Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 50 (1950)

Artikel: Reserveberechnung auf Basis hyperbolischer Interpolation

Autor: Jecklin, H. / Zimmermann, H.

DOI: https://doi.org/10.5169/seals-966866

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Reserveberechnung auf Basis hyperbolischer Interpolation

Von H. Jecklin und H. Zimmermann, Zürich

Im folgenden soll eine neuartige sehr einfache Reserveberechnungsmethode beschrieben werden, welche sich sowohl für die Bestimmung der Einzelreserve als auch insbesondere zur Ermittlung des Reservetotals von Versicherungsgruppen gleichen Zugangsjahres eignet. Die Methode basiert auf der hyperbolischen Interpolation, weshalb vorerst letztere kurz in Erinnerung gerufen wird; in bezug auf Details sei auf eine vorgängige Publikation der Verfasser verwiesen («Eine praktische Interpolationsformel», Mitteilungen Bd. 48, Heft 2).

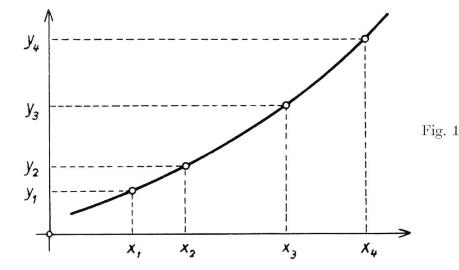
Bei einer gleichseitigen Hyperbel mit zu den Koordinatenachsen parallel gelagerten Asymptoten ist das Doppelverhältnis von vier Abszissenpunkten gleich dem Doppelverhältnis der zugehörigen Ordinatenpunkte. Sind also drei Punkte einer solchen Hyperbel bekannt, so kann zu einer beliebig gewählten Abszisse x aus dem Doppelverhältnis

$$\frac{(x_1-x_3)\ (x_2-x)}{(x_2-x_3)\ (x_1-x)} = \frac{(y_1-y_3)\ (y_2-y)}{(y_2-y_3)\ (y_1-y)}$$

der zugehörige Funktionswert y, d. h. ein vierter Kurvenpunkt bestimmt werden.

Sei
$$\begin{aligned} x_3-x_1&=d_1\,,\quad x_2-x_1&=d_2\,,\\ x_3-x&=d_3\,,\quad x-x_2&=d_4\,,\\ y_3-y_1&=\varDelta_1\,,\quad y_2-y_1=\varDelta_2\,,\\ \end{aligned}$$
 so ist
$$\begin{aligned} \frac{d_1\,d_4}{d_2\,d_3}&=\frac{\varDelta_1(y-y_2)}{\varDelta_2(y_3-y)}\,,\end{aligned}$$

$$y = \frac{y_2 \, d_2 \, d_3 \, \varDelta_1 + y_3 \, d_1 \, d_4 \, \varDelta_2}{d_2 \, d_3 \, \varDelta_1 + d_1 \, d_4 \, \varDelta_2}.$$



Man kann leicht prüfen, ob eine vorliegende Kurve oder ein Teil einer solchen näherungsweise als Hyperbel genannter Art aufgefasst werden kann. Nimmt man vier äquidistante Abszissenwerte, so dass

$$x_4 - x_3 = x_3 - x_2 = x_2 - x_1 = k$$
,

so ist das Doppelverhältnis

$$\frac{(x_4 - x_1)(x_3 - x_2)}{(x_2 - x_1)(x_4 - x_3)} = \frac{k \, 3 \, k}{k \, k} = 3.$$

Bilden wir für die entsprechenden Funktionswerte das Doppelverhältnis, so sollte also dessen Wert ungefähr 3 betragen, wenn eine hyperbelähnliche Kurve vorliegt. In der zitierten Arbeit der Verfasser wurde gezeigt, dass sich bis zu ca. 20 % iger Abweichung von diesem Wert immer noch gute Interpolationsresultate ergeben. Es wurde dort auch dargelegt, dass die hyperbolische Interpolation insbesondere bei gewissen versicherungstechnischen Funktionen gut anwendbar ist. Im vorliegenden Zusammenhange ist darauf hinzuweisen, dass die hyperbolische Interpolation beim Reserveverlauf der gemischten Versicherung und von Versicherungsarten mit ähnlicher Reservekurve (Gemischt auf verbundene Leben, Terme-fixe, Erlebensfall) ganz besonders gute Resultate zeitigt. Gewohnterweise sind Interpolationsresultate um so besser, je kleiner das Bezugsintervall ist.

Hier, d. h. bei der Reserveinterpolation, ergeben sich jedoch vielfach — auch wenn auf die ganze Versicherungsdauer als Interpolationsintervall abgestellt wird — so gute Resultate, dass durch Verkürzung
des Intervalls eine praktisch ins Gewicht fallende Verbesserung weder
nötig noch erreichbar ist. Eine Ausnahme machen Versicherungskombinationen mit hohem Endalter (etwa von 70 an aufwärts), wobei
das Endalter und nicht die Versicherungsdauer präponderant ist.
In diesen Fällen kann durch Verkürzung des Interpolationsintervalles
eine wesentliche Resultatverbesserung erreicht werden. Im Anhang
sind eine Anzahl Doppelverhältnisproben für die Reservekurven verschiedener Versicherungskombinationen und nach diversen Rechnungsgrundlagen beispielshalber aufgeführt.

Zwischen vier Punkten kann man bekanntlich sechs verschiedene Doppelverhältnisse bilden, die im folgenden Zusammenhange stehen:

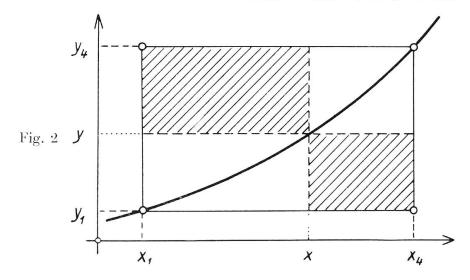
$$D, \frac{1}{D}, D+1, \frac{1}{D+1}, \frac{D+1}{D}, \frac{D}{D+1}.$$

Nehmen wir z. B. das Doppelverhältnis

so folgt
$$\frac{(x_3 - x_1)(x_4 - x_2)}{(x_4 - x_3)(x_2 - x_1)} = \frac{(y_3 - y_1)(y_4 - y_2)}{(y_4 - y_3)(y_2 - y_1)}$$

$$\frac{(x_3 - x_1)(y_4 - y_3)}{(x_4 - x_3)(y_3 - y_1)} = \frac{(x_2 - x_1)(y_4 - y_2)}{(x_4 - x_2)(y_2 - y_1)}$$

was in folgender Weise interpretiert werden kann: Wenn wir das Rechteck mit den Eckpunkten (x_1y_1) , (x_1y_4) , (x_4y_4) , (x_4y_4) , fest-



halten, d. h. die Werte x_1 , x_4 , y_1 , y_4 unverändert lassen, und sich nun ein Punkt (x, y) zwischen (x_1y_1) und (x_4y_4) auf einer gleichseitigen Hyperbel bewegt, so ist der Quotient aus den beiden Flächen $(x-x_1)(y_4-y)$ und $(x_4-x)(y-y_1)$ konstant! Verschieben wir das Koordinatensystem so, dass sein Nullpunkt mit dem Punkt (x_1y_1) zusammenfällt, so ist dann also, wenn Punkt (x_4y_4) fest bleibt, das Doppelverhältnis

 $\frac{(y_4 - y) x}{(x_4 - x) y} = \text{konstant.}$

Identifizieren wir nun die Hyperbel mit dem Reserveverlauf $_tV$ einer gemischten Versicherung, und setzen $x_4=n=$ Versicherungsdauer, $y_4=1=$ Erlebensfallsumme, so müsste demnach gelten:

$$\frac{(1-{}_{t}V)\,t}{(n-t)\,{}_{t}V} = \text{konstant} = F.$$

Zur rechnerischen Bestimmung der Konstanten F muss zumindest eine Reserveposition ${}_tV$ für 0 < t < n bekannt sein. Es sei dies ${}_aV$, dann ist

 $F = \frac{(1 - {}_{n}V)\alpha}{(n - \alpha)_{n}V}.$

Für die Wahl von "V setzt man vorteilhaft $\alpha = \frac{1}{2}n$, wenn n gerade, $\alpha = \frac{1}{2}n + \frac{1}{2}$, wenn n ungerade. Es vereinfacht sich dann die Bestimmung von F

bei
$$\alpha=\frac{1}{2}n$$
 zu
$$F=\left(\frac{1}{n/2}V-1\right),$$
 bei $\alpha=\frac{1}{2}n+\frac{1}{2}$ zu
$$F=\left(\frac{1}{n/2+1/2}V-1\right)\frac{(n+1)}{(n-1)}.$$

Einmal F gegeben, erhält man durch Auflösung von

$$\frac{(1-{}_{t}V)\,t}{(n-t)\,{}_{t}V} = F$$

nach $_{t}V$ die Reserveformel:

$$V = \frac{1}{1 + F\left(\frac{n}{t} - 1\right)}.$$

Man überzeugt sich empirisch leicht, dass die Formel nicht nur für die einfache gemischte Versicherung, sondern auch für die gemischte Versicherung verbundener Leben, für Terme-fixe- und Erlebensfall-Versicherung überraschend gute Resultate liefert. Einige beispielmässige Berechnungen sind im Anhang zu finden. Die Konstante F ist somit charakteristisch für Versicherungsart, Eintrittsalter, Versicherungsdauer und Rechnungsgrundlagen.

Es erhebt sich hier die naheliegende Frage, ob sich auf Basis parabolischer Interpolation, d. h. mit einer durch den Koordinaten-Nullpunkt gehenden und zur y-Achse parallel gelagerten Parabel, nicht auf einfachere Weise ebenso befriedigende Resultate erhalten lassen. Die in Frage kommende Interpolationsformel wäre in der Tat von der einfachen Gestalt:

$$_{t}V = ta + t^{2}b$$

und die beiden Konstanten a und b lassen sich, wenn eine Reserveposition $_aV$ für $0 < \alpha < n$ bekannt ist, aus den Ansätzen

$$_{a}V = \alpha a + \alpha^{2}b$$

$$1 = na + n^{2}b$$

bestimmen als
$$a = \frac{1}{n} - bn$$
 und $b = \frac{\frac{\alpha}{n} - {}_{a}V}{\alpha(n - \alpha)}$.

Man überzeugt sich aber anhand einiger numerischer Proben leicht, dass die hyperbolische Interpolation bedeutend bessere Resultate liefert. Nehmen wir als Beispiel die gemischte Versicherung mit x=30 und n=20, Sterbetafel S. M. 1931/41 zu 3 % und setzen $\alpha=10$, mithin $_{10}V=420.52$ % dann haben die beiden Konstanten der parabolischen Interpolation die Werte a=0.034104, b=0.0007948, und als Reserveformel ergibt sich

$$_{t}V = 0.034104 \, t + 0.0007948 \, t^{2},$$

während wir als KonstanteF der hyperbolischen Interpolation aus dem

Ansatz
$$F = \frac{1 - {}_{10}V}{{}_{10}V}$$
 den Wert $F = 1,37801$ und als Reserveformel

$$_{t}V=rac{t}{20F-t(F-1)}=rac{t}{27,5602-0,37801\,t}$$
 erhalten.

Die nachstehende kurze Aufstellung i	llustriert das	Gesagte zur	Genüge:
--------------------------------------	----------------	-------------	---------

t	$_{t}V$ genau $^{0}/_{00}$	$_{t}V$ parabol.	Fehler in ⁰ / ₀₀ der Reserve	$_{t}V$ hyperbol.	Fehler in ⁰ / ₀₀ der Reserve
3 5 8 10 13 15 18 20	112,99 194,27 325,77 420,52 574,26 685,35 867,01 1000,—	109,47 190,39 323,70 420,52 577,67 690,39 871,39 1000,—	$\begin{array}{c} - 31,09 \\ - 19,97 \\ - 6,35 \\ - \\ + 5,94 \\ + 7,35 \\ + 5,05 \\ - \end{array}$	113,52 194,78 326,05 420,52 574,05 685,24 867,22 1000,—	$\begin{array}{c} +\ 4,69 \\ +\ 2,63 \\ +\ 0,86 \\\ 0,37 \\ -\ 0,16 \\ +\ 0,24 \\\ \end{array}$

Unsere hyperbolische Reserveformel können wir wie folgt umformen:

$$t^{V} = \frac{1}{F\left(\frac{n}{t}-1\right)+1} = \frac{t}{Fn} \left(\frac{1}{1-t\frac{F-1}{Fn}}\right) = t \frac{1}{Fn} + t^{2} \frac{(F-1)}{(Fn)^{2}} + t^{3} \frac{(F-1)^{2}}{(Fn)^{3}} + t^{4} \frac{(F-1)^{3}}{(Fn)^{4}} + \dots$$

Es ergibt sich somit die Möglichkeit der globalen Reserveberechnung nach Gruppen gleicher verflossener Dauer; denn es ist, wenn die Versicherungssumme der einzelnen Versicherung mit S_i , die einzelne charakteristische Konstante mit F_i und die t. Einzelreserve mit ${}_tV_i$ (pro Summeneinheit) bezeichnet werden:

$$\sum_{i} S_{i|t} V_{i} = t \sum_{i} \frac{S_{i}}{F_{i|n}} + t^{2} \sum_{i} S_{i} \frac{(F_{i} - 1)}{(F_{i|n})^{2}} + t^{3} \sum_{i} S_{i} \frac{(F_{i} - 1)^{2}}{(F_{i|n})^{3}} + \dots,$$

oder, wenn wir folgende Bezeichnungen einführen

$$\frac{S_i}{F_i n} = a_i, \quad \frac{F_i - 1}{F_i n} = b_i,$$

so wird

$$\sum_{i} S_{i\,t} V_{i} = \sum_{i} \frac{t\,a_{i}}{1-t\,b_{i}} = t \sum_{i} a_{i} + t^{2} \sum_{i} a_{i}b_{i} + t^{3} \sum_{i} a_{i}b_{i}^{2} + t^{4} \sum_{i} a_{i}b_{i}^{3} + \cdots$$

Über die Vorteile der Reserveberechnung nach Gruppen gleicher verflossener Dauer wurde im Zusammenhang mit der sogenannten t-Methode wiederholt berichtet. Die neue Methode weist gegenüber der t-Methode jedoch noch wichtige Vorteile auf. Ihre Anwendung ist nicht auf die gemischte Versicherung beschränkt. Sodann kann der Versicherungsbestand bezüglich Sterbetafel und technischem Zins ganz unterschiedlich zusammengesetzt sein.

Es wären demnach für die einzelne Versicherung als Hilfszahlen zu notieren $a_i, a_i b_i, a_i b_i^2, a_i b_i^3, \ldots,$

und es ist nur noch die Frage offen, wie rasch die vorgenannte, das Reservetotal darstellende Reihe konvergiert, oder mit andern Worten, mit welchem Minimum an Hilfszahlen auszukommen ist, um ein Reservetotal von befriedigender Genauigkeit zu erhalten. Es zeigt sich, dass für gute Resultate bei höherem t zumindest vier Hilfszahlen benötigt werden, was die praktische Tauglichkeit der Methode doch sehr beeinträchtigen würde.

Durch einen kleinen Kunstgriff wird es jedoch ermöglicht, die Anzahl der Hilfszahlen auf zwei zu beschränken. Bekanntlich gilt für reelle Grössen die Ungleichung von Cauchy-Lagrange

$$\sum_{i} \alpha_i^2 \sum_{i} \beta_i^2 \geqslant (\sum_{i} \alpha_i \beta_i)^2$$
.

In Verallgemeinerung gilt, wenn m gleich grosse Serien positiver Grössen vorliegen (s. «Inequalities» v. Hardy-Littlewood-Polya, Cambridge 1934, Seite 22)

$$\sum_{i} \alpha_{i}^{m} \sum_{i} \beta_{i}^{m} \sum_{i} \gamma_{i}^{m} \ldots \geqslant (\sum_{i} \alpha_{i} \beta_{i} \gamma_{i} \ldots)^{m}.$$

Setzen wir hier $\alpha_i^m = a_i b_i^m$, $\beta_i^m = \gamma_i^m = \dots = a_i$,

so folgt
$$(\sum_i a_i b_i^m) (\sum_i a_i)^{m-1} \geqslant (\sum_i a_i b_i)^m$$

oder

$$\sum a_i \, b_i^m \, \geqslant \, \frac{\left(\sum a_i \, b_i\right)^m}{\left(\sum a_i\right)^{m-1}} \, .$$

Sind insbesondere die a_i alle von ungefähr gleicher Grössenordnung, und die b_i ihrerseits ebenfalls, dann ist der Unterschied zwischen den beiden Seiten der Ungleichung nur klein und man kann setzen

$$\sum_{i} a_i b_i^m \sim \frac{(\sum_{i} a_i b_i)^m}{(\sum_{i} a_i)^{m-1}}.$$

Unter Benutzung dieser Beziehung können wir nun schreiben

$$\begin{split} & \sum_{i} S_{i} \,_{t} V_{i} = t \sum_{i} a_{i} + t^{2} \sum_{i} a_{i} b_{i} + t^{3} \sum_{i} a_{i} b_{i}^{2} + t^{4} \sum_{i} a_{i} b_{i}^{3} + \dots \\ & \sim t \sum_{i} a_{i} + t^{2} \sum_{i} a_{i} b_{i} + t^{3} \frac{(\sum_{i} a_{i} b_{i})^{2}}{\sum_{i} a_{i}} + t^{4} \frac{(\sum_{i} a_{i} b_{i})^{3}}{(\sum_{i} a_{i})^{2}} + \dots \\ & = t \sum_{i} a_{i} \left[1 + t \frac{\sum_{i} a_{i} b_{i}}{\sum_{i} a_{i}} + t^{2} \left(\frac{\sum_{i} a_{i} b_{i}}{\sum_{i} a_{i}} \right)^{2} + t^{3} \left(\frac{\sum_{i} a_{i} b_{i}}{\sum_{i} a_{i}} \right)^{3} + \dots \right] \\ & = \frac{t \sum_{i} a_{i}}{1 - t \left(\frac{\sum_{i} a_{i} b_{i}}{\sum_{i} a_{i}} \right)} = \frac{t \left(\sum_{i} a_{i} \right)^{2}}{\sum_{i} a_{i} - t \sum_{i} a_{i} b_{i}} \cdot \end{split}$$

Zu diesem Resultat kann man auch auf anderem Wege gelangen. Wir suchen für die Reserveformel ein \bar{b} , das dem Ansatz genügt

$$\sum_{i} \frac{t a_i}{1 - t b_i} = \frac{t \sum_{i} a_i}{1 - t b},$$

d. h. es sollen gewissermassen die b_i durch einen Mittelwert \overline{b} ersetzt werden. Es folgt demnach

$$\begin{split} 1 - t \, \overline{b} &= (t \sum a_i) \colon \left(\sum \frac{t \, a_i}{1 - t \, b_i} \right) = \\ &= (t \sum a_i) \colon (t \sum a_i + t^2 \sum a_i \, b_i + t^3 \sum a_i \, b_i^2 + t^4 \sum a_i \, b_i^3 + \ldots) \\ &= 1 - t \frac{\sum a_i \, b_i}{\sum a_i} - t^2 \left[\frac{\sum a_i \, b_i^2}{\sum a_i} - \left(\frac{\sum a_i \, b_i}{\sum a_i} \right)^2 \right] - \ldots \end{split}$$

Erwartungsgemäss werden die quadratischen und höheren Glieder letzterer Reihe nur relativ kleinen Wert haben, so dass man setzen kann

$$\underline{\sum_{i} S_{i|t} V_{i}} = \underline{\sum_{i} \frac{t a_{i}}{1 - t b_{i}}} \sim \frac{t \underline{\sum_{i} a_{i}}}{1 - t \frac{\underline{\sum_{i} a_{i} b_{i}}}{\underline{\sum_{i} a_{i}}}} = \frac{t (\underline{\sum_{i} a_{i}})^{2}}{\underline{\sum_{i} a_{i} - t \underline{\sum_{i} a_{i} b_{i}}}}.$$

Als besondere Eigenart unserer Reserveformel ist hervorzuheben. dass t nicht als Index, sondern als direkte Rechnungsgrösse auftritt.

Die Reserve ist dargestellt als linear gebrochene Funktion der abgelaufenen Zeit, und die Berechnung der t. Reserve einer Gruppe von Versicherungen gleichen Zugangsjahres gestaltet sich in kaum noch zu überbietender Einfachheit: Für die einzelne Versicherung sind die

beiden Hilfszahlen
$$a_i = \frac{S_i}{F_i n}$$
 und $a_i b_i = \frac{S_i (F_i - 1)}{(F_i n)^2}$ notiert, und

die t. Gruppenreserve ergibt sich, indem die Summen $\sum_i a_i$ und $\sum_i a_i b_i$ der beiden Hilfszahlen gebildet werden, und dann gemäss vorgenannter Formel das Reservetotal der Gruppe mit ganz geringem Rechenaufwand bestimmt wird. Mit einer modernen Rechenmaschine ist dies in einem Zuge möglich, indem z.B. zuerst die Differenz $\sum a_i - t \sum a_i b_i$

und dann der Quotient $\frac{\sum a_i}{\sum a_i - t \sum a_i b_i}$ gebildet wird, worauf noch mit $\sum a_i$ und schliesslich mit t zu multiplizieren ist. Auch in der Gestalt

$$\sum S_{i\,t} V_i = \frac{\sum a_i}{1 - \frac{\sum a_i b_i}{\sum a_i}}$$

eignet sich die Formel gut für rasche maschinelle Auswertung.

Die im Anhang gegebenen numerischen Beispiele erhärten unseres Erachtens zur Genüge die Einfachheit und praktische Tauglichkeit der Methode. Diese Reserveberechnungsart kann hinsichtlich ihrer Genauigkeit noch verbessert werden, so z. B. indem man die Interpolation auf eine maximale Dauer von 10 Jahren beschränkt. Bei der ersten zehnjährigen Interpolationsperiode ist dann offenbar:

für Versicherungen mit
$$n\leqslant 10$$
: $a=\frac{S}{Fn},\quad b=\frac{F-1}{Fn},$ wobei für gerades n : $F=\frac{1}{\frac{n}{2}V}-1,$ und für ungerades n : $F=\Big(\frac{1}{\frac{n}{2}+1}\frac{1}{2}V}-1\Big)\frac{(n+1)}{(n-1)}$:

für Versicherungen mit n > 10 dagegen wählt man als feste Interpolationspunkte t=0, t=5 und t=10, und es ist dann, weil die Reserve pro Summeneinheit am Ende der zehnjährigen Periode den Wert $_{10}V$ erreichen muss

$$a = \frac{S_{10}V}{10F}, \quad b = \frac{F-1}{10F}, \quad \text{mit} \quad F = \frac{{}_{10}V}{{}_{5}V} - 1.$$

Für Versicherungen mit einer Dauer n > 10 wird nach Ablauf der zehn Jahre eine neue Festsetzung der Hilfszahlen für weitere maximal 10 Jahre vorgenommen. Es ist dann:

für Versicherungen mit n = 11: a = S, b = 0,

für Versicherungen mit
$$11 < n \leqslant 20$$
: $a = \frac{S(1 - {}_{10}V)}{F(n - 10)}$, $b = \frac{F - 1}{F(n - 10)}$,

wobei für gerades
$$n \colon F = \frac{1 - \frac{1}{5 + n/2}V}{\frac{1}{5 + n/2}V - \frac{10}{10}V}$$

$$\mbox{ und für ungerades } n \colon F = \frac{(1 - {}_{5 + n/2 + 1/2}V) \, (n - 9)}{({}_{5 + n/2 + 1/2}V - {}_{10}V) \, (n - 11)} \, ,$$

für Versicherungen mit n > 20 ist einfach

$$a = \frac{S({}_{20}V - {}_{10}V)}{10F}, \quad b = \frac{F - 1}{10F}, \quad \text{mit} \quad F = \frac{({}_{20}V - {}_{15}V)}{({}_{15}V - {}_{10}V)}.$$

Die Totalreserve für bezügliche Gruppen wäre offenbar

$$\sum_{i} S_{it} V_{i} = \sum_{i} S_{it0} V_{i} + \frac{t (\sum_{i} a_{i})^{2}}{\sum_{i} a_{i} - t \sum_{i} a_{i} b_{i}}.$$

Natürlich hat die Variable t am Anfang einer jeden Interpolationsperiode den Wert Null, kann also im vorliegenden Falle maximal den Wert 10 erreichen. Die Weiterführung und Ausdehnung des Verfahrens für Versicherungen mit n > 20 nach Ablauf von 20 Jahren ergibt sich sinngemäss leicht. Ein Vorteil solchen Vorgehens würde darin bestehen, dass ein ganzes Portefeuille für die Reserveberechnung im ganzen nur zehn Gruppen aufweisen würde. Ein gewisser Nachteil besteht allerdings darin, dass je nach Ablauf von zehn Jahren für die vorhandenen Versicherungen die Hilfszahlen neu bestimmt werden müssen, welche Arbeit aber zufolge natürlichen und vorzeitigen Abganges von Versicherungen dezimiert ist.

Es sei darauf hingewiesen, dass die Methode auch anwendbar ist für Versicherungsarten mit variabler Prämie oder veränderlicher Versicherungssumme, sofern nur der Reserveverlauf jenem der gemischten Versicherung ähnlich ist. Auch lässt sie sich ausbauen auf Reserveverlauf mit $_{0}V \neq 0$ (Versicherungen mit Einmaleinlage, prämienfrei reduzierte Versicherungen) durch Einbezug eines konstanten Zusatzgliedes in die Reserveformel. Vorgängig handelt es sich nur darum, die neue Methode in ihren Grundzügen darzustellen; Verfasser möchten sich vorbehalten, auf die Fragen der Eignungsprüfung, der Verfeinerung und des Ausbaues der Methode zu gegebener Zeit zurückzukommen.

Im Hinblick auf die Praxis sei insbesondere auf das numerische Beispiel anhand einer Gruppe von 135 Versicherungen im Anhang unter III, 2 verwiesen. Die Gruppe umfasst 114 gemischte, 6 Termefixe-, 3 Erlebensfall- und 12 zweilebige gemischte Versicherungen. Das durchschnittliche Eintrittsalter ist 34, die mittlere Dauer 28 Jahre. Es handelt sich also um eine Gruppe mit langer durchschnittlicher Dauer. Wie die Ergebnisse zeigen, gibt die Methode auch in diesem ungünstig gelagerten Falle Resultate, die bei Interpolation nach der ganzen Dauer n ungefähr der Güte der t-Methode in einfacher Anwendung gleichwertig sind und bei Begrenzung des Interpolationsintervalls auf 10 Jahre sich im Rahmen der Auf- und Abrundungsfehler der Einzelrechnung bewegen.

Anhang

I. Doppelverhältnisproben für Reservekurven

Als Interpolationsintervall ist die ganze Versicherungsdauer genommen.

Argumenten-Doppelverhältnis:
$$\frac{(n-0)(\frac{2}{3}n-\frac{1}{3}n)}{(\frac{1}{3}n-0)(n-\frac{2}{3}n)}=3.$$

Die Tabellen geben den Wert des zugehörigen Funktions-Doppelverhältnisses:

$$\frac{\binom{({}_{n}V-{}_{0}V)\binom{}{(2n/3}V-{}_{n/3}V)}{\binom{}{(n/3}V-{}_{0}V)\binom{}{(n}V-{}_{2n/3}V)}=\frac{\frac{2n/3}V-{}_{n/3}V}{\frac{}{n/3}V(1-\frac{}{2n/3}V)}\,.$$

1. Beurteilung nach der Versicherungsdauer bzw. nach Endalter

Versicherungsart: Gemischt. Grundlagen: S. M. 1921/30 zu 2³/₄ ⁰/₀

	12	15	18	21	24	27	30	33	36	39
20 30 40 50 58	3,01 3,01 2,98 2,94 2,86	3,02 3,00 2,96 2,89	3,03 3,00 2,93 2,83	3,04 2,99 2,89	3,04 2,98 2,84	3,06 2,96 2,79	3,07 2,93 2,72	3,08 2,90	3,08 2,86	3,07 2,82

2. Beurteilung nach Versicherungsart

 $x=40.\,$ Grundlagen: S. M. 1921/30 zu $2^{3}\!/_{\!4}\,^{0}\!/_{\!0}$

Versicherungsart	n	12	18	24	30
Gemischt	 •	2,98 2,99 2,98 2,94	2,93 2,97 2,93 2,84	2,84 2,94 2,87 2,66	2,72 2,91 2,78 2,46

3. Beurteilung nach Rechnungsgrundlagen

x = 40. Versicherungsart: Gemischt

Grundlagen	n	12	18	24	30
S. M. 1921/30 à 23/4 %		2,98 2,99	2,93 2,95	2,84 $2,87$	2,72 2,75
S. M. 1921/30 à 4 %		2,99	2,96	2,89	2,76
Allgemeine Deutsche St.T 1924/26 Männer 3 %		2,99	2,97	2,92	2,83
6. Holländische Mannentafel 1921/30 à 3 $\%$	• •	3,00	2,98	2,93	2,86
American Men		2,99	2,97	2,90	2,79

4. Beispiele für die Quasi-Konstanz des Wertes $F = \frac{(1-tV)\,t}{tV(n-t)}$

Grundlagen: 17 englische Gesellschaften zu $3\frac{1}{2}\,{}^{\circ}\!\!/_{\!\! 0}$

t	Gemischt $x = 40, \ n = 10$	t	Gemischt $x = 40, \ n = 20$	t	Erlebensfall $x = 40, n = 20$
1	1,252	2	1,520	2	1,805
2	1,251	4	1,516	4	1,806
3	1,250	6	1,514	6	1,809
4	1,249	8	1,516	8	1,812
5	1,248	10	1,519	10	1,816
6	1,248	12	1,525	12	1,820
7	1,248	14	1,532	14	1,825
8	1,248	16	1,541	16	1,830
9	1,248	18	1,552	18	1,835

Grundlagen: S. M. 1931/41 zu $2^3/_4\,^0/_0$

t	Gemischt $x = 40, n = 10$	t	Gemischt $x = 40, n = 20$	t	Terme-fixe $x = 40, n = 20$
1	1,172	2	1,330	2	1,328
2	1,172	4	1,334	4	1,328
3	1,172	6	1,338	6	1,329
4	1,173	8	1,343	8	1,331
5	1,174	10	1,350	10	1,334
6	1,175	12	1,358	12	1,337
7	1,176	14	1,369	14	1,342
8	1,177	16	1,381	16	1,348
9	1,178	18	1,395	18	1,355
θ	1,176	7.0	1,555	10	1,555

II. Beispiele für Einzelreserven nach hyperbolischer Interpolation

Die Tabellen geben die Reservewerte pro Versicherungssumme 1000

1. Interpolationsintervall identisch der Versicherungsdauer n a = genaue Reservewerte,

b = approximative Reserve werte:

$$_{t}V = \frac{t}{Fn - t(F-1)}, F = \frac{1 - _{a}V}{_{a}V}, \alpha = \frac{1}{2}n.$$

Gemischte Versicherung

1	S. M. 1921/30 à $2^3/_4$ $^0/_0$ $x = 35, n = 10$			7 A 10A 10A 10A 10A 10A 10A 10A 10A 10A 1				$\begin{array}{cccccccccccccccccccccccccccccccccccc$
/ 2 4 6 8 10	a 175,88 362,62 561,31 773,20 1000, $F =$	b 175,81 362,58 561,38 773,40 1000,—	$\begin{bmatrix} t \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \end{bmatrix}$	a $166,14$ $344,32$ $538,35$ $754,00$ $1000, F =$	b 163,61 342,82 539,96 757,86 1000,—	$\begin{bmatrix} t \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \end{bmatrix}$	a 107,77 231,36 371,58 533,68 730,85 $F =$	b 105,76 228,21 371,61 541,86 747,27

Grundlagen: S. M. 1921/30 zu $2^3/_4$ 0/0

t	Gemischt $x = 30, n = 20$		Terme-fixe $x = 30, n = 20$		Erlebensfall $x = 30, n = 20$		Gemischt, 2 Leben $x = 30, y = 40, n = 20$	
3 5 8 10 13 15 18	a 115,20 197,64 330,40 425,35 578,63 688,91 868,70	b 115,53 197,90 330,41 425,35 578,88 689,50 869,48 1,351	a 116,24 199,32 332,93 428,38 582,12 692,33 870,87	b 116,83 199,92 333,22 428,38 581,97 692,20 870,91 1,334	a 108,01 185,99 313,10 405,52 557,74 669,96 858,24	b 107,45 185,26 312,61 405,52 558,85 671,74 859,94 1,466	a 114,28 195,19 324,36 416,44 565,84 675,02 858,89	111,87 192,20 322,42 416,44 570,00 681,66 865,30 1,401

2. Verbesserung durch Ansetzung des Interpolationsintervalls auf 10 Jahre a = genaue Reservewerte,

b = approximative Werte bei Interpolations intervall = n (wie sub II, 1),

c = approximative Werte mit zehnjährigem Interpolationsintervall:

$$\begin{split} &\text{für } t\leqslant 10\colon {}_tV = \frac{t_{10}V}{10F_1-t(F_1-1)}\,, \quad F_1 = \frac{{}_{10}V-{}_5V}{{}_5V}\,; \\ &10 < t\leqslant 20\colon {}_tV = \frac{t({}_{20}V-{}_{10}V)}{10F_2-t(F_2-1)} + {}_{10}V, \quad F_2 = \frac{{}_{20}V-{}_{15}V}{{}_{15}V-{}_{10}V}\,; \\ &20 < t\leqslant 30\colon {}_tV = \frac{t({}_{30}V-{}_{20}V)}{10F_3-t(F_3-1)} + {}_{20}V, \quad F_3 = \frac{{}_{30}V-{}_{25}V}{{}_{25}V-{}_{20}V}\,. \end{split}$$

193

t	x	= 50, n = 1	x	=40, n=3	30	
	a	b	e	a	b	е
2	76,85	73,04	76,51	49,06	46,58	49,15
4	156,26	150,60	156,07	99,65	95,21	99,70
6	238,66	233,10	238,87	151,78	146,03	151,73
8	324,65	321,02	325,10	205,35	199,18	205,30
10	414,99	414,93	414,99	260,48	254,83	260,48
12	510,90	515,46	509,10	317,32	313,19	317,05
14	613,93	623,32	612,90	376,04	374,41	375,88
16	726,68	739,37	727,94	436,97	438,74	437,10
18	853,23	$864,\!55$	856,18	500,57	506,41	500,88
20	1000,	1000,	1000,	567,37	577,70	567,37
22		F = 1.410	$F_1 = 1,106$	638,30	652,90	636,97
24			$F_2 = 1.304$	714,49	732,33	713,74
26			$1_2 = 1,001$	797,88	816,38	798,82
28				891,46	905,44	893,64
30				1000,	1000,	1000,
					F = 1,462	$F_1 = 1,07$
						$F_2 = 1,10$
						$F_3 = 1,30$

III. Beispiele für Gruppenrechnung auf Basis hyperbolischer Interpolation

Die Rechnungen sind so durchgeführt, dass das vorgegebene Summentotal $\sum_i S_i$ als jeweiliger Gruppenbestand per Ende des t. Versicherungsjahres angenommen ist (wobei natürlich Versicherungen mit n < t ausgeschieden werden).

1. Gruppe von 10 Versicherungen unterschiedlicher Grundlagen

Interpolations interval n.

Für die Berechnung von F_i wurde

 $\alpha = \frac{1}{2}n$ bei geradem n, $\alpha = \frac{1}{2}n + \frac{1}{2}$ bei ungeradem n gesetzt.

— 194 —

Zusammensetzung der Gruppe

Versicherungs- art	x	n	Ver- siche- rungs- summe	Grundlagen	F_i	a_i	$a_i b_i$
Gemischt	35 30	20	10 000	M. und W. I $3\frac{1}{2}$ %	1,533	326,158	5,670
2 Leben	40	20	20 000	17 engl. Ges. $3\frac{1}{2}$ %	1,634	612,000	11,873
Gemischt	30	15	15 000	Abel aggregat 4%	1,371	729,390	13,158
Gemischt	40	20	20 000	Deutschl. 24/26 M. 3 %	1,389	719,940	10,081
Erlebensfall .	35	20	15 000	Deutschl. 24/26 M. 3 %	1,522	492,780	8,451
Gemischt	30	25	10 000	S. M. 1921/30, $3\frac{1}{2}$ %.	1,568	255,100	3,696
Terme-fixe .	30	20	20 000	S. M. 1921/30, 3½ %	1,431	698,820	10,524
Gemischt	40	20	$25\ 000$	S. M. 1931/41, 3 %	1,382	904,475	12,500
Gemischt	30	30	15 000	S. M. 1931/41, 3 %	1,556	321,330	3,827
Gemischt	35	20	20 000	S. M. 1931/41, 2½ %	1,314	761,040	9,093

Rechenergebnisse für $\sum_i S_{i\ t} V_i$

ł	Summe der Einzelreserven	$\frac{t(\sum a)^2}{\sum a-t\sum ab}$	Fehler in $^{0}/_{00}$ der Reserve
3	18 322	18 301	— 1,1
5	31 566	31 511	-1,7
8	53 119	53 048	-1,3
10	68 751	68 699	0,8
13	94 417	94 413	0,0
15	113 260	$113\ 253$	0,1
18	$125\ 295$	$125\ 146$	-1,2
20	145 581	$144 \ 937$	-4,4
23	18 914	$18\ 945$	+ 1,6
25	21 376	$21\ 390$	+0,7
28	13 447	$13\ 499$	+ 3,9

2. Gruppe von 135 Versicherungen

Grundlagen: S. M. 1921/30 à $2^3/_4$ $^0/_0$

Verteilung der Versicherungssummen, Eintrittsalter und Dauern

S Tausend	An- zahl	S Tausend	An- zahl	x	An- zahl *	n	An- zahl
0,5 0,6–1,0	37 17	7,1–8,0 8,1–9,0	4 1 5	bis 20 21–25	9 19 94	bis 10 11–15	$\begin{array}{ c c }\hline 1\\ 6\\ 25\\ \end{array}$
1,1-2,0 2,1-3,0 3,1-4,0	10 3 10	9,1-10 $11-15$ $16-20$	10 3	26–30 31–35 36–40	24 32 20	16-20 $21-25$ $26-30$	31 32
4,1-5,0 5,1-6,0 6,1-7,0	$\begin{bmatrix} 20 \\ 3 \\ 6 \end{bmatrix}$	$ \begin{array}{r} 21 - 30 \\ 40 \\ 70 \end{array} $	$\begin{bmatrix} 4\\1\\1\end{bmatrix}$	41-45 $46-50$ $51-55$	24 6 1	31–35 36–40 41–45	31 8 1

^{*} Versicherungen auf zwei Leben sind mit dem mittleren Alter einfach gezählt

Die nachstehende Tabelle gibt einige Reservetotale der Gruppe.

A = Summe der Einzelreserven am Ende des t. Jahres,

B = approximatives Reserve total, Interpolations intervall = n:

$$\begin{split} \sum S_{\,t}V &= \frac{t(\sum a)^2}{\sum a - t \sum ab}, \quad t = 1, 2, \, \ldots \, n\,, \\ a &= \frac{S}{Fn}, \quad b = \frac{F-1}{Fn}\,, \\ \text{wobei } F &= \frac{1}{\frac{n}{2}V} - 1 \text{ für gerades } n\,, \\ F &= \left(\frac{1}{\frac{n}{2}+1} - 1\right)\frac{n+1}{n-1}\,, \text{ für ungerades } n\,. \end{split}$$

C = approximatives Reservetotal, Interpolationsintervall maximal 10 Jahre.

a)
$$t \leq 10: \sum S_t V = \frac{t(\sum a)^2}{\sum a - t \sum ab}, \quad t = 1, 2, \dots 10,$$

wobei für $n \leq 10$: a, b, F wie sub B vorhin,

$$\mbox{ und für } n > 10 \colon a = \frac{S_{10} V}{10 F}, \quad b = \frac{F-1}{10 F}, \quad F = \frac{{}_{10} V}{{}_{5} V} - 1 \, .$$

$$\beta) \qquad 10 < t \leqslant 20 \colon \sum S_t V = \sum S_{10} V + \frac{t(\sum a)^2}{\sum a - t \sum ab},$$
 wobei für $n = 11 \colon a = S, \ b = 0,$
$$t = 1, 2, \dots 10$$
 für $11 < n \leqslant 20 \colon a = \frac{S(1 - {}_{10} V)}{F(n - 10)}, \ b = \frac{F - 1}{F(n - 10)},$ mit $F = \frac{1 - {}_{5 + n/2} V}{{}_{5 + n/2} V - {}_{10} V},$ wenn n gerade,
$$(1 - {}_{5 + n/2} V - {}_{10} V) = n - 9$$

$$F = \left(\frac{1 - \frac{1}{5 + n/2 + 1/2}V}{\frac{5 + n/2 + 1/2}{1 - \frac{10}{10}V}}\right) \frac{n - 9}{n - 11}, \text{ wenn } n \text{ ungerade,}$$

$$\text{und für } n > 20 \colon a = \frac{S({}_{20}V - {}_{10}V)}{10F}, \ b = \frac{F - 1}{10F}, \ F = \frac{{}_{20}V - {}_{15}V}{{}_{15}V - {}_{10}V}.$$

t	A	В	Fehler in $^{0}/_{00}$ der Reserve	C	Fehler in $^{0}/_{00}$ der Reserve
3 6 9 12 15 18	60 106 124 531 193 731 262 053 338 645 412 747	59 356 123 390 192 681 261 686 339 324 414 396	$ \begin{array}{r} -12,5 \\ -9,2 \\ -5,4 \\ -1,4 \\ +2,0 \\ +4,0 \end{array} $	60 107 124 500 193 655 261 853 338 586 412 806	$egin{array}{c} + 0.02 \ - 0.25 \ - 0.39 \ - 0.76 \ - 0.17 \ + 0.14 \ \end{array}$