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Introduction to a mathematical theory
of the graded stationary population

By S. Vajda, London

1. Fundamental relations

Consider a population divided into k grades. The grade
g(=1,2, ..., k) 13 assumed to consist of [ _;,  dsdz members of
exact age = who entered the grade exactly s years earlier. The total
number of members aged 2 in grade ¢ ist thus

x
Ydy = j sy s dsde (1)
0

and the total number of members who entered the grade s years
earlier, at different ages is

() ds = [ Uy gy yqdds. (2)

8

The total number of members of this grade will be
[!] ] fl,‘i([:l? = fl”(S)(lS. (3)
0 0

Let members of grades 1 to k— 1 be subject to two independent
decremental forces, a «force of mortality» u () depending on x only
and a «force of promotion» »’(s) depending on the grade and on s,
whereas the members of grade k are only to be subject to « (). Hence

l[gr—s] +s I[gx«s]spxms pg for g = L2 ..., k—1 (4)
Z{}:J:v--sj o l?‘w_s] - (5)
where . ]
~ [tgg -1 — [v9(1)at
=gl and p! =e?

8 ’p:cv«s
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At each moment Y (z) dz members of exact age x leave grade ¢
and the population itself. But at the same time the

J By s ¥ (5)dsdz (6)
members of age x who disappear from their grade, are promoted into
grade ¢ + 1.

Putting ¢ = 1,2,3, ..., k—1 in succession, these are the only
entries into grades 2,3, ..., k, therefore

[z] fl[x—-s] + 9”1 dS - j I[a. 5']spu:— hY (b) (7)

where
W (s) = p2o?(s).

It will be noticed that _p, ., p! and h%(s) are only defined for
positive or zero s and x—-s.

We assume that entries into grade ¢ = 1 occur only at © = 0.

Hence
oy =0 for s + @
and
= M) for s = u,
so that
(s) = [O]spﬂ Ps (8)
and

]{z] = ][0] Po () . (9)
In future, /,,p, Wwill be denoted by L.
We now proceed to caleulate f,;.

Applying (7) to grades ¢ and g-—1 we obtain

I{gx] "‘ l [[.C‘Ul] i}l‘px#‘jl} =t (yl) dyl : (10)

0
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A further application of (7) leads to

x -y

ij] - j j lngylyz] yl'f-‘yg'pil'“yl““l,'g hgﬂ (yl) hg-—2 (yR) dyz dyl (1 l)

0 0

and so on, by induction, to

T TG

[/ 2 g—1 2/ )
= [ o | B cayg) v g aPrsi g B0 - B ) Y

0 0

(12)
Because of (9) this is equal to

B U
I, = j ] L™ ) o k2 (g, ) W (8 — 1y — o — Yy Yy - DYy
0 0
where L, could be written before, instead of after, the integral signs.
It should be noticed that #,, ..., , , appear only as variables of
integration and that the arguments of A%, ...,h ' add up to =z,
which is the upper limit of the first integral sign. The r. h.s. is
therefore only dependent on . '

The special type of integral which appears here is called «convolu-
tion» or «Faltungn. We shall not make here any further reference to
the theory concerning this branch of analysis, but we introduce the
usual notation by writing (18) as follows

if; = LA Kped | $h), (134)

r

The comparison of (13) and (184) supplies the definition of the
*-gymbol. _ .
(I'or a systematic use of the Laplace transform in connection with

this type of problem, see H. L. Seal, Biometrika, xxxiii, 1945.)
It follows from (4) that

Mgyre = LoDl heot® L *pl(x—3) (14)
and hence ' .
gL [t Rl (9
0
1(s) = gt [ Lho ¥ i (e s)da. (16)

8

-dyy .

(13)
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Now we alter our point of view and combine all grades from ¢
upwards into one. The number of members in such an amalgamation
will be denoted by a capital L, so that now

L{, 4 ,dsdx is the number of members of the population of exact
age x who entered the grade g exactly s years earlier, and who are

now in any of the grades ¢, ¢+ 1, ..., k.

Lidx is the number of members aged exactly z in grades g,
g+1, ...,k and

L?(s) ds is the number of members in these grades who entered grade ¢
exactly s years ago, whatever their present age.

L9 ist the total number of members in grades ¢, g 1, ..., k.

The connections between these numbers are analogous to those
existing between the I’s given in (1), (2) and (3). All other formulae
valid for the I’s remain correct for the L’s providing p! is replaced
by 1, because no promotion can take place out of the amalgamated
grades ¢, g + 1, ..., k. Furthermore, it is clear that for the highest
grade, k, the expressions for capital I and for small ! coincide.

We note that (1) can be written in the form
Iy = J Li gy 1o pids. (17)
0

A further connection between the functions [ and L can be found.
It is obvious from general reasoning that L = 1f 419" - .. ;- [F
and we shall now prove this relation mathematically.

Consider the expression

I =L, [ i (o — ) ds (18)
0
Y
z a8 — (w0l (yae
=L, | f F(s 4 y)»™" (y)e o dyds
0 0

where
P4y =w2*. *l@—s—y).
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Integration by parts with respect to y gives

y -8
© a8 g = [ w0t (t)as = ot
Li=L] [ 5 -F6+yed  dyds—L [ o Pe)— @) ds.
0 0 0 -

But F(x) = 0 and I, [F(s)ds is easily seen to be L{' by the
0

definition above. Hence we obtain

Mo ~fy=-9—‘(t>dt
L— I8 = Ij —F(s+ y)e 0 dy ds.
00
Now

0 0
—F(s4y) = —F(s+y)
oYy 08 7

so that the right Hand term reduces to

2 2-8 . yuﬂ"l(!)di L —V/ul'”_l(l)dl
J 6] —a—SIf(s—}—y)cO dyd.s‘-—:ofj e o EEF(S'F?I)de'!/
0
fygl /lf 1
€ (0= at ] T o= [0l at
= [eo [F'(&) —F@)]dy = — [0 F(y)dy
0 0
—e
by (15). We have finally ¢ — L&' — %! and, since LE = 1%,
L= U4 R =L —B—.. —E (19)

for T B 8 ssen k.

In particular, for ¢ = 2

: & —-:_7?'1“)‘“
Bw Ll = I, [ e s)s = I, [ Aa—s)e? a5
G 0
y —[‘L;:l(t)d!'
== Lc [1 —e 0 , - L.a:"_'_ ]:3

so that
Ll = L,.

)
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Comparing (18) with (18«) we have

I =L, _[ o ds = ]'ﬁ%ﬂlspm Jds (20)

which i3 also obtainable from first principles.

From the latter formula we can derive a relation which will be
used in Chapter 3. We calculate

dL!
. [z—s] T 7[1—3]
= fI ds-+ L, j (ls
LY
Because of (20) the first integral = —~. To the second term we

apply the rule for differentiation of an integral with respect to an
upper limit which appears also as a parameter of the integrand. Thus

arr 4L, LY Wy Fd W
A 4 F | = [—2tT gy,
(l £ d:l) L£ § ! -LO 0 dll'- L;r;-—s
Now
(_l ][.E s] o _d_ lflx—sl
dx L, ds L,
hence
d L _ dL, L! L l[oj B [{"0J " o ‘
dx de L, L L, L,
and
d L dL, 1, ity o
il RES  NRSRAE. X (21)
Lidx L, dx LY LY

Of course, if (f,; = 0, then

dre  dlL,

Lidx  Lydx ’

1. e. the force of mortality u, is the only decremental force affecting
the function L¢.
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2. Limited ranges for promotions

The functions » and hence p and & of the preceding paragraphs
may have any form. But in order to relate them more closely to
realistic assumptions we assume now that promotions from one grade
into the next can only take place within a certain range of values of s.
More precisely assume that the values 47 (s) only differ from zero inside
the range from o, to f,, the limits excluded; then formula (13), which
is the basis of all the other relations, can be given an explicit form.

This assumption leads to

pl =1 for s < « A

! = p? for s> 3
g0 Ps = D, for s > g

hi(s) = 0 for s <a, and for s>4,.

-

First only take account of the fact that »/(s) = 0 for s < «,.

This gives A7(s) = 0 and pJ = 1 for s <«,. We accordingly examine
(18) and in particular the limits of the integrations. In view of the
ralation just obtained, we can replace the lower limits of the inte-

grations for ¥y, ..., 4,0 by o, (, ..., &y vespectively.

We then observe that

Loy s
e —yy— .. — )
18 only ditferent from zero if % — y, — ... —y, , > a;, where the

values y; exceed «, . It follows that we must have

Ypo <T—Yr— Y2 Yy N

Ygus < T Y= Yo oo Yyg= %g— 0
Yo << LYy — Oy Ryy e TRy
:Ul < L= ag__a_'— Gt(,,_:; s R B d.u;'—‘af-l .

This shows that the upper limits of integration will be the right
hand terms of (22) and the complete integration will have the following

ranges :

Tty g—=. . =0 =Yty g~ . .=y o ] Sty -"f‘"g----'l""ﬁ"”l =Y. '__yﬂ—srﬂa'
[ . e S R )
1_1.,{:_1 ”g-.»2 oy "2

17
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Substituting new variables, viz.

Bgpo = Yypo—0Upy B3 = Yy 30U, «.v, & = ) — &,

and

H— -L'-‘“*Otg_l'—“" “ .. ——(12—""“]

(18) 1s transformed into

. .H:y_a

Wt v, Y2 (g +ay,). . hR (e, + o) M (@~2)—. .. —2, 5+ o) d2, ... d2.

——
Lo
S

We write for this expression L, H, (o, ..., %, ).

The r. h.s. of (18), can, of course, be written
LH,0,...0).

If there is also an upper limit to the values of y for which &7 (y) - 0,
so that y < B, then that part of the (g 1) dimensional space for
which one or more y’s fall outside these limits must be substracted
from the part of the space considered in (24).

We must, therefore, when calculating f,;, subtract from (24)
L,H (B, 09, -y 0ty y), LyH (g, Bay g, ooy, y), and so on up to
L H,(oyy ooy oy, B,y)- Bubin this way the area where two or more
y’s are larger than their respective f’s has been subtracted too often.
Thus the final formula to replace (13) is

Wy = L H (o, oy, ) 4 (— Dbt H oy, oy By) - (25)

con b OB B ] (o, B Be) A - (= DB (B

where {} stands for the number of f appearing as arguments.

If the total of the a’s and p’s appearing as argument in any H
exceeds the subscript z, the expression is to he replaced by zero.
If all H expressions are used, i. e. if  exceeds {31 + ... 4 B,., then
lf,; must, of course, reduce to zero, 4. e. no promotion takes place at
age .
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From (25) there follows immediately the formula for

. - l?‘x—s]-}-s = ]Eﬁ_s] Py pg
and
Li{)‘r ]\'3 famse [[gd!--s] spw.._s .

&
If we caleulate now 1 = [If_,, ds we find that x occurs only
0

as subseript i the H’s and in L, and that consequently integration
can be applied to every term in (25) with the result

. g g e

8= Ly [Hey@ oo )plds+ (—1 [He (o, o, B plds+ .. ete. |
0 0 :
(26)
The upper limits of the integrals are fixed by the rule attached to
formula (25).

We find, further,

-y . .-—(l.g_l =y —. "'“ﬂg—l

L = L, phmw”%4@+knﬂgmw”mwm+umw.
0 E
(27)

0

It may be worth pointing out that although the expression in
(25) within square brackets reduces to zero if all H > 0, no analogous
reduction oceurs in (26) or (27), because here the various integrals

have different upper limits.
Finally, we habe

LA (s) == r L4,

(s« sty g) A (— D Pt H (o oo s Bym) + e ete.] di
8-y -|>-.,.. “!‘("'0-1 ;
(28)

-

and 17(s) is then found by means of the relation (s) = L% (s)pl.
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3. Special assumptions concerning »’(s)

The simplest case appears when we assume that »7(s) has a
constant value ¢, for all valués of s. This leads to pf = ¢ and
W (s) = c,e™¢". We give here a summary of the results which derive
from the first 20 formulae of Chapter 1 under two different assumptions:

(I) that all ¢, ave different for ditferent g, and
(IT) that ey = g3 = .« =20

We obtain then

()
.fl‘_‘_£ fimi 1
~Ca8 (-8
p=:1 )'!& G)"‘_G!
“ 1
19 = Loep...o D ¢*[f
jel itioc;—e;
g-1 ‘ o
1(s) = ¢ ... c &7 4\:: et H SRR f e L d
i=1 =l 6 §
9 =
oz g oo Bg 2, 1 ] — I e L da
i=17:}1 C, G C" 0
(1
(x — s)7*
4 = [, ¢ e
[x—s]+s ‘r ((I N 2) !
xit
P = e —
(¢—1)!
¢t @
1(s) = — ] (z— S)”'2 ™ L,dx
(1—2)!y
19— _J' (x —s) e Lyda.
(g — 1)! 0

(Actuaries will recognise in these integrals the functions which
they denote by N, S ete. The function which, in actuarial practice,
is called 7,, has here been denoted by L,.)



The expressions for Lf, ., L/(s) and L’ can be found from
those for the corresponding ! by multiplication by e‘%*. For LI the
following formula holds:

(D)

1411 _— 1;'.,"_ 1—' \ﬂ od U T
;‘:1 jfi €.— C;

j 1
(L)
' 9{4 . gt
B=L|1—Se¢te®
' ’ = (1—1)!

Formulae referring to a limited range of promotions [see (21) to
(28)] are given by Seal, 1. c.

It 1s elear that if the ¢, tend to a common limit ¢, then the formulae
under assumption (I) will tend to coincide with those under (11). If
they are different but fairly close together, then it will be possible
to find a value ¢ so that a formula under assumption (II) gives a
satistactory approximation to its counterpart under (I).

The value of ¢ which satisties this latter condition depends on the

0 i F - I Ta
particular formula under consideration: we here consider first L7,
and then . The method could equally well be applied to any other
functions.

Some algebraic theorems will be needed in what follows and they
are sot out here for convenience to avoid repeated interruptions to

the main argument at later stages.

The equation

I
C:
5"" ARG
~ L )
|.::1 j'_",‘,l (/j _'——(J‘

is of order y— 1 in & and has the g solutions ¢, ..., ¢,. Hence it

15 an identity and

C.-
\1 L — (a)

l"lJl' c;— ¢,
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Also
o 1 G—8e
ZH

5’?

1s satisfied by ¢, .. ., ¢, Hence 1t 13 an identity for ¢ = 1,2, ...,g—1,
and 1t follows that

g G ¢

i=1j}Fi Cj—-—C

-l

=0, fort=1,2 ...,9—1. (b)

gl

cf. The Theory of Equations, Burnside & Panton, 3rd Ed. p. 319.)
1

We shall also use (1. e. p. 320)

and

D e S CU L SN )

Let us now turn to a comparison of the formulae for Lf under assump-
tions (I) and (II).

We want to find ¢ so that

g-1 (ex)"! gL & :
S LS [T (2.1)
ey (e Y ey

Expanding the expotentials we have for the L h.s.

G e Gt gy e G QG e 69
e 8! 3! i e, W(t—a)! S0 Y
g2 t ( — 1)t oo -2 (cx)!
= S ex)t > N ST G ) U B O
gf.‘Jo( )fe (1——%)1 f;'g-uz'c') a,'(t——a,)! 22)

Now in the first sum the term for ¢ = 0 is unity whilst the other
terms cdisappear, because they are

(—__l)

= (1—1)" == 0, for ¢t 0.
t!
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The lowest term in the second sum is
(— 1)”—l : r (ca)rt

g)! ‘? — B e imonecses  JL
(01) ‘l—OQ/r("]"‘"‘—I‘*‘"’?J)- (g___ l)! ((]—-l)! (z 3)

Thus we have as a first approximation for the I h.s.
(o)
(g-—1)!

Consider now the r. h. s. ixpanding the exponential once again
we get

e RS (—e;x)° ) ot cie, |
I i i f | LRI
{=18=0 S. IR C’-—-C = .. 1=1 J:} C,»—-"Ci
ﬂ—;l .
The first term is >} [[——— =1, because of (a).

i=17FL C;—C;

The next y — 2 terms disappear according to (b).

The next term is thus

(—a)"t gt ol 20
——— -'- \ —'----‘-- e DI e (jl cg—l _ﬁ._...‘._...__'.. =
(— D! iS5 ¢;—¢; (g—1)

The r. L. s. is therefore as a first approximation

We thus conclude that the two approximations coineide if
(:-(I—l — 6102 ... Cg_l. (2-!))

Now consider ¢ in lieu of L. It is our problem to find ¢ so that
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In the expansion of the r.h.s. the first (¢ — 1) terms disappear
because of (b), and the next two terms are

201 Al ) ¢ oo. Gttt _at.-tey

i § Gg-l —({}—:ﬁi‘)—‘ —I— -(;’"'— (Cl —l— 5§ --l— Gy) oo -—E(J—:‘—li'-—- e g

Henece if we take

£ = — (2.6)
g

and if ¢,, ..., ¢, can each be taken as approximately ¢, then 1t is
this value (2.6) which makes !¢ under assumption (II) a good appro-
ximation for the exact value given under (I).

The use of constant forces of promotion »?(s) has the advantage .
of great simplicity, but it suffers from a disadvantage which is serious
in practical application. They cannot be used in a case in which all
members of a certain grade have been promoted after a maximum
length of time s spent in the grades. To cope with this problem, it is
necessary to let »7(s) tend to infinity as s approaches its limit and the

¢
form »9(s) = P has been found useful (b and ¢ may have different
— 8
values for different grades).
We have, of course, lirg ¥ (s) = co. This expression leads to a
. o " 8=
simple form for p?, viz.

_/s‘ﬁ.hc,_. dil b___s ¢
pl =e0 e (__b—) , with p§ = 0. (2.7)
We have also |
¢ b—s\"* -
hi = e | s (b—2s)°", say (2.8)

4. Short outline of computation

Practical computation starts off with the values I, = L . From
these values IL is found for every =, using /; = L pl. The difference
between L, and Il is [, —1! = L2.
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Having thus obtained the values in the grades 2 and above for
every %, we can caleulate l'fx] from (21) and then

2 R 2 L
L[:c—s]+.~a "” }[m—s] sPo-s -
We caleulate now I2_. = = i, p; which leads to
&

2 -8
Ly, =2 f [r—s] 1 s 45 -

o

0

From now on all steps are periodically repeated: first 12— = L}
and then, again from (21), we find F[’x]. The succeeding steps produce
Lirsyres ogrss 1oy LY, «.. ete. through all the grades.

" If a check is desired, (7) can be used to recalculate ff,; tor every
grade ¢ =2, 3, ..., k.

The procedure outlined is based on the assumption that the form
of » (or of p or k) and all parameters involved are known. But this
18 not the case which arises most frequently in practice. There we are
usually faced with the problem of finding the parameters, if only the
form of »(s) is known and a «hierarchy» is given. By this expression
we mean the set of values 1, {2, ..., ¥, or the equivalent set,
1A L2 ..., IF. "We could proceed by trial and error, but for

- ¢
V() = — a more satisfactory procedure has been developed.
h—s -
Let us consider I = ] 1.9 (s) p? ds, which follows at once from (3).
0 ) .
Let us further assume that +7(s) = P— for @« < s < b and = ()
h—s
outside this range. Then
9l =1 for s <a

bh—a
— () for s >0.
It follows that
oo 7] b b ¢
g : —
1 s ’ LY(s) plds = / Li(s)ds + ’L”(.s) — | ds. (3.1)
< : : —
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We are concerned with finding an approximation for the second
integral on the r. h.s. By one of the mean value theorems of the
integral calculus we have

h h—sig\ b ey
i)y as =t [ () s

Ma'/ @

where s, is a value between a and b.

The last integral is equal to

b

S —— b—8)’ds = — ., 89
(b——~a)“!( ) ¢+ 1 3.2)
We have thus, from (3.1)
: [(s)) (b—0)
= | L s)ds + —-——. 3.3)
6f s = ¢c-+1 (

Now if L?(s) does not vary much with s (and this is the case in
b

many applications) L7 (s)) (b —a). ~ [ L/(s)ds and formula (3.8) can
[

be written
b

/.“waf’(s)ds 4+ 1 f’L”(s)ds. (3.4)
5 c+1,;

a

Hence, if L?(s) is known, and the required ¥ is given, ¢ can be found
approximately from (3.4) and all functions can be calculated as
described at the beginning of this Chapter.

For the applications of the theory we are actually not so much
concerned with values like If;, Lf_,, and so on, but rather with

the integrals of these values between certain limits of the arguments,
yi1 b1yt

such as [W,de, [ [ Lf_, ,deds and others. The computation,
Y t v

however, still proceeds on the lines described above and a numerical

tllustration will make the whole process clear.
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5. Example

y-+-1
We assume that the values [ L, da are known for every integral y;

and that they are as follows:

1y ‘ 0 1 2 8 4 5 6 7T 8 9 10 11 12 13 14 15
- ”;l"l : R S
/L;r de | 921 915 909 902 894 886 877 866 855 842 828 811 791 767 T4l
1 |
1.5 o
The total of these numbers is [ I, dw == 12,805.
0

Then let us assume that the following hierarchy has been fixed:

Grade 1 8523
» 2 6282
» 3 3000

It is further required that promotions shall start in grade 1 after
s == 3. By s = 6 all members are to have been promoted to grade 2

¢
at least and the form ot the force of promotion is to be »'(s) = ——-
6- s

which is, in grade 1, also = —————. The force of promotion from grade 2
6—=x

into grade 3 is supposed to be constant, commencing at s = 2 and

ceasing ab s = 7. This means that all those who have not reached

orade 8 after having spent 7 years in grade 2 will never be promoted.
¢

We have first to fix the value of ¢ in »!(s) == o— This will
y 8

be done by the aid of (3.4). With the present assumption this formula
reads

».:'l 1 {,
8,528 ~ | LY(s)ds -+ ———— | LI(s)ds
a’ ¢+ 1 -:!
2682
~ 2745 - ——.
¢+ 1

Therefore ¢~ 2.45.



— 268 —

Our first step consists of caleulating, for y =3, 4, 5

w1 -1 y+1 6 —— 2 2.45
Bday = | Lypldy = Lx( -_—) dx. - (4.1)
o~ e T (%5

U Y

This is, with sufficient accuracy,

yt1 ¥l /G \ 240 ¥t | 1
L, da - dy = Lxd.L (6 —— )35 (5 — )345]
yj yf ( 3 ) ,J sa5 g6 L0 (5—y)™"

Thus we have

S
<
D
-
(=]

Y 0 1 2 3 4

-1 .
[Lyde | 921 915 909 902 894 886 877  ete.
3 :

Factor 1 1 1 653 194 0196 0

[ Ldx 921 915 909 589 173 17 0

y

y+1

[1}dw 0 0 0 313 721 869 87T ete.

U

The total of the third line is 8524 which is near enough to 3523.
The last line i1s found from

yit yt1 yi1

234 . ' - 1.3
|12z = [ Lz —[1da.
Y Y

Y

Thé numbers in grades 2 and above must now be split up according
to seniorities.

Namely, we first want to find

oL i
| [ Lsgredsda.
y 0

As no promotions from grade 2 occur within the first year, this is also

F11

7 | f l?st]q-s dzds.

0

=
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We can use an argument which is analogous to the derivation
of formula (21). Out of 902 members of the total population between
ages 3 and 4 there will be 894 survivors after one year. Therefore

‘ , 8
out of 813 members in grade 2, in the same year group, 313 . Y 310~

can be expected to survive, so that 721 — 810 == 411 is the number
of the survivors of those who have entered the grade during the last
year and are now aged 4—5. In this way the following numbers of
surviving members with a seniority of not more than one year («New
Entrants») are found:

] 3 4 D 6

1

[ Iide 313 721 869 877

]
Probability of surviving one year 894 886 il

902 894 886

Survivors at age y -+ 1 to y -+ 2 310 715 860
New ,ly\ntrimts into grade at age 313 411 154 17

y toyt1

* In this group all members are, of course, «New Lintrants».

These numbers ean now be carried forward by multiplying them
again by their probabilities of survivorship, taken as

yt2
LT dm
1

y+1

f L dx
/]

and we thus obtain the following complote table of the distribution of
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(irades 2 and above

Ages last birthday Totals
et} sori
Seniority I.'Lz ) ds
3 4 5 6 7 8 9 1001 12 13 14| ;
0-—1 313 411 154 17 895
1—2 310408 152 17 887
2-—3 307 404 150 16 871
b—t 304 398 149 16 867
4-5 301 393 146 16 856
5—06 297 387 144 16 S44
6—17 293 381 141 15 830
78 987 373 137 15 812
8—9 281 365 133 14 793
9—10 274 353 129 756
10—11 266 341 6GOT7
11—12 257 257
Total
yi1 313 721 869 877 866 855 842 828 811 791 767 741 9281
f [2dx
"

The totals in-the last line are already known and thus provide

a check on our computations.

We must now obtain from these figures those which relate to
arade 2 alone.

(8]

it

Consider equation

2 7 12
= J L2(s)ds + J L2(s) pids -+ J L2(s) p2ds
0 3 i

where p? — ¢ 2¢ and pj = ¢
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By trial and error we find that I* = 6282 can be obtained by
putting ¢ = .153. Then
;
| L2(s)ds = 1782

i
jﬂL (s) pEds = 3225 ..46533 — 1501

and

1+1 141 L1 om(=2e __ ,~(t-1)e

(L2 (s) pEds ~ \ )ds | ¢ 62eds = V L2 (s) dg ———
] wr = ,’ e t’ = z,f .153

)
el

..which can be calculated as follows:

-
[
(=2

t 2 3

t-+1
[ I2(s)ds 877 867 856 844 830
i

_(,"Tm(t-a)__e AB8(1-1)
92725 .79569 .68281 (58595 50288

[ (s) ds 813 690 584 494 417  Total — 2998

The total in grade 2 alone is therefore 1782
+- 2998

11501
6281

The reducing factors shown in the penultimate line of the above
table and the further factor ¢-'%*® = 46533 must now be applied
to the table for grades 2 and above given on the previous page in
order to obtain
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(rrade 2 only

Ages last birthday Totals
Seniority 3 f"lle 0 ds
3 4 5 6 7T 8 9 10 11 12 13 14 z

0—1 313411154 17 895
1—2 310408 152 17 887
2—3 284 375139 15 813
3—4 ' 242 817119 12 690
4—5 205 268 100 11 584
5—6 174227 84 9 494
6—T7 147191 71 8 417
7—S8 133174 64 7 378
89 131170 62 6 369
9—10 127164 60 351
10—11 124159 - 283
1112 120 120
Total

wil 313 721 846 786 678 576 486 419 385 369 357 345 6281
J Bdax

u

The differences between the last lines of this table and of the previous
y+t

one give the values of [dx as follows:
)

Ages last birthday: Total
3 4 5 6 7 8 9 10 11 12 13 14

Members in Grade 3 — — 23 91 188 279 356 409 426 422 410 396 3000

The analysis of this grade according to seniority can be done in the
same way as that shown for grades 2 and above. The result is
. le)
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Grade 3 (highest)

Ages last birthday Totals
P s+1
Seniority : f‘“lﬂ ) ds
5 6 7 8 9 10 11 12 13 14 o
0—1 23 68 98 93 81 59 25 6 1 — 454
1—2 28 67 97 92 80 58 24 6 1 448
2—3 23 66 95 90 T8 57 24 6 439
3—4 23 65 94 88 76 55 23 424
4—5 23 64 92 8 T4 53 392
5—6 22 63 90 83 T 329
6—7 22 61 87 81 251
T—8 22 59 84 165
8—9 21 57 78
9—10 20 20
Total .
lj}‘ ;3 2 23 91 188 279 356 409 426 422 410 396 3000
F i

18
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