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The Historical Development of the Use of Generating
Functions in Probability Theory

by H. L. Seal, Toronto

Introduction

An important part of probability theory consists of the derivation
of the probability distribution of the sum of n random variables,
each of which obeys a given probability law, and the development
of asymptotic forms of these distributions valid for inereasing n.
Probability generating functions owe their dominant position to the
simplifications they permit in both problems. Their employment to
obtain the successive moments of a probability distribution and to
solve the difference equations of probability theory is ancillary to
their chief use in connexion with sums of random variables.

A didactic exposition of the use of generating funections in pro-
bability theory might easily be made to parallel the historical deve-
lopment of these functions. This circumstance will be clearly perceived
in the following historical sketch of the use of probability generating
funetions from their origin with De Moivre to their present-day wide
application under different guises.

The generating function of a discrete law

Although the theoretical frequencies of the various possible
totals obtained in throws with two and three ,perfect‘ dice had been
known from at least the time of Cardan (Todhunter, 1865), it was
De Moivre who gave the problem its first algebraic solution. Considering
with De Moivre (1730) a generalized die with k faces any one of which
is equally likely to appear when the die is thrown, we ask the pro-
bability that with n such dice a total of z points will be thrown.
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Without any essential change in the problem we may restate i1t in
modern terminology thus: to derive the probability distribution of
the random variable formed by adding n random variables each
subject to the same discrete rectangular probability law with k equi-
distant variate values.

De Moivre expresses his solution in terms of the favourable
«chances» (combinations) and the total possible «chances». The latter
number k" in the problem under consideration. On the other hand,
the total array of chances on any one of the dice may be represented
algebraically by ¢t 4+ #2 4¢3 4+ ... 4 t* the index of any ¢ representing
the number of points on the corresponding ,face‘. As De Moivre
says this progression «may represent all the Chances of one Die:
this being supposed, it is very plain that in order to have all the
Chances of two such Dice, this Progression ought to be raised to its
Square, and that to have all the Chances of three Dice, the same
Progression ought to be raised to its Cube; and universally, that if
the number of Dice be expressed by n, that Progression ought accord-
ingly to be raised to the Power of n»1). With this preliminary De
Moivre proceeds to the algebraic solution mentioned.

The words quoted show that De Moivre attached to the discrete
rectangualar probability law a function designed to represent that
probability distribution (namely, «all the Chances of one Dien).
Although the title is quite modern we refer to this type of ,image’
function as a probability generating function and write it generally
as y(t). De Moivre, then, in effect defined w(t), the probability
generating function of the discrete rectangular law, by

(tw\]"c‘lt* P 1=F (1)
w)"_léik ok 1—¢ ‘

and stated it to be «very plain»2?) that y, (f) the probability generating
function of the sum of »n such discrete rectangular variables, should

1) Quoted from the third edition of The Doctrine of Chances, 1756.

%) In 1777 Euler (1788) presented a paper to the Academy with the sole
purpose of proving inductively that the probability of a variate z appearing as
the sum of n random variables each distributed according to the law
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where p,(z) 18 the required probability of a total z with n dice, and
may be read off from the last expression written, viz.

]. my . n "‘{B . ]{:/, o 1
P (@) = — —1]()( ] ) (2)
Pl = — j_:é( ' P 9)

De Moivre’s contemporaries were fully seized of the value of
the artifice thus introduced. An important application of it was
made by Simpson in one of the essays of his Miscellaneous Tracts.
Simpson’s object was to consider mathematically the method «practised
by Astronomers» of taking the mean of several observational readings
«in order to diminish the errors arising from the imperfection of
mstruments and of the organs of sense». He supposes that at any
one reading errors in excess or defect are symmetrically disposed and
have assignable upper and lower limits.

In the first of two propositions Simpson considers a discrete
rectangular law with an odd number, 2k 4 1, of variates centred
about zero. The problem of obtaining the probability of a total error z
ariging as the sum of n individual errors is solved precisely in the
manner of De Moivre though now w(t) appears with a factor £ re-
presenting a removal of the origin to the centre of the distribution.
Simpson finally obtains the probability that an error lies between
—z and 2z by summing the appropriate terms of the expression thus
obtained.
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In his second proposition Simpson assumes a discrete symmetric
triangular probability law for the individual errors. He writes, effec-

tively,

Ih—l—l—— ::1:‘ , ,
e e
0 r = any other value

and

h t (1_th+1)2

1) = F = — ]
vO=2POF = 53 )2 (1—oe
Hence
t—:’lh
v (t) = eI (1 — iy (1 — g2
nh 2n 1L nh —f—m—h_}_l?’___]_)
(}"“1 ﬂwzwlnhyzl (7 ( nh‘l—’B—h—l—ly ()

nh 4+ x
M, = IIN. (27@, [——})
h+1

Simpson notices that with the exception of the displacement factor 1)
t™ and the constant, the form of the generating function in the
second proposition is similar to that of the first with 2n replacing ».

The probability of a total error lying between + z (the limits
included) when individual triangular variates have been combined is thus

-z-1 mg 2%+7Lh+m—h+1 j““"l)
1— ( 2112:%}”2‘ _—1 (7)( 2n —1 ‘ /’(4)
z < mh

since, as Simpson points out, the distribution of the mean error, z/n,
18 symmetrical about zero and it is simpler to work with —z than
with z. Simpson carries out the summation of z arriving at

1) Our terminology not Simpson'’s.
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. 2 g(_l)j(?ﬂ)(2n+nh-zg;——mj——1> 5

]
) nh—z—1
mg = min. | 2n, { ————
( [ h+1 D

and illustrates this result by putting h =5, n = 6 and 2 =1 and 2,
respectively. He concludes that «the taking of the mean of a number
of observations, greatly diminishes the chances for all the smaller
errors, and cuts off almost all possibility of any large ones.»

Up to this point Simpson’s analysis has been a straightforward
application of De Moivre’s technique to a new problem. The real
advance due to Simpson lies in the corollary to the second proposition.
Here for the first time a continuous (symmetric triangular) probability
law 18 introduced. By making k— oo in such a way that the range
of variation of an individual error z remains within + 1, the prob-
ability of a total error between =+ %(0 <y < n) arising from the
addition of n errors each subject to a continous triangular law centered
on zero and extending one unit to the right and to the left, is given by 1)

1— lim Lg 3 (—1)7'(2?”)

n—14n—jh+1—z)

oo (h + 1)*" =0 1/ (2n)!
2 (—-1>f(2") (n—y — (6)
2n)! =0 ]

my = min. (2n, [n—y}])

Simpson did not attach a similar corollary to his first proposition
but his observation on the interchangeability of 2n and n indicates
that he could have written this down without further calculation.
It is noted here that the probability of a total error < | yl arising
from the sum of n random variables each subject to a continuons
rectangular probability law centered on zero and extending one unit
in either direction, 1s

S §<—1>(’;’) (n—y— 24 )

ms = min. (n, [n—y])

1) Although Simpson’s formula is correctly stated he mistakenly wrote
nz/h = y in his three numerical examples.

14
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The generating function of a continuous law

In an article published (apparently) in 1773 Lagrange restated
Simpson’s two propositions except that he placed his origins away
from the centres of the distributions of the individual errors, and
directed his attention to the probability of a total variate (error)
lying between —z,;, and z, instead of between + z. He also used
Simpson’s limiting process to obtain the distribution laws of the
sums of n variates from continuous rectangular and triangular laws
of individual error. As Todhunter (. ¢.) points out, there are a number
of algebraic slips in Lagrange’s work, but from the modern point
of view his mathematical technique is considerably in advance of
Simpson’s more pedestrian approach.

However, the real advance of Lagrange’s memoir consists in his
generalization of generating functions to apply directly to continuous
probability distributions. Lagrange argued, by direct analogy with
the discrete case, that if

[o o]

p(t) = [ p(a)da (8)

—_— o0

then

vlt) = [ £p,(z)dz = [ | tzp(w)dw} (9)

where the meaning to be attributed to y,(t) and p, (x) will be clear
from the similar relations of the discrete case. In order to carry out
the calculations indicated in these relations Lagrange provided what
18, in effect, the first dictionary of Laplace transforms. This dictionary
was effectively as follows, where P, (z) represents an arbitrary poly-
nominal in z of the mth degree.
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Lagrange points out that « of No. 8 may be purely imaginary so that
the cases P, (z) cos bz and P, (z) sin bz are included. He stated that
other functions p(z) than those included above have generating func-
tions y (¢) obtainable only by approximation.

Four exampleé of the use of the new type of probability generating
function close the memoir. They are based, respectively, on the follow-
ing continuous probability laws:

1

_ —h, < x < hy 0 z<<—h, x>h I

h by 1 2 1 2 (I

ekl

— — L 2 <1 0 ]3:|>l (1I)

——4—(1‘3(@2-—31:2) —a <t <a; 0 |z|>a (T1I)

1 7T T 14

— COS T - e | )af:]>— (IV)
2 2 2

We illustrate Lagrange’s procedure by considering (III) which he
calls the law «la plus simple et la plus naturelle qu’on puisse imaginer».

We have in this case
axg -3 /2 2 a.‘cg -3/.2 2 a—:r.3 -3 /~2 2
w(t):ftz—a (a —:c)dac:ftza (@—a?) de 4 [t @ —aYda
- 0 0

3 L[v+i" a’({t*—t) |

2 | (log,t)®  (log,® |

by no. 2 of the dietionary. Hence

311 n ] ) [ +t—a 71— ta__t_aj
pl) = [pO]" = — a3 (- 1)g<n) g EAE -

9 =h J (log, £)2"+i
g,
=ia‘2"i(-])f(7?)a“5 St [—{A—-’;-ft“*“qt L pe
2 = A S | ot (~ log, )i
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where .”'2'_’1

AM - Z (_ l)ﬂw ’ﬂzf;y (Z’>,

y=_)

except that 4., if 1t occurs, is to be given half the value ascribed
by this formula. The «(2)» affixed to the last summation sign on p. 217
indicates that every second term is to be summed. Using the dictionary
inversely (Nos.6 and T)

" ; () ~f 1 m32 2n+j-1
Pn(lmf)"—“—é;:a ;0(—1) (j)a (2n+?__])!lzn_zz(.[)%]A,_jqw[mAa) -1 (10)

w2

Although this is not mentioned by Lagrange, according to his own
dictionary the above transformations hold only when a is a positive
integer: actually this limitation is unnecessary and results from the
primitive methods of integration utilized by that author.

It will be noticed that the inversion illustrated above involves
an interesting device which Lagrange himself did not justify. It was
assumed that the integral representing v,(f) had an infinite upper
limit whereas in fact the distribution law involved has a finite upper
and lower bound. The justification is that since we are not concerned
with values of z outside the limits 4+ na the integral may be completed
arbitrarily.

Inversion in the discrete case

At the commencement of Ch. IV of Book II of his text book on
probability theory Laplace (1812) provides a new treatment of De
Moivre’s problem of the addition of n random variables each rect-
angularly distributed over a finite number of equally spaced discrete
points. He supposes that the individual probability laws consist of
2h 4 1 points (h integral) of equal probability, the range extending
from — to h and thus centering on zero. Replacing the ¢ of De Moivre’s
generating function by ™ the probability generating function of the
distribution law for the sum of n discrete rectangular variates is

. h 1 - ’ 1 "2 1ju 3
Wn(t) :,‘pn(em) - [a;hzh_i_lel ] - (2h+1> |f;hej]
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Laplace observes that p, (), the coefficient of ¢*™ in the expansion
of the expression last written, 1s the probability of a total value z;
1t 18 obtained as the coefficient independent of z in

1 " L
~iTU % ju
<2h+1> ‘ [,';he J

F {0 j Z

Now since

f etUoldy =

0

this probability may be written

1 1 n o - . nz
Dy () = ; oh 11 Ofe '26 ‘ du

j=-h

n i [ e(h-f %)iu"ﬁe—(h.y_;_)m ‘nl
a (2h+1>0f‘3 = & d

e2 —e 2

o (h 1) .
1( 1 )nn . Sl +? U

= — fe‘m‘ du
7T

2h+1/7% $in —
)
"o sin (h -+ %) % "
= fcos zu du (11)
2h+1/5 sin =
2

The reasoning used by Laplace in this example is quite general
and he has thus derived an inversion formula for the generating
function of a discrete probability law, viz.
1if UL
pu) = D e™p(z) (12)
then

JT

p(x) = — [ ™ p(u)du (13)

TG
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Although the preceding development was new in Laplace’s 1812
text book this was not the first time he had used a somewhat similar
device. In a paper (1810) published two years before his book appeared
Laplace used much the same approach based on a continuous rect-
angular distribution; owing to the somewhat dubious limiting processes
involved the derivation employed would not be acceptable nowadays.
The argument was extended to cover the addition of n variates from
any continuous probability law and an improved version of this
development appears in Ch. IV (pp. 329—333) of his text book 1).

The interesting fact emerges from these references that in no
case did Laplace use a probability generating function to derive an
explicit form of probability law for the sum of n specified random
variables. The result (11), for instance, was not intended to be inte-
grated to arrive at the exact answer (given by (2) when 2k + 1 has
replaced k& and x 4 nh written instead of z) but was deliberately
left in the form of an integral because Laplace had previously (1785)
obtained asymptotic forms for such an integral with increasing n.
When Laplace required an explicit form for the probability law of
the sum of n specified random variables he used an inductive method
which he established in an earlier paper (1781)2). Comparing his
method and the generating function method of Lagrange’s (1773)
article Liaplace wrote: «sa méthode est trés-ingénieuse et digne de son
illustre auteur; mais la précédente a ... I'avantage d’étre plus directe
et plus générale, en ce qu’elle réduit la solution du Probléme aux
quadratures des courbes, quelle que soit la loi de facilité des erreurs
des observations.» These remarks were made before Laplace had deve-
loped the artifice resulting in (12) and (13) and it 1s perhaps significant
that apart from four articles on the application of probability theory
to natural philosophy, astronomy, and geodesy (three of which were
reproduced as Supplements in the third, and final, edition of Laplace’s
book, 1820) he made no further theoretical advances in this subject
after the publication of his Théorie analytique.

1) In the course of the demonstration Laplace in effect discovered the «moment
generating» property of generating functions with ¢ = eiu,
%) This method is reproduced in the Appendix, post.
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It should be mentioned that the expression «fonctions génératrices»
originated with Laplace in 1782 to denote such functions as

p) = DEf@) and  ul) = [2°f(@)dz

These generating functions were used with great effect in the solution
of difference and differential equations but Laplace never used the
term in connexion with the synthesis of a probability distribution.

Inversion in the continuous case

The first quarter of the nineteenth century saw a number of
contributions to the theory of functions which were of considerable
importance in the establishment of an inversion formula for the
generating function of a continuous probability law. It was possibly
Fourier’s prize paper of 1811 (not published until 1819/20) which
led Gauss to the establishment of the pair of reciprocal relations

oo

Fu) = Vﬂ_i et f (1) dt
and g -
f(z) = ol i & F (u) du

Unfortunately these formulae lay undiscovered until the end of the
century in one of Gauss’s notebooks which he completed in 1813.
Their entry without comment under the title « Schénes Theorem der
Wahrscheinlichkeitsrechnung» is indeed provocative.

However, substantially the same relations, namely the sine and
cosine pairs of transforms, were published by Cauchy in 1817 a year
after Fourier’s integral theorem, viz.

oo

fg) = i ff(u) d-ufcos v(u—x)dv 1)

A

-0

had first appeared in print.

1) The inner integral is actually divergent and nowadays the theorem is
written as

_;‘_{f(gc+0)+f(a:-—0)} = u;;f dv ff(u) cos v (u— ) du
8 -



— 9222

With the stage thus set it was not long before Poisson (1824)
derived similar formulae for continuous probability laws. Writing

b

p(w) = [ ¢ p(a)dz (14)

a

where a or b may be infinite, he obtained, by what would now be
called non-rigorous methods, the result

S 1z .., Sin 2
[p@dz = = [@@)ei ——adu (15)
¢—T —) U

This relation may be obtained by formally integrating, between ¢ + z,
(/2=)" times the second of Gauss’s two reciprocal relations given
above: it 1s thus formally equivalent to the following relation which
was not, however, written down explicitly by Poisson.

L &
p(a) = —— [ p)du (16)

Subsequent history

It 1s an extraordinary fact that although the theory of probability
generating functions had achieved a considerable development by
the end of the first quarter of the nineteenth century it was almost
a hundred years before a synthesis of these results was made and
further contributions to the subject published. The cause of this
seems to have originated with Laplace’s (perhaps personal) dislike
of this artifice and the great weight of his authority with ninetenth
century mathematicians.

In the analysis of pp. 10 and 1lante — which is a pattern of the
only uses he made of ¢™ — Laplace is never far from his own invention
(see Appendix), the discontinuity factor. In fact Bessel (1838) re-wrote
Laplace’s general (Central Limit) theorem in a form which, when
applied to the particular case we considered, would run as follows:



" where >’ represents a summation over the
1

variables z,, z,, .. . z, subject to >z, =z

( 1 )” sinw(z, + 23+ ... +x,—x)

r1=-h To=—h Ip=~h 2h + 1 J'E(:El + 5112 + e —,— xn — iE)
eiuxj ‘l '
— f e du, ete.
_1 :—h 2h 4 1]

A gimilar procedure was followed by Ellis (1849) and the close link
between the discontinuity factor and generating function approaches
was emphasized by Cauchy’s four 1853 articles 1).

Developments of the Central Limit theorem in articles and text-
books written between Laplace’s discovery of it and the first world
war were almost the only occasions when techniques at all resembling
probability generating functions were utilized. Some of these writers
followed Laplace’s introduction of p,(z) closely, others preferred the
Bessel approach. Without giving exact references we mention Poisson,
Galloway, De Morgan, Jullien, Laurent and Charlier as favouring
the generating function approach, and Glaisher, Tchebychef, Sles-
hinski, Pizzetti, Liapounoff and Markoff, the discontinuity factor

1) Cauchy’s contributions to the development of the technique of probability
generating functions and even to the discovery of the properties of the probability
law which bears his name, have often been exaggerated. In the first and second
of the four papers cited Poisson’s relation (15) is derived and used to find the
probability distribution of a linear function of n equal variables each distributed as

k
V——- e-kx? (IT) £ ek |z] (n = 2 only)
It is further shown that the probability generating function (with { = e-) of the
k 1 ]
law — —————1is e~ ¢ but no deductions are drawn about the sum of n such
7z 14 Kz

variables. Cauchy is thus less discerning than Poisson (1824) was before him for
that author had derived the probability distribution of the sum of n variables

each distributed according to —
7w 1+ 2?

n may be the probability of the mean of » such variables lying between given
limits is the same as that of an individual variable. Bienaymé (1853) made a
similar observation. The last two of Cauchy’s four papers are devoted to improving
Laplace’s «proof» of the Central Limit theorem for n equal components.

and had pointed out that however great
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introduction. Strictly speaking the probability generating function
did not reappear as an independent entity in probability theory until
Poincaré (1896) devoted just over two pages of his text book to «char-
acteristic functions», namely probability generating functions with
t = ¢°; and he added nothing new except the title.

The publication of Gauss’s posthumous note mentioned earlier
received notice by Hausdorff (1901) who made explicit use of probab-
ility generating funetions with { = ¢™ without, however, giving them
a title. The only novelty is the derivation of the distribution law of
the linear funection

n 1 =
N [ ) —— | X,
S ) } ’
of the n variables z,, z,, ... z, each distributed according to the law
1 |
p(a:):;e“'“‘* —oo L oo
The result is
Frz ar \ -1
pn(m) = (62 +e 2) —oo <& oo

The first author to attempt the development of an independent
theory of probability generating functions was Kameda (1916, 1925).
To him 18 due the disinterment of the title ,generating function‘ and
the theorem which assimilates discrete and continuous laws for the
purpose of inversion. Kameda was closely followed in time by von
Mises (1919) who used Stieltjes integrals in the representation of the
probability distribution, Soper (1922) who threw some of the results
of the English statistical school into generating function form without,
however, using an inversion formula, and Lévy (1925) whose work
on the asymptotic behaviour of various types of probability law has
become classic. None of these successive authors was aware of the
work of the others; all their papers are readily accessible and need
not be mentioned further here.
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Appendix

Lapléce’s method of determining the probability
distribution of the sum of n random variables

As mentioned in the body of this article Laplace (1781) devised
a direct method of determining the probability distribution of the
sum of » random variables each subject to the same probability distri-
bution. Essentially his method 1s to write

Pu(@) = [ Pus(z—2) () da

in the continuous case and he later (1810) extended this to include
discrete distributions by means of the relation

oo

Z Py (@ — 1) 2 ()

These inductive formulae are now one of the standard methods of
deriving probability distributions of the sums of random variables
(Kendall, 1945, Ch. 10) and of themselves, perhaps, of little interest.
However, in the application of these relations to probability distri-
butions of limited range Laplace made brilliant use of a discontinuity
factor nearly fifty years before the supposed introduction of such
factors by Libri in 1827 (Burckhardt, 1915).

The simplest example of Laplace’s procedure 1s to be found in
his 1810 article. The individual continuous random variables are
assumed to be rectangularly distributed over the interval (0, k) and
a discontinuity factor ¢ 1s introduced by writing

1
p(z) =
L= h<x<
1 T o0
h

so that the range of the variable has become infinite; the final stage
of the procedure is to write { =1.
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Two steps in this derivation need explanation. At (a) it has been
assumed that each of the n variables is making a contribution to z
which exceeds h: that is to say all » variables are now measured from h
instead of from zero. In fact either none, one, two, ... n of these vari-
ables falls in the (0, h) portion of the range and the respective fre-
quencies of these possibilities are provided by the numerical coeffi-
cients of the expansion of (1—Z"" The term in ", for instance,
denotes that 4 of the variables have been given a variate value h in
excess of the truth; ¢ thus acts on z in (b) to reduce it by hj.

The discrete analogue of the preceding development appears
on pp. 258—256 of the Théorie analytique.
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