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Die Elemente der kollektiven Risikotheorie

von festen und zufallsartig schwankenden Grund¬

wahrscheinlichkeiten *)

Von Hans Ammeter, Zürich

In der elementaren Versicherungsmathematik geht man von der
Annahme eines vollkommenen Eisikoausgleichs aus, obschon der

rechnungsmässige Verlauf des Risikogeschäftes stets von zufälligen
Schwankungen gestört wird. Die Risikotheorie befasst sich demgegenüber

mit den durch diese Schwankungen bewirkten Abweichungen
vom lechnungsmässigen Schadenverlauf und den Gefahren, welche
dem Versicherer aus diesen Abweichungen entstehen.

Innerhalb der Risikotheorie unterscheidet man zwischen einer
individuellen und einer kollektiven Theorie. Die ältere, individuelle
Theorie geht aus vom Risiko aller Einzelversicherungen eines
Bestandes. Die moderne, von einigen nordischen Autoren (siehe
Literaturverzeichnis) entwickelte kollektive Risikotheorie lässt die
Einzelversicherungen des Bestandes ausser acht und benutzt lediglich gewisse

Durchschnittseigenschaften von Versicherungsbeständen. Die kollektive
Betrachtungsweise ist auch für die vorliegende Arbeit wegleitend.

Bisher ging man in der Risikotheorie gewöhnlich von den in der
klassischen Wahrscheinlichkeitsrechnung üblichen Annahmen aus;
insbesondere wurde regelmässig vorausgesetzt, dass die
Grundwahrscheinlichkeiten, das sind die Wahrscheinlichkeiten für den Eintritt
oder Nichteintritt des Schadenfalles, in allen Risikoklassen fest sind.
Diese wohl allzu einfache Annahme harmoniert aber nur selten mit

') Diese Arbeit behandelt in erweiterter Form die Problemstellungen, welche
im Kurzreferat «Risikotheoretische Zusammenhange bei festen und schwankenden
Grundwahrscheinlichkeiten» anlässlich der Mitgliederversammlung vom 17.
Oktober 1948 erörtert worden sind.
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den wirklichen Verhältnissen im Versicherungswesen. Daraus wird
vielfach geschlossen, dass die Eisikotheorie an sich und noch mehr
ihre praktische Anwendung abzulehnen sei.

Diese Auffassung geht wohl am Kern der Dinge vorbei; nicht die
Risikotheorie an sich ist auf versicherungstechnische Probleme nicht
anwendbar, sondern nur ihre Ergebnisse, soweit sie sich auf Annahmen
stützen, die den wirklichen Verhältnissen zu wenig Rechnung tragen.
Nun ist aber die Risikotheorie keineswegs an die in der klassischen

Wahrscheinlichkeitsrechnung üblichen Annahmen gebunden; sie lässt
sich vielmehr ohne weiteres auf zweckmässigeren Annahmen aufbauen.
Auf diesen Sachverhalt hat schon Cramer in der Arbeit [1] *)

hingewiesen. Später hat Nolfi [20], unseres Wissens als erster, die Grundzüge

einer Risikotheorie auf individueller Grundlage entwickelt, die

zufallsartig schwankende GrundWahrscheinlichkeiten voraussetzt. In
der Arbeit [15] hat der Verfasser versucht, die gleichen Gedankengänge

der kollektiven Risikotheorie dienstbar zu machen 2). Durch
diese Erweiterungen ist die Risikotheorie zweifellos den wirklichen
Verhältnissen im Versicherungswesen nähergekommen.

Die bisherige, von festen Grundwahrscheinlichkeiten ausgehende
Risikotheorie ist damit aber keineswegs als überholt zu betrachten;
sie bildet vielmehr die unentbehrliche Grundlage für die erweiterte
Risikotheorie. In dieser Arbeit wird daher versucht, die Risikotheorie,
ausgehend von der einfachsten Annahme von festen Grundwahrscheinlichkeiten,

systematisch zu erweitern auf planmässig veränderliche
und schliesslich zufallsartig schwankende Grundwahrscheinlichkeiten.

Die Anzahl der Schadenfälle und die Gesamtschadensbelastung
werden in der Risikotheorie nicht wie in der elementaren Versicherungsmathematik

als feste, ä priori gegebene Grössen angenommen, sondern
als zufällige Variable, die einem Verteilungsgesetz folgen. Die Theorie
der Verteilungsfunktionen bildet daher die Grundlage der
Risikotheorie. Zum besseren Verständnis der nachfolgenden risikotheoretischen

Ableitungen werden deshalb in einem einleitenden Kapitel
die wichtigsten Formeln und Sätze aus der Theorie der Verteilungsfunktionen

zusammengestellt und durch Beispiele erläutert, welche
für die späteren Entwicklungen von Bedeutung sind.

*) Die in [ ] gesetzten Nummern beziehen sich auf das Literaturverzeichnis.
2) Von ähnlichen Ideen geht auch die dem Verfasser erst nachträglich

bekannt gewordene Arbeit [13] von Ove Lundberg aus.
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I.

Einige Ergebnisse aus der Theorie
der Verteilungsfunktionen [18]

Unter einer zufälligen Variablen x versteht man eine Grösse,
die mit gewissen Wahrscheinlichkeiten f{xi) verschiedene Werte xi
annehmen kann. Die Gesamtheit aller -Werte und der zugehörigen
Wahrscheinlichkeiten f{xi) bilden eine Verteilung, die entweder als

Frequenzfunktion f(x) oder als Wahrscheinlichkeitsfunktion F(x)
dargestellt werden kann. Die Frequenzfunktion f(x) gibt im diskontinuierlichen

Fall die Wahrscheinlichkeit an, dass die zufällige Variable den

Wert x annimmt. Im kontinuierlichen Fall ist f(x)dx die Wahrscheinlichkeit,

dass die zufällige Variable in den Bereich zwischen x und

x + dx fällt. Die Wahrscheinlichkeitsfunktion F (x) gibt demgegenüber
die Wahrscheinlichkeit an, dass die zufällige Variable einen Wert x{ < x
annimmt; sie bestimmt sich aus der Frequenzfunktion durch Summation

oder Integration nach den Formeln
X

F(x) — y^fixf) oder F(x) J ffx^dx^
-oo

Zwei zufällige Variable x1 und x2 heissen stochastisch abhängig
oder unabhängig, je nachdem die Verteilung der einen Variablen xx
von der anderen x2 abhängt oder nicht. Die Summe von zwei stochastisch

unabhängigen, zufälligen Variablen z aq + x2 ist wieder eine

zufällige Variable, deren Frequenzfunktion durch das nachstehende

Faltungsintegral gegeben ist.

-j-oo

f(2) f fi(xi)f2(2 — x1)dx1
— oo

/ /] (z — x2)f2(x2)dx2
— oo

/i(s) * /8(s) (1)

Formel (1) lässt sich ohne weiteres auf die Summe von mehr als zwei

zufälligen Variablen erweitern. Es gilt dann für z x1 -+- x2 + x3 +

f(z) /,(*) * f2(z) * fs(z) * (!')
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Die Untersuchung der Eigenschaften von Verteilungen an Hand
der Frequenz- und Wahrscheinlichkeitsfunktionen gestaltet sich im
allgemeinen recht schwierig und führt oft — wie zum Beispiel in
Formel (1) — zu verhältnismässig kompliziert aufgebauten
Ausdrücken, deren Deutung nicht ohne weiteres möglich ist. Zu einer
beträchtlichen Vereinfachung gelangt man aber vielfach, wenn man
an Stelle der Frequenz- oder Wahrscheinlichkeitsfunktion die Laplace-
Transformierte der Frequenzfunktion

xfit) 2/(«) e'te
X — — 00

oder
-{-00

xcp(t) f f(x)eitxdx, (2)
— 00

die sogenannte charakteristische Funktion, einführt. In Formel (2)

bedeutet t eine reelle Variable und i die imaginäre Einheit. Die
charakteristischen Funktionen der wichtigsten, in dieser Arbeit auftretenden
Verteilungen sind in der nachstehenden Tabelle 1 zusammengestellt.

Tabelle 1

Verteilung
Frequenzfunktion

f{x)

Charakteristische
Funktion

zVO)

Binomialverteilung

Poisson-Verteilung

Gauss-Verteilung

PearsonWerteilung
Typ III

Qfd-p)"
e-Ppx

xl

-J^
X2

e

]/ 2yr

h
0

c-hnx xh„-l
r(K)

|pe,( + 1 — p\n

eP(e"-l)

(2

e
2

Tb I*10"0

h0 — it
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Die wichtigsten Sätze über die charakteristische Funktion lauten:

a) Der Inversionssatz

Aus einer gegebenen charakteristischen Funktion lässt sich
umgekehrt die zugehörige Frequenz- oder Wahrscheinlichkeitsfunktion
bestimmen. Es gelten die Inversionsformeln

1 —00

/(®) — f x?{t)^üx dt (3a)

und
j

/(«) lim - - f xq>(t)e^txdt, (3b)
T-*- co 2 1

je nachdem eine kontinuierliche oder diskontinuierliche Frequenz-
funktioji vorliegt; der Ausdruck rechts in der Formel (3b) nimmt nur
für «-Werte, die in der Verteilung vorkommen, einen von Null
verschiedenen Wert an.

Für die Wahrscheinlichkeitsfunktion gilt stets die Inversionsformel

* 1 +~ 1 g-'tf
F(x) f f(x)dx F(0) + ---- fz<p(t) dt• (4)-i 2 n_i it

Der Inversionssatz zeigt, dass Verteilung und charakteristische
Funktion umkehrbar eindeutig einander entsprechen. Aus den
Eigenschaften der charakteristischen Funktion darf daher direkt auf die

Eigenschaften der zugrunde liegenden Verteilung geschlossen werden;
zum Beispiel lässt sich aus dem Umstand, dass der in Formel (3b)
rechts auftretende Grenzwert für alle x verschwindet, schliessen, dass

die zugrunde liegende Frequenzfunktion für alle x kontinuierlich ist.

b) Der Produktsatz

Der durch das Faltungsintegral (1) gegebene Zusammenhang
zwischen den Frequenzfunktionen einer Summe von zwei stochastisch

unabhängigen, zufälligen Variablen und ihren Komponenten geht für
die entsprechenden charakteristischen Funktionen in ein gewöhnliches
Produkt über

z<p{t) Xl<P 1® • xJPi® (5)



Beispiel: Die Summe von zwei stochastisch unabhängigen, zufälligen
Variablen z x1-f-x2, die beide einer Poisson-Verteilung folgen,
genügt ihrerseits einer Poisson-Verteilung.

Beweis: Das Produkt der beiden aus Tabelle 1 zu entnehmenden
charakteristischen Funktionen

t<p(t) ep^ ep^ (6)

ist gleich aufgebaut wie die beiden Faktoren, das heisst die Frequenzfunktion

von z — xx + x2 ist durch

e-iPi + Pt)/p i p y
f(z) Li (6')

zl

gegeben. Die direkte Ableitung von Formel (6') — ohne Benützung
der charakteristischen Funktion — wäre bedeutend umständlicher.

c) Der Momentensatz

Die Potenzmomente einer Verteilung

+ oo

mk j f(x)xkdx (7)
— oo

erhält man aus der charakteristischen Funktion nach der Formel

* (7')

in der x<p{k) (t) j(=0 die fc-te Abteilung der charakteristischen Funktion
an der Stelle t 0 bedeutet.

d) Die Substitutionsregel

Ersetzt man die zufällige Variable x durch die linear von ihr
abhängige neue Variable

»Z/ et

z
b

so geht die charakteristische Funktion x<p(t) in

ita / t \
s<p(t) e ",#>( — (B)

über. ^
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Beispiel: Wird in der Poisson-Verteilung (siehe Tabelle 1) die
zufällige Variable x ersetzt durch

x — P

1/P

so erhält man an Stelle der charakteristischen Punktion

x<p(t)

die charakteristische Funktion

— UP~~2~ \
z<p(t) e*Pi ep[e (9)

e) Der Grenzwertsatz

Strebt eine Folge von charakteristischen Funktionen cpx, <p2,

gleichmässig in jedem endlichen f-Intervall gegen eine Grenzfunktion
9>oo> so streben die entsprechenden Wahrscheinlichkeitsfunktionen

gegen die Wahrscheinlichkeitsfunktion, welche der Grenzfunktion

(p^ entspricht.
Die für die Gültigkeit des Satzes wesentliche Bedingung der gleich-

massigen Konvergenz ist bei allen in dieser Arbeit auftretenden
Grenzübergängen erfüllt. Die für die charakteristische Funktion abgeleitete
Grenzfunktion darf somit stets auf die entsprechende Wahrscheinlichkeitsfunktion

übertragen werden.

Beispiel: Ableitung der Poisson-Verteilung als Grenzfunktion der

Binomialverteilung:
Nach Tabelle 1 lautet die charakteristische Funktion der

Binomialverteilung

xV{t) {1 + p{ßa 1)}"

Lässt man die Anzahl der Züge n gegen oo und gleichzeitig die
Grundwahrscheinlichkeit p gegen Null streben, und zwar so, dass der Mittelwert

np P festbleibt, so ergibt sich der Grenzwert

lim x<p(t) lim 1 + — (ea -

m
i) eP

^ (10')



_ 42 —

der gemäss Tabelle 1 mit der charakteristischen Funktion der Poisson-

Yerteilung identisch ist, dass heisst es ist

lim (nm (- - 1 —
P—

(10)
o \ x \ m / \ m xl

II.

Die Frequenzfunktion der Schadenfälle

Die Anzahl der Schadenfälle, die in einem Yersicherungsbestand
während einer Beobachtungsperiode auftreten, stimmt nur selten mit
der erwartungsmässigen Anzahl überein; im allgemeinen tritt
vielmehr irgendeine vom Erwartungswert P abweichende Anzahl x von
Schadenfällen auf. Jeder dieser Schadenszahlen kann die Wahrscheinlichkeit

f(x, P) zugeordnet werden, mit der sie zu erwarten ist; die
Wahrscheinlichkeiten f(x, P) bilden dann die Frequenzfunktion der

zufälligen Variablen x, die den Bedingungen

oo oo

2/0dP) 1 und 2xf(x,P) P
x=0 x=0

genügt.
Die Frequenzfunktion / (x, P) kann grundsätzlich auf zwei Arten

bestimmt werden, nämlich empirisch durch Ausgleichung von
Beobachtungen oder theoretisch unter Benützung gewisser Annahmen
über die Eigenschaften der Schadenswahrscheinlichkeiten. Bei der
letzteren Methode ist die Brauchbarkeit der getroffenen Annahmen
nachträglich noch zu überprüfen, z. B. indem die theoretische

Frequenzfunktion mit empirisch gefundenen verglichen wird. Zeigt dieser

Vergleich eine einigermassen befriedigende Übereinstimmung zwischen
der theoretischen und der empirischen Funktion, so hat man — wie
Eggenberger in der Arbeit [19] mit Recht hervorhebt — mehr erreicht
als bei einer noch so erfolgreichen analytischen Ausgleichung der

empirischen Funktion. Die bei der Ableitung der theoretischen
Frequenzfunktion getroffenen Annahmen dürfen dann — zu mindest
näherungsweise — als die Gesetze gelten, welche die betreffenden
Schadenswahrscheinlichkeiten beherrschen. Die Kenntnis dieser
Gesetze erlaubt es, Vorgänge zu beschreiben, über die noch keine

Beobachtungen vorliegen; zum Beispiel lässt sich zum voraus angeben,
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wie die Frequenzfunktion f{x, P) sich verändern wird, wenn der

Erwartnngswert P wächst.
In diesem Kapitel soll die Frequenzfunktion der Schadenfälle

unter drei verschiedenen Annahmen nach der theoretischen Methode
bestimmt werden. Unter -a) wird angenommen, die Schadens- oder
Grundwahrscheinlichkeiten verhalten sich wie die aus der
Wahrscheinlichkeitsrechnung bekannten Urnenwahrscheinlichkeiten.
Anschliessend werden diese Annahmen unter b) in dem Sinne erweitert,
dass ein engerer Anschluss an die tatsächlichen Gegebenheiten im
Versicherungswesen erreicht wird. Insbesondere wird ein kontinuierlicher
Ablauf des Risikogeschäftes vorausgesetzt, bei dem die unter Risiko
stehenden Bestände und die GrundWahrscheinlichkeiten sich im
Verlaufe der Zeit planmässig verändern. Im Abschnitt c) wird schliesslich
die noch allgemeinere Annahme getroffen, dass die Grundwahrscheinlichkeiten

selbst gewissen zufallartigen Schwankungen unterworfen sind.

a) Feste Grundwahrscheinlichkeiten und das klassische
Urnenschema

Das klassische Urnenschema von Bernoulli besteht aus einer

einzigen Urne, die mit B roten und S schwarzen, insgesamt N Kugeln
gefüllt ist. Aus dieser Urne werden blindlings n Kugeln gezogen, wobei
die gezogenen Kugeln jeweils zurückgelegt werden. Die Wahrscheinlichkeit,

insgesamt x schwarze Kugeln zu ziehen, ist dann durch die
Binomialverteilung

f

gegeben.
Dieses Urnenschema lässt sich auf die Verhältnisse bei einem

Versicherungsbetrieb übertragen; die Anzahl n der insgesamt gezogenen
Kugeln entspricht der Anzahl der unter Risiko stehenden Versicherungen

und die Anzahl x der gezogenen schwarzen Kugeln der Anzahl
S

der eingetretenen Schadenfälle. Die Wahrscheinlichkeit —, eine

schwarze Kugel zu ziehen, geht ferner in die GrundWahrscheinlichkeit
für den Eintritt des Schadenfalles über. Unter den getroffenen
Voraussetzungen ist somit die Binomialverteilung (11) die gesuchte
Frequenzfunktion der Schadenfälle.
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In der Praxis ist die Anzahl der unter Risiko stehenden
Versieherungen n gewöhnlich eine grosse und die Grundwahrscheinlichkeit

p eine kleine Zahl. Die Binomialverteilung nähert sich unter
diesen Umständen der unter I e) abgeleiteten Poisson-Verteilung,
das heisst es gilt die Näherungsformel

e-ppx
f(x,P) —. (12)

XI

Aus der Wahrscheinlichkeitsrechnung ist ferner bekannt, dass die
Wahrscheinlichkeitsfunktion der Binomialverteilung (11) für grosse n
und festes p in die Gaussverteilung

x-np

1 r -Ii / x-—np \
F(x,np)=—= fe 2äz 0[ (13)

\ a J

übergeht. Die Streuung dieser Gaussverteilung beträgt

n
a2 [x— np] 2 f(x,np)(x—np)2 np(1—p) P(1 — p). (18a)

21 0

Die Gaussverteilung (18) weist die gleiche Streuung auf wie die
Binomialverteilung oder kürzer, sie weist «Bernoullische Dispersion» auf.

Die Verteilungen (11),. (12) und (13) weichen in der Begel nur
wenig voneinander ab; die Formeln (11), (13) und (13a), in denen die
Anzahl der Versicherten n und die Grundwahrscheinlichkeit p
auftreten, gehören zu den wesentlichen Grundlagen der individuellen
Bisikotheorie.

b) Kontinuierlicher Risikoprozess und planmässig veränderliche
Grundwahrscheinlichkeiten

Die im vorigen Abschnitt abgeleiteten Frequenzfunktionen tragen
den wirklichen Verhältnissen im Versicherungswesen zu wenig Rechnung.

In diesem Abschnitt werden daher allgemeinere, den wirklichen
Gegebenheiten näher kommende Annahmen gewählt.

Zunächst wird angenommen, dass über Eintritt oder Nichtein-
tritt eines Schadenfalles während einer Beobachtungsperiode nicht nur
— wie beim klassischen Urnenschema — durch eine einzige Ziehung
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entschieden wird, sondern dass diese Ziehungen in jedem Zeitelement

fortgesetzt erfolgen. Auf diese Weise wird berücksichtigt, dass das

versicherte Risiko kontinuierlich auf die unter Risiko stehenden

Versicherungen einwirkt. Ferner wird vorausgesetzt, dass sowohl die
Grundwahrscheinlichkeiten als auch die unter Risiko stehenden
Bestände sich planmässig verändern, das heisst Funktionen der Zeit t
sind. Im Zeitelement zwischen* t und t + dt stehen zum Beispiel Bf
Versicherungen unter Risiko und die mittlere GrundWahrscheinlichkeit
für den Eintritt des Schadenfalles betrage /ut dt. In diesem Zeitelement
sind somit

.Rj dt

Schadenfälle und im ganzen Zeitraum zwischen 0 und T, welcher einer

Beobachtungsperiode entsprechen möge,

T

p fnt/*tdt (14)
0

Schadenfälle zu erwarten.

Die gesamte Beobachtungsperiode zwischen 0 und T wird in m
P

Teilperioden so aufgeteilt, dass in jeder Teilperiode — Schadenfälle
to

zu erwarten sind. Diese Teilperioden können zeitlich verschieden lang
sein. Wählt man m gross genug, so ist in jeder Teilperiode — einem

sogenannten Risikoelement — nur ein oder gar kein Schadenfall zu
erwarten. Die Wahrscheinlichkeiten /(0, dP) und f(l,dP), welche
die Frequenzfunktion der Schadenfälle in einem Risikoelement bilden,
ergeben sich aus dem Erwartungswert

P
__ dP / (0, dP) 0 + / (1, c?P) • 1.
TO

Es gelten somit für die Frequenzfunktion in einem Risikoelement
die einfachen Beziehungen:

/I — dP für x 0

für x 1 (15)

f ^ 0
fur x ^ j

/ (x, dP) dP

0
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Der Frequenzfunktion (15) für ein Eisikoelement entspricht die
charakteristische Funktion

x<p(t,dP) y\x)f(x,dP)eüx
(15')

1 -|- dP(e— 1).

Die Anzahl der Schadenfälle während der ganzen Beobachtungsperiode

zwischen 0 und T ist gleich der Summe der Schadenfälle, die
in allen Eisikoelementen aufgetreten sind. Für die ganze Beobachtungsperiode

erhält man daher die charakteristische Funktion mit Hilfe
des Produktsatzes aus Formel (15')

x<p{t,P) [l + dP(e«_l)]»,

wobei die Schadenzahlen in den verschiedenen Eisikoelementen als

stochastisch unabhängig vorausgesetzt werden. Setzt man für dP
P

wieder — und geht man zum Grenzwert m oo über, so erhält man
TO

den Ausdruck

1+ —(e*-!)x<p(t,P) lim

e

m

P(eM-1)

(12')

der nach Tabelle 1 die charakteristische Funktion, welche der Poisson-

Verteilung zugeordnet ist, darstellt. Daraus folgt, dass die Frequenzfunktion

für die ganze Beobachtungsperiode zwischen 0 und T mit
der Poisson-Verteilung

e-Ppx
f(x,P)= — (12)

identisch ist, die sich nach den Annahmen des Abschnittes a) als

Näherungslösung ergeben hat, während sie hier die genaue Lösung
darstellt. Die allgemeineren Annahmen des Abschnittes b) bewirken
somit überraschenderweise keine wesentliche Veränderung der
resultierenden Frequenzfunktion. Zu beachten ist insbesondere, dass der

Verlauf der Funktion Rt at während der Zeit 0 < f < T und die

Länge dieser Zeitstrecke für die Frequenzfunktion der Schadenfälle
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bedeutungslos sind. Alle Funktionen die gemäss Formel (14)

zum gleichen Erwartungswert P führen, ergeben die gleiche Frequenzfunktion

(12). Man kann deshalb in der Bisikotheorie an Stelle der
Zeitvariablen die Grösse P benützen und den Zeitraum zwischen
0 und T lediglich «Periode P» nennen.

Die Frequenzfunktion (12) hängt nur vom Parameter P ab; es

gilt somit unter den getroffenen Voraussetzungen der grundlegende
Satz: Die Frequenzfunktion der Schadenfälle ist durch die erwartungs-
mässige Anzahl der Schadenfälle P vollständig bestimmt.

Dieser Satz bildet eine der wesentlichen Grundlagen der kollektiven

Bisikotheorie. Er erlaubt es, von der individuellen Zusammensetzung

und vom Umfang des Versicherungsbestandes und schliesslich

vom zeitlichen Verlauf des Bisikos zu abstrahieren.

Die Streuung der Poisson-Verteilung

~ e'pPx
a2{x — P) 2 (z—P)2=P (12a)

z=0 X\

ist mit dem Mittelwert P identisch; diese Eigenschaft wird in dieser

Arbeit als «Poissonsche Dispersion» bezeichnet. Die Streuung der

Binomialverteilung [siehe Formel (13a)], die sogenannte «Bernoul-
lische Dispersion» ist etwas kleiner als die «Poissonsche Dispersion».
Der Unterschied der beiden Streuungen ist jedoch in der Begel ganz
unbedeutend.

Wie die Binomialverteilung für grosse n, so geht auch die
Wahrscheinlichkeitsfunktion der Poisson-Verteilung für grosse P in eine

Grenzfunktion über. Um diese Grenzfunktion ableiten zu können,
muss die Hilfsvariable

x —P

eingeführt werden. Nach Formel (9) gilt dann für die charakteristische
Funktion

i
-1- I itP 2 1

zcp{t,P) e~iip2ep{e ~l}

JL r 5-i 1]_ (ritP2+P[itP 2 +~(it)2P~l + ~...j ^
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Lässt man rechts P gegen Unendlich streben, so erhält man ohne
weiteres die Grenzfunktion

lim z(p (t,P) e 2 (16')
P—>-oo

aus der nach dem Grenzwertsatz für die Wahrscheinlichkeitsfunktion
die Grenzwertformel (siehe Tabelle 1)

1 r —-lim F(z,P) - je 2 gz 0(z) (16)
P-*-~ ]/ 2,71

folgt.
Für grosse P geht somit die Wahrscheinlichkeitsfunktion der

Poisson-Verteilung in eine Gauss-Verteilung mit «Poissonscher

Dispersion» über, während aus der Binomialverteilung für grosse n eine

Gauss-Verteilung mit «Bernoullischer Dispersion» hervorgeht [siehe
Formel (13)].

c) Zufallsartig schwankende Grundwahrscheinlichkeiten
und ein erweitertes Urnenschema

1. Die unter a) und b) getroffenen Annahmen lassen den Um-
' stand ausser acht, dass die Grundwahrscheinlichkeiten nicht nur

planmässig, sondern auch zufallsartig ihren Wert ändern können.
Diese in fast allen Versicherungszweigen mehr oder weniger deutlich
zu beobachtende Erscheinung ist besonders in der Invaliditäts-, Feuer-
und Hagelversicherung bekannt. Die innere Struktur dieses Vorganges
lässt sich durch das nachstehend beschriebene, erweiterte Urnenschema
veranschaulichen.

Gegeben sei eine Reihe von k Urnen, die alle mit roten und
schwarzen insgesamt je N Kugeln gefüllt seien, wobei das Mischungsverhältnis

von Urne zu Urne variiert; in der r-ten Urne seien zum
Beispiel Sr schwarze und Br N — Sr rote Kugeln enthalten. Neben
diesen k Urnen, sie seien Sekundärurnen genannt, ist noch eine Primärurne

vorhanden, in der H Lose enthalten sind, von denen je hr der
r-ten Sekundärurne entsprechen. Beim erweiterten Urnenschema wird
zunächst aus der Primärurne ein Los gezogen und anschliessend aus
der dem gezogenen Los entsprechenden Sekundärurne n Kugeln (mit
Zurücklegen). Die Wahrscheinlichkeit, x schwarze Kugeln zu ziehen,
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berechnet sich unter diesen Voraussetzungen als gewogenes Mittel der

Frequenzfunktionen in allen Sekundärurnen, wobei die Wahrscheinlichkeiten,

die r-te Sekundärurne auszulosen, als Gewichte auftreten;
es ist somit beim erweiterten Urnenschema

die an die Stelle der Binomialverteilung (11) tretende Frequenzfunktion
der Schadenfälle, in der

* hr nSr

r-1 H N

die erwartungsm ässige Anzahl der gezogenen schwarzen Kugeln bedeutet.
Ersetzt man in allen Sekundärurnen die Binomialverteilung durch
die Poisson-Verteilung, das heisst, geht man zu den im Abschnitt b)
eingeführten allgemeineren Voraussetzungen über, so gelangt man zur
Frequenzfunktion

~ (rPitpqf
f(x,P) J - h(q)dq, (17a)

J T0 x •

in der h(q) eine kontinuierliche Frequenzfunktion der relativen
Schwankungen q der Grundwahrscheinlichkeiten bedeutet, die an

h
Stelle der oben angenommenen Primärwahrscheinlichkeiten — tritt

H
und Primärverteilung genannt werden soll; h(q) dq bedeutet die
Wahrscheinlichkeit eine Sekundärurne auszulosen, bei der zwischen

Pq und P(q-\-dq) schwarze Kugeln erwartet werden. Für diese

PrimärVerteilung wird im folgenden die Pearson-Verteilung des Typs III

h(A)=^r^Hl°-"äq (IS)
r(K)

angenommen, die in plausibler Weise einen Definitionsbereich der

zufälligen Variablen q zwischen Null und Unendlich und einen Mittelwert

Eins aufweist. Die analytischen Eigenschaften von Formel (18)

erleichtern im übrigen die mathematischen Entwicklungen wesentlich.
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Der einzige in Formel (18) auftretende Parameter der Verteilung,
h0, ist, wie aus der nachstehenden Formel hervorgeht, gleich dem

reziproken Wert der Streuung der Primärverteilung (18)

°° h h° 1

^{2-!} f
o rih) K

Die Schwankungen der Grundwahrscheinlichkeiten fallen somit
um so weniger ins Gewicht, je grösser der Parameter h0 ist. Dem
Grenzwert h0 °o entspricht schliesslich der Grenzfall von festen
Grundwahrscheinlichkeiten. In der Figur 1 sind einige Primärverteilungen

für verschiedene Werte von h0 graphisch dargestellt; diese

Verteilungskurven gehören alle zum glockenförmigen Typus und
verlaufen nahezu symmetrisch um den Mittelwert

q J —-—e Äoäiqdq — l.
o r(K)

Fig. 1 — Primärverteilungen

h^a e~h"q

h(q)
r(K)

/ \ /l» 100

1,20 1,40 1,60
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Setzt man die Primärverteilung (18) in die Formel (17a) für die
Frequenzfunktion der Sehadenfälle ein, so ergibt sich folgende Ableitung:

X'
6 x\r(ji0)

Ii h0 px DO

f e-?(A»4P) cf 'b^dq.
x\r(h0) J

Um das Integral rechts auswerten zu können, wird

<]' <](K + P)
substituiert:

h Ä o px oo

Mf(x,P) — [ e^'q'x+h^dq'.
xir(h0)(h0 + P)xih« J

Das neue Integral ist gleich der vollständigen Gammafunktion
r(x-ph0); berücksichtigt man noch die Beziehung

P(x + feg) (x + feg 1

so resultiert schliesslich für die Frequenzfünktion der Schadenfälle bei

zufallsartigen schwankenden Grundwahrscheinlichkeiten der Ausdruck

<>

Die Frequenzfunktionen (19) sind glockenförmig und weisen eine
leichte Asymmetrie auf (siehe Figur 2). Für fe0 =« gehen sie in die

Poisson-Verteilung (12) über.

Die Frequenzfunktion (19) ist identisch mit der von Eggenberger
aus dem Urnenschema für Wahrscheinlichkeitsansteckung für «seltene

Ereignisse» abgeleiteten Frequenzfunktion; aus diesem vorerst
überraschend anmutenden Resultat lässt sich schliessen, dass

Wahrscheinlichkeitsansteckung sich gleich auswirkt wie zufallsartig schwankende
Grundwahrscheinlichkeiten und ferner, dass Wahrscheinlichkeitsansteckung

zu gewissen Veränderungen in den Grundwmhrscheinlich-
keiten führt, die gerade der Primärverteilung (18) genügen.



Fig. 2 — Frequenzfunktionen der Schadenfälle unci des Gesamtschadens *)

fh0— 1 -)- x\ P
{h°]f(x,P)

7? \a0

^0 "f' P / \ ^'o ~F" P
oo

(,!o)/ (x, P, p(z)) • 2 {hl>)f ir> P) P(r> ix)

(h°>f(x, P)

(h')f (x, P, p (z))

JlQ CO

(äo)/0D PKx /(0 100

{l'o)f(x,P,p(z)) : h0 100; 50(2) e~

2. Die charakteristische Funktion, welche der Frequenzfunktion
(Ii)) entspricht, lässt sich nach der gleichen Methode bestimmen wie
die Frequenzfunktion selbst. Es ist

">>(*, P) |
Jtho ehoQ qh0-l dq

0 PQlö)

Jl ho ">=

0 f e-Ql"o-P(e"-l)l QÄo-1 (l„
P(K)I

x) Siehe Kap. IV.
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Unter Benützung der Substitution q'= q[k0—P(eli—1)] geht das

Integral rechts in die vollständige Gammafunktion über

(hiy{t,P)
V-H^o) Fe-v'q'""-1 dq'

r(h0)[h0-P(ea-l)pJ
h*TQ'o)

-ha

(20)

r(]l0)[h0-P(eü-l)]"°
Nach einer einfachen Umformung erhält man schliesslich für die der

Frequenzfunktion (19) zugeordnete charakteristische Funktion den
Ausdruck -

{hi<p(t,p)- i —(«ä-i)
h0

8. Wichtige Masszahlen für die Frequenzfunktionen sind ihre
Potenzmomente, die sich nach dem Momentensatz [Formel (7')] durch
Differenzieren und anschliessendes Nullsetzen von t -berechnen lassen.

Diese an sich einfache, aber etwas umständliche Rechnung wird hier
unterdrückt; schliesslich erhält man für das erste Moment um Null
oder den Mittelwert

mi 2 (Ä°V (x> P) x P
2=0 \

und für das zweite Moment um den Mittelwert oder die Streuung

oo

m'2 — o2 {x — P| 2 (Ä°V {x> P) (x — P)2
x=o (21)

P+P2h-0l.

Die Streuung der Verteilung (19) setzt sich somit aus zwei Komponenten

zusammen, nämlich aus der Streuung P der Poisson-Verteilung
und einem stets positiven Glied, das proportional ist der Streuung h(J1

der Primärverteilung (18). Die Frequenzfunktion (19), die unter der
Annahme von zufallsartig schwankenden Grundwahrscheinlichkeiten
abgeleitet worden ist, weist demnach gegenüber der Poissonsehen

Dispersion (Streuung Mittelwert — P) stets eine übernormale Dispersion
auf. Das die übernormale Dispersion bewirkende zweite Glied fällt um
so mehr ins Gewicht, je grösser der Erwartungswert P ist; umgekehrt
wirkt es sich nur wenig aus, wenn P klein und, was in der Regel der
Fall ist, wenn ausserdem h0 verhältnismässig gross ist. Bei kleinen
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Werten von P, das heisst bei kleinen YerSicherungsbeständen, dürfen
daher die Schwankungen der Grundwahrscheinlichkeiten in der Regel
vernachlässigt werden.

4. Bei festen Grundwahrscheinlichkeiten kann jede beliebige
Zeitstrecke als Beobachtungsperiode gewählt werden; in der Frequenzfunkfcion

der Schadenfälle — der Poisson-Yerteilung (12) — ist lediglich

der entsprechende Erwartungswert P zu berücksichtigen.
Vereinigt man n solche Perioden zu einer einzigen Periode, so bleibt die

Frequenzfunktion eine Poisson-Yerteilung, lediglich der Erwartungswert

P geht in nP über [siehe auch Formel (6)].
Etwas anders liegen die Verhältnisse bei zufallsartig schwankenden

Grundwahrscheinlichkeiten, wo die Grundwahrscheinlichkeiten von
Periode zu Periode ihren Wert ändern können. Die Wahl der

Beobachtungsperiode kann hier nicht willkürlich erfolgen, weil beim
erweiterten Urnenschema die Grundwahrscheinlichkeiten immer während
einer gewissen Zeitstrecke — der Einheitsperiode — fest bleiben,
wobei die Höhe der Grundwahrscheinlichkeiten zu Beginn jeder
Einheitsperiode neu ausgelost wird. Fasst man die Beobachtungen von n
Einheitsperioden zusammen, so erhält man eine neue Frequenzfunktion

^ha)fn{x,P), der die charakteristische Funktion ^h°l<pn{t, P)
zugeordnet ist. Diese charakteristische Funktion lässfc sich,©hne weiteres

mit Hilfe des Produktsatzes [Formel (5)] ableiten, weil die Beobachtungen

aus den verschiedenen Perioden stochastisch unabhängig sind.

Die letzte Formel weist die gleiche Form auf wie die charakteristische
Funktion der Einheitsperiode, nur dass P in Pn und h0 in h0n übergeht.

Dieser einfache Zusammenhang zwischen der Frequenzfunktion
für eine und n Einheitsperioden lässt sich somit in der Form

Es gilt:
^x<Pn(x,P) [<*•>! (*,P)]»

(eil — 1) (22')

{h°]fn{x,P) W/i^nP) (22)
schreiben.
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Formel (22) gilt unter der Voraussetzung, dass während der

Gesamtperiode, die dem Erwartungswert nP entspricht, der Wert
der Grundwahrscheinlichkeiten n-mal neu ausgelost wird. Würden
dagegen die GrundWahrscheinlichkeiten während der Gesamtperiode

nur einmal ausgelost, so würde sich die gleiche Frequenzfunktion
ergeben, nur dass an Stelle von (nh0) der Wert h0 selbst treten würde.
Aus diesem Sachverhalt lässt sich ein einfaches Kriterium ableiten,
ob die einer Untersuchung zugrunde liegenden Beobachtungsperioden
als unabhängige Einheitsperioden betrachtet werden dürfen oder
nicht. Im ersten Fall geht h0 bei der Zusammenfassung von Einheitsperioden

in nJi0 über, während im zweiten Fall, wenn n Beobachtungsperioden

eine Einheitsperiode bilden, h0 seinen Wert beibehält.
Ergibt sich jedoch bei der Zusammenfassung von n Beobachtungsperioden

ein Wert h'0 zwischen h0 und nh0, so ist das ein Anzeichen

dafür, dass die Grundwahrscheinlichkeiten in den verschiedenen

Beobachtungsperioden teilweise voneinander abhängig sind. Dieser Fall
tritt auf, wenn eine Mischung zwischen den oben behandelten Grenzfällen

vorliegt, zum Beispiel, wenn Beobachtungen zusammengefasst
werden, die verschieden lange, unabhängige Einheitsperioden aufweisen.

5. Aus der Wahrscheinlichkeitsfunktion, welche der Frequenzfunktion

(19) entspricht,

(Ä°'F(x,P)
x—0

lassen sich verschiedene Grenzfunktionen ableiten. Zu interessanten
Resultaten führen vor allem folgende drei Grenzübergänge:

a) P—oo; h0<oo bleibt fest

P
ß) P_^co; — 2 bleibt fest

K

dP — 0
y) P — m dP;

m — ou

Die beiden ersten Grenzübergänge entsprechen dem Gauss/Laplace-
schen und der dritte dem Poissonschen Grenzübergang in der

Wahrscheinlichkeitsrechnung.



— 56 —

Bei der Ableitung von Grenzverteilungen muss in der Regel durch
eine geeignete Substitution eine neue zufällige Variable eingeführt
werden. Beispielsweise muss bei der Ableitung der Gauss-Verteilung
als Grenzfunktion der Poisson-Verteilung für grosse P die Hilfsvariable

x — P
z —=r—

1/P

eingeführt werden [siehe Formeln (19), (16') und (16)].

Beim Grenzübergang a), der auftritt, wenn innerhalb einer Periode
der Erwartungswert P ins Unendliche wächst, empfiehlt es sich, die

%
Hilfsvariable q — einzuführen. Unter Benützung der Substitutionsregel

bei charakteristischen Funktionen [siehe Formel (8)] bestimmt
man vorerst aus Formel (20) die charakteristische Funktion

-ha

(Ao),
1
<p(t, p)

p n

-- (er
hn

X
1

und entwickelt die auftretende Exponentialfunktion in die stets
konvergente Exponentialreihe

P f it 1 {it)2

llnX*, p)
P 2! P2

Geht man schliesslich zum Grenzwert P

Tin

lim Tbürp (tt P)

OO über, so erhält man
?'0

hn — it
(28')

Gemäss Tabelle 1 ist der Ausdruck rechts in Formel (23') die
charakteristische Funktion der Primärverteilung (18). Nach dem
Grenzwertsatz erhält man somit für die Wahrscheinlichkeitsfunktion
die Grenzfunktion

3 h0 C-A„3 Ä„-1

lim MF (,i, P) f (23)
0 r (h,0)

welche die unvollständige Gammafunktion darstellt, die mit der
Wahrscheinlichkeitsfunktion der Primärverteilung (18) identisch ist. Der
Grenzübergang x) [P->-»o, h0 fest] führt somit zur Primärverteilung
als Grenzfunktion.
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Der Grenzübergang ß) tritt auf, wenn bei endlichem Erwartungs-
wert P pro Periode, unendlich viele Perioden vereinigt werden. Nach
"Formel ('22) streben in diesem Fall P und h0 proportional gegen

P
Unendlich, wobei das Verhältnis % -- --- fest bleibt. Zur Ableitung der

In
o

Grenzvert.eilung führt man an Stelle von x die Hilfsvariable

}/P(i + z)

ein. Mit Hilfe der Substitutionsregel [siehe Formel (8)] ermittelt man
zunächst die charakteristische Funktion

it it P

P) 11 — ^ (e V n(i+h — l) | z e Vp(i+z)

-wI1 - % (e l/p(1+^ — l)] e Vp(!+z) l '

und führt anschliessend die stets konvergente Fxponentialreihe ein:

M,\q> (t, P) 1-z
it

+
1 (it)2

1/ P( 1 + x) 2!P(1 + Z)

(H)2 X |~

1 +
it%

P(1 + X)

2! P

1

•2!

Lässt man schliesslich P-*-~>o streben, so resultiert für die charakteristische

Funktion die Grenzfunktion

(2

lim (Ä0\cp (t, P) e 2 ; (24')
P—»-oo
P
T7 X

für die Wahrscheinlichkeitsfunktion gilt somit (siehe Tabelle 1)

1 2 22

lim M>F(g, P) -=r f e~Tdz 0(z). (24)
'-+•» 1/ 2yr _ooi •
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Der Grenzübergang ß) P-
Tiri

fest führt demnach wie bei

festen Grundwahrscheinlichkeiten zu einer Gauss-Verteilung als
Grenzfunktion. Zu beachten ist jedoch, dass die Hilfsvariable z bei festen
Grundwahrscheinlichkeiten den Wert

P

1/P

und bei zufallsartig schwankenden Grundwahrscheinlichkeiten den Wert

x — P

ypv + x)

aufweist. Würden die Hilfsvariablen z in beiden Fällen gleich
angesetzt, so würden die Streuungen der beiden Gauss-Verteilungen im
Verhältnis 1 : (1 + %) stehen, oder mit anderen Worten, die Gauss-

Verteilung bei festen Grundwahrscheinlichkeiten weist Poissonsche,
bei zufallsartig schwankenden Grundwahrscheinlichkeiten übernormale
Dispersion auf. Die in der statistischen Praxis mitunter auftretenden
Gauss-Verteilungen mit übernormaler Dispersion lassen sich daher mit
Hilfe des Grenzüberganges ß) auf zufallsartig schwankende
Grundwahrscheinlichkeiten zurückführen.

Bemerkenswert ist, dass die Grenzübergänge ol) und ß), die bei

festen Grundwahrscheinlichkeiten beide zu ein und derselben Gauss-

Verteilung als Grenzfunktion führen (Gauss/Laplacescher Grenzübergang),

bei zufallsartig schwankenden Grundwahrscheinlichkeiten zwei
verschiedene Grenzfunktionen ergeben, die beide von der Grenzfunktion

bei festen Grundwahrscheinlichkeiten abweichen.
Beim Grenzübergang y) geht die Einheitsperiode in ein Bisiko-

element über, wobei die Konstante h0 ihren Wert beibehält. Vereinigt
man anschliessend diese Bisikoelemente wieder zur Periode P, so

gelangt man nach Formel (22') für die charakteristische Funktion zur
Grenzfunktion

lim {hi?m lim
m~*-oo * 7tl / m—+~e*

p
mhr

(P'-l)
-mhn

(25')

giV'-i)
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Der Grenzübergang y) führt somit zur Poisson-Verteilung als
Grenzfunktion, das heisst, es ergibt sich die gleiche Wahrscheinlichkeitsfunktion

als Grenzfunktion wie bei festen Grundwahrscheinlichkeiten.
Daraus lässt sich schliessen, dass von Risikoelement zu Risikoelement
zufallsartig schwankende Grundwahrscheinlichkeiten sich gleich
verhalten wie feste Grundwahrscheinlichkeiten.

III.

Statistische Untersuchungen

Die theoretischen Ableitungen des vorigen Kapitels sollen durch
einige statistische Untersuchungen ergänzt werden. Insbesondere soll

abgeklärt werden, ob die abgeleiteten Frequenzfunktionen mit
empirischen Verteilungsfunktionen harmonieren und wie die auftretenden
Parameter P und h0 aus den Beobachtungszahlen bestimmt werden
können.

a) Ein Beispiel aus der Meteorologie

Von der meteorologischen Zentralanstalt in Zürich wurde in
freundlicher Weise eine Statistik über die Anzahl der Tage mit Niederschlag

(Tage mit Niederschlagsmengen von mindestens 0,3 mm) in
Basel, welche die Jahre 1755—1802 und 1826—1947 umfasst, zur
Verfügung gestellt. Aus dieser Statistik lässt sich durch Auszählen
der Jahre mit x Niederschlagstagen eine empirische Frequenzfunktion
der Tage mit Niederschlag bilden und mit den im II. Kapitel
abgeleiteten theoretischen Frequenzfunktionen vergleichen. Das Beispiel
steht nicht unmittelbar im Zusammenhang mit dem Versicherungswesen;

das Ereignis — Tage mit Niederschlag — könnte jedoch ohne

weiteres Gegenstand eines Versicherungsverhältnisses bilden. Das
Beispiel wurde gewählt, weil es zwei für die statistische Bearbeitung-
wesentliche Vorzüge aufweist, die bei Beispielen aus dem Versicherungswesen

regelmässig fehlen, nämlich weil eine ausserordentlich lange

Beobachtungsreihe (170 Jahre) vorliegt, und weil der «unter Risiko»
stehende Bestand an Tagen in jedem Jahr gleich gross ist (abgesehen

von den Schaltjahren).
Die empirische Frequenzfunktion der Niederschlagstage ist in der

Figur 3 graphisch dargestellt; eine Übersicht über den Verlauf dieser



Fig. 3 — Frequenzfunktion der Tage mit Niederschlägen in Basel
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Frequenzfunktion vermitteln ferner die Tabellen 2 und 8, in denen die
Beobachtungen gruppenweise zusammengestellt sind. Die statistische
Verarbeitung der Verteilung führt, wenn das Jahr zu durchschnittlich
865,25 Tagen gerechnet wird, zu folgenden Durchschnittszahlen:

Wahrscheinlichkeit für einen Niederschlagstag 0,415

Mittlere Anzahl der Niederschlagstage pro Jahr P 151,635

Streuung der Verteilung er2 364,781

2M®- p)2
mit er-

170 — 1

Zunächst soll geprüft werden, ob die angegebene
Grundwahrscheinlichkeit (p 0,415) als fest angesehen werden darf. Die
Anzahl x der Niederschlagstage würde dann der Poisson-Verteilung (12)

folgen oder näherungsweise — weil P eine grosse Zahl ist — der
Gauss-Verteilungn

J (x-P)*

f(x,P) —=i~TF~. (26)
)/ 2jtP

Die theoretische Frequenzfunktion (26) harmoniert, wie man an Hand
der Figur 3 feststellen kann, ziemlich schlecht mit der empirischen
Frequenzfunktion. In Wirklichkeit kommen kleine Abweichungen vom
Mittelwert seltener, grosse aber häufiger vor, als nach der Frequenzfunktion

(26) zu erwarten wäre. Es stellt sich die Frage, ob diese

Unterschiede durch den Zufall erklärt werden können, oder ob die der

Frequenzfunktion (26) zugrunde liegenden Annahmen nicht zutreffen.
Diese Frage lässt sich mit Hilfe des ^2-Testes abklären, bei dem

unter Berücksichtigung der Anzahl N 170) der Beobachtungen aus
der empirischen und theoretischen Frequenzfunktion die Prüfgrösse

beob.

[N f (x, P) N f(x, P)]2
>(*)

Nf(x,P)

berechnet wird, die um so grösser ausfällt, je mehr Beobachtungen und
Theorie divergieren. Fasst man die vorhandenen Beobachtungen als

eine Stichprobe aus einer Gesamtheit höherer Ordnung auf, so lässt
sich die "Wahrscheinlichkeit W (^2) berechnen, dass bei einer anderen

Stichprobe ein Wert f-' > auftreten könnte, das heisst, dass
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Beobachtungen unci Theorie noch stärker divergieren als im zur
Diskussion stehenden Fall. Diese Wahrscheinlichkeit eignet sich als Mass

für die Übereinstimmung zwischen der theoretischen unci der empirischen

Frequenzfunktion. Sie hängt, wie die mathematische Statistik
lehrt, nur vom Erwartungswert (n — k) von ab, der seinerseits identisch

ist mit der Anzahl n der bei der Berechnung von berücksichtigten

Gruppen, vermindert um die Anzahl k der Parameter der theoretischen

Verteilung, welche aus den Beobachtungen bestimmt wurden.
Solange die Wahrscheinlichkeit Wn_k nicht unter einen durch
Konvention festgelegten kritischen Satz — zum Beispiel 5 % — sinkt,
können die Abweichungen zwischen der theoretischen und der
empirischen Frequenzfunktion als zufällig angesehen werden. Fällt jedoch
Wn_k{%2) unter diesen kritischen Satz, so ist eine nur durch den Zufall
entstehende Abweichung zwischen Theorie und Beobachtung im
berechneten Ausmass so selten zu erwarten, dass sie praktisch überhaupt
nicht vorkommen sollte. Die der theoretischen Frequenzfunktion
zugrunde liegenden Annahmen müssen dann verworfen werden.

Im vorliegenden Fall ergibt sich folgende Rechnung:

Tabelle 2

Anzahl der
Niederschlagstage

X

Beobachtete
Anzahl c

mit x Nieder

Erwartete
er Jahre
schlagstagen

Formel (26)

%2

<129. 21 6,71 30,43

180—134. 10 8,31 0,31

135—139. 10 14,28 1,28

140—144. 16 20,85 1,13

145—149. 23 25,87 0,32
150—154. 13 27,29 7,48
155—159. 20 24,45 0,81
160—164. 14 18,63 1,15
165—169. 14 12,06 0,31

>170. 29 11,55 26,37

Total 170 170,00 69,62
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Der Erwartungswert von beträgt 8 [10 Gruppen minus 2

Parameter (N,P)]. Wie man aus Tabellen über die Funktionen W,'n^(x2)
entnehmen kann, weicht W8 (69,62) verschwindend wenig von Null
ab; demzufolge muss die Annahme einer festen Grundwahrscheinlichkeit,

welche bei der Ableitung der Frequenzfunktion (26) getroffen
wurde, verworfen werden.

Nimmt man dagegen die in Abschnitt II c) getroffenen
Voraussetzungen, das heisst zufallsartig schwankende Grundwahrscheinlichkeiten,

an, so müsste die Anzahl x der Niederschlagstage der Frequenzfunktion

(19) folgen. Um diese Frequenzfunktion numerisch auswerten
zu können, muss vorerst der Parameter h0 ermittelt werden. Setzt
man die Streuung der empirischen Frequenzfunktion a2\x— P]
gleich der Streuung der theoretischen Frequenzfunktion (19)

a2[x— P} P+P2^1,

so erhält man für h0 die Bestimmungsgleichung

K 8. p ~ 108. (27)
a2{x — Pj —• P

Die Frequenzfunktion (19) lässt sich nunmehr, nachdem die
Parameter P und h0 bekannt sind, numerisch auswerten. Da sowohl P
als auch h0 verhältnismässig gross sind, darf erwartet werden, dass die

Verteilung (19) im vorliegenden Falle nur wenig von der Grenzverteilung

(24) abweicht. In der Tabelle 3 sind daher die theoretischen
Häufigkeiten der Jahre mit x Niederschlagstagen, nach den Formeln
(19) und (24) berechnet, angegeben. Diesen theoretischen Häufigkeiten

werden wiederum die beobachteten gegenübergestellt und die

Prüfgrössen y2 berechnet.

Die Tabelle 3 bestätigt zunächst, dass die Verteilungen (19) und
(24) nur wenig voneinander abweichen; es ist daher durchaus vertretbar,

die einfacher auszuwertende Verteilung (24) zu benützen. Beide
Verteilungen harmonieren befriedigend mit der empirischen Verteilung;
(siehe Figur 3); dies zeigen auch die berechneten Prüfgrössen y2, die
beide nahe beim Erwartungswert 9 [12 Gruppen minus 3 Parameter
(N, P, h0)] hegen. Die Wahrscheinlichkeiten W9 (y2) betragen 66 %
[Verteilung (19)] und 81 % [Verteilung (24)] und hegen somit weit
über dem kritischen Satz von 5 %; die Abweichungen zwischen den



Tabelle 3

Anzahl der
Nied erschlägstage

r

Beobachtete Erwartete
A

mit x

nzahl der Jah
Niederschlags
Formel (19)

re

tagen
Formel (24)

t
(19) (24)

<120. 9 6,85 8,30 0,67 0,06
120—129. 12 13,72 13,57 0,22 0,18
130—134. 10 11,16 10,75 0,12 0,05

135—139. 10 14,08 13,48 1,18 0,90
140—144. 16 16,87 15,80 0,01 0,00
145—149. 23 17,60 17,80 1,66 1,88
150—154. 13 17,68 17,69 1,24 1,24
155—159. 20 16,55 16,89 0,72 0,57
160—164. 14 14,58 15,08 0,02 0,08
165—169 14 12,04 12,56 0,32 0,16
170—179. 18 16,37 16,90 0.16 0.07
180 und mehr 11 18,00 11,68 0,31 0,04

Total 170 170,00 170.00 6,63 5,28

theoretischen Verteilungen und der empirischen dürfen daher als

zufällig angesehen werden. Die in Abschnitt T1 c) eingeführten zufallsartig

schwankenden Grundwahrscheinlichkeiten führen demnach zu
Frequenzfunktionen, welche 'mit den Beobachtungen im Einklang stehen.

Von Interesse ist noch die Frage, ob die Grundwahrscheinlichkeiten

in aufeinanderfolgenden Jahren untereinander stochastisch
abhängig oder unabhängig sind. Vach den Entwicklungen im Anschluss

an Formel (22) würde im ersten Fall bei der Zusammenfassung der

Beobachtungen von 2, 3, 4 usw. Jahren hQ seinen Wert beibehalten,
im zweiten Fall aber in 2h0, 3h0, 4h0 usw. übergehen. An Hand'des
vorliegenden Materials erhält man folgende Resultate:

h0 108 bei Zusammenfassung von 1 Jahr

h0 =146 » >> » 2 Jahren

h0 179 » » » 3 »

h0 — 206 » » »4 »
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Der Verlauf dieser h0-Werte zeigt, dass eine Mischung der oben
erwähnten Grenzfälle vorliegt.

Zu diesen Untersuchungen sind noch zwei grundsätzliche
Bemerkungen nachzutragen:

at.) Der Parameter h0 wurde nach Formel (27) ermittelt, welche
die Gleichheit von empirischer und theoretischer Streuung voraussetzt.
Die Frage bleibt offen, ob dies die beste Methode zur Berechnung
von h0 ist.

ß) Zu untersuchen ist ferner noch die Genauigkeit des nur aus
einer endlichen Anzahl von Beobachtungsjahren bestimmten Wertes
von h0. Geht man von der Gauss-Verteilung (24) aus, und nimmt man
an, der Mittelwert P sei a priori gegeben, so lässt sich der mittlere
Fehler des reziproken Wertes von h0 aus der Formel

abschätzen.

' 2 <T2 (x)

~N P2

In dieser Formel bedeuten

N die Anzahl der Beobachtungsjahre 170)

a2(x) die empirische Streuung der Verteilung 364,781)

P der Mittelwert 151,685).

Die Rechnung ergibt a[—) 0,001 721, das sind 18,6% des

/' 1 \ 0

K
berechneten Wertes von — ; trotz der überaus langen Beobachtungs-

\h0/
reihe ist demnach der berechnete Wert von h0 noch ziemlich unsicher.

b) Ein Beispiel aus der Feuerversicherung

Es ist bekannt, dass die Voraussetzungen der klassischen

Wahrscheinlichkeitsrechnung in der Feuerversicherung nicht erfüllt sind.
Die grossen Schwankungen in der Häufigkeit der Schadenfälle zeigen,
dass in diesem Versicherungszweig keine festen Grundwahrscheinlichkeiten

vorliegen, sondern eher die unter II c) eingeführten zufallsartig

schwankenden Grundwahrscheinlichkeiten. Abzuklären ist noch,

5
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ob die unter II c) abgeleiteten Frequenzfunktionen den Verhältnissen
in der Feuerversicherung gerecht werden. Dank der in
entgegenkommender Weise erteilten Erlaubnis der Schweizerischen Mobiliar-
Versicherungs-Gesellschaft in Bern kann diese Frage hier an Hand der
in neun Jahrzehnten gesammelten Erfahrungen dieser Gesellschaft
untersucht werden. Im einzelnen stehen folgende Unterlagen zur
Verfügung :

1. die Anzahl der Brandgeschädigten xt in 90 Geschäftsjahren t

der Gesellschaft (33.—122. Geschäftsjahr) x);

2. der Bestand an Versicherungssummen St in 90 Geschäftsjahren t;
3. der Bestand an Policen Bt in 54 Geschäftsjahren t (vom 69.

Geschäftsjahr an).

Aus diesen Unterlagen sind zuerst für alle berücksichtigten
Geschäftsjahre t die erwartungsmässigen Schadenzahlen Pt und
anschliessend für alle Geschäftsjahre zusammen der Parameter h0 zu
bestimmen; schliesslich ist zu prüfen, ob die Abweichungen zwischen
den beobachteten (xt) und erwarteten (Pt) Schadenzahlen der

Frequenzfunktion (19) folgen oder nicht.

7.) Der Trend der Schadenfälle.

Die Erwartungswerte Pt, die den Trend der Schadenfälle bilden,
berechnet man aus dem Trend der Grundwahrscheinlichkeiten

- _
Pt

Vt
R,

'

der sich seinerseits durch Ausgleichung der Verhältniszahlen

xt

ergibt. Der Trend der Grundwahrscheinlichkeiten kann für die
54 Geschäftsjahre, in denen die unter Bisiko gestandenen
Policenbestände Bt bekannt sind, durch eine lineare Funktion von t

dargestellt werden. Für die früheren Jahre, in denen Angaben über die

*) Das Beobachtungsmaterial aus dem 1.—32. Geschäftsjahr ist für
statistische Untersuchungen zu klein.
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Policenbestände fehlen, wird an Stelle der Grundwahrscheinlichkeit

pt die Verhältniszahl

der Ausgleichung unterworfen. In der Figur 4 sind die Verläufe der

unausgeglichenen und ausgeglichenen Verhältniszahlen pt und st

graphisch dargestellt.
Der durch die Schwankungen der Grundwahrscheinlichkeiten

entstehende sprunghafte Verlauf der unausgeglichenen Werte gestaltet
die Ausgleichung im vorliegenden Fall recht schwierig. Beispielsweise

konnten die stark erhöhten Brandhäufigkeiten der Geschäftsjahre

103—110, welche in die Weltwirtschaftskrise der Dreissigerjähre
fallen (1. Juli 1928 bis 80. Juni 1936), im Trend der
Grundwahrscheinlichkeiten nicht berücksichtigt werden, ohne den Erfolg der

ganzen Ausgleichung zu gefährden. Der Umstand, dass der Trend der
Grundwahrscheinlichkeiten in den Jahren vor und nach der Krise
durch die gleiche lineare Funktion dargestellt werden kann, spricht
jedoch deutlich für die getroffene Annahme, dass diese erhöhten
Brandhäufigkeiten nicht dem normalen Verlauf der Grundwahrscheinlichkeiten

entsprechen, sondern besonders augenfällige Schwankungen
der Grundwahrscheinlichkeiten darstellen.

Im ganzen gesehen, befriedigt die Ausgleichung; dies zeigt sich

unter anderem darin, dass die Differenzen xt —Pt und ihre Summen
das Vorzeichen oft wechseln. Insgesamt sind in den 90 berücksichtigten
Geschäftsjahren 155 066 beobachtete und 146 887 erwartete Schadenfälle

zu verzeichnen; von der Gesamtdifferenz entfallen dabei 8094

Fälle auf die Krisenjahre und 85 Fälle auf alle übrigen Jahre.

ß) Die Berechnung von h0.

Für die Berechnung von h0 wirkt sich der Umstand störend aus,
dass der Umfang des Beobachtungsmaterials in den verschiedenen

Geschäftsjahren ganz ungleich ist. Im 33. Geschäftsjahr waren zum
Beispiel nur 179,2, im 122. Geschäftsjahr aber 5000,2 Schadenfälle

zu erwarten. Dieses ungleiche Gewicht der einzelnen Geschäftsjahre
lässt sich ausgleichen, wenn an Stelle von xt die Hilfsvariable

xt
Vt

Pt eingeführt wird.
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Die Streuung von yt beträgt dann, wie aus Formel (21) hervorgeht,

o*{yt) =^ + K (29)

Setzt man — ähnlich wie beim Beispiel aus der Meteorologie — die
Summe der beobachteten Abweichungsquadrate von yt gleich der
Summe der theoretischen Streuungen, so erhält man für h(j1 die

Bestimmungsgleichung

h-1 (30)
90

Die Rechnung ergibt für h0 selbst den Wert h0 37,5. Würden die

Krisenjahre, in denen der Trend der Schadenfälle unsicher ist,
weggelassen, so ergäbe sich h0 48,1. Diese beiden, eigentlich nicht stark
divergierenden Werte dürfen wohl als untere und obere Grenze des

wahren Wertes von h0 angesehen werden.

y) Vergleich der theoretischen und empirischen Frequenzfunktion.

Die theoretische Frequenzfunktion der Schadenfälle (19) lässt sich

nicht ohne weiteres mit einer empirischen Frequenzfunktion
vergleichen, weil bei der theoretischen Frequenzfunktion in jedem
Geschäftsjahr der Parameter Pt ändert. Nimmt man jedoch an, dass

die Frequenzfunktion (19) in allen Geschäftsjahren durch die
Grenzverteilung (24) ersetzt werden darf — eine Annahme, die allerdings
nicht so gut begründet ist wie beim Beispiel ans der Meteorologie —,
so ergibt sich eine für alle Geschäftsjahre einheitliche theoretische

Frequenzfunktion, wenn die Hilfsvariable

P,

PtVK + p;:1

an Stelle von xt eingeführt wird. Aus den für jedes der 90 Geschäftsjahre

berechneten Werten von lässt sich dann eine empirische
Frequenzfunktion von | bilden und der theoretischen Frequenzfunktion

1 -ü
m -==e 2

]/2jt

gegenüberstellen (siehe Tabelle 5).
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Tabelle 5

1

Beobachtete | Erwartete
Anzahl der Geschäftsjahre,

in denen der Wert f auftritt t
< -1,5 3 6,01 1,51

—1,49 1,00 6 8,27 0,62

-0,99 0,50 14 18,49 0,02

1o o oo 20 17,23 0,45
0,01— 0,50 15 17,23 0,29
0 Vi 1 H-1 oo 14 13,49 0,02
1,01— 1,50 8 8,27 0,01

> 1,50 10 6,01 2,65

Total 90 90,00 5,57

Die Tabelle 5 zeigt, dass die empirische Frequenzfunktion von |
leicht asymmetrisch verläuft; dies lässt sich daraus erklären, dass die

Grenzverteilung (24) im vorliegenden Fall von der genauen Frequenzfunktion

(19) etwas abweicht, weil nur Pt nicht aber h0 eine grosse
Zahl ist. Im übrigen harmonieren jedoch die empirische und die
theoretische Frequenzfunktion recht gut miteinander; dies bestätigt
auch der berechnete Wert von der nur wenig vom Fjrwartungswert
8 —1 7 abweicht. Im ganzen gesehen, darf festgestellt werden,
dass die unter der Annahme von zufallsartig schwankenden
Grundwahrscheinlichkeiten abgeleiteten Frequenzfunktionen (19) und (24) die
Verhältnisse im vorliegenden Fall richtig darstellen; dies spricht für die
Brauchbarkeit der getroffenen Annahmen in der Feuerversicherung.

ö) Eine grundsätzliche Bemerkung.

Die oben beschriebene Untersuchung hat deutlich gezeigt, dass

eine wahrscheinlichkeitstheoretische Untersuchung der Schadenhäufigkeiten

und die Bestimmung des Parameters h0 bei stark schwankenden
Grundwahrscheinlichkeiten nur dann zu einem brauchbaren Ergebnis
führen kann, wenn eine genügend lange Beobachtungsreihe vorliegt,
die es ermöglicht, den Trend der Schadenfälle zu erkennen. Leider
liegen zur Zeit noch wenig derartige Beihen vor.



Anderseits darf nicht übersehen werden, dass es mit zunehmender
Länge der Beobachtungsreihe immer fraglicher wird, ob die Beihe
überhaupt noch homogen genug ist. Bei einer mehrere Jahrhunderte
umfassenden Beobachtungsreihe durfte sich zum Beispiel das versicherte
Bisiko im Verlaufe der Zeit derart verändern, dass die Beobachtungen
am Anfang und am Ende der Beihe gar nicht mehr zusammengefasst
werden dürfen. Unter diesen Umständen lässt sich die Zuverlässigkeit
des aus Beobachtungen abgeleiteten Wertes von h0 durch eine

Verlängerung der Beobachtungsreihe nicht steigern.

IV.

Die Wahrscheinlichkeitsfunktion des Gesamtschadens

Für die Stabilität eines Versicherungsbetriebes sind die in den

vorangehenden Kapiteln untersuchten Schwankungen in der Häufigkeit

der Schadenfälle nicht unbedingt massgebend; entscheidend .ist
vielmehr die Gesamtschadensbelastung, die wie die Anzahl der Schadenfälle

eine zufällige Variable darstellt, deren Verteilungsgesetz durch
die Frequenz- oder Wahrscheinlichkeitsfunktion und die zugehörige
charakteristische Funktion beschrieben werden kann. Im Spezialfall
von einheitlichen Bisikosummen ist die Verteilung des Gesamtschadens

identisch mit der Verteilung der Schadenfälle. Im allgemeinen Fall
mit nicht einheitlicher Bisikosumme muss noch ein weiteres Bech-

nungselement eingeführt werden, nämlich die Bisikosummenverteilung
des Versicherungsbestandes. Die fur die Frequenzfunktion der Schadenfälle

abgeleiteten Formeln lassen sich dann mühelos auf die Frequenz-
und Wahrscheinlichkeitsfunktion des Gesamtschadens übertragen.

a) Die Risikosummenverteilung eines

Versicherungsbestandes

In einem Versicherungsbestand seien h Bisikoklassen mit den

Schadenintensitäten p,x, [i2 juk vertreten, wobei je Bt, B2 Bk

Versicherungen mit nicht einheitlicher Bisikosumme unter Bisiko
stehen mögen. Die Wahrscheinlichkeit, dass irgendeine blindlings
herausgegriffene Versicherung der i-ten Klasse in den Bereich zwischen
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2 und z-\-dz fällt, betrage pi(z)dz. Aus diesen k Frequenzfunktionen
p% (z) der versicherten Eisikosummen lässt sich eine fur alle k Bisiko-
klassen zusammen geltende Bisikosummenverteilung p(z) der fälligen
Eisikosummen nach der Formel

k

p{z) (81a)

bilden; p(z)dz bedeutet die Wahrscheinlichkeit, dass irgendeine im
Versicherungsbestand fällig werdende Bisikosumme in den Bereich
zwischen z und z -j- dz fällt, gleichgültig, welcher Bisikoklasse sie

angehört hat. Diese Frequenzfunktion der fälligen Eisikosummen, im
folgenden kurzer Bisikosummenverteilung genannt, berücksichtigt die

Struktur des Versicherungsbestandes sowohl hinsichtlich der Bisiko-
klassen als auch hinsichtlich der Höhe der Eisikosummen.

Im allgemeinen wird sich die Bisikosummenverteilung mit der
Zeit verändern. Im Bisikoelement zwischen P und P + dP gelte zum
Beispiel die Bisikosummenverteilung pP (z). Aus dieser Folge von
Bisikosummenverteilungen lässt sich eine mittlere Bisikosummenverteilung

1 p

P(z) —f Pp(z)dP WP 0

konstruieren, die an Stelle der veränderlichen Bisikosummenverteilung
pP(z) als feste Bisikosummenverteilung verwendet werden darf. In
der Begel verändert sich allerdings pP(z) nur so langsam, dass die

anfängliche Bisikosummenverteilung p0(z) und die mittlere
Bisikosummenverteilung p(z) praktisch zusammenfallen.

Durch die auftretenden Versicherungsfälle verändert sich die

Bisikosummenverteilung, so dass sie streng genommen von den

aufgetretenen Versicherungsfällen abhängt. Bei grossen Versicherungsbeständen

dürfen diese Veränderungen jedoch vernachlässigt werden.
In der kollektiven Bisikotheorie geht man daher von der grundlegenden
Annahme aus, dass die Bisikosummenverteilung p(z) nicht von den

aufgetretenen Versicherungsfällen abhängt.
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Es erweist sich als nützlich, die mittlere Eisikosumme I als Mass-
einheit für die fälligen Risikosummen z zu benützen. Es gelten dann,
wenn nur positive Risikosummen auftreten, die Beziehungen

©o 00

z — J p(z) dz J zp(z)dz 1. (32)
0 0

Schliesslich sei noch vorausgesetzt, dass das Integral

00

f eBz p (z) dz

0

für alle Werte B < R0 konvergiere, eine Bedingung, die bei allen
Anwendungen ohne weiteres erfüllt ist, weil Risikosummen, welche
ein gewisses Maximum M überschreiten, nicht vorkommen.

Im konkreten Fall bestimmt man p(z) am besten unmittelbar
aus der Statistik der Schadenfälle. In der Figur 5 sind unter anderem
drei nach dieser Methode ermittelte Risikosummenverteilungen
graphisch dargestellt, nämlich die aus den Erfahrungen der

Thüle, LebensverSicherungsaktiengesellschaft, Schweden (1929/31),

Schweizerischen Lebensversicherungs- und Rentenanstalt, Zürich
(Einzelkapitalversicherungen des schweizerischen Bestandes der

Hauptabteilung) 1943/45,

und der

Schweizerischen Mobiliar-Yersicherungs-Gesellschaft, Bern
(Feuerversicherung 1947)

abgeleiteten Risikosummenverteilungen.

Diese empirischen Verteilungen verlaufen ganz ähnlich wie die in
der Literatur oft benützte analytische Verteilung p(z) e'z, nur dass

die kleinsten und grössten Risikosummen in den empirischen
Risikosummenverteilungen stärker vertreten sind als in der Verteilung
p(z) e'z.

b) Theoretische Untersuchungen

Für die meisten Anwendungen der Risikotheorie ist die
Wahrscheinlichkeitsfunktion des Gesamtschadens wichtiger als die
zugehörige Frequenzfunktion. Die weiteren Untersuchungen befassen sich



Fig. 5 — Bisikosummenverteilungen p (2)

• • Thüle Lebensversicherungs-Gesellschaft, Schweden (1929/31)

-++- Schweizerische Lebensversicherungs- und Eentenanstalt, Zurich (1943/45)

Schweizerische Mobiliar-'Versicherungs-Gesellschaft Bern
(Feuerversicherung 1947)

• - • p*(z) {e

i g/ % Y pM(z)

In (1 + x) r=i V 1 + X

X —, p('](z) f P (x) p[r'1] (z — x),
h J
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daher vorwiegend mit der Wahrscheinlichkeitsfunktion (A°'F (x,P, p (z));
diese gibt die Wahrscheinlichkeit an, dass der Gesamtschaden in einem

Yersicherungsbestand mit der Risikosummenverteilung p(z) während
der Periode P den Betrag x nicht übersteigt, wenn die Primärverteilung

(18) den Parameter h0 aufweist. Mit Rücksicht auf die gewählte
Masseinheit für x und z (Mittlere Risikosumme =1) ist die Anzahl
der zu erwartenden Schadenfälle P identisch mit der gesamten nach

Grundlagen zweiter Ordnung berechneten Nettorisikoprämieneinnahme
der Periode P.

1. Die in den Abschnitten b) und c) des II. Kapitels abgeleiteten
Resultate sollen im folgenden auf die Verteilung des Gesamtschadens

übertragen werden. Zunächst sei der unter II b) behandelte Fall mit
festen oder planmässig veränderlichen Grundwahrscheinlichkeiten
betrachtet, bei dem man wiederum von der Frequenzfunktion in einem
Risikoelement ausgeht, in dem nur ein oder gar kein Schadenfall mit
den Wahrscheinlichkeiten dP und 1 — dP auftreten können. Für die

Frequenzfunktion der Schadenfälle in einem Risikoelement gelten die
Formeln

1°°]f(0,dP,p(z)) 1— dP |

(oo)/ (x, dP, p dPp(x) j

Dieser Frequenzfunktion ist die charakteristische Funktion

(33)

(t, dP, p (z)) 1 + dP J eltz p(z) dz-

l + dP|>(f)-l] (33')

zugeordnet, in der ziz(t) die charakteristische Funktion bedeutet, die

der Risikosummenverteilung p(z) entspricht. Der Gesamtschaden

während der Periode P ist gleich der Summe aller Schäden, welche in
allen Risikoelementen der Periode P aufgetreten sind. Es gilt somit
nach dem Produktsatz für die charakteristische Funktion, die der

Wahrscheinlichkeitsfunktion des Gesamtschadens für die ganze
Periode zugeordnet ist, die Formel

{°°l<p(t,P,p{z)) lim [1 +<ZP(frc(i) — l)]«r
dP-+* 0

(34')
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Formel (34') weist die gleiche Form auf wie die charakteristische
Funktion (12'), welche der Verteilung der Schadenfälle zugeordnet ist,
nur dass eü in z7i(t) übergeht. Dieses Resultat ist plausibel, weil
z7i(t) eü ist, wenn alle Risikosummen gleich sind. Eine Reihe von
weiteren Formeln aus dem Kapitel II lässt sich in analoger Weise —
das heisst, indem man eü durch zn(t) ersetzt — verallgemeinern.
Insbesondere erhält man für die charakteristische Funktion, die der

Verteilung des Gesamtschadens zugeordnet ist, wenn zufallsartig
schwankende Grundwahrscheinlichkeiten vorausgesetzt werden,

{hi<p(t,P,p(z)) 1 —
h,

\z7l (t)— 1)

~hn

(35')

als Verallgemeinerung von Formel (20').

2. Aus der charakteristischen Funktion (35') lässt sich ein expliziter

Ausdruck für die Wahrscheinlichkeitsfunktion selbst herleiten.
Zunächst formt man Formel (35') etwas um und erhält den Ausdruck

(Ä»>(i,P,p(2))
K+P

P

+ P

in dem der zweite Faktor rechts in die hier konvergente Binomial-
Reihe entwickelt wird

^lcp{t,P,f{z))
Jlr,

1*0 + P
1 +

2
r=0

1*0 — 1 + r

0

1/ 1*0

P

1*0 + P

p

l*n

1*0+1
2

K + P |> (*)]'• (40')

Die Potenzen der charakteristischen Funktion (i)]r entsprechen
nach dem Produktsatz, den durch fortgesetzte Faltung von p(z)
entstehenden RisikosummenVerteilungen

p'r) (2) 0 (2) * p (z),

welche die Wahrscheinlichkeit p(r) (z) dz angeben, dass der Gesamtschaden

aus r Schadenfällen zwischen .s und z + dz liegt.
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Fur die Wahrscheinlichkeitsfunktion gilt somit die Formel (40a)

(h)F(x,P,p(z)) 2
r=0

0
1 + r
r hn K +P

J p(r) (z) dz

die fur h0= °o, das heisst fur feste oder planmässige veränderliche
Grundwahrscheinlichkeiten, in den Ausdruck

F(x,P,p(z)) 2
" e'p Pr X

f (z) dz
r! J

.0

(40b)

ubergeht. In den Formeln (40a) und (40b) tritt rechts jeweils als

erster Faktor die Frequenzfunktion der Schadenfälle auf [Formeln
(19) und (12)]. Die Wahrscheinlichkeitsfunktion des Gesamtschadens
bei festen planmässig und zufallsartig veränderlichen Grund
Wahrscheinlichkeiten lässt sich somit durch die allgemeine Formel

OO J

(ho)F [x, P, p (z)) 2 [ho)f (r> P) f P(r) (2) &z
« A

(40)
r 0

darstellen.

3. Die Momente der Wahrscheinlichkeitsfunktionen (40) erhält
man nach dem Momentensatz [Formel (7')] durch Differenzieren der

entsprechenden charakteristischen Funktionen (34') und (35'). Das

erste Moment oder der Mittelwert ist gleich dem Erwartungswert P,
gleichgültig, ob feste oder zufallsartig schwankende Grundwahrscheinlichkeiten

vorliegen. Fur das zweite Moment um diesen Mittelwert
oder die Streuung der Verteilung des Gesamtschadens findet man die

Formeln

oder
("o'm;

(°° )~M'

2 - Pp2+ P2 V P{p2+ %)

Pp2.

(41a)

(41h)

je nachdem zufallsartig schwankende oder feste Grundwahrscheinlichkeiten

vorliegen. In diesen Formeln bedeutet p2 das zweite Moment
der Eisikosummenverteilung p(z)

oo

p2 J z2p(z) dz.
o
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4. Von besonderer Bedeutung ist, dass Formel (41a), die für
zufallsartig schwankende Grundwahrscheinlichkeiten gilt, gleich
aufgebaut ist wie die für feste Grundwahrscheinlichkeiten geltende Formel
(41b), wenn man p* p2 + X a^s zweites Moment einer fiktiven
Bisikosummenverteilung p*(z) auffasst. Diese Feststellung führt
zur Vermutung, dass die Wahrscheinlichkeitsfunktion des
Gesamtschadens bei zufallsartig schwankenden Grundwahrscheinlichkeiten
(40a) identisch ist mit einer Wahrscheinlichkeitsfunktion des

Gesamtschadens bei festen Grundwahrscheinlichkeiten, wenn bei der Berechnung

der letzteren eine noch unbekannte .Bisikosummenverteilung
p*(z) angenommen wird. Eine nähere Prüfung dieses Sachverhaltes
führt zum Transformationssatz, der durch die Formel

MF (x, P, p (2)) (oo)P {x, P* p* (2)) (42)

dargestellt werden kann, in der für die transformierten Bechnungs-
elemente rechts die Formeln

In (1 + y)
P* P— — (42a)

X

und

gelten.

1 x \rv{r)(z)
V (z) —z. rZjln + %) V 1 + X

Der durch die Formeln (42) gegebene Zusammenhang ist für die

Bisikotheorie, welche zufallsartig schwankende Grundwahrscheinlichkeiten

voraussetzt, von grundlegender Bedeutung. Er erlaubt es,

viele Sätze und Formeln, die für feste Grundwahrscheinlichkeiten
bekannt sind, ohne weiteres auf zufallsartig schwankende
Grundwahrscheinlichkeiten zu verallgemeinern.

Für die Ableitung des Transformationssatzes geht man von den

durch die Ausdrücke (34') und (35') gegebenen charakteristischen
Funktionen aus und setzt

e-P*t2-i*(0-i] _ [ 1 L71 W ~~ !] ] •"

h0



Logarithmiert man diese Gleichung, so erhält man die Formeln

P* (2tt* (f) — 1) In ] +
P

ho + P

P

X

X

-ho

ln (1 + X) + ln 1 ~
v 1 + X

in denen zur Abkürzung % — eingeführt wurde. Das zweite Glied
hQ

rechts wird in die im vorliegenden Fall konvergente, logarithmische
Eeihe entwickelt.

P*U*(i) — 1)
X

Setzt man jetzt

P*

wi + *)-s(dr-
r=1 v1 + X

P ln(l + z)

'l>(0]r

so erhält man nach einer einfachen Umformung die Beziehung

1 ^ / Z \r M)]rY,In (1 + %) rti \ 1 + z
(42'a)

Diese für die charakteristischen Funktionen geltende Beziehung muss
noch auf die zugehörigen Frequenzfunktionen übertragen werden.
Beachtet man, dass [z7r(0]r die charakteristische Funktion der durch
r-fache, fortgesetzte Faltung aus der gegebenen Risikosummenverteilung

p (z) erzeugten Risikosummenverteilung (z) ist, so ergibt sich
die gesuchte Schlussformel

p*(z) 2 x

ln (i + x) r=i V 1 + x

womit der Transformationssatz bewiesen ist.

r p{r){z)
(42a)

Die transformierte Risikosummenverteilung p*(z) stellt eine
lineare Kombination sämtlicher Faltungen der gegebenen

Risikosummenverteilung p(z) dar. In der Figur (5) ist die transformierte
Risikosummenverteilung p*(z) eingezeichnet, die der analytischen
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Risikosummenverteilung p(z) — ez entspricht. Der Mittelwert von
p*(z) ist nicht mehr gleich der Einheit, sondern beträgt

- r° X
Z* f zp*(z)dz E — n, • (43)

0 ln (1 + x) r=1 V 1 + X
' In (1 + x)

Die in der transformierten Risikosummenverteilung auftretenden,
durch fortgesetzte Faltung erzeugten Frequenzfunktionen p^(z)
ergeben die Wahrscheinlichkeiten, in r Schadenfällen einen
Gesamtschaden, zwischen z und z -f- dz zu erzielen. Daraus lässt sich schliessen,
dass die transformierte Risikosummenverteilung die Wahrscheinlichkeiten

p*(z)dz liefert, dass der Gesamtschaden bei einem Schadenereignis,

bei dem r 1, 2, B, Schadenfälle miteinander
auftreten können (zum Beispiel ein Verkehrsunfall mit 3 Todesopfern),
zwischen z und z -+- dz liegt. Die in der Gleichung (42) rechtsstehende
Wahrscheinlichkeitsfunktion gilt somit für den Fall von festen
Grundwahrscheinlichkeiten mit mehrfachen Schadenfällen pro Schadenereignis.

Die zufallsartig schwankende Grundwahrscheinlichkeiten
voraussetzende Wahrscheinlichkeitsfunktion (40a) des Gesamtschadens um-
fasst somit auch den Fall, bei dem feste Grundwahrscheinlichkeiten, aber
mehrfache Schadenfälle auftreten können und, wie im Abschnitt IIc)
festgestellt wurde, die Wahrscheinlichkeitsansteckung. Diese
Vielseitigkeit der Wahrscheinlichkeitsfunktion (40a) sichert ihr eine
umfassende Anwendbarkeit.

5. Die im zweiten Kapitel behandelten Grenzübergänge können
auch bei der Wahrscheinlichkeitsfunktion des Gesamtschadens
durchgeführt werden. Die Grenzfunktionen lassen sich dabei Schritt für
Schritt nach der gleichen Methode ableiten wie bei der Wahrschein-
lichkeitsfunktion der Schadenfälle. Es genügt daher, hier noch die
Schlussformeln anzuführen:

P
a) lim (oo)F (z, P, p (2)) 0 (z) mit z — —=- (44)

p-+°° ]/ Ppi
® JiF® cc

ß) lim ('ho)F{q,P,ip(z)) f e~h°q g*0-1 dq mit q^ — und oo (45)
JWoo 0 r(K) P

rß p
y) lim (äo)F(2,P, p(z)) 0(z) mit z —(46)]/p(V2 + X)

ä7 ~x

p \
d) lim {ho)Fm ix, — ,p{z)) [oo)F [x, P, p (z)). (47)

m—»-00 \ m 1
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c) Die numerische Berechnung
der Wahrscheinlichkeitsfunktion des Gesamtschadens

Die bisher abgeleiteten Formeln erlauben es im allgemeinen nicht,
die Wahrscheinlichkeitsfunktion des Gesamtschadens numerisch
auszuwerten, wenigstens nicht mit einem in der Praxis vertretbaren
Arbeitsaufwand. Bin brauchbares Verfahren für die numerische
Auswertung ist dagegen von Esscher [9] entwickelt worden. Die Esscher -

schen Formeln setzen feste oder planmässige veränderliche
Grundwahrscheinlichkeiten voraus. Mit Hilfe des Transformationssatzes (42)
lassen sich die von Esscher abgeleiteten Formeln auch auf zufallsartig
schwankende Grundwahrscheinlichkeiten erweitern. Im folgenden
sollen die für den letzteren Fall geltenden Formeln direkt abgeleitet
werden. Die ursprünglichen, von Esscher gefundenen Formeln ergeben
sich dann, indem man h0 oo setzt.

An Stelle von p(z) werde eine transformierte Risikosummenverteilung

p(z)e*°
p(z)

"o

eingeführt, deren Momente durch die Formel

r ~ ekzzrp(z)dz vr
Vr — f P (Z) ZT dz I

0 0 "o *0

bestimmt seien. In diesen Formeln bedeutet k eine vorläufig noch
willkürliche Konstante, über deren Wert später verfügt wird. Zwischen
den durch fortgesetzte Faltung von p(z) und p(z) erzeugten
Risikosummenverteilungen p^(z) und p^{z) besteht die Beziehung

pb) (z) Vq e"1" pw (z).

Führt man diese transformierten Risikosummenverteilungen p<r) (z)

in die Formel (40a) ein und geht man gleichzeitig zur Frequenzfunktion

des Gesamtschadens über, so erhält man die Formel

oo

<*•>/ [x, P, p (z)) 2 {ho)f (r> p) "o e~"x V[r) ix) (48)
r 0

6
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Ersetzt man den Erwartungswert P durch

Pvo
P

1— x(vo~ 1)

so lässt sich Formel (48) auch schreiben

{ho)f(x,P,p{z)) {1">)f(x,P,p(z)){e~k:c[l—x(v0~-l)]-ho}, (48a)

worin (Ä°'/ (x, P, p (z)) eine Frequenzfunktion des Gesamtschadens

bedeutet, die gleich aufgebaut ist wie die gegebene, nur dass die Bech-

nungselemente P und p (z) ersetzt sind durch p und p (z). Die
Wahrscheinlichkeitsfunktion des Gesamtschadens erhält man dann aus der

Beziehung (48a) durch Integration; substituiert man noch x — uP,
so ergeben sich die Formeln

uP

(Ä°>P(uP, P, p(«)) rpJ e~lc(*~uP) <"»>/ (z, P, p(z)) dz (49a)
0

oo

1 — ipf e-lt{z-uF)[h")f{z,P,p(z))dz, (49b)
UP

in denen zur Abkürzung die Punktion

v* (50)

eingeführt wurde. Diese Funktion erreicht für gegebene Werte von
u — wie man durch Differenzieren feststellen kann — ihren Minimalwert,

wenn die bisher willkürliche Konstante k aus der Gleichung

"i
u — —

!—Z("o—1)
1

bestimmt wird. Die Konstante k wird dann negativ oder positiv, je
nachdem u kleiner oder grösser als Eins ist. Ferner fallen die in den
Formeln (49) auftretenden Integrale immer kleiner als Eins aus, wenn
für 0 < u < 1 Formel (49a) und für u > 1 Formel (49b) benützt wird.

J zckz p (z) dz

P
J ekz p(z) dz — 1
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Daraus folgen die Ungleichungen

{h°F (uP, P, p (z)) < y> 0 < u < 1 (52a)

1 — ^"F [uP, P,p{z)) <rp, u > 1 (52b)

von denen die letztere für grosse Werte von u oft eine hinreichend

genaue Abschätzung der Wahrscheinlichkeitsfunktion erlaubt.

Eine genauere Berechnung der Wahrscheinlichkeitsfunktion
erfordert die Auswertung der in den Formeln (49) auftretenden
Integrale. Zu diesem Zweck substituiert man

2 Pv1 + ^M'2 Pvt + f]/pr2+ P2V

und bezeichnet die Frequenzfunktion der zufälligen Variablen £ mit
(*o)7(£, P> ?(*))•

Die Formeln (49) gehen dann in die Ausdrücke

o

{h°F (uP, P, p (a)) xp f^Mi mj p, p (a)) d£ (58a)

und
oo

1 F(uP, P,p{z)) =y>J e~k^^ w7(|, P, p(z))d£ (58b)
'

0

über. Ersetzt man ferner die Verteilung (Äo)/ (ij, p, p (z)) durch ihre
Grenzfunktion (46), das heisst, setzt man

_ _ _ 1 Ü
f{£,P,p(z)) ~=-e~ 2

y 2jr

so erhält man an Stelle der Formeln (53) die Näherungsformeln

C»'P(uP, P, p(z)) ~y>A0{—k ]/Wz) (54a)
und

1 — Co'P (uP, P, p (z)) ~ y A0 (k y M'i), (54b)

in denen für das Integral

~ 1 — &(£)
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die Abkürzung A0(y) eingeführt wurde. Einige Werte der Funktion
A0(y) sind in der Tabelle im Anhang zusammengestellt.

In der Regel lässt sich mit Hilfe der Formeln (54) eine hin--

reichend genaue Auswertung der Wahrscheinlichkeitsfunktion
erreichen. Noch genauere Formeln lassen sich ableiten, wenn die
Verteilung (i, P,p{zj) nicht durch die Grenzverteilung (46), sondern
durch die beiden ersten Glieder der Brunsschen Reihe approximiert
wird. Die Formeln (54) sind dann durch je ein weiteres Glied zu
ergänzen. Für die Ableitung dieser Formeln sei jedoch auf die
Arbeiten [9] und [15] verwiesen.

Die oben abgeleiteten Formeln beziehen sich auf zufallsartig
schwankende Grundwahrscheinlichkeiten. Die ursprünglich vonEsscher
aufgestellten, für feste Grundwahrscheinlichkeiten geltenden Formeln
ergeben sich aus ihnen, indem man h0 — oo berücksichtigt. Man

gelangt dann zu folgenden neuen Formeln:

y e~p(1-''o+"fc) (50') an Stelle von Formel (50)

oo

u J zekzp{z)dz (51') an Stelle von Formel (51).
o

Will man eine Wahrscheinlichkeitsfunktion nach der Methode von
Esscher auswerten, so wählt man zuerst eine Reihe von geeigneten
Werten für k und berechnet die Momente j>„, v1, v2 Anschliessend

bestimmt man die zu den gewählten Werten von k entsprechenden
Werte von u nach den Formeln (51) oder (51') und ferner die Grössen

rp [Formel (50) oder (51')] und

v2 (u P)2
(«P)^ +V- h

v1 hn

}Iq —

(55)

Schliesslich erhält man unter Benützung einer Tabelle über die Funktion

A0(y) die Wahrscheinlichkeitsfunktion selbst nach den Formeln
(54). In der nachstehenden Tabelle (6) ist die numerische Berechnung

einiger Werte der Wahrscheinlichkeitsfunktion auszugsweise
ersichtlich. Die Tabelle stützt sich auf die Risikosummenverteilung' der
Schweizerischen Mobiliar-Versicherungs-Gesellschaft in Bern (siehe

Figur 5). Ferner wird P 5000 und h0 40 vorausgesetzt.
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Tabelle 6

Die numerische Auswertung einer Wahrscheinlichkeitsfunktion
nach der Methode von Esscher

k 0,000 05 0,000 10 0,000 175 0,000 20

^0 1,000 449 1,000 912 1,001 637 1,001 888

*1 1,081 070 1,065 380 1,12.3 916 1,145 559

V2 73,801 81,632 95,359 100,537

U 1,092 1,202 1,413 1,499

V 0,908 8 0,622 7 0,170 6 0,083 1

k j/ M'z 0,470 9 1,032 6 2,102 8 2,630 4

F(uP, P,p(z)) 0,676 0 0,839 8 0,972 4 0,988 7

V.

Anwendungen auf Rückversicherungsprobleme

Eine Versicherungsunternehmung kann die ihr übertragene
Ausgleichsaufgabe nur dann erfüllen, wenn sie in der Lage ist, in jedem
Geschäftsjahr die gesamte Schadenbelastung zu decken. Die
Einnahmen an Nettorisikoprämien — von den Sparprämien und
Kostenzuschlägen wird hier abgesehen — reichen dazu nicht immer aus; es

ist daher unerlässlich, dass weitere Mittel (Sicherheitszuschläge oder

-reserven) zur Verfügung stehen. Diese Sicherheitsmittel müssen anderseits

nicht so gross sein, dass sie auch im schlimmsten Falle, das heisst,

wenn alle versicherten Summen in einem Geschäftsjahr fällig würden,
ausreichen. Praktisch genügt es, wenn ein Betrag vorhanden ist, der

nur ganz selten von der Gesamtschadenbelastung in einem Geschäftsjahr

überschritten wird. Die vorhandenen Mittel reichen dann,
allerdings nicht mehr mit Sicherheit, sondern nur noch mit einer gewissen
Wahrscheinlichkeit aus. Diese Wahrscheinlichkeit, der sogenannte
Sicherheitsgrad, ist ein Mass für die Stabilität des Risikogeschäftes.
Geht man von einem bestimmten Sicherheitsgrad aus, so lassen sich

die ihm entsprechenden Sicherheitsmittel berechnen.
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Der Sicherheitsgrad berechnet sich aus der im Kapitel IV
untersuchten Wahrscheinlichkeitsfunktion des Gesamtschadens. Er hängt
von der Höhe der Sicherheitsmittel, von der durch die erwartungs-
mässige Anzahl der Schadenfälle P gemessenen Bestandesgrösse, von
der Bisikosummenverteilung p(z) und schliesslich vom Parameter h0

ab. Führt die Bechnung unter Benützung dieser Elemente zu einem

ungenügenden Sicherheitsgrad, so stellt sich die Frage, durch welche
Massnahmen der Sicherheitsgrad hinreichend verbessert werden
könnte.

Ganz allgemein lässt sich zu dieser Frage feststellen, dass der
Sicherheitsgrad nur durch eine geeignete Veränderung der oben
erwähnten Bechnungselemente der Wahrscheinlichkeitsfunktion erhöht
werden kann. Aus der Fülle der sich bietenden Möglichkeiten soll hier
nur die Bückversicherung nach der sogenannten Exzedenten- und
Quotenmethode, die eine Veränderung der Bisikosummenverteilung
p(z) bewirkt, näher untersucht werden.

ci) Das Maximum des Selbstbehaltes als Funktion
des Sicherbeitszuschlages

Bei der Exzedentenrückversicherung werden alle Bisikosummen
rückversichert, welche ein bestimmtes Maximum M überschreiten.
Die ursprüngliche Bisikosummenverteilung p(z) geht dann in pM{z)
und der Sicherheitsgrad ^"F (uP,P, p(z)) in {h"F(uP,P,pM(z)) über,
wenn vereinfachend angenommen wird, dass die für ein Bechnungs-
jahr zur Verfügung stehenden Sicherheitsmittel ausschliesslich aus
einem proportionalen Zuschlag (u — 1) zu den Nettorisikoprämien
bestehen. Berechnet man den Sicherheitsgrad für ein bestimmtes
Maximum für verschiedene Werte des Sicherheitszuschlages (u— 1),

so lässt sich anschliessend durch Interpolation der erforderliche Sicher -

heitszuschlag berechnen, der einem gegebenen Sicherheitsgrad
entspricht. In der Tabelle 7 sind die erforderlichen Sicherheitszuschläge
für verschiedene Werte des Maximums M und des Parameters h0

zusammengestellt, wobei in zwei Varianten ein Sicherheitsgrad von 95%
und 97,5% vorausgesetzt wird. Die Tabelle stützt sich im übrigen auf
P 5000 und die Bisikosummenverteilung der Schweizerischen

Mobiliar-Versicherungs-Gesellschaft in Bern. Die numerischen Besui-
tate dürften in erster Linie für die Feuerversicherung bedeutsam sein.
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Tabelle 7

llfj
Erforderlicher Sicherheitszuschlag in % der Nettorisikoprämien-

einnahme bei einem Maximum des Selbstbehaltes von M
Fr. 50 000 | Fr. 100 000 | Fr. 200 000 | Fr. 500 000 | Fr. 750 000

a) Sicherheitsgrad 95%
oo 9 11 14 18 21

100 19 20 22 25 27
40 29 80 31 34 35

b) Sicherheitsgrad 97,5 %

oo 11 13 17 22 25

100 23 25 27 30 33

40 35 36 38 41 43

In der Praxis wird oft nicht nach dem erforderlichen Sicherheitszuschlag

bei gegebenem Maximum, sondern umgekehrt nach dem

Maximum des Selbstbehaltes bei gegebenem Sicherheitszuschlag
gefragt. Das gesuchte Maximum des Selbstbehaltes bestimmt sich in
diesem Falle durch Interpolation aus den für verschiedene Maxima
berechneten Sicherheitszuschlägen; zum Beispiel erhält man für
h0 oo bei einem Sicherheitsgrad von 97,5 % und einem verfügbaren
Sicherheitszuschlag von 15 % ein Maximum des Selbstbehaltes von
M 150 000 Fr.

Aus der Tabelle 7 lässt sich folgendes entnehmen:

1. Die Höhe des erforderlichen Sicherheitszuschlages ist in erster
Linie abhängig vom Parameter h0, der die Schwankungen der
Grundwahrscheinlichkeiten berücksichtigt. Daraus lässt sich schliessen, dass

die Vernachlässigung dieser Schwankungen unter Umständen zu ganz
unrichtigen Resultaten führen kann.

2. Die Bückversicherung nach der Exzedentenmethode wirkt
sich um so stärker auf die Höhe des erforderlichen Sicherheitszuschlages

aus, je grösser h0 ist oder, mit anderen Worten, je kleiner die Schwankungen

der Grundwahrscheinlichkeiten sind. Am wirksamsten ist die

Exzedentenrückversicherung bei festen Grundwahrscheinlichkeiten.
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Vernachlässigt man die Schwankungen der GrundWahrscheinlichkeiten,

so läuft man Gefahr, den Binfluss der Rückversicherung zu
überschätzen.

3. Die erforderlichen Sicherheitszuschläge weichen bei verschiedenen

Werten von h0 und M um so stärker voneinander ab, je höher
der Sicherheitsgrad gewählt wird.

Der relative Sicherheitszuschlag ist im allgemeinen in einem
Versicherungsbestand nicht für alle Risikoklassen gleich hoch; in der
Regel ist er um so kleiner, je grösser die Grundwahrscheinlichkeiten
und die Risikoprämien sind. Unter diesen Umständen ist es angebracht,
das Maximum des Selbstbehaltes nicht einheitlich, sondern für jede
Risikoklasse verschieden hoch anzusetzen, und zwar zweckmässig so,
dass diese Maxima möglichst unabhängig sind von der Zusammensetzung

des Versicherungsbestandes nach Risikoklassen. Dies lässt
sich — wenigstens näherungsweise — erreichen, wenn man das Maximum

des Selbstbehaltes in jeder Risikoklasse so berechnet, wie wenn
der gesamte Versicherungsbestand nur aus Versicherungen der
betreffenden Risikoklasse bestehen würde.

b) Die Quotenrückversicherung bei Versicherungsbeständen
mit verschiedenen Versicherungszweigen

Die meisten Versicherungsunternehmungen führen eine Reihe von
Versicherungszweigen nebeneinander. Für jeden dieser Versicherungszweige

werden im allgemeinen die Rechnungselemente P, p (z) und h0

und der Sicherheitsgrad verschieden ausfallen. Massgebend für die

Unternehmung sind aber nicht die Sicherheitsgrade der einzelnen

Versicherungszweige, sondern nur der Sicherheitsgrad des
Gesamtbestandes. Der Gesamtsicherheitsgrad hängt jedoch stark davon ab,
mit welchem Gewicht jene Versicherungszweige im Bestand vertreten
sind, bei denen grosse Schwankungen der Grundwahrscheinlichkeiten
vorkommen. Daraus folgt anderseits, dass der Gesamtsicherheitsgrad
sich merklich verbessern lässt, wenn das Gewicht der gefährdeten
Teilbestände durch eine Quotenrückversicherung aller Versicherungen
dieser Teilbestände verkleinert wird.

Um die Auswirkung einer derartigen Quotenversicherung auf den

Sicherheitsgrad einer Unternehmung zu untersuchen, muss vorerst
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eine Methode entwickelt werden, die es gestattet, die Wahrscheinlichkeitsfunktion

des Gesamtschadens zu berechnen, wenn der Gesamtbestand

aus mehreren Teilbeständen mit den Eechnungselementen
P,, pt (z) und h0t besteht. Wäre der Parameter h0l in allen Teilbeständen
gleich gross, so liesse sich die Wahrscheinlichkeitsfunktion fur den
Gesamtbestand nach den in Kapitel IV entwickelten Methoden
auswerten, wobei die Elemente

in Eechnung zu stellen wären. Der allgemeine Fall mit h01 h02 h03...
lässt sich auf den Spezialfall (56) zurückfuhren, weil nach dem
Transformationssatz eine Wahrscheinlichkeitsfunktion mit hQl ^ oo immer
durch eine Wahrscheinlichkeitsfunktion mit h0l — oo ersetzt werden
kann. Setzt man die fur jeden Teilhestand geltenden transformierten
Eechnungselemente P* und p* (z) in Formel (56) ein, so erhalt man die

fur den Gesamtbestand gültigen Eechnungselemente. P* und p*{z),
aus denen nach der Methode von Esscher die Wahrscheinlichkeitsfunktion

des Gesamtschadens berechnet wird. Diese etwas langwierige
Zwischenrechnung wird hier weggelassen; fur u > 1 erhält man
schlussendlich folgende Formeln:

(56)

1

P(Z) — [PlPl(Z) + P2Pz(Z) + P3PS{Z) + • • •]

1—<*0l)P(wP,P,,pt(0)) ' ' ifA0 (k J/) (57)

mit
m J/

f e-ukpn
»=1 V

p
(58)

\ m

p ,=1
(59)

(60)
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Die Formein (57) bis (60) sind gleich aufgebaut wie die im
Abschnitt IV c abgeleiteten Formeln (50) bis (55), nur dass die Summen
oder Produkte der für alle Teilbestände geltenden Ausdrücke an Stelle
der einzelnen Ausdrücke auftreten. Die verallgemeinerten Formeln
erlauben es, die Wahrscheinlichkeitsfunktion des Gesamtschadens bei

beliebig zusammengesetzten Versicherungsbeständen zu berechnen und
insbesondere die Auswirkung einer Quotenrückversicherung bei
gefährdeten Teilbeständen numerisch zu untersuchen.

Es sei folgendes Beispiel betrachtet: Ein Versicherungsbestand
zerfalle in zwei Teilbestände mit P1 Pz~ 2500, h01 o© und
Ä02 40; in beiden Teilbeständen gelte die Risikosummenverteilung
der Schweizerischen Mobiliar-Versicherungs-Gesellschaft in Bern mit
einem Maximum des Selbstbehaltes von Fr. 100 000. In der Tabelle 8

sind die erforderlichen Sicherheitszuschläge für verschiedene Werte
des Sicherheitsgrades zusammengestellt, wobei angenommen wird, der
zweite Teilbestand werde in drei Varianten zu 0 %, 25 % oder 50 %
quotenweise rückversichert.

Tabelle 8

Sicherheitsgrad

Erforderlicher Sicherheitszuschlag in % der Nettorisikoprämie
bei einer quotenmässigen Rückversicherung des Teilbestandes

mit h„ 40 von

0% 25% 50%

80 % 8,50 7,25 6,00
85 % 10,75 9,25 7,50

90% 13,75 11,50 9,50
95 % 17,00 14,50 12,00

Die Tabelle zeigt, dass der erforderliche Sicherheitszuschlag nahezu
eine lineare Funktion der im Selbstbehalt verbleibenden Quote des

zweiten Teilbestandes darstellt; die Auswirkung der Rückversicherung
auf die Höhe des Sicherheitszuschlages ist im übrigen um so stärker,
je höher der Sicherheitsgrad gewählt wird. Durch eine
Quotenrückversicherung lässt sich unter Umständen eine ins Gewicht fallende
Verbesserung des Sicherheitsgrades erreichen.
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c) Die Prämienberechnung
bei der Schadenexzedentenrückversicherung

Bei einer Schadenexzedentenrückversicherung vergütet der
Rückversicherer gegen eine bestimmte Prämie dem Erstversicherer die

Gesamtschadenbelastung, sofern und soweit sie eine zum voraus
festgesetzte Grenze — zum Beispiel 120 % der Nettorisikoprämien-
einnahme — übersteigt. Bei dieser Rückversicherungsform stehen

nicht — wie bei der gewöhnlichen Rückversicherung nach der Ex-
zedenten- oder Quotenmethode — einzelne dem Rückversicherer
überwiesene Versicherungen unter Risiko, sondern das kollektive Ergebnis
des Risikogeschäftes des Erstversicherers. Im folgenden soll die

Berechnung der Prämie für die Schadenexzedentenrückversicherung kurz
behandelt werden, wobei von der Annahme ausgegangen wird, dass

der Rückversicherer den Gesamtschaden x zu vergüten hat, sofern und
soweit er den Betrag uP übersteigt.

Die Wahrscheinlichkeit, dass der Rückversicherer einen Betrag
zwischen y x — uP und y + dy an den Erstversicherer leisten muss,
beträgt (A°'/ (x, P, p (z)) dx, wobei nur Gesamtschäden x > uP zu einer

Leistung des Rückversicherers führen. Die Prämie für die Schaden-

exzedentenrückversicherung (Ao)iß (uP, P, p (z)) ergibt sich somit aus
dem Integral

oo

{ho)^(uP,P,p(z)) J (x — uP){ho)f(x,P,p(z))dx. (61)
UP

Das Integral (61) lässt sich, wie die Wahrscheinlichkeitsfunktion nach

der Methode von Esscher, auf eine der numerischen Auswirkung
zugängliche Eorm bringen. Die Ableitung der nachstehenden Formel (62)

erfolgt ganz analog wie bei der Wahrscheinlichkeitsfunktion des

Gesamtschadens im Abschnitt IV c); es genügt deshalb hier nur die

Schlussformel

<A°>iß (uP, P, p («)) ~ y> M'i A (k ]/ M't) (62)

mit
~ 1 / 1 — @(y)\

AM-j (63)

anzugeben. Die in der Formel (62) auftretenden Grössen fc, y> und M'2

sind durch die Formeln (50), (51) und (55) im Abschnitt IV c) gegeben;
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im Anhang sind einige für numerische Berechnungen nützliche Werte
der Funktion A1(y) zusammengestellt.

In der nachstehenden Tabelle 9 sind einige Prämien für Schaden-

exzedentenrückversicherungen aufgeführt; diese Zahlenwerte gelten
für P 5000 und stützen sich auf die Risikosummenverteilung der
Schweizerischen Mobiliar-Versicherungs-Gesellschaft in Bern; in einer
Variante wird ferner vorausgesetzt, dass neben der Schadenexzedenten-

rückversicherung noch eine gewöhnliche Exzedentenrückversicherung
mit einem Maximum des Selbstbehaltes von Fr. 200 000 geführt wird.

Tabelle 9

Maximaler Gesamtschaden

zu Lasten
des Erstversicherers

in % der Nettori'

Prämie für die

Schadenexzedentenrückversicherung

ukoprämieneinnahme des Erstversicherers

h0 ~
40 | 100 | oo

a) kein

110

120

180

140

b) Maximui

110

120

130

140

Maximum, des

4,25
1,99

0,81

0,32

n des Selbstbeha

3,48

1,43

0,51

0,17

Selbstbehaltes

2,64

0,90

0,27
0,07

lies — 200 000

1,61

0,42

0,08

1,46

0,33

0,05

W.

0,45
0,03

Aus der Tabelle 9 lässt sich folgendes entnehmen.

1. Die Prämien für eine Schadenexzedentenrückversicherung
hangen wesentlich vom Maximum des Selbstbehaltes ab; die Kosten
der Schadenexzedentenrückversicherung lassen sich fühlbar senken,
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wenn die grössten Bisikosummen nach der gewöhnlichen Exzedenten-
methode individuell rückversichert werden. Es empfiehlt sich
überhaupt fast immer, die Schadenexzedentenrückversicherung in
Verbindung mit einer gewöhnlichen Exzedentenrückversicherung zu
fuhren, weil die Prämien der Schadenexzedentenrückversicherung
durch das stets recht unsichere Gewicht der grossen Bisikosummen in
der Bisikosummenverteilung stark beeinflusst werden. Die
Prämienberechnung bei der Schadenexzedentenrückversicherung lässt sich
somit auf eine sicherere Grundlage stellen, wenn die grössten
Bisikosummen individuell ruckversichert werden.

2. Der die zufallsartigen Schwankungen der Grundwahrscheinlichkeiten

messende Parameter hQ ist fur das Prämienniveau bei der
Schadenexzedentenruckversicherung von grundlegender Bedeutung.
Eine Vernachlässigung der Schwankungen der Grundwahrscheinlichkeiten

wurde in der Begel zu ganz ungenügenden Prämien fuhren. Die
erweiterte Bisikotheorie, welche die Schwankungen der
Grundwahrscheinlichkeiten berücksichtigt, erlaubt es demgegenüber, die Prämien
für die Schadenexzedentenruckversicherung so zu berechnen, dass sie

dem wirklichen Bisiko in den verschiedenen Versicherungszweigen
Bechnung tragen.

* *
H*

Die behandelten Beispiele dürften eine gewisse Vorstellung von
den numerischen Auswirkungen von festen und zufallsartig schwankenden

Grundwahrscheinlichkeiten gegeben haben. Im allgemeinen
lässt sich feststellen, dass die Schwankungen der Grundwahrscheinlichkeiten

sich numerisch so stark auswirken, dass sie nicht vernachlässigt
werden dürfen. Die erörterten Anwendungsbeispiele zeigen überdies,
dass die von der Bisikotheorie entwickelten Methoden es erlauben,
eine Beihe von versicherungstechnischen Problemen rechnerisch zu
behandeln, welche in der Praxis oft nur mit Hilfe von gefühlsmässigen

Erwägungen gelöst werden, die insbesondere den Mathematiker nicht
befriedigen können. Es ist zu hoffen, dass die Praxis von der durch
die Einfuhrung von zufallsartig schwankenden Grundwahrscheinlichkeiten

anpassungsfähiger gewordenen Bisikotheorie in vermehrtem
Masse Gebrauch machen wird.
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Anhang

Einige Werte der Funktionen A0(y) und A^y)

y My) io3 x) AM 103 2) y My) io3 x) A1(y) ioa

0,0 5000 3989 2,0 1681 627

0,1 4625 3527 2,1 1620 586

0,2 4292 3131 2,2 1564 549

0,3 3997 2790 2,3 1510 516

0,4 3733 2496 2,4 1460 485

0,5 3496 2241 2,5 1413 456

0,6 3283 2019 2,6 1369 430

0,7 3091 1825 2,7 1327 406

0,8 2918 1655 2,8 1288 384

0,9 2760 1506 2,9 1250 363

1,0 2616 1374 3,0 1215 344

1,1 2484 1257 3,5 1063 266

1,2 2364 1153 4,0 944 210

1,8 2253 1060 4,5 848 170

1,4 2152 977 5,0 769 143

1,5 2058 903

1,6 1971 836

1,7 1890 776

1,8 1816 721

1,9 1746 672

My
~ 1 —0(y)

0j 1/2n0'(y)

Äi(V)
~ 1 1 -0(y)\ 1

et"£d0(£) 1-y - =-=-yAtJ w ]/2 | y <b'U,\ I l/o.~ y
&(y) J ^

Werte wurden aus der Arbeit [9] übernommen.
Für die höheren Werte von y ist die letzte Dezimale unsicher.
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