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Theorie und Anwendung
der «oskulatorischen» Interpolationsformeln1)

Von Erich Michalup, Caracas, Venezuela

Die Anwendung der Becker-Zeunerschen Methode zur Berechnung
von Volkssterbetafeln hat zur Voraussetzung, dass bei der
Volkszählung nach dem Geburtsdatum gefragt wird und dass die Statistik
der Sterbefälle Geburt-s- und Todestag ausweist. Eine diesbezügliche
Besolution wurde vom Internationalen Statistischen Kongress im
Haag [1] auf Antrag von Baumhauer gefasst. Dieser Forderung wurde
in der Schweiz durch das am 1. Jänner 1876 in Kraft getretene Bundesgesetz

betreffend Feststellung und Beurkundung des Zivilstandes und
die Ehe [2] [Rechnung getragen, und die bisher veröffentlichten
allgemeinen schweizerischen Volkssterbetafeln [3] wurden mit zwei
Ausnahmen [4] nach der Becker-Zeunerschen Methode berechnet. Die
beiden Tafeln 1881/1888 und 1889/1900 wurden auf Grund der
Böckhschen Methode konstruiert, doch konnte Steiner-Stoss
feststellen [5], dass es vom praktischen Standpunkt aus nebensächlich
ist, ob die Becker-Zeunersche Methode oder die Böckhsche zur
Anwendung gelangt, da die festgestellten Abweichungen nicht einmal
die Grösse der Differenzen erreichen, die durch die Ausgleichung
bewirkt werden.

Während nun in den meisten Staaten des europäischen Kontinentes
die Becker-Zeunersche Methode zur Anwendung gelangt, die eine
theoretisch einwandfreie Grundlage hat, wird in England, den Dominions,

in den Vereinigten Staaten Nordamerikas und in Lateinamerika
bei den Volkszählungen im allgemeinen nur nach den vollendeten

Altersjahren gefragt, wodurch es unmöglich gemacht wird, eine
Volkssterbetafelkonstruktion nach Becker-Zeuner durchzuführen.

B Zu dieser Arbeit wurde ich durch eine Bemerkung des Herrn Dr. Renfer
in seinem Jubiläumsbericht «Vierzig Jahre Vereinigung schweizerischer
Versicherungsmathematiker» (Mitteilungen, Band 45/2, Seite 182) angeregt.
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Die Frage nach vollendeten Altersjahren bringt nun Resultate
hervor, deren Genauigkeit zum Teil vom Grade des Bevölkerungsniveaus

abhängt, und ihr Studium hat eine umfangreiche Literatur
hervorgebracht [6]. Der bemerkenswerteste systematische Fehler, der
bei allen diesen Volkszählungen immer wieder, wenn auch in
verschiedener Stärke, auftritt, ist die Über- bzw. Unterbesetzung einzelner
Altersklassen, weshalb bei der Verarbeitung der Volkszählungs-
ergebnisse immer Gruppen gebildet werden müssen, um zu annehmbaren

Ergebnissen zu gelangen. In früheren Jahren wurden die
Volkszählungsergebnisse nur in Fünfer- oder Zehnergruppen veröffentlicht,
und die Besetzung der einzelnen Altersklassen musste durch Anwendung

von Interpolationsformeln bestimmt werden. Wenn aber zwischen
den Werten einer Reihe neue Werte durch Anwendung der gewöhnlichen

Interpolationsformeln gewonnen werden sollen, so werden im
allgemeinen in den höheren Differenzen gewisse Diskontinuitäten
auftreten. Um nun diese Erscheinung auszumerzen, wurde ein doppeltes
Verfahren angewendet, und zwar wurden die gesuchten Werte
provisorisch durch Anwendung der gewöhnlichen Interpolationsformel
mit konstanten vierten Differenzen und dann endgültig mittels der

sogenannten Sinuskurve

berechnet. Diese mühevolle Methode wurde verlassen, als Sprague [7]
eine neue Interpolationsformel ableitete, und zwar so, dass die

aufeinanderfolgenden Interpolationskurven an den gemeinsamen Punkten
sowohl gleiche Tangenten als auch gleiche Krümmungsradien aufweisen.

Um zwischen den Punkten u0 und iq zu interpolieren, werden
zwei biquadratische Parabeln bestimmt. Die erste geht durch die
5 Punkte u_2 bis u2, und die zweite durch die 5 Punkte u_t bis u3.
Durch Gleichsetzung des ersten und zweiten Differentialquotienten
der beiden Partialkurven und aus der Bedingung, dass die

Interpolationskurve durch die beiden Punkte u0 und iq hindurchgehen soll,
werden die 6 Konstanten einer Parabel fünften Grades bestimmt,
woraus schliesslich die gesuchte Gleichung der Interpolationskurve
hervorgeht. Karup hat auf Grund des Gedankenganges von Sprague
eine Formel abgeleitet [8], die nur den ersten Differentialquotienten

0 < x < 9
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berücksichtigt, so class sie nicht mehr oskulatoriseh, sondern nur noch
tangierend ist. Da an die Interpolationskurve weniger Bedingungen
gestellt werden, verwendet die Karupsche Formel nur vier gegebene
Werte, während Sprague deren sechs benötigt. Karups Formel wurde
dann später auf eine andere Art von King abgeleitet.

Der Effekt sowohl der Spragueschen als auch der Karup-Kingschen
Interpolationsformeln war nun tatsächlich eine merklich glattere
Verbindungskurve, doch erwähnte Lidstone in der Diskussion von Kings
Arbeit [9], dass die dritten Differenzen der interpolierten Werte in vielen
Fällen in der Mitte der Fünfergruppen etwas heftige Sprünge
aufweisen. Diese Bemerkung scheint bisher nicht weiter untersucht worden
zu sein und wird darauf später noch zurückgekommen. Lidstone [10]
zeigte auch, wie die Spraguesche und die Karupsche Interpolations-
formein auf einem etwas anderen Wege entwickelt werden können,
und zwar verwendet er die von Karup erwähnte Tatsache, dass sich
diese beiden Formeln von den gewöhnlichen Interpolationsformeln
nur durch das letzte Glied unterscheiden, das derart konstruiert ist,
dass eben an den Punkten, wo die Interpolationskurven zusammen-
stossen, eine glatte Verbindung eintritt. Buchanan [11] hat nun auf
diesem Gebiete das erstemal die von Sheppard [12] eingeführte Zentral-
differenzenbezeichnung in der von Everett [13] entwickelten Form
angewendet. Durch Einführung der beiden Operatoren

ergibt sich die zweite Zentralclifferenz

Die Newton-Stirlmgsche Interpolationsformel schreiben wir nun,
indem die Bezeichnungsweise von Liechti [14] etwas abgeändert wird,

<52 w0 ux — 2u0 + u_t (— A2u^

und die vierte Zentraldifferenz wird

(54it0 u% — 4% + 6 u0 — 4tt_j -f- u~2 ^iu~2)

x(x2 — l) (x2—4)

1-2-3-4-5
d5ii0 +.

24
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Die Entfernung von m0 sei x und die Entfernung von tq sei

so dass x -j- | 1, woraus sich die folgende transformierte Formel

|m0 -j <52m0 H diu0 +
6 120

Vx

ergibt.

ic(a;2 — 1) x(x2— 1) (re2 — 4)
+ xu, + 82u1 diu1 +

6 120

Es werden von Buchanan drei kubische Parabeln bestimmt. Die
erste (A) geht durch die Punkte u_x bis m2 hindurch, die zweite (B)
durch die Punkte m_2 bis mx und die dritte (C) durch die Punkte %
bis m3. Um nun zwischen u0 und % zu interpolieren, wird eine Parabel
fünften Grades bestimmt, wobei der Wert des ersten und zweiten

Differentialquotienten im Punkte u0 gleich ist dem arithmetischen
Mittel der entsprechenden Werte der beiden Kurven (A) und (13),

und im Punkte tq gleich ist dem arithmetischen Mittel der
entsprechenden Werte der beiden Kurven (A) und (C).

An dieser Stelle möge eine Arbeit von Gini [15] erwähnt werden,
der ebenfalls Partialkurven und die früher erwähnte Bildung von
Mittelwerten anwendet und zu einer Formel gelangt, die es ermöglicht,
die Besetzungszahlen der einzelnen Alter durch die Fünfergruppen
auszudrücken, während die bisher erwähnten Formeln z. B. die von
der höchsten Altersgruppe an aufsummierte Beihe interpolieren, um
durch Differenzenbildung die Besetzungszahlen der einzelnen Alter
zu finden. Es scheint bis jetzt unbekannt gewesen zu sein, dass die
Formel von Gini, die übrigens bisher weder in der englischen noch
nordamerikanischen Literatur erwähnt wurde, mit der Buchananschen
Formel identisch ist, ein Umstand, der auch bei Besprechung von
Ginis Arbeit im Journal des englischen Aktuarinstitutes [16]
übersehen wurde.

Auf der von Buchanan verwendeten Mittelbildung basiert auch
eine von Shovelton veröffentlichte tangierende Interpolationsformel
[17]. Um zwischen m0 und m1 zu interpolieren, bestimmt er zwei
biquadratische Parabeln, die durch die Punkte u_2 bis u2 (A) bzw.

it_j bis m3 (B) hindurchgehen und eine Interpolationskurve vierten
Grades, welche dieselbe Tangente wie die Kurve (A) im Punkte u0
und wie die Kurve (B) im Punkte iq hat. Als weitere Bedingung ver-
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langt er, class der Durchschnittswert der Ordinaten der Interpolationskurve

zwischen u0 und gleich ist dem arithmetischen Mittel der
Durchschnittswerte der Ordinaten der beiden Kurven (A) und (B)
im selben Intervall.

Die Mitarbeit der nordamerikanischen Aktuare hat verhältnismässig

früh eingesetzt, denn bereits im Jahre 1906 entwickelte
Henderson [18] eine tangierende Interpolationsformel, die ähnlich
gute Resultate liefert wie die schon erwähnte Formel von Shovelton.
In zwei Arbeiten von Reilly [19], die aus theoretischen Gründen sehr
bemerkenswert sind, wird eine Verallgemeinerung der Methoden von
Sprague und Lidstone gegeben, und es wird das interessante Resultat

gewonnen, class die beiden Methoden nur dann zur selben Formel
führen, wenn der Grad des Polynoms das Doppelte des Kontaktgrades

nicht übersteigt.
Das den bisher erwähnten Entwicklungen zugrunde liegende

Prinzip war, dass die Ableitungen der Interpolationskurve an den

gemeinsamen Punkten einen durch Partialkurven bestimmten Wert
annehmen müssen. Von diesem Prinzip ist nun Henderson [20]
dadurch abgewichen, dass er die Werte der Ableitungen der
Interpolationskurven an den gemeinsamen Punkten einander gleichsetzt und
darauf verzichtet, dass sie einen bestimmten Wert annehmen müssen.
Ausserdem verwendete er die Hypothese, dass die sechsten
Zentraldifferenzen den Wert Null haben, wodurch die erste Ableitung dieser

Formel diskontinuierlich wird.
Jenkins [21] Arbeiten fussen auf der von Karup erwähnten

Tatsache, dass sich die oskulatoriscben Interpolationsformeln von den

gewöhnlichen nur durch das letzte Glied unterscheiden, und auf der

von Henderson eingeführten Änderung, wonach auf die Verwendung
von Partialkurven verzichtet wird. In einer Tabelle [22] bringt Jenkins
16 Formeln mit ein bis vier kontinuierlichen Ableitungen und bemerkt,
dass die einzige von den in der Tabelle enthaltenen Formeln, die
bereits früher veröffentlicht wurde, die Karupsche ist, doch scheint

er übersehen zu haben, dass die danebenstehende Formel bereits im
Jahre 1906 von Henderson mitgeteilt wurde.

Den bisher entwickelten Formeln liegt die stillschweigende
Annahme zugrunde, dass die gegebenen Werte, zwischen denen

interpoliert werden soll, exakt und absolut korrekt sind. Nun trifft dies

aber in den für den Versicherungsmathematiker wichtigsten Zahlen-
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reihen nicht zu, sondern es handelt sich da fast immer um Werte,
die nur annäherungsweise richtig sind. Es ist daher weder vom
theoretischen noch vom praktischen Standpunkt aus erforderlich, dass

die Interpolationskurve tatsächlich an den sogenannten Kardinalpunkten

die durch die Beobachtung oder sonstwie errechneten Werte
annimmt, es genügt, wenn die Interpolationskurve, ähnlich wie es

die graphische Ausgleichsmethode verlangt, nur in der Nähe der

Kardinalpunkte vorbeigeht. Eine Bemerkung von Fassel [23] hat nun
Jenkins aufgegriffen und darauf verzichtet, dass die Interpolations -

kurve durch die Kardinalpunkte hindurchgeht. Seine beiden
diesbezüglichen Arbeiten [24] müssen als grundlegend angesehen werden.
Er begnügt sich, von den Interpolationskurven zu verlangen, dass

sie und ihre beiden ersten Ableitungen an den gemeinsamen Punkten
gleiche Werte annehmen, und nennt sie aus diesem Grunde modifizierte
(modified) oskulatorische Interpolationsformeln, während sie Greville
und Schoenberg [25] glättende (smoothing) Formeln bezeichnet. Es
scheint aber, dass ausgleichende (graduating) oskulatorische
Interpolationsformeln eine bessere Benennung ist, da die auf der Jen-
kinsschen Methode fussenden Interpolationsformeln tatsächlich eine

Mischung von Interpolation und Ausgleichung darstellen. Diese Formeln
haben nun die Aufmerksamkeit englischer Aktuare auf sich gezogen,
und Buchanan [26] zeigt durch verschiedene Anwendungen, dass die

erhaltenen Resultate sehr zufriedenstellend sind. Auch Heid und Dow

[27] untersuchen den theoretischen und praktischen Erfolg der durch
die Anwendung der Jenkinsschen Formel erzielt wird, und insbesondere

beschäftigen sie sich mit der Bestimmung der Kardinalpunkte und
einer Abänderung der Formel, dass z. B. die Quadrate der dritten
Differenzen der interpolierten Werte ein Minimum ergeben oder dass

die tatsächlichen und die nach der Ausgleichung zu erwartenden Todesfälle

gleich sind etc. Eine theoretisch sehr interessante Untersuchung
von Kerrich [28] beschäftigt sich mit den Interpolationsmethoden,
die dem Spragueschen und Jenkinsschen Typus angehören und mit
ihren Beziehungen zu der von den skandinavischen Aktuaren (Nyboelle
und Steffensen) entwickelten pseudo-analytischen Ausgleichung. Eine
ziemlich umfassende Darstellung der allgemeinen Theorie der oskula-
torischen Interpolationsformeln gibt Greville [29],

Wie aus der Jenkinsschen Formel hervorgeht, werden die Kardinalpunkte

nicht reproduziert, und der Unterschied zwischen den unaus-
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geglichenen nnd ausgeglichenen Werten an den Kardinalpunkten
beträgt I/36 des negativen Wertes der vierten Zentraldifferenz. Wenn
daher die vierten Zentraldifferenzen immer dasselbe Vorzeichen
aufweisen, was z. B. im allgemeinen der Fall sein wird, wenn die Kardinalpunkte

auf einer Makebamkurve hegen, so wird ein vollkommen
zufriedenstellendes Resultat kaum erreicht werden. Es ist daher
erforderlich, um gute Ergebnisse zu erhalten, dass die vierten
Zentraldifferenzen klein sind und häufig, womöglich alternativ, ihr Vorzeichen
wechseln. Es ist nun merkwürdigerweise gefunden worden, dass die
letztere Bedingung fast immer in genügendem Masse bei den
praktischen Anwendungen erfüllt ist.

Es ist schon früher erwähnt worden, dass Reid und Dow eine

Abänderung der Jenkinsschen Formel ins Auge gefasst hat, um die
Quadrate der dritten Differenzen der interpolierten Werte zu einem
Minimum zu machen. Beers' Arbeit [30] basiert auf einem ähnlichen
Gedankengang, und zwar verzichtet er auf die Eigenschaft, dass die

Ableitungen der Interpolationskurve an den gemeinsamen Punkten
gleiche Werte haben und stellt die Bedingung, eine die Kardinalpunkte
reproduzierende Interpolationsformel zu finden, so dass die Summe
der Quadrate der fünften Differenzen ein Minimum wird, wobei er
ebenfalls nur das letzte Glied der gewöhnlichen Interpolationsformel
entsprechend abändert, aber verlangt, dass sie gleich den Formeln
von Sprague und Shovelton korrekt bis zu den vierten Differenzen
sei. In seiner folgenden Arbeit [3t] entwickelte er eine neue
ausgleichende Interpolationsformel, korrekt bis zu den dritten Differenzen,
wobei er die Quadrate der vierten Differenzen zu einem Minimum
macht, doch ist der Unterschied der ausgeglichenen und unausgeglichenen

Werte an den Kardinalpunkten merklich grösser (—0.043d4^),
so dass die Anwendungsmöglicbkeit dieser Formel etwas eingeschränkter
ist. Etwas Ähnliches wäre über eine Formel von Greville [32] zu sagen,
bei der der Unterschied —0.0538 beträgt. Greville entwickelt in
dieser Arbeit noch eine Reihe anderer Formeln, die auf analogen
Voraussetzungen beruhen. Der Vollständigkeit halber wäre noch eine

Arbeit von Vaughan [33] zu erwähnen, der einige ausgleichende
Interpolationsformeln entwickelt und als Grundlage einer Formel den

sogenannten Ausgleichskoeffizienten verwendet.
In der am Schluss folgenden Übersicht sind einige Interpolationsformeln

in der Everettschen Form aufgenommen.
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Das Glättekriterium

Bevor an eine kritische Untersuchung der bisher vorgeschlagenen
Interpolationsformeln geschritten werden kann, muss zunächst einmal
festgestellt werden, was eine oskulatorische Interpolationsformel leisten
soll und worauf sich eine Beurteilung der Güte von solchen Formeln
zu gründen hat. Die Überlegung «Die Natur macht keine Sprünge»
ist im Grunde genommen der wichtigste theoretische Grundsatz der

Interpolations- und Ausgleichsrechnung. Bei der Ausgleichung will
man eine unregelmässige Beihe von Beobachtungsdaten durch eine

regelmässige, glatte Zahlenreihe ersetzen, die natürlich den beobachteten
Werten möglichst gut folgen soll, ebenso soll durch die Interpolation
eine glatte Verbindung zwischen den Kardinalpunkten bewerkstelligt
werden. Was ist nun aber diese glatte Verbindung und welche Kriterien
sind anzuwenden? Im allgemeinen begnügt man sieb, eine Beihe als

glatt zu bezeichnen, wenn die dritten Differenzen klein sind, wenn
sie keine zu grossen Sprünge aufweisen, und meistens beschränken
sich die Autoren auf eine Untersuchung der Beihe der dritten
Differenzen. Seal [34] meint, dass ein Kriterium bezüglich der Glätte leicht
formuliert werden kann, nämlich, die Beihe der zweiten oder dritten
Differenzen darf keine grossen Sprünge zeigen, während King [35]
auch die fünften Differenzen berücksichtigt und seiner Ansicht
Ausdruck gibt, dass die Differenzen, wenn nicht klein, so doch ein
bestimmtes Gesetz befolgen sollen, denn, wenn auch kleine dritte oder
fünfte Differenzen als Beweis für eine gute Ausgleichung angesehen
werden können, ist das Gegenteil nicht richtig, dass die Ausgleichung
schlecht ist, wenn die dritten Differenzen gross sind.

Der Begriff der Glätte ist wohl fundamental, aber bisher noch nicht

genau definiert worden, und aus diesem Grunde ist es bisher nicht
gelungen, ein allgemein anerkanntes Kriterium aufzustellen. Der Grund

liegt darin, dass das in der Ausgleichsrechnung übliche und theoretisch
fundierte Glättekriterium — kleine dritte Differenzen — ohne irgendwelche

Änderungen auch auf Interpolationsformeln übertragen wurde.
Nun ist es aber aus theoretischen Gründen nicht zulässig, immer
nur dieselbe Differenzenreihe zu untersuchen, unabhängig von der
Anzahl der Differenzen, welche die Interpolationsformel verwendet.
Die gewöhnliche Interpolationsformel mit konstanten (?t—l)-ten
Differenzen verwendet zur Bestimmung der interpolierten Werte die an
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«n» Punkten gegebenen Werte, und bei Anwendung auf eine Parabel
(n— l)-ter Ordnung verschwinden die n-ten Differenzen. Um aber

irgendwelche Werte, die auf dieser Parabel liegen, zu berechnen, ist
es nicht notwendig, eine Interpolationsformel anzuwenden, sondern
diese Werte können auch durch direkte Berechnung gefunden werden.
Die der Anwendung von Interpolationsformeln zugrunde liegende
Hypothese ist die Annahme, dass die zwischen den gegebenen Punkten
gelegenen Werte annäherungsweise durch Parabeln bestimmt werden
können. Die Eigenschaft, dass die Interpolationskurven an den gemeinsamen

Punkten gleiche Werte und gleiche Ableitungen haben sollen,
und die Tatsache, dass das zugrunde liegende Gesetz nicht bekannt
ist, hat zur Folge, dass die (n— l)-ten Differenzen nicht konstant sein

werden und daher die w-ten Differenzen nicht verschwinden. Die
Gleichsetzung der Ableitungen soll nun bewirken, dass die (n — l)-ten
Differenzen kontinuierlich verlaufen, ohne irgendwelche Sprünge
aufzuzeigen, und dass die w-ten Differenzen kleine Grössen werden, die

um den Wert Null schwingen.
Wir werden daher aus diesen theoretischen Erwägungen

Interpolationskurven als glatt bezeichnen, wenn sowohl die Grösse als auch
die Vorzeichen der ersten Differenzenreihen kontinuierlich und
regelmässig verlaufen, und zwar ist dieselbe Anzahl von Differenzen in
Betracht zu ziehen, als von der Interpolationsformel verwendet werden.
Ausserdem soll sich auch die Summe der Werte der Differenzen ohne

Bücksicht auf ihr Vorzeichen von einer Differenzenreihe zur anderen

verringern. Es wären daher z. B. bei der Karup-Kingschen
Interpolationsformel die ersten drei Differenzen diesbezüglich zu
untersuchen und bei den anderen bisher erwähnten Formeln die ersten
fünf Differenzenreihen. Anstatt nun tatsächlich alle diese Differenzenreihen

zu untersuchen, genügt es wohl, die letzte, also die dritte oder
die fünfte Differenzenreihe zu untersuchen, denn wenn diese

regelmässig ist, so müssen es natürlich auch die vorherigen Differenzenreihen

sein. Wenn man sich nur auf die Summe der absoluten Werte
der Differenzenreihen beschränkt, kann man leicht zu Fehlschlüssen

gelangen, wie noch später gezeigt werden soll. Dabei darf nicht ausser

acht gelassen werden, dass auch die ausgeglichenen Werte den
beobachteten möglichst gut folgen sollen. Doch hier steht man abermals

vor einem analogen Problem. Man verlangt, wie z. B. Simonett [36]
ausführt, dass die Gesamtsumme der Abweichungen möglichst klein
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sein soll, damit die Summe der ausgeglichenen mit der Summe der
beobachteten Werte fast übereinstimmt, mit anderen Worten, die
positiven und negativen Abweichungen sollen einander gleich sein;
ferner sollen die mit Rücksicht auf ihr Vorzeichen aufsummierten
Abweichungen oft Null oder nahezu Null sein, damit zwischen der
Summe der ausgeglichenen Werte und der entsprechenden Summe der

Beobachtungsdaten bis zu jeder Stelle ein möglichst kleiner Unterschied

besteht. Daraus folgt, dass oft ein Zeichenwechsel der
aufsummierten Differenzen eintreten soll. Wenn z. B. die Sterbens-
wahrscheinlichkeiten ausgeglichen werden, solider Unterschied zwischen
den erwarteten und tatsächlichen Sterbefällen möglichst klein sein,
doch darf die Bedeutung dieses letzteren Punktes nicht überschätzt
werden. Man darf nicht ausser acht lassen, dass die in der Praxis
tauglichen Interpolations- oder Ausgleichsformeln ohne Einführung
von Gewichten angewendet werden, weshalb schon dieser Umstand
gewisse kleine Abweichungen rechtfertigt. Die Herausgeber des

Journals des englischen Aktuarinstitutes weisen auch darauf hin [37],
dass die Kleinheit der Abweichungen als Beweis für die Güte der

Ausgleichung nicht in Betracht gezogen werden kann, wenn die

Beobachtungsdaten systematische Abweichungen aufweisen, und eine

analytische Kurve, wie z. B. die Makehamkurve, die nur wenige
Konstante aufweist, die aus der ganzen vorhandenen Wertemasse
bestimmt werden, mag bessere Resultate ergeben als eine Kurve,
die zu sehr den mit Fehlern behafteten Originaldaten folgt. Es werden
nunmehr im nachfolgenden auf Grund des neu aufgestellten Kriteriums
einige der bisher in Vorschlag gebrachten und früher erwähnten
Formeln untersucht, wobei festgestellt werden wird, dass keine dieser
Formeln dem neu aufgestellten Kriterium vollauf genügt, und auf
Grund dieser Ergebnisse wird versucht, eine neue Formel abzuleiten,
die eher geeignet ist, als in dieser Hinsicht zufriedenstellend bezeichnet

zu werden.

Kritik der bisher veröffentlichten oskulatorischen Interpolationsformeln

Eine systematische Behandlung dieses Problems erfordert, dass

sowohl die Interpolationsformeln als auch deren Differenzen in einer
klaren und deutlichen Form dargestellt werden, und zu diesem Zwecke

empfiehlt es sich, die Zentraldifferenzen durch die gegebenen Werte
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auszudrücken. Mit Rücksicht auf die Definition der Zentraldifferenzen
ergibt sich für die

gewöhnliche Interpolations- j Karup-Kingsche Interpola-
formel dritter Ordnung: I tionsformel:

X Vx u_1 U0 % U2 yx u0 u2

0-0 125 0 125 0 0 125 0 125 0 0

0-2 125 -6 108 27 -4 125 -8 114 21 -2
0-4 125 -8 84 56 -7 125 -9 87 53 -6
0-6 125 -7 56 84 -8 125 -6 53 87 -9
0-8 125 -4 27 108 -6 125 -2 21 114 -8

und für die dritten Differenzen:

X &yx u0 u± U2 us ö3yx U_.J u0 % u2 uz

0-0 125 -1 3 -3 1 0 125 -3 9 -9 3 0

0-2 125 -1 3 -3 1 0 125 -3 9 -9 3 0

0-4 125 -1 3 -3 1 0 125 -3 9 -9 3 0

0-6 125 -5 19 -27 17 -4 125 0 2 -6 6 _2
0-8 125 4 -17 27 -19 5 125 2 -6 6 -2 0

Dieses Ergebnis zeigt, dass bei Intervallfünftelungen, die in der
Praxis die weitaus wichtigsten sind und die auch fast ausschliesslich

in dieser Arbeit berücksichtigt werden, die ersten drei dritten
Differenzen gleich sind, zwischen dem dritten und vierten Glied erfolgt ein
deutlich sichtbarer Sprung und ebenso zwischen dem vierten und
fünften Glied, doch ist der Sprung bei der Karup-Kingschen Formel
bedeutend geringer; andererseits sind die ersten drei Differenzen im
Vergleich mit der gewöhnlichen Interpolationsformel gerade auf das

Dreifache erhöht. Zwischen den dritten Differenzen der Karup-
Kingschen Formel besteht nun ein merkwürdiger Zusammenbang

— Y 63 y°-6 03 Vi-° &yi-i d*yi-* — j03 Vi -8

der besagt, dass die von Lidstone festgestellten Sprünge aus der
theoretischen Grundlage der Formel zu erklären sind. Es sei gleich hier
bemerkt, dass selbstverständlich diese Sprünge nicht so deutlich zum
Vorschein kommen, wenn anstatt der Originaldaten deren Logarithmen
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oder andere Funktionen, z.B. log j)x oder, wie von King vorgeschlagen
wurde, log (0-1 + &:) etc. interpoliert werden und wenn das Resultat
nur aus drei- oder vierstelligen Zahlen bestehen soll. Die zweite
merkwürdige Eigenschaft beider Formeln ist, dass die ersten drei Differenzen
in jeder Fünfergruppe gleich sind. Nun kann auf dieselbe Art
nachgewiesen werden, dass dieses letztere Ergebnis bei allen Formeln
auftritt, die den dritten Grad nicht übersteigen, was zweifellos zu
einer theoretisch fundierten Kritik dieser Formeln berechtigt. Hiezu
gehören z. B. die beiden Formeln von Henderson und die ausgleichende

Interpolationsformel von Jenkins.

Hendersons Formel
vom Jahre 1906:

Dritte Differenzen:

X Vx w_2 U_i u0 Ui 112 U3 6zyx w_2 u_! u0 Ux 112 U3 Ui

0-0 750 0 0 750 0 0 0 750 3 -21 48 -48 21 -3 0
0-2 750 8 -66 688 142 -24 2 750 3 -21 48 -48 21 -3 0

0-4 750 9 -78 534 336 -57 6 750 3 -21 48 -48 21 —3 0

0-6 750 6 -57 336 534 -78 9 750 0 -7 24 -32 22 -9 2

0-8 750 2 -24 142 688 -66 8 750 -2 9 -22 32 -24 7 0

Hendersons Formel
vom Jahre 1921:

Dritte Differenzen:

X Vx u_2 U_i u 0 Wj u<> u3 U_2 11-1 u0 ux 112 U3

0-0 750 0 0 750 0 0 0 750 1 -11 28 -28 11 -1 0
0-2 750 6 -56 668 162 -34 4 750 1 -11 28 -28 11 -1 0

0-4 750 8 -73 524 346 -62 7 750 1 -11 28 -28 11 -1 0

0-6 750 7 -62 346 524 -73 8 750 5 -34 84 -102 67 -24 4

0-8 750 4 -34 162 668 -56 6 750 -4 24 -67 102 -84 34 -5

Dritte Differenzen:Jenkins' ausgleichende Formel:

x yx u_2 u_1 u0 u! uä u3 dzyx u_2 u_x u0 112 UQ 11^

0-0 4500 -125 500 13750 500 -125 0

0-2 4500 -64 39 3508 1222 -204 -1
0-4 4500 -27 -188 2894 2076 -247 -8
0-6 4500 -8 -247 2076 2894 -188 -27
0-8 4500 -1 -204 1222 3508 39 -64

4500 6 -66 168 -168 66 -6 0

4500 6 -66 168 -168 66 -6 0

4500 (i -66 168 -168 66 -6 0

4500 5 -54 129 -112 27 6 -1
4500 t -6 -27 112 -129 54 -5
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Ein etwas anderes Ergebnis erhalten wir, wenn wir mit der
gewohnlichen Interpolationsformel oder mit der Karup-Kingschen Formel
das Intervall in drei Teile teilen wollen.

Gewöhnliche

Interpolationsformel:
Karup-Kingsche

Interpolationsformel:

u_ u0 Ux %2 u_x u0 Mj 1<2

81 ,Vo 0 81 0 0 81 2/0 0 81 0 0

81 2/1/3 -5 60 30 -4 81 2/1/3 -6 63 27 -3
81 'WS -4 30 60 -5 81 2/3/3 -3 27 63 -6

denn die dritten Differenzen betragen:

«-1 Uq ux

3 -9 9 -3
7 -25 33 -19

-4 19 -33 25

u. ux u2 us

27 -9 0
18 -12 3

-18 12 -3

St d3 ya
S3S1 <53 W 3

81 <53 i/o 9

«I d3 2/i/s 3

-7 81 d3 ?/2/3 -3

-27
-12

12

doch liegt hier ein Resultat vor, das doch vielfach gemeinsame
Erscheinungen mit den für die Intervallfunftelungen vorgefundenen
Formeln aufweist, denn d3y0 erhält bei Anwendung der Karup-Kingschen

Formel den dreifachen Wert im Vergleich mit der gewöhnlichen
Interpolationsformel, andererseits wird der Sprung von d3i/i, und
<53f/a bedeutend ermässigt, und bei der Karupschen Formel besteht
ausserdem die Beziehung d3 jjns~ — d3 j/2/3

Die vorliegenden Ergebnisse lassen daher den Schluss zu, dass

die Karup-Kingsche Formel vom theoretischen und teilweise auch

vom praktischen Standpunkt aus nicht zu Resultaten führt, die als

vollkommen befriedigend bezeichnet werden können.
Den Interpolationsformeln fünfter Ordnung ist zweifellos eine

grössere Bedeutung zuzuschreiben, weil sie bei der Berechnung der

interpolierten Werte mehr Glieder mitwirken lassen und daher

angenommen werden darf, dass sie in vielen Fällen zufriedenstellendere
Resultate erbringen werden. Entsprechend dem früher aufgestellten
Kriterium wird sich das Interesse in erster Linie dem Verlauf der

Reihe der fünften Differenzen zuwenden. Wenn die Interpolatiom-
formel niedriger als fünften Grades ist, dann wird, wie leicht ein-
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zusehen, immer ö5 y0 — 0 sein, ebenso wie bei Intervallfünftelungen
durch die gewöhnliche Interpolationsformel dritter Ordnung oder
durch die Karup-Kingsche Formel, und nur bei Interpolationsformeln
vom fünften oder höheren Grade werden die d5y0 nicht verschwinden.
Ausserdem findet man die merkwürdige Erscheinung, dass bei den

Formeln dritten Grades die unter Berücksichtigung ihres Vorzeichens
aufsummierten fünften Differenzen innerhalb der Fünferintervalle den
Wert Null ergeben, das heisst, dass die Summe der Werte der positiven
und negativen Differenzen einander gleich ist. Dies ist der Fall bei
beiden Formeln von Henderson und bei der ausgleichenden oskula-
torischen Interpolationsformel von Jenkins. Dieser Umstand ergibt
eine sehr einfache Kontrolle der durchgeführten numerischen

Rechnungen und erklärt auch gewisse Beziehungen, die zwischen den
Differenzen bestehen, wie z. B. bei der gewöhnlichen Interpolationsformel

dritter Ordnung

13 13

J d5Vo-i — ^°l/o-6 y0.s

bei der Spragueschen Formel

6 6
— - ^Vi-o

t) ö

Bei der Formel von Henderson vom Jahre 1921 besteht die

Beziehung

d'° Vo-2 — d5y0.s'> <55?yo.4 — <552/O-6

bei Jenkins' ausgleichender Interpolationsformel ergibt sich

<55 yo-i Y*55 Vo-i — y<552/o.6= — ^52/O-S

und bei der praktischen Anwendung beider Formeln zeigt sich daher
eine systematische Unregelmässigkeit in der fünften Bifferenzenreihe,
die im Widerspruch zu dem vorhin aufgestellten Glättekriterium steht.

Um sich ein besseres Bild machen zu können, seien im nachstehenden
die fünften Differenzen von einigen der erwähnten Formeln angeführt:
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Gewöhnliche InterpolationsJenkins ausgleichende
formel dritter Ordnung: Interpolationsformel:

x ö5yx u_x M0 ux Mg Mg &y, M_2 M_4 M'O Mj 112 Mg Ui

0.0 125 0 0 0 0 0 4500 0 0 0 0 0 0 0

0-2 125 -4 16 -24 16 -4 4500 -1 12 -39 56 -39 12 -1
0-4 125 13 -52 78 -52 13 4500 -3 36 -117 168 -117 36 -3
0-6 125 -13 52 -78 52 -13 4500 3 -36 117 -168 117 -36 3

0-8 125 4 -16 24 -16 4 4500 1 -12 39 -56 39 -12 1

Hendersons Formel j Hendersons Formel
vom Jahre 1906 vom Jahre 1921

x d5 yx u_2 u_x u0 ux m2 m3 m4 d5 yx u_2 u_x u0 ux u2

0-0 750 0 0 0 0 0 0 0

0-2 750 -3 14 -24 16 1-62
0-4 750 1 2 -22 48 -47 22 -4
0-6 750 4 -22 47 -48 22 -2 -1
0-8 750 -2 6 -1 -16 24 -14 3

750 0 0 0 0 0 0 0
750 4 -23 56 -74 56 -23 4
750 -13 81 -207 278 -207 81 -13
750 13 -81 207 -278 207 -81 13

750 -4 23 -56 74 -56 23 -4

Bei den Formeln vierten Grades, z. B. den reproduzierenden
Interpolationsformeln von Shovelton und Jenkins, muss selbstverständlich

d5 z/0 0 sein, und die Summe der sechsten Differenzen,
unter Berücksichtigung ihres Vorzeichens, ergibt folglich für jede
Fünfergruppe den Wert Null, z. B. sechste Differenzen von Shoveltons

tangierender Interpolationsformel:

X PVx M_2 M_j Mg Ux M2 Mg M4

0-0 2500 -13 57 -90 50 15 -27 8

0-2 2500 15 -50 25 100 -175 110 -25
0-4 2500 15 -90 225 -300 225 -90 15

0-6 2500 -25 110 -175 100 25 -50 15

0-8 2500 8 -27 15 50 -90 57 -13

Die Formel von Buchanan ergibt, wie praktische Berechnungen
zeigen, nicht besonders gute Resultate, ebenso von Reilly und Jenkins

abgeleitete reproduzierende Interpolationsformeln mit kontinuierlichen
dritten und vierten Ableitungen, mit anderen Worten, bei Anwendung
des vorhin aufgestellten Kriteriums auf diese Formeln erhalten wir
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nicht so zufriedenstellende Ergebnisse wie bei Anwendung von anderen

Kriterien, die nicht so streng sind. Es wurde z. B. von Jenkins darauf
hingewiesen, dass die Ermässigung des Grades bei ausgleichenden
Interpolationsformeln den Vorteil mit sich bringt, dass sie Differenzenreihen

von grösserer Glätte und weniger irregulären Schwankungen
hervorbringt. Aus den vorstehenden Untersuchungen und den
nachfolgenden Entwicklungen geht jedoch hervor, dass diese Behauptung
nicht den Tatsachen entspricht, und weiter ergibt sich die
Schlussfolgerung, dass die Abänderung des letzten Gliedes der gewöhnlichen
Interpolationsformel derart beschaffen sein soll, dass sie zu keiner

Graderrnässigung führt, wenn in den höheren Differenzenreihen
systematische Unregelmässigkeiten vermieden werden sollen.

Wir gehen von der Karupschen Feststellung aus, dass sich die

oskulatorischen Interpolationsformeln von den gewöhnlichen nur durch
das letzte Glied unterscheiden, und setzen daher wie Jenkins

Ableitung neuer Interpolationsformeln

Vx
x (x2— 1)

+ xut -\ ö2ux -j- (p (x)
6

wobei wir annehmen, dass die Darstellung

<p(x) a + bx cx2 + dx? + ex4 + fx5

gilt. Die Ableitungen der Interpolationskurve sind daher

8^-1
y'x - u0 -— d2u0- <p'(£) ö4u0 + ux J

3x2—1

6
-\-(p'{x) öhi

6

y'x' £62u0 + 99" (|) d4u0 -f- xd2ut + <p" (x)

Ux" — — d2u0- - 9)"' (i) d4u0 -f- d2% + q>"' (x) d4%

y'x" =-?""(£) d4u0 + <p""(x) dhh
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und die Ableitungen der Punktion q>(x)

cp' (x) b + 'lex + 3d®2 + 4e.x3 + 5 fx4

cp" (®) 2c + bdx + 12e®2 + 20f xs

cp'" {x) 6d + 24e® + 60 fx?

<p""{x) 24 e +120/®

Durch Gleichsetzung der Puuktionswerte an der Stelle + ergibt
sich für die erste Kurve x 1, | 0 und für die zweite Kurve
x 0, |=1, folglich

oder
cp (0) diu0 + m1 + cp (1) diu1 % + cp (1) d4% + cp (0) d4M2

cp (0) (<5Dt0 — <54w2) 0 (A)

welche Bedingung nur dann erfüllt sein kann, wenn cp (0) 0 ist,
da nach Voraussetzung die vierten Zentraldifferenzen nicht einander

gleich sind, woraus folgt, dass cp (0) a 0.

Aus der Gleichsetzung der ersten Ableitungen im Punkte %

- - «o + 4- d2w0 — cp' (0) ö4u0 + % + -A ÖX + cp' (1)
6 o

2
—u l ~r ö2ul—q),(l)ö4ni +u2 — -d2u2 + g/(0) ö*u2

b 6

ergibt sich

— (w0 — 2+ + w2) H (<52w0 + 4<53zi1 + (52m2) cp'(0) (<54it0 + d4w2) — 2<p'(l)diu1
6

oder

— d4M1 9?'(0) (<5%0 — 2d4% + <5%2) + 2<54w19!>'(0)— 2d4M199,(l)
6

und schliesslich

cp'(0) <56t<1 2<54w1 - 99' (0) + cp' (1) +
12

(C)
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Da in der endgültigen Formel sechste Zentraldifferenzen nicht
vorkommen sollen, muss der Koeffizient von d6 verschwinden,

9/ (0) fr 0

und daher auch der Klammerausdruck auf der rechten Seite

95'(1) b —1— 2c + 3d —f- 4e —(- 5/ —
1

12

Die Kontinuität der zweiten Ableitungen im Punkte u± verlangt

<p" (0) <?X + d2% + <p" (1) dX dX + <p" (1) dX + q>" (0) d4w2

oder <p" (0) (d4w0— d%2) 0 (D)

daher <p" (0) 2 c 0.

Die dritten Ableitungen werden kontinuierlich im Punkte ux,
wenn die Gleichung

-d2w0-9>"' (0) d%0 + dX + tp'" (1) dX -d2«!-^'" (1) dX + d2rt2 + q>'" (0) ÖHu

erfüllt ist. Durch Zusammenfassung der entsprechenden Glieder erhalten
wir

— (dX — 2dX + ^X) 9>'" (0) (d4w0 + d4M2) — 299"' (l)dX

und nach Umformung
1

<p'" (0) dX 2d4«! — <p"' (1) + <p'" (0) +
2

(B)

Das Nicht.auftreten von sechsten Differenzen in der Formel
verlangt

9/"(0) 6d= 0

und daraus folgt
1

tp'" (1) Qd + 24e + 60/ —
2
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Kontinuierliche vierte Ableitungen ergeben sich aus

cp"" (0) d4w0 + <p"" (1) d1«! <p"" (1) a4«! + cp"" (0) <54w2

oder ' <p"" (0) (d4it0—d%2) 0 (F)

was bedeutet, dass 9?""(0) 24e 0

Wenn die Interpolationsformel die gegebenen Werte reproduzieren
soll, muss noch die Bedingung

<p (1) — — 0 (B)
erfüllt sein.

Um nun eine ausgleichende Interpolationsformel zu bestimmen,
deren erste drei Ableitungen kontinuierlich sind, müssen die Gleichungen

a=b=c=d=0
4e + 5/ =——' 12

24 e + 60 f ~
erfüllt sein, woraus die Werte

15 fi
e — ttta» /

240 ' 240

folgen. Die endgültige Formel lautet daher

M
^(8^-—15)

M£u0 H ö2u0 -\ -- öhi0

M3
x(x2 — 1) a:4(8a; —15)

+ xu, H + d4+1
6 240

mit einer Abweichung von —7/240 d4+ an den Kardinalpunkten,
die auch in folgender Form geschrieben werden kann:
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X Vx 1l_2 W-l il0 Mj M2 «3

0-0 750000 -21875 87500 618750 87500 -21875 0
0-2 750000 -11008 7965 582220 205630 -34740 -67
0-4 750000 -4181 -32420 482990 346860 -42355 -944
0-6 750000 -944 -42355 346860 482990 -32420 -4131
0-8 750000 -67 -84740 205630 582220 7965 -11008

Die fünften Differenzen sind:

X &yx U_2 U_i u0 Uy "W'2 u3 Uy

0-0 750000 -960 4800 -9600 9600 -4800 960 0

0-2 750000 -877 4452 -9105 9440 -5055 1212 -67
0-4 750000 81 204 -2235 5280 -5685 2964 -609
0-6 750000 609 -2964 5685 -5280 2235 -204 -81
0-8 750000 67 -1212 5055 -9440 9105 -4452 877

Wenn jedoch die interpolierten Werte durch die Fünfergruppen
Gx ausgedrückt werden sollen, ergibt eine einfache Umformung die

Darstellung:

X yx Gx-W Gx-Ö Gx C"W+5 Gx+V>

0-0 750000 -10867 68668 105198 -12932 -67
0-2 750000 -6877 33508 132738 -8492 -877
0-4 750000 -3187 6748 142878 6748 -3187
0-6 750000 -877 -8492 132738 33508 -6877
0-8 750000 -67 -12932 105198 68668 -10867

Die durch die Anwendung dieser neuen Formel erzielten Resultate
lassen erkennen, dass die Verbindung der interpolierten Werte
bedeutend glatter ist als bei Anwendung irgendeiner der bisher in
Vorschlag gebrachten Formeln und daher diesen überlegen ist. Die fünften
Differenzen sind klein und liegen auf einer Wellenlinie, ohne irgendwelche

Sprünge zu zeigen, und auch die sechsten Differenzen geben
immer sehr gute Resultate. Dieser Umstand lässt nun die Vermutung
aufkommen, dass bei Berücksichtigung höherer Ableitungen die Glätte
zunehmen wird, aber das ist nicht der Fall, denn es treten in der Mitte
der Fünfergruppen der fünften Differenzen merkliche Sprünge auf.
Die Rechnung ergab:
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Anzahl der Abweichungen
Formel kontinuierlichen an den Koeffizient von <34 w,

Ableitungen Kardinalpunkten

M4

M 5

M 6

M 7

11 a;5(:26 —15 a:)

480 480

115 at6 (504— 536 a; + 147 a;2)

5376 5376

25 £c7 (136 — 159 a; + 48 a;2)

1344 1344

28 a;8 (297 — 506 a; + 297 a:2 — 60 a?)

1584 1584

Auch die Kardinalpunkte reproduzierenden Formeln mit höheren
kontinuierlichen Ableitungen geben keine besseren Resultate:

Anzahl der
Formel kontinuierlichen Koeffizient von d4

Ableitungen
x6(x — 1) (— 46 a;2 + 137 a; —105)

5M 5

6M

168

x7 (x — 1) (—75 a;2 211a; —152)

192

Wenn der Grad der Funktion cp (x) auf 4 ermässigt wird, wodurch

/ 0, und unter der Annahme, dass nur die beiden ersten Ableitungen
kontinuierlich sind, ergibt sich

a b — c 0

M + 4e=~^
1

24 e —
2

8 3
woraus d ——, e

144 144

folgt und schliesslich die Formel
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M2

ftf2-1) « ^3(3^-8) „H <5X -i -— <54w0
6 144

x(x2—1) a^(3a;—8)
xux-\ (52it1+ (54M,

6 144

Die Abweichung an den Kardinalpunkten beträgt —A144 b*ux.
Die durch ihre Anwendung erzielten Ergebnisse sind nicht so gut wie
bei Anwendung der Formel M3, doch schneidet sie im Vergleich mit
der ausgleichenden Formel von Jenkins z. B. sehr gut ab. Setzen wir
in den obigen Gleichungen e — 0, erhalten wir 3 d —^/i2> Jenkins'
Formel.

Wird nun vorausgesetzt, dass die sechsten Differenzen
verschwinden, so ergeben sich einige interessante Resultate. Die Hypothese
von verschwindenden sechsten Differenzen wurde, soweit festgestellt
werden konnte, nur einmal, und zwar bei der Entwicklung von
Hendersons Formel vom Jahre 1921, verwendet. Unter dieser Voraussetzung

werden die beiden Bedingungsgleichungen (C) und (E)
transformiert in

<P' (°) <P' + (°)

oder
1

2c + 3d + 4e + 5/-r T -r / 12

und

^»(0) y"'(l)—1 (e)

oder
1

24e + 60/ —

woraus hervorgeht, dass die Grössen b und d unbestimmt bleiben.
Um nun unter der Voraussetzung von verschwindenden sechsten

Differenzen eine ausgleichende Interpolationsformel zu erhalten, deren
erste vier Ableitungen kontinuierlich sind, wären die Konstanten aus
den Bedingungsgleichungen (A), (c), (D), (e) und (F) zu bestimmen.



Setzt man willkürlich b 0, so folgt aus den Bedingungsgleichungen

a =fr=e=e=0

3d+ 5/ -' 12

und die Formel

<5%o

M4A

xux +

Die Abweichung an den Kardinalpunkten beträgt —1/ao^4%-
Bei Anwendung dieser Formel treten nun ähnliche Erscheinungen
auf wie bei den früher entwickelten Formeln M 4 bis M 7, nämlich
ein Sprung in der Reihe der fünften Differenzen, und zwar in der
Mitte der Fünfergruppen, der besonders deutlich zum Vorschein
kommt, wenn man die Reihe der sechsten Differenzen bildet. Dabei
ist zu bemerken, dass die Summe der absoluten Werte der fünften
Differenzen bei allen Beispielen, die zu diesem Zwecke gerechnet
wurden, äusserst klein ist und, was die Grösse anlangt, mit der Formel
M 8 konkurrieren kann. Der erwähnte Sprung in der Differenzenreihe
bewirkt daher weniger zufriedenstellende Resultate, doch sind diese

Sprünge kaum zu erkennen, wenn die interpolierten Werte nur auf
drei oder vier Ziffern berechnet werden sollen. Die Formel M 4 A
ist daher besonders geeignet, zu zeigen, dass die ausschliessliche

Betrachtung der Grösse der Differenzen oder deren Summe nicht als

Kriterium geeignet ist und dass daher dem vorhin aufgestellten
Glättekriterium mehr Bedeutung beizumessen wäre.

Wenn wir noch auf Grund der Annahme von verschwindenden
sechsten Zentraldifferenzen Interpolationsformeln untersuchen, welche
die Kardinalpunkte reproduzieren, so ergeben sich, wenn die
Kontinuität der ersten drei Ableitungen verlangt wird, die Bedingungsgleichungen
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a c 0

&+d+e+/=0
1

3d + 4e + 5/' 12

24e + 60 /== —

Setzt man / 0, um den Grad der Funktion cp(x) auf 4 zu reduzieren,

folgt
5 8 8

b d e
144 144 144

und die Interpolationsformel lautet:

6 144

Ux
a:(a:2 — 1) «(«—1) (3a52 — 5)

+ -| d2wt -| d4u0
6 144

Wird jedoch b 0 gesetzt, so folgt

7 12 5
d= e — / —

24 24 24

Diesen Werten jedoch entspricht die berühmte Spraguesche
Interpolationsformel, die hier unter ganz anderen Voraussetzungen abgeleitet
wurde. Wenn jedoch die Kontinuität der ersten vier Ableitungen
verlangt wird, so folgt unter Annahme von verschwindenden sechsten

Zentraldifferenzen
a c e 0

b + d -j- / 0

3d -j- of —

6°/^
2

12

1
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woraus b d — —• f
120 120 120

folgt, und diesen Werten entspricht die gewöhnliche Interpolations-
formel mit konstanten fünften Differenzen.

Schliesslich wäre noch eine Gruppe zu erwähnen, der die Formeln
angehören, die unter der Voraussetzung, dass die sechsten Differenzen
verschwinden, nur kontinuierliche erste und dritte Ableitungen haben.
Die Bedingungsgleichungen sind

a — 0

bJrc-\-d-\-e-\-f=0
2c + 3d + 4e + 5/ --' 12

24 e + 60/=
*

Es stehen zur Verfügung fünf Unbekannte und drei Gleichungen,
so dass zwei Grössen willkürlich festgesetzt werden können. Nehmen
wir an, dass b f 0, so ergibt sich die bereits erwähnte tangierende
Interpolationsformel von Shovelton. Eine neue tangierende, die

Kardinalpunkte reproduzierende Interpolationsformel, also b 0, deren

Reproduktionsgrad 4 ist und die ausserdem die Eigenschaft hat, dass

die Summe der Quadrate der fünften Differenzen ein Minimum wird,
lautet

£(£2 — 1) !2(f —1)(145£2 —168 f—175)
|it0 H ö2 u0 H d4u0

6 2376
MMT

x(x2 — 1) x2(x—l) (145a;2 —168® —175)
+ xu, -\ d2u, -f- d4u,

6 2376

Wenn nun in dieser Formel die Zentraldifferenzen durch die

gegebenen Werte ersetzt werden und die Koeffizienten auf vier
Dezimalen gekürzt werden, um eine in der Praxis leichter anwendbare

Formel zu erhalten, ergibt sich die Formel BM, die von Beers unter
vollständigem Verzicht auf Kontinuität von Differentialquotienten
abgeleitet wurde, ein bemerkenswertes Ergebnis. Zu dieser Gruppe
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gehört auch die von Greville abgeleitete Formel GM. Ergänzend wäre

zu bemerken, dass die Formel von Beers in dem später zu behandelnden

Beispiel tatsächlich die kleinste Summe der Quadrate der fünften
Differenzen ergibt, und es scheint vom theoretischen Standpunkt aus

bemerkenswert, dass andere Formeln, die ebenfalls zu dieser Gruppe
gehören, wohl eine grössere Summe der Quadrate der fünften
Differenzen hervorbringen, während die Summe der absoluten Werte der
fünften Differenzen geringer ist als bei Anwendung von Beers Formel.
Von diesen Formeln seien zwei angeführt:

1 1

£u0 + — £ (|2— 1) d2it0 + £ (£ -1) (15013 — 205 £2 —18 £ — 6) d%0
6 960

MMA es
1 1

+ xu, ~\ x(x2 — 1) d2% -j x(x— 1) (150a3— 205a:2 — 13 a; — 6) diu1
6 960

1 1

f «o + - f (f2 — 1) &u0 + —— f (£ — 1) (350 f3 — 485 £2 + 3 £ —14) d%0
6 1920

MMC
1 1

-f- xu, + —a(a2— 1) d2«, -| x(x — 1) (350a8 — 485 a2 -f- 3 a —14) d4%
6 1920

Aus diesem Beispiel geht nun hervor, was auch bei anderen

Untersuchungen gefunden wurde, dass die Formel, die in einem
gegebenen Falle die Summe der Quadrate einer bestimmten Differenzenreihe

zu einem Minimum macht, nicht mit der Formel identisch sein

muss, welche die kleinste Summe der absoluten Werte dieser
Differenzenreihe hervorbringt. Auf dieses sicherlich interessante Resultat
soll bei anderer Gelegenheit zurückgekommen werden.

In der Praxis werden im allgemeinen nur Interpolationsformeln
angewendet, die maximal fünf Differenzen berücksichtigen. Wenn man
daher aus theoretischen Gründen Interpolationsformeln mit sieben

Differenzen untersuchen will, so geht man von der Darstellung aus

£u0 + I f (|2 _ i) d*u0 + --L £(£2-1) (£2 _ 4) dX + <p (£) d6 u0
6 120

Vx=^
1 1

-f- xu1 H a(a2— 1) d2u1 -| a(a2— 1) (a2 — 4) öiu1 + <p(%)
6 120
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und erhält durch Differenzierung die folgenden Bedingungsgleichungen:

9>(0) 0

<r' (0) d<s 2 d<s (V (l) — ?' (0)-
y(0) o

<p'" (0) d8Mx 2d6«! (q)'" (1) — q>"' (0) + yj
<p""(0) 0

q>v (0) d»Ul 2d<S (V (1)- q? (0) — 1j
<pVI(0) 0

wobei

q>(x) — a + bx + cx2 J- da? -f- ea:4 -f- fx? + gx6 + hx1

Folgt man dem Entwicklungsgang von Jenkins, um eine
reproduzierende Interpolationsformel mit vier kontinuierlichen Ableitungen
zu erhalten, so ergibt sich aus den Bedingungsgleichungen

a=b c d e= 0

/ + fj + h 0

1

5/ + 6g + Th —
60

1

60/ + 120*7 + 2101*
8

und daher die bereits von Jenkins veröffentlichte Formel

f + ~ | (£2-1) öa«o + -1) (f2- 4) d4«0 --L (f -1) (9 £ -13) d<X
D lJi\) Z4u

y,=
l l l

+ xu, H x(x2- 1) d2w, -| x(x2 — 1) (a:2-4) d4w, x?(x — 1) (9 a:- 18) dX
6 120 240
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Als ausgleichende Interpolationsformel erhält man bei willkürlicher

Nullsetzung von h, wodurch der Grad auf 6 ermässigt wird,

f«O + -1-1 (f2-1) d2u0 + -L1 (f*-l) (|«-4) <5%0 + -i- f5(22-18 f) dX
0 120 1920

y*
i i i

+ xu-.-1 x(x2 — l)ö2u. -{ x{x2 — 1)(x2—4)<54w, + a:5(22 —18x)d6u,
6 120 1920

Wird jedoch / 0 gesetzt, so ergibt sich die Formel

x + ~^2 -1) ÖX + fd2-l) (f2-4) d%0 + —L |6 (35 — 221) ÖX
b 120 oooO

y,=
1 l l

+ xu. -| x(x2 — 1) b2u. -f x(x2 — 1) (x2—4) <54it, -| a;6(35 —22 ai) d6Wj
6 120 3360

Will man eine die Kardinalpunkte reproduzierende Formel
bestimmen, deren erste drei Abteilungen kontinuierlich sind, ergibt sich

die bereits von Jenkins veröffentlichte Formel, während sich nach
der Spragueschen Methode die im Anhang aufgenommenen Formeln
ergeben, die von Reilly in einer anderen Schreibweise mitgeteilt
wurden.

Wird jedoch der Ableitung die Hypothese von verschwindenden
achten Zentraldifferenzen zugrunde gelegt, folgt aus den Bedingungsgleichungen

a=c=e=g=0
1

3d + 5/ + 1h —
60

1

60/ + 210fe
8

1

2520/i —
9,

woraus dann unter der weiteren Annahme, dass die ersten sechs

Ableitungen kontinuierlich sind, die ausgleichende Interpolationsformel
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f«o + 4 f (^2-1) i(£2-l) (l2-4) d%0 + -±- i*(£»_7)2 d«Uo
6 120 5040

1 1 1

-j- xu, -\ x(x2 — l)d2u1 x(x2 — l) (a;2—4) <5%, -j x3(x2 — 7)2 ößv,
6 120 5040

hervorgeht. Die reproduzierende Interpolationsformel verlangt noch

b-\-d-\-f-\-h=0

und als Eesultat gewinnen wir die Konstanten

36 49 14 1
b d / h

5040 5040 5040
'

5040

und als Formel die gewöhnliche Interpolationsformel mit siebenten
Differenzen in Everetts Form.

Wie wir gesehen haben, führen die Ableitungen nach der Spra-
gueschen Methode nicht immer zu denselben Resultaten wie andere
Methoden. Der Unterschied der Ergebnisse wird zum Teil durch den
verschiedenen Reproduktionsgrad bewirkt. Die Methoden von Sprague
und Lidstone führen fast immer auf Formeln, die einen höheren

Reproduktionsgrad aufweisen als die mittels der Funktion <p(x)

abgeleiteten. Die nach beiden Methoden abgeleiteten Formeln fünfter
Ordnung besitzen einen Reproduktionsgrad von 4, während der

Reproduktionsgrad von den mittels der Funktion <p(x) entwickelten
Formeln im allgemeinen nur 8 ist. Dies bewirkt auch, dass der Grad
der Funktion <p(x) bei den Formeln, die dem Spragueschen oder
Lidstoneschen Typus angehören, im allgemeinen höher sein muss.
Da die Lidstonesche Methode nur das letzte Glied der Interpolationsformel

abändert, weisen folglich die mittels seiner Methode abgeleiteten
Formeln einen höheren Reproduktionsgrad auf, als die nach anderen
Methoden gebildeten Formeln. Aus den bisherigen theoretischen
Untersuchungen geht hervor, dass keine dieser Methoden von vornherein
einen sicheren Schluss auf den Verlauf der höheren Differenzenreihen
zulässt, und soll die Untersuchung dieses interessanten Problems bei
anderer Gelegenheit in Angriff genommen werden.
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Praktische Anwendungen

A.

Zunächst soll die Anwendbarkeit der früher abgeleiteten
Interpolationsformel für Intervalldrittelungen auf das von Greville
behandelte Problem gezeigt werden. Bs handelt sich um die Konstruktion
einer Sterbetafel für die farbige Brauenbevölkerung im Staate Georgia
der Vereinigten Staaten. Die Sterbenswabrscbeinlichkeiten weisen

nämlich an den Kardinalpunkten 67 und 72 eine Verminderung auf,
und um diese sicherlich nicht den tatsächlichen Verhältnissen
entsprechende Erniedrigung auszumerzen, fand er nach einigen Versuchen
eine Formel, die jedoch den anderen Nachteil hat, dass sie die
Ablebenswahrscheinlichkeiten bis etwa zum Alter 50 bedeutend ver-
grössert, dann gegenüber den Beobachtungen verringert etc. Da die

beobachtete Unregelmässigkeit besonders bei den Altern 67 und 72

auftritt, können diese beiden Werte einer Ausgleichung unterzogen
werden. Verwendet man z. B. die Ablebenswahrscheinlichkeiten für
die Alter 47, 62, 77 und 92, um das Mittelintervall zu dritteln, erhält
man bei Anwendung der gewöhnlichen Interpolationsformel

<267 0.049015 (original); und 0.054422 (interpolierter Wert);

(/,2 0.047986 (original); und 0.056718 (interpolierter Wert).

Aus der nachstehenden Tabelle ist das Ergebnis zu ersehen,
welches sicherlich den praktischen Wert der Intervalldrittelungen zu
Auge führt. Die Originaldaten stehen in der zweiten Kolonne, die von
Greville bestimmten in der dritten, und die vierte Kolonne enthält
die Werte an den Kardinalpunkten, die bei Anwendung der Formel M 3

resultieren, wenn für die Alter 67 und 72 an Stelle der Originalwerte
.die oben erwähnten interpolierten Werte verwendet werden.
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Alter Einjährige Ablebenswahrscheinlichkeit

x Originalwerte Greville Formel M3

17 0.005276
22 0.007695
27 0.009243 0.00959 0.00921
32 0.010995 0.01228 0.01113
37 0.014991 0.01590 0.01477
42 0.018620 0.02134 0.01887
47 0.026750 0.02895 0.02651
52 0.035785 0.03718 0.03643
57 0.050372 0.04322 0.04955
62 0.053004 0.04764 0.05326
67 0.049015 0.05225 0.05440
72 0.047986 0.05856 0.05648
77 0.062616 0.07252 0.06266
82 0.082948 0.09078 0.08514
87 0.127088 0.10861 0.12358
92 0.129191
97 0.143769

B.

Die Konstruktion der venezolanischen Volkssterbetafel 1941/1942

Im nachstehenden soll nun die Anwendung der neu abgeleiteten
Formel M3 auf die Konstruktion der obigen Sterbetafel gezeigt werden,
der die Volkszählung vom 7. Dezember 1941 und die Sterbefälle der
zwei Jahre 1941/42 zugrunde liegen. Die Wanderungsbewegung wurde
nicht berücksichtigt und hätte auch kaum einen nennenswerten Ein-
fluss ausgeübt, da sie in diesem Zeitraum sehr gering war. Ferner wurde
darauf verzichtet, die Bevölkerung für den 31. Dezember 1941 zu
berechnen, da die geringen Abänderungen sicherlich die Ergebnisse nicht
geändert hätten, denn die aus der Volkszählung sich ergebenden
Besetzungszahlen, die für die einzelnen Alter veröffentlicht wurden,
weisen ganz bedeutende systematische Unregelmässigkeiten auf. Die
Sterbefälle sind nur in 10jährigen Altersgruppen veröffentlicht worden,
mit Ausnahme der ersten 10 Lebensjahre, welche in drei Gruppen
0-1, 1-5 und 5-10 geteilt wurden.

Bei der Volkszählung wurde auch eine Gruppe «unbekannten
Alters» mitgeführt (6908 Personen), die proportionell auf die verschiedenen

Gruppen aufgeteilt wurden, das heisst, die Originalgruppen
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(Kolonne 1) wurden mit 3850771 : 3843863 multipliziert (Kolonne 2).
Die von Deming [38] ausgearbeitete Methode zur Aufteilung dieser

Gruppe konnte nicht angewendet werden, da die erforderlichen
statistischen Unterlagen nicht beschafft werden konnten.

Um aus den Zehnergruppen die gewünschten Fünfergruppen zu
gewinnen, wurden die Zehnerintervalle der aufsummierten Lebenden

(Kolonne 3) und Toten (Kolonne 5) mit Hilfe der gewöhnlichen
Interpolationsformel mit konstanten fünften Differenzen

256 y2-a 3 y0 — 25 y10 + 150 y20 + 150 y3Q — 25 yi0 + 3 y-M

halbiert und so die Werte für die Alter 25, 35, etc. gewonnen.
Der dem Alter 15 entsprechende Wert wurde durch Anwendung der

Palmqvistschen Interpolationsformel [39] aus den Altern 10, 20 und 30

bestimmt. Durch Differenzenbildung wurden — mit Ausnahme der
ersten drei Gruppen — die erforderlichen Fünfergruppen errechnet

(Kolonnen 4 und 6).

Palmqvist geht von der Taylorschen Reihenentwicklung

h2

f (x + h) / (x) + hf (x) + — /" (x)
Ii

aus, macht von der Eulerschen Substitution

h öl z
h

öl -f- h 1 — z

Gebrauch und erhält bei Vernachlässigung von höheren als den zweiten
Potenzen von z

f(x-\-h)=f (x) + a/' (x) z -j- olz2 f{x) + ^f"{x)
A

Der Parameter a wird nun so bestimmt, dass der Koeffizient von
z2 verschwindet.

2 f(x)
a

f"(x)
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Werden die Werte f(x—e), f(x), f{x-\-e) als bekannt vorausgesetzt

und wird der Abstand der Ordinate des gesuchten Wertes von
x mit h bezeichnet, bekommt man nach Durchführung der obigen
Substitutionen die endgültige Formel

f(x + h) f(x)
2fe[/(*)-/(s-e)] [/(* + «)-/(*)]

~[f(x-e)-2f(x) + f(x+e)~] h~[f(x + e)-f(x-e)] e

wobei im gegenwärtigen Falle h 5 und e — 10 zu setzen wäre.

Zur Bestimmung der Besetzungszahlen der Lebenden bzw. Toten
an den Kardinalpunkten für die Alter 7, 12, 17 und 22 wurde von der

gewöhnlichen Interpolationsformel fünfter Ordnung Gebrauch gemacht.

f/7 0.176896 G5 + 0.068416 G10 — 0.074624G15 + 0.086416 Gw — 0.007104 G25

yVi — 0.007104 Gä + 0.212416 G10 — 0.002624 G13 — 0.008584 G20 + 0.000896 Gs

Sl7 0.000896 G5 — 0.011584 G10 + 0.221376 Glä — 0.011584 G20 + 0.000896 G25

und für die übrigen Alter wurde die neue Formel M3 verwendet.

750000 yx+2 - 3187 Gx_i0 + 6748 Gx_& + 142878 Gx + 6748 Gx+5 - 3187G,+10

wobei die Gx die Fünfergruppen (Kolonnen 4 und 6) darstellen. Die

Besetzungszahlen für die Alter 5-9 wurden provisorisch mittels der

gewöhnlichen Interpolationsformel fünfter Ordnung bestimmt.

Die Verstorbenen wurden nur nach vollendeten Geburtsjahren
bekanntgegeben, so dass eine exakte Bestimmung der
Ablebenswahrscheinlichkeiten nicht möglich ist. Da aber festgestellt wurde, dass

die Zahl der Todesfälle innerhalb des ersten Lebensjahres und der
Geburten in den beiden Jahren 1941/1942 nur geringfügige
Änderungen aufweist, wurde die diesem Zeitraum entsprechende
Totengesamtheit durch die im selben Zeitraum Geborenen dividiert 32328:
273649 und der erhaltene Wert als näherungsweise Ablebenswahrscheinlichkeit

für das erste Lebensjahr angenommen. Der tatsächliche
Wert dürfte merklich höher sein, da die Registrierung in manchen
Teilen des Landes mangelhaft ist, und es wurden schon bei anderer

Gelegenheit die diesbezüglichen Daten auf ihre Glaubwürdigkeit hin
untersucht [40].
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Gruppe (1) (2) (8) (4) (5) (6) z IW qx

- 8 380633
0 128325 128556 3850771 128556 125911 32328 - 3 221389
1 449668 450476 3722215 450476 93583 19921 2 111168
5 522646 523585 3271739 523585 73662 5501 7 50362

10 875673 877247 2748154 465401 68161 3208 12 33119
15 2282753 411846 64953 3939 17 47343
20 694940 696189 1870907 380528 61014 5649 22 74694
25 1490379 315661 55365 5719 27 90588
30 466747 467585 1174718 256140 49646 5506 32 107134
35 918578 211445 44140 5321 37 125289
40 342535 343151 707133 188086 38819 5403 42 142864
45 519047 155065 33416 5049 47 162482
50 194908 195258 363982 112827 28367 4296 52 188567
55 251155 82431 24071 4053 57 243663
60 107864 108058 168724 63496 20018 4321 62 335845
65 105228 44562 15697 4016 67 442691
70 40379 40452 60666 25913 11681 3144 72 592847
75 34753 14539 8537 2552 77 849421

80 15753 15781 20214 9780 5985 2247 82 1100880

85 10434 6001 3738 1728 87 1354092

90 3804 3811 4433 2734 2010 1036 92 1746773
95 1699 1077 974 557

100 621 622 622 417

3843863
6908

3850771

Schwierigkeiten ergaben sich auch bei der näherungsweisen
Bestimmung der Ablebenswahrscheinlichkeiten in der Altersgruppe 1-4.
Zunächst wurde eine Näherungsformel verwendet [41], die unlängst
vom theoretischen und praktischen Standpunkt aus näher untersucht
wurde [42], Es hat sieb nämlich gezeigt, dass nach den in den

Vereinigten Staaten Nordamerikas vorhandenen Statistiken mit ziemlicher

Genauigkeit die Ablebenswahrscheinlichkeiten durch das zentrale
Sterblichkeitsverhältnis der faktischen Bevölkerung

nqx 1 e~nnmx (a~Kmx)

für Gruppen dargestellt werden kann, wobei sich für x i, n 4

die Werte
a 0.9806, b 2.079

ergaben,
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folglich 4mt 19921 : 900952 0.022111

oder 4^ — 0.079337,

doch scheint dieser Wert etwas zu klein zu sein. Dann wurde für diese

Altersgruppe mittels des zentralen Sterblichkeits Verhältnisses der
Ausdruck

/ 2 4mx Y
4Sx=l— 1 —— 0.084649

V 2 + 4% /
berechnet, der den tatsächlichen Verhältnissen eher zu entsprechen
scheint. Um nun die Ablebenswahrscheinlichkeiten für die einzelnen
Alter zu bestimmen, wurden auf Grund der erhaltenen Werte

l0 100000 88186

l5 80721 l9 78945

durch neuerliche Anwendung der Palmqvistschen Formel die Lebenden
für die Alter 1-5 bestimmt und daraus die Ablebenswahrscheinlichkeiten

für die ersten 5 Altersjahre gewonnen. Im Intervall 5-9 scheinen
die auf diese Art errechneten Werte zuerst etwas zu hoch und dann
etwas zu niedrig zu sein. Es wurde auch der Versuch gemacht, die

gesuchten Werte durch Anwendung einer von Oppermann [43]
stammenden Formel, die durch Hinzufügen eines Gliedes etwas anpassungsfähiger

gemacht wurde [44], zu erhalten

— l°g nVx — a V x + fr x + cx Kx + dx2

aber die Resultate unterscheiden sich nur unwesentlich. Die
Ablebenswahrscheinlichkeiten, die für die Kardinalpunkte 7, 12,17, 22, 27

bestimmt wurden, wurden unter der Annahme von konstanten vierten
Differenzen verlängert und durch Anwendung der Formel M3
endgültig die Sterbenswahrscheinlichkeiten für die Alter 5 bis 71 berechnet.
In den höchsten Altern scheinen die vorhandenen Daten durch
unrichtige Altersangahen von den tatsächlichen Verhältnissen sehr
abzuweichen, da die Ablebenswahrscheinlichkeiten überaus niedrig
ausfallen. Wir haben daher durch Extrapolation mit konstanten vierten
Differenzen die Ablebenswahrscheinlichkeiten vom Alter 71 an bis

2«
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zum Schluss der Tafel bestimmt und dadurch erreicht, dass die
Tafelbevölkerung als höchstes Alter 100 erreicht. Zur Berechnung der
Werte wurde von der nachstehenden Tabelle Gebrauch gemacht, wobei
die Werte

%7 =- 0.0441686, zE= 0.0025062, A2 0.0002242, A3 0.0000869, Ai 0.0000020

verwendet wurden.

Tabelle der zur Extrapolation erforderlichen Koeffizienten

A1 A2 A3 A4 A1 A2 A3 Ai

l 21 210 1330 5985
2 1 — 22 231 1540 7315

3 3 1 — 23 253 1771 8855
•1 6 4 l 24 276 2024 10626

5 10 10 5 25 300 2300 12650
6 15 20 15 26 325 2600 14950
7 21 35 35 27 351 2925 17550
8 28 56 70 28 378 3276 20475
9 36 84 126 29 406 3654 23751

10 45 120 210 30 435 4060 27405
11 55 165 330 31 465 4495 31465
12 66 220 495 32 496 4960 35960
13 78 286 715 33 528 5456 40920

14 91 364 1001 34 561 5984 46376
15 105 455 1365 35 595 6545 52360
16 120 560 1820 36 630 7140 58905
17 136 680 2380 37 666 7770 66045

18 153 816 3060 38 703 8436 73815

19 171 969 3876 39 741 9139 82251

20 190 1140 4845 40 780 9880 91390

Die Bechnung wurde mit 7 Dezimalen durchgeführt, und dann
wurden die Werte auf 5 Stellen abgerundet. Die fünften Differenzen
zwischen den Altern 17 und 66 wurden mit 7 Dezimalstellen in die

Tabelle aufgenommen, da der Grossteil der Differenzen geringer als

eine Einheit der fünften Dezimale ist.
Der Vollständigkeit halber wurde auch ein Vergleich der tatsächlichen

und erwartungsgemässen Sterbefälle vorgenommen. Bei
Berechnung der erwartungsgemässen Sterbefälle fur jedes Altersjahr auf
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Grund der Volkszählungsdaten ergeben sich in jeder Fünfergruppe
weniger erwartungsgemässe als tatsächliche Sterbefälle, eine logische
Folge der Überbesetzung der auf Null und Fünf endenden Alter, der

Anfangsalter in jeder Gruppe. Wir haben daher ein durchschnittliches
zentrales Sterblichkeitsverhältnis für die Fünfergruppen nach der

Formel

^X ^£+ 5
^;C

: 5

-0mx

tx-Tx+5 vzs_i^_zi+6)
z=o A

gebildet und die erwartungsgemässen Sterbefälle mittels

2G, • bmx

berechnet. Das Ergebnis für die Alter 5-70 ist in der folgenden Tabelle
verzeichnet.

Sterbefälle

Altersgruppe E erwartungsgemässe T ----- tatsächliche E—T

5- 5500 5501 -1
10- 3224 3208 16

15- 3966 3939 27

20- 5578 5649 -71
25- 5764 5719 45

30- 5524 5506 18

35- 5320 5321 -1
40- 5410 5403 7

45- 5066 5049 17

50- 4327 4296 31

55- 4096 4053 43

60- 4308 4321 -13
65- 4021 4016 5

1 62104 61981 123

Das Vorherrschen von positiven Abweichungen und deren geringe
Grösse muss als zufriedenstellendes Ergebnis angesehen werden, da

die Besetzungszahlen der einzelnen Alter in der tatsächlichen
Bevölkerung schneller abnehmen als in der Sterbetafelbevölkerung.
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Venezolanische Volkssterbetafel (Männer und Frauen) 1941/1943

X h dx 1°53X
0

ex WA*qx

0 100.000 11.814 11.814 46.68
1 88.186 3.467 3.931 51.87
2 84.719 1.924 2.272 52.97
3 82.795 1.226 1.480 53.19
4 81.569 848 1.040 52.98
5 80.721 559 692 52.53
6 80.162 472 589 51.90
7 79.690 402 505 51.20
8 79.288 348 439 50.46
9 78.940 308 390 49.68

10 78.632 280 356 48.87
11 78.352 265 338 48.04
12 78.087 260 333 47.20
13 77.827 265 341 46.36
14 77.562 280 361 45.52
15 77.282 303 391 44.68
16 76.979 331 430 43.85
17 76.648 364 475 43.04 55
18 76.284 401 526 42.24 54
19 75.883 441 581 41.56 84

20 75.442 480 636 40.70 -30
21 74.962 515 688 39.96 -60
22 74.447 548 736 39.23 -61
23 73.899 576 779 38.52 -57
24 73.323 598 816 37.82 -1
25 72.725 617 848 37.13 38
26 72.108 634 879 36.44 14
27 71.474 649 909 35.76 10
28 70.825 666 940 35.08 9
29 70.159 681 971 34.41 -7
30 69.478 698 1.004 33.74 -7
31 68.780 714 1.038 33.08 9

32 68.066 730 1.072 32.42 10
33 67.336 746 1.108 31.77 10
34 66.590 761 1.143 31.11 2
35 65.829 777 1.180 30.47 -6
36 65.052 791 1.216 29.83 -4
37 64.261 804 1.251 29.19 -4
38 63.457 816 1.287 28.55 -5
39 62.641 828 1.322 27.92 -13
40 61.813 839 1.357 27.29 1

41 60.974 849 1.392 26.66 19
42 60.125 859 1.428 26.03 21
43 59.266 868 1.465 25.40 22
44 58.398 877 1.502 24.77 25
45 57.521 886 1.540 24.14 -10
46 56.635 894 1.579 23.51 -40
47 55.741 903 1.620 22.87 -42
48 54.838 911 1.662 22.24 -37
49 53.927 921 1.708 21.61 17



— 397

X L 4 105qx
0

50 53.006 933 1.760 20.98 28
51 52.073 948 1.820 20.34 -16
52 51.125 966 1.890 19.71 -21
53 50.159 990 1.972 19.08 -26
54 49.169 1016 2.068 18.46 -65
55 48.153 1049 2.178 17.83 4
56 47.104 1085 2.304 17.22 97
57 46.019 1126 2.446 16.61 104
58 44.893 1169 2.603 16.02 97
59 43.724 12] 2 2.774 15.43 5

60 42.512 1258 2.957 14.86 -64
61 41.254 1298 3.148 14.30 -27
62 39.956 1336 3.344 13.75 -21
63 38.620 1369 3.544 13.20 -1
64 37.251 1397 3.749 12.67 172
65 35.854 1420 3.961 12.15 36
66 34.434 1440 4.183 11.63 -243
67 32.994 1457 4.417 11.11
68 31.537 1472 4.667 10.60
69 30.065 1486 4.941 10.10
70 28.579 1499 5.245 9.59
71 27.080 1513 5.589 9.10
72 25.567 1530 5.982 8.61
78 24.037 1546 6.434 8.12
74 22.491 1564 6.953 7.65
75 20.927 1580 7.550 7.18
76 19.347 1593 8.235 6.73
77 17.754 1601 9.017 6.29
78 16.153 1600 9.907 5.86
79 14.553 1589 10.915 5.45
80 12.964 1562 12.052 5.05
81 11.402 1520 13.329 4.68
82 9.882 1458 14.757 4.32
83 8.424 1377 16.348 3.98
84 7.047 1277 18.112 3.66
85 5.770 1157 20.061 3.36
86 4.613 1025 22.208 3.08
87 3.588 881 24.565 2.82
88 2.707 735 27.143 2.57
89 1 .972 591 29.955 2.34
90 1.381 456 33.014 2.13
91 925 336 36.333 1.93
92 589 235 39.925 1.75
93 354 155 43.803 1.58
94 199 96 47.981 1.43
95 103 54 52.472 1.30
96 49 28 57.291 1.16
97 21 13 62.451 1.03
98 8 5 67.966 0.92
99 3 2 73.851 0.82

100 1 1 80.122 0.73
101 0.131 86.792 0.64
102 0.017 93.877 0.55
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C.

Mit vollem Recht wurde bemängelt, dass die bisher auf dem Gebiete
der Interpolationsrechnung veröffentlichten Arbeiten viele Formeln
enthalten, aber nur wenige kritische Vergleiche ihrer Resultate. Da

nun der Wert von Interpolationsformeln insbesondere von den
praktischen Resultaten abhängt, die durch ihre Anwendung erzielt werden,
so wurden in den folgenden Tabellen für das von Beers gewählte
Beispiel die Werte der fünften Differenzen nach einigen Interpolationsformeln

mit fünften Differenzen aufgenommen. Es handelt sich dabei

um die Ausgleichung von «dem Ablebensrisiko ausgesetzten Personen»,
deren Originaldaten in Fünfergruppen veröffentlicht wurden [45],
Im nachstehenden sind die erforderlichen Grundzahlen mit ihren
Differenzen vermerkt.

X
X

"7]II5-i
A2 A3 A4 A'°

15 24815151 247705 592450 493893 -413830 -34233
20 245G774G 840155 1086343 80063 -448063 471954
25 23727591 1926498 1166406 -368000 23891 -475078
30 21801093 3092904 798406 -344109 -451187 599283
35 18708189 3891310 454297 -795296 148096 371636
40 14816879 4345G07 -340999 -647200 519732 -152937
45 10471272 4004608 -988199 -127468 366795 -337368
50 G46GG64 3016409 -1115667 239327 29427 -4413
55 3450255 1900742 -876340 268754 25014 -102665
CO 1549513 1024402 -607586 293768 -77651
65 525111 416816 -313818 216117
70 108295 102998 -97701
75 5297 5297
80 0

Wenn auch ein Beispiel nicht genügt, um über den Wert einer
Formel im Vergleich zu anderen ein endgültiges Urteil zu fällen, so

lassen doch die Ergebnisse erkennen, welche Formel gute Resultate
erwarten lässt. Es hängt natürlich auch von den zu interpolierenden
Werten und insbesondere vom Verlauf ihrer Differenzen ab, welche

Interpolationsformeln im gegebenen Falle die besseren Resultate
ergeben. Aus der Tabelle geht hervor, dass von den reproduzierenden
Interpolationsformeln die Formeln MMA, MMC, MMT und dievonBeers
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fast gleichwertige Resultate ergeben. Unmittelbar folgen die Formeln
von Henderson vom Jahre 1906 sowie die von Shovelton und in
weiterem Abstände die oskulatorischen und ganz zuletzt die Formel von
Henderson vom Jahre 1921. Alle diese Formeln sind weit davon
entfernt, um auf Grund des neu aufgestellten Glättekriteriums als
zufriedenstellend bezeichnet zu werden. Der Grund liegt eben darin,
dass verlangt wird, dass die Originalwerte unverändert bleiben sollen.

Von den ausgleichenden Interpolationsformeln gibt wohl die
Formel M 3 weitaus die besten Resultate, die fünften Differenzen liegen
auf einer kontinuierlichen Wellenlinie, ohne irgendwelche Sprünge
aufzuweisen. Wenn man von der Kontinuität der Grösse und des

Vorzeichens absieht, kommen unmittelbar die Formeln M 4 A und M 2,

doch bemerkt man bei der Formel M4A deutlich den bereits früher
erwähnten Sprung innerhalb jedes Fünferintervalles. Dasselbe wäre

übrigens auch von der ausgleichenden Formel von Jenkins zu sagen,
die erst in weitem Abstände folgt.

Wenn die zu interpolierenden Werte nur aus wenigen Ziffern
bestehen, 3-5ziffrige Grössen z. B., dann werden natürlich die Sprünge
nicht so deutlich in Erscheinung treten.

Da die beiden ersten und die letzten zwei Intervalle nicht mit
derselben Interpolationsformel untergeteilt werden können und die

Lösung dieses Problems nicht als einheitlich bezeichnet werden kann,
so wurden nur die interpolierten Werte der übrigen Intervalle
berücksichtigt. Aus demselben Grunde wurde auch das Problem der

ungleichen Intervalle nicht behandelt.

Ergänzend wäre noch zu bemerken, dass die Behandlung von
Interpolationsformeln, die eine gerade Anzahl von Differenzen
berücksichtigten, theoretisch keine neuen Ergebnisse bringt. Es ist nur zu

berücksichtigen, dass in diesen Fällen nicht ein Mittelintervall
interpoliert wird, sondern dass der Mittelpunkt des Interpolationsintervalles
mit den Kardinalpunkten zusammenfällt. Aus diesem Grunde hat
Greville die treffenden Bezeichnungen Endpunkt- und Mittelpunktformel

angewendet.
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Fünfte Differenzen von Beers' Beispiel, gerechnet nach den Formeln

X MMA Hl 90G SH H1921 M 3 M4 A M 2 M4 JM

25 -205 0 0 0 -44 -11 0 -52 0
26 1131 524 1332 2102 -82 -178 -210 -1247 -710
27 -1967 -4264 -3182 -10566 -380 -481 -514 -1268 -2130
28 -1360 1346 -145 10566 -23 621 835 776 2130
29 1232 2394 2345 -2102 555 318 240 1284 710

30 2832 0 0 0 604 151 0 717 0
31 86 653 934 -5019 594 464 421 120 242
32 580 2000 2853 16511 335 1030 1262 -139 727
33 -556 -1979 -2829 -16511 -332 -1031 -1264 142 -727
34 -103 -674 -960 5019 -598 -465 -421 -120 -242
35 -2850 0 0 0 -608 -152 0 -722 0
36 228 -904 -553 5128 -609 -507 -473 -1302 -840
37 -1117 -4367 -3695 -20427 -435 -1149 -1387 -979 -2521
38 173 3539 2751 20427 321 1189 1478 839 2521
39 443 1732 1596 -5128 743 547 482 1312 840

40 3596 0 0 0 767 192 0 911 0
41 2644 3586 4306 -1017 668 267 134 463 248
42 -3553 -2189 -3007 4538 -366 403 660 -221 744
43 -3826 -4284 -4372 -4538 -527 -92 52 -871 -744
44 2599 2887 3850 1017 381 44 -69 -381 -248
45 2230 0 0 0 476 119 0 565 0
46 643 1772 1443 -2105 448 292 240 1474 810
47 -516 2399 743 11172 84 606 780 1076 2429
48 -1146 -3857 -2405 -11172 -285 -536 -619 -1321 -2429
49 538 -314 394 2105 -212 -222 -226 -1455 -810

50 -918 0 0 0 -196 -49 0 -232 0
51 -1305 -1022 -1875 -495 -147 12 66 1002 530
52 1974 3470 2416 4664 290 122 66 1161 1590
53 1753 -202 1310 -4664 161 -279 -426 -610 -1590
54 -1342 -2246 -2244 495 -381 -169 -98 -1044 -530
55 -2024 0 0 0 -432 -108 0 -513 0
56 -956 -1322 -1768 1815 -394 -218 -159 48 -35
57 1099 591 300 -5654 40 -417 -569 337 -104
58 1499 1688 2298 5654 274 308 319 47 104
59 -890 -957 -1103 -1815 25 109 137 -76 35

60 -26 0 0 0 -6 -1 0 -7 0
61 -279 -258 -351 -491 4 31 40 70 55
62 466 653 702 1803 84 90 92 102 166
63 348 61 112 -1803 15 -124 -170 18 -166
64 -299 -456 -548 491 -120 -65 -47 -79 -55
65 -616 0 0 0 -131 -33 0 -156 0

-25854 -29295 -29037 -93507 -6308 -6287 -6652 -12795 -13881
26094 29295 29685 93507 6869 6915 7304 12464 13881

Total 51948 58590 58722 187014 13177 13202 13956 25259 27762



— 401

Fünfte Differenzen von Beers' Beispiel, gerechnet nach den Formeln

Formel
Summe der Differenzen Summe der

absoluten Werte
negative Werte positive Werte

UMA 25854 26094 51948

MMC 25895 26061 51956

BM 26168 26476 52644
MMB 26516 26890 53406
GM 26831 27273 54104
MMT 27100 27585 54685
H190G 29295 29295 58590
SH 29037 29685 58722
SP 45553 45654 91207
J3 47879 44284 92163

J2 50120 47531 97651

R3 56367 55851 112218

B 57968 58612 116580

J4 64944 60377 125321

R4 79432 78303 157735

H1921 93507 93507 187014

M3 6308 6869 13177

M4A 6287 6915 13202

M2 6652 7304 13956

VB 8037 9330 17367

M4 12795 12464 25259

JM 13881 13881 27762

VC 24815 27403 52218

VA 30890 29596 60486

VM 81424 82515 163939



Interpolationsformeln dritter, fünfter und siebenter Ordnung

(1) Bezeichnung. (2) Name des Autors. (3) Veröffentlicht in: (4) Grad. (5) Reproduktionsgrad. (6) Kontinuierliche Ableitungen.

(1) (2) (3) (4) (5) (6) <p(x) 99(1)

Interpolationsformeln dritter Ordnung

Everett JIA, XXXV. 3 3 0 x(x2 - 1): 6 0

KK Karup 2-te IVK. 3 2 1 x2(x - 1): 2 0
G105 Greville TASA, XLV. 5 2 1,2 -a:3(a:-l)(2 i-3): 2 0
3M4 Michalup — 5 1 1-3 i,(5-2I): 20 3/20

Greville RAIA, XXXIV. 5 2 0 - x(x - 1) (50 x3 - 75 x2 - 67 x - 2): 192 0

Michalup — 5 2 0 - x(x - 1) (50 x3 - 75 x-- 11 x - 6): 96 0

Michalup 3 2 0 x(x-1) (22 x + 1): 48 0

Interpolationsformeln fünfter Ordnung

SH Shovelton JIA, XLVII. 4 4 1 x2(x - 1) (a; - 5): 48 0

Hl906 Henderson TASA,IX. 3 3 1 x2(l - x): 12 0
BT Beers TASA, XLVI. 4 3 1 i!(1-3I+ x2): 36 -1/36
Ml Michalup — 4 3 1 x2 (85 x2 - 198 a; -43): 4080 -13/340
G110 Greville TASA, XLV. 3 3 1 x2(x — 2): 12 -1/12
MMT Michalup — 5 4 1 a:2(a: - 1) (145 x'- - 168 x - 175): 2376 0
Hl 921 Henderson TASA, XXII. 3 3 2 s(l - x2): 36 • 0

Michalup — 4 3 2 x(x - 1) (3 a;2 - 5): 144 0

SP Sprague JIA, XXII. 5 4 1,2 a:3(x - 1) (5 a: - 7): 24 0



B Buchanan JIA, XLII. 5 3 1,2 x3{x - 1) (3 x - 4): 12 0

J2 Jenkins RAIA, XV. 4 3 1,2 ®3(1 —z):12 0

JM Jenkins TASA, XXVIII. 3 3 1,2 - xs: 36 -1/36
Gill Greville TASA, XLV. 4 3 1,2 i3(2I-3): 12 -1/12
VA Vaughan JIA, LXXII. 4 3 1,2 r3(2-3r)i 72 -1/72
VB Vaughan JL4, LXXII. 4 3 1,2 x3(x - 2): 24 -1/24
VC Vaughan JIA, LXXII. 4 3 1,2 z3(3 x-5): 36 -1/18
M2 Michalup — 4 3 1,2 i3(3I-8): 144 -5/144
M4A Michalup — 5 3 2,4 xs (x2 - 5): 120 -1/30
J3 Jenkins RAIA, XV. G 3 1-3 xi(x - 1) (7 x - 11): 48 0

M3 Michalup — 5 3 1-3 x*(S x- 15): 240 -7/240
R3 Reilly RAIA, XIII. 7 4 1-3 xi(x- 1) (- 14 x2 + 35 x - 23): 24 0

M4 Michalup — 6 3 1-4 x3 (15 x -26): 480 -11/480
J4 Jenkins RAIA, XV. 7 3 1-4 xs (x - 1) (11 x - 1G): 60 0

R4 Reilly RAIA, XIV. 9 4 1-4 xs (x - 1) (46 x3 - 161 z3+ 193 a;-80): 24 0

M5 Michalup — 8 3 1-5 - a;6 (504 - 536 x + 147 x2): 5376 -115/5376
5M Michalup — 9 3 1-5 x6 {x - 1) (- 46 x2 + 137 x - 105): 168 0

M6 Michalup — 9 3 1-6 - x7 (48 x2 -159x+ 136): 1344 -25/1344
6M Michalup — 10 3 1-G x7 (x- 1) (- 75 x2+ 211 a:-152): 192 0

M7 Michalup — 11 3 1-7 - a:8(- 60 x3 + 297 x2 - 506 x + 297): 1584 -28/1584
BM Beers RAIA, XXXIII. 5 4 0 x(x - 1) (50 a:3 - 67 x2 - 11 x - 2): 384 0

GM Greville RAIA, XXIV. 5 4 0 a:(a; - 1) (150 a:3 - 185 x2 - 121 x - 2): 1920 0

MMA Michalup — 5 4 0 x (x - 1) (150 xs - 205 a;2 - 13 x - 6): 960 0

MMB Michalup — 5 4 0 a:(a; - 1) (50 a:3 - 65 x2 - 21 x - 2): 480 0

MMC Michalup — 5 4 0 x(x-l) (350 x3 - 485 x2 + 3 x- 14): 1920 0

VM Vaughan JIA, LXXII. 5 3 0 x(- 625 x4 + 3125 a:3 - 3625 a:2 + 175 x - 514): 24000 -0.061
BM4 Beers RAIA, XXXIV. 5 3 0 a; (625 a;4 - 1825 a;2 - 780 s - 84): 48000 -0.043
GM4 Greville RAIA, XXXIV. 5 3 0 x(1250 x4 -f 13125 a:3 - 24500 x2 -1425 x -1362): 240000 -0.0538



(1) (2) (3) (4) (5) (6) (p(x) 9>(1)

Interpolationsformeln siebenter Ordnung

Jenkins RAIA, XV. 7 5 1-4 -I'(i-1)(9I- 13): 240 0

Miehalup — 7 5 1-4 a:8(35 - 22 x): 33G0 13-3360
Miehalup — 6 5 1-4 a:5 (22 - 13 x): 1920 3/G40
Miel mlup — 7 5 1-4 a;5(35 - 13 x2): 5040 11/2520
Jenkins RAIA, XV. (i 5 1-3 - xi(x- 1) (29 x - 45): 960 0

Reilly RAIA, XIII. 5 5 1,2 x3(x - 1) (- 8 x -1- 11): 180 0

Reilly RAIA, XIII. 7 (i 1-3 xl{x - 1) (89 x2 - 222 x + 145): 720 0

Reilly RAIA, XIV. 9 G 1-4 x* (x-l) (-290 x3 -i- 1015 x2 - 121G x + 503): 720 0
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