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La distribution des revenus
dans la technique mathématique de la sécurité sociale

Par jErrcesJ Kaiser, Berne

Introduction

On ne saurait pratiquer de nos jours une politique sociale avisée

sans connaître la répartition de la population selon le montant des

revenus. Cette constatation se vérifie tout spécialement dans le domaine
de la sécurité sociale qui constitue l'une des branches les plus impor-
tantes de cette politique. Il n'est dès lors pas étonnant que des socio-

logues et des économistes de renom aient abordé l'étude de ce problème
en utilisant en premier lieu les méthodes de la statistique descriptive.
Puis, l'analyse des observations faites ayant, permis de déceler certaines

régularités dans le phénomène étudié, on s'avisa de proposer des for-
mules analytiques pour ajuster plus ou moins fidèlement les fréquences
expérimentales. C'est ainsi que d'éminents mathématiciens—M.Fréchet.
par exemple - n'ont pas dédaigné d'étudier le problème dans le cadre
des mathématiques appliquées.

Les estimations financières concernant la, sécurité sociale rendent,

particulièrement manifeste la nécessité de connaître les distributions
de revenus. En effet, le but poursuivi par la sécurité sociale est, avant
tout, de venir en aide aux personnes dont les ressources sont faibles.
Or, la notion d'économiquement faible ne pourra être définie, au point
de vue mathématique, qu'à l'aide de la répartition des revenus. Pour
traiter ce problème on s'est, contenté, jusqu'alors, d'utiliser la distri-
bution des revenus propre à l'ensemble de la population. Cependant,
les revenus variant sensiblement avec l'âge, qui est, l'élément essentiel

pour la détermination du risque, la résolution (le certains problèmes
rend nécessaire de connaître, non seulement cette distribution globale.
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mais encore celle particulière à chaque classe d'âge. Ce lut précisé-
ment le cas lorsqu'il s'est agi de calculer les rentes moyennes de l'as-
surance-vieillesse et survivants suisse [22] *), pour la détermination
desquelles on a supposé que les revenus des personnes appartenant à

une classe d'âge donné se répartissent selon la distribution semi-

normale. Nous avons constaté par la suite que la méthode utilisée dans

ce cas particulier pouvait se généraliser et s'appliquer à n'importe
quelle distribution. Ainsi, nous avons été amené à étudier le problème
de la répartition des revenus à l'aide de deux ou même trois variables.

') Voir liste bibliographique à l'annexe I.



Chapitre I

Bases mathématiques de la théorie

§ 1. Variables et fonctions dans l'espace bio-économétrique («,«,*)

1. Les questions financières de la sécurité sociale se ramènent
essentiellement à des problèmes dépendant de trois variables, le temps f,
Ze rcremt » ef Z'dpe ,r. D'une part, les prestations ne sont souvent
attribuées qu'à la portion de l'effectif L/.r) d.r vivant à l'instant # et

d'âge r à ,r -[•- cZ.r dont les membres ne disposent que d'un revenu in-
férieur à une certaine limite «, et, d'autre part, le montant même de

ces prestations est. calculé selon une fonction plus on moins compliquée
du revenu «. Nous donnerons des exemples au chapitre III de ce travail.
Dès lors, il ne suffit plus de connaître l'effectif L,(.r)d,r; il faut savoir
quelle est sa distribution selon le revenu •«. Pour effectuer correctement
les calculs, on est donc conduit à envisager des effectifs L,(«,x) <ï« <?x,

vivant à l'instant Z, ayant l'âge ,r à ,r + eZ.r et possédant un revenu
de « à « + </#. Nous sommes donc en présence de fonctions à trois
variables réelles qu'on attachera à un point vl(Z,«,.r) de l'espace, où
l'on mesurera ces trois variables sur les axes de référence d'un trièdre
orthogonal (voir graphique n° 1 de l'annexe I I). De cet espace, nous

pouvons extraire des plans particulièrement intéressants au point de

vue actuariel. D'une part, nous aurons Ze pZewi e/e'mograp/n'ipte cm Zwo-

weZrigwe (Z,,r) dans lequel nous convenons de porter Z en abscisse et

en ordonnée; ainsi, les effectifs vivant au même instant Z seront dis-

posés le long de droites verticales: Z constant; en revanche, les

effectifs dont les membres sont nés au même instant c'est-à-dire

appartenant à la même génération, évolueront dans le plan biométrique
le long de leur ligne de vie représentée par une droite diagonale d'équa-
tion a: Z — Z„. Ainsi, certains auteurs parlent de problème vertical
et de problème diagonal. Nous désignerons les effectifs situés sur la

même diagonale de paramètre /„ comme étant liés biométriquement
entre eux. D'autre part, nous envisagerons /« /amtZZe des pZctws econo-

me'Zngites (u,;c),, ces derniers étant, au point Z. perpendiculaires à l'axe
du temps, t'es remarques nous autorisent à désigner l'espace entier
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considéré comme /'espace /ho-eVonowe'/rh/we. Les effectifs !/,(«,«) liés

biométriqnement se trouveront alors sur des plans orthogonaux au

plan biométrique et dont les traces dans ce dernier seront les lignes de

vie diagonales.
Pour le calcul des effectifs L,(.r) l'actuaire dispose des /o?icfions

/wwiéfrir/ïie.S', avant tout des fonctions de survie et de renouvellement.
Les théories scientifiques de l'actuariat ont été presque exclusivement
consacrées à ce sujet et constituent un édifice pour ainsi dire terminé.
En revanche, la technique de calcul relative aux effectifs L,(«,«) n'a

guère été traitée dans son ensemble. Nous y consacrerons donc l'es-

sentiel de cette étude. Cette technique repose avant tout sur des /one-
/tons econome'fngices que nous allons tirer entièrement de la théorie de

la distribution des revenus.
D'autres critères, avant tout /e se.re e/ /,'éfcr/ cm/, jouent un rôle

important dans ces questions. De même que l'on est amené sur le plan
démographique à diviser la population en différents groupes, d'in-
dice r, relatifs au sexe et à l'état civil, et à considérer leur structure
d'âge séparément, il est: indiqué de procéder d'une manière analogue

sur le plan économétrique et d'associer une distribution de revenus

propre à chaque groupe d'indice r.
2. Le problème de la répartition des revenus de la population

entière à été considéré jusqu'ici par tous les auteurs sous l'angle d'une
distribution continue à une seule variable. Comme nous l'avons déjà
fait remarquer, la résolution des problèmes les plus importants relatifs
à l'équilibre financier de certaines branches de la sécurité sociale

nécessite de traiter cette question à l'aide de distributions continues
à deux ou même trois variables. Cependant, l'aspect économétrique
de notre théorie étant déterminé par l'introduction de la variable «,
il est indiqué d'envisager d'abord /c.s d-isfri/uh/ows de m*c«w à «ne sew/e

ranofcïe. On sera d'ailleurs souvent amené à extraire ces dernières du

problème à deux ou trois variables. Rappelons donc les propriétés
fondamentales des distributions à une variable et introduisons en

même temps les notations convenant à notre théorie. Nous nous borne-

rons toutefois à relever les fonctions qui nous seront indispensables
dans la suite, tout en renvoyant le lecteur désireux de trouver de plus

amples détails et. de connaître les autres notions, aux traités récents

sur la statistique mathématique moderne, parmi lesquels nous signalons

ceux de Crarnér [8], de Féraucl [1.0] et de Linder [27].
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En introduisant le revenu m comme variable indépendante, prenant
toutes les valeurs de 0 à °o, nous envisagerons comme donnée fondamen-
taie de la distribution des revenus la /owclion. de /reqwewce /(«.), sup-
posée non négative, continue et derivable. Celle-ci dépendra, en général,
de un ou de plusieurs paramètres que nous introduirons au fur et à

mesure des besoins. Nous aurons soin de noter /(«) sous sa forme
canonique ou normée, c'est-à-dire que les paramètres seront déterminés
de telle sorte que soit satisfaite la loi des aires:

oo

| /(«) dit 1. (1)
0

La fonction /(«.) ayant ainsi la dimension d'une fréquence relative, il
convient de rappeler que pour passer, dans les applications pratiques,
aux fréquences absolues, il faut la multiplier par le nombre L de per-
sonnes formant l'ensemble dont on étudie la distribution des revenus.

Fartant de /(«.). on définit la /owcffo» de réparliffo« oit /onction
(•«wwtlalfre /<'(•«) de la manière classique suivante:

If

L» | /(?7) d>7 ; (2)
ô

sous cette forme, elle donnera la proportion des personnes dont le re-

venu est inférieur ou égal à n. Il est évadent que F(m) est une fonction
jamais décroissante, bornée intérieurement par F(0) et supérieure-
ment par F(oo) 1. Comme nous le verrons au chapitre II à propos
de la distribution de Pareto, il est parfois plus simple d'opérer avec la

/Vwc/ioi) ntwuiaiire <WHp/éwewtowr H(«) qui donne la proportion des

personnes dont le revenu est supérieur à m. et qui est donc définie par:

oo

fZ(,,) j'/(p)dp - 1 F(M). (2')
M

Aussi bien au point de vue théorique qu'au point de vue pratique,
les moments de la distribution jouent un rôle primordial. Les wtmnenls

d'ordre le; -par rappor# à m» pot«* a de l'abscisse a. sont donnés par
l'expression:

oo

A | ('" — «)* /('") ^ ' (8)
0

17



— 254 —

On sait que la suite complète des moments peut caractériser entière-
ment une distribution. Lorsque les moments seront pris par rapport
à l'origine, nous omettrons l'indice « 0 et nous noterons M,.; de plus
nous négligerons l'indice fc 1 de sorte que il/ Mg««ra /« moyenne
de la distribution par rapport à l'origine. Les moments par rapport à

« il/ seront notés par la lettre gothique DÛ?,.: rappelons que /u dis-

pension (écart quadratique moyen, «standard déviation») est définie

par ,«2 J/ 30i.,. Dans les applications, on sera souvent obligé de passer
des moments pris par rapport à un point « à ceux pris par rapport à

un autre point è et inversement. En supposant fe > a, les formules de

passage peuvent s'écrire de la manière symbolique suivante [10):

Ä [«M -(6 «)]*, (•";

„•V, [,M+ (*",)

on aura soin de substituer dans le développement des binômes les

moments M, aux puissances il/'. Relevons le cas particulier impur-
tant où « — 0 et è .1/. pour lequel !•!') donnera 3ÛI,. à l'aide des

moments il/,. (1 < i < b), par rapport à l'origine. Rappelons à ce

propos, la relation bien connue: ÛJL —; Mg —il/-.

En plus de ces notions, importantes pour tous les problèmes re-
levant du calcul des distributions, nous introduirons encore deux

quantités ayant une signification spéciale pour les distributions de

revenus. Les fonctions 0(«) déshy»««t /« somme re'dm'fe des rereiwts - «

et 0(a) h» somme rédwife comp/emen/atre des rerenws > a, doivent être
calculées à l'aide des deux formules suivantes:

U

0(<a) | p/(p)dp, (4)
ô

co

0(m) j »y /(y) dp =- : A/ — 0(w) : (4')

«

il est évident que 0(.-^) 0(0) il/. Rappelons que nous avons dé-

signé par L le nombre total des personnes composant la population
considérée; la somme effective des revenus c a sera alors donnée par

L0(«) la somme des revenus > « par L 0(m) et le revenu total de

toute la population envisagée par LU/. C'est pourquoi nous avons in-

troduit plus haut l'appellation de «somme réduite» pour désigner les

fonctions 0 et 0.



Plusieurs auteurs ont proposé encore d'autres notions pour carac-
tériser la distribution des revenus. Cependant toutes ces grandeurs
typiques peuvent être définies à l'aide des fonctions introduites ci-
dessus. Ainsi, on pourrait obtenir les woyiw» pr<rf7c//c.s\ par exemple,
en divisant soit (4) par ('2). soit (4') par (2'). Dans le même ordre d'idées
il nous paraît utile de rappeler la notion d'»A de concentration in-
troduite par Corrado Gini [17 | (•( qui a récemment fait l'objet d'un
travail en Suisse [4]. En partant, de (4'). on peut définir la fonction

0(«)
0(-m) : (4"i

ill
puisque 0(0) =-- 1, on peut désigner cette quantité, donnant la pro-
portion de la somme des revenus supérieurs à « par rapport au revenu
total de la population, comme somme complémentaire norrnée. L'in-
dice de concentration /(n) est alors déterminé par la relation:

: H(n), : Ö)

ou. ce qui revient ait même, par

log ü(n)
'('»)

log 0(7/)

La signification concrète de t ressort de (5) si l'on se rappelle qu'aussi
bien 0 que H varient de 0 à 1 ; eu effet, si la distribution envisagée donne

I 1 I I- 1

en un point «: 0 et 11 — ou peut écrire — —
10 100 \ 10 100

c'est-à-dire / 2. Ainsi, un dixième de la somme totale des revenus
est détenu par un centième des personnes envisagées, ce centième ap-
partenant au groupe des personnes à revenus élevés.

D'autres quantités sont, encore utilisées pour la description d'une

distribution; cependant, elles ne la déterminent en général pas entière-

ment. Signalons à ce titre tes r/nuntites définis par les abscisses « de

manière à ce que F (m) — où y < 7 sont des nombres entiers (médiane
i

si 7 — 2, quartiles si 7 4, déciles si 7 10, percentiles si 7 100).
Une autre grandeur typique est /<? mole ru/, /« dowrinante, abscisse du
maximum de /(•«); on suppose ainsi l'existence d'un seul maximum:
les distributions jouissant de cette propriété sont appelées unimodales.
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3. Considérons maintenant- un ensemble do personnes dont chacune
d'elles est caractérisée simultanément par derer wnoWes. fe f«m» •«

et ?'%(* a. Nous situons ainsi le problème à l'intérieur d'un plan écono-

métrique tu.a). Dans ce plan nous délimitons d'abord un domaine 7)

obéissant aux inégalités: 0 < « < et- s'o < )' < aq, où aq signifie la
limite d'âge inférieure et ,tq la limite d'âge supérieure entrant en ligne
de compte. A l'intérieur de 7) nous définissons /« /oncZwn- de /re'grtence

(g(«,.r). non négative, continue et dérivable par rapport aux deux
variables. Nous choisissons d'emblée pour </'(«,,r) la forme canonique,
c'est-à-dire nous exigeons que </ soit normé dans le plan C/.x), de

sorte (|ue:

Nous dirons que <p(e.,D définit la distribution simultanée de la popu-
lation considérée suivant les deux variables a et ,r.

De cette distribution à deux dimensions dont la fonction de fré-

quence est </(u,.r) nous allons tirer, d'une part, par projection sur les

deux axes dee.r dt'DrdudiVoes' //mrqi/ude.s |K| et, d'autre part, en con-
sidérant à tour de rôle chacune des deux variables comme paramètre,
doer /(f-m-i/lcjj (7c dDZri/w/ioas coH.d'it/o'»'/ed/c.s. Il s'agit ici du problème
classique du calcul des distributions à deux variables dont nous jugeons
('•gaiement utile de rappeler les grandes lignes. Par la suite — et en

cela réside le fond même de ce travail — nous aborderons par un autre
côté Je lien existant entre ces fonctions. Mais examinons d'abord coin-
ment s'effectuent les opérations classiques dont il vient d'être question.

Commençons par la projection de </(«,.r) sur l'axe des ordonnées a'

qui est obtenue par l'intégration suivante en «:

La masse statistique complète est ainsi rangée selon l'âge ,r de sorte

que /(a:) donne /« .s/ntcfwrc d'de/c de la- population envisagée, et ceci

sans égard aux revenus. Cette fonction de fréquence marginale à une

variable /.CD est normée sur l'axe des x puisque ç («..r) l'est dans le

plan.
Nous sommes maintenant à même de définir Zu dis/nlwZioH des

remms d'aw enseadd« d'dc/e .r. En considérant .r pour un moment

(G)

0

7.(.t) --- | (/ («,.r) d«
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comme une constante, il vient pour la fonction (le fréquence de cette
distribution conditionnelle :

En faisant varier ,r entre ses deux limites et ,c,, nous obtenons une
famille de distributions conditionnelles de revenus relatives aux dif-
férents âges La nouvelle fonction à deux variables /()/.,»') définit
ainsi des distributions de revenus sur des droites parallèles à l'axe
des h. En intégrant (S) en », entre 0 et <x, on voit que les fonctions /(»,,)')
sont normées sur ces droites. De /(war) on pourra déduire toutes les

quantités que nous avons introduites sous le n° '2.

En projetant <"/(»,rj sur l'axe des », nous définissons la fonction
de fréquence de /» ffofriba/io» f//o6«/c des rrre»«# de la manière que
voici:

Cette distribution marginale ne dépend plus de l'âge r. En intégrant
en » de 0 à on retrouve ((>), ce qui signifie non seulement que /(»)
est uormé sur l'axe des », mais encore que toute la masse statistique
complète est rangée selon la variable », Ainsi, on a bien la distribution
globale des revenus de l'ensemble complet des personnes considérées,

quel que soit leur age. Ici encore, nous pouvons appliquer la théorie
des distributions à une variable, exposée sous n° 2. Nous reviendrons
d'ailleurs sur cette question an § 4 ci-après. -- Il va sans dire qu'on
pourra encore obtenir, à part les fonctions /(»,»'), une deuxième
famille de distributions conditionnelles dont les fonctions de fréquence
s'obtiennent en divisant r/'(»,,r) par/(«,), ce qui nous donne la structure
d'âge spécifique relative à un revenu » donné.

4. Comme nous l'avons relevé au n'Ai, les problèmes financiers
de la sécurité sociale introduisent, outre les variables » et ,r. la variable
du temps /. Les distributions à deux dimensions envisagées au ri" •>

varieront, en général, d'un plan économétrique à l'autre; en d'autres
termes on sera amené à étudier ce qui se passe à l'intérieur de dif-
férents plans parallèles (»..r), de l'espace CE»,.r). Ainsi, /« d»s/riè»ft'o»
des rav»».s d«».s /es p/"»-s (»..r), sera caractérisée par la fonction à trois

•''l

(A)
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variables et qui donne la densité des personnes vivant à Tins-

tant f, avant le revenu « et l'âge ,r. On en tire, à l'aide des formules (7)
à (0), écrites avec l'indice /, les trois distributions suivantes à une seule

dimension, dont les fonctions de fréquence seront notées par:

/,(.'): définissant des distributions marginales donnant la structure
d'âge de la population à l'instant f (fonctions de fréquence
normées sur des droites parallèles à l'axe des x à l'intérieur
du plan « 0) ;

/,(«,.f): déterminant des distributions conditionnelles qui définissent
la répartition des revenus d'un ensemble d'âge x vivant à.

l'instant / (fonctions tie fréquence normées sur des droites

parallèles à l'axe des //):

/,(•»<) : définissant, des distributions marginales donnant, la répar-
tit ion globale des revenus de la population vivant à l'instant /
(fonctions de fréquence normées sur des droites parallèles à

l'axe des » à l'intérieur du plan x 0).

11 sera utile de consulter à propos de ces distributions le graphique
n" 1 de l'annexe 11.

Les observations statistiques ne donnant pour ainsi dire jamais
la fonction çq(ii.,r), nous ne pouvons pas procéder de la manière directe
envisagée ci-dessus. Les données empiriques sont même insuffisantes

pour déterminer toutes les fonctions nécessaires pour calculer
Pour résoudre ce proè/ècic /oridawm»/«/, il est dès lors indispensable
d'introduire à coté des quelques fonctions fournies par l'observation

statistique des hypothèses plausibles. D'ailleurs, même si l'observation
statistique nous permettait de déterminer complètement la fonction
</,(•«,x). elle ne serait valable que pour le passé. Or, le rôle essentiel de

l'actuaire est de s'occuper de l'avenir; il est vrai qu'il tire son inst.ru-

ment de calcul numérique îles observations statistiques, mais il doit
souvent y apporter des modifications qui tiennent compte des ten-
dances d'évolution déjà constatées. Comme on effectue en général les

calculs démographiques séparément, des estimations économétriques,
il est plus indiqué et plus simple de procéder aux modifications men-
tionnées en faisant des hypothèses sur les éléments constitutifs de la.

fonction <y(n,.r). Ainsi, la méthode que nous exposerons par la suite

gardera toujours, du moins dans ses principes, toute son utilité.
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§ 2. L'échelle des revenus moyens et son inversion

5. Avant d'aborder le problème qui nous préoccupe, il est néces-

sa ire d'introduire une fonction importante, l'une des trois fonctions
fondamentales qui serviront précisément à calculer y,,(«,&), les deux
autres découlant sans plus de ce qui a été dit au n° 4. Il s'agit de

la loi de variation du revenu moyen avec l'âge .r que nous appellerons
«échelle des revenus moyens», conformément à la terminologie em-
ployée par les actuaires anglais, King [24], par exemple. Plaçons-nous
à l'intérieur du plan vertical / 0 de l'espace (f.«,.r) et considérons
les distributions de revenus le long de deux droites parallèles à l'axe
des a, l'une correspondant à, l'âge ,r et l'autre à la limite d'âge inférieure

En omettant l'indice 1 0, les deux fonctions de fréquence cor-
respondantes s'écrivent /(«,•'') et /(•//„r„). Calculons les moyennes de

ces deux distributions selon la formule (8) avec « 0 et h t, indices

qu'on négligera, comme convenu. Il vient pour la moyenne de la dis-

tribution concernant l'âge .r:
oo

M(.r) | «, /(«y) du. (*10)

0

Le revenu moyen relatif à l'âge de référence ;r„ se calculant d'une
manière analogue, nous pouvons rapporter les moyennes J/(.r) à -U(.r„)
et définir ainsi la fonction:

J/(•'•>
(H)

Cette fonction donne précisément /'c'c/ie//c f/c.s mwni.s inoi/c/i.s-. Pour le

moment, elle n'est définie que dans le plan / (): mais nous verrons

par la suite que grâce aux hypothèses introduites au § 8 ci-après, elle

ne dépend pas de #. de sorte qu'il s'agit bien d'une fonction de .r seul,

proportionnelle à d/(,r). En vertu des hypothèses admises la fonction
A'(.r) esi continue et dérivable. Notons encore la relation évidente:

s(a'o) l. (11')

Hi les données empiriques concernant les fonctions de fréquence /(«..r)
manquent, on dispose, en revanche, de quelques observations quant
aux moyennes des revenus par âge et. partant, quant à .s(.r). L'étude
de la variation de «(a?) donne comme image classique de cette fonction
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une courbe croissante de 1 à s' entre x„ et ce dernier âge étant com-
pris entre aq et aq, pais légèrement décroissante de «' à sq entre a" et
sa concavité est tournée vers le bas. Il est cependant des cas où s(x)
croît d'une manière monotone sur tout l'intervalle aq, aq, le maximum
s' sq n'étant alors atteint qu'au point aq.

En partant de s(aj, on pourrait définir d'autres grandeurs, en

particulier i'mfe?isife o-(aj de la variation des revenus moyens; elle

serait alors calculée selon une méthode analogue à celle utilisée pour
déterminer le taux instantané de mortalité à partir de la fonction de

survie Z(îc). On peut établir ainsi un parallélisme analytique presque
complet entre la fonction économétrique s(x) et la fonction bio-

métrique i(a;).

6. Si la fonction s(x) est monotone entre et aq, il existe «w
/onctôon t»w«e « defcra/iewtfrore îtniroqw;;

ry(.S'). (12)

Cependant, si s(aj présente en x' < aq un maximum s', la fonction
inverse y>(») est à dcfm/uwifion dcwùle. Pour fixer les idées admettons

que l'on ait 1 < ,sq < .s'. Notons la première détermination de y (s) qui
correspond à la branche croissante de s(x) par yq(s), et la seconde qui
correspond à la branche décroissante par ^(s). De la sorte, nous pou-
vons écrire les relations suivantes, dont nous nous servirons à plusieurs
reprises par la. suite:

yq(l) aq

Vi(«') Va(«')

C2(^'l) ''h '

relations qui se réduiront, dans le cas particulier monotone où x' aq. à :

P(l) «0

V(«i) D •

112')

112")

7. Nous avons fait remarquer plus haut que la notion de l'échelle

s(x) a déjà été utilisée par des actuaires anglais, en particulier par
King [24|. Ce sont des problèmes actuariels ayant trait aux caisses de

pensions qui ont incité cet auteur à introduire «f/te saZort/ scaie». Le

mémoire de King se borne à définir une échelle de salaire tirée des

statistiques d'une caisse de pensions pour une année donnée, en com-

parant les moyennes de salaires suivant l'âge des membres de la caisse.
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développent dans le temps suivant l'éclielle observée; il passe ainsi
d'une notion «verticale» à, une notion «diagonale» (cf. n° 1). Comme

King admet une proportionnalité rigoureuse entre les prestations de

la caisse et les salaires, il lui suffit, comme nous le montrerons au
chapitre LI L. «le travailler avec les moyennes sans faire appel à des

distributions de salaires autour de ces moyennes. L'essentiel de l'étude
de King est d'ailleurs consacré à l'introduction du «salary scale» dans
les formules actuarielles classiques. L'auteur de ce mémoire relève qu'un
développement très rapide d'une entreprise peut faire changer la com-
position du personnel de telle sorte que les salaires moyens relatifs à

un âge donné s'en trouvent affectés, généralement dans le sens d'une
baisse, du fait que le recrutement du personnel nouveau s'effectue
avant tout pour les occupations subalternes. C'est donc un renouvelle-
ment non homogène qui trouble dans ce cas la structure des salaires
de l'entreprise. 1 )ans le cadre de la sécurité sociale, il est rare d'observer
des phénomènes semblables. Chez King, la fonction s(.r) se réfère
essentiellement à une nofiow roWccfirc, de même que notre définition
initiale selon fil) établie à l'aide des revenus moyens, et non individuels,
d'un groupe d'âge ,r.

Ces applications aux caisses de pensions mises à part, on peut
dire que la, notion de l'échelle .s(,r) a été quelque peu négligée par les

actuaires. Kn Suisse, on a envisagé des cas particuliers linéaires dans
les travaux [22] et |2t»] relatifs à l'équilibre financier de l'assurance-
vieillesse et survivants (AYS), ainsi que dans l'étude ayant trait â la

situation des caisses de pensions considérée dans le cadre de l'A YS [ 30 j.

On trouvera dans ces ouvrages, comme d'ailleurs dans un exposé de

l'Office fédéral de l'industrie, des arts et métiers et du travail sur les

ouvriers accidentés de la Caisse nationale suisse eu cas d'accidents [9|,
des TMt/tVw/î'oMS ef pmp/m/i/r.s. L'allure numérique de *(.r)
est évidemment différente suivant le sexe, l'état civil, le genre des

revenus considérés (salaire, revenu mixte, etc.) et suivant les groupes
économiques (ouvriers, employés, etc.). Cn premier dépouillement des

comptes individuels de l'A YS a permis de déceler pour le revenu du
travail de la population masculine suisse les valeurs suivantes, ceci

en posant s (20) 1 :

s-(30) : 2.29 ; .«(-10) 2,1».'» : .s'( öO) 2,71; «((>()) =2.48.



— 232

§3. Le calcul de la distribution des revenus dans l'espace
à partir de trois fonctions fondamentales

8. Nous avons déjà montré, au 11° 4. qu'aussi bien au point de vue
statistique qu'au point de vue actuariel, la fonction ç,(a..r) définissant
la répartition des revenus dans tous les plans économétriques (w,.xj,
n'est en général pas donnée à l'avance. 11 faut la calculer à partir d'élé-

ments plus simples. Montrons comment on peut résoudre ce problème
en supposant connues Zc.s /rois /owfious suivantes:

1" /oC'M'o) </(•«). qui détermine la distribution des revenus de

l'ensemble d'âge ,r„ vivant au moment / 0. c'est-à-dire la

distribution des revenus sur la droite .r — Xq, parallèle à l'axe
des «, du plan f 0: nous supposons r/(N) normé sur cette droite.

2" .s'(.r). l'échelle des revenus moyens qui définit la loi de variation
des revenus moyens avec l'âge et qui a été introduite au n°5;
on sait que s(x„) 1.

3" A,(•!*). fonction à deux variables donnant, à l'instant f, la structure
d'âge de la population envisagée; nous admettons qu'elle soit

normée sur toute droite parallèle à l'axe des ,r du plan bio-

métrique f/..r).

On peut rc'.sY))/(?rc /« profe/éwc c« dra.r e/apes successives. Dans la

première, nous déduirons, à l'intérieur du plan / 0. toutes les dis-

tribut-ions situées sur des. droites parallèles à l'axe des w et, dans la

deuxième étape, nous calculerons, à partir de ces distributions celles

se rattachant à tous les plans parallèles au plan initial / ----- 0.

9. La première étape de la résolution consiste donc à calculer les

fonctions de fréquence des dis/ri/wfww.s .suer /es dmifts paraZ/è/es « /'axe
des m, et ceci à l'intérieur du plan / 0. Nous associons, pour un ins-

tant, à la droite ,r — x,_, la variable de revenus «' et à une droite parai-
lèle quelconque concernant l'âge ,r la, variable «. Nous admettons le

changement de variable suivant :

m -- -s(x) m' : (13)

en appliquant (13) à la fonction de fréquence //(«''). sa transformée

Nous supposons mainte-s'écrit, sous sa forme normée: 1

s('.r)

W

s(.r)

nant que cette transformée coïncide précisément avec la fonction
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relative à la droite parallèle de l'âge .r: cela constitue notre ////po-
f/ube cl, en vertu de laquelle nous pouvons donc écrire:

1

/oM - -^7-</s ,2' •s(,r)
114)

Relevons d'abord que fcrn/es les /onebYms de /w/Mcmr condibo«-
'/teZle.s /o(«,,'') .v'c.rpnmenY e» « par /a même /omfion </• En effet. (14)
montre que c'est toujours la même opération </ qui s'applique à la

variable •«. quel que soit .r, cette dernière variable n'ayant, pour une
droite donnée, que la signification d'un paramètre. Certains auteurs,

par exemple Haller [ 19J. considèrent les fonctions de fréquence de-

duit.es de l'une d'entre elles par une substitution linéaire et homogène,
dans le genre de (13). comme appartenant à des distributions «sem-
blables au sens étroit».

Cette appellation nous mène à l'interprétation géométrique des

relations (13) et (14). L'adjectif «semblable» ne paraît pas convenir
ici puisqu'il pourrait laisser sous-entendre que nous sommes en pré-
sence d'une transformation par liomothétie, ce qui n'est manifeste-
ment pas le cas. Dans le plan («./). les relations (13) et (14) définissent
simplement une (Watcf/ùu/, différente suivant les deux axes, de la courbe
de fréquence </(•«). Nous avons donc plutôt un cas élémentaire de trans-
formation par affinité. Notons encore que le produit (18) X (14) donne

pour tous les points « correspondant à un •«' donné une aire de rectangle
constante et égale à a' </(•«'); il est ainsi facile de construire une courbe

/„(»..r) quelconque à partir de la courbe )/(»').
Calculons encore la moyenne tie la distribution définie par (14):

il vient, en tenant compte de la transformation (13):

A/(.r) - - I « (/ <ÎM — .s(.r) I «' «(«') <î«'. de sorte que:
«(.r) J s(.r) J

0 0

A/(.r) -- s(.r) Af (:r„) (14')

ce qui prouve que ?a t//'.s/r/7u/fànt t/c/bn'c par (14) admet pm-iVwraf s(.r)
comme /of t/e rartaftW //a rnwi-H woi/p«> Ce résultat n'a d'ailleurs rien
d'étonnant lorsqu'on se rapporte à l'interprétation individuelle de la

transformation (131 sur laquelle nous reviendrons brièvement au n° 11

ci-après.
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10. La deuxième étape conduisant à la solution de notre problème
consiste à passer des distributions dans le plan / — 0 à celles des plans
parallèles se rattachant à un instant / quelconque. Pour opérer ce pas-

sape, nous admettons que l'on puisse écrire :

/«M /o(M /(M • nr>)

ce qui revient à introduire (7igpof/fèse JB, selon laquelle toutes les dis-

tributions de revenus sur les droites concernant un âge .r donné restent
les mêmes, quel que soit l'instant f envisagé. Leurs fonctions de fré-

quence, indépendantes de f. se calculent donc directement à partir des

deux fonctions fondamentales </ et s, selon la formule (14). En passant
du plan 1 0 à un plan parallèle, nous effectuons donc une simple
/rmes'/ffèi'oH des courbes de fréquence: ces dernières sont ainsi normées

sur toutes les droites parallèles à l'axe des a.

Nous pouvons immédiatement trouver le lien entre les fonctions
</'„(«.,x) et 9q(«,,r) concernant (es <Z«ns (es p(nwx para((è(es

«m p/a-n - 0: en vertu de (7) et (S) notés avec l'indice (15) permet
d'écrire:

A,(x)
çy(M„r) - 9?„(w,.r). (Kl)

/„(x)

Peste à montrer que </•,(«,x) se calcule directement à partir des trois
fonctions fondamentales. De (1(1) on tire d'abord:

r/,(b.r) - M) /CM: (17)

en substituant à /(«..r) son expression selon (14), nous trouvons
finalement :

x,(x)
</,(«•<') -- ; .'/

s(,r) s(.r)
(17'

Ainsi, le calcul de </,(«,.r) à partir des trois fonctions fondamentales

/.,(.!•). s(.r) et ;/(«') s'effectue d'une manière simple pour tout point
de l'espace bio-économétrique. En integrant (17) en h et en .r sur tout

le domaine de définition, on voit immédiatement que la fonction </ç

est non née dans le plan (•«,,»:),. Â '*• / étant normes sur des droites,

comme nous l'avons admis au n" s.

Connaissant dès lors la distribution des revenus dans tout l'espace,

nous sommes maintenant à meme d'en déduire (c.s ((i.s7n7u//i<ms g/oLf/e*
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reïafices «-«.a? personnes wranf à rinçant f. Il suffit pour cela d'appliquer
la formule de projection (9) écrite avec l'indice f; ainsi, il vient, en
tenant compte de (17):

.ri .t'i

/,(«) | 99, («.;(•) d.r I /(«,.'') r/.r. (IN)
*0 -TQ

011 l'on peut, le cas échéant, remplacer /(«,«) par son expression (14).

11. (e.s resnZto/s «crptiv (/rare « rinfraïnefion de nos dcn.r

/11/pof/tè.ses .1 ef B f/ran.sfafion^. nous pouvons affirmer
(cf. graphique n° 1) :

1° La fonction ç>,(«,«), donnant la distribution cles revenus dans

un plan parallèle quelconque au plan f 0, se calcule en chaque
point de l'espace par (17') à l'aide des trois fonctions fonda-
mentales /,(.r), s(x) et </(«'). Elle ne dépend de / que par hinter-
médiaire de la fonction biométrique A, (a;) seule.

2" La fonction /,(•»,«), déterminant la distribution des revenus sur
toutes les droites parallèles à l'axe des se ramène à une fonc-
tion de fréquence /(m,#), indépendante de /, valable pour tous
les ensembles d'âge a:; elle se calcule par (14) à l'aide des deux
fonctions fondamentales s(r) et </(«') et s'exprime, par rapport
à la variable w, par la même fonction </, ceci quel que soit .r.

Les courbes de fréquence pour un âge a: s'obtiennent par dilata-
tion à deux dimensions à partir de la courbe de fréquence de

l'âge u;„.

40 La. fonction /,(?é), définissant la distribution globale des revenus
de la population vivant à l'instant f, se calcule selon (18). et ne

dépend de f que par l'intermédiaire de la fonction biométrique
/((.r) seule.

Par la formule (14'). nous avons mis en évidence que la distribution
définie par /„(«,:»•) admettait s (a:) comme loi de variation des revenus

moyens avec l'âge. Du fait de la relation (15), qui n'est, autre que l'ex-
pression de l'hypothèse B. nous pouvons maintenant affirmer que
toutes les distributions de revenus sur des droites parallèles à l'axe
des m admettent quel que soit f, s(r) comme échelle des revenus moyens.
L'échelle s (a:) est donc bien une fonction de ,r seul. E11 particulier, ce

qui précède est aussi vrai pour des effectifs liés biométriquement,
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c'est-à-dire qui évoluent, dans le plan (Z,.c) sur une diagonale (cf. 11° 1).

Considérons, pour fixer les idées, un effectif L„(xo) <!'" deviendra,
/ années plus tard, l'effectif L,(x„ -(- f), les deux se trouvant sur la

diagonale x — Xp + f; c'est d'ailleurs dans ces conditions qu'a été

établi le graphique 11° 1 de l'annexe II. Le premier de ces effectifs se

distribuera en » selon et le second selon /(»,.!'). lin reprenant
le calcul aboutissant à (14'). 011 aura encore: 37 (x) s(x) I/(xo) de

sorte que rc.s e//erh/s Zfés àfo»»7rw/w.e?»e«/ «dwetfewf u//.ssi /a /ru s(.r).
lie cette manière, la. transformation (13) peut être interprétée à titre
individuel: elle signifie alors que le revenu de chaque individu d'âge ,r„
se dilate au cours de sa carrière selon (13). Ainsi, la notion s(a:), définie
au § 2 comme notion «verticale» et valable pour f 0, se transforme
rai notion «diagonale», d'une manière d'ailleurs analogue à ce qui a

été fait par King, comme nous l'avons déjà relevé au 11" 7.

Reste à savoir si nos /»/po/àèses rl et 71 so»/ ]>/o.«»7Wrs. Nous venons
de voir que l'hypothèse .4 revient à admettre une dilatation s(.r) uni-
forme pour tous les revenus au cours des carrières individuelles. L'hypo-
thèse 77 n'est pas moins plausible: en effet, lorsqu'on admet une unité
monétaire intrinsèque à pouvoir d'achat constant ce qui est habituelle-
ment le cas dans une même série de calculs actuariels, le niveau moyen
des salaires pour un âge donné ne subit, en règle générale, que des

fluctuations relativement faibles au cours des années. Les variations
des revenus moyens dues à un changement brusque dans le renou-
vehement, tel qu'il a été signalé par King /cf. 11" 7) dans le cas parti-
eulier d'une entreprise industrielle, jouent, pour l'ensemble de la popn-
lation, un rôle beaucoup moins marqué. Il serait d'ailleurs bien dif-
ficile de remplacer l'hypothèse 77 par une autre, plus plausible encore:
il faudrait alors faire œuvre de prophète et prédire l'évolution éco-

nomique elle-même.
La formule (17) montre que les e«7c»/.s dé»(o;/rup/w/we,s de l'ac-

tuariat peuvent être effectués indépendamment des m/ctt/s ccone-

wé/r(rpuw. Ainsi. 011 est à même de calculer l'élément démographique
ou biométrique A,(.r) selon toutes les finesses de l'actuariat classique

en mettant en jeu les intensités de sortie et de renouvellement. Lorsque
les effectifs L,(x) L, H,(.r) sont ainsi déterminés, on leur appliquera,
les fonctions économétriques /(«.;«) On voit par la même formule (17)

de quelle manière on tend vers Z'e'taZ «faffo/wwmv. Un vertu de

l'hypothèse 77, la composante économétrique relative à. un âge x est
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stationnaire dès l'instant / 0. En revanche, la composante biométrique
relative au même âge x ne tend, en général, vers l'état stationnaire,
caractérisé par la structure d'âge de l'ordre de survie Z(x), que lente-
ment et par oscillations successives. De ce fait, l'état stationnaire
économétrique concernant l'ensemble de la population, et non plus

pour un seul âge ,r. n'est réalisé qu'en même temps que l'état station-
naire biométrique. Ainsi, par exemple, la somme des revenus de la.

population qui est calculée selon (4) à l'aide de /,(•«), déterminé lui-
même par (18). variera avec / en même temps que /,(•'')•

§ 4. Le calcul de la distribution globale des revenus à l'époque f

12. Nous venons de voir que les distributions de revenus dans

deux plans économétriques («..r), et (a,.r),, ne diffèrent entre elles

que par les deux fonctions biométriques À,(.r) et A,,(.r). Or, comme
nous nous proposons de dégager l'aspect économétrique du problème,
nous pouvons concentrer notre attention sur un seul de ces plans; il
est en effet facile de passer ensuite, à l'aide de (16), de l'étude faite
dans un des plans, à celle entreprise dans un autre. Nous supposons,
cependant, que ç=,(M..c) n'est pas donné d'emblée, mais reconstruit à

l'aide des fonctions fondamentales à,. s et <y comme le veut la méthode

exposée au § précédent ; r/q se calcule donc selon les formules (17) ou

(17'). Pour simplifier l'écriture, nous omettrons dans la suite l'indice Z

et nous noterons, en particulier, â(.r) â la place de /,(.;). En plus de

cette fonction, nous supposons la fonction de fréquence conditionnelle
/(«..r) également connue; nous la noterons directement sous cette
forme, sans cependant oublier qu'elle est calculée selon la formule (14).
Nous sommes donc en possession de toutes les données permettant
de calculer, outre <y(it,.r), la fonction de fréquence /(«), pour laquelle
nous avons déjà établi la formule (18). Le calcul de ç ne posant plus
de problèmes spéciaux nous examinerons dans ce /e m(cn/ de /« des-

tnZwtôo» '»(.«rj/iwtZe sw do.rc de.? «, à partir des distributions condition-
«elles sur les droites parallèles à cet axe : nous étudierons d'une manière
plus approfondie, non seulement les fonctions de fréquence, mais

encore, les autres fonctions statistiques ayant trait à la distribution
globale des revenus, telles que les fonctions cumulatives, les sommes
de revenus et les moments.
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Jusqu'ici, nous avons toujours suppose que la variable des re-
venus « prenait toutes les valeurs comprises entre 0 et ^ en admettant
cependant (cf. n° 2) pour la fonction de fréquence certaines valeurs
nulles. Parmi les fonctions de fréquence, il en est dont l'intervalle de

définition ne commence qu'avec un point d'abscisse o positive, et

d'autres dont l'intervalle est borné supérieurement par un point
d'abscisse b, également positive. Cette remarque vaut en particulier
pour les distributions dites tronquées [8], Aussi, pour ne pas limiter
l'étude du problème par le choix des bornes particulières 0 et se-, nous

supposons que l'intervalle de définition de la fonction de fréquence
fondamentale /(«'. ,r„) soit donné par le segment < //' < b„, où
et sont des nombres positifs; / est alors normé sur ce segment,
puisqu'il l'extérieur de celui-ci la masse statistique est indentique-
ment nulle. Il est évident que l'intervalle de définition d'une fonction
de fréquence /(?.<,.r) quelconque subit alors la dilatation (13), de sorte

que /(•»,,r) -sera dé/m) dims m« 'm/emd/e s'(.r) : m g s(x). En
faisant varier :r, les bornes inférieures définiront dans le plan (ii,,r)
une courbe («) et les bornes supérieures une courbe (6). dont les équa-
lions sont respectivement:

g «(, .s(a:). (19)

C &o s(x) • (19')

Le domaine de définition D de la fonction </>(#,.x) prend alors la forme

indiquée au graphique n° 2 de l'annexe II. Il vient en particulier, si

l'on se reporte au n°5:

«i ^ Vs(-zh).

«' Oq «(»'). // />,, .s(.r').
(19")

Dans la suite, ce sont avant tout les relations inverses, introduites au

C

n° 6 avec s — -, qui seront utilisées:
«o ?'o

Vf (y )> (20)
s "o ^ "0

où I 1 ou 2. suivant la détermination entrant en ligne de compte;
ainsi l'on aura les valeurs particulières ci-après qui découlent aussi

de (12'):
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Rappelons que clans le cas où s(,x) croît d'une manière monotone, jq
coïncide avec :r', de sorte que y(-s) est à détermination univoque.

En admettant pour des distributions classiques (voir par
exemple la liste des distributions établie par Haller [19]), fe dowwime

de de/tmrion D ainsi établi se simplifie évidemment; souvent on a une
des trois possibilités : 1° «„ 0, fy, oc; 2° o„ > 0, ^ et 3° 0,

'• < Ùq < ^ Ainsi, la courbe (a) peut se confondre avec l'axe des ,r

et la courbe (6) être repoussée à l'infini. Il est cependant toujours pos-
sible de reporter à un point situé à gauche de l'origine une fonction
de fréquence dont l'intervalle de définition commence à 0; il suffit
pour cela de passer à la nouvelle variable par: 7/, «' — «g. De la

sorte, le cas 2° ci-dessus peut être aisément réalisé. Il faut souligner

que le cas général 0 < </.„ < correspond beaucoup mieux à la

nature de la variable «, puisque le revenu 11e devrait pas descendre
au-dessous d'un certain minimum vital d'une part, et ne saurait
dépasser un certain maximum, si grand fût-il, d'autre part. C'est là

d'ailleurs un des postulats avancés par M. Fréchet [ 141 et sur lequel
nous reviendrons au chap. IL

13. Connaissant la configuration exacte du domaine de définition
de <p(m,.'e) A(x) /(«,«), nous pouvons calculer explicitement la fonc-
tion de fréquence /(w) donnant la distribution globale des revenus.
Nous dégagerons ainsi fe Ken entre /es /onct/cm-s de /reqnoncc condition-
"e//es /(w,,r) et /«, wan/inu/e resn/tan/e /(a). Il ressort du graphique
11" 2 qu'il faut distinguer sur l'axe des « cinq intervalles qui ont été

désignés par (I). (1'), (2), (3) et (3'). L'intégrale de la formule (18),
prise entre les limites .r„ et .r, doit être remplacée, selon l'intervalle
envisagé, par les intégrales ci-après ; 011 not era, par exemple, une intégrale

I A(x) /(it,,r) é/.r par le symbole | et on se rappellera les relations
*0

18

(LL
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(20) avec f respectivement. ,* m. En désignant par / •(«) la fonction
de fréquence sur l'intervalle (7), on aura en admettant de plus «'< Q,:

"0 < " "1 • /1 («) '

«j < « < «' : 7,,ic)

«' < w < 6q : (M) —

60 < w < (q : /g (M)

?q < # < // : 7g, (m) —

-M ")
a„

M \ M

"•'/ni + '/':>! )• D
^ '

«o

[•TO. -'i]

• ^
'/i! 1

• '
' V

Vi(f)-(

,21)

Ces formules permettent donc de déterminer la fonction de fréquence
marginale 7 à partir des fonctions de fréquence conditionnelles, en

pondérant ces dernières avec la fonction de fréquence donnant la

structure d'âge; nous pouvons alors désigner A(r) com* /onrfw»
poïuZerafnce. Lorsque »(&) croît d'une manière monotone avec .r,

«j se confond avec a' et Zq avec 6', de sorte que les cinq intervalles
se réduisent à trois: (1), (2) et (3). Dans ce cas 011 peut calculer sur
l'intervalle (1) par exemple, la fonction de fréquence de l'ensemble
mixte par la formule explicite ci-après:

\ «0 /

7i (m) - j A(t) /(m,t) dr. i'2)

Cette formule nous servira encore au § suivant. Sur les autres inter-
valles, cette fonction se calculera d'ailleurs d'une manière tout à fait
analogue, même dans le cas non monotone, ainsi que nous l'avons
montré symboliquement par les formules (21).

14. L'analyse des cinq expressions (21) trouvées pour 7(") montre

que nous sommes bien en présence de cinq fonctions différentes de h.

Ainsi, la courbe tie fréquence de la distribution globale des revenus
se compose de cinq branches différentes. Les formules font ressortir

que les ordonnées aux points de jonction coïncident. Quel est main-

tenant la nature du contact en ces points? En général, ce contact est

de l'ordre 0, c'est-à-dire qu'il y a, comme nous venons de le faire
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remarquer, simple raccord non-tangentiel entre les différentes branches.
Nous pouvons cependant examiner /es cowdùtow.s r/e raccord /aw/cn/ù'/
en/re /es cwtq 6ro«c/tes de /a «mrfce de /réf/ae/tce. c'est-à-dire les con-
ditions de contact du 1er ordre. Nous attachons une certaine impor-
tance à ce problème, vu que quelques auteurs uni essayé de trouver,
dans le cas particulier des distributions de Pareto, un raccord satis-
faisant entre une courbe de Pareto pour les revenus supérieurs et une
autre courbe pour les revenus inférieurs. Ces essais n'ont guère été

fructueux: M. Fréchet [15] a proposé, dans ce cas particulier, une
formule qui réalise un simple raccord, sans cependant être tangential.
Nous allons montrer que les conditions de raccord tangentiel sont
simples et souvent réalisables dans les applications. Pour obtenir ces

conditions pour les quatre points de jonction aq, a'. et /q, il suffit
de calculer les dérivées premières des cinq branches à partir de leurs

équations (21) et de les égaler deux à deux aux quatre points de con-
tact. En ce qui concerne les calculs, il convient d'appliquer les règles
de dérivation d'une intégrale définie, dont aussi bien les limites que
la fonction sous le signe de somme dépendent du paramètre m.

Considérons, par exemple, le contact au point m rq. D'après
(21) les deux branches concernant les intervalles (1) et fl') ont res-

peetivement les deux équations explicites que voici:

où les limites yq et çq sont fonctions du rapport Pour les dérivées

premières il vient: ""

et

/,,(«.) — I A(ic)/('»...r) r/j-+ | A(x) /(«.„r) d.r,

/» ï Ô/(«..r) y,
A(x) + A(vi) /('«,Ti) — «'t.

Pi/ a„
'0

/,,(«)
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Si l'on écrit les valeurs de ces dérivées en w et si l'on égale les

résultats, on voit que les deux premiers termes de sont identiques

/ "i \
aux deux termes de /q: de plus, on sait d'après (20') que i/u —

"V«o

de sorte qu'il suffit d'annuler le produit â(:r,)/(«,..<:,)-!/'> pour
«o

obtenir l'égalité des dérivées premières en En procédant d'une ma-
nière analogue pour les autres points de contact, nous obtenons dès

lors les quatre conditions suivantes pour les raccords tangentiels en :

/ / 1 \
<v ^i) /K.-y)^—

\ /

e': Â(,T') Vi

"i
«o /
a'

0

0

' —
* // /

0
(28)

/ / o \
x(.ï'o) /(l>o"*'o) Vi y "

/ / 1 \
/q : Â(.tq) /((q.-'q) j y ~ ^ •

Four obtenir les raccords tangentiels, il suffit d'annuler dans les quatre
conditions ci-dessus un seul des trois facteurs. On examinera dans

chaque cas concret, si la jonction tangentielle peut être réalisée en un
seul ou simultanément en plusieurs, voire en tous les points envisagés.
En particulier, on regardera de près ce qui se passe au point «' où

fi — y.' P' amener une indétermination. Cette étude se simplifie
évidemment dans le cas monotone de s(;r). les quatre conditions se

réduisant alors à deux, c'est-à-dire à celles concernant a, et ù„. Nous

verrons au chapitre II quelques exemples concrets.

15. Nous avons démontré, au n" il. que les fonctions /(«,*) s'ex-

primaient toutes, grâce à la dilatation effectuée selon l'hypothèse .1,

par une même fonction en a. Il est dès lors naturel de se demander si

1« co«rte de /rer/wewce /(m) pe«Z e'(/cdeweM< «ppor/cwir «

/awhZle de /widèons eu m r/)/e Ze.s /nue/vous de /rerpte/iee «wdhdnmedes

/(w,;ï). Nous allons montrer que tel est effectivement le cas sur
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l'intervalle (2) lorsque la fonction fondamentale </(«') se présente sous
la forme suivante:

W \ / M \
M)

De cette façon, il viendra pour la fonction de fréquence à deux
dimensions en tenant compte de (17) et fil):

95(m,.r) .1 l(i) s"^'(;t) h®. (25)

En effectuant la projection sur l'axe des a. nous obtenons dés lors pour
la marginale sur l'intervalle (2) :

<1

/Jm) - J#" |'A(.r) s"" '(•") d.r:

l'intégrale à limites fixes et aq se réduit à une constante A', de sorte

(M) CM®, (26)
que /o P^t. 1^' forme: - g

et appartient, donc à la même famille de courbes que // et. partant,
que /(m.a:). En revanche, sur les autres intervalles (2). les inté-
grales de (21) dépendent au moins d'une limite variable avec w; ainsi

on arrive à une expression de la forme:

7;Ç<') - -
f A;('") ^ (26')

sur quatre intervalles donc, la courbe de fréquence marginale n'ap-
partient en général plus à la même famille de courbes que les con-
ditionnelles. Dans le cas d'un s(x) monotone, il ne demeure que deux
intervalles où 7 ne s'exprime plus à l'aide de la même fonction que
/(•«•,x). Nous avons insisté ici sur cette forme particulière (24) de

la fonction fondamentale r/, vu que nous examinerons, au chapitre II,
deux distributions dont les fonctions de fréquence prennent précisé-
ment la forme dont il vient d'être question : il s'agit des distributions
hyperbolique et parabolique.

16. Nous avons rappelé au 11° 2, outre la fonction de fréquence,
les principales fonctions statistiques caractérisant les distributions à

une seule dimension. Indiquons ainsi les liens qui existent entre ces

autres fonctions de la distribution marginale sur l'axe des m, d'une
part, et celles des distributions conditionnelles parallèles à cet

axe, d'autre part. Qu'en est-il d'abord des fonctions cumulatives'?
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Introduisons, conformément aux formules (2) et ("2'). les définitions

que voici: soient „
F(?/..e) j /(p,•''-') dp (27)

77(«,./•) | /(p,.r) dp, 27

te /onction cnmnZoiirc /wntr (es disfnimtions conditio'/wtcWcs ci s« corn-

ptewcntaiVc, les limites | et ç étant définies selon (19) et (19'). Notons

/ %

que pour « > fy,: F(«,x) 1, pour autant que x < 7/q - et

w
.6,0

.r > I/'., - On a, d'une manière analogue pour certaines valeurs de ,r :

7/(n,a:) 1 à condition que m < «'. — Signalons encore les lois de

transformation de F(«,x) et ff(w,x) par rapport à la substitution (18).
En partant, pour l'âge x„. de F(w', Xq) on trouvera sans plus:

F(w,x) 7' £Cn

s(x)
(2K)

et une relation analogue pour 77(n,x). Les fonctions cumulatives des

distributions conditionnelles se déduisent donc d'une manière très

simple de la cumulative relative à l'âge x„. Géométriquement, dans

le plan (m, F), (28) revient à une dilatation dans une seule direction,
celle de l'axe des m Un dérivant (28) par rapport à m, on retrouve
évidemment (14).

Pour tes /(méfions cMTOwteiiües de te disfrite/Lcm //mripmde. il vient:
M

| /(»?) ^ ^
«0

5'

L(m) | /(p) dp (29' j

M

Si nous remplaçons dans (29) /(p) par ses expressions (21), et si nous

indiquons par x(«.) le chemin d'intégration ||x, de longueur variable

avec le -» considéré, la cumulative s'obtient par l'intégrale double que

^
Xi ç.»

/*'(«.) | dp | x(.r) /(p,,r) d.r | A(x) d.r j /(p,,r)dp.



Pour comprendre l'alternative C ou « de la limite supérieure de Fin-
tégrale en // reportons-nous à la configuration exacte du domaine
d'intégration reproduit, au graphique 11° 2. Choisissons un point it dans
l'intervalle (8') et menons par cette abscisse une parallèle à l'axe des .r.
Cette parallèle est décomposée par la courbe (fc) en segments désignés

par « (extérieur») et i (intérieurs). Pour les âges « relatifs aux segments r
il suffit de prendre la limite Ç vu qu'il n'y a pas de masse statistique
à droite de la. courbe (6): ainsi les intégrales correspondantes égalent
l'unité, les fonctions / étant normées. En revanche, pour les .7; con-
cernant, le segment » la limite sera donnée par le « considéré; les in-
tégrales en 7/ se réduisent donc grâce à (27) àP'(a,.r). Si l'on décompose
l'intégrale en selon les segments i et. e, il vient:

/•'(«) — I Â(.r) /''(«,;/:) cir + I A(.r) fZ.r. (80)
?(«) e(w)

Les segments 7 et e sont évidemment fonctions de •«. Si a < i>„, il n'y a

que des segments 1' de sorte que le deuxième terme de (30) disparaît.
Ainsi, et vu qu'à gauche de («): F(«,«) 0, l'intégrale le long de 7(m)

est limitée, dans les intervalles (1), (1') et (2). de la même manière

que dans les trois premières formules (21). En revanche, dans les inter-
valles (8) et (8'). il vient s'ajouter aux intégrales le long de t(»), limitées
comme dans les deux dernières formules (21), une, respectivement deux

intégrales le long de e(w). — Un raisonnement analogue permet d'écrire
la relation suivante pour la cumulative complémentaire, en remarquant
toutefois que c'est la courbe (a) qui détermine cette fois les segments

et r: _f/(w.) - - I A(r) L/(m.x) d.r -f j ;,(:r) d.r (30')
('(m) e(it)

oii. cependant, le deuxième terme disparaît dès que 77 > a'. — Dans
le cas banal où le domaine J) est rectangulaire (30) et (30') se réduisent
à la première intégrale, limitée par ay et ,iq. — Les fonctions y' et //
auront ainsi dans le cas général, suivant l'intervalle envisagé, une autre
expression et partant donneront lieu à cinq branches de courbes dit'-

férentes. On vérifie aisément, pour chacun des cinq intervalles (y), les

relations //.(«.) /,•(«) et /•((«) /(«); ainsi les coûtais- crar yxmif.s
de yondio-w des cou/ èreww7ies rZe Zu cumulatôce warc/maZe ne sont pas
seulement t.angentiels, c'est-à-dire d'ordre 1, mais encore d'ordre 2,

pourvu que les conditions (28) soient remplies.
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17. Nous pouvons raisonner d'une manière semblable sur /e.v

sommes redmtes des rerenws, telles qu'elles ont été définies par les for-
mules (4) et (4'). On aboutira ainsi au lien entre #(«,«). relatif aux
distributions conditionnelles, et 0(0), relatif à la marginale, ainsi qu'à
celui entre 0(u,a;) et ©(m):

0(w) | A(a') 0(w,.r) d,c + j A (se) M(.r) d.r, cil)
Î(M) e(tt)

0(ît) | A(.r) 0(m,j) d.r -f j A(.r) M(.r) d.r, (81')
i(it) e(w)

où M(a;) représente la moyenne d'une distribution conditionnelle parai-
lèle à l'axe des w. — Indiquons encore la loi de transformation des

fonctions 0(«,a;) par rapport à la substitution (18):

0(n,;r) x(;'') 0 (32)
s(;r)

'

18. Il reste à étudier fes re/aftons entre /es moments de la distribution
sur l'axe des n et ceux des distributions sur les droites parallèles. Nous

nous bornerons à exposer le cas des moments par rapport à l'abscisse

n 0, les moments par rapport à une abscisse quelconque étant alors
obtenus par les formules (3') et (3"). Soient Mj.(:r) les moments
d'ordre fc pour un âge ,r quelconque; nous aurons en appliquant la

substitution (13) :

s" &0

Mj.(.r) J ?//'' /(«..r) dît — x'"(.r) j <•/(«') <ï«'.

«o

de sorte que: ,„ „,

cette relation donne la loi de transformation des moments à partir
de ceux correspondant à l'âge de référence La formule (14') n'est

qu'un cas particulier de cette relation générale. — Désignant main-
tenant par J/,. les moments de la distribution marginale sur l'axe
des m, nous obtenons:

'à :

dij, | «*/(») dît — | i/dw | A(:r) /(m,à') c/.r j A(.r) d.r | «/'' /(«..r) dit:
«o «o -t(M) l'o s

ainsi, il vient:

-V4 A(a:) iV4(a:) d.r - M^o) [ A(.ï) x"(.r) d:r. (34)
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De la sorte, les moments de la distribution marginale apparaissent
comme les moyennes pondérées des moments des distributions con-
ditionnelles. Comme nous l'avons vu, cette propriété est d'ailleurs
commune aux autres fonctions statistiques /, /<' et 0 définies à l'in-
térieur du plan («.,x),, ce qui justifie bien l'appellation de fonction
pondératrice pour A(x).

§ 5. Les équations intégrales d'un problème connexe

19. Posons-nous la question s'il est possible de calculer la fonction
de fréquence à deux dimensions <p(w,a;) à partir d'un couple quel-

conque de fonctions choisies parmi /(«,.c), A(.r) et /(it). Seul le premier
des trois proùlèmc.s- passibles a été envisagé jusqu'ici, c'est-à-dire la
détermination de à l'aide des conditionnelles /(w,.r) et de la marginale
A(x); la solution est alors donnée par (17). La deuxième possibilité
où l'on se donne les deux marginales A(x) et )(#) mène, en général,
à un problème indéterminé; on sait, en effet, que celui-ci n'a une
solution déterminée que dans le cas de distribution indépendante des

variables x et a et où </'(;«,.r) est par définition le produit des deux

marginales A et /. Or ceci est en général exclu dans notre méthode,

vu la dépendance des distributions postulées par l'hypothèse 0 (cf. n° 9) :

on vérifie aisément que pour réaliser l'indépendance il faut s(x) 1.

Reste le troisième cas où l'on se donne les deux fonctions /(«,*) et /(m).
Comme le montre (17), il suffirait de déterminer d'abord A(.r) pour
connaître ensuite Nous allons montrer que A(.r) peut précisé-
ment être calculé à partir de /(a..r) et /(m) à l'aide d'une équation
intégrale.

N'oublions cependant pas qu'il s'agit là d'un problème d'intérêt
plutôt théorique. En effet, on peut admettre que dans les applications
la structure d'âge /(.r), donc l'élément, démographique, est toujours
donnée avant lus distributions des revenus / et surtout /(«,«). Au
point de vue théorique, en revanche, on peut se donner pour / une
certaine fonction en « (par exemple une semi-normale) et pour /(w..r)
une autre (par exemple une hyperbolique), cette dernière dépendant
en même temps d'un paramètre x. On recherchera, alors la fonction A(x)
qui amène la cowprthWiù; tfes dcw.c /onrfwms / et

/(«,«)• Vu la nature théorique de la question, nous nous bornerons à

envisager quelques cas simples et, en particulier, nous admettrons
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pour s (a;) une fonction monotone. Ainsi, le domaine de définition
de </.>(«.ai) se simplifie, puisque se confond avec a' et 6, avec 6'.

20. Ainsi que nous l'avons dit au n° 12, le domaine 7.) dépend,

non seulement de «(&), mais aussi de l'intervalle de définition de la
fonction fondamentale /(iqaq,). Envisageons d'abord le cas où l'on a:
0 • « < Les relations (21) se réduisent alors à:

/(«.) | Â(.r) /(m„t) d.r (35)

En se donnant /(«) ainsi que /(w,x), qui sera pris comme noyau, /«

po//r/(TOfnce A (ai) sera Za /(Miction wircmwwe de /'erparfirw à Zimi/es /Eres
de première e.spèee fde .Fred/fo/wj. Ce genre d'équations est, parmi
les types classiques, le plus difficile à résoudre. On trouvera quelques
indications quant aux méthodes de résolution par exemple chez

Goursat [18] ou chez Paul Lévy [26]. Il faut évidemment écarter les

solutions négatives sur x„ < ,r < aq, celles-ci signifiant l'incompati-
bilité statistique des fonctions /(•«) et /(«,«). Il n'est donc pas certain

que toutes les solutions admises au point de vue analytique aient un
sens statistique. Notons encore que si l'on s'impose pour /(«) ainsi que

pour /(m..}') la forme normée. la solution 7.(.r) sera normée également.

21. Considérons maintenant le cas le plus fréquemment- rencontré
dans les applications où l'on a pour la fonction /(».aq): o„ < < x.
Pour l'intervalle (1) nous sommes alors en présence de l'équation (22)

et pour l'intervalle (2) c'est la formule (35) qu'il sied d'envisager.

Opérons sur (22) le changement de variable: .r =- p Les
"o

limites d'intégration en £ seront alors, pour ,r aq: y — et pour

;r ig ): y •«. L on obtient ainsi, en posant au préalable:
«o

;.(£)
£ £ 1

(M *'(;V l

«o «o
/(«.£) /

la relation que voici:

/1 ('") | ^(£) /(:"-£) '?£ (36)
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L'équation (22) a, de la sorte, pu être ramenée au type classique
dV^waftwt de Foïferra de première espèce, dont la solution pourra être
trouvée en la transformant en une équation de deuxième espèce,
relativement facile à résoudre par la méthode du noyau résolvant.
Si l'on se donne pour /j(«) et, /g(m) la même courbe d'ensemble,
l'équation (35) devient le cas limite de (22) et se trouve résolue du
même coup. Autrement il faut calculer à l'aide des x obtenus à

partir de /,.
Un cas élémentaire de solution se présente lorsque /e «or/«« /(«..?')

c.sf dee/enére. Ceci arrive en particulier si l'on admet pour la fonction
fondamentale <7 la forme (24), puisqu'on a alors:

/(«,«) — .1 iC'.s"^~'(:r). (87)

Substituons cette expression dans (22) et effectuons le changement de

Ivariable x y l'on obtiendra ainsi l'équation de Volterra à
«o

noyau dégénéré :

7i («) -d < f 1(f) df. (37')
«0

En multipliant des deux côtés par et en dérivant par rapport à «.
la solution s'exprime comme suit :

« "71M -#7i(M)
;.(«) -, — - (dry

où l'on passera de « à x par le changement de variable (19). Si le nutné-
rateur est positif, les fonctions et /(«,x) sont compatibles au point
de vue statistique. — Lorsque (24) respectivement (37) a lieu, la

deuxième branche /oê") doit être une même fonction en ?/ que /(•/<..ri
et diffère donc, en général, de / ,(«.). La solution /.(.r) trouvée par (87")
doit alors servir à calculer />(») à l'aide de (35), puisqu'alors on ne

saurait se donner /»(m) arbitrairement.
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Chapitre II

Formules de répartition des revenus

§ 1. Postulats, méthodes déduetives et vue d'ensemble

22. L'étude mathématique de la théorie de la répartition des re-

venus date d'un demi-siècle environ. A l'origine de cette nouvelle
orientation des recherches, on trouve le nom de Vilfredo Pareto [31].
lin effet, ce dernier a proposé une formule analytique simple pour
exprimer la fonction cumulative complémentaire de la distribution
des revenus. Appliquée à des données d'observation nombreuses pro-
venant de plusieurs pays, cette formule s'avéra excellente pour inter-
prêter la répartition des revenus, pour le moins celle des revenus moyens
et élevés. Depuis lors, de nombreux auteurs ont essayé d'améliorer
cette expression analytique, dans le sens d'une adaptation plus par-
faite aux observations statistiques, surtout en ce qui concerne les petits
revenus pour lesquels la formule de Pareto ne peut guère s'appliquer.
Ce n'est que tout récemment que ces recherches ont été orientées
dans une direction nouvelle. C'est à Maurice Frécliet |14] que revient
le mérite d'avoir donné un fondement probabiliste à cette théorie,
esquissée très brièvement ci-après au n" '2d. Le.s rec/tw/ie» ç//fichiées
r/«MS les de/ta: directions dont il vient d'être question n'ont cependant

pour objet que la distribution globale des revenus; en revanche, nous,

nous plaçons dans les ensembles d'âge $ les formules analytiques don-

nant la répartition des revenus, ainsi que le veut notre théorie ma thé-

matique exposée au chap. I. Nous nous proposons donc, dans la suite,

d'étudier quelques formules concrètes que nous adopterons ensuite

pour l'interprétation analytique des distributions conditionnelles; à

l'aide de ces dernières, nous déterminerons la répartition globale des

revenus. Il est alors évident que l'allure de celle-ci doit obéir aux exi-

gences que les observations ont permis de découvrir jusqu'ici.
C'est encore Maurice Fréchet [1. c.J qui a dégagé le plus nettement

ces exigences ; nous pouvons les considérer comme de véritables postulate

auxquels doit obéir la distribution globale des revenus. Résumons-les

de la manière suivante:
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1° Le champ de variation de la variable w, doit satisfaire à l'inégalité
a < «. < h, « étant le revenu minimum vital et h le plus grand
revenu individuel observé; du fait (pie ce dernier est. générale-
ment inconnu, on suppose souvent h

•2o La fonction de fréquence /(m) doit s'annuler en « et en è.

:i° La distribution des revenus est unimodale; en d'autres termes.

/(«) n'a qu'un seul maximum.

Le premier de ces postulats résulte du fait incontestable que, d'une

part, «un individu ne peut vivre de rien» [14] et que, d'autre part,
les revenus d'une personne ne sauraient dépasser un montant fini,
choisi suffisamment grand. Le second postulat, moins évident que le

précédent, découle des observations statistiques, de même que le

troisième. — Ces postulats ne s'appliquent qu'à la distribution globale
des revenus. Les composantes pour les âges r peuvent fort bien ne pas
obéir aux points 2° et 3°, mais l'intervention de la pondératrice A(j)
peut conduire à une distribution globale satisfaisant ces deux con-
ditions.

23. De nombreux auteurs ont essayé d'expliquer, par des méf/tode.s'

AWwefwes. la théorie de la répartition des revenus. On peut classer

ces explications déductives en quatre groupes:
1° Explication probabiliste, chez Fréchet [14].

2° Explication à l'aide des particularités ou facultés personnelles,
chez Fréchet [ 1. c. Rhodes [34] et Ammon [2j.

•S" Explication par l'hypothèse du tamisage [20].

4" Explication par l'hypothèse de l'effet proportionnel, chez

Gibrat [16].

Essayons de résumer l'essentiel de ces méthodes. La seule c.rp/ùrt-
tiee proEdh/isfe que nous ayons rencontrée se trouve chez Fréchet

[I.e.]: nous avons ici en vue celle que cet auteur déduit des jeux de

hasard modèles. Il envisage le tirage de noms d'une urne contenant
les noms de personnes. En remettant chaque fois le nom tiré dans

l'urne, on sait que la probabilité p„, d'extraire le nom m fois au cours

distribution binorniale. En prenant •« suffisamment grand, la distribution

de a tirages est donnée par le terme de ht
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binomiale selon •/« tendra vers la distribution normale .Y (F; 0,1), de

»iL—«
moyenne 0, de précision 1 et où .ô — Le revenu ».

I
' 2 « (L — 1

attribué à une personne sera alors une fonction «(m) du nombre »1 de

tirages amenant le nom de la personne. Si le revenu » est proportionnel
an nombre wi des tirages favorables au nom considéré, c'est-à-dire si

«.(•/«) — cm, la distribution selon » est elle-même normale; cette pro-
priété subsiste même si «(/») m ;

à- Or, on constate que la dis-

tribution normale ne convient que très approximativement au pro-
blême de la répartition des revenus. Ceci n'a rien d'étonnant puisqu'une
personne dont les moyens sont déjà importants pourra, comparée à

une personne ne disposant que de faibles ressources, accroître plus
facilement ses revenus; il est alors naturel de supposer que le revenu
» augmente sensiblement plus vite que le nombre ?» des circons-
tances favorables; un changement de variable linéaire ». m + à ne
saurait donc convenir. Pour cette raison, Frécliet admet une croissance

en progression arithmétique pour ?», tandis que m augmentera selon

une progression géométrique, tie sorte que l'on appliquera à la dis-

tribution A' le changement de variable suivant ».— »„ <A»>+F On

trouvera ainsi la distribution logarithmique normale que nous en-

visagerons au § 8. En choisissant convenablement d'autres fonctions
»(?»), on peut retrouver les différentes formules proposées pour inter-
prêter la répartition des revenus, en particulier la loi de Pareto. Ainsi,
contrairement à ce qu'affirme Pareto lui-même 131 j, toutes les dis-

tributions de revenus peuvent être considérées comme un des effets
du hasard.

Dans le même travail, Fréchet propose une explication «plus
rationnelle» reposant sur Zes p«rt?c»Zarifes cm /ncuZfes pmoimeZZes. Pour

ceci, il envisage alternativement deux hypothèses, soit une hypothèse A,
selon laquelle «le revenu de chacun est parfaitement déterminé quand

on connaît les particularités propres à l'individu considéré», et. une

hypothèse L admettant «que la connaissance des particularités re-

latives à cet individu ne déterminent que les probabilités qu'a cet

individu de dépasser des revenus respectifs donnés». Ces hypothèses,
soumises au calcul, conduisent à des formules très générales, difficiles
à appliquer, puisqu'il est rare de pouvoir obtenir, simplement par des

observations statistiques, les éléments dont elles se composent. Fréchet

fournit cependant un exemple «synthétique» d'application, dont les
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résultats vérifient approximativement la loi de Pareto. On trouve
déjà des explications de la même nature, cependant sans calculs précis,
dans un travail ancien d'Àmmon [2] et, plus récemment, chez Rhodes

[34]. Ce dernier, en particulier, t'ait remarquer que ce sont certains
caractères essentiels d'une personne qui la situent à une abscisse dé-

terminée de la distribution des revenus. Notre théorie, par laquelle
nous associons à un groupe de caractères (âge, sexe, état civil) une
distribution propre, ne fait qu'appliquer l'affirmation de Rhodes en
deux étapes: la première consiste à placer l'individu à l'intérieur d'une
distribution répondant à ses caractères fondamentaux (par exemple:
une jeune femme célibataire n'a généralement pas les mêmes possi-
bilités économiques qu'un homme marié dans la force de l'âge), la

seconde, à lui assigner, dans le cadre de cette première distribution,
une abscisse conforme à ses aptitudes mentales ou physiques parti-
culières.

L'explication reposant sur /'/v v/pot/vèse r/w tamisage [20] suppose
que les personnes disposant d'un revenu >«. sont «tamisées» et que
seules celles qui traversent le tamis accèdent au revenu m,;,,. Cette
méthode comporte des hypothèses sur la finesse des tamisages succès-
sifs. Enfin, l'explication par C/typot/tès« de Z'e//et proportionnel de

Gibrat [lti] admet que l'accroissement, dw, du revenu est proportionnel
à /(, c'est-à-dire que dw « dtr ; elle peut être ramenée visiblement à

l'hypothèse de Fréchet selon laquelle la progression en est arith-
métique, tandis que celle en m est géométrique. Si cette dernière hypo-
thèse est, dans ses grandes lignes, conforme à l'explication probabilistic
de Fréchet, celle du tamisage semble pouvoir se ramener à l'explication
fondée sur les facultés personnelles, ces dernières étant déterminantes

pour permettre le passage à travers les tamis.

24. Si les distributions classiques entrant en ligne de compte pour
représenter la répartition globale des revenus sont déjà nombreuses,
nous en aurons encore davantage à disposition pour rendre l'image
de la répartition propre aux groupes d'âge ,r, du fait qu'on peut
imposer à ces dernières moins do conditions restrictives, quant à leur
forme. Si l'on veut étudier toutes les dG/rvifvhVms powran/ être prises
ew covfsdde'r<dio/f pour les problèmes envisagés ici, il faudra analyser,
par exemple, les courbes de Pearson, auxquelles Odhnoff [28] a

consacré un travail récent, ou encore le système déduit par Risser
[35] d'une équation différentielle, plus simple que celle de Pearson.
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De même, on pourra consulter la liste établie par Kaller [19] compre-
nant 70 distributions, pour la plupart déjà connues. Il ne saurait être

question de passer en revue, dans le présent travail, toutes ces dis-

tributions qui, d'ailleurs, sont souvent peu maniables tant au point
de vue analytique que numérique, ni même de reprendre toutes celles

qui ont été proposées par différents auteurs pour décrire d'une manière

plus ou moins appropriée la répartition globale des revenus. Citons ici,
en particulier, les noms de March, de Vinci, d'Amoroso, de Benini [ 20]

et de Krämer [25 J. Là encore, Maurice bréchet a résumé dans un
mémoire, antérieur à celui déjà cité [15], les principales formules de

répartition des revenus. Il y étudie, avant tout, les formules de Pareto
et de la distribution logarithmique normale, désignée par le nom de

ceux qui l'ont introduite ou améliorée: McAlister. Edgeworth, Kaptevn
et Gibrat. En outre, Fréchet y propose, pour les petits revenus, de

corriger la distribution de Pareto, sur laquelle nous aurons l'occasion
de revenir plus tard. Mentionnons encore que Eréchet attache, coin-
pa.rativement à d'autres auteurs, une plus grande importance à la

notion de «somme des revenus supérieurs à une certaine abscisse m».

11 nous a paru opportun de limiter notre étude à /'«jtqPicahow de

/« ww:f/to<fe </enéraie exposée dans le chapitre I à quelques distributions
importantes et, avant tout à celle de Pareto qui, à notre avis, joui
dans ce domaine de la même situation privilégiée de départ que la.

distribution normale dans les problèmes stochastiques. Si tous les

auteurs modernes sont unanimes à souligner, d'une part, la remar-
(jliable coïncidence de la distribution de Pareto avec les observations

statistiques pour les revenus dépassant un certain niveau, ils relèvent

tous, d'autre part, son insuffisance pour les petits revenus et essaient

de la corriger dans ce dernier secteur. L'application de notre méthode

permettra précisément d'obtenir une distribution globale corrigeant
d'une manière naturelle et, souple ce grave défaut de la, distribution
de Pareto. Cette nouvelle distribution corrigée sera comparée aux
distributions semi-normale et logarithmique normale; toutes les trois
obéissent aux postulats énoncés au n° 22 et dépendent de trois para-
mètres, dont l'un d'entre eux a une signification commune et donne

le point d'attache r/.„ sur l'abscisse. De plus, l'étude de la fonction de

Pareto conduira à un type voisin de cette dernière, limité à droite

par un point fini è„. dont on tirera parti dans certains problèmes parti-
euliers relatifs à la, sécurité sociale. Relevons encore que toutes les
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distributions envisagées clans ce chapitre peuvent être déduites ana-
lytiquement soit de la distribution normale, soit de la semi-normale.

Dans les problèmes pratiques, on choisira parmi toutes les dis-

tributions celle qui ajustera le plus exactement le matériel statistique
donné. Telle distribution, bien qu'interprétant fidèlement la distri-
bution des revenus complets ne saurait convenir, par exemple, à celle
des salaires ou des revenus afférents à tel groupe économique déterminé.
Pour l'ajustement, on utilisera avec fruit la méthode des moments.
Ce n'est qu'en comparant le résultat de l'ajustement aux observations

statistiques qu'on pourra vérifier la valeur de l'instrument mathé-

matique choisi et l'exactitude des hypothèses dont il est fait mention
au n° 23. Parmi le -matém? s/a/isgwpm dtspomWo e?t iSms.se, citons les

publications relatives à l'impôt pour la défense nationale [1 ], ainsi

qu'une enquête spéciale sur les salaires des militaires effectuée par
l'Administration des fonds centraux de compensation à Genève [13 j;
c'est d'ailleurs de cette enquête que l'Office fédéral des assurances
sociales a déduit les distributions théoriques utilisées dans les calculs

relatifs à l'AYS [29]. Des observations plus complètes concernant le

revenu du travail pourront être désormais tirées des comptes individuels
de cotisations établis pour l'AYS. Mentionnons encore l'enquête de

Brüse!îweiler [5] relative aux salaires des employés de commerce.

§ 2. Les distributions hyperbolique (Pareto) Pet semi-hyperbolique P

25. Admettons maintenant que la fonction fondamentale </ qui
définit dans un plan (m,#), quelconque la distribution des revenus sur
la droite ,r — x„ soit donnée par /« /ottcèiore de /m/we/«* de Pared).

Dès lors, il est nécessaire de rappeler brièvement les principales fonc-
tions statistiques relatives à cette distribution classique. A cette fin.
nous reprenons d'abord les notations figurant au n° 2. La fonction
de fréquence s'écrit, sous sa forme normée, de la manière suivante:

/(«) aa"w~"~h (38)

Résumons rapidement les principales propriétés a«<%tw/W0S de cette
fonction de fréquence, en précisant d'abord que ses deux paramètres «

et 7. sont positifs (a > 0 résulte de l'existence de l'intégrale des aires:

nous verrons qu'au point de vue statistique il faut que a>l). Le
champ de variation répond à l'inégalité o - a < ^ d'où ressort la

19
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signification du paramètre a. A droite de a, / décroît toujours de

/(a) — à /(^) 0, sa concavité étant constamment tournée vers le

haut. Cramer [H] la classe ainsi parmi les distributions tronquées (voir
graphique 11" 3). Nous voyons d'emblée que la distribution de Pareto
ne satisfait pas les postulats 2° et 3° énoncés au n° 22. Nous verrons
plus loin comment on peut se servir, en revanche, de cette distribution

pour en construire d'autres répondant entièrement aux trois postulats
en question. Notons encore qu'on peut déduire /(m), pour « 1, d'une
distribution semi-normale particulière j 10], par la substitution 2 ~~ ln «,
et que cette fonction de fréquence découle également de l'équation
différentielle de Pearson. — Il est parfois utile de noter la distribution
définie par (38) par le symbole P(«.;«,oc) qui met ainsi en évidence
les deux paramètres.

La /owcèiow cttmttWwe co^demenfaire ff(«) mérite une attention
spéciale: elle s'obtient à partir de (38) par (2') et s'écrit:

Elle est du type hyperbolique, comme d'ailleurs la fonction de fré-

quence elle-même, ce qui justifie l'appellation de P. (39) fournit, en

prenant les logarithmes, la droite /o^an/ZimigMe de Pareto bien connue
des économistes; 011 écrira cette dernière de la manière suivante, en

posant : log m //, log i/ 2 et a log a — d

De cette formule, se dégage la signification du paramètre —« comme
coefficient angulaire de la droite logarithmique (voir graphique n° 5).

C'est d'ailleurs en appliquant la méthode des moindres carrés à cette
droite que les économistes ajustent presque toujours le matériel
statistique.

Les momen/s par /Y/pport à Z'orw/ine s'expriment d'une manière

plus simple que ceux par rapport à a ou par rapport à la moyenne:
(3) donnera pour a 0:

a

(39)

2 — d otp (39')

(-10)

Pour que il/,, existe, il faut y. > /,•.
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A partir de (4'), on calculera encore 1«. .somme red-wife rïf.v reeemt.s

sMpmcMrs à ».; il vient ainsi:
a

©(«)
1

a 1/ (411

Pour avoir une somme finie de revenus, il est donc bien nécessaire

que « > 1, ce qui revient à exiger, au point de vue statistique, au
moins l'existence du moment d'ordre 1, c'est-à-dire de la moyenne.
Notons que l'on a ©(a) M. De (41), on peut d'ailleurs tirer une
nouvelle droite logarithmique. Fréchet [14] en propose encore une
autre, liant log© à log 77. relation facile à déduire en éliminant « de

(39) et (41).

L'indice de concentration « défini par la formule (5) se présente
ici sous une forme particulièrement simple. On voit, que:

0(n)
0(n) (:) (41'

de sorte que l'on obtiendra pour l'indice introduit par G-ini 1171 :

1

(42)

ainsi, pour la distribution de Pareto cet indice est indépendant de

l'abscisse « considérée. C'est d'ailleurs cette invariance, constatée

empiriquement pour beaucoup de distributions de revenus, qui a

imposé l'indice en question à l'attention des statisticiens.

26. Comme nous l'avons laissé entendre, nous supposons que
la fonction fondamentale </, associée à l'âge %, se présente sous la
forme (38). Conformément au n° 9, nous pouvons poser:

.'/(«') (48)

cette fonction étant définie sur l'intervalle a„ < •«' < >o. Opérons le

changement de variable (13): «. =s(r)w'; en ayant soin de garder
la forme normée, on aura pour la transformée de (43):

s(.r) «(•»') s(.r)
a a(( s°(j') «
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si nous posons maintenant :

u,. ^ u,,s(.r). (48')

nous pouvons écrire, grâce aux deux hypothèses -4 (dilatation) et 77

(translation):
/(m, as) a rt"M (48")

Par (18). on passera donc d'une distribution P(«:0(,,y.) à une autre

Z'(«:«,,a). Interprétant ce résultai nous pouvons affirmer, que Zes

retterjMS de e/tagme ensembZe d'agre :r .se repartis,seul .seZo-n «ne disZnèwticm

de Pareto, de paramètre.? a fdbiranawtj et a, a, s(x). Cet énoncé ne

nous surprend pas, puisqu'il ne s'agit que d'un cas particulier des

formules (14) et (15). Nous pouvons également examiner si les

moyennes des distributions sur les droites parallèles à l'axe des •»

suivent l'échelle .s(,e): pour ceci, il suffit d'écrire la relation (40).

pour /,; I. tantôt avec a,, ce qui donne M(x), et tantôt avec ce

qui détermine A/(.r<,); nous voyons bien que de la division M(x) par
jW(a,*o) résulte la loi .s(x).

Grâce à notre hypothèse 71, nous connaissons également /« disZriôw-

fio-n des riwiti* da,/es- aV/aporfe yne/ p/«a, pnro//è/e. au plan initial Z 0:

en effet, nous savons par la formule (17) que

p,('U,.c) — «l,(,r) «')'/é"h (44)

de sorte que nous pouvons ainsi aborder, dans un plan économétrique

quelconque, la projection de y, sur l'axe des «. de ce plan.

27. Un nous reportant aux remarques du n° 12. nous savons que
l'intervalle de définition a„ < m' < pour la distribution relative
à l'âge ,r„ crée pour la distribution à deux dimensions ç>(»,x) un

domaine de de/initio» limité à gauche par une courbe (a), d'équation

f </,„ s(.r): la limite de droite donnée dans le cas général par
la courbe (6) est repoussée à l'infini (cf. graphique n° 2 de l'annexe II).
De cette manière, nous avons à envisager powr Z« /onction de /régnemv
de Za di.sZriôwZio« </ZoZ>aZc des rerenn.s- /roes inZc/raZZes sur l'axe des •«:

(1), (!') et (2) dont le nombre si- réduit même à deux, dans le cas où

s(,r) croît d'une manière monotone. Pour la projection, il sied d'ap-

pliquer les trois premières formules ('21), dans lesquelles on substituera
à ç>(m,x) son expression selon (44). Nous aurons dès lors pour les

trois branches de courbe et selon les intervalles:
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v;i

| x(;ï) .s'"'(;c) d.r

X'o

(45)

j A(:r) .s'"(.r) (/./• -+

•'l
| Â(.r) s"(.r) (/,.r (45')

NTo V2

Zi
| Â(.r) s"(.r) <ir :

>0

(45")
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v;

«o < M < a, : /,(m) a a|j î.r

a, • w < a' : /,<(«) • a f/„ a

a' m < x. : / .>(?/) - a a|j •«.

"0
'M

les limites variables i/q et sont à calculer an point Les équations
"o

(45) et (45') sont ainsi de la forme (26'), et (45") se présente comme
cas particulier de (26). Ceci ne doit prière nous étonner puisque (48)

montre que la fonction fondamentale </{ de Pareto est bien de la
/i .9 /

M
forme ,4( De ce fait, /a ftrant'/ie /•>(«) </« /« man/inafc rtqjrc.sc/d«

<'•»(<< w/tc /ouefion de /ret/wentr d'wne disfriÙMfwi» t/c Pareto P(w:a,a)
oit l'on a pour la constante tt :

«/" aj 2(.r) .s"(.r) t/.r. i45"')
•'0

(Quoique l'allure de la courbe d'ensemble dépende avant tout du choix
des deux fonctions fondamentales /(.r) et .s(.r). on voit cependant
facilement que, même si ces fonctions ne sont pas précisées, la fonction
de fréquence 7 s'annule au point où elle est croissante, pour atteindre
au point «' la valeur at/"«'""' et décroître ensuite d'une manière
monotone comme le veut la loi de Pareto. Cette distribution marginale
est entièrement déterminée si l'on connaît les deux paramètres a
et ainsi que les deux fonctions A(s) et #(«), Nous sommes donc en

présence d'une fto«r«/le disfrib/jifo/i /'(m: A,s,«g,a) '/if« mows proposons
d'appeler se/ni-// //per/ndu/a«. du fait que la branche droite de la fonction
de fréquence constitue une courbe hyperbolique de Pareto. En général,

«i et et' sont les abscisses de points singuliers de la courbe d'ensemble

puisque celle-ci y présentera deux tangentes différentes. Cependant,
les deux premières conditions (28) nous enseignent comment on peut
opérer en ces points /« raccord fa/u/e/Pie/; /(«,,,rj ainsi que /(«',.r') étant
positifs dans le cas considéré ici, il faut essayer d'obtenir le contact
du 1 •'>'ordre à l'aide des fonctions A et ///. En a, la jonction sera
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tangentielle si aq to, l'on a ainsi A(c«) — 0. En la question est

plus délicate puisqu'on général A(«') >0; il faudra alors examiner

Vi (''') — ce '0" peut donner lieu à une indétermination que l'on
essaiera de lever.

Les outres /onetiens stafisfth/Mes Lées à / ' s'obtiennent directement
de nos formules générales. Ainsi la cumulative complémentaire // se

calcule selon (30') où //(?(.,r') «J) s"(.r) m "; la somme réduite 0 des

a
revenus > « découle de (31') avec 0('h.,t) — oJ| «'*(«) u " ' ' et

a - I

a _ _
.W(.î') — öqS(.t); dans les expressions donnant /-/(«) et ©(«),

a — 1

on mettra en évidence pour u > ri' le paramètre u défini par (45'").
Enfin, les moments sont donnés par (34) en se rappelant que

A4(.c) - «o *V)
a — A'

28. En choisissant pour A(.t) et «(®) des fonctions convenables,

on pourra effectuer les integrations indiquées par les formules (45).
Nous allons considérer un cas particulièrement simple oii A(«) et «(a?)

•s'ont (tes /owcLows /wechres. Supposons que A(x) soit de la forme .1 - La:

et déterminons .4 et B de façon que, d'une part, A(aq) — 0 et. d'autre

part, Â(.r soit norme entre aq, et aq: ainsi il vient :

A(.r) ^ '2
• !«)

(,C, — .To)'-

Pour s(a') nous admettons l'expression que voici:

s(t) I + C'(.r — T„). (47)

a,
de sorte que s(t„) — 1. En se souvenant que s(aq) — — on trouvera

«0
encore une expression utile pour la suite des calculs:

a, r/n

G'(.iq-»:„) — (47')
«0

(47) donne lieu à la fonction inverse suivante:

s —1
.»—,/•(*) a'o i —- (48)

O
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Le domaine d'intégration décrit au début du n° '27 se simplifie
encore; d'abord .r' et x, coïncident (cas monotone) et la courbe («)

se réduit à la droite | — «„[I 4 C(.r — «„)]. Pour le calcul des inté-
grales (45) et (45") on effectuera le changement de variable indiqué

soit par (19), soit par (20), c'est-à-dire 5 s(x) ou x i/W

«o

Tous calculs faits, on trouvera pour /a /Vmchicnt de /rec/acncc marqmafe
»«»< «wr/w 44/t.w»4/r « dcu.r /uvmc/fc.v. dont voici les équations:

2 a
/ : ' ")

/.,!»! --

("i ~ *"'o)"

2 a

a 4-1 a + 2

a 4" 1

a -4 1 a 4- 2
(49)

(49')

Alors que ^(/t) est bien une courbe de Pareto, valable pour -m >«,.
la branche / i(w) se présente sous la forme d'une différence entre une
droite décroissante et une courbe de Pareto; la droite est une corde
de cet te courbe, leurs ordonnées coïncidant en L'étude des dérivées

première et seconde montre que la fonction /, a sa concavité tournée
vers le bas et qu'elle croît en et décroît en Uj; la première branche
a donc un maximum entre et Le sens de concavité de la courbe
d'ensemble change d'ailleurs au point Uj. Nous savons d'avance qu'en
ce point les deux courbes se raccordent tangeiitiellemont, puisque nous

avons choisi x(:r,j 0: on le vérifiera d'ailleurs directement à partir
de (49) et (49'). Lette fonction de fréquence définit une 4i.s4ribu.4cw

semt-Â parfiettKère P(m;«„,«i,*) ; en effet, trois paramètres
suffisent pour la déterminer complètement, ainsi qu'il ressort des

formules ci-dessus. L'allure de la fonction de fréquence d'une telle
distribution est donnée au graphique n° 3 de l'annexe II.

Pour les applications il est utile de connaître encore fcs awfres

/onrhVw# .s4uiî.s4ir/t(c.s'. Nous les déduisons directement de (80'), (31')
et (34) en procédant connue indiqué à la fin du n° 27 et en effectuant

/ £ \
toujours le même changement de variable ,r î/j — I. Nous aurons

«o

ainsi successivement, soit pour l'intervalle (1). soit pour (2):
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Cumulative complémentaire :

K-«o)2

2

(«i «o)*

a w*

a + 2 2 a + 1

a+ 1

l — '

a + 1

M -) fin"*
2 1 a + 2

+ K+' -aö+') et^-a^
a + 2

Somme complémentaire réduite:

a — 1 m-

'
a + 1 2(a-1) (+-«„) 2 6

2 a

(a — 1) K-«<,)-

Moments d'ordre fc:

Mi

a—1 +'

a 4

1 tr / a, a« \
— -<M —
2 8 \ a +1 a + 2

'
,,-a+l

aiK+'-ag+')
a + 1

+ - a"+2

a + 2

2 a

(a — fc) (« j —

ai(aî+i-a{j+i)

x+l

F2 „fc-r2

fc + 1 fc
(52)

En particulier, les trois premiers moments peuvent se mettre sous la
forme des relations suivantes qui sont utiles si l'on veut déterminer
les trois paramètres «, et a à partir des données empiriques:

M

M,

a 2 g<o ~f~

— 1 3

a 3oo + 2aodi+aj

M,=

•2 6

4:^0 —j— —j— 2CZqCI| -j— c&j

10

(52')

Ces expressions rappellent d'ailleurs celle de la formule (40) où l'on
aurait remplacé a, <P (j3 jgg moyennes indiquées dans les

deuxièmes fractions de (52'). L'existence des moments de P est liée

à la condition a > fc, comme cela est le cas pour P.
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29. Aujourd'hui encore on se sert, pour représenter la distribution
des revenus de la population entière, de la loi de Pareto, en ne l'appli-
quant cependant qu'à des revenus qui dépassent un certain niveau.
Ainsi, M. inkier, par exemple, a présenté très récemment un travail
sur cette loi au congrès de l'Institut international de statistique qui
eut lieu en 1949 à Berne [37]. Plusieurs auteurs ont essayé d'apporter
à la loi de Pareto des corrections ortificïeôes pour les petits revenus.
Dans ce but, Bhodes [ 341 également soucieux de garder pour la branche
de droite (queue) la distribution de Pareto, a imaginé un procédé pour
substituer à cette dernière une branche (tête) d'une autre courbe.

Cependant, le résultat de ce procédé ne saurait être considéré comme
satisfaisant, du moment qu'au point de jonction il y a une discontinuité
et. que la loi des aires n'est pas rigoureusement observée par la courbe
d'ensemble. -— Signalons encore un travail de Cockfield |7| qui dé-

montre à l'aide d'observations fiscales anglaises récentes que la distri-
bution de Pareto s'adapte fort bien, du moins à partir des revenus
dépassant £ 200. Pour les revenus inférieurs, il «casse» d'une manière

empirique la droite logarithmique. — Maurice Bréchet [15 j a exposé,
antérieurement à Bhodes, une autre méthode destinée à corriger la distri-
bution de Pareto pour les petits revenus. A cette fin, il part de la distri-
bution qui représente la première loi de Laplace à fonction de fréquence
J en lui appliquant la transformation: 2 a lu («- -w„) +6,
il trouve une courbe à deux branches (une pour .;<(), l'autre pour
â'>0), dont celle de droite est encore une courbe classique de

Pareto, valable à partir de la médiane m, celle de gauche étant du type
«parabolique» que nous introduisons au § 4 ci-après. Bréchet montre
la continuité de la courbe d'ensemble, même au point de jonction w
des deux branches; en revanche, elles n'ont pas la même tangente en ce

point. Toutes ces améliorations sont cependant réalisées par «les arti-
fices. Il suffit, pour obtenir une correction «atowW/e de supposer que les

ensembles d'âge j- se distribuent selon P, ce qui conduit pour l'ensemble
de la population à la distribution semi-hyperbolique. Dans ce cas les

branches de la courbe de fréquence se raccordent toujours sans aucune
discontinuité et même dans de nombreux cas peuvent se joindre
tangentiellement.

Si la distribution P(«.;a,a) de Pareto donne la repartition des

revenus en première appro.riwmfioM, notre distribution semi-hyper-
bolique p(«:«o,aj,a) décrite au n° 28 résout le problème en deimème
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ajipnmmaficm. En effet, on aurait pour l'ensemble de la population
également une distribution de Pareto si l'on admettait dans notre
méthode que s(,ij se réduit à une constante 1. En introduisant
l'hypothèse de linéarité pour 2(.ï) et s(.'r), on s'approche déjà un peu
plus de la réalité. On trouverait une approximation encore wailicwre,
si l'on choisissait, par exemple, pour 2(.r) une structure d'âge observée

et pour a(x) un polynome convenable. La courbe de fréquence proposée
en deuxième approximation répond déjà aux trois postulats du n° 22,

ce qui n'est pas encore le cas pour la première approximation. Relevons

encore que la semi-hyperbolique permet également de calculer par une
intégration simple la somme des revenus dépassant une certaine
abscisse «; ainsi, cette distribution satisfait une exigence fondamentale
énoncée par Fréchet.

Nous avons constaté au n° 26 Piwrariawce de paramètre a par
rapport à la substitution « «' s(x) où l'on pourrait aussi attribuer
à ;r d'autres significations que l'âge. Ce fait explique peut-être le

phénomène remarquable que les droites logarithmiques concernant
tous les pays observés par Pareto étaient presque parallèles. Cette

constatation ne doit cependant être valable que pour des époques

pendant lesquelles la situation économique reste stable. En effet,
la dépréciation continue de la monnaie semble provoquer une augmenta-
lion de a; tel est du moins le résultat des observations statistiques
faites par Billet-or [4| et selon lesquelles l'indice de concentration

a
t — a diminue au cours des dernières décennies, surtout lors

a — 1

des devaluations marquées faisant suite aux guerres.

Nous pouvons évidemment considérer les distributions serai-

hyperboliques comme représentant à leur tour la répartition de

revenus des ensembles d'âge .r. On prendra alors, par exemple, comme
fonction fondamentale la distribution />(«': a„,«,.oc). En lui appliquant
la substitution •« w'.s(.r). a„ et «j se transformeront encore selon le

modèle (43'), tandis que a reste de nouveau invariant. Si l'on étudie
la nouvelle distribution globale correspondante, on trouvera aisément

que la branche droite pour « > a.,, où «o — -sqa-, — sf sera encore

une courbe de Pareto. On se trouve en présence d'une itération qu'on

pourra continuer indéfiniment et pour laquelle il subsistera toujours
une courbe de Pareto à droite du point a-„ ==,s'"u-q.
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§ 3. Les distributions semi-normale G et logarithmique normale J

30. Dans ce § nous allons étudier les lois de transformation et
les propriétés projectives de deux distributions qui se sont avérées

également utiles dans la théorie de la répartition des revenus. Con-

sidérons d'abord Zo /otm'Ccw de /reqttewce de Za di.s/rdud-ioji .seml-norma/e

ö(«;«,y,e). qui dépend de trois paramètres comme le montre son

expression sons forme normée:

7^
/(«) •• •- ('" (53)

/ '(e)

Le paramètre rt > 0 définit l'abscisse initiale de l'intervalle de dé-

finition: a < « < x. ; nous verrons ci-après le sens des deux autres

paramètres, y et e, ainsi que les propriétés essentielles de la fonction
eulérienne de deuxième espèce /'. La relation (53) se déduit, par une
substitution linéaire, de l'équation de la courbe de Pearson du type III.
C'est Steffensen [36] qui a introduit la dénomination de «semi-normale»,
en prenant toutefois comme variable //- « — «. La formule (53) est

une généralisation de la forme que nous trouvons chez Féraud [10J

pour a 0. Il est d'ailleurs bien connu que G(«;0,1,-'-) est la distri-
bution du y'- w. Steffensen montre que G tend, pour e - x..
vers une distribution normale A*. Avant de rappeler les propriétés
analytiques et. statistiques de G, notons que leur étude introduit les

fonctions eulérienues de deuxième espèce, à savoir:

la fonction /' complète: /"(«:) — | Ç'

ô

la fonction /'incomplète: /"(,?, e) ----- | C~' rr-df.
0

Pour la première, on utilisera ici la relation:

/> + fc) «(,•-+ 1) (y F A:— 1) ./'(r),

où fc est un entier positif. Cette formule de récurrence permet également
de ramener le calcul de r(e + b) à celui de 7T1 < e < 2) qu'on
rencontre dans les tables de Pearson [33).



— 296

Les valeurs numériques de la seconde de ces fonctions peuvent
/Y-~,e)

cire déduites de l'intégrale: !(«,«— 1) — • — qu on trouvera dans

i»
un autre recueil de tables de Pearson 182], dans les colonnes à para-

mètre /> e — 1 et à l'argument « '̂

«

La formule (53), où y et e sont positifs, comporte de?/.r /«wfc
prMicipoZc.s de «wr/w«. suivant la valeur de e:

1" e < 1 courbe toujours décroissante, rappelant celle de Pareto;
deux cas sont à distingue)': e < 1 (asymptotique aux deux
droites: / 0 et m «) et t 1 (asymptotique à / — 0,

mais valeur finie en m a.).

2" e > 1 courbe uniniodale, s'annulant en « — o et a avec
1

mode «o -f- a dont les deux points d'inflexion sont
y f „ i

symétriques par rapport à et distants de Trois
y

cas sont à distinguer suivant les tangentes à la courbe en

« — « : f < 2 (tangente verticale), e 2 (tangente bisset-

trice) et e > 2 (tangente horizontale).

Considérons maintenant les autres fonctions statistiques int.ro-
duit.es au n° 2. Pour /«. /Vmrfwm cwwmtotirt;, il vient:

-LTy(a — a), el
/<'(")= — - Z[y(« —a),e—1]; (54)

7 (e)

le calcul de /''(m) se ramène ainsi à une simple lecture des tables de

y (M—«) « — e
Pearson [32] eu prenant comme argument m — —;

| f ."-2

on voit que Pearson a pris comme unité d'argument la dispersion p.,
(voir ci-après).

Lc.s momcH/x pur rapport à « prennent ici la forme simple que voici :
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Relevons en particulier les expressions obtenues, pour certaines grandeurs
£

tvpiques, à partir des moments pris par rapport à la moyenne M
'

Dispersion (standard deviation): [/ 9Jîg

90ï„
Dissymétrie (skewness) : /.y,

I' e

y

9JÎ3 2

p, [/ f
9Jt, 6

Excès (knrtosis) : /.y, — 8
,«2

On en déduit les deux nombres de Pearson indiquant le type de courbe
de son système :

4
P'i Pi —,

£

6
/?2 P4 ~~r 3 b 3.

£

Pour la somme rafonfe <2>(w) des reremes < «, on aura une exprès-
sion qui se ramène également aux fonctions eulériennes:

i~Ty(w— a), e + 1]
0(«,) a P» + (5b)

y 7 (e)

Nous pouvons maintenant examiner /e.s /ois de /rares/or m«fion de M
Nous admettons d'abord pour l'âge ,r„ une distribution L'()d;«,,,y,,,e).
On voit aisément qu'elle se transforme par la substitution «. ,s(P) a'

en une distribution G(w;rq.,y,.,s) ; les nouveaux paramètres se déduisent
de la manière suivante de ceux concernant la fonction fondamentale
/(»'..<•„). calculée d'après (53) :

«, «0 s(.r). (57)

y.r —TXT : 0> <

s(.r)

le paramètre e est invariant. Les distributions conditionnelles parallèles
à l'axe des 0 sont définies par une famille de courbes semi-normales,
ce qui est également conforme à notre théorie générale exposée au
n° i). Même si -7= 0, les courbes de fréquence seraient dilatées en

vertu de la relation (57').
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Les propriétés pro?e<Äes de G sont moins simples. La fonction

de fréquence à deux dimensions <p(u,;c) A (a:) /(«,«) se trouve mainte-
liant, définie dans un domaine D, limité à gauche par la courbe (a)

d'équation £ — et ouvert vers la droite. Pour la fonction de fré-

quenee concernant la distribution globale on obtient, comme dans le

cas Pareto, une courbe à trois branches, sauf dans le cas particulier
où 0, qui ne comporte qu'une seule branche. Cependant, les

intégrales de la formule (21) ne peuvent plus se ramener aux fonc-
lions classiques, même pour le cas linéaire de «(«) et A(«). En particulier,
ces marginales ne s'expriment plus par les fonctions 7' incomplètes.
Pour les applications, on en est réduit à des évaluations numériques,
faciles à effectuer on pondérant les conditionnelles semi-normales

avec A(;c). Les marginales n'appartiennent pas à la famille des semi-

normales, même sur l'intervalle (2). On n'obtient une marginale semi-

normale que dans le cas banal où s (a;) — 1. En revanche, il y a en

général raccord tangentiel en oq; vu que /(u,..r) —0, les conditions
(23) sont ainsi remplies en ce point.

31. Nous allons considérer encore une autre distribution dont la

fonction de fréquence est définie dans l'intervalle a,. < -m < œ. Il s'agit
de /« distnlmtwn Zoj/anffemwpte normafe J(m;o,c,x) appelée aussi dis-

tribution de Galton, de McAlister, d'Edgewortb, de Kapteyn ou de

Gibrat. Nous écrivons pour sa fonction de fréquence:

/(m) " (58)
«(m—-a) ]/2,-t

Les paramètres «. c et « sont tous positifs. Le changement de variable:

1 « -— u

-ln - (59)
* 6' rt

donc
du

d: (59')
x(m — a)

ramène J à une distribution normale réduite jV|.z;0, —) et permet

ainsi d'effectuer les calculs numériques à l'aide de tables donnant les

fonctions de fréquence et les fonctions cumulatives de A'. Sous cette
1

dernière forme, la precision de A* est donc — Si dans le change-
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1

ment de variable envisagé ci-dessus, on avait négligé le facteur
1 *

on aurait été d abord ramené à NI 2; 0, J qui fournit la signifi-
^ ]/ 2

cation du paramètre * comme dispersion de la distribution N Corres-

pondant à J. Si l'on dispose de l'autre série classique de tables

» »
1 "

relatives à N(s;0,l), on posera I - lu -

« [/' 2 c — a

Les propriétés «walyhQwes de /(«) ne sont pas très simples. Fréchet
[14] fait remarquer que /(m) est unimodale et que son maximum se

trouve entre « et c. On trouvera au sujet de ces propriétés des indica-
lions assez complètes chez Gibrat [16] qui désigne d'ailleurs l'équation
(59'), où dit est proportionnel à comme «loi de l'effet proportionnel».
Cette frans/oraa/wm de G'itrat a été fort remarquée; Rhodes [34]
l'utilise, par exemple, pour transformer une courbe de Pareto et faire
de la courbe ainsi modifiée la «tête» d'une courbe discontinue à deux
branches, le tronçon de droite restant une courbe de Pareto et celui
de gauche prenant l'allure d'une courbe unimodale (cf. 11° 29). D'ail-
leurs la transformation (59') est la même que celle utilisée par Fréchet
[1. c. J dans une de ses explications probabilistes résumées au n° 23 et

qui mène effectivement à la distribution •/ envisagée ici. On trouvera

pour cette dernière des exemples numériques dans un ouvrage allemand
récent [3].

Les seules /oMetiores stafisfigites qui s'expriment simplement sont,
outre la fonction de fréquence, la cumulative F(tt). ainsi que les

moments; on a d'abord:

I» - ; [1 +!?(*)], (60)

£ étant défini par (59). On trouve cette expression toute calculée, par
exemple, dans les tables de Pearson [ 33], sous la désignation *

(1 -j- a) :

'F représente ici l'intégrale donnant la probabilité, selon AL d'une

erreur absolue <2. Quant à l'expression des moments par rapport
à a, on aura:

- (c- -«)*e~: (61)

elle résulte du calcul d'une intégrale de la forme

c
' ''"GL:

m
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En revanche, le calcul de la somme réduite des revenus inférieurs ou

supérieurs à « aboutit à une expression dont l'intégration ne peut
s'effectuer par les procédés analytiques usuels. Vu l'importance
pratique de cette notion. Fréchef j 14j a tenu à mettre en évidence

cet inconvénient. Rappelons qu'aucune des autres distributions en-

visagées jusqu'ici ne présente le désavantage en question; cette cons-
tatation est heureuse, puisque, dans le calcul des rentes moyennes
fvoir chap. III), l'introduction de cette fonction rend de précieux
services.

Quant aux lois iraras/om«tioa et /ex pmprwffr* pro/ediws de

cette distribution, on verra facilement que la fonction de fréquence
de ./(«';a,,.Of,,*:) relative à l'âge se transformera, pour l'âge ai, en la

fonction de fréquence de J(-Muq.e,..^). Le paramètre * est invariant,
tandis que les deux autres s'obtiennent ainsi qu'il suit:

Pour les propriétés projectives, il faut s'en tenir aux trois premières
formules (21) qui donneront pour la, distribution globale des revenus
une courbe dont deux des trois branches se raccordent en général
tangentiellement en Tout ce que nous avons dit au sujet des pro-
priétés projectives pour la distribution semi-normale <7 peut d'ailleurs
être transcrit ici.

32. Pour représenter la distribution effective des revenus, c'est,

après la- distribution de Pareto, la logarithmique normale J dont on
s'est- servi le plus fréquemment jusqu'à ce jour. En revanche, la distri-
but-ion semi-normale (7 n'a pas été utilisée, du moins à notre connais-

sauce, dans les problèmes de ce genre. Pour notre part, nous avons

eu l'occasion de l'employer pour résoudre le problème de la rente

moyenne ordinaire de PAYS [22], On ne saurait donner, a- priori, la

préférence à l'une ou à l'autre des distributions traitées. Leur choix

devra toujours être dicté par la structure du matériel statistique
donné. Lu- comparaison dc-s trois dis'tn'lmi.iow.s Mnimodedes IL (7 et J
est- dès lors naturelle. A cet- effet-, nous avons réuni sur le graphique
n° 3 de l'annexe II leur fonction de fréquence respective. Il ne s'agit
là que d'exemples, l'allure de ces courbes variant- dans une forte

mesure avec la valeur de leurs paramètres. Nous pensons que l'une

« — u.„x(.r)

c, ---- Co-s-fx).

(62)

(62')
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ou l'autre des deux courbes de fréquence de la distribution semi-

hyperbolique /•>(«:«„,a,,a) reproduites au graphique n° 3 correspond
en deuxième approximation (cf. n° 29) à la répartition actuelle des

revenus complets en Suisse. Nous avons également reporté sur le

graphique la première approximation donnée par une courbe de

Pareto P, de même paramètre a 2 et de même moyenne M 6000

francs que les semi-hyperboliques P. Ces trois distributions conduisent
à la même somme totale annuelle de revenus personnels, évaluée
actuellement à 16 milliards de francs suisses environ [6J. Les distribu-
tions G et -7 ont également la même moyenne, mais des abscisses

initiales « (minimum vital), ainsi que des dispersions différentes.
Signalons à ce propos que les valeurs relativement basses du paramètre
a qu'on tire des statistiques de revenus provoque une dispersion très

grande, sinon infinie, ainsi qu'il ressort des formules (40) et (52), pour
fe 2. Il s'agit là, semble-t-il, d'une caractéristique de la distribution
des rewiMMS complets, provenant de quelques revenus isolés très élevés.

En revanche, ce phénomène ne s'observe pas dans la distribution
particulière aux rerenus du traraiZ. Pour cette raison, il convient de

choisir pour cette dernière soit une distribution I' à paramètre a
nettement supérieur à 2, soit une distribution G ou ,7. — L'étude du

graphique n° 5 montre que la droite logarithmique concernant la cumu-
lative de P se transforme sans heurt en courbe au point ce qui est
la conséquence du contact d'ordre 2 existant en ce point. On évite
ainsi de manière naturelle la cassure de Cockfield [7] déjà relevée

au n° 29.

§ 4. Les distributions parabolique et semi-parabolique

33. Dans le présent chapitre, nous avons jusqu'alors uniquement
considéré des distributions définies dans un intervalle « < •«. < ;

ceci est d'ailleurs le cas usuel pour la répartition des revenus, comme
le fait remarquer M. Fréchet [14], du moins lorsqu'on ignore le montant
du revenu le plus élevé. Abordons maintenant le cas d'une d/GriZ) mZmw,

cZé/mie sur mm Ghem/ZZe 0 < m < />. Par la formule (BS), nous avons
donné la fonction de fréquence de Pareto sous sa forme normée. La
forme générale, contenant une constante arbitraire G. s'écrit:

/(m) - (63)

20
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Par définition, on obtient la forme normée en déterminant C par la

loi des aires, en supposant 6 > a:

&

r c
C — (a"" — 6"") 1.

a

Il est curieux que l'on n'ait envisagé jusqu'aujourd'hui — du moins
à notre connaissance — que le cas où a est positif. L'intégrale des

aires n'a alors de sens que lorsque « > 0, cependant que /; peut croître
au-delà de toute limite finie. En revanche, si a est négatif, « peut
s'annuler, mais à ne doit pas dépasser un nombre fini. Posons donc

/? —a et prenons comme nouveau champ de variation 0 < m < à;

on obtient ainsi, sous forme normée, la fonction de fréquence suivante:

/(m) j8 iE' «/'"*. (63')

Considérons rapidement /es propriétés ana/i//ifptes de Z« /onefto»
de /raptence /(«). La formule (63') comprend, contrairement à (38),

plusieurs formes de courbes (cf. graphique n° 4) :

/?

1° /? < 1 courbe décroissante de /(()) » à /(à) -, concavité

tournée vers le haut;
1

2° /? 1 droite horizontale de la distribution rectangulaire / — ;

r c
3" 1 < /? < 2 courbe croissante de /(()) 0 à /(à) =—, concavité

tournée vers le bas :

2

4° /3 2 droite croissante par l'origine, tronquée par /(à) — ;

/?

5° /? > 2 courbe croissante de /(()) =0 à /(à) =- concavité

tournée vers le haut.

Il est intéressant de noter la correspondance entre certaines droites
du plan (!<.,/) et celles du plan logarithmique (/y.'.j considéré ci-après.
L'étude de la moyenne permet de montrer que dans les problèmes

pratiques on trouvera en général /3 < 1.

Mentionnons maintenant /« /one/Io« citmiiZa/ice obtenue de (63')
à l'aide de (2):

F(«) (-). (64)
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Il ne s'agit donc plus ici de la cumulative complémentaire comme
c'était le cas dans la distribution de Pareto exposée au n° 25. En
comparant F(w) à ïï(m) donné par (39), on comprend pourquoi nous
appelons dîslnfrwlion para&ob'gwe Q («;&,/?) cette nouvelle distribution
définie par (63'). Plus exactement il faudrait parler de «distribution
à cumulative parabolique», puisque la fonction de fréquence elle-même
renferme (/S < 1) un type de courbe hyperbolique. Cependant, la

désignation abrégée ne saurait prêter à confusion. De (64) on tire une
droite logarithmique :

« /? ?/ — <*, (64')

où ?/ log m, 2 log F et d /3 log F Cette droite, à coefficient
angulaire /f > 0 est donc croissante (cf. graphique n° 5 de l'annexe II).

Les autres fonctions statistiques sont analogues à celles de la dis-

tribut ion hyperbolique; en effet, on trouvera pour /es moments pris
par rapport à l'origine:

M, —— - F. (65)
iS + fe

L'existence des moments de tout ordre est donc toujours assurée,
ceci contrairement au type hyperbolique. On aura encore pour la

somme re'diale des reremas < « l'expression simple que voici:

0(a) -- — ID'V+h (66)
+ 1

Ici également, on pourrait mettre en évidence l'existence d'autres
droites logarithmiques, liant d'une part log 0 à log « et d'autre part
log F à log 0. — Il est curieux de noter que la branche gauche de la
courbe corrigée de Pareto déduite par Eréchet [15] de la première loi
de Laplace (cf. n° 29) est une courbe parabolique selon (63').

34. Les lofs de Irasos/orniaFon de Q(«;&,/*) sont symétriques à celles

de !'(«.; «,«). En effet, si l'on opère le changement de variable (13):
« s(.r) «' sur la fonction de fréquence de (](«'; fcp,/?) valable pour .t„,
on trouvera pour l'âge x une distribution y («;&,,/?) ; le paramètre /?

est invariant, tandis que l'on obtient ly de la manière suivante:

?y Vs(-Ç) • (67)
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En nous reportant aux remarques du n° 12, on constate que le domaine

/) (cf. graphique n° 2), à l'intérieur duquel est définie la fonction de

fréquence à deux dimensions voit sa limite (a) se confondre

avec l'axe des .r. tandis qu'il est limité à droite par la courbe (6).

La projection pondérée des conditionnelles Ç(?/:&,,/?) sur l'axe des «
donne lieu à une »my/mr/D ()(m;2,s,/;„,/?) appelée rfoiri/m/ioM semi-

p«rak>/w/Me. En effet, dans l'intervalle (2): 0 < m < la fonction
de fréquence / est encore une fonction de fréquence parabolique du

fait que (63') est bien de la forme (24). Dans le cas d'un s(x) monotone,
la courbe, dont les trois branches sont définies par les trois dernières

formules (21), se réduit à une fonction de fréquence à deux branches.

Le raccord tangential peut être obtenu en et 6,, ainsi qu'il ressort
des formules (23). par intermédiaire des fonctions / et y. mais non

par les valeurs de /(«..r) sur la courbe (h). Ainsi, par exemple, la jonction
sera en général tangentielle en è, si .r, co puisqu'alors A (to) 0.

Pour les fonctions statistiques usuelles on appliquera les formules

générales (30), (31) et (34).

35. Traitons encore un cas particulier qui peut rendre service

pour déterminer, par exemple, le cercle de bénéficiaires de pensions
de vieillesse dans un régime où l'attribution des prestations est subor-

donnée à la condition de ne pas dépasser certaines limites de revenus.
Il s'agit donc de personnes âgées, l'âge ,r„ signifiant alors la limite
d'âge inférieure permettant l'octroi de pensions et aq se confondant

avec l'âge terme ro. Admettons en première approximation une struc-
turc d'âge décroissant linéairement selon la formule (46). La nature
des choses veut ici que l'échelle s(x) des revenus moyens soit décrois-

santé; nous la supposons également linéaire comme suit:

ainsi le domaine de définition (cf. graphique n° 2) sera limité du cote

droit par une droite décroissante entre les abscisses tq et £>„. Par pro-

jection, on obtiendra ainsi une c/i.sfrt'tuPiou .svun'-paraèo/ùp/e par/ituf/ierr
()(u:/q,/q.p') dont la fonction de fréquence est déterminée à l'aide

de deux fonctions définies, l'une sur un intervalle (1): 0 < » < /q et

l'autre sur un intervalle (2): iq < » < Pour calculer les intégrales

de projection, on passera par le changement de variable .r y

x(.r) 1 — C'(.r — /„) : (68)
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Tous calculs faits on obtient:

La première branche appartient elle-même à la famille des distributions
paraboliques, tandis que la deuxième est la différence entre une courbe

parabolique et une droite croissante. Si nous admet tons /I < 1, nous
obtenons une courbe d'ensemble constamment décroissante, avec

point d'inflexion et raccord tangentiel en iq, comme le montre le

graphique n° 4. Les expressions pour les fonctions statistiques L', 0 et

ilij. sont analogues à celles de la distribution semi-hyperbolique />

examinée au n° 28. Donnons, par exemple, les trois premiers moments:

/? + 1 3

/? 3 -)- 2 feg fe] + êj"

(70)
2 6

46jl+3&3&i + 2bo&ï + 6?

J/3
/î + 8 10

Si /? > 1, on peut obtenir pour des courbes unimodales pouvant,
le cas échéant, être utilisées pour ajuster la répartition des revenus
d'autres ensembles partiels de la population.
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Chapitre III

L'actuariat économétrique de la sécurité sociale

§ 1. L'équilibre financier dans l'espace bio-économétrique (t,u,.r)

36. Chaque régime de sécurité sociale est caractérisé par un certain
nombre de dispositions rnatmedes définies dans la législation nationale.
Il convient de les étudier de près avant d'aborder le problème de

leurs répercussions financières. D'une manière schématique, ces disposi-
tions légales peuvent être groupées ainsi: Risques couverts (événe-
monts assurés) — Personnes englobées — Droit aux prestations —
Montant des prestations — Ressources — Organisation.

Les régimes modernes de sécurité sociale se fondent sur l'univer-
sali té des risgwes cowrer/s. Selon leur nature on peut classer ces derniers

en quatre groupes:
1° Décès — invalidité — vieillesse

2° Maladie — accidents (professionnels ou non)
3" Chômage dû à des causes soit économiques, soit militaires
40 Maternité - — allocations familiales.

Quant aux personnes assurées, on tend de plus en plus à englober
dans un régime national la population entière, ou tout au moins des

classes importantes de celle-ci (les salariés par exemple). Pour avoir
droit an.-r 2W-sfa#ïons il faut, évidemment que l'événement assuré se

soit réalisé; de plus, on fait souvent dépendre ce droit de certaines

conditions accessoires de besoin, d'âge, d'état civil, de résidence, de

nationalité, etc. Le montant des prestrdio/is dépend en général du

risque couvert, de la durée des cotisations ainsi que du montant de

celles-ci. Pour assurer l'équilibre financier, les régimes de sécurité

sociale font en principe appel aux ressources suivantes: cotisations

personnelles, cotisations patronales, subsides des pouvoirs publics,

prélèvement sur des fonds et intérêts de ces derniers. Les cotisations

personnelles sont généralement fixées selon les revenus, ce qui est

souvent le cas également pour les prestations, soit directement,
soit indirectement, lorsque ces dernières dépendent du montant des
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cotisations. Ainsi apparaît déjà le lien existant entre ces questions
financières de sécurité sociale et les problèmes concernant la réparti-
tion des revenus.

37. L'équilibre financier d'un régime peut être obtenu par diffé-
rentes méthodes ; on se rendra compte de leur variété en consultant,
par exemple, l'ouvrage de Féraud sur l'organisation financière des

assurances sociales dans divers pays [12], ou encore les considérations
plus générales que cet auteur a publiées dans une autre de ses études

[11]. Malgré cette diversité, on constate que tous les mécanismes
financiers envisagés tendent vers un but commun, à savoir le main-
tien, à longue échéance, de l'équilibre entre recettes et dépenses. Il
est dès lors naturel d'essayer d'exprimer ce but commun par une
équation commune à toutes ces méthodes. Pour écrire cette dernière

nous choisissons d'abord les si/raboZes .saîiwh.s powr Zes ressources:

(•»,£) cht da: le nombre des cotisants vivant à l'instant Z, disposant
d'un revenu # à w + dw et âgés de as à as + das. Chacun

paiera une cotisation de

w,(«.x) d< entre les instants Z et Z -f- d<; le montant de cette
cotisation peut dépendre des variables « et as.

On peut admettre que la cotisation w contienne également la cotisation
patronale; lorsque les pouvoirs publics participent financièrement au
régime, leurs subsides réduisent d'autant la somme des cotisations
personnelles et patronales.

En ce qui concerne les dépenses et pour fixer les idées, il est pré-
férable d'envisager isolément «» seid risr/we, caractérisé par un indice m.
Considérons d'abord le risque vieillesse à l'intérieur d'un régime fondé
à l'époque Z 0 et à participation obligatoire dès l'âge Ainsi, nous

pouvons admettre un renouvellement des effectifs limité aux deux
droites Z 0 et a; ;r„ du plan (Z,cc). Si la pension de vieillesse est

attribuée à un âge fixe aq, la seule connaissance des deux quantités
d'observation Z et a; suffit pour déterminer Za durée « de cotisations.
En effet, l'âge d'entrée a* est déterminé par a* x — Z avec la restric-
tion a* > aq. Lorsqu'on veut faire correspondre à chaque n une échelle
de prestations, il est indiqué de calculer la durée à une année près;
en désignant par I? le nombre entier d'années contenu dans une
période donnée, on aura pour un pensionné d'âge a: vivant à l'instant Z

l'échelle de prestation d'indice n E'(aq— i). En ce qui concerne
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le revenu servant à calculer la prestation, de terme annuel r, il con-
vient de faire remarquer qu'il ne coïncide pas avec le revenu du pen-
sionné observé à l'instant f et à l'âge .r. En effet, la pension de vieillesse
est en général calculée sur la base d'un rcmwi sjp&i/igwe par exemple
sur le salaire gagné à l'âge aq ou encore sur la moyenne d'une tranche
de salaires précédant l'âge aq. Pour les risques autres que la vieillesse,
les quantités « et m peuvent également jouer un rôle analogue. Ee-

marquons cependant que dans le cas des pensions de survivants et

d'invalidité les variables d'observation f et a ne déterminent plus
d'une manière univoque la durée «. Pour y arriver il faudrait alors

introduire soit une nouvelle variable continue «, soit des hypothèses
simplificatrices (par exemple: âges moyens a, de réalisation du risque,
allocations uniques). En adoptant ici l'une de ces dernières, nous

pouvons choisir Zes spnOo/es sturan/s qwanZ aa.r prestations:

"'L,(m,j') d'à </x le nombre des bénéficiaires concernant le risque
d'indice w, vivant à l'instant f, dont la prestation
a été calculée à l'aide d'un revenu spécifique « à

m 4- (îtt et qui sont âgés de ,r à a -f- da. Chacun

touchera une prestation de

,,r(w) <ZZ entre les instants / et f -j- dt; ce montant dépendra en

plus du risque envisagé, du revenu spécifique « ainsi

que de la durée « de cotisations supposée déterminée

par f et a.

Il est clair qu'un mécanisme financier se distingue d'un autre

par une répartition différente, dans l'espace (fgqa), des ressources
et des dépenses entre les assurés. Or, une équation commune à tous
les mécanismes doit être valable quelle que soit cette répartition; pour
prétendre à cette généralité notre équation doit donc s'étendre à

l'espace entier. Ainsi, /Ygnah'on qénéroZe d'O/aï/i&re /bmarïer »Zerns

/'espace (/.?»,.r) peut s'exprimer, pour un risque donné, par la formule

ci-après. On aura pris soin de définir au préalable une loi de capitalisa-
tion (1 + /)' e'" s'appliquant à l'unité monétaire, soit à l'aide du

taux d'intérêt annuel », soit avec le taux instantané équivalent <5;

en introduisant le facteur d'escompte habituel p (1 +1)~* e"*>

on pourra finalement écrire:

</,r

*0

| "L,(a.,r) »Zn— | '"L,(n,.r) „r(?r) rZn

0

0. (71)
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Suivant le m envisagé on précisera les limites d'intégration en ,r;

pour le risque vieillesse par exemple, on ira de ,r„ à r, pour les cotisants
®L et de aq à er pour les pensionnés L.

38. De l'équation (71) nous déduirons au numéro suivant tous les

mécanismes financiers usuels. Avant de rejoindre ainsi les théories
de l'actuariat classique, effectuons d'abord les intégrations en a et en

m, ceci par ï'inirodwefto» siysdemedfr/we des f7?s/n7«<//7;ns de rereaas. Les

symboles adoptés pour les effectifs de cotisants et de bénéficiaires

peuvent être définis directement à partir des fonctions de fréquence
introduites au n° 4. Nous désignons par 'X, l'ensemble des cotisants
vivant à l'instant / et par "'L, l'ensemble des bénéficiaires concernant
le risque wi; nous admettons en outre que chacun de ces ensembles

ait ses propres distributions caractérisées, soit par l'indice c, soit par w.
Ainsi l'on pourra écrire les deux couples de formules de définition
que voici:

LL,(.r) LL, </,(./), (72)

%(.r) »L, %(*); (72')

"L,(it,,r) "L, >((«,.r) <fZq(z) 7,(w„r), (73)

"'L,(û,.r) '"L/"çq(û,;r) '"L,(.rj'"/,(«,a-). (73')

Portons maintenant les substitutions indiquées par (73) et (73')
dans l'équation (71) et effectuons l'intégration en «, en posant:

«',(.r) I «',(«..r) 7/d« (74)
6

OD

q(r) | „)(«) "'/,(M,aj dû. (74')
5

La première de ces quantités représente ï« rofwdwH mo/yenne dbm
ewsemWe "L,(j) de cofisan/s. Puisque nous avons admis que » est

complètement déterminé par la seule connaissance de 7 et ,r. la deuxième
de ces quantités définit bien 7« yu'esiaA'on wio/yewree d'an e/esem/j/e

'"L,(.r) de èéwjhrÙMrr.s-. (''est précisément le calcul des valeurs moyennes
(74) et (74') qui constitue un des problèmes essentiels de ce que nous
appelons l'actuariat économétrique.
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Deux questions fondamentales se posent. La première est de savoir
comment on peut de'dmre les dfsfn&wiioMS de /reg«ewce "'/ de cedes de

/re'gwence 7. ces dernières coïncidant en général avec les distributions
de revenus à fonctions de fréquence /(«,ar) envisagées au n° 10

(cf. hypothèse F). Un exemple simple est fourni par le cas des pensions
de vieillesse calculées sur le revenu précédant immédiatement l'attribu-
tion des prestations à l'âge aq; ici on supposera "*/(«,«)
Nous verrons un exemple plus compliqué au § 8 ci-après. La deuxième

question fondamentale se rapporte à la nature de la dépendance /onction-
nelle entre w ef «, rc.specéire»je?if cnlre r cl m. Quelle qu'en soit la nature,
l'application des formules (74) et (74') permettra toujours le calcul
direct de 10 et r. Cependant, si ce lien est relativement simple, 011 n'aura

pas besoin de faire intervenir chaque valeur des fonctions de fréquence

pour effectuer ce calcul. On arrivera souvent à déduire de (74) et (74')
des expressions analytiques qui ne feront appel qu'à quelques valeurs

particulières des fonctions statistiques usuelles, par exemple M,.,
F et th. Le cas classique est celui où ;c et r sont liés linéairement à la
variable du revenu. En posant par exemple r(w) oit -j- 7c, on trouvera
r £.1/ fc où M est la moyenne de la distribution des revenus spéci-

fiques. Encore plus simple est le cas de la proportionnalité où fc 0

ou encore celui où p 0, c'est-à-dire r fc. Ce sont précisément ces

formes élémentaires de dépendance linéaire qui ont été utilisées à

l'origine dans les systèmes de sécurité sociale. Ainsi les actuaires

pouvaient se passer des distributions de revenus, les moyennes étant
alors suffisantes. La structure des systèmes modernes de sécurité
sociale est plus complexe et l'introduction des distributions de revenus
est devenue de ce fait inéluctable, comme nous allons le montrer aux
paragraphes suivants.

39. Une fois le calcul des moyennes effectué, (71) se réduira alors

à une égwafiow d'ér/ai/rùre /mawier da/es Ze p/aa ZùoaiéZrùpie (<,*):

Nous avons obtenu ainsi une équation d'équilibre analogue à celle de

Kaan [21]; la formule (75) en diffère cependant par les quatre points
suivants: 1° Application de la méthode continue: 2° Introduction dans

l'équation de départ des variables «d'observation» Z et ,r au lieu des

(75)
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variables «d'entrée» Z et ,r: 3° Suppression de la variable n (hypothèse
simplificatrice de renouvellement) ; 4° Présentation des dépenses à

l'aide de deux facteurs L et r à la place du produit xi de ces facteurs.
De l'équation (75) on peut facilement déduire les mécanismes

financiers classiques; vu les limites des variables adoptées, l'intégra-
tion s'effectue dans un domaine rectangulaire ouvert du côté droit.
L'équilibre global d'un régime est évidemment garanti s'il l'est déjà
séparément dans tous les domaines partiels du plan. Nous pouvons
donc former, en suivant la méthode de Kaan, des proMjjes /mawcière-
menZ autonomes dans fe pJaw (i,cc) et supposer qu'à l'intérieur de chacun
des groupes ainsi constitués la cotisation ?o est constante; de cette
manière on peut admettre que les prestations sont données et que les

cotisations sont les inconnues. Le choix des domaines partiels doit
cependant garantir le fonctionnement pratique du système choisi,
en particulier, il faut qu'il y ait à part les bénéficiaires toujours dos

cotisants. L'autonomie financière peut être envisagée théoriquement
même le long de certaines lignes du plan et même en des points isolés.

En choisissant un point, les deux variables i et « sont fixes; en choisis-

sant une ligne, une seule des variables est indépendante. Ce n'est qu'en
considérant des domaines à deux dimensions que les deux variables
f et ,r sont simultanément libres. Ainsi on pourra construire une infinité
de systèmes financiers, même en ne choisissant que des lignes droites

pour définir les groupes autonomes. On arrive aux systèmes /inawciers
ctassirptcs par la schématisation suivante où nous noterons l'expression
de (75) écrite entre crochets par le symbole [~]:

1° La prône natareZ/e s'obtient en prenant aussi bien < que x fixes.

Pour trouver Wj(x) il suffit d'annuler [~j.
2" La prône instantanée de réjwri'ifion consiste à choisir f fixe,

c'est-à-dire de former des groupes autonomes sur les droites
< constant. On trouve la prime de répartition nq en annulant

(«)

dans (75) j [~]dx.

3° L« prône rôd/Vù/neZ/e (Oespitafetaion, indiridweZZej se déduit de

(75) en réalisant l'autonomie financière le long des lignes de vie

dont chacune est caractérisée par un âge d'entrée .r > £<, cons-

tant ; un fois ,r fixé, ;r ne varie plus qu'en fonction de /. Pour re-

trouver les formules classiques de l'actuariat, il suffit de rem-
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W-X

placer clans (75) a; par / + a; et de poser | e"*" [~] di 0;
0

lorsque a; — 7 < a'p on appliquera la formule concernant la ligne
de vie a: < + a-Q. Vu notre hypothèse de renouvellement, les

L évolueront selon les ordres d'extinction adoptés. Si l'on

suppose w indépendant de < on trouvera ainsi la prime indivi-
duelle H'(.r).

4" La pnwc; moyenne peaeraie est la conséquence directe de l'équa-
tion (75) étendue à tout le plan et dans laquelle il suffit de

supposer « indépendant de < et de .r.

Le facteur e~'" n'intervenant pas dans les deux premiers systèmes,
ceux-ci appartiennent aux systèmes de répartition. La présence de ce

facteur dans les équations relatives aux systèmes 3° et 4° détermine,
en revanche, une part de capitalisation. — Dans la pratique actuarielle,
on trouvera encore d'autres systèmes financiers en envisageant dans

le plan ((,«) des domaines partiels simples. Ainsi l'on obtient L sî/sfème
c7cr reqwfiétoM par périodes en découpant le domaine complet par des

droites parallèles à l'axe des x; si / fj et / L sont deux droites
successives on définira une prime «), et en particulier la prime de

répartition annuelle lorsque L — 'i + L D'une manière semblable on
arrive à 7a priwe woi/cn«« par (/rowpe de f/c'/;rrc/Yfo?r.s' en décomposant
le plan (i,.r) en bandes limitées par des lignes de vie parallèles. On

écrira (75) en ,r et on obtiendra la prime moyenne /y), où .r, et

.?2 caractérisent les deux lignes de vie limites. Dès que ,r — f < .r„ on

aura la prime «'(ap) pour les générations entrant dans le régime après
f 0, prime identique à la prime individuelle pour .r x„. — Kaan
a encore défini d'autres systèmes financiers en formant d'autres groupes
autonomes à l'aide de la variable » (durée de cotisations) qu'il a choisie

alternativement comme élément fixe ou variable. Ces systèmes sont
dans 1« cas général d'un intérêt purement théorique, mais coïncident
ici avec les systèmes exposés ci-dessus, vu que nous avons limité le

renouvellement sur les deux droites 7 0 et ,r .r„.

Pour les calculs financiers de la sécurité sociale on a, de plus en

plus recours à /a. wé7/(ode des im<7r/c7s awnweis. Elle découle également
de l'équation (75) si l'on met en évidence la somme annuelle des

recettes et la somme annuelle /!,. des dépenses d'une année débutant
à l'instant r; il suffit de poser:
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T+l CO

ß„ J" I ''£((2) «»,(«) d.c, (76)
r a-o

Gt
r+ 1 co

/I, I r?f I "£,(;) r,(x) r?.r. (76')
r io

On commence en général par calculer ces quantités et l'équation
d'équilibre (75) s'écrira alors de la manière suivante:

2} (ßr —A) e"* 0. (76")
0

On voit par (76) et (76') l'importance que revêt également dans la
méthode des budgets annuels le calcul des valeurs moyennes des cotisa-
tions et des prestations. Nous examinerons dans les paragraphes
suivants quelques cas concrets.

Lorsque le système financier adopté comprend une part de capi-
talisation, il se constituera une résera: mat/iématiqwe cofiecfa'w que l'on
calculera, au début d'une année commençant à l'instant /, selon la
formule ci-après :

I) (77)
0

Dans de tels systèmes, les intérêts de cette réserve devront couvrir à

partir d'un certain instant t. mais avant tout à l'état stationnaire,
l'excédent des dépenses sur les autres ressources.

40. La formation de groupes financièrement autonomes peut
s'effectuer non seulement dans le plan (Ç;r), mais déjà dans l'espace
((,«,»). A l'intérieur de chacun de ces groupes s'étendant à une portion
de l'espace 011 réalise une so/L?arLé /-manaère entre ses membres. En
effet, ceux-ci paient tous la même cotisation bien que présentant des

risques financiers fort divers. C'est dans le système de la prime indi-
viduelle que l'on réduit cette solidarité au strict minimum nécessaire
à tout mécanisme d'assurance. En effet, on demande alors à chaque
assuré la prime exacte correspondant au risque présumé, ce dernier
étant déterminé avant tout par l'âge d'entrée ainsi que par le montant

r
de l'assurance contractée. Il faut donc en particulier que le rapport

w
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soit ici constant par rapport au revenu m, ce qui sera le cas si r et w
sont proportionnels au même m. De la sorte, le revenu moyen Corres-

pondant s'élimine de l'équation (75) et cette dernière se ramène à

une relation entre taux de cotisations et taux de prestations; c'est
ainsi que se présentent en général les contrats de l'assurance privée.
Si l'on ne considère que les groupes autonomes dans le plan
on réalise à l'intérieur de ceux-ci une soZîdan/e Wow<?fr%<e caractérisée

par une prime moyenne w identique pour des risques biométriques
différents. Or, en procédant de cette façon, on néglige tout l'aspect
économétrique du problème qui découle de l'introduction de la variable m.

La prise en considération de cette dernière n'engendre, il est vrai,
aucun système financier nouveau; c'est la variable < qui les détermine.
En revanche, si l'on forme des groupes autonomes dans l'espace

pour lesquels % < m < m,, on crée dans chacune de ces

classes une sotidarifê econcwiefriqwe qui peut évidemment couvrir toute

1 etendue de la variable •?<. C'est en particulier le rapport —— qui peut

varier à l'intérieur du groupe considéré, de sorte que les avantages
retirés ne sont pas toujours proportionnels aux cotisations lorsque
ces dernières sont elles-mêmes proportionnelles aux revenus.

Le but essentiel du présent chapitre était de montrer que le

proWème <7« cfdcwl des prestation« »wt/www, dont nous parlerons plus
en détail aux paragraphes suivants, se pose d'une manière très générale
et réclame une solution avant même d'envisager la question des

systèmes financiers qui peut être étudiée sur le seul plan biométrique.
En effet, les actuaires partent en général directement d'une équation
analogue à (75) ou de l'une de ses formes particulières. De cette façon
ils admettent tacitement que le calcul des moyennes est déjà effectué

ou, plus souvent encore, que r et w sont proportionnels aux revenus.
Ce n'est d'ailleurs que dans ce dernier cas qu'on peut déduire de (75)

un système financier méritant vraiment l'épithète d'individuel. Sans

cette proportionnalité on réaliserait, même à l'intérieur d'un système
de capitalisation dite individuelle, une solidarité économétrique; les

symboles des moyennes r et «• subsistant dans les formules confirment
la chose.

Nous avons aussi tenu à montrer que wéf/iode de Jian» pouvait
se généraliser et devait même l'être afin de ne pas rester incomplète.
Les avis sont très partagés au sujet des mérites de cette méthode.
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Il est indéniable qu'elle réalise une synthèse ingénieuse de tous les

systèmes financiers. Son application n'a cependant pas conduit à

d'autres mécanismes pratiques que ceux qui étaient déjà connus des

actuaires; le principal mérite de la méthode est peut-être d'avoir
précisément démontré que l'on avait épuisé la multiplicité dos systèmes
pratiques. Lorsqu'on ne considère que les domaines limités d'une
manière rectiligne, on peut dégager de l'équation générale, faisant
intervenir cette fois comme variable supplémentaire la durée « de

cotisation, une quinzaine de mécanismes financiers, dont la moitié
d'entre eux sont pratiquement inapplicables dans un régime de

pensions invalidité-vieillesse-survivants. La substance de la méthode
de Kaan apparaît plus clairement si on la transpose sur le terrain
géométrique, comme nous l'avons préconisé au ih 39. On arrive ainsi
du même coup à la débarrasser d'un appareil de calculs par trop
laborieux à notre avis.

§ 2. La rente transitoire moyenne de l'AYS

41. Lorsque la durée n de versement des cotisations est inférieure
à une année, le régime suisse d'assurance-vieillesse et survivants
(AYS) prévoit des rentes dites transitoires. Le montant de leurs
termes annuels dépend, d'une part, du genre de rente (rentes de vieil-
lesse simple et pour couples, de veuves, d'orphelins simples et doubles)
et, d'autre part, de la région (urbaines, mi-urbaines et rurales) où vit
le bénéficiaire. Associons l'indice m au genre de rente et l'indice <7

au critère régional. Le droit à ces rentes est conditionnel puisqu'en
effet, les personnes dont le revenu annuel m dépasse tes imites ter/ates
de remi-MS iq (par exemple «, 3200 francs pour les rentes de

vieillesse de couples dans les régions urbaines) sont exclues du bénéfice
des prestations. Aux termes actuels de la loi il faut prendre en compte
le revenu m entier de la personne considérée. Il est question de reviser
ces dispositions en augmentant les limites Wj de 25 %, d'une part, et

en ne prenant en compte que les trois quarts du revenu «, d'autre
part. Pour cette raison, considérons ici le cas général où l'on ne tient
compte pour l'attribution des rentes que d'une propotion r < 1 des

revenus personnels.
La. loi énumère encore tes termes annuels maxima des prestations

(par exemple r„ 1200 francs pour les rentes de vieillesse pour
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couples, régions urbaines), mais prescrit que ces montants sont réduits
clans la mesure où, avec le revenu annuel « (après revision: avec la

part jtt), ils dépassent les limites w.j. Les dispositions légales font
donc dépendre du revenu m, du moins sur certains intervalles, le terme
annuel t(m) de la rente. Ainsi, la loi impose indirectement les deux

inégalités fondamentales suivantes où, pour simplifier les notations,
nous négligeons les indices ?« et q:

r(M) < »'o, (78)

-j- r(w) < Mj. (78')

On déduit de ces inégalités, d'une part, le revenu au-dessous duquel
on a toujours r(«) r„, revenu que nous appelons imite de redMcrfioM

Mq, et, d'autre part, le revenu au-dessus duquel il vient r(«.) 0; ce

dernier représente Za imite e//ecfiee de reee/îws m). Ainsi nous pouvons
écrire :

Mi ?'o

Mn (79)^0

et

Mi —. (79')
r

Les données numériques indiquées plus haut pour les rentes de couples
urbaines conduisent, en supposant la revision légale effectuée, aux
chiffres que voici: Mj — 1,25 X 3200 4000, r 0,75, m„ 3733 et

it | — o 3BB.

Nous sommes maintenant en mesure d'exprimer la prestation an-
nuellc en fonction de m sur tout l'intervalle de variation 0 < m <
comme suit :

0 < « < «g: T(m) »'g

Mg < M < m) : r(w) Mj — rM fg — j>(m -

m) < m < - : r(w) 0.

(80)

La rente r(«) est «»te /omcLoh pcd/y/cmcdc; en effet, on obtient graphique-
ment un polygone à trois segments, dont le dernier se confond avec

l'axe des m. Afin de pouvoir apprécier l'effet de nivellement produit
sur les revenus par les rentes transitoires, il est instructif de dessiner

également le graphique représentant la fonction « 1- r(«).
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42. Pour évaluer les dépenses annuelles on appliquera la formule
(76'). Il faudra d'abord calculer à l'instant f Je nombre de be'we'/icfaires

en partant de celui de toutes les personnes d'âge a: (0 < « < oo) pour
lesquelles le risque envisagé s'est déjà réalisé. Si l'on désigne ce dernier
nombre par L,(,c), toujours en négligeant les indices m et g, le nombre
de personnes dont le revenu est inférieur à «J s'obtient en intégrant
(73') de 0 à -m); ainsi il vient:

L,(.r) P>;,.r) L,(r). (81)

où F est la fonction cumulative définie par (27) ; si possible, on prendra
un F spécifique pour chaque couple de paramètres m et g.

Si l'on calcule Ja renie moyenne transitoire selon (74'), il ne faut
pas perdre de vue que la fonction /(n,r) à appliquer ici donne la distri-
but-ion des bénéficiaires d'âge r selon leur propre revenu, de sorte que
/,(»,«) /(n,,ï). La rente moyenne variera donc ici avec l'âge observé;
nous aurons ainsi: ^

r(r) r(n) /(«.a:) de (82)
0

Décomposons l'intervalle d'intégration selon les trois intervalles de

(80) et substituons dans (82) à r(w) ses valeurs polygonales correspon-
dantes. Si l'on introduit les fonctions cumulatives F('M,a) ainsi que les

sommes réduites 0(«,x) l'on obtient finalement:

r(ai) r„ -F(»„„ij + "i -F(«o.*)] ~ " [#(«!,®) - #(«o,®)] • (82')

En calculant r(x) d'après (82'), il faut alors, pour évaluer yl,, multiplier
r avec les effectifs L,(-r). Si l'on veut se servir de L,(® calculé selon

(81), il faut évidemment prendre comme moyenne:

'(*) -p-; r • (H2")

11 est donc possible de calculer r(x) analytiquement, pourvu que
les expressions définissant F et 0 soient intégrables. Tel est bien le

cas, par exemple, lorsqu'on utilise pour les calculs numériques relatifs
à chaque âge r une <Jt*frt&i<ftbn paraùo/iqite Ç(w; 6,.,/)') avec /? < 1

(cf. n° 34). On sait alors que la distribution globale de tous les rentiers
transitoires caractérisés par un même couple d'indices m,g est une
distribution semi-parabolique êh Lorsqu'on considère d'emblée la
distribution globale, on peut d'ailleurs utiliser cette distribution Q

21
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pour effectuer les calculs en première approximation, comme nous
l'avons suggéré au n° 35. On déterminera alors les trois paramètres
i>i, î>o et /> dans le cas particulier du 21° 35 par trois conditions en

s'imposant, par exemple, M, I<'(«o) et quantités qui peuvent
souvent être tirées des observations statistiques. -— On pourrait
également prendre en considération ici les distributions P(«;a„a) ou

avec e < 1.

§ 3. La rente ordinaire moyenne de l'AVS

43. Dès que l'on a pour la durée de versement des cotisations:

« > 1, la loi d'AYS suisse accorde des rentes dites ordinaires. Si

l'événement assuré (vieillesse, décès) se réalise, ces prestations sont
attribuées sans aucune condition supplémentaire. Il faut distinguer
ici les mêmes près de rentes d'indice m que pour les rentes transitoires

(cf. n° 41). Le montant des rentes 21e dépend pas seulement de 222

mais encore de la dare'e u de cofisations, définie à 2122e année près comme

au 21" 37 par u 7ê(aq— ,r). Pour la vieillesse, aq signifie la limite
d'uge • t>5 ans) à laquelle sont attribuées les rentes; du fait qu'elles

prennent toujours naissance soit un 1" janvier, soit un 1" juillet, la

loi prévoit pratiqiunneirt 1122e limite variable entre 65,0 et 65,5 »22s.

Pour les survivants, aq représente l'âge de décès — à condition que
ce dernier survienne avant la limite vieillesse — du cotisant entrant
en ligne de compte. L'âge J (> 20 ans) est celui de l'assujettissement
de la génération considérée. Ainsi, 022 a pour 1 < » < 10 les 19 échelles

de re21t.es partielles et pour n > 20 l'échelle des rentes complètes.
Le terme annuel d'une rente dépend encore de /« co/tsoh'o«

(wmwel/c 22202/022220 2(2 que le cotisant aura réalisée depuis son âge d'entrée

i jusqu'à l'arrivée de l'événement assuré à l'âge aq. Nous calculerons
ainsi w comme moyenne arithmétique des cotisations 22; proportion-
nelles aux revenus du travail et payées pendant la carrière .2: < ,r < aq;

rappek)22s que la loi fixe un taux de cotisation -7 0,04 comprenant
la cotisation persormelle et patronale. Si l'on associe le revenu variable

« à 1122 âge x quelconque et w' à l'âge de reference ,r„ 20 ans, nous

aurons pour les cotisations individuelles correspondantes:

2(1 71« (83)

et
2c' 77222'. (83)
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Or, nous avons précisément admis, au n°ll, par l'interprétation bio-

métrique de la relation (13) que les revenus individuels se trans-
formaient par w s(.r) de sorte que l'on a en vertu de (83) et (83') :

w s (ai) w\ (83")

Ainsi la moyenne arithmétique ir cherchée se calculera d'après la
formule évidente:

w - I s(j) ehr s(i,aq) «/,
X

(84)

oil le symbole s(a*,aq) apparaît comme moyenne arithmétique de

l'échelle s(;r).

Connaissant les trois éléments déterminants m, » et ir, nous

pouvons calculer maintenant un terme cwwmeZ de 2a redite ordinaire

r(/e). Puisque la loi considère la rente de vieillesse simple complète
(20 < n < 45) comme l'élément- technique de base, nous partons
de cette dernière. Les dispositions légales donnent- pour le terme annuel
de la rente envisagée les montants suivants selon les quatre intervalles
en «' ci-après (chiffres en francs) :

0 < «' < 30

30 < w < 150

150 < « < 300

300 < lê < -

,„r(w) 480

2„r(ir) 300 -f- 6w

2„r(«0 900 + 2

2„r(m) 1500.

(85)

Les rentes de vieillesse simples partielles (1 < » < 19) se calculent
d'après les règles suivantes:

0

10

ic < 75 :

m <

20

'50 + -^- M«>)-750],
(85')

On déduit, en principe, les montants annuels des autres genres de

rentes en multipliant- le résultat- obtenu à l'aide de (85) et (85') par
les facteurs que voici: 1,(5 pour la rente de couple; 0,5 à 0,9 pour les

rentes de veuves, suivant l'âge de la veuve au moment du décès du

conjoint ; 0,3 pour la rente d'orphelin simple et 0,45 pour la rente
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d'orphelin double, la réduction selon (85') ne s'appliquant cependant

pas à ces deux derniers genres de rentes. — On voit immédiatement

que ces rentes s'expriment dans chaque intervalle, et quels que soient
les indices » ou m, par une fonction linéaire en Toutes ces formules
se réduisent donc au type suivant :

r(w) .-1; -f 73; w, (85")

relation où les coefficients N; > 0 et 73; > 0 dépendent également
des paramètres m et n; (85") représente l'équation d'un segment de

droite correspondant à un intervalle numéro j de l'axe des w. On a

cinq intervalles pour les rentes partielles et quatre pour les rentes

complètes. Les équations (85") définissent ainsi, pour un couple
d'indices m et n donné, un cowiowr polygonal, concave vers le haut
à la fin du premier intervalle et concave vers le bas aux jonctions des

autres. Nous ne sommes donc plus en présence d'une linéarité uniforme.
On consultera à ce sujet les graphiques de la publication [29],

44. Pour estimer les dépenses annuelles /l, selon (76'), nous

supposons effectués les calculs démographiques menant aux effectifs

"'7j, (,r). L'évaluation de la rente ordinaire moyenne f se fait en principe
d'après (74') en écrivant d'abord pour une rente de vieillesse (simple
ou pour couple) : ^

r,(x) --=•= | ,,r(w) /,(«>,x) dw; (86)
6

r(w) est tiré de (85") et 1« rfefnïwfww cle.s pe?mowies selon les colisalfons
cmnnel/es Moyennes peut être déduite d'une distribution de revenus
des cotisants comme nous l'avons annoncé au n° 38. En effet, il suffit
de partir de la fonction fondamentale /(m',Xq) g(a') et d'effectuer
les deux changements de variables successifs (84) et (83'), c'est-à-dire

ff rr s(.r,.2-j) (87)

Nous calculons la transformée de g(ît') et nous supposons qu'elle
coïncide avec la fonction de fréquence /,(fc,.r) relative à la distribu-
tion des cotisations annuelles moyennes réalisées entre « a: — 1

et aq. On introduit ainsi une nouvelle /q/pof/u'.se C qui est analogue
à l'hypothèse du n" 9 et paraît aussi plausible que celle-ci du fait
de l'interdépendance des revenus individuels en passant d'un âge x
à un autre. Vu cette dépendance nous ne sommes plus en présence
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du problème fondamental du calcul des probabilités concernant la
distribution d'une somme de variables (ou de leur moyenne) chacune
d'elles étant distribuée indépendamment l'une de l'autre. Il vient donc:

1

/<(«>,x) =-• /(w;x,xj) ——- <7

TT TT S(X,X])
(88)

Pour les rentes de survivants nous pouvons appliquer en principe le

même procédé, aq signifiant alors l'âge de décès; ce dernier pouvant
varier pour un < et x donnés, la première équation de (88) ne s'applique
dans ce cas qu'en précisant pour /, la durée n. Suivant les nécessités,

on fera correspondre à chaque risque m sa propre fonction s(x), sur-
tout lorsque m dépend de l'état civil; n étant déterminé par x et aq,

on obtiendra également une distribution propre à chaque n. Ainsi, l'on
aura bien calculé toutes les fonctions de fréquence dont on a besoin.

Le calcul de ht rente orcZwiafrc moyenne r ne présentera dès lors

aucune difficulté. 11 suffit de substituer les expressions (85") et (88)
dans (80) et de décomposer l'intervalle d'intégration dans ses inter-
val!es partiels j. En désignant par 2I-.F et ,1

y 0 les accroissements des

fonctions !''(«;) et 0(w) sur l'intervalle j, on aura:

r (89)

Lorsque les expressions définissant F et 0 sont intégrables, on peut
donc calculer analytiquement la rente moyenne. Ceci se vérifie en

particulier pour /« (Estn'hation sewi-normafe &(n;a,,y,,e) dont nous

avons préconisé [22J l'emploi pour les calculs concernant l'équilibre
financier de l'AVS [29], Ce cas particulier est d'ailleurs à l'origine
de la méthode générale exposée au chap. I. Krämer [25] a proposé

une autre distribution du type de Pearson, mais il suggère de calculer

r à l'aide d'une distribution globale unique, ce qui ne constitue qu'une
première approximation pour la résolution du problème. Ce n'est que
le dépouillement des comptes individuels qui indiquera en définitive
à quelles fonctions il faut avoir recours pour ajuster les distributions
observées.

45. Le calcul de la rente ordinaire moyenne soulève encore
d'autres problèmes. Indiquons d'abord celui de la eorqwrai.so« de ht

rente moyenne r arec ht rente i«<imrf«eï/ti r(w), correspondant à la valeur

moyenne w des cotisations individuelles moyennes w. Cette valeur
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moyenne w se calcule à l'aide de (88) et tombe à l'intérieur d'un inter-
valle j déterminé de sorte que r(ir) -Jj + Rjîo. On peut calculer encore
les valeurs moyennes partielles «' pour chaque intervalle j, de même que
les quantités 7. Oy + R.telles que r 2' ~ ^ + B'".

ceci en posant O V, 4. If et R V) R, -=(- ZI -F. On trouvera
'—' ' ' w

ainsi, en éliminant w des équations donnant r(w) et r:

^ ['(«') — + I • (90)

Une variation de w indique une variation de /, donc de .-1 et B, de

sorte que (90) représente une courbe r(ir). Lorsque w déterminera un
numéro d'intervalle suffisamment élevé, l'on aura toujours r < r(w),
ce qui ressort directement de la comparaison de l'équation donnant r
avec l'identité: r(tr) r(ic) U/ zl-F (concavité du polygone tournée

vers le bas).
Il est naturel de se demander à quelle rente pourraient donner

lieu les cotisations «> .s(i) w' payées entre ,r et .tq si l'on appliquait
Je principe de J'ec/niroJern-e oeJttarieJJe qui réside dans l'équation de la

prime individuelle (cf. 11° 39), où r serait cette fois l'inconnue et w
donné. Désignons d'un côté par a* la valeur actuelle, pour un assuré

d'âge :r, de tous les genres de rentes ordinaires de l'AYS auxquelles il
pourrait avoir droit, en posant la rente de vieillesse simple 1. : d'un
autre côté, appelons a* la valeur actuelle des cotisations de cet assuré

en supposant que la cotisation annuelle moyenne «•, calculée selon (84),
soit — 1. A propos de ces valeurs actuelles nous renvoyons à la collée-

tion de tables: «Valeurs actuelles des cotisations et des rentes AVS»

que vient de publier l'Office fédéral des assurances sociales. Les

formules (94) et (95) ci-après donnent d'ailleurs une première idée

à ce sujet (voir aussi la remarque suivant la. première de ces formules).
De cette manière, on pourra déterminer un taux de rente 0* comme suit :

"î £?î- 9-* • (91)

0Î représente ainsi la rente de vieillesse simple acquise par le versement
de cotisations dont la moyenne ir 1. En réalisant une moyenne
l'assuré obtiendra la rente ?•(«',,r) calculée en capitalisation individuelle:

r(â',.r) o* /<•. (91')
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Ceci représente une droite par l'origine qui coupera le polygone défini
par (85") en un point d'intersection I dont l'abscisse sera «q. A gauche
de ce point, les différences ,,r(tp) — r(w,.î) seront positives et, à

droite, négatives. Ces différences mesurent la solidarité résidant dans
le polygone (85"). Cette mesure tient compte à la fois de la solidarité
économétrique ainsi que des deux formes de solidarité biométrique
qui sont à la base de l'AYS et qui favorisent, d'une part, les personnes
mariées et, d'autre part, les classes d'âge à i > jq. Nous désignons
la droite (91') par droite «âiowiéfrigwe»; elle est en effet entièrement
déterminée par le coefficient angulaire q* calculé à l'aide des seules
données biométriques.

Nous pouvons construire encore une droite «econowietrirp«;». Ce

sera celle qui fournira pour un couple donné d'indices m, « la même
rente moyenne r que le polygone (85"). Pour l'obtenir il suffit de

définir un taux q à l'aide de la rente moyenne r et de la valeur moyenne
w des cotisations individuelles moyennes w, cette dernière étant cal-

_ r
culée à l'aide de (88) ; on pose o — et on envisage la droite par' w
1 origine :

r(w) q h; (92)

qui donne bien la même rente moyenne r que le polygone r(w). En
calculant les prestations selon cette droite, on accorde à un ensemble
de bénéficiaires caractérisé par un groupe donné de critères bio-

métriques (âge, sexe, état civil) en moyenne les mêmes avantages que
le polygone (85"). La comparaison de ce dernier avec cette droite (92)
met donc en évidence la seule solidarité économétrique. Vu que (91')

permet de mesurer la combinaison des deux solidarités en question,
on arrive à dégager la solidarité biométrique seule, en confrontant les

deux droites (91') et (92).

§ 4. Problèmes économétriques relatifs aux caisses de pensions

46. Du fait de l'évolution économétrique récente, les problèmes
relatifs aux caisses de pensions relèvent de plus en plus de méthodes

particulières aux assurances sociales. Les cotisations sont en général

proportionnelles aux salaires selon la relation w — ttm où tî est le

taux de cotisation uniforme. En revanche, pour tes pensions, la

proportionnalité au salaire spécifique servant de base au calcul des
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prestations est de plus en plus corrigée en faveur des personnes à revenus
faibles en leur garantissant une pension minimum r„; en outre, on

introduit un maximum iq de pensions par lequel on tronque les presta-
fions correspondant aux revenus élevés. Le salaire spécifique utilisé

pour la détermination du montant de la prestation est en général celui

qui précède immédiatement l'attribution de la pension à l'âge x,.
Associons le salaire «' à l'âge x„ (limite d'âge inférieure pour l'ad-
mission) et w" à l'âge aq, de sorte que m" w' s(aq). Si p désigne
le taux de pension — dépendant en général d'un couple d'indices m

(risque: décès, invalidité, vieillesse) et n (durée de cotisation) — on

aura les règles suivantes pour le calcul d'un terme annuel de la pension:

r(M") g m", (93)

r„ < r('u") < ?*i. (93')

Pour examiner l'équilibre financier d'une caisse, l'actuaire établit
un âi/rm tec/iwàgMC. Lorsque les statuts de la caisse prévoient des primes
de rachat pour couvrir les charges supplémentaires résultant des

augmentations de salaires, le bilan est calculé sur la base des salaires m

observés à l'époque f de l'établissement du bilan. Au contraire, si ces

charges supplémentaires sont sensées être déjà couvertes par le taux
de cotisation jr, on peut tenir compte des augmentations de salaires

en introduisant dans les calculs l'échelle s (a;) déduite du matériel

statistique de la caisse. C'était là d'ailleurs le but des travaux de

King [24] que nous avons signalés au n° 7. On s'écartera évidemment
ainsi du principe de la prime individuelle pour se rapprocher de celui
de la prime moyenne générale. Calculons d'abord, à l'époque < du

bilan et pour un assuré d'âge x, Z« xofcjtr adtteZZe des coAsaAows

futures, la cotisation initiale le (A s(.r) augmentant d'une manière

continue selon s(|) pour x < | < x,. Si représente la valeur
actuelle d'une cotisation annuelle de 1 franc, payable d'une manière

continue, on obtient la valeur actuelle cherchée par:

WA "= +vr | ILa.m,-yds(|)
-L^.T

(94)

Relevons qu'il suffit de diviser cette relation par tA s(x,Xj) pour
obtenir la valeur actuelle de cotisations dont la moyenne annuelle

serait 1. Calculons encore, à titre d'exemple, Z« raZewr acbn'de
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»x-*!**« '>Ce weißesse déterminée à l'aide du taux g^. sur la
base du revenu m" concernant l'âge aq; il vient, en introduisant le

symbole habituel de la rente différée unité, payable de manière
continue: » _

,ri-x;®.ï ~~ ^ -5(^l) .rj-xb'x • (95)

Si l'on veut partir directement du salaire « observé à l'époque du
M

bilan, on remplacera dans les deux formules ci-dessus par
s(z)

Pour évaluer correctement la totalité des engagements, il faut évident-
ment tenir compte de 7« nähere pofyr/omde des prestations définies

par (93) et (93'). Puisque /(w",oq) donne la répartition présumée des

futurs pensionnés selon le revenu déterminant m", il suffit de rnulti-
plier (95) par L,(x) /(n",aq) et d'intégrer en n"; on mettra ainsi en
évidence la pension moyenne calculée à l'aide des valeurs polygonales
sur les trois intervalles définis par (93) et (93'), ceci d'une manière

analogue à celle de la formule (89). Pour les autres risques on procédera
d'une façon semblable en tenant toutefois compte de la répartition /
valable au moment de la réalisation du risque.

47. Il n'entre pas dans le cadre de ce travail d'étudier Tes relations
e?e,s caisses de pensions fCP,T arec /VI TPS'. Relevons simplement que du

fait de l'augmentation du coût de la vie, les rentes ordinaires de l'A YS

sont le plus souvent considérées par les CP comme allocations de vie
chère venant s'ajouter aux pensions statutaires. Ce qui intéresse avant
tout chaque assuré c'est de connaître le taux total de sa pension de

retraite ainsi cumulée CP + AYS. Alors que le taux g' '' est directe-
ment donné par les statuts, il convient de calculer correctement le taux
gA\s çjj rapportant la rente AYS r(w) au même salaire de référence

que celui déterminant g'P c'est-à-dire le salaire •«"; on a donc:

r(w)g —. (96)
w"

Pour se rendre compte de la nature de ce taux, il faut remplacer r(w)
par son expression (85") et exprimer «" à l'aide de ce qui est facile
si l'on se rappelle que m" s(aq) •«' et w s(,r,aq) tî«'; ainsi il vient:

«" - -v-V (97)
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La substitution dans (96) effectuée, on voit que g**® est toujours
décroissant avec c'est là que réside d'ailleurs la solidarité écono-

métrique de l'AVS qui préoccupe avant tout les actuaires étudiant
le problème de l'adaptation des pensions aux rentes AYS. Afin de

mettre en évidence la portée collective de l'AVS pour l'ensemble des

membres d'une CP, l'actuaire établit souvent un bilan supplémentaire
relatif aux seuls éléments AVS. Cette tâche sera facilitée par la nouvelle
collection de tables «Valeurs actuelles des cotisations et des rentes
AVS» déjà signalée au n° 45, collection remplaçant à ce point de vue
la publication [30], Pour l'étude détaillée des relations entre l'AVS
et les CP nous renvoyons à cette dernière publication ainsi qu'à une
autre [23] où nous avons eu l'occasion d'exposer le problème sous un

aspect différent.

§ 5. Un problème économétrique concernant l'assurance-maladie

48. Plusieurs cantons et communes suisses ont décrété, sur la

base de la loi fédérale sur l'assurance maladie du 13 juin 1911, cette

assurance obligatoire pour toutes les personnes dont le revenu est

inférieur à une certaine limite %. Ainsi on peut essayer d'évaluer
d'abord fo «ombre fotaZ des personnes assurées à l'aide de la distribution
des revenus de la population entière considérée. La proportion des

assurés sera donnée par la fonction cumulative de la distribution
globale des revenus, fonction désignée par j-)(u) qui se calcule à l'aide
de (30) et dont l'élément démographique Â,(.r) seul varie avec le temps;
la proportion des personnes assurées sera donc de Âj(«i). On peut
évidemment se fixer d'emblée la proportion f'(u j et en déduire le

Mj correspondant. Ceci est facile si l'on prend la distribution serni-

hyperbolique Z>(«;Oj,a„a) en «'imposant d'avance «, > a^; dès lors

on a J?(«i) 1 —fd(»i) et H(%) — a" fèp, d'où

49. La connaissance du nombre total des assurés ne suffit cepen-
da-nt. pas pour évaluer correctement les charges financières, ces dernières

dépendant avant tout du taux instantané de morbidité *(.r) qui varie

sensiblement avec l'âge. Il faut donc déterminer fe nombre des ossäres

d'df/c ,r qui est fourni par la valeur particulière Ù'(«^,,t) de la cumula-

tive conditionnelle définie par (27). Cette valeur varie avec ,r, mais

demeure constante par rapport à / grâce à l'hypothèse it (cf. n° 19).
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Si nous supposons, faute d'observations statistiques plus précises,

que les assurés d'âge ,t se répartissent selon une distribution de Pareto

P(«; «,.<*), le calcul de P(«i.;c) se fait dès lors facilement. On aura, en
effet: /<'(«,,a) 1 —c'est-à-dire en se rappelant (39) et (43'):

P(%,;r) 1 — a(J s" (a) (98)

Cette formule donne l'équation d'une courbe en ,r, dont la concavité
est tournée vers le haut, pour autant que celle de s(.ï) soit tournée

vers le bas. Le «omùre de jowrs de medadte provenant des effectifs L,(.c)
au cours d'une année débutant à l'instant r sera ainsi donné par:

T+l Xj

A'j j dt | L,(a) L(»j,a:) k(x) da, (99)
r ato

où et aq sont les âges extrêmes à prendre en considération.
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Conclusions

La méthode économétrique que nous avons développée au

chapitre I nous a permis non seulement d'étudier plus à fond la théorie
de la distribution des revenus mais encore de résoudre quelques pro-
blêmes posés par la technique mathématique des plus importantes
branches de la sécurité sociale. Le c/mmp d'appLcchicm de cette méthode

pourra cependant s'étendre facilement. Elle s'appliquera d'abord aux
autres secteurs de la sécurité sociale, dès que les montants de presta-
fions s'échelonnent d'une manière polygonale en fonction du revenu.
Tel est par exemple le cas pour les assurances couvrant le risque
chômage, de nature économique ou militaire. La méthode envisagée
rendra sans doute également des services dans le domaine des impôts
et des statistiques fiscales.

La ^CTieVahsahoM de notre we'rtode pourra encore être poussée plus

loin, tant au point de vue mathématique que statistique. En particulier,
il serait intéressant de faire dépendre la fonction s(,r), l'une des trois
fonctions fondamentales de cette théorie, des deux autres variables
< et (/.

Il devient évident que l'actuaire de la sécurité sociale aura de plus

eu plus à s'occuper de problèmes economeingwes. C'est même en cela

que son activité scientifique et pratique se distingue essentiellement
de celle de l'actuaire de l'assurance privée. Nous espérons que la

méthode exposée dans ce travail facilitera la résolution des problèmes
posés par le développement de la sécurité sociale et que les idées sug-

gérées ouvriront la voie à des recherches nouvelles.
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Annexe II

Représentations graphiques

1. L'espace bio-économétrique

X

2. Le plan économétrique (u,x)
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