Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 50 (1950)

Artikel: Über ein Schätzungsverfahren für die Berechnung des

Bilanzdeckungskapitals

Autor: Ruch, H.

DOI: https://doi.org/10.5169/seals-966867

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über ein Schätzungsverfahren für die Berechnung des Bilanzdeckungskapitals

Von H. Ruch, Basel

I. Einleitung

Das Deckungskapital spielt in der Bilanz einer Lebensversicherungsgesellschaft bekanntlich eine wichtige Rolle. Aus diesem Grunde wurden denn auch frühzeitig Verfahren zur Berechnung des Bilanzdeckungskapitals eingeführt, die ein möglichst rationelles Arbeiten bei möglichst grosser Genauigkeit erlauben. Es sei nur an die bekannten Methoden von Altenburger und Lidstone sowie an die t-Methode erinnert. In neuerer Zeit wurde das Problem erneut aufgegriffen. Insbesondere war es die t-Methode, die zu verschiedenen Aufsätzen 1) Anlass gab. In zwei weitern Arbeiten 2) wurde das Problem von der statistischen Seite her in Angriff genommen. Zu guter Letzt soll die Frage auch noch unter dem Thema I am kommenden XIII. Internationalen Kongress der Versicherungsmathematiker in Amsterdam zur Sprache

¹⁾ Vergleiche zum Beispiel:

H. Jecklin: «Zur Praxis der Reserveberechnung nach der t-Methode», Mitteilungen VSV, Heft 1942/1.

E. Zwinggi: «Bemerkungen zur Reserveberechnung nach der t-Methode», Mitteilungen VSV, Heft 1942/2.

H. Ruch: «Eine Variation der t-Methode», Mitteilungen VSV, Heft 1948/2.

H. Jecklin: «Grundsätzliche Bemerkungen zur t-Methode», Mitteilungen VSV, Heft 1949/2.

P. Leepin: «Über die Anwendung von Mittelwerten zur Reserveberechnung», Mitteilungen VSV, Heft 1949/2.

²) E. Zwinggi: «Anwendung neuerer statistischer Verfahren in der Versicherungsmathematik», Blätter der deutschen Gesellschaft für Versicherungsmathematik, Band 1/1.

L. Ritz: «Über die Schätzung des Gewinns in der privaten Lebensversicherung», Dissertation, Basel 1950.

kommen, freilich auf dem Umweg über eine vorangehende Schätzung der nach Gewinnquellen getrennten finanziellen Ergebnisse. Dieses Thema I des Amsterdamer Kongresses hat dem Verfasser die Anregung zu der vorliegenden Arbeit gegeben. Die zu lösende Aufgabe kann wie folgt formuliert werden:

Man soll das Bilanzdeckungskapital auf Ende einer Rechnungsperiode aus einer möglichst kleinen Anzahl von bekannten Grössen mit einem möglichst kleinen Arbeitsaufwand möglichst genau berechnen.

Die Untersuchungen beziehen sich ausschliesslich auf Kapitalversicherungen auf den Todesfall (gemischte Versicherungen eingeschlossen). Es werden die folgenden Grössen als bekannt vorausgesetzt:

- 1. der Rechnungszinsfuss für das Bilanzdeckungskapital;
- 2. das Bilanzdeckungskapital zu Beginn der Rechnungsperiode;
- 3. das Bilanzdeckungskapital zu Beginn einiger vorhergehender Rechnungsperioden;
- 4. Nettoprämieneinnahme während der Rechnungsperiode oder an deren Stelle
- 4a. der Stand der Summe aller Nettoprämien zu Beginn und am Ende der Rechnungsperiode;
- 5. die Summe aller zufolge von Mutationen (Tod, Ablauf, Rückkauf usw) freiwerdenden oder zu ergänzenden Reserven;
- 6. die Summe aller Versicherungssummen zu Beginn und am Ende der Rechnungsperiode.

Die der Berechnung des Deckungskapitals zugrunde liegende Sterbetafel braucht nicht bekannt zu sein. Es ist nur notwendig, dass die Rechnungsgrundlagen innerhalb des Zeitabschnitts, aus welchem man die oben genannten Grössen entnimmt, dieselben geblieben sind.

Der weitere Gang der Untersuchung ist nun der folgende: in einem nächsten Abschnitt wird der Formelapparat auf Grund der kontinuierlichen Anschauungsweise aufgebaut. Nachher erfolgt die Entwicklung des Formelapparates für die diskontinuierliche Betrachtungsweise. In beiden Fällen ist das Ziel die Berechnung einer mittleren angenäherten rechnungsmässigen Sterbeintensität oder Sterbenswahrscheinlichkeit. Diese haben den Vorteil, dass sie den Zufallsschwankungen der effektiven Sterblichkeit sowie den Zufallsschwankungen in den Mutationen irgendwelcher Art gegenüber nahezu unempfindlich sind.

Von den aus den Erfahrungen der Vergangenheit berechneten Sterbeintensitäten resp. Sterbenswahrscheinlichkeiten kann daher mit grosser Sicherheit auf die Sterbeintensität resp. Sterbenswahrscheinlichkeit für die Rechnungsperiode geschlossen werden. Das ist von entscheidenster Bedeutung, da diese Sterbeintensität resp. Sterbenswahrscheinlichkeit, wie sich zeigen wird, die einzige Grösse in den Formeln für die näherungsweise Berechnung der Bilanzdeckungskapitalien ist, die nicht auf einfache Art aus den gegebenen Daten der Rechnungsperiode berechnet werden kann.

Ein weiterer Abschnitt ist der numerischen Überprüfung der gewonnenen Resultate an sechs verschiedenen Versicherungsbeständen der PAX, Schweizerische Lebensversicherungs-Gesellschaft, gewidmet.

II. Die kontinuierliche Betrachtungsweise

Es sei μ_x und δ Sterbeintensität und Zinsintensität der für die Reserveberechnung massgebenden Rechnungsgrundlagen. Dann ist bekanntlich der Differentialausdruck für die Deckungskapitalzunahme einer einzelnen Versicherung während der Zeit dt:

$$dV = [(\mu_x + \delta) V(t) + P(t) - \mu_x S(t)] dt.$$
 (1)

Darin bedeutet V(t) das Deckungskapital, S(t) die versicherte Summe zur Zeit t und P(t) dt die Nettoprämieneinnahme während der Zeit dt. Nun greifen wir aus dem gesamten Versicherungsbestand alle Versicherungen mit gleich grossen V(t), P(t) und S(t), aber auch mit gleich grossen Altern $x = x_0 + t$ heraus und bilden daraus einen Teilbestand $(L_x)^{-1}$). Der Teilbestand (L_x) ist einem gewissen effektiven Storno unterworfen. Bezeichnet man mit $\overline{\mu}_x$ die effektive Sterbeintensität und mit $\overline{\alpha}_x$ die effektive Intensität der übrigen Ausscheideursachen, so genügt L_x der Gleichung

$$L_{x+dt} = L_x [1 - (\bar{\mu}_x + \bar{\alpha}_x) dt]. \tag{2}$$

Das Deckungskapital aller Versicherungen des Bestandes (L_x) zur Zeit t ist $L_x V(t)$ und die Zunahme dieses Deckungskapitals während der Zeit dt ist:

$$d[L_x V(t)] = L_x [(\mu_x - \bar{\mu}_x - \bar{\alpha}_x + \delta) V(t) + P(t) - \mu_x S(t)] dt.$$
 (3)

 $^{^{1}}$) Bei konsequenter Durchführung der kontinuierlichen Betrachtungsweise müsste man diesen Teilbestand (L_{x}) als unendlich klein betrachten.

Bezeichnet man das Deckungskapital $L_x V(t)$ mit $\mathfrak{B}^*(t)$, die Versicherungssumme $L_x S(t)$ mit $\mathfrak{S}^*(t)$, die Prämieneinnahme $\int\limits_0^T L_x P(t) \, dt$ während der Rechnungsperiode 0 bis T mit $\mathfrak{P}^*(T)$ und die infolge Storno irgendwelcher Art während der Rechnungsperiode freiwerdende Reserve $\int\limits_0^T (\bar{\mu}_x + \bar{\alpha}_x) \, L_x V(t) \, dt$ mit $\mathfrak{R}^*(T)$ und integriert die Gleichung (3) über die Rechnungsperiode, so erhält man:

$$\mathfrak{B}^*(T) = \mathfrak{B}^*(0) + \mathfrak{P}^*(T) - \mathfrak{R}^*(T) + \delta \int_0^T \mathfrak{B}^*(t) dt - \int_0^T \mu_x \left[\mathfrak{S}^*(t) - \mathfrak{B}^*(t)\right] dt.$$
(4)

Es sei nun vorausgesetzt, dass $\mathfrak{D}^*(t)$, $\mathfrak{S}^*(t)$ und $[\mathfrak{S}^*(t) - \mathfrak{D}^*(t)]$ innerhalb der Rechnungsperiode den Bedingungen der Mittelwertsätze der Integralrechnung genügen. Es folgt:

$$\int\limits_0^T \mathfrak{V}^*(t) \, dt = \Theta_1 \, \mathfrak{V}^*(0) + (T - \Theta_1) \, \mathfrak{V}^*(T) \,, \quad \text{wo } 0 < \Theta_1 < T \text{ ist.}$$

Ebenso ist

$$\begin{split} \int\limits_0^T \mu_x \left[\mathfrak{S}^*(t) - \mathfrak{V}^*(t)\right] dt &= \mu_{x+\Theta_2} \int\limits_0^T \left[\mathfrak{S}^*(t) - \mathfrak{V}^*(t)\right] dt \\ &= \mu_{x+\Theta_2} \left\{ \Theta_3 \left[\mathfrak{S}^*(0) - \mathfrak{V}^*(0)\right] + (T - \Theta_3) \left[\mathfrak{S}^*(T) - \mathfrak{V}^*(T)\right] \right\}, \\ &\text{wo wiederum } 0 < \Theta_2 < T \text{ und } 0 < \Theta_3 < T \text{ ist.} \end{split}$$

Der Einfachheit halber und als Annäherung wird

$$oldsymbol{ heta}_1=oldsymbol{ heta}_2=oldsymbol{ heta}_3=rac{T}{2}$$

angenommen. Dann erhält man aus Gleichung (4) mit $\xi = x_0 + \frac{T}{2}$ die neue Gleichung

$$\mathfrak{B}^{*}(T) = \mathfrak{B}^{*}(0) + \mathfrak{P}^{*}(T) - \mathfrak{R}^{*}(T) + \frac{\delta T}{2} \left[\mathfrak{B}^{*}(0) + \mathfrak{B}^{*}(T) \right] - \frac{\mu_{\varepsilon} T}{2} \left[\mathfrak{S}^{*}(0) - \mathfrak{B}^{*}(0) + \mathfrak{S}^{*}(T) - \mathfrak{B}^{*}(T) \right]. \tag{5}$$

Jetzt summieren wir über alle Bestände (L_x) . Die Summation soll durch Weglassung des *-Zeichens angedeutet werden. Die zu den verschiedenen Teilbeständen gehörenden Sterbeintensitäten μ_{ξ} werden durch eine mittlere Sterbeintensität μ ersetzt, so dass

$$\sum \mu_{\xi} \left[\mathfrak{S}^{*}(0) - \mathfrak{V}^{*}(0) + \mathfrak{S}^{*}(T) - \mathfrak{V}^{*}(T) \right]$$

$$= \mu \left[\mathfrak{S}(0) - \mathfrak{V}(0) + \mathfrak{S}(T) - \mathfrak{V}(T) \right]$$
(6)

ist.

 μ ist einerseits durch die rechnungsmässige Sterbetafel und anderseits durch die Bestandeszusammensetzung bestimmt. Dagegen haben Effektivstorno und insbesondere die effektive Sterblichkeit nur insofern Einfluss auf μ , als sie die Bestandeszusammensetzung ändern. Einen direkten Einfluss übt die effektive Sterblichkeit auf μ nicht aus. μ ist daher gegenüber dem effektiven Storno und insbesondere der effektiven Sterblichkeit nahezu unempfindlich. Aus diesem Grunde sei μ mit «durchschnittliche rechnungsmässige Sterbeintensität» benannt.

Die Summation der Gleichung (5) ergibt damit:

$$\mathfrak{V}(T) = \mathfrak{V}(0) + \mathfrak{V}(T) - \mathfrak{R}(T) + \frac{(\mu + \delta)T}{2} \left[\mathfrak{V}(0) + \mathfrak{V}(T) \right] - \frac{\mu T}{2} \left[\mathfrak{S}(0) + \mathfrak{S}(T) \right], \quad (7)$$

oder nach $\mathfrak{V}\left(T\right)$ aufgelöst:

$$\left[1 - \frac{(\mu + \delta)T}{2}\right] \mathfrak{B}(T) = \left[1 + \frac{(\mu + \delta)T}{2}\right] \mathfrak{B}(0) + \mathfrak{P}(T) - \mathfrak{R}(T)$$
$$-\frac{\mu T}{2} \left[\mathfrak{S}(0) + \mathfrak{S}(T)\right]. \tag{8}$$

Die Gleichung (7) nach μ aufgelöst, gibt:

$$\mu = \frac{\delta\left[\mathfrak{B}(0) + \mathfrak{B}(T)\right] + \frac{2}{T}\left[\mathfrak{B}(0) - \mathfrak{B}(T) + \mathfrak{F}(T) - \mathfrak{R}(T)\right]}{\mathfrak{S}(0) - \mathfrak{B}(0) + \mathfrak{S}(T) - \mathfrak{B}(T)}.$$
 (9)

Die Gleichung (9) dient dazu, für eine Reihe von vorangehenden Rechnungsperioden eine Reihe von μ zu berechnen. Mit Hilfe eines noch zu besprechenden Extrapolationsverfahrens wird sodann aus

dieser μ -Reihe das μ für die gerade in Frage stehende Rechnungsperiode berechnet. Schliesslich gestattet die Gleichung (8), nachdem nun μ bekannt ist, die Berechnung des Bilanzdeckungskapitals $\mathfrak{B}(T)$.

Die mittlere rechnungsmässige Sterbeintensität μ weist, wie gesagt, nur geringfügige Zufallsschwankungen auf, deren Grenzen anhand der numerischen Werte ziemlich gut abgeschätzt werden können. Es sei $\Delta \mu$ der Fehler, der dem extrapolierten μ anhaftet. Dann ist der Fehler im Bilanzdeckungskapital durch

$$\varDelta \, \mathfrak{V} = -\, \frac{T}{2} \left[\mathfrak{S}(0) - \mathfrak{V}(0) + \mathfrak{S}(T) - \mathfrak{V}(T)\right] \varDelta \mu \tag{10}$$
 gegeben.

III. Die diskontinuierliche Betrachtungsweise

Es sei q_x und i Sterbenswahrscheinlichkeit und Zinsfuss der für die Reserveberechnung massgebenden Rechnungsgrundlagen. Ferner sei $V(\pm \frac{1}{2})$ und $V(1 \pm \frac{1}{2})$ das Deckungskapital einer Versicherung zur Zeit $t = \pm \frac{1}{2}$ resp. $t = 1 \pm \frac{1}{2}$. P sei die zugehörige Nettoprämie und S die Versicherungssumme dieser Versicherung¹). Es ist dann bekanntlich:

$$V(1 \pm \frac{1}{2}) = \frac{1+i}{p_{x+\frac{1}{2}}} \left[V(\pm \frac{1}{2}) + P \right] - \frac{q_{x+\frac{1}{2}}}{p_{x+\frac{1}{2}}} S. \tag{11}$$

Die Bilanzdeckungskapitalien einer Versicherung ohne Prämienübertrag zur Zeit t=0 resp. t=1 werden gewöhnlich mit

$$V(0) = \frac{1}{2} \left[V(-\frac{1}{2}) + V(+\frac{1}{2}) \right]$$
 resp. $V(1) = \frac{1}{2} \left[V(+\frac{1}{2}) + V(+\frac{3}{2}) \right]$ angegeben. Mit guter Annäherung kann die Gleichung (11) auch für die Berechnung des Bilanzdeckungskapitals zur Zeit $t=1$ verwendet werden. Setzt man nämlich näherungsweise

$$\frac{V(-\frac{1}{2})}{p_{x-\frac{1}{2}}} + \frac{V(+\frac{1}{2})}{p_{x+\frac{1}{2}}} = 2\frac{V(0)}{p_x}, \text{ ferner } \frac{1}{p_{x-\frac{1}{2}}} + \frac{1}{p_{x+\frac{1}{2}}} = \frac{2}{p_x}$$
und
$$\frac{q_{x-\frac{1}{2}}}{p_{x-\frac{1}{2}}} + \frac{q_{x+\frac{1}{2}}}{p_{x+\frac{1}{2}}} = 2\frac{q_x}{p_x},$$

 $^{^{1}}$) Der Einfachheit halber sei P und S für ein und dieselbe Versicherung unveränderlich angenommen. Doch beeinträchtigt diese Einschränkung die allgemeine Gültigkeit der folgenden Entwicklung nicht.

so folgt durch Addition der beiden Gleichungen (11)

$$V(1) = \frac{1+i}{p_x} \left[V(0) + P \right] - \frac{q_x}{p_x} S; \tag{12}$$

eliminiert man daraus V(0), so erhält man

$$2p_x V(1) = (1+i) \left[V(-\frac{1}{2}) + V(+\frac{1}{2}) + 2P\right] - 2q_x S.$$
 (13)

Hierauf wird $V(-\frac{1}{2})$ mit Hilfe einer der Gleichungen (11) durch $V(+\frac{1}{2})$ ersetzt. Man erhält so angenähert

$$2p_x V(1) = (2 + i - q_x) V(+\frac{1}{2}) + (1 + i) P - q_x S.$$
 (14)

Nun greifen wir wieder einen Teilbestand (L_x) heraus. Die Anzahl L_x der Versicherungen dieses Teilbestandes ist einem Storno unterworfen. Die einjährige effektive Ausscheidewahrscheinlichkeit sei $(\overline{q}_x + \overline{a}_x)$, wo \overline{q}_x die einjährige effektive Sterbenswahrscheinlichkeit und \overline{a}_x die einjährige effektive restliche Ausscheidewahrscheinlichkeit bedeutet. Es ist dann:

$$L_{x+1} = L_x (1 - \bar{q}_x - \bar{a}_x). \tag{15}$$

Das Bilanzdeckungskapital des Teilbestandes (L_x) zur Zeit t=0 und t=1 ist $\mathfrak{B}^*(0)=L_x\,V(0)$ und $\mathfrak{B}^*(1)=L_{x+1}\,V(1)$. Daraus erhält man mit Rücksicht auf die Gleichungen (12), (14) und (15)

$$\begin{split} p_{x}\mathfrak{B}^{*}(1) &= p_{x}L_{x}V(1) - p_{x}(\overline{q}_{x} + \overline{a}_{x})L_{x}V(1) \\ &= L_{x}[(1+i)\left(V(0) + P\right) - q_{x}S] - \frac{2+i - q_{x}}{2}(\overline{q}_{x} + \overline{a}_{x})L_{x}V(+\frac{1}{2}) \\ &- \frac{1+i}{2}(\overline{q}_{x} + \overline{a}_{x})L_{x}P + \frac{q_{x}}{2}(\overline{q}_{x} + \overline{a}_{x})L_{x}S \\ &= (1+i)\,\mathfrak{B}^{*}(0) + (1+i)\,\frac{L_{x} + L_{x+1}}{2}\,P - q_{x}\,\frac{L_{x} + L_{x+1}}{2}\,S \\ &- \frac{2+i - q_{x}}{2}(\overline{q}_{x} + \overline{a}_{x})L_{x}V(+\frac{1}{2})\,. \end{split}$$
(16)

Der Ausdruck $(\overline{q}_x + \overline{a}_x) L_x V(+\frac{1}{2})$ ist nichts anderes als die durch das Storno während der Rechnungsperiode freiwerdende Reserve des

Teilbestandes (L_x) , berechnet auf den Zeitpunkt $t=+\frac{1}{2}$. Diese freiwerdende Reserve sei mit \Re^* bezeichnet. Das arithmetische Mittel der Nettoprämie $\frac{L_x+L_{x+1}}{2}$ P sei mit \Re^* und das arithmetische Mittel der Versicherungssumme $\frac{L_x+L_{x+1}}{2}S$ sei mit \Im^* bezeichnet. Dann erhält man für $p_x \Im^*(1)$ den folgenden Ausdruck:

$$p_x \mathfrak{B}^*(1) = (1+i) \left[\mathfrak{B}^*(0) + \mathfrak{P}^* \right] - \left(1 + \frac{i - q_x}{2} \right) \mathfrak{R}^* - q_x \mathfrak{S}^*$$
 oder (17)

$$\mathfrak{B}^*(1) = (1+i) \left[\mathfrak{B}^*(0) + \mathfrak{P}^* \right] - (1+\frac{1}{2}) \, \mathfrak{R}^* - q_x \left[\mathfrak{S}^* - \mathfrak{B}^*(1) - \frac{1}{2} \mathfrak{R}^* \right].$$

Jetzt summieren wir wieder über alle Teilbestände (L_x) . Die Summation soll durch Weglassung des *-Zeichens angedeutet werden. Die zu den verschiedenen Teilbeständen gehörenden Sterbenswahrscheinlichkeiten q_x werden durch eine «mittlere rechnungsmässige Sterbenswahrscheinlichkeit» q ersetzt. Über q lässt sich das gleiche sagen wie über das μ des vorhergehenden Abschnitts. Wir setzen also

$$\sum q_x \left[\mathfrak{S}^* - \mathfrak{B}^*(1) - \frac{1}{2}\mathfrak{R}^*\right] = q \left[\mathfrak{S} - \mathfrak{B}(1) - \frac{1}{2}\mathfrak{R}\right]. \tag{18}$$

Die Gleichung (1) geht dann über in

$$p \,\mathfrak{V}(1) = (1+i) \left[\mathfrak{V}(0) + \mathfrak{P}\right] - \left(1 + \frac{i-q}{2}\right) \mathfrak{R} - q \,\mathfrak{S} \tag{19}$$

oder aufgelöst nach q:

$$q = \frac{(1+i)\left[\mathfrak{B}(0) + \mathfrak{P}\right] - (1+\frac{1}{2})\mathfrak{R} - \mathfrak{B}(1)}{\mathfrak{S} - \mathfrak{B}(1) - \frac{1}{2}\mathfrak{R}}.$$
 (20)

Diese Gleichung (20) wird verwendet, um aus den vorangehenden Rechnungsperioden eine q-Reihe zu berechnen. Durch geeignete Extrapolation wird ein q für die gerade in Frage stehende Rechnungsperiode berechnet und mit diesen q auf Grund der Formel (19) das gesuchte Bilanzdeckungskapital berechnet.

Es sei noch erwähnt, dass sämtliche bisher gemachten Annäherungen bedeutungslos sind. Wohl entspricht das auf Grund der Formel (20) errechnete q nicht demjenigen q, das wir erhielten, wenn wir keine Annäherung gemacht hätten. Aber bei der Inversion der Gleichung (20) in die Gleichung (19) fällt diese Ungleichheit wieder heraus.

Nimmt man an, wir könnten den Fehler von q, der bei der Extrapolation entsteht, abschätzen, so gelingt auch die Abschätzung des Fehlers im Deckungskapital. Es ist nämlich:

$$\Delta \mathfrak{B} = -\left[\mathfrak{S} - \mathfrak{B}(1) - \frac{1}{2}\mathfrak{R}\right] \Delta q. \tag{21}$$

Zur Bestimmung der mittleren rechnungsmässigen Sterbenswahrscheinlichkeit gibt es noch ein anderes Verfahren, das besonders dann von Vorteil ist, wenn die genauen Bilanzdeckungskapitalien nur zu Beginn einer längern Zeitepoche, z. B. eines Jahrfünfts, und am Ende dieser Epoche bekannt sind. Voraussetzung ist freilich, dass für den Bilanzzeitpunkt t=0 nicht nur $\mathfrak{B}(0)$, sondern auch $\mathfrak{B}(-\frac{1}{2})$ und $\mathfrak{B}(+\frac{1}{2})$ gegeben sind. Der Übergang von $\mathfrak{B}(-\frac{1}{2})$ zu $\mathfrak{B}(+\frac{1}{2})$ wird gleich durchgeführt wie bisher. Weil aber beide Deckungskapitalien auf den gleichen Bestand Bezug haben, verschwindet in der Formel (20) das Glied \mathfrak{R} , während \mathfrak{P} und \mathfrak{S} die Bedeutung des Stands der Nettoprämien resp. Versicherungssumme am Bilanztag erhalten. Die mittlere rechnungsmässige Sterbenswahrscheinlichkeit, die wir diesmal mit q' bezeichnen wollen, ergibt sich aus der Formel

$$q' = \frac{(1+i)\left[\mathfrak{B}\left(-\frac{1}{2}\right) + \mathfrak{P}\right] - \mathfrak{B}\left(+\frac{1}{2}\right)}{\mathfrak{S} - \mathfrak{B}\left(+\frac{1}{2}\right)}.$$
 (22)

Bei der Auswertung dieser Formel ist daran zu denken, dass der Zeitpunkt, auf den das q' der Formel (22) bezogen ist, um ein halbes Jahr früher liegt als der Zeitpunkt, auf den das q der Formel (20) bezogen ist.

VI. Die numerische Auswertung

Um die Güte des in Abschnitt III geschilderten Verfahrens zu erproben, hat die PAX, Schweizerische Lebensversicherungs-Gesellschaft, das notwendige Material in verdankenswerter Weise zur Verfügung gestellt. Es handelt sich dabei um sechs verschiedene Versicherungsbestände und deren Abwicklung in den Jahren 1944 bis 1949. Eine Ausdehnung der Untersuchungen auf die vor 1944 liegenden Jahre war deshalb unmöglich, weil im Jahre 1943 ein Wechsel der Rechnungsgrundlagen für die Deckungskapitalberechnung stattfand. Bei der numerischen Auswertung des Materials wurde wie folgt vorgegangen: Für jeden der sechs Bestände und für die Gesamtheit aller sechs Bestände wurde auf Grund der Formel (20) für die Jahre 1944

bis 1949 die mittlere rechnungsmässige Sterbenswahrscheinlichkeit q berechnet. Ausserdem wurde für die Bilanztermine Ende 1944 und Ende 1949 die mittlere Sterbenswahrscheinlichkeit q' aus Formel (22) berechnet.

In einer ersten Annäherung wurden die so errechneten q des Vorjahres unverändert für die Berechnung des Bilanzdeckungskapitals des Rechnungsjahres übernommen. In einer zweiten Annäherung wurde das q für das Rechnungsjahr aus den q der beiden Vorjahre linear extrapoliert. Dieses zweite Verfahren zeigt sehr gute Resultate. Ein drittes Verfahren würde darin bestehen, das q für das Rechnungsjahr aus den q' der Bilanz der beiden Vorjahre zu extrapolieren. Auch dieses Verfahren würde zu guten Resultaten führen. Das zweite und dritte Verfahren ist nur anwendbar, wenn die q resp. q' der Vorjahre aus den Formeln (20) resp. (22) berechnet werden können, d. h. wenn die Bilanzdeckungskapitalien der Vorjahre $\mathfrak{B}(1)$ genau berechnet vorliegen. Mit andern Worten: das zweite und dritte Verfahren kann nur zur vorläufigen Schätzung oder zur nachträglichen Kontrolle des Bilanzdeckungskapitals $\mathfrak{B}(1)$ auf Ende des Rechnungsjahres verwendet werden.

Sollen dagegen die nach Formel (19) berechneten Bilanzdeckungskapitalien nicht mehr genau nachgerechnet werden, sondern direkt in die Bilanz übernommen werden, so ist es nicht möglich, die q oder die q' für eine Reihe aufeinanderfolgender Jahre zu berechnen. Es dürfte sich dann das folgende Verfahren empfehlen. Man rechnet die Bilanzdeckungskapitalien nur jeweilen von Jahrfünft zu Jahrfünft genau. Auf Grund der Formel (22) ermittelt man dann die q' für diese beiden 5 Jahre auseinanderliegenden Bilanztermine. Durch geeignete Extrapolation werden die q für das anschliessende Jahrfünft und, gestützt darauf, die Bilanzdeckungskapitalien berechnet. Da die zur Verfügung stehenden Unterlagen nur bis ins Jahr 1944 zurückliegen, war es uns nicht möglich, die q für die Jahre 1944 bis 1949 zu extrapolieren. Wir behelfen uns mit einer Interpolation, indem wir so tun als ob diese Interpolation das Resultat der Extrapolation aus den beiden q' für 1939 und 1944 wären. In dieser Hinsicht ist also den gewonnenen Resultaten gegenüber, so gut sie auch aussehen; einige Reserve am Platz. Doch glauben wir, dass bei Zuhilfenahme von Trends auch eine gute Extrapolation möglich sein sollte.

Im vierten Verfahren wurde als Vortrag $\mathfrak{V}(0)$ das geschätzte $\mathfrak{V}(1)$ des Vorjahres angenommen. Bei diesem Verfahren werden daher die

Abweichungen $\Delta \mathfrak{B}$ des Deckungskapitals von der gleichen Grössenordnung sein wie beim zweiten Verfahren. Beim fünften Verfahren dagegen werden sich die Abweichungen während vier Jahren akkumulieren.

Es sei $\overset{0}{q}_{i+1}$ die für die Berechnung von $\mathfrak{V}(1)$ verwendete mittlere rechnungsmässige Sterbenswahrscheinlichkeit; q_{i-1} und q_i die auf Grund der Formel (20) gewonnenen q; ebenso sei $q'_{1/2}$ und $q'_{51/2}$ die auf Grund der Formel (22) gewonnenen q'. Dann wurde $\overset{0}{q}_{i+1}$ für das

- I. Verfahren nach der Formel $\stackrel{\text{o}}{q}_{i+1} = q_i$
- II. Verfahren nach der Formel $\stackrel{\text{o}}{q}_{i+1} = 2q_i q_{i-1}$

IV. u. V. Verfahren nach der Formel $\stackrel{0}{q}_{i+1}=q_{1/2}+\frac{1+2i}{10}(q_{51/2}-q_{1/2})$ berechnet.

Von den sechs untersuchten Versicherungsbeständen sind A_1 und A_2 geschlossen, und zwar so, dass sowohl die Versicherungssumme als auch das Bilanzdeckungskapital bereits abnehmen. Zwei weitere Bestände B_1 und B_2 sind auch geschlossen, dagegen ist das Bilanzdeckungskapital noch im Wachsen begriffen. Die beiden letzten Bestände C_1 und C_2 sind offen, so dass also sowohl die Versicherungssumme als auch das Bilanzdeckungskapital zunimmt. Die Gesamtheit aller sechs Bestände wird mit D bezeichnet. Die aus diesem Urmaterial gewonnenen mittleren rechnungsmässigen Sterbenswahrscheinlichkeiten q sind in Tabelle 1 zusammengestellt.

 $Tabelle\ 1$ Mittlere rechnungsmässige Sterbenswahrscheinlichkeit q in $^{0}/_{00}$

Berech- nung				Bestand	l			Verwendung nach
aus dem Jahr	A_1	A_2	B_1	B_2	C_1	C_2	D	Verfahren I für das Jahr
1944 1945 1946 1947 1948 1949	10.28 10.80 11.49 12.22 12.93 13.75	7.21 7.50 7.81 8.08 8.35 8.58	5.46 5.67 5.89 6.11 6.34 6.60	4.26 4.42 4.57 4.74 4.92 5.11	4.06 4.26 4.35 4.43 4.50 4.56	4.31 4.31 4.36 4.43 4.50 4.59	5.16 5.21 5.24 5.26 5.28 5.31	1945 1946 1947 1948 1949

Man erkennt daraus ohne weiteres die grosse Regelmässigkeit im Anwachsen der einzelnen Reihen. Die mittleren rechnungsmässigen Sterbenswahrscheinlichkeiten q' für die Bilanztermine Ende 1944 und Ende 1949 sind aus der Tabelle 2 ersichtlich.

Tabelle~2 Mittlere rechnungsmässige Sterbenswahrscheinlichkeit q' in $^{\rm 0}/_{\rm 00}$

			Bestand			
.41	42	B_1	B_2	C_1	C_2	D
10.54	7.35	5.58	4.34	4.15	4.29	5.19
14.24	8.68	6.74	5.22	4.58	4.64	5.32
	10.54	10.54 7.35	A_1 A_2 B_1 10.54 7.35 5.58	10.54 7.35 5.58 4.34	A_1 A_2 B_1 B_2 C_1 10.54 7.35 5.58 4.34 4.15	A_1 A_2 B_1 B_2 C_1 C_2 $10.54 7.35 5.58 4.34 4.15 4.29$

Die für das Verfahren II verwendeten $\stackrel{\text{o}}{q}$ sind in Tabelle 3 enthalten.

Tabelle 3. Mittlere rechnungsmässige Sterbenswahrscheinlichkeit $\stackrel{\circ}{q}$ für das Verfahren II in $^{\circ}/_{00}$

Jahr				Bestand			
Jam	A_1	A_2	B_1	B_2	C_1	C_2	D
1946	11.32	7.79	5.88	4.58	4.46	4.31	5.26
1947	12.18	8.12	6.11	4.72	4.44	4.41	5.27
1948	12.95	8.35	6.33	4.91	4.51	4.50	5.28
1949	13.64	8.62	6.57	5.10	4.57	4.57	5.30

Vergleicht man diese Zahlen mit denjenigen der Tabelle 1, so findet man eine gute Übereinstimmung. Mit drei einzigen Ausnahmen übersteigt der Fehler Δq den Betrag von $0.05~^{0}/_{00}$ nicht. Der Fehler im Bilanzdeckungskapital wird also innerhalb von $0.05~^{0}/_{00}$ der Risikosumme des Bestandes bleiben.

Die für die Verfahren IV und V verwendeten $\overset{\text{o}}{q}$ sind in der Tabelle 4 zusammengefasst.

Tabelle 4. Mittlere rechnungsmässige Sterbenswahrscheinlichkeit $\stackrel{\text{o}}{q}$ für die Verfahren IV und V in $^{\text{o}}/_{\text{00}}$

Jahr				Bestand			
Jan	A_1	A_2	B_1	B_2	C_1	C_{2}	D
1945	10.91	7.48	5.70	4.43	4.19	4.33	5.20
1946	11.65	7.75	5.93	4.60	4.28	4.40	5.23
1947	12.39	8.02	6.16	4.78	4.37	4.47	5.26
1948	13.13	8.28	6.39	4.96	4.45	4.54	5.28
1949	13.87	8.55	6.62	5.13	4.54	4.61	5.31

Auch hier übersteigt die Abweichung Δq nirgends den Betrag von $0.2 \, ^{\circ}/_{00}$ und bleibt in den meisten Fällen unter $0.1 \, ^{\circ}/_{00}$.

Die auf Grund dieser $\stackrel{\scriptscriptstyle{0}}{q}$ berechneten Bilanzdeckungskapitalien sind in den folgenden Tabellen 5 bis 12 zusammengestellt.

Tabelle 5. Bilanzdeckungskapitalien des Bestandes A₁

Jahr	33 ($\mathfrak{V}(1)$ genau			
Jam	I	II	IV	V	to (1) gena
1945	24 721 962		24 716 042	24716042	24 717 049
1946	22707613	22703484	22700846	22699799	22702136
1947	20 247 950	$20\ 243\ 353$	$20\ 241\ 928$	$20\ 239\ 497$	20 243 068
1948	18 082 031	18077970	18076972	$18\ 073\ 254$	18 078 123
1949	16 279 111	$16\ 275\ 909$	$16\ 274\ 852$	$16\ 269\ 780$	16 275 426

Tabelle 6. Bilanzdeckungskapitalien des Bestandes A_2

Jahr	V (I	l) Schätzung	nach Verfahre	en	\(\mathfrak{B}(1) \) genau
gam	I	II	IV	V	$\mathcal{S}(1)$ genau
1945	2636341		2 636 059	2 636 059	2 636 037
1946	2254512	$2\ 254\ 252$	$2\ 254\ 287$	2254310	2254236
1947	2086496	2086265	2086340	2086417	2086295
1948	$1\ 922\ 583$	1922415	1922460	1922586	1922418
1949	$1\ 669\ 222$	1669088	$1\ 669\ 121$	$1\ 669\ 295$	1 669 105

 $Tabelle~7.~Bilanz deckungskapitalien~des~Bestandes~B_{1}$

Jahr	33 ($\mathfrak{V}(1)$ genau			
	ļ I	II	IV	V	S(I) gena
1945	47 740 926		47 719 334	47 719 334	47 721 802
1946	51 958 848	51 941 121	$51\ 936\ 897$	$51\ 934\ 347$	51 940 491
1947	55 161 512	$55\ 144\ 125$	55140180	55133828	55 144 236
1948	57 707 675	57 691 494	57 687 080	57 676 318	57 691 094
1949	59 895 333	59 879 660	59876267	59 860 983	59 877 585

 $Tabelle~8.~Bilanz deckungskapitalien~des~Bestandes~B_{\mathbf{2}}$

33 ($\mathfrak{V}(1)$ genau			
I	II	IV	V	(1) genac
26 918 468		26 908 512	26 908 512	26 909 377
29319642	$29\ 310\ 905$	$29\ 309\ 813$	29308919	29 311 209
30657330	30649710	30646658	$30\ 644\ 294$	30 648 543
$31\ 983\ 831$	$31\ 975\ 804$	$31\ 973\ 454$	$31\ 969\ 067$	31 975 208
32954252	32 946 410	$32\ 945\ 091$	32938749	32 945 833
	I 26 918 468 29 319 642 30 657 330 31 983 831	I II 26 918 468 29 319 642 29 310 905 30 657 330 30 649 710 31 983 831 31 975 804	I II IV 26 918 468 26 908 512 29 319 642 29 310 905 29 309 813 30 657 330 30 649 710 30 646 658 31 983 831 31 975 804 31 973 454	26 918 468 26 908 512 26 908 512 29 319 642 29 310 905 29 309 813 29 308 919 30 657 330 30 649 710 30 646 658 30 644 294 31 983 831 31 975 804 31 973 454 31 969 067

 $Tabelle\ 9.\ Bilanz deckungskapitalien\ des\ Bestandes\ C_1$

Jahr	1 B (1) Schätzung II	nach Ve rf ahr IV	en V	$\mathfrak{V}(1)$ genau
1945 1946 1947 1948 1949	1 699 899 3 219 635 5 356 866 8 110 824 11 465 304	3 207 320 5 349 245 8 102 235 11 456 293	1 694 593 3 218 403 5 355 173 8 108 677 11 460 156	1 694 593 3 221 282 5 362 832 8 121 631 11 479 479	1 691 803 3 213 861 5 350 280 8 102 910 11 457 953

 $Tabelle\ 10.\ Bilanz deckungskapitalien\ des\ Bestandes\ C_{2}$

Jahr	1) &	l) Schätzung II	nach Verfahre IV	en V	$\mathfrak{V}(1)$ genau
1945 1946 1947 1948 1949	698 213 1 283 793 2 076 850 3 065 227 4 250 183	1 283 793 2 075 777 3 063 400 4 248 062	697 982 1 282 312 2 074 591 3 062 356 4 246 850	697 982 1 282 052 2 073 563 3 060 432 4 243 781	698 234 1 283 049 2 075 427 3 063 406 4 247 474

Tabelle 11. Summe der Bilanzdeckungskapitalien aller sechs Bestände

Jahr	23	$\mathfrak{B}\left(1\right)$ genau			
Jam	I	II	IV	V	(1) genau
1945	104 415 809		104 372 522	104 372 522	104 374 302
1946	110 744 043	110700875	110702558	$110\ 700\ 709$	110 704 982
1947	115 587 004	$115\ 548\ 475$	115544870	$115\ 540\ 431$	115 547 849
1948	120 872 171	120833318	120830999	120823288	120 833 159
1949	126 513 405	$126\ 475\ 422$	$126\ 472\ 337$	$126\ 462\ 067$	126 473 376

Tabelle 12. Bilanzdeckungskapitalien des Bestandes D

Jahr	33	$\mathfrak{V}\left(1\right)$ genau			
	I	II	IV	V	& (1) genau
1945	104 385 186		104 376 734	104 376 734	104 374 302
1946	110 712 442	110701172	110707923	110710437	110 704 982
1947	115 553 402	$115\ 546\ 060$	115548532	115554167	115 547 849
1948	120 839 244	120834037	120834037	120840562	120 833 159
1949	126 481 620	126 476 105	126 473 309	126 480 956	126 473 376

Um das Bild zu vervollständigen, geben wir noch die Abweichungen $\Delta \mathfrak{V}$ der geschätzten von den genauen Deckungskapitalien im Betrag sowie das Verhältnis Δq dieser Abweichungen zur Risikosumme bekannt.

 $Tabelle\ 13$ Abweichungen der Bilanzdeckungskapitalien des Bestandes A_1

Jahr	Δ	V nach	Schätzun	g	$1000 \varDelta q$ nach Schätzung			
Jain	Ι	II	IV	V	I	II	IV	V
1945 1946 1947 1948 1949	-5477 -4882 -3908	+ 1348 + 285 - 153	- 1140 - 1151	2337 3571	$\begin{vmatrix} +0.70 \\ +0.74 \\ +0.71 \end{vmatrix}$	+ 0,17 + 0,04 - 0,03	-0.11 -0.16 -0.17 -0.21 -0.13	-0.30 -0.54 -0.89

Tabelle 14. Abweichungen der Bilanzdeckungskapitalien des Bestandes A $_2$

Jahr	Δ	V nach	Schätzur	ng	1000 \(\alpha \) q nach Schätzung			
Jam	Ι	II	IV	V	I	II	IV	V
1945 1946 1947 1948 1949	+304 + 276 + 201 + 165 + 117	+16 -30 -3 -17	$+22 \\ +51 \\ +45 \\ +42 \\ +16$	+ 22 + 74 + 122 + 168 + 190	$ \begin{vmatrix} +0.29 \\ +0.31 \\ +0.27 \\ +0.27 \\ +0.23 \end{vmatrix} $	+0.02 -0.04 -0.00		+0.02 $+0.08$ $+0.16$ $+0.27$ $+0.38$

 $Tabelle~{\it 15.~Abweichungen~der~Bilanz deckungskapitalien~des~Bestandes~B_{1}}$

Jahr		1000 ⊿ q nach Schätzung			zung			
	1		IV	V	1	1.1.	1. V	V
1946 1947 1948	$egin{array}{l} + 18357 \\ + 17276 \\ + 16581 \\ \hline \end{array}$	+ 630 $- 111$ $+ 400$	-3594 -4056 -4014	$\begin{array}{rrr} - & 2468 \\ - & 6144 \\ - & 10408 \\ - & 14776 \\ - & 16602 \end{array}$	+0,22 +0,22 +0,23	$+0,01 \\ -0,00 \\ +0,01$	-0.04 -0.05 -0.05	-0.07 -0.13 -0.20

Tabelle 16. Abweichungen der Bilanzdeckungskapitalien des Bestandes $B_{\mathbf{2}}$

Jahr	, ž	4 V nach	o,	1000 ⊿ q nach Schätzung				
Jam	I	\mathbf{II}	IV	V	Ι	II	IV	V
1945	+ 9091		-865				0,01	
1946	+8433	— 304	1396	2290	+ 0,16	0,01	0.03	0.04
1947	+8787	$+\ 1167$	1885	-4249	+0,17	+0,02	0.04	0.08
1948	+8623	+ 596	-1754	-6141	+0,18	+ 0,01	-0.04	0,13
1949	+8419	+ 577	-742	7084	+0.19	+0,01	0.02	0.16

Tabelle 17. Abweichungen der Bilanzdeckungskapitalien des Bestandes \mathcal{C}_1

Jahr	-	1000 ∆ q nach Schätzung						
Jan	I	II	IV	V	I	II	IV	V
1945 1946 1947 1948 1949	$+\ 6586 \\ +\ 7914$	-6541 -1035 -675	$+4542 \\ +4893 \\ +5767$	$egin{array}{c} + & 2790 \\ + & 7421 \\ + & 12552 \\ + & 18721 \\ + & 21526 \end{array}$	$\begin{vmatrix} +0.09 \\ +0.08 \\ +0.07 \end{vmatrix}$	-0.11 -0.01 -0.01	$+0,07 \\ +0,07 \\ +0,06 \\ +0,05 \\ +0,02$	$+\ 0.12 \\ +\ 0.15 \\ +\ 0.18$

Tabelle 18. Abweichungen der Bilanzdeckungskapitalien des Bestandes C₂

Jahr	7	Schätzun	0	$1000 \varDelta q$ nach Schätzung				
	I	11	IV	V	I	II	IV	V
1945	01		050	050	0.00		0.00	0.00
1945	- 21 + 744			-252 -997			-0.02 -0.04	
1947	+ 1423	AS PROPERTY.		-1864	, ,		-0.04	
1948	A more constant			2974	+0.07	0,00	-0.04	0,11
1949	+2709	+ 588	-624	3693	+ 0.09	+ 0,02	0,02	0,12

Tabelle 19. Abweichungen der Summe der Bilanzdeckungskapitalien aller sechs Bestände

Jahr	Δ:	V nach	Schätzung	1000 ∆ q nach Schätzung				
Jan	I	II	IV	V	I	II	IV	V
1946 1947 1948	+41507 $+39061$ $+39155$ $+39012$ $+40029$	-4107 $+626$ $+159$	-2424 -2979 -2160	4 2737 4189 871	+ 0,17 + 0,16 + 0,15	-0.02 + 0.00 + 0.00	-0.01 -0.01 -0.01	-0.02 -0.03 -0.04

Tabelle 20. Abweichungen der Bilanzdeckungskapitalien des Bestandes D

Jahr	Δ	$1000 \varDelta q$ nach Schätzung						
Jain	I	II	IV	V	I	II	IV	V
1945 1946 1947 1948	$egin{array}{c} +\ 10\ 884 \\ +\ 7\ 460 \\ +\ 5\ 553 \\ +\ 6\ 085 \\ \hline \end{array}$	-3810 -1789	$^{+}$ 2941 $^{+}$ 683	$+\ 5455 \\ +\ 6318$	$^{+\ 0.03}_{+\ 0.02}$	-0.02 -0.01	+ 0.01 + 0.01 + 0.00 + 0.00	$+ 0.02 \\ + 0.03$
1949	$+\ 8\ 244$				5		-0,00	

Der Bestand A_1 macht eine Ausnahme unter allen Beständen insofern, als die Abweichungen des Deckungskapitals im Verhältnis zur Risikosumme durchwegs höher sind als bei den übrigen Beständen. Das ist aber weiter nicht verwunderlich. Bei Bestand A_1 ist das durchschnittliche Bilanzalter wesentlich höher als bei den übrigen Beständen. Das hat zur Folge, dass auch die mittlere rechnungsmässige Sterbenswahrscheinlichkeit q und mit ihr die Abweichungen grösser

ausfallen. Immerhin ist die Abschätzung nach Verfahren II und auch nach IV, wie Tabelle 13 zeigt, noch gut. Bei der weitern Diskussion lassen wir den Bestand A_1 beiseite.

Bei den übrigen Beständen liegt die Abweichung $\varDelta q$ für das Verfahren

I zwischen
$$-0.00^{\circ}/_{00}$$
 und $+0.31^{\circ}/_{00}$ der Risikosumme II » $-0.11^{\circ}/_{00}$ » $+0.17^{\circ}/_{00}$ » » IV » $-0.21^{\circ}/_{00}$ » $+0.07^{\circ}/_{00}$ » »

Das ist eine respektable Genauigkeit, die um so eindrücklicher wird, als die Δq innerhalb ein und desselben Bestandes eine bemerkenswerte Konstanz aufweisen.

Bei Verfahren V akkumulieren sich, wie bereits gesagt, die Abweichungen von Jahr zu Jahr. Es ist daher gerechtfertigt, jedes Bilanzjahr für sich zu betrachten. Die Δq schwanken für das Jahr

1945 zwischen —
$$0.03^{0}/_{00}$$
 und $+ 0.07^{0}/_{00}$ der Risikosumme
1946 » — $0.07^{0}/_{00}$ » $+ 0.12^{0}/_{00}$ » » »
1947 » — $0.13^{0}/_{00}$ » $+ 0.16^{0}/_{00}$ » » »
1948 » — $0.20^{0}/_{00}$ » $+ 0.27^{0}/_{00}$ » » 1949 » — $0.25^{0}/_{00}$ » $+ 0.38^{0}/_{00}$ » »

Als Schlussfolgerung kann gesagt werden, dass die Abschätzung der Bilanzdeckungskapitalien nach allen Verfahren, insbesondere aber nach dem Verfahren II gut brauchbare Resultate ergibt.