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Die Elemente der kollektiven Risikotheorie
von festen und zufallsartig schwankenden Grund-
wahrscheinlichkeiten )

Von Hans Ammeter, Ziirich

In der elementaren Versicherungsmathematik geht man von der
Annahme eines vollkommenen Risikoausgleichs aus, obschon der
rechnungsméssige Verlauf des Risikogeschéftes stets von zufilligen
Schwankungen gestort wird. Die Risikotheorie befasst sich demgegen-
ttber mit den durch diese Schwankungen bewirkten Abweichungen
vom rechnungsmissigen Schadenverlauf und den Gefahren, welche
dem Versicherer aus diesen Abweichungen entstehen.

Innerhalb der Risikotheorie unterscheidet man zwischen einer
mdividuellen und einer kollektiven Theorie. Die iltere, individuelle
Theorie geht aus vom Risiko aller Finzelversicherungen eines Be-
standes. Die moderne, von einigen nordischen Autoren (siehe Litera-
turverzeichnis) entwickelte kollektive Risikotheorie lisst die Einzel-
versicherungen des Bestandes ausser acht und beniitzt lediglich gewisse
Durchschnittseigenschatften von Versicherungsbestédnden. Die kollektive
Betrachtungsweise ist auch fir die vorliegende Arbeit wegleitend.

Bisher ging man in der Risikotheorie gewohnlich von den in der
klassischen Wahrscheinlichkeitsrechnung iiblichen Annahmen aus;
insbesondere wurde regelmiissig vorausgesetzt, dass die Grundwahr-
scheinlichkeiten, das sind die Wahrscheinlichkeiten fir den Eintritt
oder Nichteintritt des Schadenfalles, in allen Risikoklassen fest sind.
Diese wohl allzu einfache Annahme harmoniert aber nur selten mit

1) Diese Arbeit behandelt in erweiterter Form die Problemstellungen, welche
im Kurzreferat «Risikotheoretische Zusammenhinge bei festen und schwankenden
Grundwahrscheinlichkeiten» anlésslich der Mitgliederversammlung vom 1'7 Ok-
tober 1948 erértert worden sind.
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den wirklichen Verhéltnissen im Versicherungswesen. Daraus wird
vielfach geschlossen, dass die Risikotheorie an sich und noch mehr
thre praktische Anwendung abzulehnen sei.

Diese Auffassung geht wohl am Kern der Dinge vorbei; nicht die
Risikotheorie an sich ist auf versicherungstechnische Probleme nicht
anwendbar, sondern nur ihre Ergebnisse, soweit sie sich auf Annahmen
stiitzen, die den wirklichen Verhiltnissen zu wenig Rechnung tragen.
Nun ist aber die Risikotheorie keineswegs an die in der klassischen
Wahrscheinlichkeitsrechnung iiblichen Annahmen gebunden; sie lisst
sich vielmehr ohne weiteres auf zweckméssigeren Annahmen aufbauen.
Auf diesen Sachverhalt hat schon Cramér in der Arbeit [1]71) hin-
gewiesen. Spéter hat Nolfi [20], unseres Wissens als erster, die Grund-
ziige einer Risikotheorie auf individueller Grundlage entwickelt, die
zufallsartig schwankende Grundwahrscheinlichkeiten voraussetzt. In
der Arbeit [15] hat der Verfasser versucht, die gleichen Gedanken-
ginge der kollektiven Risikotheorie dienstbar zu machen 2). Durch
diese Erweiterungen ist die Risikotheorie zweifellos den wirklichen
Verhiltnissen im Versicherungswesen nihergekommen.

Die bisherige, von festen Grundwahrscheinlichkeiten ausgehende
Risikotheorie ist damit aber keineswegs als iberholt zu betrachten;
sie bildet vielmehr die unentbehrliche Grundlage fiir die erweiterte
Risikotheorie. In dieser Arbeit wird daher versucht, die Risikotheorie,
ausgehend von der einfachsten Annahme von festen Grundwahrschein-
lichkeiten, systematisch zu erweitern auf planméssig verdnderliche
und schliesslich zufallsartig schwankende Grundwahrscheinlichkeiten.

Die Anzahl der Schadenfélle und die Gesamtschadensbelastung
werden in der Risikotheorie nicht wie in der elementaren Versicherungs-
mathematik als feste, & priori gegebene Grossen angenommen, sondern
als zufillige Variable, die einem Verteilungsgesetz folgen. Die Theorie
der Verteilungsfunktionen bildet daher die Grundlage der Risiko-
theorie. Zum besseren Versténdnis der nachfolgenden risikotheo-
retischen Ableitungen werden deshalb in einem einleitenden Kapitel
die wichtigsten Formeln und Sétze aus der Theorie der Verteilungs-
funktionen zusammengestellt und durch Beispiele erliutert, welche
fir die spateren Entwicklungen von Bedeutung sind.

1) Die in [ ] gesetzten Nummern beziehen sich auf das Literaturverzeichnis.
?2) Von &hnlichen Ideen geht auch die dem Verfasser erst nachtriglich
bekannt gewordene Arbeit [13] von Ove Lundberg aus.



Einige Ergebnisse aus der Theorie
der Verteilungsfunktionen [18]

Unter einer zufilligen Variablen z versteht man eine Grosse,
die mit gewissen Wahrscheinlichkeiten f(x,) verschiedene Werte z,
annehmen kann. Die Gesamtheit aller z,-Werte und der zugehérigen
Wahrscheinlichkeiten f(z,) bilden eine Verteilung, die entweder als
Frequenzfunktion f(x) oder als Wahrscheinlichkeitstunktion F'(z) dar-
gestellt werden kann. Die Frequenzfunktion f(x) gibt im diskontinuier-
lichen Fall die Wahrscheinlichkeit an, dass die zufillige Variable den
Wert 2 annimmt. Im kontinuierlichen Fall ist f(z)dx die Wahrschein-
lichkeit, dass die zufillige Variable in den Bereich zwischen z und
r + dx fillt. Die Wahrscheinlichkeitsfunktion I (x) gibt demgegeniiber
die Wahrscheinlichkeit an, dass die zuféllige Variable einen Wert z, < «
annimmt ; sie bestimmt sich aus der Frequenzfunktion durch Summa-
tion oder Integration nach den Formeln

F(z) = Y f(x;) oder F(z)= ff(:ci) dz, .

Ziwei zuféllige Variable x; und z, heissen stochastisch abhingig
oder unabhingig, je nachdem die Verteilung der einen Variablen z,
von der anderen z, abhéngt oder nicht. Die Summe von zwel stocha-
stisch unabhéngigen, zufilligen Variablen z = x, 4 x, ist wieder eine
zufallige Variable, deren Frequenzfunktion durch das nachstehende
Faltungsintegral gegeben ist.

1) = [ hiedfle— 2,)dz,

o
= [ hie— ) fa(z,) de,

=h() * () (1)

Formel (1) lidsst sich ohne weiteres auf die Summe von mehr als zwei
zufilligen Variablen erweitern. Es gilt dann fiir 2 = 2y + 2+ 25+ . ..

f@) =12 = fo(2) * fa(e) * ... (1)
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Die Untersuchung der Eigenschaften von Verteilungen an Hand
der Frequenz- und Wahrscheinlichkeitsfunktionen gestaltet sich im
allgemeinen recht schwierig und fithrt oft — wie zum Beispiel in
Formel (1) — zu verhéltnisméssig kompliziert aufgebauten Aus-
driicken, deren Deutung nicht ohne weiteres moglich ist. Zu einer
betréchtlichen Vereinfachung gelangt man aber vielfach, wenn man
an Stelle der Frequenz- oder Wahrscheinlichkeitsfunktion die Laplace-
Transformierte der Frequenzfunktion

o) = S (@)

T=—0C

oder e
20 = [ f(a)eda, (2)

die sogenannte charakteristische Funktion, einfithrt. In Formel (2)
bedeutet ¢ eine reelle Variable und ¢ die imaginére Einheit. Die charalk-
teristischen Funktionen der wichtigsten, in dieser Arbeit auftretenden
Verteilungen sind in der nachstehenden Tabelle 1 zusammengestellt.

Tabelle 1
Frequenzfunktion Charakteri.stische
Verteilung / Funktion
&) = :
@) P8 =
. : n\ - :
Binomialverteilung (a:) p*(1—p)y*™ {pet 4 1—p}"
-P pz
e" P it
Poisson-Verteilung : g2l 1)
!
i 2 ol
Gauss-Verteilung e ° e °
[/ 27
: h
Pearson-Verteilung hohO“ g% gho-] ho ?
Typ III © I'(hy) h—it |
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Die wichtigsten Sétze iiber die charakteristische Funktion lauten:

a) Der Inversionssatz

Aus einer gegebenen charakteristischen Funktion lisst sich um-
gekehrt die zugehorige Frequenz- oder Wahrscheinlichkeitsfunktion
bestimmen. Ks gelten die Inversionsformeln

1 5 .
flo) = — | o) e™dt (3a)
27 _Y, '
und ] 4T ’
z) = lm —— | (@) ¢™dt, 3b)

je nachdem eine kontinuierliche oder diskontinuierliche Frequenz-
funktion vorliegt; der Ausdruck rechts in der Formel (3b) nimmt nur
fir z-Werte, die in der Verteilung vorkommen, einen von Null ver-
schiedenen Wert an.

Fir die Wahrscheinlichkeitsfunktion gilt stets die Inversionsformel

+ oo e 8-1'2!

g 1
Flo) = [f@)ds = PO+~ [p@)———d. @

— 00

Der Inversionssatz zeigt, dass Verteilung und charakteristische
Funktion umkehrbar eindeutig einander entsprechen. Aus den Eigen-
schaften der charakteristischen Funktion darf daher direkt auf die
Kigenschaften der zugrunde liegenden Verteilung geschlossen werden;
zom Beispiel lasst sich aus dem Umstand, dass der in Formel (3b)
rechts auftretende Grenzwert fiir alle # verschwindet, schliessen, dass
die zugrunde liegende Frequenzfunktion fiir alle z kontinuierlich ist.

b) Der Produktsatz

Der durch das Faltungsintegral (1) gegebene Zusammenhang
zwischen den Frequenzfunktionen einer Summe von zwei stochastisch
unabhéngigen, zufilligen Variablen und ihren Komponenten geht fiir
die entsprechenden charakteristischen Funktionen in ein gewohnliches
Produkt iiber

P (t) = % (t) 2, P2 (t) (5)



— 40 —

Beispiel: Die Summe von zwei stochastisch unabhiingigen, zufillicen
Variablen z = z; + z,, die beide einer Poisson-Verteilung folgen,
geniigt ihrerseits einer Poisson-Verteilung.

Bewers: Das Produkt der beiden aus Tabelle 1 zu entnehmenden
charakteristischen Funktionen

o) = epl(eif-n . gPale=l) o y(P1+Py) (e¥t-1) (6)

18t gleich aufgebaut wie die beiden Faktoren, das heisst die Frequenz-
funktion von z = z; 4 z, ist durch

~(PyIPo) (P 4 Py
fo = S Y ©)

2!

gegeben. Die direkte Ableitung von Formel (6’) — ohne Beniitzung
der charakteristischen Funktion — wire bedeutend umstindlicher.

¢) Der Momentensatz

Die Potenzmomente einer Verteilung

m = [ f(z)atds (7)

erhalt man aus der charakteristischen Funktion nach der Formel

My, == (i)_k:cfp(k) (t) ‘t:O’ (7')

in der " (1) |,_, die k-te Abteilung der charakteristischen Funktion
an der Stelle t = 0 bedeutet.

d) Die Substitutionsregel

Ersetzt man die zufillige Variable x durch die linear von ihr ab-
héingige neue Variable
r—a
g = — ,

b
so geht die charakteristische Funktion () in

4 t

b

iiber.
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Beispiel: Wird in der Poisson-Verteilung (siehe Tabelle 1) die zu-
fallige Variable = ersetzt durch

r—P
V7

so erhilt man an Stelle der charakteristischen Funktion

o e

P = "D

die charakteristische Funktion

e) Der Grenzwertsatz

Strebt eine Folge von charakteristischen Funktionen ¢4, @,, ...
gleichmissig in jedem endlichen ¢-Intervall gegen eine Grenzfunktion
®.., S0 streben die entsprechenden Wahrscheinlichkeitsfunktionen
gegen die Wahrscheinlichkeitsfunktion, welche der Grenzfunktion
@, entspricht.

Die tiir die Giiltigkeit des Satzes wesentliche Bedingung der gleich-
migsigen Konvergenz ist bei allen in dieser Arbeit auftretenden Grenz-
iibergéingen erfiillt. Die fiir die charakteristische Funktion abgeleitete
Grenzfunktion darf somit stets auf die entsprechende Wahrscheinlich-
keitsfunktion iibertragen werden.

Bewspiel: Ableitung der Poisson-Verteillung als Grenzfunktion der
Binomialverteilung:

Nach Tabelle 1 lautet die charakteristische Funktion der Bino-
mialverteilung

) = {1+pE'—1}"

Lésst man die Anzahl der Ziige n gegen o< und gleichzeitig die Grund-
wahrscheinlichkeit p gegen Null streben, und zwar so, dass der Mittel-
wert np = P festbleibt, so ergibt sich der Grenzwert

nm

lim () = lim [1-+ L gt —1y| = epet, (10')
e

=P 00 M—p- 00
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der gemiss Tabelle 1 mit der charakteristischen Funktion der Poisson-
Verteilung identisch ist, dass heisst es ist

\mm-z e—P Pr

i (") (£ (1272 (1)
oo €T m m z!

hY

1I.
Die Frequenzfunktion der Schadenfille

Die Anzahl der Schadenfille, die in einem Versicherungsbestand
wihrend einer Beobachtungsperiode auftreten, stimmt nur selten mit
der erwartungsmissigen Anzahl iiberein; im allgemeinen tritt viel-
mehr irgendeine vom KErwartungswert P abweichende Anzahl x von
Schadenfillen auf. Jeder dieser Schadenszahlen kann die Wahrschein-
lichkeit f(x, P) zugeordnet werden, mit der sie zu erwarten ist; die
Wahrscheinlichkeiten f(z, P) bilden dann die Frequenzfunktion der
zufilligen Variablen z, die den Bedingungen

Mf@P)=1 und > af(x,P)=P

geniigt. =0 =0

Die Frequenzfunktion f(x, P) kann grundsitzlich auf zwei Arten
bestimmt werden, nédmlich empirisch durch Ausgleichung von Be-
obachtungen oder theoretisch unter Beniitzung gewisser Annahmen
itber die Eigenschaften der Schadenswahrscheinlichkeiten. Bei der
letzteren Methode ist die Brauchbarkeit der getroffenen Annahmen
nachtraglich noch zu iuberprifen, z. B. indem die theoretische Fre-
quenzfunktion mit empirisch gefundenen verglichen wird. Zeigt dieser
Vergleich eine einigermassen befriedigende Ubereinstimmung zwischen
der theoretischen und der empirischen Funktion, so hat man — wie
Eggenberger in der Arbeit [19] mit Recht hervorhebt — mehr erreicht
als bei einer noch so erfolgreichen analytischen Ausgleichung der
empirischen Funktion. Die bei der Ableitung der theoretischen Fre-
quenzfunktion getroffenen Annahmen diirfen dann zu mindest
niherungsweise — als die Gesetze gelten, welche die betreffenden
Schadenswahrscheinlichkeiten beherrschen. Die Kenntnis dieser Ge-
setze erlaubt es, Vorginge zu beschreiben, iiber die noch keine Be-
obachtungen vorliegen; zum Beispiel ldsst sich zum voraus angeben,
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wie die Frequenzfunktion f(z, P) sich verdndern wird, wenn der
Erwartungswert P wichst.

In diesem Kapitel soll die Frequenzfunktion der Schadenfille
unter drei verschiedenen Annahmen nach der theoretischen Methode
bestimmt werden. Unter.a) wird angenommen, die Schadens- oder
Grundwahrscheinlichkeiten verhalten sich wie die aus der Wahr-
scheinlichkeitsrechnung bekannten Urnenwahrscheinlichkeiten. An-
schliessend werden diese Annahmen unter b) in dem Sinne erweitert,
dags ein engerer Anschluss an die tatsidchlichen Gegebenheiten im Ver-
sicherungswesen erreicht wird. Insbesondere wird ein kontinuierlicher
Ablauf des Risikogeschéftes vorausgesetzt, bei dem die unter Risiko
stehenden Bestéinde und die Grundwahrscheinlichkeiten sich im Ver-
laufe der Zeit planméssig verdndern. Im Abschnitt ¢) wird schliesslich
dienoch allgemeinere Annahme getroffen, dass die Grundwahrscheinlich-
keiten selbst gewissen zufallartigen Schwankungen unterworfen sind.

a) Feste Grundwahrscheinlichkeiten und das klassische
Urnenschema

Dag klassische Urnenschema von Bernoulli besteht aus einer
einzigen Urne, die mit B roten und S schwarzen, insgesamt N Kugeln
gefiillt ist. Aus dieser Urne werden blindlings » Kugeln gezogen, wobei
die gezogenen Kugeln jeweils zuriickgelegt werden. Die Wahrschein-
lichkeit, insgesamt x schwarze Kugeln zu ziehen, ist dann durch die
Binomialverteilung

S i S n—a
(- O3 e
gegeben

Dieses Urnenschema léisst sich auf die Verhéltnisse bei einem Ver-
sicherungsbetrieb tibertragen; die Anzahl » der insgesamt gezogenen
Kugeln entspricht der Anzahl der unter Risiko stehenden Versiche-
rungen und die Anzahl z der gezogenen schwarzen Kugeln der Anzahl

S
der eingetretenen Schadenfille. Die Wahrscheinlichkeit Nk eine

schwarze Kugel zu ziehen, geht ferner in die Grundwahrscheinlichkeit
tir den Eintritt des Schadenfalles tuber. Unter den getroffenen
Voraussetzungen ist somit die Binomialverteilung (11) die gesuchte
Frequenzfunktion der Schadenfiille.
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In der Praxis ist die Anzahl der unter Risiko stehenden Ver-
sicherungen n gewdhnlich eine grosse und die Grundwahrscheinlich-
keit p eine kleine Zahl. Die Binomialverteilung nidhert sich unter
diesen Umstdnden der unter Ie) abgeleiteten Poisson-Verteilung,
das heisst es gilt die Niherungsformel

¢f P*

fz, P) ~-

(12)
x!
Aus der Wahtscheinlichkeiﬁsrechnung ist ferner bekannt, dass die

Wahrscheinlichkeitsfunktion der Binomialverteillung (11) fiir grosse n
und festes p in die Gaussverteilung

z-np
1 7 A r—n '
F(z,np) = e fe 2 dz = ¢<Mg p) o (18)
T —co

iibergeht. Die Streuung dieser Gaussverteilung betrégt

ot {z—np) = éf(mp) (6 —np)2 = np(l—p) = P(1—p). (13a)

Die Gaussverteilung (13) weist die gleiche Streuung auf wie die Bino-
mialverteilung oder kiirzer, sie weist «Bernoullische Dispersion» auf.

Die Verteilungen (11), (12) und (13) weichen in der Regel nur
wenig voneinander ab; die Formeln (11), (13) und (13a), in denen die
Anzahl der Versicherten n und die Grundwahrscheinlichkeit p auf-
treten, gehéren zu den wesentlichen Grundlagen der wndividuellen

Risikotheorie.

b) Kontinuierlicher Risikoprozess und planmissig verdnderliche
Grundwahrscheinlichkeiten

Die 1m vorigen Abschnitt abgeleiteten Frequenzfunktionen tragen
den wirklichen Verhiltnissen im Versicherungswesen zu wenig Rech-
nung. In diesem Abschnitt werden daher allgemeinere, den wirklichen
Gegebenheiten néher kommende Annahmen gewihlt.

Zunéchst wird angenommen, dass tiber Eimtritt oder Nichtein-
tritt eines Schadenfalles wihrend einer Beobachtungsperiode nicht nur
— wie beim klassischen Urnenschema — durch eine einzige Ziehung
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entschieden wird, sondern dass diese Ziehungen in jedem Zeitelement
fortgesetzt erfolgen. Auf diese Weise wird beriicksichtigt, dass das
versicherte Risiko kontinuierlich auf die unter Risiko stehenden Ver-
sicherungen einwirkt. Ferner wird vorausgesetzt, dass sowohl die
Grundwahrscheinlichkeiten als auch die unter Risiko stehenden Be-
stande sich planmissig verindern, das heisst Funktionen der Zeit ¢
sind. Im Zeitelement zwischer® ¢t und ¢ + dt stehen zum Beispiel R,
Versicherungen unter Risiko und die mittlere Grundwahrscheinlichkeit
fiir den Eintritt des Schadenfalles betrage u, dt. In diesem Zeitelement
sind somit
R, p, dt

Schadenfille und im ganzen Zeitraum zwischen 0 und T, welcher einer
Beobachtungsperiode entsprechen mége,

o

T
P= fR“utdt (14)
0

Schadenfille zu erwarten.

Die gesamte Beobachtungsperiode zwischen 0 und T wird in m

Teilperioden so aufgeteilt, dass in jeder Teilperiode — Schadenfille
m

zu erwarten sind. Diese Teilperioden kénnen zeitlich verschieden lang
sein. W&hlt man m gross genug, so ist in jeder Teilperiode — einem
sogenannten Risikoelement — nur ein oder gar kein Schadenfall zu
erwarten. Die Wahrscheinlichkeiten f(0, dP) und f(1, dP), welche
die Frequenzfunktion der Schadenfille in einem Risikoelement bilden,
ergeben sich aus dem Erwartungswert )

Lo £(0,dP)-0 + f(1,dP)-1.
m

Es gelten somit fir die Frequenzfunktion in einem Risikoelement
die einfachen Beziehungen:
1—dP ftir =z =

f(z,dP) = & dP fir o = (15)

/N

0 fir =

I

i)
0
1
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Der Frequenzfunktion (15) fiir ein Risikoelement entspricht die
charakteristische Funktion

@t dP) = Do f(x, dP)e™
— 1 AP —1).

(15

Die Anzahl der Schadenfille wihrend der ganzen Beobachtungs-
periode zwischen 0 und T ist gleich der Summe der Schadenfille, die
in allen Risikoelementen aufgetreten sind. Fiir die ganze Beobachtungs-
periode erhidlt man daher die charakteristische Funktion mit Hilfe
des Produktsatzes aus Formel (15)

»(t P) = [1+dP (& —1)]™,

wobeil die Schadenzahlen in den verschiedenen Risikoelementen als
stochastisch unabhinglg vorausgesetzt werden. Setzt man fir dP

wieder — und geht man zum Grenzwert m~» oo iiber, so erhélt man
m

den Ausdruck

m

-
@t P) = lim [1 (e 1)}
™M

m—oco

(12)

_ BP(&'LJ,)’
der nach Tabelle 1 die charakteristische Funktion, welche der Poisson-
Verteilung zugeordnet ist, darstellt. Daraus folgt, dass die Frequenz-
funktion fiir die ganze Beobachtungsperiode zwischen 0 und T mit

der Poisson-Verteilung
gepe

f(z, P) = (12)

z!

identisch ist, die sich nach den Annahmen des Abschnittes a) als
Néiherungslésung ergeben hat, wihrend sie hier die genaue Lidsung
darstellt. Die allgemeineren Annahmen des Abschnittes b) bewirken
somit Uberraschenderweise keine wesentliche Verdnderung der resul-
tierenden Frequenzfunktion. Zu beachten ist insbesondere, dass der
Verlauf der Funktion R, gy, wiahrend der Zeit 0 < ¢ < T und die
Lénge dieser Zeitstrecke fir die Frequenzfunktion der Schadenfélle
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bedeutungslos sind. Alle Funktionen R, u,, die gemiss Formel (14)
zum gleichen Erwartungswert P fiihren, ergeben die gleiche Frequenz-
funktion (12). Man kann deshalb in der Risikotheorie an Stelle der
Zeitvariablen die Grosse P beniitzen und den Zeitraum zwischen
0 und 7' lediglich «Periode P» nennen.

Die Frequenzfunktion (12) héngt nur vom Parameter P ab; es
gilt somit unter den getroffenen Voraussetzungen der grundlegende
Satz: Die Frequenzfunktion der Schadenfdille tst durch die erwartungs-
massige Anzahl der Schadenfille P vollstindig bestimmd.

Dieser Satz bildet eine der wesentlichen Grundlagen der kollek-
tiven. Risikotheorie. Er erlaubt es, von der individuellen Zusammen-
setzung und vom Umfang des Versicherungsbestandes und schliesslich
vom zeitlichen Verlauf des Risikos zu abstrahieren.

Die Strenung der Poisson-Verteilung

e P p*

2z —P) =3 (z—Pp=P (12a)

x!

18t mit dem Mittelwert P identisch; diese Eigenschaft wird in dieser
Arbeit als «Poissonsche Dispersion» bezeichnet. Die Streuung der
Binomialverteilung [siehe Formel (13a)], die sogenannte «Bernoul-
lische Dispersion» 1st etwas kleiner als die «Poissonsche Dispersiony.
Der Unterschied der beiden Streuungen ist jedoch in der Regel ganz
unbedeutend.

Wie die Binomialverteilung fiir grosse n, so geht auch die Wahr-
scheinlichkeitsfunktion der Poisson-Verteilung fiir grosse P in eine
Grenzfunktion iber. Um diese Grenzfunktion ableiten zu konnen,

muss die Hilfsvariable
& e P

yr
eingefithrt werden. Nach Formel (9) gilt dann fiir die charakteristische
Funktion

o =

(p(f- P) — e—itP_;weP (e”P z—l)

1 1 .
3 o y — (2 p-1 S
(~itPE PlitPT 2 + ()21 + - o]

2!
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Lésst man rechts P gegen Unendlich streben, so erhélt man ohne

welteres die Grenzfunktion
t2

lim p(t, P) =e¢ 2, (16")

P—co

aus der nach dem Grenzwertsatz fiir die Wahrscheinlichkeitsfunktion
die Grenzwertformel (siehe Tabelle 1)

1 e
lim F(5P) = —— [¢ 2 dz= &) (16)
P—3»oc0 Q7 ——g

folgt.

Fir grosse P geht somit die Wahrscheinlichkeitsfunktion der
Poisson-Verteilung in eine Gauss-Verteilung mit «Poissonscher Dis-
persion» iiber, wihrend aus der Binomialverteilung fiir grosse n eine

Gauss-Verteilung mit «Bernoullischer Dispersion» hervorgeht [siehe
Formel (13)].

c¢) Zufallsartig schwankende Grundwahrscheinlichkeiten
und ein erweitertes Urnenschema

1. Die unter a) und b) getroffenen Annahmen lassen den Um-
stand ausser acht, dass die Grundwahrscheinlichkeiten nicht nur
planméssig, sondern auch zufallsartig ihren Wert #ndern kénnen.
Diese in fast allen Versicherungszweigen mehr oder weniger deutlich
zu beobachtende Erscheinung ist besonders in der Invaliditits-, Feuer-
und Hagelversicherung bekannt. Die innere Struktur dieses Vorganges
lagst sich durch das nachstehend beschriebene, erweiterte Urnenschema
veranschaulichen.

Gegeben sei eine Reihe von %k Urnen, die alle mit roten und
schwarzen insgesamt je N Kugeln gefiillt seien, wobei das Mischungs-
verhiltnis von Urne zu Urne variiert; in der r-ten Urne seien zum
Beispiel S, schwarze und B, = N —S, rote Kugeln enthalten. Neben
diesen k Urnen, sie seien Sekunddrurnen genannt, ist noch eine Primér-
urne vorhanden, in der H Lose enthalten sind, von denen je h, der
r-ten Sekundérurne entsprechen. Beim erweiterten Urnenschema wird
zundchst aus der Primirurne ein Los gezogen und anschliessend aus
- der dem gezogenen Los entsprechenden Sekundédrurne n Kugeln (mit
Zuriicklegen). Die Wahrscheinlichkeit, z schwarze Kugeln zu ziehen,



berechnet sich unter diesen Voraussetzungen als gewogenes Mittel der
I'requenzfunktionen wn allen Sekundirurnen, wobei die Wahrschein-
lichkeiten, die r-te Sekundidrurne auszulosen, als Gewichte auftreten:
es st somit beim erweiterten Urnenschema

feP) =S, ) 5) (15 o

7'=1Ew €T N N

die an die dtelle der Binomialverteilung (11) tretende Frequenzfunktion
der Schadenfille, in der

die erwartungsmissige Anzahl der gezogenen schwarzen Kugeln bedeutet.
Ersetzt man in allen Sekundiruwrnen die Binomialverteilung durch
die Poisson-Verteilung, das heisst, geht man zu den im Abschnitt b)
eingefithrten allgemeineren Voraussetzungen tber, so gelangt man zur
Frequenzfunktion
oo —Pg T
Py = [~ g, (17a)

4 !
p &!

i der h(g) eine kontinuerliche Frequenzfunktion der relativen
Schwankungen ¢ der Grundwahrscheinlichkeiten bedeutet, die an

Stelle der oben angenommenen Primérwahrscheinlichkeiten ?IT_ tritt

und Priméarverteilung genannt werden soll; h(q) dg bedeutet die
Wahrscheinlichkeit eine Sekundérurne auszulosen, bei der zwischen
Pq und P(q+ dq) schwarze Kugeln erwartet werden. Fir diese
Primirverteilung wird im folgenden die Pearson-Verteilung des Typs 11

ko

— " Gmhog Tig—1 ,CZ' 18
T ¢ dq (18)

h(q)
angenommen, die in plausibler Weise emen Definitionsbereich der
zufalligen Variablen g zwischen Null und Unendlich und einen Mittel-
wert Hins aufweist. Die analytischen EKigenschaften von Formel (18)
erleichtern im itbrigen die mathematischen Entwicklungen wesentlich.

4
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Der einzige in Formel (18) auftretende Parameter der Verteilung,
iy, 1st, wie aus der nachstehenden Formel hervorgeht, gleich dem
reziproken Wert der Streuung der Priméirverteilung (18)

R o 1
],Oh Mg (g —1)tdg = —.
) ho

o2{qg—1} :f
b

Die Schwankungen der Grundwahrscheinlichkeiten fallen somit
wm so weniger ins Gewicht, je grosser der Parameter %, ist. Dem
Grenzwert hy = oo entspricht schliesslich der Grenzfall von festen
Grundwahrscheinlichkeiten. In der Figur 1 sind einige Primérver-
teilungen fir verschiedene Werte von h, graphisch dargestellt; diese
Verteillungskurven gehoren alle zum glockenférmigen Typus und ver-
laufen nahezu symmetrisch um den Mittelwert

oo hoho

5 = ot ot g d g —
q = ¢thlghetodg = 1.
of L (hy)

Iig. 1 — Prumdrverterlungen

hoho e_hoq q(ho_’l)

h(q) =

I (hy)
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Setzt man die Primirverteilung (18) in die Formel (17a) fir die Fre-
quenzfunktion der Schadenfille ein, so ergibt sich folgende Ableitung:

oo G_p‘l' (P(])l hoh“ (,fh(,q qh(,—l (1(]

i P) m‘J 2! I (hy)

hoba P ==
0 . "
_ ] 6—q(h0-r-P) qJ‘-r-hQ—l (Z(] .

21(ho)

Um das Integral rechts auswerten zu kénnen, wird

q = q(hg + P)
substitulert :
. h o P* 20
Walfim, P) = = ‘ J el g™ thlgy
51 () (hg + Py o ©

Das neue Integral ist gleich der vollstindigen Gammatunktion
I'(z 4 hg); beriicksichtigt man noch die Beziehung

F(+hy) = (&+hg—D1,

so resultiert schliesslich fir die Frequenzfunktion der Schadenfille bei
zufallsartigen schwankenden Grundwahrscheinlichkeiten der Ausdruck

y LY P \ h \ ko
wj @, p) = (7T L T
e N grpr )\ g+ P

Die Frequenzfunktionen (19) sind glockenférmig und weisen eine
leichte Asymmetrie auf (siehe Figur 2). I'ir hy = o~ gehen sie in die
Poisson-Verteilung (12) aber.

Die Frequenzfunktion (19) ist identisch mit der von ggenberger
aus dem Urnenschema fiir Wahrscheinlichkeitsansteckung fiir «seltene
Ereignisse» abgeleiteten Frequenzfunktion; aus diesem vorerst uber-
raschend anmutenden Resultat lisst sich schliessen, dass Wahrschein-
lichkeitsansteckung sich gleich auswirkt wie zufallsartig schwankende
Grundwahrscheinlichkeiten und ferner, dass Wahrscheinlichkeits-
ansteckung zu gewissen Verdnderungen in den Grundwahrscheinlich-
keiten fithrt, die gerade der Primirverteilung (18) genigen.



Fug. 2 — Frequenzfunktionen der Schadenfdlle und des Gesamtschadens )

x ho
(h")f(:c, P) — (ho *—; + .’Iﬁ) < l P - ) ( ho )
‘ ) wt+ P/ \ hy+ P

(llo)f (3}, I')’ P (Z)) = 2 (hu)f (T, P) p(r) (w)

_____ h = o0
(ho)f (x, P) l holf (x, P) < , ’
(ho)f(x,P,p(z))  ———— J ]‘0 = 100
f (2, P, p(2)) : by = 1003 p(2) =
,/., ’l\‘\\
jl .\‘

100 120 140 160

2. Die charakteristische Funktion, welche der Frequenzfunktion
(19) entspricht, Lisst sich nach der gleichen Methode bestimmen wie
die Frequenzfunktion selbst. Hs ist

o0
.

Dol ol ]
@-I qlet—1) hoko thq qho 1 d?
0 I'(ho)
h h() oo .
I e qu(] -P 61 -1 ] qho'—l l(l .
—— 0

1) Siehe Kap. IV.

Bolgs (¢, P) =




Unter Beniitzung der Substitution ¢ = q[hy— P(¢"—1)] geht das
Integral rechts in die vollstéindige Gammafunktion iber

} h() o0
ho) (t P) s ‘o F h f(,“f[' qflbo_
I (hy) [hg— P (e — )] 4
lg" I (he)

T(hg) [lg— P (e — )]0~

Nach emer emfachen Umformung erhélt man schliesslich fur die der
Frequenzfunktion (19) zugeordnete charakteristische Funktion den
Ausdruck . P by
holgy (2, P) = [1 o s [ —-M1)] . (20)
R ,

3. Wichtige Masszahlen fiir die Frequenzfunktionen sind ihre
Potenzmomente, die sich nach dem Momentensatz [Formel (77)] durch
Differenzieren und anschliessendes Nullsetzen von ¢ berechnen lassen.
Diese an sich einfache, aber etwas umstindliche Rechnung wird hier
unterdruckt; schliesslich erhalt man fir das erste Moment um Null
oder den Mittelwert

\\/Jg

holf (x, P)x = P

My =
0

]
i

und filr das zweite Moment um den Mittelwert oder die Streuung

my = o2 {z — P} = > ®f(z, P)(z — P)*
£=0 (21)
= P4 P2R;l.

Die Strenung der Verteilung (19) setzt sich somit aus zwei Komponen-
ten zusammen, nimlich aus der Streaung P der Poisson-Verteilung
und einem stets positiven Glied, das proportional ist der Streuung hy'
der Primirverteilung (18). Die Frequenzfunktion (19), die unter der
Annahme von zufallsartig schwankenden Grundwahrscheinlichkeiten
abgeleitet worden ist, weist demnach gegeniiber der Poissonschen Dis-
persion (Streuung = Mittelwert = P) stets eine iibernormale Dispersion
auf. Das die iibernormale Dispersion bewirkende zweite Glied fillt um
so mehr ins Gewicht, je grosser der Exwartungswert P ist; umgekehrt
wirkt es sich nur wenig aus, wenn P klein und, was in der Regel der
Fall ist, wenn ausserdem h, verhiltnismissig gross ist. Bei kleinen
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Werten von P, das heisst bei kleinen Versicherungsbestinden, diirfen
daher die Sechwankungen der Grundwahrscheinlichkeiten in der Regel
vernachlidssigt werden.

4. Ber festen Grundwahrscheinlichkeiten kann jede beliebige
Zeitstrecke als Beobachtungsperiode gewihlt werden; in der Frequenz-
funktion der Schadenfille — der Poisson-Verteilung (12) — ist ledig-
lich der entsprechende HErwartungswert P zu berticksichtigen. Ver-
einigt man n solche Perioden zu einer einzigen Periode, so bleibt die
Frequenzfunktion eine Poisson-Verteilung, lediglich der Erwartungs-
wert P geht in nP tber [siehe auch Formel (6)].

Etwas anders liegen die Verhiltnisse bei zufallsartig schwankenden
Grundwahrschemlichkeiten, wo die Grundwahrscheinlichkeiten von
Periode zu Periode ihren Wert dndern kénnen. Die Wahl der Be-
obachtungsperiode kann hier nicht willkiirlich erfolgen, weil beim er-
weiterten Urnenschema die Grundwahrscheinlichkeiten immer wahrend
einer gewissen Zeitstrecke — der Einheitsperiode — fest bleiben,
wobei die Hohe der Grundwahrscheinlichkeiten zu Beginn jeder Ein-
heitsperiode neu ausgelost wird. Fasst man die Beobachtungen von n
Hinheitsperioden zusammen, so erhilt man eine neue Frequenz-
funktion ®Jf (z, P), der die charakteristische Funktion ®dg (¢, P) zu-
geordnet 1st. Diese charakteristische Funktion l8sst sich.ehne weiteres
mit Hilfe des Produktsatzes [lormel (5)] ableiten, weil die Beobach-
tungen aus den verschiedenen Perioden stochastisch unabhingig sind.

R gilt: | )
", (z, P) = ["p (¢, P)]"

P —hon
= | e
| h ( )]

0

3 P " . ~hon
e | 1 g (1] | . (22')
hom i

Die letzte Formel weist die gleiche Form auf wie die charakteristische
Funktion der Einheitsperiode, nur dass P in Pn und h, in hyn tiber-
geht. Dieser einfache Zusammenhang zwischen der Frequenzfunktion
fiir eine und n Einheitsperioden lisst sich somit in der Form

P, (, P) = tlfy (z, n P) (22)

schreiben.
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Formel (22) gilt unter der Voraussetzung, dass wihrend der
Gesamtperiode, die dem Krwartungswert nP entspricht, der Wert
der Grundwahrscheinlichkeiten n-mal neu ausgelost wird. Wiirden
dagegen die Grundwahrscheinlichkeiten wihrend der (Gesamtperiode
nur einmal ausgelost, so wiirde sich die gleiche Frequenzfunktion
ergeben, nur dass an Stelle vou (nh,) der Wert h, selbst treten wiirde.
Aus diesem Sachverhalt lisst sich ein einfaches Kriterium ableiten,
ob die einer Untersuchung zugrunde liegenden Beobachtungsperioden
als unabhidngige Einheitsperioden betrachtet werden diirfen oder
nicht. Im ersten Fall geht hy beil der Zusammenfassung von Einheits-
perioden in nh, tiber, wihrend im zweiten Fall, wenn n Beobachtungs-
perioden eine Kinheitsperiode bilden, h, seinen Wert beibehdlt. Ir-
gibt sich jedoch ber der Zusammenfassung von n Beobachtungs-
perioden ein Wert h, zwischen h, und nh,, so ist das ein Anzeichen
dafiir, dass die Grundwahrscheinlichkeiten in den verschiedenen Be-
obachtungsperioden teilweise voneinander abhingig sind. Dieser Fall
tritt auf, wenn eine Mischung zwischen den oben behandelten Grenz-
fallen vorliegt, zum Beispiel, wenn Beobachtungen zusammengefasst
werden, die verschieden lange, unabhingige Einheitsperioden aufweisen.

- 5. Aus der Wahrscheinlichkeitsfunktion, welche der Frequenz-
funktion (19) entspricht,

T
o) F (2, P Z f(z, P)
lagsen sich verschiedene Grenzfunktionen ableiten. Zu interessanten

Resultaten fithren vor allem folgende drei Grenziibergénge:

o) P—oo; hy<<oo bleibt fest
p
B) P—o>c; — =y Dbleibt fest

dP 0

P—>mdP;

?) s

Die beiden ersten Grenziiberginge entsprechen dem Gauss/Laplace-
schen und der dritte dem Poissonschen Grenzitbergang in der Wahv-
scheinlichkeitsrechnung.
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Bei der Ableitung von Grenzverteilungen muss in der Regel durch
eine geeignete Substitution eine neue zufillige Variable eingefiihrt
werden. Beispielsweise muss bet der Ableitung der Gauss-Verteilung
als Grenzfunktion der Poisson-Verteilung fiir grosse P die Hilfsvariable

x—P
VP
eingefithrt werden [sieche Formeln (19), (16") und (16)].

Beim Grenziibergang o), der auftritt, wenn innerhalb einer Periode
der Erwartungswert P ins Unendliche wichst, empfiehlt es sich, die

At

Hilfsvariable q = B einzufithren. Unter Beniitzung der Substitutions-

regel beil charakteristischen Funktionen [siehe Formel (8)] bestimmt
man vorerst aus Formel (20) die charakteristische Funktion

P o
", P) = [1— — (7 — 1)1

hig
und entwickelt die auftretende Exponentialfunktion in die stets kon-
vergente HKxponentialreihe

<ty

A I o LA O .
PR = (1=t )

Geht man schliegshich zum Grenzwert FP— > iiber, so erhilt man

. hO Lo
lim ®ep (2, P) = (___M> . (23")
P—»oco hro—*"“'l,t

(Gemiiss Tabelle 1 ist der Ausdruck rechts in IFFormel (23") die
charakteristische Funktion der Primiérverteilung (18). Nach dem
Grenzwertsatz erhilt man somit fiir die Wahrscheinlichkeitsfunktion
die Grenzfunktion '

q hﬁho G—hﬂq qhﬂ—l dq

lim o) , P) = , 23
lim 00F (g, ) f T (23)

welche die unvollstindige Gammafunktion darstellt, die mit der Wahr-
schemlichkeitsfunktion der Primérverteilung (18) identisch ist. Der
Grenziibergang o) [P — oo, I, fest] fithrt somit zur Primérverteilung
als Grenzfunktion.
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Der Grenziibergang ) tritt auf, wenn bei endlichem Krwartungs-
wert P pro Periode, unendlich viele Perioden vereinigt werden. Nach

Formel (22) streben in diesem Fall P und h, proportional gegen
B

Unendlich, wobei das Verhiltnis y = —'—ﬁ—— fest bleibt. Zur Ableitung der
0
Grenzverteilung fithrt man an Stelle von z die Hilfsvariable

x— P

VPA+ )

ein. Mit Hilfe der Substitutionsregel [siehe Formel (8)] ermittelt man
zunichst die charakteristische Funktion

94 ., P it P

(hoz)‘P (t, P = |-1 — (e_V P(lty) — 1)

r e VP(+g)

it ity l__P_

P e e Y| Py p e i o

und fihrt anschliess ie stets konvergente Kxponentialreihe eim:
1d fithrt anschliessend die stets konvergente Exponentialreihe ein

( it +1 (38)? >H1+ ity +1 Jl_g
\JPA+, 20 PA+y ) VPa+n 20l

@2y -2

—— X,

1
2l P |

Mg (. P) = {[1 ==
i
l

Lidsst man schliesslich P — ~ streben, so resultiert fiir die charakte-
ristische Funktion die Grenzfunktion

12
lim Mg (t, P) = ¢ 2 ; (24')
P—co

fur die Wahrscheinlichkeitstunktion gilt somit (siehe Tabelle 1)

1" Eo
Hm ®F (5, P) = —— |e 2dz = ®(2). (24)
P—»oco i ]/ 2.’7‘!} _;[

[)
.
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0 o
festen Grundwahrscheinlichkeiten zu einer Gauss-Verteilung als Grenz-

funktion. Zu beachten ist jedoch, dass die Hilfsvariable z bei festen
Grundwahrscheinlichkeiten den Wert

Der Grenziibergang ) ’ Pos o, — fest] tihrt demnach wie bei

und bei zufallsartig schwankenden Grundwahrscheinlichkeiten den Wert
x— P
VPI+p

aufweist. Wiirden die Hilfsvariablen z in beiden Fillen gleich an-
gesetzt, so wirden die Streuungen der beiden Gauss-Verteillungen im
Verhéltnis 1: (1 4 ) stehen, oder mit anderen Worten, die Gauss-
Verteillung bei festen Grundwahrscheinlichkeiten weist Poissonsche,
bei zufallsartig schwankenden Grundwahrscheinlichkeiten itbernormale
Digpersion auf. Die in der statistischen Praxis mitunter auftretenden
(rauss-Verteilungen mit ibernormaler Dispersion lassen sich daher mit
Hilfe des Grenziberganges f) auf zufallsartig schwankende Grund-
wahrscheinlichkeiten zuriickfithren.

Bemerkenswert ist, dass die Grenziibergéinge o) und £), die bei
festen Grundwahrscheinlichkeiten beide zu ein und derselben Gauss-
Verteilung als Grenzfunktion fithren (Gauss/Laplacescher Grenziiber-
gang), bei zufallsartig schwankenden Grundwahrscheinlichkeiten zwei
verschiedene Grenzfunktionen ergeben, die beide von der Grenzfunk-
tion bei festen Grundwahrscheinlichkeiten abweichen.

Beim Grenziibergang y) geht die Kinheitsperiode in ein Risiko-
element iiber, wobei die Konstante h, ihren Wert beibehilt. Vereinigt
man anschliessend diese Risikoelemente wieder zur Periode P, so
gelangt man nach Formel (22') fiir die charakteristische Funktion zur
Grenzfunktion

lim Molgy ( i ) = Hm
W— oo 3 mn 00

F 4

2

i —’mhg

P
1 —— {1
) m ""0 . ( 25 ,)

P(éit-1) i

= &
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Der Grenziibergang y ) fithrt somit zur Poisson-Verteilung als Grenz-
funktion, das heisst, es ergibt sich die gleiche Wahrscheinlichkeits-
funktion als Grenzfunktion wie bei festen Grundwahrscheinlichkeiten.
Daraus lisst sich schliessen, dass von Risikoelement zu Risikoelement
zufallsartig schwankende Grundwahrschemlichkeiten sich gleich ver-
halten wie feste Grundwahrscheinlichkeiten.

I11.
Statistische Untersuchungen

Die theoretischen Ableitungen des vorigen Kapitels sollen durch
einige statistische Untersuchungen ergéinzt werden. Insbesondere soll
abgekldrt werden, ob die abgeleiteten Frequenzfunktionen mit empi-
rischen Verteilungsfunktionen harmonieren und wie die auftretenden
Parameter P und h, aus den Beobachtungszahlen bestimmt werden
konnen.

a) Ein Beispiel aus der Meteorologie

Von der meteorologischen Zentralanstalt in Zirich wurde in
freundlicher Weise eine Statistik iiber die Anzahl der Tage mit Nieder-
schlag (Tage mit Niederschlagsmengen von mindestens 0,3 mm) in
Basel, welche die Jahre 1755—1802 und 1826—1947 umfasst, zur
Verfugung gestellt. Aus dieser Statistik ldsst sich durch Auszihlen
der Jahre mit 2 Niederschlagstagen eine empirische Frequenzfunktion
der Tage mit Niederschlag bilden und mit den im II. Kapitel ab-
geleiteten theoretischen Frequenzfunktionen vergleichen. Das Beispiel
steht nicht unmittelbar im Zusammenhang mit dem Versicherungs-
wesen; das Hreignis — Tage mit Niederschlag — konnte jedoch ohne
weiteres Gegenstand eines Versicherungsverhiltnisses bilden. Das Bei-
spiel wurde gewiihlt, weil es zwel fiir die statistische Bearbeitung
wesentliche Vorziige aufweist, die bei Beispielen aus dem Versicherungs-
wesen regelmiissig fehlen, nidmlich weil eine ausserordentlich lange
Beobachtungsreihe (170 Jahre) vorliegt, und weil der ¢unter Risiko»
stehende Bestand an Tagen in jedem Jahr glsich gross ist (abgesehen
von den Schaltjahren).

Die empirische Frequenzfunktion der Niederschlagstage ist in der
Figur 8 graphisch dargestellt; eine Ubersicht itber den Verlauf dieser



Fig. 3 — Frequenzfunktion der Tage mit Niederschligen wn Basel

Tage mit Niederschlag

30 Theoretische Frequenztunktionen
: - Annahmen:
Beobachtete Frequenzfunktion ’ - .
- JL | I RN —.—. feste Grundwahrscheinlichkeiten
£ £ \ 1 (- P)2
& - Sy
k: i \ [l = et
& / \ I/ 27 P
" 20 ! \ ——— zufallsartig schwankende Grund-
< ! X wahrscheinlichkeiten
]
% / //"-- ‘.\"\\ ‘\ 1 _ (:C—P)z
i ] ./ // 1 \\ . f(;]:’ P) e esm——r 2(P+P2 ho1)
2 2 N [ 27 (P + P2hgh)
= 2 £y
= ‘L \'y
[ / I .
Z 104 i \ \\
3 K ! AN
é > ’/ \ A
é /’ / ! .‘\
.,/ W
/ Wi *:1——*
71 < 4 N ~
- £ ~
- '/ ) N N
—--_l il ’—_t-- |’-/1 ] T T T T T T .?.\-ﬂ.'ﬁﬁﬂr T !—_—!
0 100 120 140 160 180 200

09



— 61 —

Frequenzfunktion vermitteln ferner die Tabellen 2 und 8, in denen die
Beobachtungen gruppenweise zusammengestellt sind. Die statistische
Verarbeitung der Verteilung fihrt, wenn das Jahr zu durchschnittlich
365,25 Tagen gerechnet wird, zu folgenden Durchschnittszahlen:

Wahrschemlichkeit fiir einen Niederschlagstag . . .  p= 0,415
Mittlere Anzahl der Niederschlagstage pro Jahr . . P = 151,635
Streuung der Verteilung . . . . . . . . . . . . . o%= 864,781
_ , Do) (x — P)?
mib " = .
170 —1

Zunichst soll gepriift werden, ob die angegebene Grundwahr-
scheinlichkeit (p = 0,415) als fest angesehen werden darf. Die An-
zahl z der Niederschlagstage wiirde dann der Poisson-Verteilung (12)
folgen oder niherungsweise — weil P eine grosse Zahl ist — der

(rauss-Verteilung
‘ 1 _ (z—P)2
H(z, P) = ﬁ——ﬁ— g BE (26)
7T

Die theoretische Frequenzfunktion (26) harmoniert, wie man an Hand
der Figur 5 feststellen kann, ziemlich schlecht mit der empirischen
Frequenzfunktion. In Wirklichkeit kommen kleine Abweichungen vom
Mittelwert seitener, grosse aber hiufiger vor, als nach der Frequenz-
funktion (26) zu erwarten wire. Es stellt sich die Frage, ob diese
Unterschiede durch den Zufall erklirt werden konnen, oder ob die der
Frequenzfunktion (26) zugrunde liegenden Annahmen nicht zutreffen.
Diese Frage lasst sich mit Hilfe des y*Testes abkliren, bei dem
unter Berticksichtigung der Anzahl N (= 170) der Beobachtungen aus
der empirischen und theoretischen Frequenzfunktion die Priifgrosse
beob.

[N](x, P) — Nf(z, P)J*
Nf(z, P)

berechnet wird, die um so grosser ausféllt, je mehr Beobachtungen und
Theorie divergieren. Fasst man die vorhandenen Beobachtungen als
eine Stichprobe aus einer Gesamtheit hoherer Ordnung auf, so lésst
sich die Wahrscheinlichkeit T (42) berechnen, dass bei einer anderen
Stichprobe ein Wert »2 > »* auftreten konnte, das heisst, dass
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Beobachtungen und Theorie noch stirker divergieren als im zur Dis-
kussion stehenden Fall. Diese Wahrscheinlichkeit eignet sich als Mass
fir die Ubereinstimmung zwischen der theoretischen und der empivi-
schen Frequenzfunktion. Sie hingt, wie die mathematische Statistik
lehrt, nur vom Krwartungswert (n—£k) von »2 ab, der seinerseits iden-
tisch 13t mit der Anzahl n der bei der Berechnung von 4?2 beriicksichtig-
ten Gruppen, vermindert um die Anzahl /; der Parameter der theore-
tischen Verteilung, welche aus den Beobachtungen bestimmt wurden.
Solange die Wahrscheinlichkeit W, _, (4% nicht unter einen durch

T
Konvention festgelegten kritischen Satz —— zum Beispiel 5 9%, — sinkt,
koénnen die Abweichungen zwischen der theoretischen und der empi-
rischen Frequenzfunktion als zufillig angesehen werden. IFallt jedoch
W, (%% unter diesen kritischen Satz, so ist eine nur durch den Zufall
entstehende Abweichung zwischen Theorie und Beobachtung im be-
rechneten Ausmass so selten zu erwarten, dass sie praktisch tiberhaupt
nicht vorkommen sollte. Die der theoretischen Frequenzfunktion

rugrunde liegenden Annahmen miissen dann verworfen werden.

Im vorliegenden Fall ergibt sich folgende Rechnung:

Tabelle 2
Beobachtete Erwartete
Nieﬁgii}ﬁ}ag:zaﬂe Anzahl dler Jahre "
- ° mit = Niederschlagstagen -

| Formel (26)
<129. . . . 21 6,71 30,43
130—134. . . . 10 8,31 0,34
185—139. . . . 10 14,28 1,28
140—144. . . . 16 20,85 1,13
145—149. . . . 23 25,87 0,32
150—154 . . . . 13 27,29 7,48
155—159. . . . 20 24,45 0,81
160—164. . . . 14 18,63 1,15
1656—169 . . . . 14 12,06 0,31
211, . . 29 11,55 26,37
Total 170 170,00 69,62




Der Erwartungswert von »2 betrdgt 8 [10 Gruppen minus 2 Para-
meter (N, P)]. Wie man aus Tabellen tiber die Funktionen W, (42)
entnehmen kann, weicht Wy (69,62) verschwindend wenig von Null
ab; demzufolge muss die Annahme einer festen Grundwahrscheinlich-
keit, welche bei der Ableitung der Frequenzfunktion (26) getroffen
wurde, verworfen werden. ;

Nimmt man dagegen die in Abschnitt Il ¢) getroffenen Voraus-
setzungen, das heisst zufallsartig schwankende Grundwahrscheinlich-
keiten, an, so miisste die Anzahl x der Niederschlagstage der Frequenz-
funktion (19) folgen. Um diese Frequenzfunktion numerisch auswerten
zu konnen, muss vorerst der Parameter h, ermittelt werden. Setzt
man die Streuung der empirischen Frequenzfunktion o¢?{z — P}
gleich der Streuung der theoretischen Frequenzfunktion (19)

o?{x — P} = P4 P2h,
so erhilt man fur h, die Bestimmungsgleichung

P2
hy =: ~ 108. 27
T elg—P)—P 27)

Die Frequenzfunktion (19) lisst sich nunmehr, nachdem die Para-
meter P und h, bekannt sind, numerisch auswerten. Da sowohl P
als auch h, verhéltnisméssig gross sind, darf erwartet werden, dass die
Verteilung (19) im vorliegenden Falle nur wenig von der Grenzver-
teilung (24) abweicht. In der Tabelle 8 sind daher die theoretischen
Héufigkeiten der Jahre mit x Niederschlagstagen, nach den Formeln
(19) und (24) berechnet, angegeben. Diesen theoretischen Haufig-
keiten werden wiederum die beobachteten gegeniibergestellt und die
Prifgrossen »? berechnet.

Die Tabelle 3 bestéitigt zundchst, dass die Verteilungen (19) und
(24) nur wenig voneinander abweichen; es ist daher durchaus vertret-
bar; die einfacher auszuwertende Verteilung (24) zu beniitzen. Beide
Verteilungen harmonieren befriedigend mit der empirischen Verteilung;
(siehe Figur 3); dies zeigen auch die berechneten Priifgréssen y2, die
beide nahe beim Erwartungswert 9 [12 Gruppen minus 8 Parameter
(N, P, hy)] liegen. Die Wahrscheinlichkeiten W, (3% betragen 66 %,
[Verteilung (19)] und 819, [Verteilung (24)] und liegen somit weit
iiber dem kritischen Satz von 5 %,; die Abweichungen zwischen den
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Tabelle 3
Beobachtete Erwartete
Nie;?g‘ziﬂiaizfmge ) Anze_‘hl der Jahre 5
2 mit z Niederschlagstagen v

Formel (19) | Formel (24) | (19) (24)
<120. . . 9 6,85 5,30 0,67 | 0,06
120—129. . . 12 15,72 13,57 0,22 | 6,18
130—134. . . 10 11,16 10,75 0,12 | 0,05
135—1389. . . 10 14,08 5,48 1,18 | 0,90
140—144 . . . 16 16,37 15,80 | 0,01 | 0,00
145—149 . . . 23 17,60 17,30 1,66 | 1,88
150—154. . . 13 17,68 17,69 1,24 | 1,24
1556—159. . . 20 16,55 16,89 0,72 | 0,57
160—164. . . 14 14,58 15,08 0,02 | 0,08
165—169. . 14 12,04 12,56 0,32 | 0,16
170—179 . . . 18 16,37 16,90 0,16 | 0,07
180 und mehr 11 13,00 11,68 0,81 | 0,04
Total 170 170,00 170,00 6,63 | 5,23

theoretischen Verteilungen und der empirischen diirfen daher als zu-
fallig angesehen werden. Die in Abschnitt Il ¢) eingefithrten zufalls-
artig schwankenden Grundwahrscheinlichkeiten fithren demnach zu Fre-
quenzfunktionen, welche mit den Beobachtungen im Finklang stehen.

Von Interesse ist noch die Frage, ob die Grundwahrscheinlich-
keiten in aufeinanderfolgenden Jahren untereinander stochastisch ab-
héngig oder unabhingig sind. Nach den FEntwicklungen im Anschluss
an Formel (22) wiirde im ersten Fall bel der Zusammenfassung der
Beobachtungen von 2, 8, 4 usw. Jahren h, seinen Wert beibehalten,
im zweiten Fall aber in 2k, 8hy, 4h, usw. iibergehen. An Hand "des
vorliegenden Materials erhidlt man folgende Resultate:

hy = 108 bei Zusammenfassung von 1 Jahr

hg == 146 » ) » 2 Jahren
he = 179 » ) » 8 »
hg = 206 » » yoo4 oy
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Der Verlauf dieser hy-Werte zeigt, dass eine Mischung der oben
erwihnten Grenzfille vorliegt.

Zu diesen Untersuchungen sind noch zwei grundsitzliche Be-
merkungen nachzutragen:

«) Der Parameter h, wurde nach Formel (27) ermittelt, welche
die Gleichheit von empirischer und theoretischer Streuung voraussetzt.
Die Frage bleibt offen, ob dies die beste Methode zur Berechnung
von hy ist.

f) Zu untersuchen ist ferner noch die Genauigkeit des nur aus
einer endlichen Anzahl von Beobachtungsjahren bestimmten Wertes
von hy. Geht man von der Gauss-Verteilung (24) aus, und nimmt man
an, der Mittelwert P sei a priori gegeben, so lisst sich der mittlere
Fehler des reziproken Wertes von hy aus der Formel

(1) 2 o2(z)
g —_— i e
he N P2

In dieser Formel bedeuten

N die Anzahl der Beobachtungsjahre (= 170)

o?(x) die empirische Streuung der Verteilung (= 864,781)
P der Mittelwert (= 151,635).

abschitzen.

1
Die Rechnung ergibt a(m) = 0,001 721, das sind 18,6 9% des
‘ 0

berechneten Wertes von (7—;—> ; trotz der iitberaus langen Beobachtungs-
0
reihe ist demnach der berechnete Wert von hy noch ziemlich unsicher.

b) Ein Beispiel aus der Feuerversicherung

Es ist bekannt, dass die Voraussetzungen der klassischen Wahr-
scheinlichkeitsrechnung in der Feuerversicherung nicht erfiillt sind.
Die grossen Schwankungen in der Haufigkeit der Schadenfille zeigen,
dass in diesem Versicherungszweig keine festen Grundwahrscheinlich-
keiten vorliegen, sondern eher die unter Il ¢) eingefithrten zufalls-
artig schwankenden Grundwahrscheinlichkeiten. Abzukléren ist noch,

5
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ob die unter II ¢) abgeleiteten Frequenzfunktionen den Verhiltnissen
i der Feuerversicherung gerecht werden. Dank der in entgegen-
kommender Weise erteilten Erlaubnis der Schweizerischen Mobiliar-
Versicherungs-Gesellschaft in Bern kann diese Frage hier an Hand der
in neun Jahrzehnten gesammelten Erfahrungen dieser Gesellschaft
untersucht werden. Im einzelnen stehen folgende Unterlagen zur Ver-
figung: '

1. die Anzahl der Brandgeschidigten z, in 90 Geschéftsjahren ¢

der Gesellschaft (83.—122. Geschiftsjahr) 1);

2. der Bestand an Versicherungssummen S, 1n 90 Geschéftsjahren ¢;

o

. der Bestand an Policen E, in 54 Geschiftsjahren ¢ (vom 69. Ge-
schéftsjahr an).

Aus diesen Unterlagen sind zuerst fiir alle beriicksichtigten Ge-
schiftsjahre ¢ die erwartungsméssigen Schadenzahlen F, und an-
schliessend fiir alle Geschéftsjahre zusammen der Parameter h, zu
bestimmen ; schliesslich ist zu prifen, ob die Abweichungen zwischen
den beobachteten (x,) und erwarteten (F,) Schadenzahlen der Fre-
quenzfunktion (19) folgen oder nicht.

o) Der Trend der Schadenfille.

Die Erwartungswerte P,, die den Trend der Schadenfille bilden,
berechnet man aus dem Trend der Grundwahrscheinlichkeiten

der sich seinerseits durch Ausgleichung der Verhiltniszahlen

Zy

Py == R,
ergibt. Der Trend der Grundwahrscheinlichkeiten kann fiir die
54 Geschiftsjahre, in denen die unter Risiko gestandenen Policen-
bestinde R, bekannt sind, durch eine lineare Funktion von ¢ dar-
gestellt werden. Fir die fritheren Jahre, in denen Angaben iiber die

1) Das Beobachtungsmaterial aus dem 1.—32. Geschéftsjahr ist fiir stati-
stische Untersuchungen zu klein. '



— 87 -

Policenbestinde fehlen, wird an Stelle der Grundwahrscheinlichkeit
p, die Verhaltniszahl . ‘
t
§, == s,
der Ausgleichung unterworfen. In der Figur 4 sind die Verliufe der
unausgeglichenen und ausgeglichenen Verhiltniszahlen p, und s,
graphisch dargestellt.

Der durch die Schwankungen der Grundwahrscheinlichkeiten
entstehende sprunghafte Verlauf der unausgeglichenen Werte gestaltet
die Ausgleichung im vorliegenden Fall recht schwierig. Beispiels-
weise konnten die stark erhéhten Brandhdufigkeiten der Geschéfts-
jahre 103—110, welche in die Weltwirtschaftskrise der Dreissigerjahre
fallen (1. Juli 1928 bis 30. Juni 1936), im Trend der Grundwahr-
schemnlichkeiten nicht beriicksichtigt werden, ohne den Erfolg der
ganzen Ausgleichung zu gefihrden. Der Umstand, dass der Trend der
Grundwahrscheinlichkeiten in den Jahren vor und nach der Krise
durch die gleiche lineare Funktion dargestellt werden kann, spricht
jedoch deutlich fiir die getroffene Annahme, dass diese erhohten
Brandh#ufigkeiten nicht dem normalen Verlauf der Grundwahrschein-
lichkeiten entsprechen, sondern besonders augenfillige Schwankungen
der Grundwahrscheinlichkeiten darstellen.

Im ganzen gesehen, befriedigt die Ausgleichung; dies zeigt sich
unter anderem darin, dass die Differenzen x, —F, und ihre Summen
das Vorzeichen oft wechseln. Insgesamt sind in den 90 beriicksichtigten
Geschiftsjahren 155 066 beobachtete und 146 887 erwartete Schaden-
falle zu verzeichnen; von der Gesamtdifferenz entfallen dabei 8094
Fille auf die Krisenjahre und 85 Félle auf alle iibrigen Jahre.

f) Die Berechnung von hy.

Fur die Berechnung von h, wirkt sich der Umstand stérend aus,
dass der Umfang des Beobachtungsmaterials in den verschiedenen
Geschiftsjahren ganz ungleich ist. Im 83. Geschiftsjahr waren zum
Beispiel nur 179,2, im 122. Geschiftsjahr aber 5000,2 Schadenfalle
zu erwarten. Dieses ungleiche Gewicht der einzelnen Geschéaftsjahre
lasst sich ausgleichen, wenn an Stelle von z, die Hilfsvariable

z, —F,

$h="7p eingefihrt wird.
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Die Streuung von %, betrigt dann, wie aus Formel (21) hervorgeht,
o*(y,) = "+ I (29)

Setzt man — &dhnlich wie beim Beispiel aus der Meteorologie — die
Summe der beobachteten Abweichungsquadrate von ¥, gleich der
Summe der theoretischen Streuungen, so erhilt man fiir ;' die Be-
stimmungsgleichung

Dy —dnp?
90 '

gt = (30)
Die Rechnung ergibt fir h, selbst den Wert h, = 87,5. Wirden die
Krisenjahre, in denen der Trend der Sehadenfille unsicher ist, weg-
gelassen, so ergébe sich hy = 48,1. Diese beiden, eigentlich nicht stark
divergierenden Werte diirfen wohl als untere und obere Grenze des
wahren Wertes von h, angesehen werden.

y) Vergleich der theoretischen und empirischen Frequenzfunkiion.

Die theoretische Frequenzfunktion der Schadenfille (19) lasst sich
nicht ohne weiteres mit einer empirischen Frequenzfunktion ver-
gleichen, weil beil der theoretischen Irequenzfunktion in jedem Ge-
schiftsjahr der Parameter P, dndert. Nimmt man jedoch an, dass
die Frequenzfunktion (19) in allen Geschéftsjahren durch die Grenz-
verteillung (24) ersetzt werden darf — eine Annahme, die allerdings
nicht so gut begriindet ist wie beim Beispiel aus der Meteorologie —,
so ergibt sich eine fiir alle Geschiftsjahre einheitliche theoretische
Frequenzfunktion, wenn die Hilfsvariable

_ z,—h
AN

£,

an Stelle von z, eingefithrt wird. Aus den fiir jedes der 90 Geschifts-
jahre berechneten Werten von &, lisst sich dann eine empirische Fre-
quenzfunktion von & bilden und der theoretischen Frequenzfunktion

gegenitberstellen (siehe Tabelle 5).
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Tabelle &

Beobachtete ’ Erwartete
& Anzahl der Geschéftsjahre, 72

in denen der Wert & auftritt
< -1,5 3 6,01 1,51
-1,49— —1,00 6 8,27 0,62
—0,99— —0,50 14 13,49 0,02
—0,49— 0,00 20 17,23 0,45
0,01— 0,50 15 17,23 0,29
0,561— 1,00 14 13,49 0,02
1,01— 1,50 8 8,27 0,01
> 1,50 10 6,01 2,65
Total 90 90,00 5,57

Die Tabelle 5 zeigt, dass die empirische Frequenzfunktion von &
leicht asymmetrisch verlduft; dies lasst sich daraus erklidren, dass die
Grenzverteilung (24) im vorliegenden Fall von der genauen Frequenz-
funktion (19) etwas abweicht, weil nur P, nicht aber ky eine grosse
Zahl 1st. Im iibrigen harmonieren jedoch die empirische und die
theoretische Frequenzfunktion recht gut miteinander; dies bestitigt
auch der berechnete Wert von y?, der nur wenig vom Erwartungswert
8 —1 =17 abweicht. Im ganzen gesehen, darf festgestellt werden,
dass die unter der Annahme von zufallsartig schwankenden Grund-
wahrscheinlichkeiten abgeleiteten Frequenzfunktionen (19) und (24) die
Verhéltnisse im vorliegenden Fall richtig darstellen; dies spricht fiir die
Brauchbarkeit der getroffenen Annahmen in der Feuerversicherung.

d) Eine grumdsdtzliche Bemerkung.

Die oben beschriebene Untersuchung hat deutlich gezeigt, dass
eine wahrscheinlichkeitstheoretische Untersuchung der Schadenhéufig-
keiten und die Bestimmung des Parameters hg bei stark schwankenden
Grundwahrscheinlichkeiten nur dann zu einem brauchbaren Ergebnis
fithren kann, wenn eine gentigend lange Beobachtungsreihe vorliegt,
die es ermdoglicht, den Trend der Schadenfille zu erkennen. Leider
liegen zur Zeit noch wenig derartige Reihen vor.
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Anderseits darf nicht ilbersehen werden, dass es mit zunehmender
Lénge der Beobachtungsreithe immer fraglicher wird, ob die Reihe iber-
haupt noch homogen genug ist. Bei einer mehrere Jahrhunderte um-
fassenden Beobachtungsreihe diirfte sich zum Beispiel das versicherte
Risiko im Verlaufe der Zeit derart verindern, dass die Beobachtungen
am Anfang und am Ende der Reihe gar nicht mehr zusammengefasst
werden dirfen. Unter diesen Umstédnden lisst sich die Zuverlédssigkeit
des aus Beobachtungen abgeleiteten Wertes von h, durch eine Ver-
lingerung der Beobachtungsreihe nicht steigern.

IV.
Die Wahrscheinlichkeitsfunktion des Gesamtschadens

Fir die Stabilitdt eines Versicherungsbetriebes sind die in den
vorangehenden Kapiteln untersuchten Schwankungen in der Hiufig-
keit der Schadenfille nicht unbedingt massgebend; entscheidend ist
vielmehr die Gesamtschadensbelastung, die wie die Anzahl der Schaden-
falle eine zufillige Variable darstellt, deren Verteilungsgesetz durch
die Frequenz- oder Wahrscheinlichkeitsfunktion und die zugehérige
charakteristische Funktion beschrieben werden kann. Im Spezialfall
von einheitlichen Risikosummen ist die Verteilung des Gesamtschadens
1dentisch mit der Verteilung der Schadenfille. Im allgemeinen Fall
mit nicht einheitlicher Risikosumme muss noch ein weiteres Rech-
nungselement eingefithrt werden, nimlich die Risikosummenverteilung
des Versicherungsbestandes. Die fiir die Frequenzfunktion der Schaden-
fille abgeleiteten Formeln lassen sich dann miihelos auf die Frequenz-
und Wahrscheinlichkeitsfunktion des Gesamtschadens iibertragen.

a) Die Risikosummenverteilung eines
Versicherungsbestandes

In einem Versicherungsbestand seien k Risikoklassen mit den
Schadenintensititen pq, s ... 4, vertreten, wobei je Ry, B, ... B,
Versicherungen mit nicht einheitlicher Risikosumme unter Risiko
stehen mogen. Die Wahrscheinlichkeit, dass irgendeine blindlings
herausgegriffene Versicherung der ¢-ten Klasse in den Bereich zwischen
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z und z - dz fillt, betrage p,(2)dz. Aus diesen k Frequenzfunktionen
p; (2) der versicherten Risikosummen lésst sich eine fiir alle k Risiko-
klassen zusammen geltende Risikosummenverteilung p(z) der fdlligen
Risikosummen nach der Formel

k

Z‘_.lRi pi P (%)

Pl ==—=x (31a)
2 B, u;
=1

bilden; p(2) dz bedeutet die Wahrscheinlichkeit, dass irgendeine im
Versicherungsbestand fdllig werdende Risikosumme in den Bereich
zwischen z und z + dz fallt, gleichgiiltig, welcher Risikoklasse sie
angehort hat. Diese Frequenzfunktion der félligen Risikosummen, im
folgenden kiirzer Risikosummenverteilung genannt, beriicksichtigt die
Struktur des Versicherungsbestandes sowohl hinsichtlich der Risiko-
klassen als auch hinsichtlich der Hohe der Risikosummen.

Im allgemeinen wird sich die Risikosummenverteilung mit der
Zeit verdindern. Im Risikoelement zwischen P und P + dP gelte zum
Beispiel die Risikosummenverteilung pp(2). Aus dieser Folge von
Risikosummenverteilungen lisst sich eine mittlere Risikosummen-

vertellung

1 P

pe) = 5 | pr(a) 2P (31b)

konstruieren, die an Stelle der veréinderlichen Risikosummenverteilung

pp(2) als feste Risikosummenverteilung verwendet werden darf. In

der Regel verdndert sich allerdings pp(2) nur so langsam, dass die

anfangliche Risikosummenverteilung p,(¢) und die mittlere Risiko-
summenverteilung p (2) praktisch zusammenfallen.

Durch die auftretenden Versicherungsfille verdndert sich die
Risikosummenverteilung, so dass sie streng genommen von den auf-
getretenen Versicherungsfillen abhingt. Bei grossen Versicherungs-
bestinden dirfen diese Verinderungen jedoch vernachlissigt werden.
In der kollektiven Risikotheorie geht man daher von der grundlegenden
Annahme aus, dass die Risikosummenverteilung p(#) nicht von den
aufgetretenen Versicherungsfillen abhingt.
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Es erweist sich als niitzlich, die mittlere Risikosumme z als Mass-
einheit fir die falligen Risikosummen z zu beniitzen. Es gelten dann,
wenn nur positive Risikosummen auftreten, die Beziehungen

oo o0

”=fp(z)dz:fzp(z)dz:1. (32)
0

0

(o]

Schliesslich sei noch vorausgesetzt, dass das Integral

oo

f e™ p(2) dz

0

tir alle Werte B < R, konvergiere, eine Bedingung, die bei allen
Anwendungen ohne weiteres erfillt ist, weil Risikosummen, welche

/

ein gewisses Maximum M iiberschreiten, nicht vorkommen.

Im konkreten Fall bestimmt man p(z) am besten unmittelbar
aus der Statistik der Schadenfille. In der Figur 5 sind unter anderem
drei nach dieser Methode ermittelte Risikosummenverteilungen gra-
phisch dargestellt, nimlich die aus den Erfahrungen der

Thule, Lebensversicherungsaktiengesellschaft, Schweden (1929/31),

Schweizerischen Lebensversicherungs- und Rentenanstalt, Zirich
(Einzelkapitalversicherungen des schweizerischen Bestandes der
Hauptabteilung) 1943/45,

und der

Schweizerischen Mobiliar-Versicherungs-Gesellschaft, Bern (Feuer-
versicherung 1947)

abgeleiteten Risikosummenverteilungen.

Diese empirischen Verteilungen verlaufen ganz dhnlich wie die in
der Literatur oft beniitzte analytische Verteilung p(z) = ¢’?, nur dass
die kleinsten und grossten Risikosummen in den empirischen Risiko-
summenverteilungen stirker vertreten sind als in der Verteilung

ple) =e”.
b) Theoretische Untersuchungen
Fir die meisten Anwendungen der Risikotheorie 1st die Wahr-

scheinlichkeitsfunktion des Gesamtschadens wichtiger als die zuge-
horige Frequenzfunktion. Die weiteren Untersuchungen befassen sich
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daher vorwiegend mit der Wahrscheinlichkeitsfunktion ®F (z, P, p (2));
diese gibt die Wahrscheinlichkeit an, dass der Gesamtschaden in einem
Versicherungsbestand mit der Risikosummenverteilung p (2) wihrend
der Periode P den Betrag x nicht tbersteigt, wenn die Primirver-
teilung (18) den Parameter h, aufweist. Mit Riicksicht auf die gewihlte
Masseinheit fiir  und z (Mittlere Risikosumme = 1) ist die Anzahl
der zu erwartenden Schadenfille P identisch mit der gesamten nach

Grundlagen zweiter Ordnung berechneten Nettorisikoprimieneinnahme
der Periode P.

1. Die in den Abschnitten b) und ¢) des II. Kapitels abgeleiteten
Resultate sollen 1im folgenden auf die Verteilung des Gesamtschadens
tibertragen werden. Zunichst sei der unter II b) behandelte Fall mit,
festen oder planméssig verdnderlichen Grundwahrscheinlichkeiten be-
trachtet, bel dem man wiederum von der Frequenzfunktion in einem
Risikoelement ausgeht, in dem nur ein oder gar kein Schadenfall mit
den Wahrscheinlichkeiten dP und 1 — dP auftreten konnen. Fir die
Frequenzfunktion der Schadenfille in einem Risikoelement gelten die

Formeln
() (0,dP, p(z) = 1—aP ]

. (33)
< (z,dP, p(2) = AP p() |
Dieser Frequenzfunktion ist die charakteristische Funktion
e (t,dP,p(z) = 1+ aP [f@”"‘pw) dz——l}
0 ]
=14 dP[=(t)—1] (33")

zugeordnet, in der m(f) die charakteristische Funktion bedeutet, die
der Risikosummenverteilung p(2) entspricht. Der Gesamtschaden
wahrend der Periode P ist gleich der Summe aller Schéden, welche in
allen Risikoelementen der Periode P aufgetreten sind. Hs gilt somit
nach dem Produktsatz fiir die charakteristische Funktion, die der
Wahrscheinlichkeitsfunktion des Gesamtschadens fiir die ganze Pe-
riode zugeordnst ist, die Formel

< (6P, p(9) = lim [1 + aP () — 1]

dP-»0
- eP(z:z(l)—-l). (34!)
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Formel (34") weist die gleiche Form auf wie die charakteristische
Funktion (12'), welche der Verteilung der Schadenfille zugeordnet ist,
nur dass % in m(f) iibergeht. Dieses Resultat ist plausibel, weil
o (t) = € ist, wenn alle Risikosummen gleich sind. Fine Reihe von
weiteren Formeln aus dem Kapitel IT ldsst sich in analoger Weise —
das heisst, indem man ¢ durch ,m(¢) ersetzt — verallgemeinern.
Insbesondere erhilt man fir die charakteristische Funktion, die der
Verteilung des Gesamtschadens zugeordnet ist, wenn zufallsartig
schwankende Grundwahrscheinlichkeiten vorausgesetzt werden,

. P ~hyg
o)y (1, P, p (2)) = [1 N T(Zﬂ(t)"_l)] B
0

als Verallgemeinerung von Formel (20°).

2. Aus der charakteristischen Funktion (35") ldsst sich ein expli-
ziter Ausdruck fir die Wahrscheinlichkeitsfunktion selbst herleiten.
Zunichst formt man Formel (35") etwas um und erhdlt den Ausdruck

By \M P 1
U (1,2, p (2)) = <————> [1 — (t)' ;

ho + P bl B

in dem der zweite Faktor rechts in die hier konvergente Binomial-
Reihe entwickelt wird

hy  \™ hy\ P he + 1
o) [+ (g (437

S| (hg—1+7 P ' hy  \™ . ,
AN A

T

I

(olg (¢, P, p (2))

Die Potenzen der charakteristischen Funktion [,z ()]" entsprechen
nach dem Produktsatz, den durch fortgesetzte Faltung von p(2) ent-
stehenden Risikosummenverteilungen

P () = p" () = p(e),

welche die Wahrscheinlichkeit p"(z) dz angeben, dass der Gesamt-
schaden aus r Schadenfillen zwischen z und z + dz liegt.
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Fir die Wahrscheinlichkeitsfunktion gilt somit die Formel (40a)

kF (2, P, p(2)) = 2) Kho-—: —I—T?)(hoi P>T<h + P> } [fp dz] ’

die fiir hy = oo, das heisst fiir feste oder planmissige veridnderliche
Grundwahrscheinlichkeiten, in den Ausdruck

—P P 1T
IR (2, P, p(2) = { J { [P d J (40b)

iitbergeht. In den Formeln (40a) und (40b) tritt rechts jeweils als
erster Faktor die Frequenzfunktion der Schadenfille auf [Formeln
(19) und (12)]. Die Wahrscheinlichkeitsfunktion des Gesamtschadens
bei festen planméssig und zufallsartig verinderlichen Grundwahr-
scheinlichkeiten lésst sich somit durch die allgemeine Formel

oo

WP (5, P,p () = D Wf(r, P) [ p(2) de (40)

r=0
darstellen.

3. Die Momente der Wahrscheinlichkeitsfunktionen (40) erhélt
man nach dem Momentensatz [Formel (7")] durch Differenzieren der
entsprechenden charakteristischen Funktionen (34") und (35"). Das
erste Moment oder der Mittelwert ist gleich dem KErwartungswert P,
gleichgiiltig, ob feste oder zufallsartig schwankende Grundwahrschein-
lichkeiten vorliegen. Fir das zweite Moment um diesen Mittelwert
oder die Streuung der Verteilung des Gesamtschadens findet man die
Formeln

)M, = Pp,+ P?hy' = P(p,+ 2) (41a)
oder
<M, = Pp,, (41b)

je nachdem zufallsartig schwankende oder feste Grundwahrschein-
lichkeiten vorliegen. In diesen Formeln bedeutet p, das zweite Moment
der Risikosummenverteilung p (2)

Ps :fzzp(Z)dz
0
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4. Von besonderer Bedeutung ist, dass Formel (41a), die fir
rufallsartig schwankende Grundwahrscheinlichkeiten gilt, gleich auf-
gebaut ist wie die fiir feste Grundwahrscheinlichkeiten geltende Formel
(41b), wenn man pF = p, + y als zweites Moment einer fiktiven
Risikosummenverteilung p*(2) auffasst. Diese Feststellung fithrt
zur Vermutung, dass die Wahrscheinlichkeitsfunktion des Gesamt-
schadens bei zufallsartic schwankenden Grundwahrscheinlichkeiten
(40a) identisch ist mit einer Wahrscheinlichkeitsfunktion des Gesamt-
schadens bei festen Grundwahrscheinlichkeiten, wenn bei der Berech-
nung der letzteren eine noch unbekannte Risikosummenverteilung
p*(2) angenommen wird. Eine ndhere Prifung dieses Sachverhaltes
fihrt zum Transformationssatz, der durch die Formel

BF (2, P, p(2)) = F (z, P*, p*(2)) (42)

dargestellt werden kann, in der fiir die transformierten Rechnungs-
elemente rechts die Formeln

In (1
pr_ paittz (42a)
4
und
1 =/ 2z \VP"E
p*E) = 5 (]
In(I+4) =\14% T
gelten.

Der durch die Formeln (42) gegebene Zusammenhang ist fir die
Risikotheorie, welche zufallsartig schwankende Grundwahrscheinlich-
keiten voraussetzt, von grundlegender Bedeutung. Er erlaubt es,
viele Sitze und Formeln, die fir feste Grundwahrscheinlichkeiten
bekannt sind, ohne weiteres auf zufallsartig schwankende Grund-
wahrscheinlichkeiten zu verallgemeinern.

Fur die Ableitung des Transformationssatzes geht man von den
durch die Ausdricke (34") und (35") gegebenen charakteristischen
Funktionen aus und setzt

P o
eP L7011 — [1 — — [w@—1] ] .
he
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Logarithmiert man diese Gleichung, so erhilt man die Formeln

P*(z* () —1) =In [(] 4+ %) (1 . “]:i“")_*‘”lg“ z%(t)/):]—.ho

P'[l (A4 +im(1— 2 ()]
= — — |ln ¥) + n( — T t) R
4 14y ,

in denen zur Abkiirzung y = — eingefithrt wurde. Das zweite Glied

hq
rechts wird in die im vorliegenden Fall konvergente, logarithmische
Reihe entwickelt.

j2 o =@l
p*(zﬂ*(t)_l) == ——? lln(l + %) ““2_11 (1_;{_/{) [“T( ! ]

Setzt man jetzt
Pla(l+ )

y4

so erhdlt man nach einer einfachen Umformung die Beziehung

o r VL) ,
) = - ( Z(IH) . 42

Diese fir die charakteristischen Funktionen geltende Beziehung muss
noch auf die zugehﬁriaen Frequenzfunktionen iibertragen werden.
Beachtet man, dass [,7(f)]" die charakteristische Funktion der durch
r-fache, fortgesetzte Faltung aus der gegebenen Risikosummenvertei-
lung p(2) erzeugten Risikosummenverteilung p') (2) ist, so ergibt sich
die gesuchte Schlussformel

en = NP7
P(z)—m;hﬂ) — (42a)

womit der Transformationssatz bewiesen ist.

Die transformierte Risikosummenverteilung p*(2) stellt eine
lineare Kombination sdmtlicher Faltungen der gegebenen Risiko-
summenverteilung p(z) dar. In der Figur (5) ist die transformierte
Risikosummenverteilung p*(z) eingezeichnet, die der analytischen
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Risikosummenverteilung p(z) = ¢ entspricht. Der Mittelwert von
p*(2) ist nicht mehr gleich der Einheit, sondern betrigt

_ - 1 = x VN X
g™ =fzp*(z)dz == Z( ) = . (48)
& In(1+4y) =1\ 14y In (14 %)

Die in der transformierten Risikosummenverteilung auftretenden,
durch fortgesetzte Faltung erzeugten HFrequenzfunktionen p{*(z) er-
geben die Wahrscheinlichkeiten, in r Schadenfillen einen Gesamt-
schaden zwischen z und 2z + dz zu erzielen. Daraus lasst sich schliessen,
dass die transformierte Risikosummenverteilung die Wahrscheinlich-
keiten p*(2) dz liefert, dass der Gesamtschaden bei einem Schaden-
ereignis, bei dem 7r =1, 2, 3, ... Schadenfille miteinander auf-
treten konnen (zum Beispiel ein Verkehrsunfall mit 3 Todesopfern),
zwischen z und z 4 dz liegt. Die in der Gleichung (42) rechtsstehende
Wahrscheinlichkeitsfunktion gilt somit fiir den Fall von festen Grund-
wahrscheinlichkeiten mit mehrfachen Schadenfillen pro Schadenereig-
nis. Die zufallsartigc schwankende Grundwahrscheinlichkeiten voraus-
setzende Wahrscheinlichkeitsfunktion (40a) des Gesamtschadens um-
fasst somit auch den Fall, bei dem feste Grundwahrscheinlichkeiten, aber
mehrfache Schadenfille auftreten kénnen und, wie im Abschnitt I1¢)
festgestellt wurde, die Wahrscheinlichkeitsansteckung. Diese Viel-
seitigkeit der Wahrscheinlichkeitsfunktion (40a) sichert ihr eine um-
fassende Anwendbarkeit.

5. Die im zweiten Kapitel behandelten Grenziiberginge koénnen
auch bei der Wahrscheinlichkeitsfunktion des Gesamtschadens durch-
gefithrt werden. Die Grenzfunktionen lassen sich dabei Schritt fiir
Schritt nach der gleichen Methode ableiten wie bei der Wahrschein-
lichkeitsfunktion der Schadenfille. Es gentigt daher, hier noch die
Schlussformeln anzufiithren:

rz—P
«) lm®™F(P,pi) = @) mit z= (44)
P->»o00 VP:pz
) lim YelR (g, P LA, "dg mit * und 45
olf sk = —_—g s mi — — un oo
g lim WF (g, P,p () Off(ho et rtdg mit g = — 05 0o (45)
) lim WF(5P,p(2) = B mit e P
v m Vg, F,p(2) = 4 mi g =
P—roo VP (py+ 7)

P
hu

/ P
9 lim B, (2, p(@) = “F @ Po (). 1)

m—eoco

=
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¢) Die numerische Berechnung
der Wahrscheinlichkeitsfunktion des Gesamtschadens

Die bisher abgeleiteten Formeln erlauben es im allgemeinen nicht,
die Wahrscheinlichkeitsfunktion des Gesamtschadens numerisch aus-
zuwerten, wenigstens nicht mit emmem in der Praxis vertretbaren
Arbeitsaufwand. Ein brauchbares Verfahren fiir die numerische Aus-
wertung ist dagegen von Esscher [9] entwickelt worden. Die Esscher-
schen Formeln setzen feste oder planmissige verinderliche Grund-
wahrscheinlichkeiten voraus. Mit Hilfe des Transformationssatzes (42)
lassen sich die von Esscher abgeleiteten Formeln auch auf zufallsartig
schwankende Grundwahrscheinlichkeiten erweitern. Im folgenden
sollen die fiir den letzteren Fall geltenden Formeln direkt abgeleitet
werden. Die urspriinglichen, von Tisscher gefundenen Formeln ergeben
sich dann, indem man hy = oo setzt.

An Stelle von p(2) werde eine transformierte Risikosummen-
verteilung

eingefiihrt, deren Momente durch die Formel

) ookzr()d ,,—}

: e 2 (2 ’
f z)zd7—f—————;o——=v

0 0

bestimmt seien. In diesen Formeln bedeutet k eine vorldufig noch
willkiirliche Konstante, tiber deren Wert spiter verfiigt wird. Zwischen
den durch fortgesetzte Faltung von p(2) und p(2) erzeugten Risiko-
summenverteilungen p™ (2) und P (2) besteht die Beziehung

P (2) = vje™ P (2).

Fithrt man diese transformierten Risikosummenverteilungen p™ (2)
in die Formel (40a) ein und geht man gleichzeitig zur Frequenz-
funktion des Gesamtschadens iiber, so erhilt man die Formel

oo

(2, P, p(z) = >, M (r, P) vy (z). (48)

r=0
6
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Ersetzt man den Erwartungswert P durch

Py,
1—y(mp—1)°

so lasst sich Formel (48) auch schreiben

09f (s, P, p(3)) = P (2, B, B(3) {7 [1— 7 0 — DI}, (450)

worin ™f (z, P, p (2 )) eine Frequenzfunktion des Gesamtschadens be-
deutet, die gleich aufgebaut ist wie die gegebene, nur dass die Rech-
nungselemente P und p (2) ersetzt sind durch P und p(z). Die Wahr-
scheinlichkeitsfunktion des Gesamtschadens erhilt man dann aus der
Beziehung (48a) durch Integration; substituiert man noch z = uP,
so ergeben sich die Formeln

P =

uP

R (P, P, p(z)) = w] REeuR) Molf (2 P p(2))de (49a)

oo

—1—y fe-'ﬂz uP) Bof (5, P, p(2)) dz (49b)

ulP

" in denen zur Abkiirzung die Funktion
v =[1—ylrp— e (50)

eingefithrt wurde. Diese Funktion erreicht fiir gegebene Werte von
u — wie man durch Differenzieren feststellen kann — ihren Minimal-
wert, wenn die bisher willkiirliche Konstante k aus der Gleichung

(o]

_ f 2" p(2) dz
¥y 0

R 1) P, (51)
% (o—1) l—u—;r(ofekzp(z)dff*—l)

0

bestimmt wird. Die Konstante &k wird dann negativ oder positiv, je
nachdem u kleiner oder grosser als Eins ist. Ferner fallen die in den
Formeln (49) auftretenden Integrale immer kleiner als Eins aus, wenn
fir 0 <<w <1 Formel (49a) und fiir v > 1 Formel (49b) beniutzt wird.
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Daraus folgen die Ungleichungen
"I (uP, P,p(2) <y 0<u<l1 (52a)
1—®F(uP, P,p(z)) <w, u > 1 (52b)

von denen die letztere fiir grosse Werte von % oft eine hinreichend
genaue Abschiatzung der Wahrscheinlichkeitsfunktion erlaubt.

Fine genauere Berechnung der Wahrscheinlichkeitsfunktion er-
fordert die Auswertung der in den Formeln (49) auftretenden Inte-
grale. Zu diesem Zweck substituiert man

5 e PvlJrEl/ﬁ;: Dy, + &|/ Py, + P2RG

und bezeichnet die Frequenzfunktion der zufélligen Variablen & mit
molf (&, P, p(2))

Die Formeln (49) gehen dann in die Ausdriicke

0 o
WP (uP, P,p() = y [V W (g, B, p(z) e (53a)

und

1 —®F (P, P,p(s) =y [ V5 ®F(g B,5@)de  (53b)
0

itber. Ersetzt man ferner die Verteilung ®f (&, P, p(2)) durch ihre
Grenzfunktion (46), das heisst, setzt man

- 1 £z
FPp@E) = —=—c¢2,

]/23'5

50 erhilt man an Stelle der Formeln (53) die Naherungsformeln

. (ho) (uP, P, P (z)) ~ Ao (— k V—E) (543‘)
un

1 — WF (uP, P,p(2)) ~p 4, (k) M), (54b)
In denen fiir das Integral
= 1—® (g

90 S e —
J#rave =gy
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die Abkiirzung 4,(y) eingefithrt wurde. Einige Werte der Funktion
A,(y) sind in der Tabelle im Anhang zusammengestellt.

In der Regel ldsst sich mit Hilfe der Formeln (54) eine hin-
reichend genaue Auswertung der Wahrscheinlichkeitsfunktion er-
reichen. Noch genauere Formeln lassen sich ableiten, wenn die Ver-
teilung f (¢, P, p(2)) nicht durch die Grenzverteilung (46), sondern
durch die beiden ersten Glieder der Brunsschen Reihe approximiert
wird. Die Formeln (54) sind dann durch je ein weiteres Glied zu
erginzen. Hiir die Ableitung dieser Formeln sei jedoch auf die
Arbeiten [9] und [15] verwiesen.

Die oben abgeleiteten Formeln beziehen sich auf zufallsartig
schwankende Grundwahrscheinlichkeiten. Die urspriinglich von Esscher
aufgestellten, fiir feste Grundwahrscheinlichkeiten geltenden Formeln
ergeben sich aus ihnen, indem man hy, = o beriicksichtigt. Man
gelangt dann zu folgenden neuen Formeln: :

p = ¢ Filrotuk) (50") an Stelle von Formel (50)
u =7 = f 2 p(z)dz  (51) an Stelle von Formel (51).
0

Will man eine Wahrscheinlichkeitsfunktion nach der Methode von
Fsscher auswerten, so withlt man zuerst eine Reithe von geeigneten
Werten fiir k und berechnet die Momente vy, v, ¥, .... Anschliessend
bestimmt man die zu den gewihlten Werten von k entsprechenden
Werte von » nach den Formeln (51) oder (51") und ferner die Grossen

p [Formel (50) oder (51")] und

vy  (uP)?

/’(’ILP)* “‘l"‘ 7 l ho;ﬁoo
M, = * K (55)

\\

~ Py, hy = oo

Schliesslich erhéilt man unter Beniitzung einer Tabelle iiber die Funk-
tion 4,(y) die Wahrscheinlichkeitsfunktion selbst nach den Formeln
(54). In der nachstehenden Tabelle (6) ist die numerische Berech-
nung einiger Werte der Wahrscheinlichkeitsfunktion auszugsweise er-
sichtlich. Die Tabelle stitzt sich auf die Risikosummenverteilung der
Schweizerischen Mobiliar-Versicherungs-Gesellschaft in Bern (siehe
Figur 5). Ferner wird P = 5000 und h, = 40 vorausgesetzt.
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Tabelle 6
Die numerische Auswertung einer Wahrgcheinlichkeitsfunktion
nach der Methode von Esscher

k 0,000 05 0,000 190 0,000 175 1,000 20

Vo 1,000 449 1,000 912 | 1,001 637 1,001 888

171 1,051 070 1,065 380 1,123 916 1,145 559

;2 73,801 81,632 95,359 100,537

U 1,092 1,202 1,413 1,499

Y 0,908 8 0,622 7 0,170 6 0,083 1

k |/ 3, 04709 | 1,0826 | 2,028 | 2,6304
(ko) pp ('LLP, P,p(2))| 0,6760 0,839 § 0,972 4 0,988 7
V.

Anwendungen auf Riickversicherungsprobleme

Eine Versicherungsunternehmung kann die ihr iibertragene Aus-
gleichsaufgabe nur dann erfilllen, wenn sie in der Lage ist, in jedem
Geschaftsjahr die gesamte Schadenbelastung zu decken. Die Ein-
nahmen an Nettorisikopriamien — von den Sparprimien und Kosten-
zuschligen wird hier abgesehen — reichen dazu nicht immer aus; es
ist daher unerlésslich, dass weitere Mittel (Sicherheitszuschlige oder
-reserven) zur Verfiigung stehen. Diese Sicherheitsmittel miissen ander-
seits nicht so gross sein, dass sie auch im schlimmsten Falle, das heisst,
wenn alle versicherten Summen in einem Geschéftsjahr fillig wiirden,
ausreichen. Praktisch gentigt es, wenn ein Betrag vorhanden ist, der
nur ganz selten von der Gesamtschadenbelastung in einem Geschéfts-
jahr tberschritten wird. Die vorhandenen Mittel reichen dann aller-
dings nicht mehr mit Sicherheit, sondern nur noch mit einer gewissen
Wahrscheinlichkeit aus. Diese Wahrscheinlichkeit, der sogenannte
Sicherheitsgrad, ist ein Mass fur die Stabilitdt des Risikogeschéftes.
Geht man von einem bestimmten Sicherheitsgrad aus, so lassen sich
die ihm entsprechenden Sicherheitsmittel berechnen.
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Der Sicherheitsgrad berechnet sich aus der im Kapitel TV unter-
suchten Wahrscheinlichkeitsfunktion des Gesamtschadens. Er hingt
von der Hohe der Sicherheitsmittel, von der durch die erwartungs-
méssige Anzahl der Schadenfille P gemessenen Bestandesgrosse, von
der Risikosummenverteilung p(2) und schliesslich vom Parameter &,
ab. Fihrt die Rechnung unter Beniitzung dieser Flemente zu einem
ungeniigenden Sicherheitsgrad, so stellt sich die Frage, durch welche
Massnahmen der Sicherheitsgrad hinreichend verbessert werden
kénnte.

Ganz allgemein lasst sich zu dieser Frage feststellen, dass der
Sicherheitsgrad nur durch eine geeignete Verinderung der oben er-
wiahnten Rechnungselemente der Wahrscheinlichkeitsfunktion erhoht
werden kann. Aus der Fiille der sich bietenden Moéglichkeiten soll hier
nur die Riickversicherung nach der sogenannten IFxzedenten- und
Quotenmethode, die eine Verdnderung der Risikosummenverteilung
p(2) bewirkt, niher untersucht werden.

a)} Das Maximum des Selbstbehaltes als Funktion
des Sicherheitszuschlages

Bei der Exzedentenriickversicherung werden alle Risikosummen
ruckversichert, welche ein bestimmtes Maximum M uberschreiten.
Die urspriingliche Risikosummenverteilung p(2) geht dann in pg,(2)
und der Sicherheitsgrad ®'F (wP, P, p(2)) in MF (uP, P, py(2)) tber,
wenn vereinfachend angenommen wird, dass die fiir ein Rechnungs-
jahr zur Verfiigung stehenden Sicherheitsmittel ausschliesslich aus
einem proportionalen Zuschlag (v —1) zu den Nettorisikopramien
bestehen. Berechnet man den Sicherheitsgrad fiir ein bestimmtes
Maximum fir verschiedene Werte des Sicherheitszuschlages (v —1),
so lésst sich anschliessend durch Interpolation der erforderliche Sicher-
heitszuschlag berechnen, der einem gegebenen BSicherheitsgrad ent-
spricht. In der Tabelle 7 sind die erforderlichen Sicherheitszuschlige
fiir verschiedene Werte des Maximums M und des Parameters h, zu-
sammengestellt, wobei in zwei Varianten ein Sicherheitsgrad von 959,
und 97,59, vorausgesetzt wird. Die Tabelle stiitzt sich im iibrigen auf
P = 5000 und die Risikosummenverteilung der Schweizerischen
Mobiliar-Versicherungs- Gesellschaft in Bern. Die numerischen Resul-
tate diwrften in erster Linie fir die Feuerversicherung bedeutsam sein.
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Tabelle 7

Erforderlicher Sicherheitszuschlag in 9, der Nettorisikoprdmien-
R einnahme bei einem Maximum des Selbstbehaltes von M =

Fr. 50 000 | Fr. 100 000 | Fr. 200 000 [ Fr. 500 000 | Fr. 750 000

a) Sicherheitsgrad 95 9,

oo 9 11 14 18 21
100 19 20 22 25 27
40 29 30 31 34 35

b) Sicherheitsgrad 97,5 %,

o0 11 13 17 22 25
100 23 25 27 30 33
40 35 36 38 41 43

In der Praxis wird oft nicht nach dem erforderlichen Sicherheits-
zuschlag bei gegebenem Maximum, sondern umgekehrt nach dem
Maximum des Selbstbehaltes bei gegebenem Sicherheitszuschlag ge-
fragt. Das gesuchte Maximum des Selbstbehaltes bestimmt sich in
diesem Falle durch Interpolation aus den fiir verschiedene Maxima
berechneten Sicherheitszuschligen; zum Beispiel erhdlt man fir
hy = oo bei einem Bicherheitsgrad von 97,5 9%, und einem verfiigbaren
Sicherheitszuschlag von 15 9, ein Maximum des Selbstbehaltes von
M = 150 000 Fr.

Aus der Tabelle 7 lisst sich folgendes entnehmen:

1. Die Hohe des erforderlichen Sicherheitszuschlages ist in erster
Linie abhingig vom Parameter h,, der die Schwankungen der Grund-
wahrscheinlichkeiten beriicksichtigt. Daraus lasst sich schliessen, dass
die Vernachlissigung dieser Schwankungen unter Umsténden zu ganz
unrichtigen Resultaten fithren kann.

2. Die Riickversicherung nach der Exzedentenmethode wirkt
sich um so stiarker auf die Hohe des erforderlichen Sicherheitszuschlages
aus, je grosser hy ist oder, mit anderen Worten, je kleiner die Schwan-
kungen der Grundwahrscheinlichkeiten sind. Am wirksamsten ist die
Exzedentenriickversicherung bei festen Grundwahrscheinlichkeiten.
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Vernachlissigt man die Schwankungen der Grundwahrscheinlich-
keiten, so lauft man Gefahr, den Einfluss der Rickversicherung zu
tiberschétzen. '

3. Die erforderlichen Sicherheitszuschlage weichen bei verschie-
denen Werten von hy und M um so stirker voneinander ab, je hoher
der Sicherheitsgrad gewihlt wird.

Der relative Sicherheitszuschlag ist im allgemeinen in einem Ver-
sicherungsbestand nicht fiir alle Risikoklassen gleich hoch; in der
Regel ist er um so kleiner, je grosser die Grundwahrscheinlichkeiten
und die Risikoprédmien sind. Unter diesen Umsténden ist es angebracht,
das Maximum des Selbstbehaltes nicht einheitlich, sondern fiir jede
Risikoklasse verschieden hoch anzusetzen, und zwar zweckmissig so,
dass diese Maxima moglichst unabhingig sind von der Zusammen-
setzung des Versicherungsbestandes nach Risikoklassen. Dies lisst
sich — wenigstens niherungsweise — erreichen, wenn man das Maxi-
mum des Selbstbehaltes in jeder Risikoklasse so berechnet, wie wenn
der gesamte Versicherungsbestand nur aus Versicherungen der be-
treffenden Risikoklasse bestehen wiirde.

b) Die Quotenriickversicherung bei Versicherungsbestinden
mit verschiedenen Versicherungszweigen

Die meisten Versicherungsunternehmungen fithren eine Reihe von
Versicherungszweigen nebeneinander. Fiir jeden dieser Versicherungs-
zwelge werden 1m allgemeinen die Rechnunggelemente P, p(z) und h,
und der Sicherheitsgrad verschieden ausfallen. Massgebend fiir die
Unternehmung sind aber nicht die Sicherheitsgrade der einzelnen
Versicherungszweige, sondern nur der Sicherheitsgrad des Gesamt-
bestandes. Der Gesamtsicherheitsgrad hingt jedoch stark davon ab,
mit welchem Gewicht jene Versicherungszweige im Bestand vertreten
sind, bei denen grosse Schwankungen der Grundwahrscheinlichkeiten
vorkommen. Daraus folgt anderseits, dass der Gesamtsicherheitsgrad
sich merklich verbessern lisst, wenn das Gewicht der gefahrdeten Teil-
bestinde durch eine Quotenriickversicherung aller Versicherungen
dieser Teilbestdnde verkleinert wird. '

Um die Auswirkung einer derartigen Quotenversicherung auf den
Sicherheitsgrad einer Unternehmung zu untersuchen, muss vorerst
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eine Methode entwickelt werden, die es gestattet, die Wahrscheinlich-
keitsfunktion des Gesamtschadens zu berechnen, wenn der Gesamt-
bestand aus mehreren Teilbestinden mit den Rechnungselementen
P, p; (2) und hy; besteht. Wire der Parameter k, in allen Teilbestianden
gleich gross, so liesse sich die Wahrscheinlichkeitsfunktion far den
Gesamtbestand nach den in Kapitel IV entwickelten Methoden aus-
werten, wobel die Elemente

ho = hoy = hgg = hog = ...

P=P +P,+P;,+ ... (56)
1
ple) = ‘17 [Plpl(z) + Py po(2) + Py p3lz) + ]

in Rechnung zu stellen wiiren. Der allgemeine Fall mit by, 52 hgg 72 g - . .
lasst sich auf den Spezialfall (56) zuriickfithren, weil nach dem Trans-
formationssatz eine Wahrscheinlichkeitsfunktion mit Ay 7 oo Immer
durch eine Wahrscheinlichkeitsfunktion mit hy, = o ersetzt werden
kann. Setzt man die fiir jeden Teilbestand geltenden transformierten
Rechnungselemente P, und p; (¢) in Formel (56) ein, so erhilt man die
fir den Gesamthestand giiltigen Rechnungselemente. P* und p* (),
aus denen nach der Methode von Ksscher die Wahrscheinlichkeits-
funktion des Gesamtschadens berechnet wird. Diese etwas langwierige
Zwischenrechnung wird hier weggelagsen; fiir # > 1 erhidlt man

schlussendlich folgende Formeln:

1— ®iF (uP, P, p, (2)) ~ v Ao (k) M, ) (57)
mit
' s P ~hoq
p = g-ukPH [1 " (Vg ~——~1)] (58)
1=1 01 i
w=— S I = — D P u, 59
‘TP A R y, F 2 ()
— v, -
hOi ( 01 )

ey i L Yoy 2
A A LTIy (50)
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Die Formeln (57) bis (60) sind gleich aufgebaut wie die im Ab-
schnitt IV ¢ abgeleiteten Formeln (50) bis (55), nur dass die Summen
oder Produkte der fiir alle Teilbesténde geltenden Ausdriicke an Stelle
der einzelnen Awusdriicke auftreten. Die verallgemeinerten Formeln
erlauben es, die Wahrscheinlichkeitsfunktion des Gesamtschadens bei
beliebig zusammengesetzten Versicherungsbestdnden zu berechnen und
insbesondere die Auswirkung einer Quotenriickversicherung bei ge-
fahrdeten Teilbestiinden numerisch zu untersuchen.

Es sei folgendes Beispiel betrachtet: Fin Versicherungsbestand
zerfalle in zwei Teilbestinde mit P; = P, = 2500, hy; = o und
hoe = 40; in beiden Teilbestdnden gelte die Risikosummenverteilung
der Schweizerischen Mobiliar-Versicherungs-Gesellschaft in Bern mit
einem Maximum des Selbstbehaltes von Fr. 100 000. In der Tabelle 8
sind die erforderlichen Sicherheitszuschlige fiir verschiedene Werte
des Sicherheitsgrades zusammengestellt, wobei angenommen wird, der
zweite Teilbestand werde in drei Varianten zu 0 9, 25 9, oder 50 9,
quotenweise riickversichert.

Tabelle &
Erforderlicher Sicherheitszuschlag in 9, der Nettorisikopridmie
Sicherheitsgrad bei einer quotenméi,ssiger.l Riickversicherung des Teilbestandes
mit hy = 40 von
0% l 25 %, 50 %
80 9%, 8,50 7,25 6,00
85 9/, 10,75 9,25 7,50
90 9, 13,75 11,50 9,50
95 9, 17,00 14,50 12,00

Die Tabelle zeigt, dass der erforderliche Sicherheitszuschlag nahezu
eine lineare Funktion der im Selbstbehalt verbleibenden Quote des
zweiten Teilbestandes darstellt; die Auswirkung der Riickversicherung
auf die Hohe des Sicherheitszuschlages ist im ibrigen um so stirker,
Je hoher der Sicherheitsgrad gewdhlt wird. Durch eine Quoteuriick-
versicherung lisst sich unter Umstinden eine ins Gewicht fallende Ver-
besserung des Sicherheitsgrades erreichen.
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¢) Die Priamienberechnung
bei der Schadenexzedentenriickversicherung

Bei einer Schadenexzedentenriickversicherung vergiitet der Riick-
versicherer gegen eine bestimmte Priamie dem Hrstversicherer die
Gesamtschadenbelastung, sofern und soweit sie eine zum voraus fest-
gesetzte Grenze — zum Beispiel 120 9, der Nettorisikoprimien-
einnahme — tbersteigt. Bei dieser Riickversicherungsform stehen
nicht — wie bei der gewdhnlichen Riickversicherung nach der Ex-
zedenten- oder Quotenmethode — einzelne dem Riickversicherer iiber-
wiesene Versicherungen unter Risiko, sondern das kollektive Ergebnis
des Risikogeschiftes des Hrstversicherers. Im folgenden soll die Be-
rechnung der Primie fiir die Schadenexzedentenriickversicherung kurz
behandelt werden, wobei von der Annahme ausgegangen wird, dass
der Riickversicherer den Gesamtschaden z zu vergiiten hat, sofern und
soweit er den Betrag wP iibersteigt.

Die Wahrscheinlichkeit, dass der Riickversicherer einen Betrag
zwischen ¥y = z —uP und y + dy an den Erstversicherer leisten muss,
betriigt ®f (z, P, p(2)) dz, wobei nur Gesamtschiden x > uP zu einer
Leistung des Riuckversicherers fithren. Die Pramie fir die Schaden-
exzedentenriickversicherung ™' (wP, P, p(z)) ergibt sich somit aus
dem Integral

BB (P, P, p(2)) = fw (z —uP) ®f (z, P, p(2)) dz. (61)

uP

Das Integral (61) lisst sich, wie die Wahrscheinlichkeitsfunktion nach
der Methode von Esscher, auf eine der numerischen Auswirkung zu-
gingliche Form bringen. Die Ableitung der nachstehenden Formel (62)
erfolgt ganz analog wie bei der Wahrscheinlichkeitsfunktion des Ge-
samtschadens im Abschnitt IV ¢); es geniigt deshalb hier nur die
Schlussformel L

®I (uP, P,p(2)) ~ 934y (k) 33 ) (62

mit

o 1 1—®(y)
a(9) = [orean® = (1-347@?—) (63)

anzugeben. Die in der Formel (62) auftretenden Grossen k, ¢ und M,
sind durch die Formeln (50), (51) und (55) im Abschnitt IV ¢) gegeben;
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im Anhang sind einige fiir numerische Berechnungen niitzliche Werte
der Funktion A4,(y) zusammengestellt.

In der nachstehenden Tabelle 9 sind einige Primien fiir Schaden-
exzedentenriickversicherungen aufgefithrt; diese Zahlenwerte gelten
fiar P = 5000 und stiitzen sich auf die Risikosummenverteilung der
Schweizerischen Mobiliar-Versicherungs-Gesellschaft in Bern; in einer
Variante wird ferner vorausgesetzt, dass neben der Schadenexzedenten-
riickversicherung noch eine gewohnliche Exzedentenriickversicherung
mit einem Maximum des Selbstbehaltes von Fr. 200 000 gefithrt wird.

Tabelle 9

Maximaler Gesamtschaden
zu Lasten
des Erstversicherers

Pramie fiir die
Schadenexzedentenriickversicherung

in 9, der Nettorisikoprémieneinnahme des Erstversicherers
" g
40 | 100 | oo

a) kein Maximum des Selbstbehaltes

110 4,25 2,64 1,46
120 1,99 0,90 0,33
130 0,81 0,27 0,05
140 0,32 0,07 -
b) Maximum des Selbstbehaltes = 200 000 Fr.
110 3,48 1,61 0,45
120 1,43 0,42 0,03
130 0,51 0,08 e
140 0,17 s e

Aus der Tabelle 9 lasst sich folgendes entnehmen.

1. Die Prémien fir eine Schadenexzedentenriickversicherung
hangen wesentlich vom Maximum des Selbstbehaltes ab; die Kosten
der Schadenexzedentenriickversicherung lassen sich fithlbar senken,
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wenn die grossten Risikosummen nach der gewohnlichen Exzedenten-
methode individuell riickversichert werden. Es empfiehlt sich tiber-
haupt fast immer, die Schadenexzedentenriickversicherung in Ver-
bindung mit einer gewohnlichen Exzedentenriickversicherung zu
fithren, weil die Prémien der Schadenexzedentenriickversicherung
durch das stets recht unsichere Gewicht der grossen Risikosummen in
der Risikosummenverteilung stark beeinflusst werden. Die Primien-
berechnung bei der Schadenexzedentenriickversicherung ldsst sich
somit auf eine sicherere Grundlage stellen, wenn die grdssten Risiko-
summen individuell riickversichert werden.

2. Der die zufallsartigen Schwankungen der Grundwahrscheinlich-
keiten messende Parameter h, 1st fiir das Prémienniveau bei der
Schadenexzedentenriickversicherung von grundlegender Bedeutung.
Fiine Vernachlissigung der Schwankungen der Grundwahrscheinlich-
keiten wiirde in der Regel zu ganz ungeniigenden Primien fithren. Die
erweiterte Risikotheorie, welche die Schwankungen der Grundwahr-
scheinlichkeiten beriicksichtigt, erlaubt es demgegeniiber, die Primien
fiir die Schadenexzedentenriickversicherung so zu berechnen, dass sie
dem wirklichen Risiko in den verschiedenen Versicherungszweigen
Rechnung tragen.

Die behandelten Beispiele durften eine gewisse Vorstellung von
den numerischen Auswirkungen von festen und zufallsartig schwan-
kenden Grundwahrscheinlichkeiten gegeben haben. Im allgemeinen
liigst sich feststellen, dass die Schwankungen der Grundwahrscheinlich-
keiten sich numerisch so stark auswirken, dass sie nicht vernachlissigt
werden diirfen. Die erorterten Anwendungsbeispiele zeigen tiberdies,
dass die von der Risikotheorie entwickelten Methoden es erlauben,
eine Reihe von versicherungstechnischen Problemen rechnerisch zu be-
handeln, welche in der Praxis oft nur mit Hilfe von gefiihlsméssigen
Erwiigungen gelost werden, die insbesondere den Mathematiker nicht
befriedigen kénnen. Es ist zu hoffen, dass die Praxis von der durch
die Kinfihrung von zufallsartig schwankenden Grundwahrscheinlich-
keiten anpassungsfihiger gewordenen Risikotheorie in vermehrtem
Masse Gebrauch machen wird.
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Anhang
Einige Werte der Funktionen 4,(y) und 4, (y)

y | Ao(y) 100 h) | A, (y)10° 2) |y | Ao(y) 102 ) | A4, (y) 10° 2)
0,0 5000 3989 2,0 1681 627
0,1 4625 3527 2,1 1620 586
0,2 4292 3131 2,2 1564 549
0,3 3997 2790 2,3 1510 516
0,4 3733 2496 2,4 1460 485
0,5 3496 2241 2,5 1413 456
0,6 3283 2019 2,6 1369 430
0,7 3091 1825 2,7 1327 406
0,8 2918 1655 2,8 1288 384
0,9 2760 1506 2,9 1250 363
1,0 2616 1574 3,0 1215 344
1,1 2484 1257 3,5 1063 266
1,2 2364 1153 4,0 944 210
1,3 2253 1060 4,5 848 170
1,4 2152 977 5,0 769 143
1,5 2058 903

1,6 1971 836

14 1890 776

1,8 1816 721

1,9 1746 672

- 1—2(y)
Ao(y) = [ FraBE) = ——
o0 =] V2z ')

= 1 1-® 1
Ay) = [ rEdD(E) = [l—y ) —y4o(y)

; Vo |7 @) | Vom
1) Diese Werte wurden aus der Arbeit [9] tibernommen.
%) Fir die hoheren Werte von y ist die letzte Dezimale unsicher.
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