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Erwägungen
über abhängige und unabhängige

Wahrscheinlichkeiten
Von Hans Wyss, Zürich

1. Die unabhängigen Ausscheidewahrscheinlichkeiten nach Karup

Für eine im Jahre 1875 bekannt gewordene Untersuchung [4]:)
hat Karup zur Darstellung bestimmter Vorgänge in Personengesamtheiten

neuartige Masszahlen benützt, dio er unabhängige Wahrscheinlichkeiten

nennt. Damit löste er einen lebhaften Meinungsstreit aus,
der seinen Abschluss erst durch eine mehr als 30 Jahre später
erschienene Darstellung von Spangenberg [5] gefunden hat. Diese

Abhandlung bringt eine eingehende Würdigung von Karups Auffassung
und setzt sich mit den damals bekannten, zustimmenden und
ablehnenden Äusserungen zur Streitfrage auseinander.

Nach einer Mitteilung von Linder [21] hat Lambert schon 110

Jahre vor Karup bei einer Untersuchung über die Pocken-Sterblichkeit

mit unabhängigen Wahrscheinlichkeiten gerechnet, scheinbar
ohne sich der allgemeinen theoretischen Bedeutung der für die

besondere Aufgabe benützten Berechnungsmethode bewusst zu werden.

Ähnlich verhält es sich mit den einige Jahre vor der Karupschen
Arbeit veröffentlichten Untersuchungen von Heyn [6] und Zeuner [8],

Der Haupteinwand, der gegen die Anwendung der unabhängigen
Wahrscheinlichkeiten geäussert worden ist, scheint dahin zu gehen,
dass Karup den neuen Begriff einzig deshalb eingeführt habe, um bei

der Darstellung von Vorgängen in Personengesamtheiten den in der

mathematischen Wahrscheinlichkeitstheorie gültigen Satz über die

Multiplikation von Wahrscheinlichkeiten benützen zu können. Der
Widerstand gegen Karups Auffassung dürfte hauptsächlich auf den

Umstand zurückzuführen sein, dass seine Kritiker ausschliesslich an

Vorgänge in Personengesamtheiten denken, wo der Sterbefall das

1) Siehe Literaturverzeichnis ain Schlüsse.
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endgültige Ausscheiden der betroffenen Person aus der Beobachtung

zur Folge hat. In die allgemeine Betrachtung sind jedoch auch die

Vorgänge einzubeziehen, wo das durch ein bestimmtes Ereignis
getroffene Objekt selbst nicht zerstört wird, sondern der weiteren

Beobachtung zugänglich bleibt. Beispielsweise wird in der Theorie der

Versicherungen auf mehrere Leben das beobachtete Objekt durch
eine bestimmte Personengruppe dargestellt, die als solche nach dem

Ableben eines oder mehrerer Mitglieder weiter besteht. Ähnliche

Beispiele liefert die Beobachtung von Schadenereignissen an Sachen,

deren Existenz durch die Beschädigungen aus bestimmten Ursachen

nicht erlischt.
Auch Karup selbst hat seine grundlegenden Betrachtungen

anhand von Personengesamtheiten geschildert, bei denen die Masszahl
der unabhängigen Wahrscheinlichkeit nicht ohne weiteres anschaulich

gemacht werden kann. Zur Erläuterung bediente er sich einer
Gedankenkonstruktion, wonach man sich vorstellen soll, jede wegen
Todes aus der Beobachtung ausscheidende Person werde sofort durch
eine andere gleichartige Person ersetzt, die gewissermassen als ihr
Stellvertreter weiterhin unter dem Risiko der übrigen Abgangsursachen
stehe. Diese — von manchen Autoren als gekünstelt empfundene
Konstruktion — scheint das Verständnis der Karupschen Gedankengänge

eher erschwert zu haben, obschon sie für diese keineswegs
ausschlaggebend ist.

Nachdem Spangenberg in einer weiteren Arbeit [38] die Zusammenhänge

zwischen den früher in der Statistik von Personengesamtheiten
ausschliesslich benützten abhängigen Wahrscheinlichkeiten und den

Karupschen unabhängigen Wahrscheinlichkeiten untersucht hat und
die Frage im Jahre 1912 als Gegenstand eines Internationalen
Kongresses für Versicherungs-Wissenschaft [9] gewählt worden ist, darf
die heute fast unverständlich anmutende Streitfrage als abgeklärt
betrachtet werden.

Immerhin fällt es auf, dass die Karupsche Theorie der unabhängigen

Wahrscheinlichkeiten weder in der Enzyklopädie [1] noch im
Lehrbuch von Gzuber [2] näher gewürdigt wird. In beiden Werken
finden sich nur kurze Hinweise, die eher eine ablehnende Einstellung
des Autors vermuten lassen.

Auch nach der Abklärung durch Spangenberg haben sich noch
verschiedene Autoren mit Fragen aus dem Gebiet der unabhängigen
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Wahrscheinlichkeiten beschäftigt. Eine Eeihe von interessanten
Abhandlungen über diesen Gegenstand ist in den Mitteilungen der
Vereinigung schweizerischer Versicherungsmathematiker erschienen, [25]
bis [38]. Unter diesen seien die folgenden Arbeiten besonders erwähnt:
Du Pasquier [25] gibt — wie auch in seiner Kongressarbeit [9] —
eine strenge Begründung der Karupschen Theorie. Frieäli [22] und [26]
erweitert die Methode, indem er die unabhängige Ordnung als Grundlage

für die Darstellung der Vorgänge in Personengesamtheiten
einführt. Marchand [24] und [27] bringt einen Nachweis, dass die Bildung
der gesamten Verbleibenswahrscheinlichkeit als Produkt aus den

unabhängigen Verbleibenswahrscheinlichkeiten für die einzelnen Abgangsursachen

gleichbedeutend ist mit der additiven Zerlegung der
gesamten Ausscheideintensität in die Intensitäten für die einzelnen Aus-
scheideursacheri.

Aus der Iteihe von Arbeiten über die unabhängigen Wahrscheinlichkeiten,

die in ausländischen Zeitschriften erschienen sind, seien

lediglich die Abhandlungen von Insolera [17] und Koe/ppler [19] sowie

die unter Leitung von Riebe,seil ausgearbeitete Dissertation von Beut-

ling [20] erwähnt.

Obwohl die Karupsche Theorie längst klargestellt und ihre

Ergebnisse erhärtet sind, begegnet man doch noch gelegentlich
Auffassungen und Einwendungen, die Missverständnissen entspringen
dürften. Daher mag es nicht als überflüssig erscheinen, der Frage der

abhängigen und unabhängigen Wahrscheinlichkeiten eine zusammenfassende

Betrachtung zu widmen. Den folgenden Erwägungen sei

vorausgeschickt, dass sie bewusst im mathematischen Gedankenmodell

bleiben und somit auf die Frage nicht eintreten, ob bei Massenerscheinungen

in Wirklichkeit völlig «unabhängige» Wahrscheinlichkeiten

im streng mathematischen Sinne auftreten können oder nicht.

2. Beniitzte Bezeichnungen

L

Eine Gesamtheit von /r(0) Objekten, die alle eine bestimmte Eigenschaft

R besitzen, wird während der Zeit von 0 bis t beobachtet.

Verliert ein Objekt die Eigenschaft R, so scheidet es aus der ursprünglichen

Hauptgesamtheit aus. ZurZeit t umfasst diese noch l'(t) Objekte.
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Die Häufigkeit des Ausscheidens während der Zeit t, von 0 aus

gerechnet, wird gemessen durch:

r(0)-v(t)
r (0, t)

lr(0)

Besitzt die durch diese Masszahl dargestellte Häufigkeit die
Eigenschaften, die an den Begriff der Wahrscheinlichkeit geknüpft werden

— etwa im Sinne der «statistischen Wahrscheinlichkeit» nach Anderson

[3] — so kann r(0, t) als Wahrscheinlichkeit dafür aufgefasst

werden, dass ein Objekt binnen der Beobachtungszeit von 0 bis t aus
der Hauptgesamtheit ausscheidet, weil es die Eigenschaft Ii verliert.
Die komplementäre Wahrscheinlichkeit des Verbleibens in der
Hauptgesamtheit ist:

lr(t)
?'«M) 1—,«>,<)

Denkt man sich die Beobachtungszeit in eine Anzahl — beispielsweise

in t — gleichlange Intervalle unterteilt, so gilt:

r (°> 0 2 Pr(°. "0r (h 1) 1 1)
t 0 4=0

und
r (0, t) r (0, i) -f pr(0, i) r (i, t — i)

Die Betrachtung könnte ohne weiteres auch auf Objekte
ausgedehnt werden, die im Verlauf der Beobachtung die Eigenschaft B
erhalten oder wieder gewinnen, wie es beispielsweise Du Pasquier [25]
durch den Einbezug der Iteaktivierungsintensität getan hat. In
diesem Ealle wäre l(x) eine offene Gesamtheit, und an Stelle der

«Abgangswahrscheinlichkeit» würde der von Schärf [32] geprägte Begriff
der «Bestandesänderung» treten. Zur Vereinfachung der Darstellung
wird im folgenden indessen auf diese Erweiterung der Betrachtung
verzichtet.

II.
Die Ausscheidewahrscheinlichkeit für ein unendlich kleines Intervall

wird dargestellt mit Hilfe der Intensitätsfunktion:

d

-*1'«
p (x) • dx dx

i'{x)
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Die Wahrscheinlichkeit, zwischen 0 und t auszuscheiden, ist in
kontinuierlicher Darstellung bestimmt durch:

Cr
' '

me{x)dx=~mj ^mdx~
o 0 0

Ferner ist: t

-jg(x) dx

pr(0,o c°"

3. Gesamtheit mit mehreren Abgangsursachen

I.

Die Hauptgesamtheit umfasse Objekte, die sich sämtliche durch
drei Eigenschaften A, B und C auszeichnen. Die Wahrscheinlichkeit,
während der Zeit von 0 bis t die Eigenschaften A, B bzw. 0 zu
verlieren, sei a(0,t),b(0,t) bzw. c (0, t). Es sei zunächst vorausgesetzt,
dass jedes Objekt, das bereits eine oder zwei charakteristische
Eigenschaften verloren hat, weiterhin in unveränderter Weise der
Beobachtung zugänglich bleibt. Im besonderen soll die Wirkung jeder
einzelnen Abgangsursache vom Umstand unberührt bleiben, dass das

Objekt bereits eine oder beide andern Eigenschaften verloren hat.

Der Vorgang lässt sich dann durch folgendes Schema darstellen.
Nach Ablauf der Zeit t haben sich von der ursprünglich unter
Beobachtung gestellten Hauptgesamtheit sieben Nebengesamtheiten

abgespalten, so dass in ganzen acht Gesamtheiten bestehen, nämlich:

'lie Hauptgesamtheit, mit l(t) Objekten, die alle drei Eigenschaften
A B C besitzen;

drei Nebengesamtheiten mit Lab(t), Lbe(t) bzw. Lca(t) Objekten, die

noch je zwei Eigenschaften A B, BC bzw. C A besitzen;

drei Nebengesamtheiten mit L"(t), Lb(t) bzw. L" (t) Objekten, die nur
je eine Eigenschaft A, B bzw. C besitzen;

nnd eine Nebengesamtheit mit L°(t) Objekten, die keine der betrachteten

Eigenschaften mehr besitzen.
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Bei Betrachtung von n Eigenschaften würden sich 2" Gesamtheiten

unterscheiden lassen, und zwar je | Gesamtheiten von Ob-W
jekten, die bereits m Eigenschaften verloren haben; ferner ebenso

viele von Objekten, die noch m Eigenschaften besitzen. Nach den
elementaren Sätzen der Wahrscheinlichkeitsrechnung und bei

Berücksichtigung der Festsetzung 1(0) i"(0) i6(0) lc(0) lässt sich der
Umfang der einzelnen Gesamtheiten zur Zeit t ohne weiteres angeben.

Es ist z. B.:

l(t) Z(0) [t - a (0, t)] [1 - b (0, l)] [1 - c (0, /)]
lalt) l"(t) lc(t)

i (0) f(o, t) p (o, t) f(o, 0 -ILALA1

La\l) l (0) [1 - a (0,1) ] [1 - b (0, t)J c (0, t) --=

la(t) lb(t)
l (0) f(0, i) V% t) c (0, l) C (0, t)

l (U)

7/(1) l (0) [1 - a (0, 0] b (0, 0 c (0, t) •-

l (0) pa((), 0 b (0, 0 c (0, 0 l"(0 b (0, 0 c (0, 0

7/(0 l (0) a (0, 0 b (0, 0 C (0,0

womit zugleich die Bedeutung von fa((),t), pc(0,t), sowie

/"(0, lb(t), lc(t), erläutert sei.

Für die verwandten Gesamtheiten von Objekten mit der gleichen
Zahl verbliebener Eigenschaften gelten jeweilen die gleichen Formeln
mit zyklischen Vertauschungen. Bei der Betrachtung von n
Eigenschaften lässt sich der Umfang der Gesamtheit von Objekten, welche

noch die Eigenschaften A bis J besitzen und die übrigen verloren
haben, nach der symbolischen Darstellung bestimmen

7/6"'(0 * (0) 7J[1 - r (0, 0] • 77r (0, t)
r—a r=k

Aus dieser Grundbeziehung lässt sich die technische Darstellung
von Versicherungen auf mehrere Leben entwickeln. Als Objekt mit«
Eigenschaften tritt dabei eine Personengruppe aus n Personen auf.
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Dem Verlust einer bestimmten Eigenschaft entspricht das Ableben
einer bestimmten Person aus der betrachteten Gruppe. Durch dieses
Ausscheiden wird die weitere Beobachtung der betreffenden Personengruppe

nicht abgebrochen, sofern vorausgesetzt werden darf, dass
die Sterblichkeit der übriggebliebenen Personen der Gruppe durch
das Ableben der Ausgeschiedenen nicht beeinflusst wird.

Die Vorgänge während der Beobachtungszeit können leichter
überblickt werden, wenn diese in t gleiche Intervalle zerlegt wird.
Für den als Beispiel betrachteten Fall mit drei Eigenschaften ergibt
sich unter sinngemässer Anwendung der in Abschnitt 2 benutzten
Bezeichnungsweise folgendes Schema:

e5,Phjekte Abgelaufene Zeiteinheiten
den

0%en- „^haften 0 1
• • • '

4 11 C Labc({)) l (0) Laic( 1) =Z(l) i(0)-.41-/I1--C1 Labe(t) l(t) l(Q)-A,- 11,-C,
A 11 L"b(0) 0 Lo4(l) ^Cy — Al — B* rJ»b(t)=Ct—Ael—Ill
BC J/c(0) 0 7/e(l) — At — B\ — C'( Lbc(i) A, — l?t— C'\

CA //"(0) 0 7/"(l) Bt — C\ -~Ab Lca(t) 13, — Cb — Ab

A 1/(0) ^ 0 7/(1) B[ + C[ —G/ //(/) B° +Cb-Abc
B 7/(0) 0 7/(1) C\ + A[ — «/ L"(t)=Cal +GJ-77
C

7/(0) 0 7/(1) =A\ + ni—c? L\t)=--Ab +77? — Cf
keine

7/(0) 0 7/(1) G/ + 71/ + C'f L°(t) — G/+71/ + Cf

fill'''''H;

helftp /(0) /(0) /(0)

Dabei bedeutet beispielsweise

At Anzahl der Objekte, die bis zur Zeit (i) aus der Hauptgesamt¬

heit l ausscheiden, weil sie die Eigenschaft A verlieren;

A1 Anzahl der Objekte, die bis zur Zeit (i) aus der Nebengesamt¬

heit Lab ausscheiden, weil sie A verlieren;

Gj" Anzahl der Objekte, die bis zur Zeit (i) aus der Nebengesamt¬

heit L" ausscheiden, weil sie A verlieren.

12
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Sollen aus diesen Aufzeichnungen über den beobachteten Verlauf
der Ereignisse sinnvolle Masszahlen für die Häufigkeit des Verlustes
der betrachteten Eigenschaften abgeleitet werden, so liegen zwei
verschiedene Wege nahe.

a) Betrachtung aller Gesamtheiten

Sollen die Vorgänge vollständig erfasst werden, so sind sämtliche
beobachteten Gesamtheiten in Betracht zu ziehen. Zur Bildung einer

Masszahl für die Häufigkeit des Verlustes von A wird man dann von
der Gesamtzahl der Objekte ausgehen, die während des gewählten
Beobachtungsabschnittes die Eigenschaft A verloren haben. Biese

beträgt beispielsweise bis zum Ablauf des i-ten Intervalls:

Aj, + At + At + AY

Somit beträgt die Wahrscheinlichkeit für eines der 1(0) Objekte der

Hauptgesamtheit zwischen der Zeit 0 und i dio Eigenschaft A zu
verlieren (gleichgültig, ob die betreffenden Objekte auch noch die

Eigenschaften B oder C verloren haben oder nicht)

A. -(-/(• +Ab- +Ab-C
a (0, i) — ' 1 '

V '
1(0)

h) Betrachtung der Hauptgesamtheit allein

Die Beobachtung kann aber auch beschränkt werden auf das

Ausscheiden aus der Hauptgesamtheit l(t), wobei lediglich auf die

drei Kategorien Ai, Bi und Ci von ausgeschiedenen Objekten
abzustellen ist. Eine sinnvolle Masszahl ergibt sich, wenn diese

Beobachtungsergebnisse bezogen werden auf den Anfangsbestand / (0); also

_ As
a (0, i)

1(0)

ä (0, i) stellt für jedes zur Zeit 0 der Hauptgesamtheit angehörende
Objekt die Wahrscheinlichkeit dar, bis zur Zeit i wegen Verlustes der
Eigenschaft A aus der Hauptgesamtheit auszuscheiden oder, mit
anderen Worten, als erste die Eigenschaft A zu verlieren.
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c) Zusammenkam) der beiden Masszahlen

Wegen der beiden Möglichkeiten zur Bestimmung von l(t) besteht
zwischen den nach Betrachtung a und b definierten Masszahlen bei n
Abgangsursachen der Zusammenhang:

(1) l-Vf(O,0=77[l-r(O,0]
r~a r—a

Die einzelnen Gesamtheiten, die im Schema auf Seite 177 auftreten,
können in geeigneter Weise zusammengefasst werden, beispielsweise

zu einer Gesamtheit, die nach der Zeit t sämtliche Objekte umfasst,
welche die Eigenschaft A noch besitzen:

la(t)=l(t) + Lab(1) + T/a(t) -f L"(t)

Werden aus dem Schema auf Seite 177 die Werte für die
Nebengesamtheiten eingesetzt, so ergibt sich für

iM) '(<>) A, ,1'; A>: ,/»«

da die Glieder mit ß oder C sämtliche wegfallen. Die Ordnung la(t)

und die daraus hergeleitete Wahrscheinlichkeit a (0, t) ist also

unabhängig von der Zahl der Abgänge wegen Verlustes der übrigen
Eigenschaften. Insofern ist die von Karup für solche Wahrscheinlichkeiten

eingeführte Bezeichnung unabhängige Wahrscheinlichkeiten-

sinnvoll, obwohl aus andern Gesichtspunkten auch andere Bezeichnungen

— z. B. Elementarwahrscheinlichkeiten; partielle oder

einfache Wahrscheinlichkeiten und andere — begründet werden könnten.

Das Schema auf Seite 177 zeigt ferner, dass die Anwendung des

Produktensatzes der Wahrscheinlichkeitstheorie in den betrachteten

statistischen Aufgaben durchaus begründet ist, wenn es sich darum

handelt, die Wahrscheinlichkeit zu bestimmen, dass ein Objekt sowohl

die eine als auch weitere bestimmte Eigenschaften verliert.

Die Masszahlen 5(0,*), b{0,t), c(0,t) pflegt man als abhängige

Wahrscheinlichkeiten zu bezeichnen. Die Betrachtung des Schemas auf
Seite 177 liisst ohne weiteres erkennen, dass die Zahl der Abgänge aus

tier Hauptgesamtheit l(t) wegen Verlustes der Eigenschaft A bei

gleichbleibender Wirkung dieser Ursache davon abhängig ist, ob mehr

«der weniger Objekte bereits vorher wegen Verlustes der übrigen
Eigenschaften ausgeschieden sind. Insofern erscheint auch diese Be-
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Zeichnung als sinnvoll. Bei einer Beschränkung der Betrachtung auf
die Vorgänge in der Hauptgesamtheit kann eine als Produkt gebildete
Wahrscheinlichkeit nicht auftreten, da jedes Objekt ausscheidet,
sobald es eine der beobachteten Eigenschaften verliert. Die Frage
nach der Wahrscheinlichkeit, dass ein Objekt innerhalb der Haupt-
gosamtheit sowohl die eine als auch weitere bestimmte Eigenschaften
verliert, kann sich in diesem Falle überhaupt nicht stellen.

Ohne auf eine Diskussion der Benennung eintreten zu wollen,
werden im folgenden zur Unterscheidung der beiden Masszahlen die

Bezeichnungen abhängige und unabhängige Wahrscheinlichkeiten
benützt. Das Symbol für die abhängige Wahrscheinlichkeit wird stets
überstrichen.

IL
Auch bei kontinuierlicher Betrachtung zeigt sich die

hervorgehobene Möglichkeit, für die Darstellung der Ausscheidewahrscheinlichkeit

zwei Wege zu beschreiten.

a) Bezieht man alle Objekte, die in irgendeiner Gesamtheit
während der Zeit von 0 bis t die Eigenschaft A verloren haben, auf
den Anfangsbestand, so ergibt sich die Beziehung

i i

(2) «(0,/) jn(0,x)dx=jj^ jla(x) a (x)dx

o ö

neben der auch die zyklischen Ansätze für b (0, t) und c (0, t) gelten.
Auch diese Beziehungen bestätigen, dass die unabhängige

Wahrscheinlichkeit a (0, t) ausschliesslich durch die Abgangsintensität a (x)
und die daraus abgeleitete Ordnung l"(x) bestimmt, also von den
Intensitäten der übrigen Abgangsursachen unabhängig ist.

b) Werden dagegen nur die wegen Verlustes der Eigenschaft A
aus der Hauptgesamtheit l(x) ausscheidenden Objekte auf den

Anfangsbestand bezogen, so ergibt sich die Beziehung
t >

(3) ä (0, l) x) dx ——j I (x) a (x) dx
1

0 0

neben der die zyklisch gleichartigen Beziehungen für b (0, t) und c (0, t)

gelten.



Diese Beziehungen lassen erkennen, dass die abhängige
Wahrscheinlichkeit a (0, t) nicht nur von a (x), sondern auch von den Intensitäten

der übrigen Abgangsursachen ß (x) und y (x) abhängig ist, da
alle drei Intensitäten miteinander die zusammengesetzte Ordnung l (x)
bestimmen. Wegen

l (01 (f) ijf)_
_

l (0) l (0) l (0) l (0)
L

' J J

gilt auch

t i«/x)
a (0, t) J |1 - b (0, x) ] [1 c- (0, a;)] «(x) dx

0
^ (V/

t l t

j «'(0, x) dx - f b CO, x) r/(0, a) dx — J c (0, x) a'(0, a) dx +oo o

i
-(- J" 6 (0, a) c (0, a) rt'(0, x) dx

o

sowie entsprechende Beziehungen für b (0, i) und c, (0, t).

Nach Durchführung passender partieller Integrationen ergibt sich

a (0, t) ---- a (0, /) — a (0, t) b (0, t) + f a (0, x) 1/(0, x) dx — c (0, t) a (0, t) +
0

-}- J' a (0, x) c (0, x) dx + a (0, t) b (0, t) c (0, t) —
0

1

— f a (0, a) ö (0, x) c'(0, a) da; — / a (0, x) c (0, x) b'(0, x) dx
o o

i i
b (0, f) 6(0,0 -c(0,06 (0, t) + fb(0,a)c'(0, a)da-/«(0,a)6'(0,x)dx f

o 0
/

+ / c (0, x) a (0, a') 1/(0, a) dx
o

i
C (0,0- c(0,0 -ja(0, a)c'(0, a) da —J& (0, a) c'(0, a) da +

o o

-f a (0, a1) b (0, x) c'(0, x) dx
o

Eine Addition dieser drei Ausdrücke führt auf die Grundbeziehung (1).
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III.
Die beiden für die Herleitung der abhängigen und unabhängigen

Wahrscheinlichkeiten beschrittenen Wege finden eine Parallele in den

beiden Lösungswegen, die für die grundlegende Differentialgleichung

/ V < >
l'{x)

..W-leW—w
bestehen.

a) Die direkte Integration beider Seiten führt auf die unabhängige
Wahrscheinlichkeit:

' l.

-/ t'{x)dx -j L,{x)dx „
fM=e» II(I n //11

p—u r — u

b) Die Integration von

l (x) u (x) — I (x) V o (x) - -l'(x)
S H

führt zur abhängigen Wahrscheinlichkeit:

/
_

/

p (0, t) 1 - -L l (x) p (x) dx 1 -L^ / / (x) o (.t) dx 1 —V r (0, t)
r—a

Diese Erwägungen zeigen übrigens, dass nicht die additive
Zerlegung der Intensität /.i(x) in die Komponenten o(x) für den Begriff
der unabhängigen Wahrscheinlichkeiten von ausschlaggebender
Bedeutung ist., da diese Zerlegung ebenfalls auf die Darstellung der

abhängigen Wahrscheinlichkeiten führen kann.

IV.

Für die bisherigen Betrachtungen ist die Beobachtungszeit in t

gleiche Intervalle zerlegt worden. Es besteht kein ETindernis, die
Intervalle ganz beliebig lang zu wählen. Beispielsweise kann man
sich die Beobachtungszeit derart zerlegt denken, dass in jedem
einzelnen Intervall bei der Hauptgesamtheit ausschliesslich Abgänge
wegen Verlustes ein und derselben Eigenschaft eintreten.
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Unter dieser Voraussetzung ergibt sich folgendes Schema, wobei
zur Vereinfachung der Darstellung lediglich zwei Eigenschaften
(Abgangsursachen) unterschieden werden:

Abgelaufene Gesamtheit der Objekte mit den Eigenschaften
Zeit AB AB0 l (0) 7/(0) 0 7/(0) 0 L°(0) - 0

Tl 1(1) =1(0)—A1 7/(1) 0 L\l)=A1 7/(1) 0

t8 1(2) =1(1) —B,. 7/(2) -- L'j 7/(2)=A1-7it L°(2) />'?

r, 1(3)=/(2)-[A2-^11] 7/(3) ^-4 /A3)=^g-ß? 7/(3) 77? -r

t4 /. (4) l (3) - |ß2 - ßj 7/(4) ßa - /126 7/(4) /2 — ß£ 7/(4) ß£ +

usw.

Da sich in den einzelnen Intervallen die Abgänge A{ und Bi nicht
stören, lassen sich bei dieser Zerlegung der Beobachtungszeit die

unabhängigen Wahrscheinlichkeiten ausschliesslich auf Grund der

Beobachtungen in der Hauptgesamtheit — unbekümmert um die

Vorgänge in den Nebengesamtheiten — bestimmen.

Es ist

«((), f]) ~ 7(0,T1)=0

7>'i

a(t1,t2 — t1)=0 b(rvt2 — t4) —
1(1)

1(2)

(t (Tg, Tg — Tg) b ^2' X'A ' ~ 0

(I (Tg, T4 - • Tg) =0 1) (Tg, T,J — Tg)

USW.

Daraus folgt:

/(0, t) 7/(0, tx) f(r2, r3 - Tg) ?/(t4, t5 - t4)

p»(0, 0 2/(tx, Tg — Tt) p"(r.3, t4 — Tg) j/(t5, t6 — t6)

Auf diese Möglichkeit der unmittelbaren Bestimmung der unabhängigen

Wahrscheinlichkeiten auf Grund einer Beobachtung der Abgänge

aus der Hauptgesamtheit hat bereits Böhmer [10] aufmerksam gemacht.
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Die unmittelbare Ableitung der unabhängigen Ausscheidewahr-
scheinlicbkeiten für eine bestimmte Periode aus den Beobachtungen
bei einer Gesamtheit mit mehreren Abgangsursachen ist also nur
möglich, wenn eine der beiden folgenden Voraussetzungen erfüllt ist:

entweder müssen die Abgänge aus der betreffenden Ursache auch

über sämtliche Nebengesamtheiten verfolgt werden können, so dass

sich die Gesamtzahl der von einer Abgangsursache in der Haupt -

und den Nebengesamtheiten getroffenen Objekte feststellen lässt;

oder die zeitliche Verteilung der Abgänge aus der Hauptgesamtheit
nach den verschiedenen Ursachen muss bekannt sein.

Die zweite Voraussetzung ist auch erfüllt, wenn der analytische
Ausdruck für den Verlauf der Ausscheidewahrscheinlichkeit als Funktion

der Zeit bekannt ist. Beide Voraussetzungen laufen darauf
hinaus, dass für die Ermittlung der unabhängigen Wahrscheinlichkeiten

auch die zeitliche Abwicklung der Vorgänge innerhalb der

Beobachtungsperiode (Durchlaufen der Nebengesamtheiten, Reihenfolge

oder Verteilungsfunktion) eine Rolle spielt; im Gegensatz zu don

abhängigen Wahrscheinlichkeiten, für deren Bestimmung die Kenntnis
des Anfangsbestandes und der Gesamtabgänge aus der Hauptgesamtheit

nach den verschiedenen Ursachen genügt, wobei die Reihenfolge
oder zeitliche Verteilung der Fälle ohne Bedeutung ist.

4. Abbruch der Beobachtung

nach dem Ausscheiden aus der Hauptgesamtheit

Für die Betrachtungen in Abschnitt 3 wurde vorausgesetzt,
dass der Verlust einer Eigenschaft auf die Ursachen, die zum Verlust
der verbleibenden Eigenschaften führen, keinen Einfluss ausübe. Die

Beobachtung konnte daher ohne weiteres auch über alle Nebengesamtheiten

zu Ende geführt werden.
Nun ist noch der Fall in Betracht zu ziehen, wo die primäre

Beobachtung der Objekte abgebrochen werden muss, sobald sie aus
der Hauptgesamtheit ausscheiden, weil der Verlust einer Eigenschaft
eine Änderung für die Einwirkung der übrigen Abgangsursachon zur
Folge hat. Als Beispiel sei erwähnt, dass streng genommen eine

Sterblichkeitsmessung bei Ehepaaren nach dem Tode eines Ehegatten
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abgebrochen werden muss, weil eine verwitwete Person erfahrungs-
gemiiss einer anderen Sterblichkeit unterworfen ist als eine verheiratete.
Der Tod eines Ehegatten beeinflusst somit die Sterblichkeit des
überlebenden Ehegatten.

In andern häufig vorkommenden Fällen kann sich der Verlust
einer Eigenschaft so weitgehend auswirken, dass eine weitere
Beobachtung des betreffenden Objektes zwangsläufig aufhören muss.
Werden beispielsweise in einer Hauptgesamtheit von aktiven Personen
die Aktiven-Sterblichkeit und die Invaliditätshäufigkeit gemessen,
so kann wohl bei den Invaliden die Sterblichkeit weiter beobachtet

werden, doch handelt es sich dabei nicht mehr um die gesuchte Aktiven-
Sterblichkeit, sondern um die davon unter Umständen stark
verschiedene Invaliden-Sterblichkeit. Für die Messung der Aktiven-
Sterblichkeit muss — wie im vorigen Beispiel — die Beobachtung
nach der Invalidierung abgebrochen werden. Verliert jedoch ein der

Beobachtung unterstellter Aktiver das Leben, so hört jede weitere

Beobachtung über seine Invaliditätshäufigkeit naturgemäss auf. Ähnlich

verhält es sich, wenn ein beobachtetes Objekt aus irgendeinem
andern Grunde aus der Beobachtung ausscheidet. Dieser Fall liegt
beispielsweise vor bei der Sterblichkeitsmessung in einem Personenbestand

(z. B. Versicherten), in dem Austritte (Auflösung der

Versicherung) zu verzeichnen sind.

In all diesen Fällen werden die Nebengesamtheiten, wie sie im
Schema auf Seite 177 dargestellt sind, gewissermassen imaginär. Das

hindert indessen keineswegs, dass sie in der mathematischen

Darstellung beibehalten werden dürfen.

Freilich wird in diesen Fällen eine tatsächliche Beobachtung der

Abgänge aus den Nebengesamtheiten und damit eine direkte

Bestimmung der unabhängigen Wahrscheinlichkeiten aus den Beobachtungen

verunmöglicht — es sei denn, die genaue Reihenfolge der

Abgänge aus der Hauptgesamtheit wäre bekannt. Weil die Fälle, die

ihrer Natur nach den Abbruch der Beobachtung nach dem Ausscheiden

des Objektes aus der Hauptgesamtheit verlangen, in der Praxis häufig

vorkommen, entsteht das Bedürfnis, geeignete Methoden für die

Bestimmung der unabhängigen Wahrscheinlichkeiten aus den Beobachtungen

in der Hauptgesamtheit — d. h. aus den abhängigen
Wahrscheinlichkeiten — auszubilden.
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5. Versicherungsiormen auf Grund von abhängigen und unabhängigen

Wahrscheinlichkeiten

Die einfachsten Versicherungsformen knüpfen die Auszahlung
der Leistung an den Eintritt des Versicherungsfalles, der aus einer

einzigen bestimmten Ursache herbeigeführt wird. Nicht selten treten
aber auch Versicherungsformen auf, die Vorsicherungsleistungen in
Aussicht stellen für verschiedene Versicherungsfälle, die aus mehreren

bestimmten Ursachen eintreten können.

Zur beliebigen Zeit x wirke die Ursache B mit der Intensität
q(x) ; für die aus der Ursache B in der Zeit x bis x -|- dx eintretenden
Schadenfälle werde die einmalige Zahlung B(x) — oder eine periodische
Leistung mit diesem Barwert — fällig. Das entsprechende gilt für alle

von der Versicherung erfassten Schadenursachen A bis N.

Bei einer Versicherungsform mit mehreren Schadenursachen
kann die Leistungspflicht in verschiedener Weise geordnet sein. Ais
Extremfälle — zwischen denen verschiedene Kombinationsmöglichkeiten

liegen — interessieren die beiden folgenden:

a) Versichertengsforni auf Grund von abhängigen Wahrscheinlichkeiten

Ist die Leistungspflicht derart geregelt, dass nur ein einziges Mal
eine Auszahlung stattfindet, nämlich beim Eintritt des ersten Schadens,

gleichgültig aus welcher der n Ursachen er sich einstellt, so bestimmt
sich der Betrag der fälligen Versicherungsleistungen in einem Bestand

von l(x) versicherten Personen oder Objekten auf Grund der

abhängigen Wahrscheinlichkeiten.

Als Barwert sämtlicher Versicherungsleistungen für die Zeit von
0 bis t ergibt sich bei diskontinuierlicher Betrachtung, wenn
angenommen wird, die während eines Versicherungsjahres .ausgelösten

Leistungen seien stets am Ende des betreffenden Jahres zahlbar:

(-1 n

w(o, 0 21,1111 (®) 2r (x>!)E (®) l)

') Hier und im folgenden soll die vereinfachte Schreibweise andeuten, dass
über alle Glieder, die sich für die n Ursachen ergeben, zu summieren ist.
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Bei kontinuierlichem Verlauf der Ereignisse und sofortiger Auszahlung
lässt sich der Barwert darstellen durch

W (0, t) / er*11 (x) 2 o (x) R (x) äx
0 «

In diesen Beziehungen ist auch der Fall eingeschlossen, wo beim
Eintritt eines bestimmten Versicherungsfalles (z. B. freiwilliger Rücktritt)

die Versicherung erlischt, ohne dass eine Leistungspflicht
entsteht. Für die betreffende Ursache G ist dann G(x) 0.

b) Versicherungsform auf Gruncl von unabhängigen Wahrscheinlichheiten

Ist die Leistungspflicht aus einer Versicherung nicht auf den
zuerst eintretenden Fall beschränkt, sondern erstreckt sie sich auf
sämtliche infolge der n Ursachen während der Versicherungsdauer
eintretenden Versicherungsfälle, so wird für eine Versicherung unter
Umständen mehrmals eine Leistung fällig. Die Versicherung wird
für ein bestimmtes Objekt erst gegenstandslos, wenn allen versicherten
Fälle eingetreten sind. Bei dieser Ordnung der Leistungspflicht sind
die Fälligkeiten auf Grund der unabhängigen Wahrscheinlichkeiten
zu bestimmen. Die Barwerte sämtlicher Versicherungsleistungen für
die Zeit 0 bis t betragen:

W (0, 0=2 ®*+1 2 ir(®) r (®» J) R (ff)

oder *=ü

W (0, o / er6x V l'(x) q («) R (®) dx
o «

-Je nach der Regelung der Prämienzahlung treten ähnliche
Unterschiede in der Darstellung des Barwertes der Prämieneinnahme auf.

Die mitgeteilten Ansätze könnten vielleicht geeignet sein als

Ausgangspunkt für eine systematische Darstellung von Renten- und
Todesfall Versicherungen auf mehrere Leben, etwa im Sinne von
Berger [12, 18] und Vajda [15].

c) Versicherungsformen auf Grund beider Arten von Wahrscheinlichkeiten

Zum Schlüsse sei nur andeutungsweise darauf hingewiesen, dass

auch Mischungen zwischen den beiden unter a und b dargestellten
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Fällen auftreten können. Die Leistungspflicht würde dann derart
geordnet, dass sie nach Erledigung eines Schadenfalles aus den Ursachen

A, B, oder H vollständig erlischt, nach dem Eintritt anderer
bestimmter Schadenfälle aus den Ursachen J, K, oder N jedoch
für weitere Fälle bestehenbleibt. In den Rahmen dieser Kombinationen

gehören auch der von Berger [12, 13 ] behandelte «symmetrische
Fall», wenn keines der verbundenen Leben vor den andern
ausgezeichnet ist, und der «unsymmetrische Fall», wenn auch die Reihenfolge

des Ausscheidens der betrachteten Personen von Bedeutung ist.
Im übrigen sind solche gemischte Versicherungsformen auch im

Gebiete der Sachversicherung denkbar.

(I) Die Mutualitätsordnung

Nach Cantelli [14] lässt sich das Deckungskapital darstellen durch

-^!Z^X(x)X(x)
r- (t) x= 0

wo L(t — 1) X(t — 1) die im Jahre (t — 1) bis t aus dem
Versicherungsbestand L(t — 1) insgesamt eingehende Prämieneinnahme und
Y (t — 1) V (t) die am Ende des gleichen Jahres insgesamt zur
Auszahlung gelangende Versicherungsleistung bedeutet. Die «Mutualitätsordnung»

wird charakterisiert durch

v — 0

Y(v) L(v +1)
V (»)

L(v) L(v)

ist. Eine ähnliche Beziehung ergibt sich bei kontinuierlicher
Darstellung der Vorgänge:

t

v(t)= I -^~es«-x)X(x)dx

wo die «Mutualitätsordnung» die Form annimmt:

J 1 Hx) L(x)

0)e°
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Nur andeutungsweise sei erwähnt, dass die «Mutualitätsordnung»
— oder die Funktion yj — verschieden zu interpretieren ist, je nachdem,

ob die in Frage stehende Versicherungsfonn auf Grund von
abhängigen oder von unabhängigen Wahrscheinlichkeiten für den Eintritt

der n eingeschlossenen Versicherungsereignisse dargestellt wird.
Ist beispielsweise die Leistungspflicht aus einer Versicherung im

Sinne der Ausführungen unter Abschnitt a nach dem ersten Schadenfall

erschöpft, so bedeutet:

vW =1—i>M) [l -B(»)]
a

oder bei kontinuierlicher Darstellung:

t n

f S e(x)R(x) dt

2(t)=l (t) c° "

Handelt es sich jedoch um eine Versicherungsform, die im Sinne von
Abschnitt b auf Grund der unabhängigen Wahrscheinlichkeiten
dargestellt wird, so bedeutet

1 + ^ Pr(v)r (v> R (v) — fjr(0,v + 1)

\ a a

tp (v)

l—]Jr(Q,v)
a

oder bei kontinuierlicher Darstellung:

k(t) l(0) 1 — JJ r (0, 0

n
1 £pr(o,i)e(®)Ä(:r)

o 1-/7 r(0, x)

c

-dt

Cantelli hat seine Untersuchungen auf Versicherungsformen
beschränkt, bei denen auf die abhängigen Ausscheidewahrscheinlich-

koiten abzustellen ist. Die Ausdehnung seiner Theorie der Mutualitätsordnung

auf Versicherungsformen, die auf Grund der unabhängigen
Ausscheidewahrscheinlichkeiten darzustellen sind, mag als Hinweis

darauf dienen, dass die beiden Wahrscheinlichkeitsbegriffe für die

Theorie und die Praxis nicht nur gleiche Berechtigung haben, sondern

einander in sinnvoller Weise ergänzen.
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6. Beziehungen zwischen den abhängigen und den unabhängigen

Ausscheidewahrscheinlichkeiten

Generell sind die Zusammenhänge zwischen den beiden Arten von
Wahrscheinlichkeiten festgelegt durch die Grundbeziehung (l). Diese

vermag indessen noch nichts auszusagen über den Zusammenhang
zwischen der unabhängigen Wahrscheinlichkeit a (0, t) und der

entsprechenden abhängigen 5(0, t).

Um solche Beziehungen herzustellen, muss versucht werden

a(0,t) als Funktion von 5(0, x), b(0, x) und c(0, x)

oder 5(0, t) als Funktion von a (0, x), b{0, x) und c(0, x)

darzustellen. Dies ist auf verschiedenen Wegen möglich; am
einfachsten scheinen folgende Erwägungen zum Ziele zu führen.

A. Unabhängige Wahrscheinlichkeit als Funktion der abhängigen

Wird in der Identität

a (x)l(x)
a (a) ——-—

l(x)
für die linke Seite eingesetzt

d
a (x) — In l"(x)

dx

und für den Nenner auf der rechten Seite

l(x)=l (0) [1 — a (0, x) --b (0, x) — c (0, x)]

so ergibt sich nach einer Integration zwischen 0 und t

l ii'{0,x)-dx

l Ua(0,x)-6(0,«)-c(0,a-)
a (0, f) 1 — eu

Die entsprechenden Beziehungen für b (0, t) und c (0, /,) ergeben
sich durch zyklische Vertauschung der Grössen.

Da die abhängigen Wahrscheinlichkeiten in allen Fällen
unmittelbar aus der Hauptgesamtheit beobachtet werden können, gibt
diese Beziehung grundsätzlich die Möglichkeit, die unabhängigen
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Wahrscheinlichkeiten auf Grund der Beobachtungen aus der Haupt-
gesarntheit — ohne Kenntnis der Nebengesamthpiten — zu berechnen.
Immerhin genügt dazu nicht die Kenntnis der für die gesamte
Beobachtungszeit festgestellten abhängigen Wahrscheinlichkeit ä (0, t),
sondern es muss ihr zeitlicher Verlauf a (0, x) für x von 0 bis t
bekannt sein.

B. Abhängige Wahrscheinlichkeit als Funktion der unabhängigen

Aus ' '

* f l(x) f la(x)lb(x)lc(x)

"((U)*7 jw"ix} J irnmw"®**
0 0

ergibt sich
t

a (0, t) J [1 — b (0, t) | [1 — c (0, t)} a'(0, %) dx
o

Diese Beziehung ist bekannt; beispielsweise leitet sie Berger [11]
— allerdings auf Grund anderer Erwägungen — ab.

C. Beziehung für den Unterschied

zwischen der unabhängigen und abhängigen Wahrscheinlichkeit

Der Unterschied zwischen der abhängigen und unabhängigen
Wahrscheinlichkeit, infolge einer bestimmten Ursache auszuscheiden,

rührt davon her, dass aus der beobachteten Hauptgesamtheit ausserdem

eine Anzahl von Objekten infolge anderer Abgangsursachen
wegfallen. Diese Objekte stehen dann nicht mehr in der Hauptgesamtheit
unter dem Bisiko, von der ersten Abgangsursache getroffen zu werden.
Diese Störung in bezug auf die Auswirkung der ersten Abgangsursache

lässt sich erfassen durch die Beziehung

t

a (0, t) — a (0, t) / [&'(0, x) + c'(0, x)\ a(x,t — «) dx
o

Dieser Ansatz ist — beschränkt auf zwei Abgangsursachen —

vprschiedentlich verwendet worden für die Bestimmung der Sterbens-

Wahrscheinlichkeit bei einem Personenbestand mit Ein- und
Austritten; beispielsweise von Jnsolera [17] und Koeppler [19].
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J). Zusammenfassung

Damit sind drei direkte Beziehungen zwischen einer unabhängigen
und der zugehörigen abhängigen Abgangswahrscheinlichkeit gewonnen,
die sich für n Abgangsursachen wie folgt darstellen lassen:

t

f a'{Q,x)dx

0 l-S'(O.x)
'4*) a(0,t) \ —c r=a

I n

(4**) a (0, 0 /7J [1 — r (0, x) ] a (0, x) dx
ö r b

(4***) a (0, t) a (0, t) + J «(x, t —- x) ^ r'(0, x) dx
0 r—b

Durch zyklische Vertauschung ergeben sich die entsprechenden
Beziehungen für die übrigen Abgangswahrscheinlichkeiten.

Die drei Gleichungen (4) sind lediglich verschiedene Ausdrucksformen

für ein und dieselbe Beziehung. Beispielsweise ergibt sich aus

(4*) in etwas veränderter Schreibweise

X

fä'(0, z)
!"[!- „<0,*)]=-^-—d,

0

und durch Differentiation nach x

v (0, :b) d v (0, x)
«'(0, X) — [l -«MI -J±L>a'(0, x)

1 — a (0, x) dx 1 — a (0, x)

Durch Integration zwischen 0 und t entsteht Beziehung (4**). Nach

zweckmässiger Umformung und partieller Durchführung der Integration

kann auch (4***) in (4**) übergeführt werden. Ferner stellt
das Ergebnis von Abschnitt 8 einen Zusammenhang zwischen den drei
Beziehungen (4) her.

7. Auswertung der Beziehungen zwischen abhängigen und unabhängigen
Wahrscheinlichkeiten auf Grund einfacher Hypothesen

Die Beziehungen (4) sind genau gültig für jeden beliebigen Verlauf

der auftretenden Wahrscheinlichkeiten zwischen 0 und t. Praktisch

lassen sie sich indessen nur auswerten, wenn die unter dem
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Integral auftretenden Wahrscheinlichkeiten durch Funktionen
dargestellt sind, die eine Lösung des Integrals zulassen. Für einige
bestimmte Annahmen über die Gestalt dieser Funktionen ergibt sich
eine besonders einfache Auswertung.

Solche Annahmen sind bei der Behandlung des Problems einer
Sterblichkeitsmessung in Personenbeständen mit Ein- und
Austritten von verschiedenen Autoren benützt worden. Linder [21]
würdigt die wichtigsten von diesen Untersuchungen. Im folgenden
werden einige einfache Hypothesen für den Fall von drei Abgangsursachen

behandelt.

Annahme A

Die Abgänge aus der Hauptgesamtheit nach den drei Ursachen
seien über dio Beobachtungszeit von 0 bis t gleich verteilt; die
Verteilung selbst kann ganz beliebig sein. Somit gilt mit beliebigem Verlauf

von (p{x), das stets anwächst zwischen dem Anfangswert rp(0) 0

und dem Endwert <p(t) 1,

ö (0, x)
_

b (0, x)
_

c (0, x)

6(0,4)
~~

c(0, t)
~V^X'

Wird diese Hypothese in der Beziehung (4*) berücksichtigt, so

entsteht:
t

Mi- f — ["(Q>+ h!0'+ ~c(°'^ jj.a ' ä(0,t)+'b(0,t)+ö(0,t)J 1 — [ä(0, t) +b(0, t) + c(0, t)\(p{x)
0

Das Integral lässt sich lösen, so dass gilt:
«(0,0

(5) a (0, t) 1 - [1 - ä (0, t) -b(0,t)-c (0, 0] ä(o,0+S(o,0+*(o,0

Durch zyklische Vertauschung ergeben sich entsprechende Beziehungen

für die übrigen unabhängigen Wahrscheinlichkeiten. Dieses bekannte

Ergebnis [6], 121], 122], das stets abgeleitet worden ist aus der Annahme,
cüe Abgänge soien gleichinässig verteilt (d. h. die abhängigen

Wahrscheinlichkeiten a (0, a:) und b (0, x) verlaufen linear), gilt also auch für
die allgemeinere Annahme «gleicher Verteilung» der Abgänge. Die

Beziehung (5) erfüllt die Grundbeziehung (1).

13
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Für die praktische Auswertung kann eine Annäherung getroffen
werden, wenn der Exponential-Ausdruck in eine Reihe entwickelt
wird und die Glieder mit höheren als quadratischen Exponenten
weggelassen werden. Dann wird die Näherungsbeziehung erreicht:

(6) a (0, t) a (0, t) 1 + — (b (0, t) + c (0, t))

Infolge der getroffenen Näherung (Wegfall der höheren Glieder der

Reihe) erfüllt dieses Ergebnis die Grundbeziehung (1) nicht mehr.

Annahme B

Die drei unabhängigen Wahrscheinlichkeiten verlaufen proportional

(Gegenstück zu Annahme A), so dass gilt:

a (0, x) h CO, x) c (0, x)
V («)

a (0, t) b (0, t) c (0, t)

Wird diese Hypothese in (4**) berücksichtigt, so ergibt sich:

i i
a (0, f) a (0, t) J xp'(x) dx — a (0, t) [b (0, t) + c (0, <)] f ip (x) ip'(x) dx +

o 6
i

+ a (0, t) b (0, t) c (0, t) J y>2(x) y>'(x) dx

(7) a (0, f) a (0, t) 1 — -r (fc (0, t) + c (0, t)) + ~ b (0, t) c(0, /)
Ö2

Auch diese Beziehung ist stets abgeleitet worden aus der spezielleren
Annahme, die beiden unabhängigen Wahrscheinlichkeiten weisen
einen linearen Verlauf auf. Es ist zu beachten, dass die Beziehung (7)
im Rahmen der ihr zugrunde gelegten Annahme im Gegensatz zu (6)

genau ist und daher die Grundbeziehung (1) erfüllt.

Annahme C

Wittstein [7] hat bei der Behandlung des Problems der
Sterblichkeitsmessung in einer offenen Personengesamtheit ebenfalls die
Hypothese linearer Verteilung der Sterbefälle sowie der Ein- und
Austritte benützt und gelangte zur Beziehung (6) für zwei Abgangs-
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Ursachen. Daneben hat er einen anderen Fall mit zwei Abgangsursachen

behandelt, ausgehend von der Hypothese, dass für die erste
Ursache die unabhängige Wahrscheinlichkeit, für die zweite die
abhängige Wahrscheinlichkeit linear verlaufe, so dass beim Ansatz
t 1 gilt:

a (0, x) — a (0,1) x und b (0, x) — b (0,1) x

Wird diese Annahme in (4***) eingeführt und

1 - a (0,1)
a (x, 1 — x) 1

1 — « (0,1) x

berücksichtigt, so entsteht:

a (0,1) =5(0,1) +
-«(0,1)

1 — a (0,1) x

1

5(0,1)+6(0,1)+5(0,1)

b (0,1) dx

«(0,1)

a(0,1)
In [1 — «(0,1)]

Nach Entwicklung des Logarithmus in eine Eeihe wird

a(0,1) 5 (0, 1) + 5(0,1)
«(0,1) «2(0,1)

H ; r • •

2-3

Werden die Glieder mit quadratischen oder höheren Exponenten

fallengelassen, so ergibt sich die Näherungsbeziehung

(8) a (0,1).
5(0,1)

1--5(0,1)

Dieses llesultat wird von verschiedenen Autoren übernommen.

Seine Übertragung durch zyklische Vertauschung auf die unabhängige

Wahrscheinlichkeit b (0, 1) ist jedoch nicht möglich. Es ist nämlich

.äü beachten, dass die Annahme C, durch die der Verlauf von «(0, x)

und von b (0, x) festgelegt wird, eine symmetrische Behandlung des

Problems für die Bestimmung der Wahrscheinlichkeit b (0, x)

ausschlügst. Schon aus der Grundbeziehung (1) folgt ohne_weiteres, dass

nicht, gleichzeitig alle vier Funktionen «(0, x), b (0, x), a (0, x), b (0, x)
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linear sein können. Da ein bestimmter Zusammenhang besteht

zwischen einer abhängigen und der entsprechenden unabhängigen
Wahrscheinlichkeit, dürfen überhaupt nicht beide Wahrscheinlichkeiten

gleichzeitig beliebig festgelegt werden. Zyklische Lösungen
können nur entstehen, wenn parallele Hypothesen entweder nur über
den Verlauf der abhängigen Wahrscheinlichkeiten oder nur über den

Verlauf der unabhängigen Wahrscheinlichkeiten aufgestellt werden.

Für den Näherungswert (8) hat Marchand den Begriff «pro-
babilitee corrigee» geprägt [27]. Diese Masszahl bildet nach seinen

Ausführungen einen guten Näherungswert für die entsprechende
unabhängige Wahrscheinlichkeit und lässt sich leicht aus den

Beobachtungen in der Hauptgesamtheit ableiten.
Von der gleichen Näherungsbeziehung (8) geht auch Schärf [82]

für seine Betrachtungen über partielle Bestandesänderungen aus, die

ihm Anlass zur Untersuchung besonderer Integrationsprozesse geben.

Annahme 7)

Wittstein [7] gibt ferner für den Fall von zwei Ausscheideursachen
eine Lösung an, ausgehend von der Annahme, a(0, x) sei für gleich-

grosse Intervalle konstant und b (0, x) verlaufe linear, so dass beim
Ansatz t 1 gilt:

a (x) X und b (0, x) — b (0, 1) x

Aus dem ersten Ansatz folgt 1 — a (0, x) -- e~)x

und ferner 1 — a(x, 1 — x) [1 — a(0, l)j1"J!

Wird dieses Ergebnis in (4***) eingesetzt, so folgt

o(0, 1)
a{0,1) =5(0,1)+6(0,1)+6(0,1) In [1 — a(0, 1)]

Nach Entwicklung des logarithmischen Ausdruckes in eine Eeihe und

Durchführung der Division ergibt sich bei Weglassung der Glieder
mit quadratischen oder höheren Exponenten wiederum die Näherungsbeziehung

' ö(0,l)
(9) a(0,l)~ Y

l--6(0, 1)
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Wittstein stellt anschliessend die Frage, welchen Verlauf a(0, x)
aufweisen muss, damit die Beziehung (9) genau stimmt. Er findet die
Bedingung

a (x, 1 — x) a (0,1) [1 — x]

Mit dieser .Hypothese in Verbindung mit der Annahmo 5(0, x) =5(0, l)x
geht die Ausgangsgleichung (4***) tatsächlich über in (9). Obwohl
dabei keine weiteren Annäherungen getroffen werden, kann daneben
die zyklische Gleichung für 5(0, 1) nicht bestehen; sie würde mit (9)

zusammen die Grundgleichung (1) nicht erfüllen.

Annahme E

Es ist zu erwarten, dass ein besser befriedigendes Resultat
erreicht wird, wenn nur der erste Teil der soeben behandelten Hypothese
von Wittstein auf alle auftretenden unabhängigen Wahrscheinlichkeiten

übertragen wird.

Alle drei Abgangsintensitäten seien konstant:

a(x) — cc; ß(x)=ß; y(x)=y
Daraus folgt

a (0, x) — 1 — C "x und u'(0, x) a e"'x « 0, x)

Für b und c gelten die entsprechenden Beziehungen.

Werden die Ausdrücke in (4**) eingeführt, so entsteht:

ä(0, t) =«/c:{a+ßv'/)xäx
0

(10)

Diese Beziehung erfüllt mit den entsprechenden zyklischen die Grund-

Beziehung (1). Sie bestätigt das übrigens bei der getroffenen

Annahme schon aus den Grundbeziehungen ablesbare Resultat:

ä (0, t) 5 (0, t) e (0, t)
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Annahme F

Zeuner geht in seiner Untersuchung [8] über die Sterblichkeitsmessung

in einem durch Ein- und Austritte gestörten Personenbestand

von folgenden — in die für die vorliegende Darstellung
benützte Schreibweise übertragenen -- Annahmen aus:

a) Die Austritte verlaufen proportional der unabhängigen
Absterbeordnung :

l(0)b'(0,x) mla{x)

b) Die unabhängige Absterbeordnung verlaufe linear, so dass gilt:

o„
0 A A

Nach diesen Ansätzen besteht

ü 1 + Va(0, t)
1 (0) b (0, t) j m la(x) dx m 1 (0) t

o
2

Daraus folgt 2 fo (0, /)
7)1

[1 +p"(0,f)|f

Wird die Annahme a in (4***) eingeführt — wobei lediglich zwei

Abgangsursachen berücksichtigt seien — so ergibt sich

/

ci (0, t) ä (0, t) -f b (0, t) — J ff(x, t — x) b'(0, x) dx
o

t

/l"(x) TO f"(x, t — X) dX

0
<

a (0, f) +b (0, t) — p°(0, t) to j dx
o

a(0,t) + b (0, t)

Daraus lässt sich auswerten

j 2p°(0, t)

1 + pB(0, f).

„ (0, o - !M_iM ± i/i _ 5 (0, o _ 5 (0, „+(IMriM
(H)

Dieses von Zeuner in längerer Ableitung begründete Resultat erfüllt
mit der zyklischen Beziehung zusammen die Grundbeziehung (1).
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Den von Zeuner benützten Hypothesen kann auch in anderer
Art Ausdruck verliehen werden:

Hypothese a bedeutet nichts anderes, als dass

l (0) h'{0, x) — l (x) ß (x) m la(x)
daraus folgt

l (x) lb(x)

Die erste Hypothese deckt sich also mit der Annahme, dass die
unabhängige Wahrscheinlichkeit der Austritte linear verlaufe.

Die zweite Hypothese ist gleichbedeutend mit der Annahme,
dass auch die unabhängige Sterbenswahrscheinlichkeit linear verlaufe.
Da somit durch die Zeunerschen Hypothesen lediglich Festsetzungen
über die auftretenden unabhängigen Wahrscheinlichkeiten getroffen
werden, ist es auf Grund der bei Annahme C angefügten Erwägungen
verständlich, dass die Grundbeziehung (1) erhalten bleibt.

Übrigens lässt sich bei Betrachtung von zwei Abgangsursachen
das auf der gleichen Hypothese beruhende Ergebnis (7) zusammen
mit der zyklischen Beziehung in die von Zeuner mitgeteilte Beziehung
(11) überführen.

8. Behandlung der Integralgleichung (4***)

Die in Abschnitt 5 angegebene Beziehung (4***) ist im

Zusammenhang mit dem Problem der Sterblichkeitsmessung bezogen

auf zwei Abgangsursachen u. a. von Insolera [17] und von Koeppler [19]
behandelt worden. Beide haben versucht, sie als Integralgleichung
zu lösen.

Schulthess [28] hat bereits darauf hingewiesen, dass das von
Insolera angegebene Kesultat nicht zutreffend sein kann, weil die von
Insolera ausgearbeitete allgemeine Lösungsmethode für eine spezielle

Klasse von Kernfunktionen [10] auf den vorliegenden Fall nicht

anwendbar sei.

Aber auch die von Koeppler angegebene Lösung, die er auf seine

umfangreiche Untersuchung besonderer Typen von Volterraschen

Integralgleichungen [18] stützt, ist abwegig; offenbar weil er die unter
dem Integral auftretende Funktion a(x,t — x) behandelt, als ob sie

identisch wäre mit a (0, x), was indessen nicht zulässig ist.
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Bei genauerer Untersuchung zeigt sich, class die auftretende

Integralgleichung eine für die Lösung besonders einfache Gestalt
aufweist und ohne Anwendung von Näherungen leicht gelöst werden
kann. Die Ausgangsgleichung (4***) lautet:

t n

a (0, t) a (0, f) + J a (x, t — a;) 2 x) dx
0 r 6

Abkürzend sei im folgenden gesetzt:

2 r (0, x) A (0, a:) und 1 — [1 — r (0, a)] A (0, x)
r b b

Die Lösung der Gleichung

X

(12) a (0, t) — ä (0, t) + j a(x,t — x) A'((), x) dx
o

kann auf zwei Wegen erreicht werden:

a) Lösung als Differentialgleichung

Durch Umformung von (12) entsteht wegen A (0, 0) 0

t

f P°(0, f)
1 - f(0,0 «(0, 0 + A (0, t)- A'(0, x) dx

/ pB(0, x)

Wird zur Vereinfachung gesetzt
o

epH)

f{0,0
so gilt:

t

(13) <p (t) [1 — a (0, t) — A (0, t)| — 1 — J <p (x) A'(0, x) dx
o

Durch Differentiation nach t ergibt sich

(14) ?'(t) [1 - «(0, t) - A (0, Ol — W (0 «'(0, 0

Die Lösung dieser Differentialgleichung lautet

t

J 1-3(0,x)-A(0,*)
(p (/) --- e°

«'(0,x)
dx
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Da nach der oben eingeführten Schreibweise

a (0,0 =1-/(0, t)=l-pt(t)
ist, erhält die Lösung schliesslich die Form

i
f a'(0,x)dx

J n
0 i-£r(o,*)

a (0, 0=1— ('

und stimmt überein mit der aus direkten Überlegungen in Abschnitt 5

abgeleiteten Beziehung (4*).

b) Lösung als Integralgleichung

Eine Volterrasche Integralgleichung kann stets in eine

Differentialgleichung umgeformt werden. Falls diese praktisch lösbar ist,
bietet die direkte Lösung der Integralgleichung nur mehr theoretisches
Interesse. Da die Lösung einer Volterraschen Integralgleichung
eindeutig ist, muss auch der im folgenden beschrittene Weg zum gleichen
Ergebnis führen wie die Lösung der Differentialgleichung (14), was
weder für die von Insolera noch die von Koeppler angegebene Lösung
zutrifft.

Die Beziehung (12) stellt noch keine Integralgleichung nach

Volterra dar, weil a(x, t — %) eine ganz andere Funktion ist alsa(0, x),
die für x — t in die freie Funktion a (0, t) übergeht. Es empfiehlt sich

daher, die Umformung, welche zu (18) führte, fortzusetzen. Unter

Berücksichtigung von

1 — a (0, 0 — Ä (0, 0 V (0, 0

t

i / —-— m (x) Ä'(0, x) dx

o

Diese Beziehung stellt eine Volterrasche Integralgleichung II. Art dar,
die in ihrer allgemeinen Form lautet:

t

<P (0 / (0 + X fK (t, x) (p (x) dx
o

entsteht:

(15) 9(t) ~
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Ihre iterierten Kerne heissen:

ICJt, x) =JK (t, z) l!Ln_1 (z, x) dz
X

Dabei ist:
Ki(t, x) K (t, x)

Die Resolvente ist bestimmt durch:

B(t,x)=^XrlKn(t,x)
n—1

Symbolisch lautet dann die Lösung der allgemeinen Gleichung:

<p(t) / (t) -(- X J B (t, x) f (x) dx
o

Für die praktische Lösung ist entscheidend, ob dieser formale Ansatz

ausgewertet werden kann. Die Integralgleichung (15) besitzt die

Form eines Spezialfalles, weil die Kernfunktion K(t, x) als Produkt
aus zwei Funktionen gebildet ist, von denen die eine nur von x, die
andere nur von t abhängt. Es ist nämlich:

K{t,x) —^—Ä'(0,x)
V (0, 0

Zur Vereinfachung der Schreibweise sei gesetzt:

1

-Ä'(0 ,z)=M'(z)
V (0, z)

Dann ergibt sich für die iterierten Kerne

KJt, x) A'(0, x)
1

v,
1

' p(0,t)
K ' (n-1)!

und für die Resolvente

B(t,x)=—^Ä'(0;x)eimi]-M{x)]
p(0,t)

1

oder: <

L

1 p{0, B)"Ä'(°.

R(t,x)=——J'(o,x)cx
P (0, t)
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Somit lautet die Lösung:

t

<p(t)
1

^
/* 1

i+xh^A'i0-x)e'V (0, t)

Wird nun noch beachtet, dass X — l und

1

1
1

1

I'/n ^
d

A (0, x)ex e x
P(0,x) dx

so wird die Lösung erreicht:
l

1 ~/p(Ö^)A"'(°'2)^

v (o, t)

Werden die ursprünglichen Werte für die eingeführten Symbole
berücksichtigt, so nimmt die Lösung die Form an:

/
I' 'a'(0,z)äz

J n
0 1-2 '(0,z)

<p(t) e r=a

Wegen a (0, t) — 1 — <p'l(t) geht schliesslich die Lösung der
Integralgleichung (15) in die Beziehung (4*) über.

Wird in die Ausgangsgleichung (12) die Beziehung

A'(0, x) f(0, x) A'(0, x)

Angeführt, so kann man direkt auf die Beziehung (4**) als Lösung
der Integralgleichung gelangen. Damit ist der Integralgleichung
(4***) eine zentrale Stellung zugewiesen, während die aus andern
Überlegungen hervorgegangenen Beziehungen (4*) und (4**) als ihre
Lösungen erkannt werden.
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