Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 50 (1950)

Artikel: Kleine Bemerkung zu einer Klasse versicherungstechnischer

Approximationen

Autor: Spring, O.W.

DOI: https://doi.org/10.5169/seals-966869

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Kleine Bemerkung zu einer Klasse versicherungstechnischer Approximationen

Von Osc. W. Spring, Zürich

In der Arbeit von Jecklin über eine algebraische Begründung einer Klasse versicherungstechnischer Approximationen¹) wird unter anderem nachgewiesen, dass für Quadrupel temporärer Renten gleicher Dauer von der Art $a_{xy:\overline{n}|}$, $a_{x:\overline{n}|}$, $a_{y:\overline{n}|}$, $a_{\overline{n}|}$ aus der gleichzeitigen Existenz der Näherungsformeln

$$\mathbf{a}_{xy:\overline{n}} \, \mathbf{a}_{\overline{n}} \sim \mathbf{a}_{x:\overline{n}} \, \mathbf{a}_{y:\overline{n}} \tag{1}$$

und

$$\frac{1}{a_{xy:\overline{n}|}} + \frac{1}{a_{\overline{n}|}} \sim \frac{1}{a_{x;\overline{n}|}} + \frac{1}{a_{y:\overline{n}|}}$$
 (2)

die Existenz der weiteren Näherungsformel folgt

$$\mathbf{a}_{xy:\overline{n}|} + \mathbf{a}_{\overline{n}|} \sim \mathbf{a}_{x:\overline{n}|} + \mathbf{a}_{y:\overline{n}|}. \tag{3}$$

Ferner wird darauf hingewiesen, dass die Beziehungen (1) und (3) nicht nur für Barwerte gültig sind, sondern auch für die jährliche Prämie, die Einmaleinlage, das Deckungskapital und die prämienfreie reduzierte Summe der Gemischten Versicherung auf zwei verbundene Leben.

In den folgenden Ausführungen wird zunächst die Beziehung zwischen den erwähnten Näherungsformeln auf Grund einer analytischen Betrachtung begründet. Ferner wird eine Verallgemeinerung für alle Versicherungsgrössen, die sich durch eine lineare Differential-

¹) Heinrich Jecklin: «Algebraische Begründung einer Klasse versicherungstechnischer Approximationen» (Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker, 50. Band, Heft 1, 1950).

gleichung erster Ordnung darstellen lassen, hergeleitet und abschliessend eine allgemeine Betrachtung über die Güte der Approximationsformeln dargelegt.

* *

1. Approximationsformeln für die Barwerte temporärer Renten

In den folgenden Ausführungen wenden wir die kontinuierliche Betrachtungsweise an.

Für die vier Barwerte $\bar{a}_{x+t,y+t:\overline{n-t}|}$, $\bar{a}_{x+t:\overline{n-t}|}$, $\bar{a}_{y+t:\overline{n-t}|}$ und $\bar{a}_{n-t|}$ können wir die vier Differentialgleichungen aufstellen:

$$\frac{d}{dt}\,\bar{a}_{x+t,\,y+t:\overline{n-t}|} = \bar{a}_{x+t,\,y+t:\overline{n-t}|}(\mu_{x+t} + \mu_{y+t} + \delta) - 1 \tag{4}$$

$$\frac{d}{dt}\,\bar{a}_{x+t;n-t} = \bar{a}_{x+t;n-t}(\mu_{x+t} + \delta) - 1 \tag{5}$$

$$\frac{d}{dt}\,\bar{a}_{y+t:\overline{n-t}|} = \bar{a}_{y+t:\overline{n-t}|}(\mu_{y+t} + \delta) - 1 \tag{6}$$

$$\frac{d}{dt} \, \bar{a}_{\overline{n-t}} \qquad = \bar{a}_{\overline{n-t}} \, \delta - 1 \,. \tag{7}$$

Dabei stellen μ_{x+t} und μ_{y+t} Sterblichkeits-Intensitäten und $\delta = -\ln \nu$ die Zinsintensität dar.

Lösen wir die Gleichungen (4), (5) und (6) nach dem Klammerausdruck und die Gleichung (7) nach δ auf, so können wir für $(\mu_{x+t}+\mu_{y+t}+\delta)$ schreiben

$$\frac{\frac{d}{dt} \, \bar{a}_{x+t,\,y+t:\overline{n-t}\,|} + 1}{\bar{a}_{x+t,\,y+t:\overline{n-t}\,|}} = \frac{\frac{d}{dt} \, \bar{a}_{x+t:\overline{n-t}\,|} + 1}{\bar{a}_{x+t:\overline{n-t}\,|}} + \frac{\frac{d}{dt} \, \bar{a}_{y+t:\overline{n-t}\,|} + 1}{\bar{a}_{y+t:\overline{n-t}\,|}} - \frac{\frac{d}{dt} \, \bar{a}_{n-t\,|} + 1}{\bar{a}_{n-t\,|}}$$

oder, wenn wir die Ableitungen nach t der Einfachheit halber mit \tilde{a}' bezeichnen,

$$\frac{\bar{a}_{x+t,y+t:\overline{n-t}|}^{\prime}+1}{\bar{a}_{x+t,y+t:\overline{n-t}|}}+\frac{\bar{a}_{\overline{n-t}|}^{\prime}+1}{\bar{a}_{\overline{n-t}|}}=\frac{\bar{a}_{x+t:\overline{n-t}|}^{\prime}+1}{\bar{a}_{x+t:\overline{n-t}|}}+\frac{\bar{a}_{y+t:\overline{n-t}|}^{\prime}+1}{\bar{a}_{y+t:\overline{n-t}|}}.$$

Diese Beziehung können wir auch in der Form schreiben:

$$\frac{\bar{a}'_{x+t,y+t:\overline{n-t}|}}{\bar{a}_{x+t,y+t:\overline{n-t}|}} + \frac{\bar{a}'_{\overline{n-t}|}}{\bar{a}_{\overline{n-t}|}} + \frac{1}{\bar{a}_{x+t,y+t:\overline{n-t}|}} + \frac{1}{\bar{a}_{\overline{n-t}|}} =$$

$$= \frac{\bar{a}'_{x+t:\overline{n-t}|}}{\bar{a}_{x+t:\overline{n-t}|}} + \frac{\bar{a}'_{y+t:\overline{n-t}|}}{\bar{a}_{y+t:\overline{n-t}|}} + \frac{1}{\bar{a}_{x+t:\overline{n-t}|}} + \frac{1}{\bar{a}_{x+t:\overline{n-t}|}}$$
oder

 $\frac{d}{dt} \ln \left(\bar{a}_{x+t,y+t:\bar{n}-t} | \bar{a}_{\bar{n}-t} \right) + \frac{1}{\bar{a}_{x+t,y+t:\bar{n}-t}} + \frac{1}{\bar{a}_{n-t}} = \frac{d}{dt} \ln \left(\bar{a}_{x+t:\bar{n}-t} | \bar{a}_{y+t:\bar{n}-t} \right) + \frac{1}{\bar{a}_{x+t:\bar{n}-t}} + \frac{1}{\bar{a}_{y+t:\bar{n}-t}}. \quad (8)$

Wenn wir somit als Bedingung

$$\frac{1}{\bar{a}_{x+t,y+t:\bar{n}-t}} + \frac{1}{\bar{a}_{\bar{n}-t}} = \frac{1}{\bar{a}_{x+t:\bar{n}-t}} + \frac{1}{\bar{a}_{y+t:\bar{n}-t}}$$
(9)

setzen, so folgt daraus weiter

$$\frac{d}{dt} \ln \left(\bar{a}_{x+t, y+t: \overline{n-t}|} \bar{a}_{\overline{n-t}|} \right) = \frac{d}{dt} \ln \left(\bar{a}_{x+t: \overline{n-t}|} \bar{a}_{y+t: \overline{n-t}|} \right)$$

oder hieraus wiederum

$$\bar{a}_{x+t,y+t:n-t}|\bar{a}_{\overline{n-t}}| = C\,\bar{a}_{x+t:\overline{n-t}}|\bar{a}_{y+t:\overline{n-t}}|. \tag{10}$$

Das ist jedoch, abgesehen von der Integrationskonstanten C, die Relation (1). Wenn also die Approximation (2) erlaubt ist, so besteht immer gleichzeitig auch die Approximation (1). Ferner folgt aus (9) und (10), dass auch gilt

$$\tilde{a}_{x+t,y+t;\overline{n-t}|} + \tilde{a}_{\overline{n-t}|} = C\left(\tilde{a}_{x+t;\overline{n-t}|} + \tilde{a}_{y+t;n-t|}\right). \tag{11}$$

Zahlenbeispiel zur Darstellung von C

x = y		Grundlagen	RAH	1930/40,	21/2%		

13,3409

75

x = y

50

$\begin{bmatrix} x+t \\ y+t \end{bmatrix}$	n-t	x+n	$\begin{vmatrix} a_{x+t}, y+t : \overline{n-t} \\ (1) \end{vmatrix}$	$\frac{\Im n - t}{(2)}$	$\mathcal{E} = (1) + (2)$ (3)	$2 a_{x+t} : \overline{n-t}$	$C = \frac{(3)}{(4)}$
30	15	45	12,2828	12,6909	24,9737	24,9684	1,000 212
40		55	11,8752	12,6909	24,5661	24,5438	1,000 909
50		65	10,7678	12,6909	23,4587	23,3222	$1,005\ 853$
30	25	55	17,6198	18,8850	36,5048	36,4650	1,001 091
40		65	16,2144	18,8850	35,0994	34,8948	1,005 863

18,8850

Für Kombinationen mit gleichem x + n ist C praktisch eine Konstante und liegt für zahlreiche Kombinationen recht nahe bei 1. Die Approximation wird um so genauer, je kleiner x + n ist und je kleiner bei gleicher Dauer (n-t) das Alter (x+t) bzw. (y+t) ist.

2. Verallgemeinerung

Wir betrachten versicherungstechnische Grössen F(t), für die eine Differentialgleichung von der Form

$$\frac{d}{dt}F(t) = F(t)\left(\mu_{x+t} + \delta\right) + \Phi(t) \tag{12}$$

32,2259

31,2298

1,031 896

erfüllt ist. Die Bedeutung von F(t) ist bestimmt durch die Wahl von $\Phi(t)$ 1). Setzen wir beispielsweise $\Phi(t) = -1$, so stellt F(t) einen Rentenbarwert dar, der im weiteren charakterisiert ist durch μ_{x+t} und δ .

Handelt es sich um Versicherungen mit mehreren Ausscheideursachen, so können wir μ_{x+t} als Summe ebenso vieler Ausscheide intensitäten betrachten

$$\mu_{x+t} = {}^{1}\mu_{x+t} + {}^{2}\mu_{x+t} + \dots + {}^{m}\mu_{x+t}. \tag{13}$$

¹⁾ Vgl. Spring, «Analytische Betrachtungen zur Änderung des Rechnungszinsfusses und der Sterbetafel bei Versicherungswerten» (Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker, 50. Band, Heft 1, 1950).

Handelt es sich anderseits um Versicherungen auf mehrere Leben, so können wir μ_{x+t} ersetzen durch eine Kombination von der Art

$$\mu_{x+t} = \mu_{x_1+t} + \mu_{x_2+t} + \mu_{x_3+t} + \dots + \mu_{x_m+t}. \tag{14}$$

$$* *$$

Beispiele

a) Verbindungsrente auf 2 Leben, zahlbar bis zum Tode der ersten Person

$$\begin{split} \bar{a}_{x_1+t;\,x_2+t} &= \frac{\int\limits_t^\infty \!\! v^{x_1+\tau}\,l_{x_1+\tau}\,l_{x_2+\tau}\,d\tau}{v^{x_1+t}\,l_{x_1+t}\,l_{x_2+t}},\\ \frac{d}{dt}\,\bar{a}_{x_1+t;\,x_2+t} &= \bar{a}_{x_1+t;\,x_2+t}\,(\mu_{x_1+t}+\mu_{x_2+t}+\delta)-1\,. \end{split}$$

b) Verbindungsrente auf 2 Leben, zahlbar bis zum Tode der zweiten Person

$$\begin{split} &\bar{a}_{\overline{x_1}+t\,;\,x_2+t} = \bar{a}_{x_1+t} + \bar{a}_{x_2+t} - \bar{a}_{x_1+t\,;\,x_2+t}\,,\\ &\frac{d}{dt}\bar{a}_{\overline{x_1}+t\,;\,x_2+t} = \bar{a}_{\overline{x_1}+t\,;\,x_2+t}\,(\mu_{x_1+t} + \mu_{x_2+t} + \delta) - (1 + \bar{a}_{x_1+t}\,\mu_{x_2+t} + \bar{a}_{x_2+t}\,\mu_{x_1+t})\,. \end{split}$$

c) Überlebensrente, zahlbar an (x_2) , wenn (x_1) gestorben ist

$$\begin{split} &\bar{a}_{x_1+t \mid x_2+t} = \bar{a}_{x_2+t} - \bar{a}_{x_1+t; x_2+t} \,, \\ &\frac{d}{dt} \, \bar{a}_{x_1+t \mid x_2+t} = \bar{a}_{x_1+t \mid x_2+t} \, (\mu_{x_1+t} + \mu_{x_2+t} + \delta) - \bar{a}_{x_2+t} \, \mu_{x_1+t} \,. \end{split}$$

d) Aktivitätsrente

$$\frac{d}{dt}\,\bar{a}^a_{x+t} = \bar{a}^a_{x+t}\,(\mu^a_{x+t}+\nu_{x+t}+\delta)-1$$

$$\nu_{x+t} = \text{Invalidierungsintensit"}$$

Wir betrachten nunmehr m Versicherungsgrössen $F_i(t)$, für welche je die Differentialgleichung gelten soll 1)

$$\frac{d}{dt}F_i(t) = F_i(t) \left({}^i \mu_{x+t} + \delta \right) + \boldsymbol{\Phi}_i(t) \qquad (15)$$

$$0 \leqslant t \leqslant n.$$

Für die Versicherungsdauer n gilt $0 < n < \infty$. Ferner betrachten wir eine «zusammengesetzte» Versicherungsgrösse F(t), für welche die Gleichung gelten möge

$$\frac{d}{dt}F(t) = F(t)\left({}^{1}\mu_{x+t} + {}^{2}\mu_{x+t} + \dots + {}^{i}\mu_{x+t} + \dots + {}^{m}\mu_{x+t} + \delta\right) + \Phi(t)$$

$$0 \le t \le n. \tag{16}$$

Aus (15) erhalten wir m Gleichungen von der Form

$${}^{i}\mu_{x+t} = \frac{\frac{d}{dt} F_{i}(t) - \boldsymbol{\Phi}_{i}(t)}{F_{i}(t)} - \delta$$
 (17)

und aus (16)

$$\sum_{i=1}^{m} {}^{i}\mu_{x+t} = \frac{\frac{d}{dt}F(t) - \boldsymbol{\Phi}(t)}{F(t)} - \delta. \tag{18}$$

Setzen wir (17) in (18) ein, so ergibt sich die Gleichung:

$$\frac{\frac{d}{dt}F(t) - \boldsymbol{\Phi}(t)}{F(t)} = \sum_{i=1}^{m} \frac{\frac{d}{dt}F_{i}(t) - \boldsymbol{\Phi}_{i}(t)}{F_{i}(t)} - (m-1)\delta \qquad (19)$$

oder mit Hilfe der Beziehung

$$\bar{a}_{n-t} = \frac{1 - v^{n-t}}{\delta}$$

umgestaltet:

$$\frac{d}{dt}\ln F(t) - \frac{\Phi(t)}{F(t)} = \sum_{i=1}^{m} \frac{d}{dt} \ln F_i(t) - \sum_{i=1}^{m} \frac{\Phi_i(t)}{F_i(t)} - (m-1) \left[\frac{1}{\bar{a}_{n-t}} - \frac{v^{n-t}}{\bar{a}_{n-t}} \right]. \tag{20}$$

¹⁾ Wobei auch $i\mu_{x+t} = \mu_{x_i+t}$ sein kann.

Setzen wir beispielsweise in Analogie zur Formel (9)

$$\frac{\Phi(t)}{F(t)} + \frac{1}{\bar{a}_{n-t}} = \sum_{i=1}^{m} \left\{ \frac{\Phi_i(t)}{F_i(t)} + \frac{1}{\bar{a}_{n-t}} \right\},\tag{21}$$

dann folgt ohne weiteres die Zulässigkeit der weiteren Beziehung

$$\frac{d}{dt} \ln F(t) = \sum_{i=1}^{m} \frac{d}{dt} \ln F_i(t) + (m-1) \frac{v^{n-t}}{\bar{a}_{\overline{n-t}}}.$$
 (22)

Durch Integration erhalten wir

und weiter

$$\ln F(t) = \sum_{i=1}^{m} \ln F_i(t) + (m-1) \int \frac{v^{n-t}}{\bar{a}_{n-t}} dt + C_0.$$

Hieraus ergibt sich nach Auflösung des Integrals rechts

$$\ln F(t) = \sum_{i=1}^{m} \ln F_{i}(t) - (m-1) \ln \bar{a}_{n-t} + C_{1},$$

$$\frac{F(t)}{\bar{a}_{n-t}} = C_{2} \prod_{i=1}^{m} \frac{F_{i}(t)}{\bar{a}_{n-t}}$$
(23)

wobei C_0 , C_1 und C_2 Integrationskonstanten sind.

Beispiel 1: Wir setzen $\Phi_i(t) = -1 = \Phi(t)$.

Dann wird $F_i(t)$, wie bekannt, zu einem Rentenbarwert

$$\bar{a}_{x_i+t:\overline{n-t}}$$
.

Setzen wir m=2 und

$$x_1 = x$$

$$x_2 = y$$

so wird gemäss (21)

$$\frac{1}{\bar{a}_{x+t,y+t:n-t|}} + \frac{1}{\bar{a}_{\overline{n-t}|}} = \frac{1}{\bar{a}_{x+t:\overline{n-t}|}} \frac{1}{\bar{a}_{y+t:\overline{n-t}|}} + \frac{2}{\bar{a}_{\overline{n-t}|}}$$
oder
$$\frac{1}{\bar{a}_{x+t,y+t:\overline{n-t}|}} = \frac{1}{\bar{a}_{x+t:\overline{n-t}|}} + \frac{1}{\bar{a}_{y+t:\overline{n-t}|}} \frac{1}{\bar{a}_{\overline{n-t}|}}.$$

Dieser Ausdruck ist identisch mit (9).

Aus (23) erhalten wir anderseits

$$\tilde{a}_{x+t,y+t:n-t|} = C \frac{1}{\tilde{a}_{\overline{n-t}|}} \tilde{a}_{x+t:\overline{n-t}|} \tilde{a}_{y+t:n-t|}.$$

Dieser Ausdruck ist identisch mit (10).

Beispiel 2: Setzen wir
$$\mathbf{\Phi}_i(t) = -1$$
 und $m=3$; ferner $x_1=x$ $x_2=y$ $x_3=z$

so erhalten wir aus (21), wenn wir t = 0 setzen,

$$rac{1}{ar{a}_{xyz:ar{n}|}} = rac{1}{ar{a}_{x:ar{n}|}} + rac{1}{ar{a}_{y:ar{n}|}} + rac{1}{ar{a}_{z:ar{n}|}} - rac{2}{ar{a}_{ar{n}|}}$$

und anderseits aus (23)

$$ilde{a}_{xyz:\overline{n}|} = C \, rac{ ilde{a}_{x:\overline{n}|} \, ilde{a}_{y:\overline{n}|} \, ilde{a}_{z:\overline{n}|}}{ ilde{a}_{\overline{n}|} \, ilde{a}_{\overline{n}|}},$$

was mit Hilfe von (10) und mit C = 1 zur Formel (15) in der eingangs erwähnten Arbeit von Jecklin führt.

Die beiden Beispiele zeigen, dass die Formeln (21) und (23) Verallgemeinerungen der Formeln (9) und (10) darstellen; die verallgemeinerten Formeln beziehen sich auf Versicherungswerte, welche die Differentialgleichung (12) erfüllen.

3. Über die Güte der betrachteten Approximationsformeln

Wir untersuchen die Frage, unter welchen Voraussetzungen die Approximationsformeln als genaue Beziehungen betrachtet werden können, zunächst für das Quadrupel der Barwerte $\bar{a}_{n|}$, $\bar{a}_{x:n|}$, $\bar{a}_{y:n|}$, $\bar{a}_{y:n|}$. In diesem Fall gelten simultan die Gleichungen

$$egin{aligned} rac{1}{ar{a}_{x+t,\,y+t:ar{n-t}|}} + rac{1}{ar{a}_{\overline{n-t}|}} &= rac{1}{ar{a}_{x+t:ar{n-t}|}} + rac{1}{ar{a}_{y+t:ar{n-t}|}} \ &= ar{a}_{x+t,\,y+t:ar{n-t}|} ar{a}_{\overline{n-t}|} &= C \, ar{a}_{x+t:ar{n-t}|} ar{a}_{y+t:ar{n-t}|}. \end{aligned}$$

und

Durch Elimination von $\bar{a}_{x+t,y+t:\overline{n-t}|}$ ergibt sich hieraus unter der weiteren Voraussetzung

$$\begin{split} & \bar{a}_{x+t:\overline{n-t}|}\bar{a}_{y+t:\overline{n-t}|}\bar{a}_{\overline{n-t}|} \neq 0 \\ & \frac{1}{C} \; \bar{a}_{\overline{n-t}|}^2 + \bar{a}_{x+t:\overline{n-t}|}\bar{a}_{y+t:\overline{n-t}|} = \bar{a}_{\overline{n-t}|}(\bar{a}_{x+t:\overline{n-t}|} + \bar{a}_{y+t:\overline{n-t}|}) \end{split}$$

oder umgeformt

$$\bar{a}_{\overline{n-t}|}\left(\frac{\bar{a}_{\overline{n-t}|}}{C}-\bar{a}_{y+t:\overline{n-t}|}\right)=\bar{a}_{x+t:\overline{n-t}|}\left(\bar{a}_{\overline{n-t}|}-\bar{a}_{y+t:\overline{n-t}|}\right).$$

Setzen wir in diesem Ausdruck $\bar{a}_{x+t:\overline{n-t}|}$ oder $\bar{a}_{y+t:\overline{n-t}|}$ gleich $\bar{a}_{\overline{n-t}|}$, so folgt daraus, dass C=1 sein muss, wie dies bei den Approximationsformeln angenommen worden ist. (Die Approximationsformeln degenerieren dabei allerdings zu Trivialitäten.) Aus diesen Feststellungen ergibt sich:

- 1. Es darf C = 1 gesetzt werden, wenn einer der beiden Barwerte auf ein Leben ersetzt wird durch den Zeitrentenbarwert. In diesem Fall sind die Approximationsformeln genau (sogar Trivialitäten).
- 2. Ist keiner der beiden Barwerte auf ein Leben ersetzbar durch den Zeitrentenbarwert, so ist $C \neq 1$. Wird zur Approximation trotzdem C=1 gesetzt, so ist die Approximation um so besser, je näher einer der beiden Barwerte auf ein Leben (oder beide) dem Zeitrentenbarwert kommen. Daraus ergibt sich, dass die Approximationen im Bereiche der kleinen μ_{x+t} und μ_{y+t} zu besseren Ergebnissen führen als im Bereiche grosser μ_{x+t} und μ_{y+t} . Wir haben damit eine theoretische Begründung der im Beispiel des Abschnittes 1 empirisch festgestellten Ergebnisse.

Für die allgemeine Betrachtung halten wir folgendes fest: Die Integration des Gleichungssystems

$$\frac{d}{dt} F(t) = F(t) (\mu_{x+t} + \delta) + \Phi(t)$$

$$\frac{d}{dt} F_i(t) = F_i(t) (^i \mu_{x+t} + \delta) + \Phi_i(t)$$
(24)

$$\mu_{x+t} = \sum_{i=1}^{m} {}^{i}\mu_{x+t} \tag{25}$$

führt unter der Nebenbedingung (21) zur Relation (23) oder

$$F(t) = \frac{C}{\bar{a}_{n-1}^{m-1}} \prod_{i=1}^{m} F_i(t).$$

Umgekehrt folgt aus dieser Relation die Beziehung (21) unter der Voraussetzung, dass gleichzeitig das System (24) und die Bedingung (25) gelten.

Die Bestimmung der Grösse C kann durch Spezialisierung erfolgen; z. B. ergibt sich für t=0

$$C = \frac{F(0) \, \bar{a}_{\overline{n}|}^{m-1}}{\prod_{i+1}^{m} F_i(0)}.$$

Setzen wir beispielsweise C = 1, so heisst das, dass die Randbedingung

$$\frac{\prod_{i+1}^{m} F_i(0)}{F(0) \ \bar{a}_{\overline{n}|}^{m-1}} = 1 \tag{26}$$

erfüllt sein muss. Wird das Bestehen dieser Randbedingung verlangt, so bestehen [siehe (21) und (23)] gleichzeitig die zwei Beziehungen

$$\frac{\boldsymbol{\Phi}(t)}{F(t)} = \frac{m-1}{\bar{a}_{\overline{n-1}|}} + \sum_{i=1}^{m} \frac{\boldsymbol{\Phi}_{i}(t)}{F_{i}(t)}; \qquad (27)$$

$$F(t) = \frac{1}{\bar{a}_{n-t}^{m-1}} \prod_{i=1}^{m} F_i(t).$$
 (28)

Fasst man diese zwei Beziehungen als Approximationen auf, so werden diese unter der Voraussetzung, dass (28) für ein spezielles t im Intervall $0 \le t < n$ erfüllt ist, zu genauen Relationen.