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Uber die Summationsformel von Euler

Von H. Kreis, Winterthur

Die Bulersche Summationsformel stellt bekanntlich eine Beziehung
b

zwischen dem Integral [f(z)dx und der Summe ' f(a + vh)h;
a

v=201, ...n—1; nh=>b—a her. Da die meisten Ableitungen

dieser fiir die Versicherungsmathematik wichtigen Formel von der
Differenzenrechnung ausgehen, soll, im Gegensatz dazu, in der vor-
liegenden Abhandlung eine einfache, zugiinglichere Methode zur An-
wendung kommen.

In dem Ausdruck
S =flayh+fl@a+hh+ ...+ fla+@nr—1)k)h (1)

entwickeln wir die Funktionen nach Potenzen von k und erhalten eine
Summe, der die Form gegeben werden kann

S =@ mf@h+emf @h+esm)f @+ ..., (2

i welcher die Koeffizienten

@ (n) =n
—1
po(n) =142+4 ... +(n—1) = f’."ﬁ‘;é«_)
allgemein
Pt 28t L 4 (n— 1) ‘
P (.n) I '—(“];: 1)—'—— e (3)

mit den Jakob Bernoullischen Funktionen identisch sind. Da die g, (n)
reine Zahlenkoeffizienten, die nur von n, aber weder von der Funktion
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f(z) noch von a oder h abhiingig sind, lassen sie sich ermitteln, indem

wir fir f(z) und o eine willkiirliche aber zweckmissige Wahl, etwa
fi(x) = ¢ und a = 0, treffen, so dass

[LO+vh) = et }‘(1&') 0 4 vh) = oh

and |
) i enh —1
S,=14eé e ... W= —— (4)
e — 1
wird. Formel (2) geht dann tiber in
. g'"h_..__ : 7
h *";;;"::‘1—" = M (’n) h —I— 1253 (n) hr2 + {25 ('"/) h3 ‘i— — (5)

Durch Gleichsetzung der Koeffizienten gleicher Potenzen von A kénnen

die Bernoullischen 'unktionen bestimmt werden. Wihvend aber defini-

tlonsgemiiss n eine ganze, natirliche Zahl war, kann jetzt =» in
e} fe) B

-

Gleichung (5) als stetiger, variabler Parameter aufgefasst werden.
Wenn inshesondere n = 0 gesetzt wird, so folgt
@ (0) = 0, tir jedes k. (6)

Difterenziert man ferner nach n, so folgt aus (5):
e = gk + Gy )R+ gy )R +- ... ()

und, falls ¢™ aus (5) und (7) eliminiert wird, ergibt sich

h

S = 0+ B e )+ (i) g B ()

Mit Hilfe der Entwicklung

h

et —1

= do+ Ayh 4 Ak 4 .. ()



lassen sich aus Gleichung (8) und (9) folgende Grundgleichungen bilden:

‘P{(n) = A,

@a(n) = @ () + 4,

‘P's( n) = py(n) + Ay, (10)
(pii (n) = (pkml (n) + Ak---l ‘

[ntegriert man die einzelnen Beziehungen (10} zwischen 0 und =, so
tindet man, unter Beriicksichtigung von Gleichung (6) @, (0) = 0, der
Reihe nach:

N

@ () = [Aydv = 4,m,

. n*
Py (n) = ’ (@, (v) + Al) dv = Ady— + 4, n,

0 2
n . TL3 2
py(n) = [ (gg(r) 4+ dy)dv = 4, Py + + Adym,
0 .
n Lk ,nlc—l
p(n) = [ (@, () + 4 )dy = dg-—+ A\ ——+ ... + 4, n.
0 I (’t‘*—"‘ )'

Hieraus gelangt man zu folgenden [ntegraldarstellungen fiwr die
Koeffizienten ¢, (n):

n

gy (n) = | dgdv,
0
pe(n) = [(dgv + 4y)dv,

o) = J ( —) + Ad,v + A, )dv, (11)

..............

n ,Vlc«l ,ykv—?. \ .
Pi (?'L) e J (Ao oy -+ Al s 4 Ay s Als-—l) dv.
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Nach Fisetzung dieser Ausdriicke fir ¢, (n) in (2) und Ordnen der
Rethe nach den Koeffizienten 4y, 4,, 4, ..., erscheint S als Summe
von Integralen in folgender Gestalt

"

2 )2
S=A, (f(a) + vhf (a) 4 -z‘-)-t—.f"(a) + . ) dv

0

n p2he
+ 4.k Oj (f (@) + vhf" (@) + ——f" (a) + . )dw

\
p2h2

2

+AMUOW@+MV%H* fW®+~)M

oder kurzer
Se= Ay [fla+vh)yhdv + A h [ | (a+vh) hdy + A 0% [ f' (@ + vh) hdy +
0 0 0

Durch Einfithrung der neuen Integrationsvariablen @ = a + vh findet

man
b

IJ[ r11,+Ath dm+1hjf”(a:)d;1:+...
oder

§ = g [ @) da + Ah (O — F@) + A (F O —F @) + ... (12

Zur Berechnung der auftretenden Koeffizienten 4, diont Gleichung
(9), so dass z. B.

1 1
gy lly g ey i Oy e
2 12 720

ist. Dass simtliche Koeffizienten von der Form A, ,, — verschwinden,
erkennt man unmittelbar aus (9), denn
- h 5 7
e — ] —}— — = Ay h? 4 A W3 Akt .., (13)

P



da aber L3 _k
h h h e? e ?

g | + 9 9 b b

e — ¢ 2

eine gerade Funktion von h ist, so gilt das auch von der linken Seite
von (13), so dass rechts die ungeraden Potenzen von I wegfallen miissen,
also Ay ,,, =0 fir m=0;1; 2; ...

Schliesslich lautet die Eulersche Summadtionsformel in der itblichen
Form

flay)h +fla+hh+ ...+ fla+ n—=1)h)h =

b I h? h4

= JHEar——2 @ E(f’(b)*f'(a))“mo

wo b = a -+ nh zu setzen ist.

Fiir ganze rationale Funktionen f(z) st die aufgestellte Formel
ohne weitere Bedingungen anwendbay; fiir beliebige FFunktionen hin-
gegen muss das Restglied der Reihe untersucht werden, worauf ich
nicht eintreten und auf die Arbeiten von I'ranel [2], Seliwanoff 4]
und die Enzyklopdidie [1] hinweisen mochte.

Begniigt man sich mit dem linearen und guadratischen Glied von
h, so hat man beispielsweise, unter Beniitzung der iiblichen Bezeich-
nungen, fir die Funktion f(z) =10 v°*=D_ und « = 40; b == 60;

1

h = —, also n = 80:

f(x) =L+ v Inv=-—Du—D,4,

1 1 1 1
4' ])40 + —ti‘ 1)40% -+ *4" I)g[]l/2 + sow e + ":1;7‘ '1)59% P

s | . o .
= Ny—Ng— —8— (Dgo — Do) + (Dyottao + Dig0 — Dy prgg — Dy 0)

192

oder

40:20 40:20] 7 3 192 Hao Dig

(" ©) =" (@) + ...
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