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Über eine Erweiterung
des Ausgleichungsverfahrens von Karup

Yon H. Kreis, Winterthur

Die Erweiterung des von Karup angewendeten Interpolationsverfahrens

[1] führt zu der allgemeinen Ausgleichungsformel

f (n) <*-i 1 / t \ -d-x 1 /' t \
(n) r + S T P "7 V + 0 + / - <)] + N N if (n + r) + f (n ~ 0] •

a id \a) dA-\ d \ d j
(i)

Es bedeuten

f(ri); f{n + 1); f(n + 2); die Beobachtungsfolge;

d, eine beliebige positiv-e ganze Zahl;

1 1

P(x) 1-— x3 — 2—.x2 + 1; (2)
2 2

1 1

N (x) a;3 + 2— x2— 4a; + 2; (3)
2 2

/(w), den statt f(n) zu nehmenden ausgeglichenen Wert.

Die neue Formel enthält insbesondere für den speziellen Wert d — 5

die bekannte Ausgleichungsformel von Karup.

Zur Ableitung des Ausdruckes (1) betrachten wir eine beliebige
Zusammenstellung von vier gleich weit auseinander liegenden
Beobachtungswerten

/(«)=/(«); f(a + d); f(a+M); f(a + M)



und ordnen den Argumenten derselben die symmetrische arithmetische
Folge 1111-r- +r> +u
mit Hilfe der Substitution

x

d 2

x — a 1

I h~ (4)

zu. Umgekehrt folgt aus dieser

f(x) f(a + lyd + d^j ,9(|)

und

/ (o) .7 — l—); / (o + d) g — —

/ (a + 2d) 9 y^j > /(a + 3d) —- g | ~h 1
^

^ •

Unter den verschiedenen Interpolationskurven, welche durch die
Punkte

1 f 1

1 / 1

2 V 2

1 / 1

P2:|-+y; ^-»1+ 2

1 / 1

P3 : I + 1—; .9 — .9 t + 1

2 V 2.

bestimmt werden können, zeichnet sich diejenige kubische Parabel

aus, die die quadratische Parabel P0 P1P2 im mittleren Punkte P1

und die Parabel P± P2 P3 im mittleren Punkte P2 berührt.
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Es seien

• iJ ~ 9h(£)> |

C, : y (p2(£), J

(5)

wenn

«MD ^ /(«) + + 11
^ /(a) +

',£ + l| <+/ (a),
1 j 'w 1

\ 2

(Pz (f) /(a + h) + j
3 ^ / (ff + '0 + ^

3") ^+ / (a + 0 >

die Gleichungen der Parabeln P0P1P2 und P-lP^F^.

Anderseits stellt die Gleichung

„ y — <Pi(£) y — <Ps(£)
03 :

oder

(6)

Ca : (/j ^2)^ — (£ +) SPi(f) (£ +) (Pz (i) (V

die allgemeine Parabel dritten Grades dar, die durch die Schnittpunkte

Plt P2 der Parabeln C1} C2 hindurchgeht.

Soll die Kurve C3 die Parabeln C1; C2 in P1; P2 berühren, so

sind die Parameter A1; 12 so zu bestimmen, dass in den Punkten Px,

P0 von Po y' gleich <p\ (•
| bzw. wL (4- — ist. Aus diesen For-

dimngenergiMrich ^ P V P

f^4
+ —

9?1

9h

<??2

0.

Da im allgemeinen

<P 1

1 \ 1 '

2
und 9h (V--) ++»(+

2 j ih+
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1 1

muss /, ==-!
2 2

sein, so class clie Gleichung von C3 lautet:

^3: y -- <Pi{£) +
^

¥*(£)•

Durch clie erhaltene Parabel C3 wird folgende Interpolationsfunktion
dritten Grades definiert

& (*) - (\ —s6) Vi (f) + (Y + ^ 9* (f) • (8)

In den Ausdrücken ^(f), <p2 (£) (6) können die Differenzen zl /
und A2f durch lineare Funktionen der Grundwerte/(a); /(a+d):
/(« -+- 2d); /(a -f 3d) ersetzt werden, so dass 0(f) sich auch folgender-
massen darstellen lässt

(9)

0 (f) - 0O (|) / (a) + (f) f (a + d) + 02 (f) / (a + 2d) + 03 (f) / (« + 3d).

Zur Berechnung dieser Polynome dritten Grades 0i (f) wählen wir
passende Zahlenwerte für f(a); /(a + d); /(« + 2d); /(« + 3d),
berechnen nach den Formeln (6) 9>x(f), 9?2(f) und nach der Formel

(8) 0(|).

Berechnung von 0o(f)-'

f(a) 1; f (a + d) / (a + 2d) =-- f (a -)- 3d) 0.

<p2(f) 0.

0O (f) 0 (f) A (_ 8|3 + 4f* + 2f- 1). (10)
16



Berechnung von 01(^):

j(a -d) 1; f (a) / (a + 2d) / (a + &/) 0 •

0t(|) 0(1) .-=
-1- (24|8 —4f2- -221 + 9). (11)
16

Berechnung von 02(f):

/ (o + 2d) 1; / (a) f(a + d) / (a + 3d) — 0.

02(f) 0(f) =-l(_24|«-4^ + 22| + 9). (12)
16

Berechnung von 03(f):

f(a + 'Sd) 1; / (a) =- f{a-\-d) / (a + 2d) 0.

99i(|) - 0;

03 (f) 0 (|)
1

- (8|3 + 4|* _ 2|— 1). (18)
16

Durch die Resultate (10) bis (13) ist die Interpolationsfunktion 0(|)
vollständig bestimmt.
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Zwischen den Koeffizienten 0i (|) bestehen folgende Beziehungen

0O(± I) &3( + f);

0i(± £) &%{ + £)

Es bedeuten nun n irgendein festes Argument der Grundfolge
und d irgendeine feste natürliche Zahl. Wir können das Anfangs-
arguinent a stets so wählen, dass

oder
a-|-d<n<a-j-2d

n — 2cl < a < n — d

ist, so dass a n — 2d + t, r 1; 2; d — 1 gesetzt werden

kann. Für x n; ci n— 2d + r folgt aus der Gleichung (4)

1T
2 d'

Die Formel (8) liefert uns den dem Argument x n entsprechenden
Funktionswert

0 l\-l) 0« ~u + " + 01 (J-J + r> +

0,
' 1 T

2 d4
/(W + T) + ^3

1 T

2 d
f(n + d + r). (14)

Indem wir nacheinander r — 1; 2; d— 1 einsetzen, ergeben
sich d—1 interpolierte Werte für f(n), so dass wir mit dem

Beobachtungswert f(n) selbst über d Werte verfügen. Bildet man aus
diesen das arithmetische Mittel, so findet man

/ (n) 1

cl i d

1 T
(£o j —_ jf(n — 2d + r) + f(n — d + t) +

1 T

+ ^2( --^)/(W+T) + ^3(--^)/(TC + cZ + T) • (15)



Der Übersichtlichkeit wegen wollen wir die Glieder nach dem
Abstand t der Argumente n + t vom festen Argument n ordnen.
Der Abstand t der Argumente n+t vom Index n ist kleiner als d,

t
also das Verhältnis - kleiner als 1.

d

In der Gleichung (15) setzen wir entweder

n r n t, d. h. r t

und erhalten als Koeffizienten von / (n -f-1) f{n-\-t):

\-2 d) V 2 d) V 2 ä
oder

n — d + x n— t, d.li. x d— t.

AVir bekommen als Koeffizienten von f(n — d -f- r) f (n — t):

0/LV 0iI + L
\ 2 d) \ 2 d

Hieraus folgt, dass die Koeffizienten von f{n-\- t) und f(n— t)
übereinstimmen. Der gemeinsame AVert beträgt nach der Gleichung (11)

/' lt\ 1 ts 1 t2 / t,

0 l + - 1 2 +1 P -\ 2 d J 2 d3 2 d2 \d

Der Abstand t der Argumente n + t vom Index n ist grösser als d, also

t
das Verhältnis — grösser als 1.

In der Gleichung (15) setzen wir entweder

n —)— d —|— x — n —|- t, d.h. x — t d

und finden als Koeffizienten von / (n + d + r) / (n + t):

oder
n — 2d + t w — t, d.h. r 2d — t.



Wir erhalten als Koeffizienten von f(n— 2d r) f(n-
1

t):

<Z>n

1 t
1

2
+ 'd

Demzufolge stimmen clie Koeffizienten von f(n-\~ t) und f(n —
überein. Der gemeinsame Wert beträgt nach der Gleichung (10)

<K
1 t 1 f3 1 t2 t

h 2 4- + 2 NI-
2 d* 2 d2 d \d

Indem man daher in der Gleichung (15) die Glieder nach dem Abstand
des Argumentes von dem Index n ordnet, resultiert schliesslich die
eingangs angegebene Formel (1).

y

k

Normalkurven der Koeffizienten:

P(x) — 1 y x3 — 2-b x2 -f- 1

N (x) —•- x3 + 2j x2 — 4 x2 + 2

+ 1

y • - -

Die Normalfunktion der Koeffizienten

1

P{x) 1-
1

2—:
2

y N (x)

:+l
ist in dem in Betracht kommenden Intervall x 0 bis 1 stets positiv
und fällt von 1 bis 0. Im Punkte (0; 1) ist die Tangente parallel zur
x-Achse und im Punkte (1; 0) hat die Tangente die Richtungszahl — F.
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Hingegen ist die Normalfunktion der Koeffizienten

1 1

N (x) x3 + 2— x2 — 4x 4- 2
2 2

in dem entsprechenden Intervall x 1 bis 2 stets negativ. Sie fällt
von 0 bis zu dem Minimum N (1-P) — 0,074 und wächst dann bis

zu dem Maximum N (2) 0.
Die beiden kubischen Parabeln y P(x) und y N (x) berühren

sich im Punkte (1; 0) und sind durch die beiden Punkte (0; 1) und
(1; 0) bzw. (1; 0) und (2; 0) und die erwähnten zugehörigen Tangenten
bestimmt.

Charakteristisch für die Ausgleichungsformel ist das Überwiegen
der positiven Koeffizienten oder Gewichte. Bezeichnen S1(d) und Sz(d)
die Summen der positiven und negativen Gewichte der Formel (1),

so findet man

S^d)
1 « 1 /T\ 1 1o-1 i / r \

2 V, — P _ 1

d \d J 12 12<22

1 11 / T \ 1

«•-•Sid«)—5+ IM2

Aus den beiden Ergebnissen gehen die Kontrollbeziehungen hervor:

S^d) + Sz(d) 1

S1(d) : | Sz(d) | =-.= 13 -f
d2— 1

Lässt man die Äquidistanz d unendlich gross werden, so erhält man
als Grenzwerte

^ ^
St (co) 1 ; S2 (oo)1

12
v ; 12

und i i

SiH:|Sa(oo)| 13.

Zu denselben Ergebnissen gelangt man durch die Integrationen
1 / 3 g \ i i

(oo) 2 f P(x) dx - a:4 x3 + 2x) 1—
oj \4 3 J0 15

2 / 1 5 \2
St (oc) 2 J N(x)dx — — xi + — x3 — 4a:2 4x\ —

12

2 1

12
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Bei der Ausgleichung sind ausser f(n) 2d—2 Beobachtungswerte
mit positiven und ebenso viele mit negativen Gewichten also 4c?—3

Werte heranzuziehen. Da die Funktionen PI — und N (— für
t \dJ \d
- 1 verschwinden, fallen die beiden Grundwerte / (n + <?) und

d

f(n — <?) bei der Summation weg.

Sieht man vom trivialen Fall d 1; 4<?—8 1 Glied also

f(n) f(n) ab, so erhalten wir für d 2 bis 6 die folgenden
Spezialformeln:

c? 2; 4d — 3 5 Glieder; S1(d) 1^ 1,0625;

Ss(d) —i —0,0625; + (d): | S2 (d) | 17.

f(n) 0,5 f(n) + 0,28125 [f(n + 1) + f(n— 1)]

— 0,03125 [/ (n + 3) + / (n — 3)].

d 3; 4c? — 3 9 Glieder; S+c?) l£ 1,07407;

S2(c?) — — 0,07407; Sx(c?) :\S2{d) \ 14,5.

f(n) 0,33333 / (n) + 0,25926 [f(n + 1) + f{n— 1)]

+ 0,11111 [/+ + 2) + f(n— 2)]

— 0,024691 [/ (n + 4) + f [n — 4)]

— 0,012346 [/ + + 5) + / + — 5)].

d 4; 4c? — 8 13 Glieder; + (<?) 1^ 1,07813;

S2 (c?) — £ — 0,07813; S, (c?): | S2 (d) \ 13,8.

/"(«) 0,25/+) + 0,21680 [/+ + 1) + /(» — 1)]

+ 0,140625 [/+ + 2) + /(» — 2)]

+ 0,056606 [f(n + 3) + /(» — 3)]

— 0,017578 [/ {n + 5) + / (n — 5)]

— 0,015625 [/ + + 6) + / (n — 6)]

— 0,005859 [/ + + 7) + / + — 7)].
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d 5 (Karupsche Formel); 4d — 3 17 Glieder; S1(d) 1.;. 1.08;

(ä) ~ | - 0,08; Sx (d): | S2 (d) \ 13,5. •

f(ri) 0,2 / 0) + 0,1824 [f(n+ 1) + /(to — 1)]

+ 0,1392 [/ (to + 2) + / (to — 2)]

+ 0,0848 [/(to + 3) + /(to — 3)]

+ 0,0336 [/ (to + 4) + / (to — 4)]

— 0,0128 [/ + + 6) + / (to — 6)]

— 0,0144 [/ (to + 7) + / (to — 7)]

— 0,0096 [/(to + 8) + /(to — 8)]

— 0,0032 [/ (to +9)+/(«— 9)].

d 6; 4d— 3 21 Glieder; S1(d) l-~^- 1,08102;

s2 (d) — — 0,08102; s1 (d) \ s2 (d) \ 13,34.

/(to) 0,16667 /(to) + 0,15625 [/(to + 1) + /(to — 1)]

+ 0,12963 [/(to + 2) + /(«— 2)]

+ 0,09375 [/(to + 3) +/(to- 8)]

+ 0,05556 [/(to + 4) + /(to— 4)]

+ 0,02199 [/ (to + 5) + / (to — 5)]

— 0,00965 [/ (to + 7) + / (to — 7)]

— 0,01235 [/ (to + 8) + / (to — 8)]

— 0,01042 [/ (to + 9) + / (to — 9)]

— 0,00617 [/ (to + 10) + / (to — 10)]

— 0,00193 [/(to + 11)+ /(to—11)].
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