
Pour les applications, on en est réduit & des évaluations numériques,
faciles a effectuer en pondérant les conditionnelles semi-normales
avec A(x). Les marginales n’appartiennent pas & la famille des semi-
normales, méme sur Pintervalle (2). On n’obtient une marginale semi-
normale que dans le cas banal ot s(z) = 1. Kn revanche, il y a en
général raccord tangentiel en a,; vu que f(a,x) =0, les conditions
(23) sont ainsi remplies en ce point.

31. Nous allons considérer encore une autre distribution dont la
fonction de fréquence est définie dans I'intervalle a, <2 u << . Il s’agit
de la distribution logarithmique normale J(u;a,c,%), appelée aussi dis-
tribution de Galton, de MeAlister, d'Iidgeworth, de Kapteyn ou de
(zibrat. Nous écrivons pour sa fonction de fréquence:

fw) e PR T O (59)

Lies parametres a, ¢ et % sont tous positifs. Le changement de variable:

1 H— «
2o — In—, (59)
P ¢c—
done ,
du .
dz == ———— (59"
x(u— a)
ramene J & une distribution normale réduite N (z;(), —ﬁf.—) et permet

/.

\ l,f )
ainsi d'effectuer les caleuls numériques & 1'aide de tables donnant les
fonetions de fréquence et les fonetions cumulatives de N. Sous cette

derniere forme, la précision de N est done = ——-. 81 dans le change-

|2
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ment de variable envisagé ci-dessus, on avait négligé le facteur

1 \ p
on aurait été d’abord ramené & N(z; 0,—?) qu fournit la signifi-

. =) 2

cation du parameétre » comme dispersion de la distribution N corres-
pondant & J. 81 l'on dispose de l'autre série classique de tables

) . . 1 U—a
relatives & N(2;0,1), on posera 2 == ——1In —nuw.

%l 2 ¢c—a

Les proprietés analytiques de f(u) ne sont pas trés simples. Fréchet
[14] fait remarquer que f(u) est unimodale et que son maximum se
trouve entre @ et ¢. On trouvera au sujet de ces propriéteés des indica-
tions assez complétes chez Gibrat [16] qui désigne d’ailleurs I'équation
(59"), out du est proportionnel & w, comme «loi de 'effet proportionnel».
Cette transformation de Gibrat a été fort remarquée; Rhodes [34]
Putilise, par exemple, pour transtormer une courbe de Pareto et faire
de la courbe ainsi modifiée la «téte» d'une courbe discontinue & deux
branches, le troncon de droite restant une courbe de Pareto ot celui
de gauche prenant 'allure d'une courbe unimodale (cf. n° 29). D’ail-
leurs la transformation (59') est la méme que celle utilisée par Fréchet
[l. .| dans une de ses explications probabilistes résumées au n° 23 et
qui méne effectivement a la distribution J envisagée ici. On trouvera
pour cette derniere des exemples numériques dans un ouvrage allemand
récent [3].

Les seules fonctions statistiques qui s’expriment simplement sont,
outre la fonction de fréquence, la cumulative F(w), ainsi que les
moments; on a d’abord:

Fu) = +[1 + ¥)], (60)

z étant défini par (59). On trouve cette expression toute calculée, par
exemple, dans les tables de Pearson [33], sous la désignation | (1 + o);
¥ représente ici l'intégrale donnant la probabilité, selon N, d’une
erreur absolue << z. Quant & Dlexpression des moments par rapport
& a, on aura: Kx2

M, = [E=—=a)tg ¥ i (61)
elle résulte du caleul d'une intégrale de la forme

T o0

- 02 .
. 4
52 L Dne v
P e 2nz (12 s 7 l/ %
n
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En revanche, le caleul de la somme réduite des revenus inférieurs ou
supérieurs a u aboutit & une expression dont I'intégration ne peut
s'effectuer par les procédés analvtiques usuels. Va D'importance
pratique de cette notion, Fréchet [14] a tenu & mettre en évidence
cet inconvénient. Rappelons qu'aucune des autres distributions en-
visagées Jusqu’icl ne présente le désavantage en question; cette cons-
tatation est heureuse, puisque, dans le caleul des rentes moyennes
(vowr chap. III), I'introduction de cette fonction rend de précienx
SETVICes.

Quant aux lows de transformation et les propriétés projectives de
cette distribution, on verra facilement que la fonction de fréquence
de J(u':ay.co.) relative a I'age xz, se transformera, pour I'age z, en la
fonction de fréquence de J(u:a,c,%). Le parametre » est invariant.
tandis que les deux autres s’obtiennent ainst qu'il suit:

iy, == 0 5(2] , (62)
g, = BySld] - (627)

Pour les propriétés projectives, 1l faut s’en tenir aux trois premieres
formules (21) qui donneront pour la distribution globale des revenus
une courbe dont deux des trois branches se raccordent en général
tangentiellement en a,. Tout ce que nous avons dit au sujet des pro-
priétés projectives pour la distribution semi-normale (¢ peut d’ailleurs
etre transcerit ici.

32. Pour représenter la distribution effective des revenus, c¢’est,
apres la distribution de Pareto, la logarithmique normale J dont on
s'est servi le plus fréquemment jusqu’a ce jour. En revanche, la distri-
bution semi-normale (¢ n’a pas été utilisée, du moins a notre connais-
sance, dans les problémes de ce genre. Pour notre part, nous avons
eu l'occasion de l'employer pour résoudre le probleme de la rente
moyenne ordinaire de 'AVS [22]. On ne saurait donner, a priori, la
préférence & T'une ou & Iautre des distributions traitées. Leur choix
devra toujours étre dicté par la structure du matériel statistique
domné. La comparaison des trois distributions unimodales P.Getd
est des lors naturelle. A cet effet, nous avons réuni sur le graphique
n° 3 de I'annexe IT leur fonetion de fréquence respective. Il ne s'agit
la que d’exemples, T'allure de ces courbes variant dans une forte
mesure avece la valeur de leurs parametres. Nous pensons que l'une
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ou l'autre des deux courbes de fréquence de la distribution semi-
hyperbolique P(u;ag,t,c) reproduites au graphique n® 3 correspond
en deuxieme approximation (cf. no29) & la répartition actuelle des
revenus complets en Suisse. Nous avons également reporté sur le
graphique la premiére approximation donnée par une courbe de
Pareto P, de méme parametre o = 2 et de méme moyenne M = 6000
francs que leg semi-hyperboliques . Ces trois distributions conduisent
a la méme somme totale annuelle de revenus personnels, évaluée
actuellement & 16 milliards de franes suisses environ [6]. Les distribu-
tions (¢ et J ont écalement la méme moyenne, mais des abscisses
initiales « (minimum vital), ainsi que des dispersions différentes.
Signalons a ce propos que les valeurs relativement basses du parameotre
« qu'on tire des statistiques de revenus provoque une dispersion tres
grande, sinon infinie, ainst qu’il ressort des formules (40) et (52), pour
k= 2. 1l ¢’agit 14, semble-t-il, d'une caractéristique de la distribution
des revenus complets, provenant de quelques revenus isolés tres élevés.
En revanche, ce phénomene ne s'observe pas dans la distribution
particuliere aux revenus du travail. Pour cette raison, 1l convient de
choisir pour cette dernicre soit une distribution P & parametre «
nettement supérieur & 2, soit une distribution  ou J. — L’étude du
graphique n°® 5 montre que la droite logarithmique concernant la cumu-
lative de [’ se transforme sans heurt en courbe au point «,, ce qui est
la conséquence du contact d'ordre 2 existant en ce point. On évite
ainsi de maniere naturelle la cassure de Cockfield [T] déja relevée
au ne 29,

§ 4. Les distributions parabolique Q et semi-parabolique Q

33. Dans le présent chapitre, nous avons jusqu’alors uniquement
considéré des distributions définies dans un intervalle a << u <7 ~;
cect est d’ailleurs le cas usuel pour la répartition des revenus, comme
le fait remarquer M. Iréchet [14], du r2oins lorsqu’on ignore le montant
du revenu le plus élevé. Abordons maintenant le cas d'une distribution
définie sur un intervalle 0 << w << b. Par la formule (38), nous avons
donné la fonction de fréquence de Pareto sous sa forme normée. La
forme générale, contenant une constante arbitraire ¢, s’écrit:

i) = Cu . (63)
20
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ar définition, on obtient la forme normée en déterminant C par la
loi des aires, en supposant b > a:

b
. C
Clu“du=—(@"—b" =1.
o
a
Il est curieux que 'on n'ait envisagé jusqu’aujourd’hui — du moins
& notre connaissance — que le cas ou o est positif. L'intégrale des

aires n’a alors de sens que lorsque @ > 0, cependant que b peut croitre
au-dely de toute limite finie. En revanche, st o est négatif, a peut
s’annuler, mais b ne doit pas dépasser un nombre fini. Posons done
fi = — o et prenons comme nouveau champ de variation 0 < w <b;
on obtient ainsi, sous forme normée, la fonction de fréquence suivante:

fw) = B ult. (6%

Considérons rapidement les propriétés analytiques de la fonction
de fréquence f(u). La formule (63") comprend, contrairement a (38),
plusieurs formes de courbes (cf. graphique no 4):

10 f << 1 courbe décroissante de f(0)

= o0 § f(b) = —b~, concavité
tournée vers le haut;

20 f = 1 droite horizontale de la distribution rectangulaire f = —;

30 1 << p << 2 courbe croissante de f(0) = 0 a f(b) = P concavité

tournée vers le bas;

2

40 fi = 2 droite croissante par l'origine, tronquée par f(b) = E;
. p »

50 f > 2 courbe croissante de f(0) =0 & f(b) = P concavite

tournée vers le haut.

11 est intéressant de noter la correspondance entre certaines droites
du plan (w.f) et celles du plan logarithmique (y,2) considéré ci-apres.
L’étude de la moyenne permet de montrer que dans les problémes
pratiques on trouvera en général f < 1.

Mentionnons maintenant la fonction cumulative obtenue de (63')
a l'aide de (2):

Flu) = (— ) (64)
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11 ne s’agit done plus iei de la cumulative complémentaire comme
c’était le cas dans la distribution de Pareto exposée au n° 25. Fn
comparant I'(u) & H(w) donné par (39), on comprend pourquoi nous
appelons dustribution parabolique ()(u;b,f) cette nouvelle distribution
définie par (63"). Plus exactement il faudrait parler de «distribution
a cumulative parabolique», puisque la fonction de fréquence elle-méme
renferme (8 < 1) un type de courbe hyperbolique. Cependant, la
désignation abrégée ne saurait préter & confusion. De (64) on tire une
droite logarithmique:

2= pfy—d, (64")

ou y =logu, z=1ogF et d = plogb. Cette droite, a coefficient
angulaire f > 0 est done croissante (ef. graphique no 5 de 'annexe 11).

Les autres fonctions statistiques sont analogues & celles de la dis-
tribution hyperbolique; en effet, on trouvera pour les moments pris
par rapport a lorigine:

M, = Py (65)

g+ k

L’existence des moments de tout ordre est donc toujours assurée,
cecl contrairement aun type hyperbolique. On aura encore pour la
somme rédwle des revenus << w U'expression simple que voicl:

B

D) — —
(1) P

bl (66)

Iei également, on pourrait mettre en évidence l'existence d’autres
droites logarithmiques, liant d'une part log @ & log w et d’autre part
log I' & log @. — 1l est curieux de noter que la branche gauche de la
courbe corrigée de Pareto déduite par I'réchet [15] de la premiére loi
de Laplace (cf. n° 29) est une courbe parabolique selon (63").

34. Les lots de transformation de Q(u;b,f) sont symétriques a celles
de P(u;a,e). Fn effet, si I'on opere le changement de variable (13):
u = s(x)u" sur la fonction de fréquence de Q(u';by,p) valable pour x,
on trouvera pour 'age x une distribution ) (u;b,,f); le parametre f
est invariant, tandis que l'on obtient b, de la manicre sulvante:

b, = Bys(x). (67)
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Fn nous reportant aux remarques du n° 12, on constate que le domaine
D (cf. graphique n° 2), a I'mtérieur duquel est définie la fonction de
fréquence & deux dimensions ¢@(w,x), voit sa limite (@) se confondre
avec laxe des x, tandis qu'il est limité a droite par la courbe (b).
La projection pondérée des conditionnelles Q(u:b,,f) sur 'axe des u
donne lieu & une marginale ()(w;2.8.by,0) appelée distribution semi-
parabolique. Iin effet, dans Uintervalle (2): 0 << u < b, la fonction
de fréquence f est encore une fonction de fréquence parabolique du
fait que (63%) est bien de la forme (24). Dans le cas d'un s(z) monotone,
la courbe, dont les trois branches sont définies par les trois dernieres
formules (21), se réduit & une fonction de fréquence a deux branches.
Lie raccord tangentiel peut étre obtenu en by et b, amsi qu’il ressort
des formules (23), par intermédiaire des fonctions A et y, mais non
par les valeurs de f(u,x) sur la courbe (b). Ainsi, par exemple, la jonction
sera en général tangentielle en b, s1 x; = o puisqu’alors A(w) = 0.
Pour les fonctions statistiques usuelles on appliquera les formules
aénérales (30), (31) et (34).

35. Traitons encore un cas particulier qui peut rendre service
pour déterminer, par exemple, le cercle de bénéficiaires de pensions
de viellesse dans un régime ot Uattribution des prestations est subor-
donnée a la condition de ne pas dépasser certaines limites de revenus.
il s’agit done de personnes agées, 'age x, signifiant alors la limite
d'age mférteure permettant 'octroi de pensions et x, se confondant
avec l'age terme o». Admettons en premiére approximation une strue-
ture d’ige décroissant linéairement selon la formule (46). La nature
des choses veut ici que U'échelle s(x) des revenus moyens soit décrois-
sante; nous la supposons également linéaire comme suit:

s(x) = 1—C(x—xy); (68)

ainsi le domaine de définition (cf. graphique n° 2) sera limité du coté
droit par une droite décroissante entre les abscisses by et b, Par pro-
jection, on obtiendra ainsi une distribution semi-parabolique pm’l‘-i('uliﬁrc’-
Q@b by.) dont la fonction de fréquence est déterminée & l'aide
de deux fonctions définies, I'une sur un intervalle (1): 0 < u << by et
Pautre sur un tervalle (2): b, < w < b,. Pour calculer les intégrales

0
de projection, on passera par le changement de variable r = ?,v( 'b')'
0



Tous calculs faits on obtient:

(69)

_ 28 I bl _ 1=k
f}(u) _ f 0 1 .)1 Fo T Tt‘eq,
(ho—by)* | 2P L=p
_ 2 /b b, i
falu) = ____ﬁ b(l)‘/’( e )?ap'l —— +
— 0.} (L= i i i
(bo—b1)* 2=p 1=p 2-p 1

b, } (69)
) . (6

La premiére branche appartient elle-méme & la famille des distributions
paraboliques, tandis que la deuxieme est la différence entre une courbe
parabolique et une droite croissante. Si nous admettons << 1, nous
obtenons une courbe d’ensemble constamment décroissante, avec

point d'inflexion et raccord tangentiel en by, comme le montre le

graphique n® 4. Les expressions pour les fonctions statistiques [, ¢ et
A, sont analogues a celles de la distribution semi-hyperbolique P
examinée au n® 28. Donnons, par exemple, les trois premiers moments:

B 2ty
p+1 3

_ B 8b2 4 2byb, + b2

M,= 2 ;

. B 4by -+ 33D, + 2by b7 + 1}

al 3:777 L)

B+ 3 10

SI f > 1, on peut obtenir pour () des courbes unimodales pouvant,

le cas échéant, étre utilisées pour ajuster la répartition des revenus

d’autres ensembles partiels de la population.
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Chapitre III

L’actuariat économétrique de la sécurité sociale

§ 1. L’équilibre financier dans I'espace bio-économétrique (¢,u,x)

36. Chaque régime de sécurité sociale est caractérisé par un certain
nombre de dispositions matérielles définies dans la législation nationale.
Il convient de les étudier de pres avant d’aborder le probléme de
leurs répercussions financiéres. D'une maniere schématique, ces disposi-
tions légales peuvent étre groupées ainsi: Risques couverts (événe-

ments assurés) — Personnes englobées — Droit aux prestations —
Montant des prestations — Ressources — Organisation.

Les régimes modernes de sécurité sociale se fondent sur 'univer-
salité des risques couverts. Selon leur nature on peut classer ces derniers
en quatre groupes:

10 Décés — invalidité — vieillesse
20 Maladie — accidents (professionnels ou non)

30 Chomage dii & des causes soit économiques, soit militaires

40 Maternité allocations familiales.

Quant aux personnes assurées, on tend de plus en plus & englober
dans un régime national la population entiére, ou tout au moins des
classes importantes de celle-ci (les salariés par exemple). Pour avoir
droit aux prestations il faut évidemment que 'événement assuré se
soit réalisé; de plus, on fait souvent dépendre ce droit de certaines
conditions acecessoires de besoin, d’dge, d’état civil, de résidence, de
nationalité, etc. Le montant des prestations dépend en général du
risque couvert, de la durée des cotisations ainsi que du montant de
celles-ci. Pour assurer 'équilibre financier, les régimes de sécurite
sociale font en principe appel aux ressources suivantes: cotisations
personnelles, cotisations patronales, subsides des pouvoirs publics,
prélevement sur des fonds et intéréts de ces derniers. Les cotisations
personnelles sont généralement fixées selon les revenus, ce qui est
souvent le cas ¢ealement pour les prestations, soit directement,
soit indirectement lorsque ces derniéres dépendent du montant des
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cotisations. Ainsi apparait déja le lien existant entre ces questions
financieres de sécurité sociale et les problémes concernant la réparti-
tion des revenus.

37. L’équilibre financier d'un régime peut étre obtenu par diffé-
rentes méthodes; on se rendra compte de leur variété en consultant,
par exemple, l'ouvrage de Iéraud sur l'organisation financiére des
assurances soclales dans divers pays [12], ou encore les considérations
plus générales que cet auteur a publiées dans une autre de ses études
[11]. Malgré cette diversité, on constate que tous les mécanismes
financiers envisagés tendent vers un but commun, & savoir le main-
tien, a longue échéance, de I'équilibre entre recettes et dépenses. 1l
est des lors naturel d’essayer d’exprimer ce but commun par une
équation commune & toutes ces méthodes. Pour écrire cette dermere
nous choisissons d’abord les symboles survants pour les ressources:

°L,(u,z) dw dx le nombre des cotisants vivant & l'instant ¢, disposant
d'un revenu u & u - du et agés de x & x + dx. Chacun
palera une cotisation de

w, (u,x) dt entre les instants ¢ et ¢ - dt; le montant de cette
cotisation peut dépendre des variables w et z.

On peut admettre que la cotisation w contienne également la cotisation
patronale; lorsque les pouvoirs publics participent financierement au
régime, leurs subsides réduisent d’autant la somme des cotisations
personnelles et patronales.

En ce qui concerne les dépenses et pour fixer les idées, il est pré-
férable d’envisager isolément un seul risque, caractérisé par un indice m.
Considérons d’abord le risque vieillesse & 'intérieur d'un régime fondé
a l'époque t = 0 et & participation obligatoire des 'age x,. Ainsi, nous
pouvons admettre un renouvellement des effectifs limité aux deux
droites t = 0 et x = z, du plan (t,2). Si la pension de vieillesse est
attribuée & un dge fixe z,, la seule connaissance des deux quantités
d’observation ¢ et z suffit pour déterminer la durée n de cotisations.
En effet, I'ige d’entrée & est déterminé par © = x —t avec la restric-
tion # > x,. Lorsqu’on veut faire correspondre & chaque n une échelle
de prestations, il est indiqué de caleuler la durée a une année pres;
en désignant par E le nombre entier d’années contenu dans une
période donnée, on aura pour un pensionné d’ige z vivant a I'instant ¢
Péchelle de prestation d’indice n — Ii(z,—z). En ce qui concerne
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le revenu servant & calculer la prestation, de terme annuel r, il con-
vient de faire remarquer qu’il ne coincide pas avec le revenu du pen-
sionné observé a 'instant ¢t et & I'dge x. En effet, la pension de vieillesse
est en général caleulée sur la base d'un revenu spéeifique w, par exemple
sur le salaire gagné & 1'ige 2, ou encore sur la moyenne d'une tranche
de salaires précédant 'age x,. Pour les risques autres que la vieillesse,
les quantités n et @ peuvent également jouer un role analogue. Re-
marquons cependant que dans le cas des pensions de survivants et
d'mvalidité les variables d’observation t et 2z ne déterminent plus
d'une maniere univoque la durée n. Pour v arriver il faudrait alors
itroduire soit une nouvelle variable continue n, soit des hypotheses
simplificatrices (par exemple: dges moyens z, de réalisation du risque,
allocations uniques). FEn adoptant 11 'une de ces derniéres, nous
pouvons choisir les symboles suivants quant auwx prestations:
"L(w,x) du dr le nombre des bénéficiaires concernant le risque
d'indice m, vivant & linstant f, dont la prestation
a ¢t¢ caleulée & laide dun revenu spécifique w 2
w -t du et qui sont dgés de x & x| dax. Chacun
touchera une prestation de
() di entre les mstants ¢ et ¢ 4 dt; ce montant dépendra en
plus du risque envisagé, du revenu spécifique % ainsi
que de la durée n de cotisations supposée déterminée
par ¢ et z.

11 est clair quun mécanisme financier se distingue d'un autre
par une répartition différente, dans 'espace (tu,r), des ressources
et des dépenses entre les assurés. Or, une équation commune a tous
les mécanismes doit étre valable quelle que soit cette répartition; pour
prétendre & cette géndéralité notre équation doit done s'étendre a
I'espace entier. Ainsi, [dquation générale d’équilibre financier dans
Uespace (ta,x) peut s’exprimer, pour un risque donné, par la formule
cl-apres. On aura pris soin de définir au préalable une loi de capitalisa-
tion (1 +19)" = ¢ Sappliquant & 'unité monétaire, soit & 1'aide du
taux d'intérét annuel 1, soit avee le taux instantané équivalent 0;
en introduisant le facteur d’escompte habituel v = (1 + )™ = ¢7,
on pourra finalement écrire:

i @ o o
] e dt ’ dzx ] °L,(u,x) w,(u,x) du — f "Ly () du| = 0. (71)

0 To 0 0
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Suivant le m envisagé on précisera les limites d'intégration en z;
pour le risque vieillesse par exemple, on ira de x, a x, pour les cotisants
‘L et de x; & w pour les pensionnés "L.

88. De I'équation (71) nous déduirons au numéro suivant tous les
mécanismes financiers usuels. Avant de rejoindre ainsi les théories
de l'actuariat classique, effectuons d’abord les intégrations en u et en
w, ceci par Uintroduction systématique des distributions de revenus. Les
symboles adoptés pour les effectifs de cotisants et de bénéficiaires
peuvent étre définis directement & partir des fonctions de fréquence
imtroduites au n° 4. Nous désignons par ‘L, I'ensemble des cotisants
vivant a I'instant ¢t et par "L, 'ensemble des bénéficiaires concernant
le risque m; nous admettons en outre que chacun de ces ensembles
ait ses propres distributions caractérisées, soit par l'indice ¢, soit par m.
Ainst 'on pourra ¢éerire les deux couples de formules de définition
que voiei:

‘Ly(xr) = "L, “4,(x), (72)
7-’1]—1[(-1,‘) ey )nLt ‘nll[(x) ; (72/)
“Ly(u,x) = Ly (u,x) = °Ly(x) °f, (w,x) , (78)
"L, (#,x) = "L, ", (4,x) = "L,(z) ™f,(%,z). (73")

Portons maintenant les substitutions indiquées par (73) et (73)
dans I'équation (71) et effectuons I'intégration en wu, en posant:

10, (1) = fwl(fu,,;r) f,(u,x) du, (74)
0

r(x) = [ (i) "f,(0,a) i (74')
0

La premiére de ces quantités représente la cotisation moyenne d'un
ensemble °L/(r) de cotisants. Puisque nous avons admis que n est
completement déterminé par la seule connaissance de f et z, la deuxieme
de ces quantités définit bien la prestation moyenne d'un ensemble
"L(x) de bénéficiarres. Cest précisément le caleul des valeurs moyennes
(74) et (74") qal constitue un des problémes essentiels de ce que nous
appelons 'actuariat économétrique.
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Deux questions fondamentales se posent. La premiére est de savoir
comment on peut dédwre les distributions de fréquence ™f de celles de
fréquence °f, ces derniéres coincidant en général avec les distributions
de revenus a fonctions de fréquence f(u,x) envisagées au n° 10
(ef. hypothese B). Un exemple simple est fourni par le cas des pensions
de vieillesse calculées sur le revenu précédant immédiatement attribu-
tion des prestations & Udge x,; ici on supposera "f(u,z) = °f(u,z,).
Nous verrons un exemple plus compliqué au § 3 ci-aprés. La deuxiéme
question fondamentale se rapporte a la nature de la dépendance fonction-
nelle entre w et w, respectwement entre r et %. Quelle qu’en soit la nature,
Iapplication des formules (74) et (74") permettra toujours le calcul
direct de w et r. Cependant, si ce lien est relativement simple, on n’aura
pas besoin de faire intervenir chaque valeur des fonctions de fréquence
pour effectuer ce calcul. On arrivera souvent & déduire de (74) et (74")
des expressions analytiques qui ne feront appel qu’a quelqaes valeurs
particulieres des fonctions statistiques usuelles, par exemple M,
F et @. Le cas classique est celul ot w et » sont liés linéairement a la
variable du revenu. Iin posant par exemple r(#) = ou -+ k, on trouvera
r = oM -+ k olt M est la moyenne de la distribution des revenus spéci-
fiques. Encore plus simple est le cas de la proportionnalité ot k =0
ou encore celul o p = 0, ¢’est-a-dire r = k. Ce sont précisément ces
formes élémentaires de dépendance linéaire qui ont été utilisées a
l'origine dans les systemes de sécurité sociale. Ainsi les actuaires
pouvalent se passer des distributions de revenus, les moyennes étant
alors suffisantes. La structure des systemes modernes de sécurité
soclale est plus complexe et 'introduction des distributions de revenus
est devenue de ce fait inéluctable, comme nous allons le montrer aux
paragraphes suivants.

39. Une fois le caleul des moyennes effectue, (71) se réduira alors
a une équation d’équilibre financier dans le plan biométrique (t,x):

[t [ ['L,(@) w,(z) — "Ly(x) 7, (a)] dz = 0. (75)
i

Nous avons obtenu ainsi ane équation d’équilibre analogue a celle de
Kaan [21]; Ia formule (75) en différe cependant par les quatre points
sulvants: 10 Application de la méthode continue; 20 Introduction dans
I'équation de départ des variables «d’observations ¢ et = au lieu des
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variables «d’entrée» f et £; 30 Suppression de la variable n (hypothese
simplificatrice de renouvellement); 40 Présentation des dépenses &
l'aide de deux facteurs L et » & la place du produit 4 de ces facteurs.

De I'équation (75) on peut facilement déduire les mécanismes
financiers classiques; vu les limites des variables adoptées, U'intégra-
tion s’effectue dans un domaine rectangulaire ouvert du c¢dté droit.
[’équilibre global d'un régime est évidemment garanti s'il U'est déja
séparément dans tous les domaines partiels du plan. Nous pouvons
done former, en suivant la méthode de Kaan, des groupes financiére-
ment autonomes dans le plan (t,z) et supposer qu’a I'intérieur de chacun
des groupes ainsi constitués la cotisation w0 est constante; de cette
maniére on peut admettre que les prestations sont données et que les
cotisations sont les inconnues. Le choix des domaines partiels doit
cependant garantir le fonctionnement pratique du systeme choisi,
en particulier, il faut qu’il y ait & part les bénéficiaires toujours des
cotisants. L’autonomie financiére peut étre envisagée théoriquement
meme le long de certaines lignes du plan et méme en des points isolés.
Iin choisissant un point, les deux variables ¢ et x sont fixes; en choisis-
sant une ligne, une seule des variables est indépendante. Ce n’est qu’en
considérant des domaines a deux dimensions que les deux variables
t et x sont simultanément libres. Ainsi on pourra construire une infinité
de systemes financiers, méme en ne choisissant que des lignes droites
pour définir les groupes autonomes. On arrive aux systémes financiers
classiques par la schématisation suivante ot nous noterons I'expression
de (75) écrite entre crochets par le symbole [ ~]:

10 La prime naturelle s’obtient en prenant aussi bien ¢ que x fixes.
Pour trouver w,(xz) il suffit d’annuler [ ~].

20 La prime instantanée de répartition consiste a choisir ¢ fixe,
¢’est-a-dire de former des groupes autonomes sur les droites
t = constant. On trouve la prime de répartition w, en annulant

dans (75) [[NJ ko

30 La prime andividuelle (capitalisation andividuelle) se dédut de
(75) en réalisant I'autonomie financiére le long des lignes de vie
dont chacune est caractérisée par un dge d'entrée & > x, cons-
tant; un fois « fixé, 2 ne varie plus qu'en fonction de t. Pour re-
trouver les formules classiques de lactuariat, il sutfit de rem-
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*

placer dans (75) x par ¢tz et de poser J e’ [~]dt = 0;
0

lorsque x — 1< z, on appliquera la formule concernant la ligne
de vie x =1t -+ x,. Vu notre hypothese de renouvellement, les
L évolueront selon les ordres d’extinetion adoptés. Si l'on
suppose 10 indépendant de ¢ on trouvera ainsi la prime indivi-
duelle w ().

40 La prime moyenne générale est la conséquence directe de I'équa-
tion (75) étendue a tout le plan et dans laquelle 1l suffit de
supposer w0 indépendant de ¢ et de .

Le facteur ¢ n'intervenant pas dans les deux premiers systemes,
ceux-cl appartiennent aux systémes de répartition. La présence de ce
facteur dans les équations relatives aux systemes 32 et 40 détermine,
en revanche, une part de capitalisation. — Dans la pratique actuarielle,
on trouvera encore d'autres systemes financiers en envisageant dans
le plan ({,z) des domaines partiels simples. Ainsi I'on obtient le systeme
de répartition par périodes en découpant le domaine complet par des
droites paralleles & I'axe des x; 81 { = ¢, et ¢ =, sont deux droites
successives on définira une prime 1w, et en particulier la prime de
répartition annuelle lorsque t, = t, + 1. D'une maniere semblable on
arrive a la prime moyenne par groupe de générations en décomposant
le plan (t,x) en bandes limitées par des lignes de vie paralléles. On
éerira (75) en 2 et on obtiendra la prime moyenne w(r,,7y), ou z, et
Iy caractérisent les deux lignes de vie limites. Dés que o —1t <0z, on
aura la prime 10(xy) pour les générations entrant dans le régime apres
t = 0, prime identique & la prime individuelle pour r = r, — Kaan
a encore définn d'autres systémes finaneciers en formant d’autres groupes
autonomes & l'aide de la variable n (durée de cotisations) qu'il a choisie
alternativement comme ¢lément fixe ou variable. Ces systémes sont
dans le cas général d'un intérét purement théorique, mais coincident
el avee les systemes exposés ci-dessus, va que nous avons limité le
renouvellement sur les deux droites t =0 et a2 = x,,.

Pour les calculs financiers de la sécurité sociale on a de plus en
plus recours a la méthode des budgets annuels. Elle découle également
de I'équation (75) si 'on met en évidence la somme annuelle 2, des
recettes et la somme annuelle /1, des dépenses d'une année débutant
a U'instant 7; 1l suffit de poser:
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T+1 w

Q, = [ at [ Ly(z) w,(x) dr, (76)
Gt =0
T-+1 w

A, = [ at [ "L (x) 7, (z) da. (76')

On commence en général par calculer ces quantités et 1'équation
d’équilibre (75) s’écrira alors de la maniére suivante:

[e5]

SR, —A) e =0, (76")

0

On voit par (76) et (76") I'importance que revét également dans la
méthode des budgets annuels le calcul des valeurs moyennes des cotisa-
tions et des prestations. Nous examinerons dans les paragraphes
suivants quelques cas concrets.

Lorsque le systéme financier adopté comprend une part de capi-
talisation, 1l se constituera une réserve mathématique collective que 1'on
calculera, au début d'une année commencant a I'instant ¢, selon la

formule ci-apres:
{1

V, = ST, —A,) 0, (77)

[

Dang de tels systémes, les intéréts de cette réserve devront couvrir &
- ]

partir d’un certain instant f, mais avant tout & 1'état stationnaire,

Iexcédent des dépenses sur les autres ressources.

40. La formation de groupes fimancierement autonomes peut
s'effectuer non geulement dans le plan (f,z), mais déja dans Pespace
(tau,x). A I'intérieur de chacun de ces groupes s’étendant a une portion
de lespace on réalise une solidarité financiére entre ses membres. Kn
effet, ceux-ci paient tous la méme cotisation bien que présentant des
risques financiers fort divers. (Cest dans le systéme de la prime indi-
viduelle que I'on réduit cette solidarité au strict minimum nécessaire
& tout mécanisme d’assurance. Fn effet, on demande alors & chaque
assuré la prime exacte correspondant au risque présumé, ce dernier
étant déterminé avant tout par 'ige d’entrée ainsi que par le montant

o . F
de I'assurance contractée. Il faut done en particulier que le rapport
w
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soit icl constant par rapport au revenu u, ce qui sera le cas si r et w
sont proportionnels au méme u. De la sorte, le revenu moyen corres-
pondant s’élimine de l'équation (75) et cette derniére se rameéne &
une relation entre taux de cotisations et taux de prestations; c’est
alnsl que se présentent en général les contrats de I'assurance privée.
Si I'on ne considéere que les groupes autonomes dans le plan (f,z),
on réalise & I'intérieur de ceux-ci une solidarité bioméirique caractérisée
par une prime moyenne w identique pour des risques biométriques
différents. Or, en procédant de cette facon, on néglige tout 'aspect
¢conomeétrique du probléme qui découle de 'introduction de la variable .
La prise en considération de cette derniére n’engendre, il est vrai,
aucun systeme financier nouveau; c¢’est la variable ¢ qui les détermine.
in revanche, si l'on forme des groupes autonomes dans I'espace
(f,u,x) pour lesquels u, << u < uy, on crée dans chacune de ces
classes une solidarité économétrique qui peut évidemment couvrir toute

A

, . . ru .
I'étendue de la variable u. C’est en particulier le rapport —~ qui peut
U

varier & l'intérieur du groupe considéré, de sorte que les avantages
retirés ne sont pas toujours proportionnels aux cotisations lorsque
ces dernieres sont elles-mémes proportionnelles aux revenus.

Le but essentiel du présent chapitre ¢tait de montrer que le
probléme du caleul des prestations moyennes, dont nous parlerons plus
en détail aux paragraphes suivants, se pose d’une maniére trés générale
et réclame une solution avant méme d’envisager la question des
systemes financiers qui peut étre étudiée sur le seul plan biométrique.
En effet, les actuaires partent en général directement d’une équation
analogue a (75) ou de 'une de ses formes particulicres. De cette fagon
ils admettent tacitement que le calcul des moyennes est déja effectué
ou, plus souvent encore, que r et w sont proportionnels aux revenus.
Ce n'est d'ailleurs que dans ce dernier cas qu’on peut déduire de (75)
un systeme financier méritant vraiment I'épithete d'individuel. Sans
cette proportionnalité on réaliserait, méme a l'intérieur d'un systeme
de capitalisation dite individuelle, une solidarité économétrique; les
symboles des moyennes r et w subsistant dans les formules confirment
la chose.

Nous avons aussi tenu & montrer que la méthode de Kaan pouvaib
se généraliser et devait méme 'étre afin de ne pas rester incomplete.
Les avis sont trés partagés au sujet des mérites de cette méthode.
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Il est indéniable qu’elle réalise une synthese ingénieuse de tous les
systémes financiers. Son application n’a cependant pas conduit &
d’autres mécanismes pratiques que ceux qui étaient déja connus des
actuaires; le principal mérite de la méthode est peut-étre d’avoir
précisément démontré que I'on avait épuisé la multiplicité des systemes
pratiques. Lorsqu’on ne considere que les domaines limités d’une
maniére rectiligne, on peut dégager de l'équation générale, faisant
intervenir cette fois comme variable supplémentaire la durée n de
cotigation, une quinzaine de mécanismes financiers, dont la moitié
d’entre eux sont pratiquement inapplicables dans un régime de
pengions invalidité-vieillesse-survivants. La substance de la méthode
de Kaan apparait plus clairement si on la transpose sur le terrain
géométrique, comme nous l'avons préconigé au n° 39. On arrive ainsi
du méme coup a la débarrasser d'un appareil de calculs par trop
laborieux & notre avis.

§ 2. La rente transitoire moyenne de ’AVS

41. Lorsque la durée n de versement des cotisations est inférieure
a une année, le régime suisse d’assurance-vieillesse et survivants
(AVS) prévoit des rentes dites transitoires. Le montant de leurs
termes annuels dépend, d’une part, du genre de rente (rentes de vieil-
lesse simple et pour couples, de veuves, d’orpheling simples et doubles)
et, d’autre part, de la région (urbaines, mi-urbaines et rurales) ou vit
le bénéficiaire. Associons l'indice m au genre de rente et 'indice ¢
au critere régional. Lie droit a ces rentes est conditionnel puisqu’en
etfet, les personnes dont le revenu annuel w dépasse les limates légales

m
s
vielllesse de couples dans les régions urbaines) sont exclues du bénéfice

de revenus ", (par exemple u, = 3200 francs pour les rentes de
des prestations. Aux termes actuels de la loi 1l faut prendre en compte
le revenu u entier de la personne considérée. Il est question de reviser
ces dispositions en augmentant les limites w, de 25 9, d'une part, et
en ne prenant en compte que les troig quarts du revenu u, d'autre
part. Pour cette raison, considérons 1ci le cas général ou 'on ne tient
compte pour 'attribution des rentes que d'une propotion » < 1 des
revenus personnels.

La loi énumere encore les termes annuels maxima v, des prestations
(par exemple r, = 1200 franes pour les rentes de vieillesse pour
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couples, régions urbaines), mais prescrit que ces montants sont réduits
dans la mesure ot, avec le revenu annuel % (aprés revision: avec la
part »u), ils dépassent les limites w,. Les dispositions légales font
done dépendre du revenu u, du moins sur certains intervalles, le terme
annuel "r(u) de la rente. Ainsi, la lot impose ndirectement les deux
meégalités fondamentales suivantes on, pour simplifier les notations,
nous négligeons les indices m et ¢:

r(u) < 7y, (78)
ot vu 4 r(u) < u;. (78"

On déduit de ces inégalités, d'une part, le revenu au-dessous duquel
on a towjours r(u) = 7y, revenu que nous appelons himaite de réduction
Uy, et, d’autre part, le revenu au-dessus duquel il vient r(u) = 0; ce
dernier représente la limite effective de revenus 1u,. Ainsi nous pouvons

écrive:
Uy — 7o
Wiy == v 5 (79)
Y
et y
u, i
Wy = —=. (79")
P

Lies données numériques indiquées plus haut pour les rentes de couples
urbaines conduisent, en supposant la revision légale effectuée, aux
chiffres que voici: u; = 1,25 x 3200 = 4000, » = 0,75, u, = 3733 et
u, = 5388,

Noug sommes maintenant en mesure d’exprimer la prestation an-
nuelle en foncetion de w sur tout U'intervalle de variation 0 < u < =,
comme suit:

0 <i<ilgd THE) =7 l
Upg < U < Uyt T() = Uy — YU == Ty — v(U — ) (80)
w, < u<oc: r(u) =0. I

La rente r(u) est une fonction polygonale; en effet, on obtient graphique-
ment un polygone a trois segments, dont le dernier se confond avec
Paxe des u. Afin de pouvoir apprécier U'effet de nivellement produit
sur les revenus par les rentes transitoires, il est instruetif de dessiner

également le graphique représentant la fonetion w --r(uw).
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42. Pour évaluer les dépenses annuelles on appliquera la formule
(767). Il taudra d’abord calculer & I'instant t le nombre de bénéficiaires
en partant de celui de toutes les personnes d’age z (0 << u << o) pour
lesquelles le risque envisagé s’est déja réalisé. S 'on désigne ce dernier
nombre par L,(z), toujours en négligeant les indices m et ¢, le nombre
de personnes dont le revenu est inférieur & u, s’obtient en intégrant
(73") de 0 & wu,; ainsi il vient:

Ly(x) = Fluy,x) L), (31)

ot I est la fonction cumulative définie par (27); si possible, on prendra
un F' spécifique pour chaque couple de parametres m et q.

81 l'on calcule la rente moyenne transitewre selon (74'), il ne faut
pas perdre de vue que la fonction f(#,z) & appliquer ici donne la distri-
bution des bénéficiaires d’age x selon leur propre revenu, de sorte que
f,(#,2) = f(u,z). La rente moyenne variera donec ici avec I'age observé;
nous aurons ainsi:

Hz) = f r(w) flu.x) di. (82)

Décomposons l'intervalle d'intégration selon les trois intervalles de
(80) et substituons dans (82) & r(u) ses valeurs polygonales correspon-
dantes. 81 l'on introduit les fonetions cumulatives £'(u,x) ainsi que les
sommes réduites @(u,x) 'on obtient finalement:

7(2) = 1o Flug,a) + 1y [Fug,) —F(ug,x)] — v [Puy,x) — Plug,x)]. (82')

En caleulant »(z) d’apres (82'), il taut alors, pour évaluer A,, multiplier
—_ v : . % "

r avec les effectifs L,(z). Si 'on veut se servir de [, (z calculé selon
(81), 1l faut évidemment prendre comme moyenne:

- r(z)
0 . (82
F(u,,x)

11 est done possible de caleuler r(z) analytiquement, pourva que
les expressions définissant I et @ solent intégrables. Tel est bien le
cas, par exemple, lorsqu’on utilise pour les calculs numériques relatifs
a chaque dge z une distribution parabolique Q(u;b,,p) avec f <1
(cf. n° 34). On sait alors que la distribution globale de tous les rentiers
transitoires caractérisés par un méme couple d’indices m,q est une
distribution semi-parabolique (). Lorsqu'on considere d’emblée la
distribution globale, on peut d’ailleurs utiliser cette distribution ()

21
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pour effectuer les calculs en premiére approximation, comme nous
I'avons suggéré au n° 35. On déterminera alors les trois parametres
by, by et fp dans le cas particulier du n® 35 par trois conditions en
s'imposant, par exemple, M, F(uy) et (), quantités qui peuvent
souvent étre tirées des observations statistiques. — On pourrait
également prendre en considération ici les distributions P(u;a,..x) ou
G(u;a,.,y,.€) avee & < 1.

§ 3. La rente ordinaire moyenne de I’AVS

43. Des que on a pour la durée de versement des cotisations:
n > 1, la lot d’AVS suisse accorde des rentes dites ordinaires. Si
I'événement assuré (vieillesse, déces) se réalise, ces prestations sont
attribuées sans aucune condition supplémentaire. Il faut distinguer
icl les mémes genres de rentes d'indice m que pour les rentes transitorres
(ef. no 41). Le montant des rentes ne dépend pas seulement de m
mais encore de la durée n de cotisations, définie a une annde pres comme
au n° 37 par n — [(x, —x). Pour la vieillesse, x, signifie la limite
d'age (= 65 ans) a laquelle sont attribuées les rentes; du fait qu’elles
prennent toujours naissance solt un 1€r janvier, soit un 1er juillet, la
loi prévoit pratiquement une limite variable entre 65,0 et 65,5 ans.

Pour les survivants, x; représente I'age de déces —— a condition que
ce dernier survienne avant la Iimite vieillesse — du cotisant entrant

. 1 s £ . 1 3 3
en ligne de compte. Iiage r (== 20 ans) est celut de 'assujettissement

de la génération considérée. Ainsi, on a pour 1 << n <= 19 les 19 échelles
de rentes partielles et pour n = 20 'échelle des rentes complétes.

Le terme annuel d'une rente dépend encore de la cotisation
annuelle moyenne w que le cotisant aura réalisée depuis son age d'entrée
£ jusqu'a Varrivée de U'événement assuré & I'dge x,. Nous calculerons
ainsi 1 comme moyenne arithmétique des cotisations w proportion-
nelles aux revenus du travail et pavées pendant la carriére 2 < @ < 243
rappelons que la lo1 fixe un taux de cotisation 7z == 0,04 comprenant
la cotisation personnelle et patronale. Si l'on associe le revenu variable
w & un dage x quelconque et w’ a l'dge de référence r, = 20 ans, nous
aurons pour les cotisations mdividuelles correspondantes:

w = 7U (83)

et o
w' = mu’. (83")
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Or, nous avons précisément admis, au n° 11, par I'interprétation bio-
métrique de la relation (13) que les revenus individuels se trans-
formaient par u = s(x) %, de sorte que I'on a en vertu de (83) et (83'):

W = 8% . (83"

Ainst la moyenne arithmétique w cherchée se caleulera d’aprées la
formule évidente:

(84)

o le symbole s(r,z,) apparait comme moyenne arithmétique de
I'échelle s(z).

Connaissant les trois éléments déterminants m, n et 1w, nous
pouvons calculer maintenant un terme annuel de la rente ordinaire
"r(iw). Puisque la loi considére la rente de vieillesse simple compléte
(20 << n < 45) comme [élément technique de base, nous partons
de cette derniére. Les dispositions légales donnent pour le terme annuel
de la rente envisagée les montants suivants selon les quatre intervalles
en w ci-apres (chiffres en francs):

0<w< 30: ,r(w) = 480
80 <Cw << 1500 (i) = 800 4 6w 7
. . | . (85)
150 < << 300 4or(w) = 900 - 2w
800 <Cw << oo 1 Hr(w) = 1500.

c,-‘\

Les rentes de vieillesse simples partielles (1 <2 n << 19) se calculent
d’apres les regles sumivantes:

0< <"
) 85

B: ) = grid) ]
n \
T5 < < oc: W) = T50 4 —— [or() — 750]. ]
20
On déduit, en principe, les montants annuels des autres genres de
rentes en multipliant le résultat obtenu & 'aide de (85) et (85) par
les facteurs que voici: 1,6 pour la rente de couple; 0,5 a 0,9 pour les
rentes de veuves, suivant 'age de la veuve au moment du déces du
conjoint; 0,3 pour la rente d’orphelin simple et 0,45 pour la rente
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d’orphelin double, la réduction selon (85") ne s’appliquant cependant
pas a ces deux derniers genres de rentes. — On voit immédiatement
que ces rentes s’expriment dans chaque intervalle, et quels que soient
les indices m» ou m, par une fonction linéaire en w. Toutes ces formules
se réduisent donc au type suivant:

r) = A, + B;w, (85"

relation ot les coefficients 4, > 0 et B, > 0 dépendent également
des parametres m et m; (85") représente I'équation d’un segment de
droite correspondant & un intervalle numéro j de 'axe des w. On a
cinq intervalles § pour les rentes partielles et quatre pour les rentes
completes. Les équations (85”) définissent ainsi, pour un couple
d’indices m et n donné, un contour polygonal, concave vers le haut
a la fin du premier intervalle et concave vers le bas aux jonctions des
autres. Nous ne sommes done plus en présence d’une linéarité uniforme.
On consultera & ce sujet les graphiques de la publication [29].

44. Pour estimer les dépenses annuelles /1, selon (76"), nous
supposons effectués les caleuls démographiques menant aux effectifs
"L, (x). L’évaluation de la rente ordinaire moyenne 7 se fait en principe
d’apres (747) en éerivant d’abord pour une rente de vieillesse (simple
ou pour couple):

(o]

r(@) = [ () flio.) div; (36)

0

rw) est tiré de (85" et la distribution des pensionnés selon les cotisations
annuelles moyennes peut étre déduite d'une distribution de revenus
des cotisants comme nous 'avons annoncé au n° 38. In effet, il suffit
de partir de la fonetion fondamentale f(u',z,)) = g(u") et d’effectuer
les deux changements de variables successifs (84) et (83'), ¢’est-a-dire

w = 7 s(z,x) w. (87)

Nous caleulons la transformée de g(u’) et nous supposons qu'elle
coincide avee la fonction de fréquence f,(w,x) relative & la distribu-
tion des cotisations annuelles moyennes réalisées entre z = z—1
et 2. On introduit ainsi une nouvelle hypothése C qui est analogue
4 Thypothése 4 du n° 9 et parait aussi plausible que celle-ci du fait
de l'interdépendance des revenus individuels en passant d'un age =
a un autre. Vu cette dépendance nous ne sommes plus en presence
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du probléeme fondamental du calcul des probabilités concernant la
distribution d’une somme de variables (ou de leur moyenne) chacune
d’elles étant distribuée indépendamment I'une de 'autre. Il vient done:

1 W
. -

filw,z) = fw;z,2)) = - 2 1l
7 5T,

. (88)

*

7 $(T,2,)

Pour les rentes de survivants nous pouvons appliquer en principe le
méme procédé, x; signifiant alors 'age de déces; ce dernier pouvant
varier pour un t et x donnés, la premiere équation de (88) ne s’applique
dans ce cas qu'en précisant pour f, la durée n. Suivant les nécessités,
on fera correspondre & chaque risque m sa propre fonction "s(z), sur-
tout lorsque m dépend de 1'état civil; n étant déterminé par z et =,
on obtiendra également une distribution propre a chaque n. Ainsi, 'on
aura bien calculé toutes les fonctions de fréquence dont on a besoin.

Le calcul de la rente ordinaire moyenne r ne présentera deés lors
aucune difficulté. Il suffit de substituer les expressions (35") et (88)
dans (86) et de décomposer I'intervalle d’intégration dans ses inter-
valles partiels 5. Kn désignant par A" et A,® les accroissements des
fonctions If(w) et @(w) sur U'intervalle 7, on aura:

T = Nj[4; 4,F + B, A9]. (89)

Lorsque les expressions définissant F' et @ sont intégrables, on peut
donc calculer analytiquement la rente moyenne. Ceci se vérifie en
particulier pour la distribution semi-normale G(u;a,,y,.¢) dont nous
avons préconisé [22] 'emplol pour les calculs concernant I'équilibre
financier de 'AVS [29]. Ce cas particulier est d’ailleurs & l'origine
de la méthode générale exposée au chap. I. Krimer [25] a proposé
une autre distribution du type de Pearson, mais il suggere de calculer
r & l'aide d’une distribution globale unique, ce qui ne constitue qu'une
premiére approximation pour la résolution du probléme. Ce n'est que
le dépouillement des comptes individuels qui indiquera en définitive
a quelles fonetions il faut avoir recours pour ajuster les distributions
observées.

45, Le calcul de la rente ordinaire moyenne souleve encore
d’autres problémes. Indiquons d’abord celui de la comparaison de la
rente moyenne v avec la rente individuelle r(w), correspondant & la valeur
moyenne w des cotisations individuelles moyennes w. Cette valeur
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moyenne w se caleule & 'aide de (88) et tombe & l'intérieur d’un inter-
valle § déterminé de sorte que r(w) = A5 + B;w. On peut calculer encore
les valeurs moyennes partielles 10; pour chaque intervalle j, de méme que
[ - — — Y 5 oy e o
1 Yoo== An R T) g [ — KA . — 4 L .
les quantités 7, = A4, + B;w; telles que 1 ;’. r, A F =4+ Bw,
, _ i oy ay Dy
ceci en posant 4 = Si A AF et B = > B, =~ A,F. On trouvera
P 7 ] L 1 w0 /)
ainsi, en éliminant w des équations donnant r(w) et r:
_ B —
r=——[r@w) —4;] + 4. (90)
-
Une variation de w indique une variation de f, done de A et B, de
sorte que (90) représente une courbe r(w). Lorsque w déterminera un
numéro 5 d’intervalle suffisamment élevé, 'on aura toujours v << r(w),
ce qui ressort directement de la comparaison de 1'équation donnant r
avec lidentité: r(w) = r(w) Dy A, F (concavité du polygone tournée
vers le bas).
Il est naturel de se demander & quelle rente pourraient donner
lieu les cotisations w = s(z) w’ payées entre 7 et z, si I'on appliquait

le principe de Uéquivalence actuarielle qui réside dans 'équation de la
prime individuelle (cf. n°89), ot r serait cette fois I'inconnue et w
donné. Désignons d'un ¢oté par ax la valeur actuelle, pour un assuré
d’dge z, de tous les genres de rentes ordinaires de AVS auxquelles il
pourrait avoir droit, en posant la rente de vieillesse simple = 1; d'un
autre cOté, appelons ax la valeur actuelle des cotisations de cet assuré
en supposant que la cotisation annuelle moyenne w0, caleulée selon (84),
soit = 1. A propos de ces valeurs actuelles nous renvovons a la collee-
tion de tables: « Valeurs actuelles des cotisations et des rentes AVS»
que vient de publier I'Office fédéral des assurances sociales. Les
formules (94) et (95) ci-apres donnent d’ailleurs une premieére idée
a ce sujet (voir aussi la remarque suivant la premiere de ces formules).
De cette maniére, on pourra déterminer un taux de rente g* comme suit:

o)

&xr?

o: represente ainsi la rente de vieillesse simple acquise par le versement

de cotisations dont la moyenne w = 1. En réalisant une moyenne 1,
’ - A% ; 5 . 3 5 P i .
I'assuré obtiendra la rente r(w,2) calculée en capitalisation individuelle:

r(io,r) = gtiv. (1)
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Cecl représente une droite par l'origine qui coupera le polygone défini
par (85”) en un point d’intersection I dont I'abscisse sera w,. A gauche
de ce point, les différences () —r(w,7) seront positives et, a
droite, négatives. Ces différences mesurent la solidarité résidant dans
le polygone (85"). Cette mesure tient compte & la fois de la solidarité
économétrique ainsi que des deux formes de solidarité biométrique
qui sont & la base de 'AVS et qui favorisent, d'une part, les personnes
mariées et, d’autre part, les classes d’dge & > x,. Nous désignons
la droite (91') par droite «biométriquer; elle est en effet enticrement
déterminée par le coefficient angulaire p: calculé & 1'aide des seules
données biométriques.

Nous pouvons construire encore une droite «économétrique». Ce
sera celle qui fournira pour un couple donné d’indices m, n la méme
rente moyenne 7 que le polygone (85”). Pour I'obtenir il suffit de
définir un taux p & I'aide de la rente moyenne r et de la valeur moyenne
w des cotisations individuelles moyennes w, cette derniére étant cal-
culée & 'aide de (88); on pose g = 'r et on envisage la droite par
l'origine: 'w

A

:f‘(w) = oW, (92)

fQ|

qui donne bien la méme rente moyenne r que le polygone 7(w). En
calculant les prestations selon cette droite, on accorde & un ensemble
de bénéficiaires caractérisé par un groupe donné de critéres bio-
métriques (age, sexe, état civil) en moyenne les mémes avantages que
le polygone (85”). La comparaison de ce dernier avec cette droite (92)
met, donc en évidence la seule solidarité économétrique. Vu que (917)
permet de mesurer la combinaison des deux solidarités en question,
on arrive & dégager la solidarité biométrique seule, en confrontant les
deux droites (917) et (92).

§ 4. Problémes économétriques relatifs aux caisses de pensions

46. Du fait de I’évolution économétrique récente, les problemes
relatifs aux caisses de pensions relevent de plus en plus de méthodes
particuliéres aux assurances sociales. Les cofisations sont en général
proportionnelles aux salaires selon la relation w = zu ou « est le
taux de cotisation uniforme. En revanche, pour les pensions, la
proportionnalité au salaire spécifique servant de base au caleul des
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prestations est de plus en plus corrigée en faveur des personnes a revenus
faibles en leur garantissant une pension minimum fr,; en outre, on
g 0
introduit un maximum r; de pensions par lequel on tronque les presta-
tions correspondant aux revenus élevés. Le salaire spécifique utilisé
pour la détermination du montant de la prestation est en général celui
qui précéde immédiatement l'attribution de la pension a 'age z;.
Associons le salaire w' a 1'dge z, (limite d’dge inférieure pour l'ad-
= L S
mission) et w”’ & 'dge z,, de sorte que w” = u' s(x,). S1 o désigne

le taux de pension — dépendant en général d'un couple d’'indices m

(risque: déces, invalidité, vieillesse) et n (durée de cotisation) — on
aura les régles suivantes pour le caleul d’un terme annuel de la pension:
L") = pu”; (93)

. 1 g Q!

ro << rw'’) < . (93"

Pour examiner 1'équilibre financier d'une caisse, 'actuaire établit
un bilan technique. Lorsque les statuts de la caisse prévoient des primes
de rachat pour couvrir les charges supplémentaires résultant des
augmentations de salaires, le bilan est calculé sur la base des salaires u
observés & 'époque t de I'établissement du bilan. Au contraire, si ces
charges supplémentaires sont sensées étre déja couvertes par le taux
de cotisation &, on peut tenir compte des augmentations de salaires
en introduigant dans les calculs Péchelle s(x) déduite du matériel
statistique de la caisse. ("était la d’ailleurs le but des travaux de
King [24] que nous avons signalés au n° 7. On s’écartera évidemment
ainsi du principe de la prime individuelle pour se rapprocher de celul
de la prime moyenne générale. Calculons d’abord, & I'époque t du
bilan et pour un assuré d’ige x, la valeur actuelle ‘z.v:@l 1| des colisations
futures, la cotisation initiale w == 1w’ s(z) augmentant d’une maniere
continue selon s(&) pour x << & < x;. Si a,.— représente la valeur
actuelle d'une cotisation annuelle de 1 franc, payable d'une maniere
continue, on obtient la valeur actuelle cherchée par:

Ty
{7

* -_— —_—

Qpziz| = mu' |, s(@) +— | Dsa,.—ds(é) |. (94)
1 Try-r ])T S S Tt

x

Relevons qu'il suffit de diviser cette relation par w' s(x,r,) pour
obtenir la valeur actuelle de cotisations dont la moyenne annuelle
serait = 1. Calculons encore, & titre d’exemple, la valewr actuelle
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Irﬂd; d'une rente de viedllesse déterminée a I'aide du taux g, —; sur la

base du revenu w' concernant I'dge z,; il vient, en introduisant le

symbole habituel , a, de la rente différée unité, payable de maniére

continue: " ) _ 5

viz|la — Qza| U S(xl) 2z, Uz e (90)

S1 'on veut partir directement du salaire u observé & I'époque du
u

s(r)

Pour évaluer correctement la totalité des engagements, il taut évidem-

bilan, on remplacera dans les deux formules ci-dessus u' par

ment tenir compte de la nature polygonale des prestations définies
par (93) et (93'). Puisque f(u'',z;) donne la répartition présumée des
futurs pensionnés selon le revenu déterminant «', il suffit de multi-
plier (95) par L,(x) f(u"”,z,) et d’'intégrer en «'"; on mettra ainsi en
évidence la pension moyenne calculée a Uaide des valeurs polygonales
sur les trois intervalles définis par (93) et (937), cect d’une maniere
analogue a celle de la formule (89). Pour les autres risques on procédera
d’une facon semblable en tenant toutefois compte.de la répartition f
valable au moment de la réalisation du risque.

47. Il n’entre pas dans le cadre de ce travail d’étudier les relations
des caisses de pensions (CP) avec ' AVS. Relevons simplement que du
fait de 'augmentation du cott de la vie, les rentes ordinaires de I'AVS
sont le plus souvent considérées par les CP comme allocations de vie
chére venant s’ajouter aux pensions statutaires. Ce qui intéresse avant
tout chaque assuré c¢’est de connaitre le taux total de sa pension de
retraite ainsi cumulée CP = AVS. Alors que le taux o' est directe-
ment donné par les statuts, il convient de calculer correctement le taux
o*"® en rapportant la rente AVS r(w) au méme salaire de référence
que celui déterminant %, c’est-h-dire le salaire %”; on a done:

R = M (96)

w 1

U

Pour se rendre compte de la nature de ce taux, il faut remplacer r(iv)
par son expression (85”) et exprimer w”* & l'aide de w, ce qui est facile
si l'on se rappelle que v = s(x,) v’ et w = s(r,x,) wu'; ainsi il vient:

w o s(zy)

.. (97)

7 s(Z,1,)
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La substitution dans (96) effectuée, on voit que ¢*'® est toujours

g
décroissant avec «'’; ¢’est 1a que réside d’ailleurs la solidarité écono-
métrique de 'AVS qui préoccupe avant tout les actuaires étudiant
le probleme de l'adaptation des pensions aux rentes AVS. Afin de
mettre en évidence la portée collective de I'AVS pour I'ensemble des
membres d'une CP, l'actuaire établit souvent un bilan supplémentaire
relatif aux seuls éléments AVS. Cette tache sera facilitée par la nouvelle
collection de tables «Valeurs actuelles des cotisations et des rentes
AVS» déja signalée au n° 45, collection remplacant & ce point de vue
la publication [30]. Pour I'étude détaillée des relations entre I'AVS
et les CP nous renvoyons & cette derniere publication ainsi qu'a une
autre [23] ot nous avons eu l'occasion d’exposer le probleme sous un
aspect différent.

§ 5. Un probléme économétrique concernant I’assurance-maladie

48. Plusieurs cantons et communes suisses ont décrété, sur la
base de la loi fédérale sur I'assurance maladie du 13 juin 1911, cette
assurance obligatoire pour toutes les personnes dont le revenu est
inférieur & une certaine limite %,. Ainsi on peut essayer d’évaluer
d'abord le nombre total des personnes assurées o 'aide de la distribution
des revenus de la population entieére considérée. La proportion des
assurés sera donnée par la fonction cumulative de la distribution
globale des revenus, fonction désignée par £, (u) qui se caleule & l'aide
de (50) et dont I'élément démographique 2,(xz) seul varie avec le temps;
la proportion des personnes assurées sera done de [, (u,). On peut
évidemment se fixer d’emblée la proportion F(u,) et en déduire le
u, correspondant. Ceci est facile si I'on prend la distribution semi-
hyperbolique P(u;ag,a,,%) en simposant d’avance w, > a,; dés lors
on a Fu,) =1-—H(u,) et Hu,) = a“u”, dou u,.

49, La connaissance du nombre total des assurés ne suffit cepen-
dant pas pour évaluer correctement les charges financiéres, ces dernieres
dépendant avant tout du taux instantané de morbidité x(z) qui varie
sensiblement avee 1'dge. 11 fant donce déterminer le nombre des assurés
d’dge x qui est fourni par la valeur particuliere I'(u,,2) de la cumula-
tive conditionnelle définie par (27). Cette valeur varie avee x, mais
demeure constante par rapport & ¢ grace a I'hypothése B (ef. n° 10).
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S1 nous supposons, faute d’observations statistiques plus précises,
que les assurés d’age x se répartissent selon une distribution de Pareto
P(u:a,e), le caleul de f'(u,x) se fait des lors facilement. On aura, en
effet: I'(uy,2) = 1 — H(u,,x) c’est-a-dire en se rappelant (39) et (43'):

Fu,x) = 1—ag s*(x) ui® (98)

Cette formule donne I'équation d’une courbe en z, dont la concavité
est tournée vers le haut, pour autant que celle de s(x) soit tournée
vers le bas. Le nombre de jours de maladie provenant des effectifs I, ()
au cours d'une année débutant a l'instant v sera ainsi donné par:

T4+1 x4
K, = f dt j L(x) F(uy,x) %(z) dz, (99)

o x, et x, sont les dges extrémes & prendre en considération.
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Conclusions

La méthode économétrique que nous avons développée au
chapitre T nous a permis non seulement d’étudier plus & fond la théorie
de la distribution des revenus mais encore de résoudre quelques pro-
blemes posés par la technique mathématique des plus importantes
branches de la sécurité sociale. Le champ d’ application de cette méthode
pourra cependant s'étendre facilement. Illle sappliquera d’abord aux
autres secteurs de la sécurité sociale, dés que les montants de presta-
tions s’échelonnent d’une manicre polygonale en fonction du revenu.
Tel est par exemple le cas pour les assurances couvrant le risque
chomage, de nature économique ou militaire. La méthode envisagée
rendra sans doute également des services dans le domaine des 1mpots
et des statistiques fiscales.

La généralisation de notre mcthode pourra encore étre poussée plus
loin, tant au point de vue mathématique que statistique. Iin particulier,
1l serait intéressant de faire dépendre la fonction s(z), I'une des trois
fonctions fondamentales de cette théorie, des deux autres variables
t et wu.

11 devient évident que l'actuaire de la sécurité sociale aura de plus
en plus & s'oceuper de problémes économétriques. C'est méme en cela
que son activité scientifique et pratique se distingue essentiellement
de celle de l'actuaire de l'assurance privée. Nous espérons que la
méthode exposée dans ce travail facilitera la résolution des problémes
posés par le développement de la séeurité sociale et que les 1dées sug-

;7 *

gérées ouvriront la voie a des recherches nouvelles.
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Annexe 11

Représentations graphiques

1. L’espace bio-économétrique (t,u,x)
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5. Les cumulatives logarithmiques des distributions P, P,Qet(Q

(Voir fonctions de fréquence correspondantes aux graphiques 3 et 4)
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