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Theorie und Anwendung
der «oskulatorischen» Interpolationsformeln®

Von Erich Michalup, Caracas, Venezuela

Die Anwendung der Becker-Zeunerschen Methode zur Berechnung
von Volkssterbetafeln hat zur Voraussetzung, dass bei der Volks-
zithlung nach dem Geburtsdatum gefragt wird und dass die Statistik
der Sterbefille Geburts- und Todestag ausweist. Eine diesbeziigliche
Resolution wurde vom Internationalen Statistischen Kongress im
Haag [1] auf Antrag von Baumhauer gefasst. Dieser Forderung wurde
in der Schweiz durch das am 1. Jénner 1876 in Kraft getretene Bundes-
gesetz betreffend Feststellung und Beurkundung des Zivilstandes und
die Ehe [2] Rechnung getragen, und die bisher verdffentlichten all-
gemeinen schweizerischen Volkssterbetafeln [8] wurden mit zwei Aus-
nahmen [4] nach der Becker-Zeunerschen Methode berechnet. Die
beiden Tafeln 1881/1888 und 1889/1900 wurden auf Grund der
Bockhschen Methode konstruiert, doch konnte Steiner-Stoss fest-
stellen [5], dass es vom praktischen Standpunkt aus nebensichlich
ist, ob die Becker-Zeunersche Methode oder die Bockhsche zur An-
wendung gelangt, da die festgestellten Abweichungen nicht einmal
die Grosse der Differenzen erreichen, die durch die Ausgleichung
bewirkt werden.

Wihrend nun in den meisten Staaten des européischen Kontinentes
die Becker-Zeunersche Methode zur Anwendung gelangt, die eine
theoretisch einwandfreie Grundlage hat, wird in England, den Domi-
nions, in den Vereinigten Staaten Nordamerikas und in Lateinamerika
bei den Volkszihlungen im allgemeinen nur nach den vollendeten
Altersjahren gefragt, wodurch es unmoglich gemacht wird, eine Volks-
sterbetafelkonstruktion nach Becker-Zeuner durchzufiihren.

1) Zu dieser Arbeit wurde ich durch eine Bemerkung des Herrn Dr. Renfer
In seinem Jubiliumsbericht «Vierzig Jahre Vereinigung schweizerischer Ver-
sicherungsmathematiker» (Mitteilungen, Band 45/2, Seite 182) angeregt.
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Die Frage nach vollendeten Altersjahren bringt nun Resultate
hervor, deren Genauigkeit zum Teil vom Grade des Bevélkerungs-
niveaus abhiéngt, und ibr Studium hat eine umfangreiche Literatur
hervorgebracht [6]. Der bemerkenswerteste systematische Fehler, der
bei allen diesen Volkszdhlungen immer wieder, wenn auch in ver-
schiedener Stirke, auftritt, ist die Uber- bzw. Unterbesetzung einzelner
Altersklassen, weshalb bei der Verarbeitung der Volkszéhlungs-
ergebnisse immer Gruppen gebildet werden miissen, um zu annehm-
baren Ergebnissen zu gelangen. In fritheren Jahren wurden die Volks-
zahlungsergebnisse nur in Finfer- oder Zehnergruppen verdffentlicht,
und die Besetzung der einzelnen Altersklassen musste durch Anwen-
dung von Interpolationsformeln bestimmt werden. Wenn aber zwischen
den Werten einer Reihe neue Werte durch Anwendung der gewdhn-
lichen Interpolationsformeln gewonnen werden sollen, so werden im
allgemeinen in den hoheren Differenzen gewisse Diskontinuitéten auf-
treten. Um nun diese Erscheinung auszumerzen, wurde ein doppeltes
Verfahren angewendet, und zwar wurden die gesuchten Werte pro-
visorisch durch Anwendung der gewdhnlichen Interpolationsformel
mit konstanten vierten Differenzen und dann endgiiltig mittels der
sogenannten Sinuskurve

1 14 T 0 9
—_— coSs <z <
2 10

berechnet. Diese mithevolle Methode wurde verlassen, als Sprague [7]
eine neue Interpolationsformel ableitete, und zwar so, dass die auf-
einanderfolgenden Interpolationskurven an den gemeinsamen Punkten
sowohl gleiche Tangenten als auch gleiche Kritmmungsradien aufweisen.

Um zwischen den Punkten u, und w%; zu interpolieren, werden
zwel biquadratische Parabeln bestimmt. Die erste geht durch die
5 Punkte u_, bis u,, und die zweite durch die 5 Punkte u_, bis us.
Durch Gleichsetzung des ersten und zweiten Differentialquotienten
der beiden Partialkurven und aus der Bedingung, dass die Inter-
polationskurve durch die beiden Punkte %, und u, hindurchgehen soll,
werden die 6 Konstanten einer Parabel funften Grades bestimmt,
woraus schliesslich die gesuchte Gleichung der Interpolationskurve
hervorgeht. Karup hat auf Grund des Gedankenganges von Sprague
eine Formel abgeleitet [8], die nur den ersten Differentialquotienten
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berticksichtigt, so dass sie nicht mehr oskulatorisch, sondern nur noch
tangierend ist. Da an die Interpolationskurve weniger Bedingungen
gestellt werden, verwendet die Karupsche Formel nur vier gegebene
Werte, wihrend Sprague deren sechs bendtigt. Karups Formel wurde
dann spéter auf eine andere Art von King abgeleitet.

Der Effekt sowohl der Spragueschen als auch der Karup-Kingschen
Interpolationsformeln war nun tatsichlich eine merklich glattere Ver-
bmdungskurve, doch erwihnte Lidstone in der Diskussion von Kings
Arbert[9], dass die dritten Differenzen der interpolierten Werte in vielen
Fillen in der Mitte der Finfergruppen etwas heftige Spriinge auf-
weisen. Diese Bemerkung scheint bisher nicht weiter untersucht worden
zu sein und wird darauf spiter noch zurtickgekommen. Lidstone [10]
zeigte auch, wie die Spraguesche und die Karupsche Interpolations-
formeln auf einem etwas anderen Wege entwickelt werden konnen,
und zwar verwendet er die von Karup erwihnte Tatsache, dass sich
diese beiden Formeln von den gewdéhnlichen Interpolationsformeln
nur durch das letzte Glied unterscheiden, das derart konstruiert ist,
dass eben an den Punkten, wo die Interpolationskurven zusammen-
stossen, eine glatte Verbindung eintritt. Buchanan [11] hat nun auf
diesem Gebiete das erstemal die von Sheppard [12] eingefithrte Zentral-
differenzenbezeichnung in der von Kverett [13] entwickelten Form
angewendet. Durch Finfithrung der beiden Operatoren

1
5%:@%—%_%; yuez—g(u%—{—u_%)
ergibt sich die zweite Zentraldifferenz
’ 02Uy = Uy — 21Uy + U 4 (= A%u )

und die vierte Zentraldifferenz wird
0%y = uUg— 4y + 6ug—4u_; + u_y (= A*u_y)

Die Newton-Stirlingsche Interpolationsformel schreiben wir nun,
indem die Bezeichnungsweise von Liechti [14] etwas abgeindert wird,

y | e P x (22—1) e 2% (22—1)
z == Uy + +— A+ ———— AUy + —
o+ AUy .07 0T o3 " 1.9.8.4 1.2.8.4.5

z(x?—1) (z2—4)

24

Aty + APug+ ...
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Die Entfernung von wu, sei z und die Entfernung von w, sei &,
so dass x4 &= 1, woraus sich die folgende transformierte Formel

g1y . ¢ (i==l) (5%}
§u0+—-~6——c32u0+ ™ Mg+ ...
Y =
z (22—1) xz(x?—1) (2 —4)
+ Uy 4 By Huy + ..
: 6 120
ergibt.

Es werden von Buchanan drei kubische Parabeln bestimmt. Die
erste (A) geht durch die Punkte u_, bis %, hindurch, die zweite (B)
durch die Punkte w_, bis u, und die dritte (C) durch die Punkte 1,
bis ug. Um nun zwischen w, und %, zu interpolieren, wird eine Parabel
tunften Grades bestimmt, wobei der Wert des ersten und zweiten
Differentialquotienten im Punkte w, gleich ist dem arithmetischen
Mittel der entsprechenden Werte der beiden Kurven (A) und (B),
und im Punkte w, gleich ist dem arithmetischen Mittel der entspre-
chenden Werte der beiden Kurven (A) und (C).

An dieser Stelle mége eine Arbeit von Gini [15] erwithnt werden,
der ebenfalls Partialkurven und die frither erwihnte Bildung von
Mittelwerten anwendet und zu einer Formel gelangt, die es ermoglicht,
die Besetzungszahlen der einzelnen Alter durch die Finfergruppen
auszudriicken, wihrend die bisher erwihnten Formeln z. B. die von
der hochsten Altersgruppe an aufsummierte Reihe interpolieren, um
durch Differenzenbildung die Besetzungszahlen der emzelnen Alter
zu finden. Es scheint bis jetzt unbekannt gewesen zu sein, dass die
Formel von Gini, die tbrigens bisher weder in der englischen noch
nordamerikanischen Literatur erwihnt wurde, mit der Buchananschen
Formel identisch ist, ein Umstand, der auch bei Besprechung von
Ginis Arbeit im Journal des englischen Aktuarinstitutes [16] iber-
sehen wurde.

Auf der von Buchanan verwendeten Mittelbildung basiert auch
eme von Shovelton verdffentlichte tangierende Interpolationsformel
[17]. Um zwischen u, und w, zu interpolieren, bestimmt er zwei bi-
quadratische Parabeln, die durch die Punkte u, bis uy (A) bzw.
14 bis ug (B) hindurchgehen und eine Interpolationskurve vierten
Grades, welche dieselbe Tangente wie die Kurve (A) im Punkte u,
und wie die Kurve (B) im Punkte w; hat. Als weitere Bedingung ver-
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langt er, dass der Durchschnittswert der Ordinaten der Interpolations-
kurve zwischen u, und w, gleich ist dem arithmetischen Mittel der
Durchschnittswerte der Ordinaten der beiden Kurven (A) und (B)
im selben Intervall.

Die Mitarbeit der nordamerikanischen Aktuare hat verhaltnis-
missig frith eingesetzt, denn bereits im Jahre 1906 entwickelte
Henderson [18] eine tangierende Interpolationsformel, die ihnlich
gute Resultate liefert wie die schon erwéihnte Formel von Shovelton.
In zwel Arbeiten von Reilly [19], die aus theoretischen Griinden sehr
bemerkenswert sind, wird eine Verallgemeinerung der Methoden von
Sprague und Lidstone gegeben, und es wird das interessante Resultat
gewonnen, dass die beiden Methoden nur dann zur selben Formel
fithren, wenn der Grad des Polynoms das Doppelte des Kontakt-
grades nicht ibersteigt.

Das den bisher erwihnten KEntwicklungen zugrunde liegende
Prinzip war, dass die Ableitungen der Interpolationskurve an den
gemeinsamen Punkten einen durch Partialkurven bestimmten Wert
annehmen miissen. Von diesem Prinzip ist nun Henderson [20] da-
durch abgewichen, dass er die Werte der Ableitungen der Interpola-
tionskurven an den gemeinsamen Punkten einander gleichsetzt und
darauf verzichtet, dass sie einen bestimmten Wert annehmen miissen.
Ausserdem verwendete er die Hypothese, dass die sechsten Zentral-
differenzen den Wert Null haben, wodurch die erste Ableitung dieser
Formel diskontinuierlich wird.

Jenkins [21] Arbeiten fussen auf der von Karup erwihnten Tat-
sache, dags sich die oskulatorischen Interpolationsformeln von den
gewohnlichen nur durch das letzte Glied unterscheiden, und auf der
von Henderson eingefithrten Anderung, wonach auf die Verwendung
von Partialkurven verzichtet wird. In einer Tabelle [22] bringt Jenkins
16 Formeln mit ein bis vier kontinuierlichen Ableitungen und bemerkt,
dass die einzige von den in der Tabelle enthaltenen Formeln, die
bereits frither veroffentlicht wurde, die Karupsche ist, doch scheint
er iibersehen zu haben, dass die danebenstehende Formel bereits im
Jahre 1906 von Henderson mitgeteilt wurde.

Den bisher entwickelten Formeln liegt die stillschweigende An-
nahme zugrunde, dass die gegebenen Werte, zwischen denen inter-
poliert werden soll, exakt und absolut korrekt sind. Nun trifft dies
aber in den fiir den Versicherungsmathematiker wichtigsten Zahlen-
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rethen nicht zu, sondern es handelt sich da fast immer um Werte,
die nur anndherungsweise richtig sind. Es ist daher weder vom theo-
retischen noch vom praktischen Standpunkt aus erforderlich, dasds
die Interpolationskurve tatsichlich an den sogenannten Kardinal-
punkten die durch die Beobachtung oder sonstwie errechneten Werte
annimmt, es geniigt, wenn die Interpolationskurve, dhnlich wie es
die graphische Ausgleichsmethode verlangt, nur in der Nahe der
Kardinalpunkte vorbeigeht. Eine Bemerkung von Fassel [23] hat nun
Jenkins aufgegriffen und darauf verzichtet, dass die Interpolations-
kurve durch die Kardinalpunkte hindurchgeht. Seine beiden dies-
beziiglichen Arbeiten [24] miissen als grundlegend angesehen werden.
Er begniigt sich, von den Interpolationskurven zu verlangen, dass
sie und ihre beiden ersten Ableitungen an den gemeinsamen Punkten
gleiche Werte annehmen, und nennt sie aus diesem Grunde modifizierte
(modified) oskulatorische Interpolationsformeln, wihrend sie Greville
und Schoenberg [25] glittende (smoothing) Formeln bezeichnet. Es
scheint aber, dass ausgleichende (graduating) oskulatorische Inter-
polationsformeln eine bessere Benennung ist, da die auf der Jen-
kinsschen Methode fussenden Interpolationsformeln tatséchlich eine
Mischung von Interpolation und Ausgleichung darstellen. Diese Formeln
haben nun die Aufmerksamkeit englischer Aktuare auf sich gezogen,
und Buchanan [26] zeigt durch verschiedene Anwendungen, dass die
erhaltenen Resultate sehr zufriedenstellend sind. Auch Reid und Dow
[27] untersuchen den theoretischen und praktischen Erfolg der durch
die Anwendung der Jenkinsschen Formel erzielt wird, und insbesondere
beschiiftigen sie sich mit der Bestimmung der Kardinalpunkte und
einer Abdnderung der Formel, dass z. B. die Quadrate der dritten
Differenzen der interpolierten Werte ein Minimum ergeben oder dass
die tatsichlichen und die nach der Ausgleichung zu erwartenden Todes-
félle gleich sind ete. Eine theoretisch sehr interessante Untersuchung
von Kerrich [28] beschiiftigt sich mit den Interpolationsmethoden,
die dem Spragueschen und Jenkinsschen Typus angehéren und mit
ihren Beziehungen zu der von den skandinavischen Aktuaren (Nyboelle
und Steffensen) entwickelten pseudo-analytischen Ausgleichung. Eine
ziemlich umfassende Darstellung der allgemeinen Theorie der oskula-
torischen Interpolationsformeln gibt Greville [29].

Wie aus der Jenkinsschen Formel hervorgeht, werden die Kardinal-
punkte nicht reproduziert, und der Unterschied zwischen den unaus-
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geglichenen und ausgeglichenen Werten an den Kardinalpunkten
betrigt 1/36 des negativen Wertes der vierten Zentraldifferenz. Wenn
daher die vierten Zentraldifferenzen immer dasselbe Vorzeichen auf-
weisen, was z. B. im allgemeinen der Fall sein wird, wenn die Kardinal-
punkte auf einer Makehamkurve liegen, so wird ein vollkommen
zufriedenstellendes Resultat kaum erreicht werden. HEs ist daher
erforderlich, um gute Ergebnisse zu erhalten, dass die vierten Zentral-
differenzen klein sind und haufig, womaglich alternativ, ihr Vorzeichen
wechseln. s ist nun merkwiirdigerweise gefunden worden, dass die
letztere Bedingung fast immer in geniigendem Masse bei den prak-
tischen Anwendungen erfiillt ist.

Es 1st schon fruher erwahnt worden, dass Reid und Dow eine
Abénderung der Jenkinsschen Formel insg Auge gefasst hat, um die
Quadrate der dritten Differenzen der interpolierten Werte zu einem
Minimum zu machen. Beers’ Arbeit [30] basiert auf einem dhnlichen
Gedankengang, und zwar verzichtet er auf die Higenschaft, dass die
Ableitungen der Interpolationskurve an den gemeinsamen Punkten
aleiche Werte haben und stellt die Bedingung, eine die Kardinalpunkte
reproduzierende Interpolationsformel zu finden, so dass die Summe
der Quadrate der fiinften Differenzen ein Minimum wird, wobei er
ebenfalls nur das letzte Glied der gewéhnlichen Interpolationsformel
entsprechend abidndert, aber verlangt, dass sie gleich den Formeln
von Sprague und Shovelton korrekt bis zu den vierten Differenzen
sel. In seiner folgenden Arbeit [31] entwickelte er eine neue aus-
gleichende Interpolationsformel, korrekt bis zu den dritten Differenzen,
wobel er die Quadrate der vierten Differenzen zu einem Minimum
macht, doch ist der Unterschied der ausgeglichenen und unausgegliche-
nen Werte an den Kardinalpunkten merklich grosser (— 0.0436%w,),
s0 dass die Anwendungsmoglichkeit dieser Formel et was eingeschrinkter
ist. Ftwas Ahnliches wiire iiber eine Formel von Greville [32] zu sagen,
bei der der Unterschied — 0.0538 d%u, betrigt. Greville entwickelt in
dieser Arbeit noch eine Reihe anderer Formeln, die auf analogen
Voraussetzungen beruhen. Der Vollsténdigkeit halber wiire noch eine
Arbeit von Vaughan [33] zu erwihnen, der einige ausgleichende Inter-
polationsformeln entwickelt und als Grundlage einer Formel den so-
genannten Ausgleichskoeffizienten verwendet.

In der am Schluss folgenden Ubersicht sind einige Interpolations-
formeln in der Everettschen Form aufgenommen.



— 366 —
Das Glittekriterium

Bevor an eine kritische Untersuchung der bisher vorgeschlagenen
Interpolationsformeln geschritten werden kann, muss zunéchst einmal
festgestellt werden, was eine oskulatorische Interpolationsformel leisten
soll und worauf sich eine Beurteilung der Giite von solchen Formeln
zu grimden hat. Die Uberlegung «Die Natur macht keine Spriinge»
18t 1m Grunde genommen der wichtigste theoretische Grundsatz der
Interpolations- und Ausgleichsrechnung. Bei der Ausgleichung will
man eine unregelmissige Reihe von Beobachtungsdaten durch eine
regelmissige, glatte Zahlenreihe ersetzen, dienatiirlich den beobachteten
Werten moglichst gut folgen soll, ebenso soll durch die Interpolation
eine glatte Verbindung zwischen den Kardinalpunkten bewerkstelligt
werden. Was ist nun aber diese glatte Verbindung und welche Kriterien
sind anzuwenden ? Im allgemeinen begniigt man sich, eine Reihe als
glatt zu bezeichnen, wenn die dritten Differenzen klein sind, wenn
sie keine zu grossen Spriinge aufweisen, und meistens beschrinken
sich die Autoren auf eine Untersuchung der Reihe der dritten Diffe-
renzen. Seal [34] meint, dass ein Kriterium beziiglich der Glitte leicht
formuliert werden kann, niamlich, die Reithe der zweiten oder dritten
Differenzen darf keine grossen Spriinge zeigen, widhrend King [35]
auch die fiinften Differenzen beriicksichtigt und seiner Ansicht Aus-
druck gibt, dass die Differenzen, wenn nicht klein, so doch ein be-
stimmtes Gesetz befolgen sollen, denn, wenn auch kleine dritte oder
fiinfte Differenzen als Beweis fiir eine gute Ausgleichung angesehen
werden konnen, 1st das Gegenteil nicht richtig, dass die Ausgleichung
schlecht 1st, wenn die dritten Differenzen gross sind.

Der Begriff der Glitte 1st wohl fundamental, aber bisher noch nicht
genau defmiert worden, und aus diesem Grunde ist es bisher nicht
gelungen, ein allgemein anerkanntes Kriterium autzustellen. Der Grund
liegt darin, dass das in der Ausgleichsrechnung ibliche und theoretisch
fundierte Glittekriterinm — kleine dritte Differenzen — ohne irgend-
welche Anderungen auch auf Interpolationsformeln iibertragen wurde.
Nun ist es aber aus theoretischen Grinden nicht zulissig, immer
nur dieselbe Differenzenreihe zu untersuchen, unabhingig von der
Anzahl der Differenzen, welche die Interpolationsformel verwendet.
Die gewohnliche Interpolationstormel mit konstanten (n—1)-ten Difte-
renzen verwendet zur Bestimmung der interpolierten Werte die an
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«n» Punkten gegebenen Werte, und bei Anwendung auf eine Parabel
(n—1)-ter Ordnung verschwinden die m-ten Differenzen. Um aber
irgendwelche Werte, die auf dieser Parabel liegen, zu berechnen, ist
es nicht notwendig, eine Interpolationsformel anzuwenden, sondern
diese Werte konnen auch durch direkte Berechnung gefunden werden.
Die der Anwendung von Interpolationsformeln zugrunde liegende
Hypothese ist die Annahme, dass die zwischen den gegebenen Punkten
gelegenen Werte annidherungsweise durch Parabeln bestimmt werden
kénnen. Die Eigenschaft, dass die Interpolationskurven an den gemein-
samen Punkten gleiche Werte und gleiche Ableitungen haben sollen,
und die Tatsache, dass das zugrunde liegende Gesetz nicht bekannt
1st, hat zur Folge, dass die (n—1)-ten Differenzen nicht konstant sein
werden und daher die n-ten Differenzen nicht verschwinden. Die
(Gleichsetzung der Ableitungen soll nun bewirken, dass die (n—1)-ten
Differenzen kontinuierlich verlaufen, ohne irgendwelche Spriinge auf-
zuzeigen, und dass die n-ten Differenzen kleine Grossen werden, die
am den Wert Null schwingen.

Wir werden daher aus diesen theoretischen Erwégungen Inter-
polationskurven als glatt bezeichnen, wenn sowohl die Grésse als auch
die Vorzeichen der ersten Differenzenreihen kontinuierlich und regel-
massig verlaufen, und zwar ist dieselbe Anzahl von Differenzen in
Betracht zu ziehen, als von der Interpolationsformel verwendet werden.
Ausserdem soll sich auch die Summe der Werte der Differenzen ohne
Ritcksicht aut ihr Vorzeichen von einer Differenzenreihe zur anderen
verringern. Es wiiren daher z. B. bei der Karup-Kingschen Inter-
polationsformel die ersten drei Differenzen diesbeztiglich zu unter-
suchen und bei den anderen bisher erwihnten Formeln die ersten
fiunf Differenzenreihen. Anstatt nun tatsichlich alle diese Differenzen-
reihen zu untersuchen, geniigt es wohl, die letzte, also die dritte oder
die funfte Differenzenreihe zu untersuchen, denn wenn diese regel-
missig ist, so miissen es natiirlich auch die vorherigen Differenzen-
reihen sein. Wenn man sich nur auf die Summe der absoluten Werte
der Differenzenreihen beschrinkt, kann man leicht zu Fehlschliissen
gelangen, wie noch spiter gezeigt werden soll. Dabei darf nicht ausser
acht gelassen werden, dass auch die ausgeglichenen Werte den beob-
achteten moglichst gut folgen sollen. Doch hier steht man abermals
vor einem analogen Problem. Man verlangt, wie z. B. Simonett [36]
ausfithrt, dass die Gesamtsumme der Abweichungen moglichst klein
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sein soll, damit die Summe der ausgeglichenen mit der Summe der
beobachteten Werte fast ubereinstimmt, mit anderen Worten, die
positiven und negativen Abweichungen sollen einander gleich sein:
ferner sollen die mit Riicksicht auf ihr Vorzeichen aufsummierten
Abweichungen oft Null oder nahezu Null sein, damit zwischen der
Summe der ausgeglichenen Werte und der entsprechenden Summe der
Beobachtungsdaten bis zu jeder Stelle ein moglichst kleiner Unter-
schied besteht. Daraus folgt, dass oft ein Zeichenwechsel der auf-
summierten Differenzen eintreten soll. Wenn z. B. die Sterbens-
wahrscheinlichkeiten ausgeglichen werden, soll der Unterschied zwischen
den erwarteten und tatséchlichen bSterbefillen moglichst klein sein,
doch darf die Bedeutung dieses letzteren Punktes nicht tberschatzt
werden. Man darf nicht ausser acht lassen, dass die in der Praxis
tauglichen Interpolations- oder Ausgleichsformeln ohne Einfithrung
von Gewichten angewendet werden, weshalb schon dieser Umstand
gewisse kleine Abweichungen rechtfertigt. Die Herausgeber des
Journals des englischen Aktuarinstitutes weisen auch darauf hin [37],
dass die Kleinheit der Abweichungen als Beweis fiir die Giite der
Ausgleichung nicht in Betracht gezogen werden kann, wenn die
Beobachtungsdaten systematische Abweichungen aufweisen, und eine
analytische Kurve, wie z. B. die Makehamkurve, die nur wenige
Konstante autweist, die aus der ganzen vorhandenen Wertemasse
bestimmt werden, mag bessere Resultate ergeben als eine Kurve,
die zu sehr den mit Fehlern behafteten Originaldaten folgt. Es werden
nunmehr im nachfolgenden auf Grund des neu aufgestellten Kriteriums
einige der bisher in Vorschlag gebrachten und frither erwidhnten
Formeln untersucht, wobei festgestellt werden wird, dass keine dieser
Formeln dem neu aufgestellten Kriterium vollauf geniigt, und aut
Grund dieser Ergebnisse wird versucht, eine neue Formel abzuleiten,
die eher geeignet ist, als in dieser Hinsicht zufriedenstellend bezeichnet
zu werden.

Kritik der bisher veroffentlichten oskulatorischen Interpolationsformeln

FKie systematische Behandlung dieses Problems erfordert, dass
sowohl die Interpolationsformeln als auch deren Differenzen in einer
klaren und deutlichen Form dargestellt werden, und zu diesem Zwecke
empfiehlt es sich, die Zentraldifferenzen durch die gegebenen Werte
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auszudricken. Mit Riicksicht auf die Definition der Zentraldifferenzen
ergibt sich fur die

gewohnliche Interpolations- Karup-Kingsche Interpola-
formel dritter Ordnung: | tionsformel:

by Ye Uy Uy U U Y, Uy Uy U Uy
0-0 125 0 125 0 0 125 0 125 0 0
0-2 125 -6 108 27 —4 125 -8 114 21 -2
0-4 125 -8 84 56 -7 125 -9 87 53 -6
0-6 125 -7 56 84 -8 125 -6 53 S7 -9
0-8 125 -4 27 108 -6 125 -2 21 114 -8

und fir die dnitten Differenzen:

T 0%y, Uy Uy Uy Uy Usg By, U, Uy Uy Ug  Ug
0-0 125 -1 3 -8 1 0 125 -3 9 -9 : 0
0-2 125 -1 3 -3 1 0 125 -3 9 -9 3 0
0-4 125 -1 3 =3 1 0 125 -3 9 -9 3 0
0-6 125 -5 19 27 17 -4 125 0 2 -6 6 -2
0-8 125 4 17 27 -19 5 125 2 —6 6 -9 (0

Dieses Ergebnis zeigt, dass bei Intervallfunftelungen, die in der
Praxis die weitaus wichtigsten sind und die auch fast ausschliesslich
in dieser Arbeit berticksichtigt werden, dié ersten drei dritten Diffe-
renzen gleich sind, zwischen dem dritten und vierten Glied erfolgt ein
deutlich sichtbarer Sprung und ebenso zwischen dem vierten und
tiunften Glied, doch ist der Sprung bei der Karup-Kingschen Formel
bedeutend geringer; andererseits sind die ersten drei Differenzen im
Vergleich mit der gewohnlichen Interpolationsformel gerade auf das
Dreifache erhoht. Zwischen den dritten Differenzen der Karup-
Kingschen Formel besteht nun ein merkwirdiger Zusammenbang

3 3
— —0‘63%.6 = 03y, 0= 0%Yy,., = By, , = _553%.8

|

der besagt, dass die von Lidstone festgestellten Spriinge aus der theo-
retischen Grundlage der Formel zu erkliren sind. Es sei gleich hier
bemerkt, dass selbstverstéindlich diese Spriinge nicht so deutlich zum
Vorschein kommen, wenn anstatt der Originaldaten deren Logarithmen
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oder andere Funktionen, z. B. log p, oder, wie von King vorgeschlagen
wurde, log (0.1 --q,) ete. interpoliert werden und wenn das Resultat
nur aus drei- oder vierstelligen Zahlen bestehen soll. Die zweite merk-
wiirdige Eigenschaft beider Formeln ist, dass die ersten drei Differenzen
in jeder Finfergruppe gleich sind. Nun kann auf dieselbe Art nach-
gewiesen werden, dass dieses letztere Frgebnis bei allen Formeln
auftritt, die den dritten Grad nicht iibersteigen, was zweifellos zu
einer theoretisch fundierten Kritik dieser Formeln berechtigt. Hiezu
gehdren z. B. die beiden Formeln von Henderson und die ausgleichende
Interpolationsformel von Jenkins.

Hendersons Formel |

vom Jahre 1906 Dritte Differenzen:

3
T Y, Uy Ug Uy Uy Uy Uy O3Y, U Uq Uy Uy Ug Ug Uy

0-0 750 0 0 750 0 0 0} 750 3 -21 48 48 21 -3 O
0-2 750 8 —66 688 142 —24 2 750 3 21 48 48 21 -3 O
0-4 750 9 T8 534 336 57 6 70 3 21 48 48 21 -3 0
0-6 750 6 -57 336 534 -78 9 750 0 -7 24 -32 22 -9 2
08 750 2 -24 142 688 -66 8 750 -2 9 22 32 -24 T O

Hendersons Formel

e - Tahse FOT & . Dritte Differenzen:

T Y, Us Uy Uy Uy Uy Ug| GPY, U Uy Uy Uy Us Ug Uy
0-0 750 0 0 750 0 O 0] 750 1 11 28 -28 11 -1 O
0:-2 750 6 -56 668 162 -34 4| 750 1 -11 28 -28 11 -1 0O
0-4 750 8 -T3 524 346 -62 7| 750 1 -11 28 -28 11 -1 O
0-6 750 7 —62 346 524 -73 8| 750 5 -34 84 -102 67 -24 4
0.8 750 4 -34 162 668 -56 6 | 750 -4 24 67 102 -84 34 -5

Jenkins’ ausgleichende Formel: Dritte Differenzen:

TY, Uy Uy Uy Uy Uy Uz Y UG Uy Uy Uy Uy U Uy

i s
i

0-0 4500 =125 500 3750 500 —125 0 | 4500 6 -66 168 —168 66 -6 0O
0-2 4500 —-64 39 3508 1222 204 -1 4500 6 —66 168 -168 66 —6 0
0-4 4500 -27 —188 2894 2076 -247 -8 | 4500 6 -66 168 -168 66 -6 0O
0-6 4500 -8 —247 2076 2894 —188 —27 | 4500 5 -54 129 112 27 6 -1
0-8 4500 -1 -204 1222 3508 39 -64 | 4500 1 -6 -27 112 -129 54 -5
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Ein etwas anderes Firgebnis erhalten wir, wenn wir mit der ge-
wohnlichen Interpolationsformel oder mit der Karup-Kingschen Formel
das Intervall in drei Teile teilen wollen.

Gewohnliche Karup-Kingsche
Interpolationsformel: Interpolationsformel:
Uq U Uy Uy Uy Uy Uy Uy
S1 0 S 0 0 | 81 0 81 0 0
Sy, -5 60 30 4 | 8lyy,, -6 63 27 -3
81 sy, —4 30 60 ~5 | 81y, -3 27 63 -6

denn die dritten Differenzen betragen:

{
81 &y 3 -9 9 -3 0] 81y 9 -271 21 -9 0

81 %y, 7T =25 33 -19 4| 81 &y, 3 -12 18 12 3
81 Pysy, —4 19 33 25 T 81 &y, -3 12 18 12 -3

doch liegt hier ein Resultat vor, das doch vielfach gemeinsame Kr-
scheinungen mit den fir die Intervallfiinftelungen vorgefundenen
Formeln aufweist, denn 6%y, erhilt ber Anwendung der Karup-King-
schen Formel den dreifachen Wert im Vergleich mit der gew6hnlichen
Interpolationsformel, andererseits wird der Sprung von %y, und
0%y, bedeutend erméssigt, und bei der Karupschen Formel besteht
ausserdem die Beziehung &y, = — 0%y, .

Die vorliegenden Ergebnisse lassen daher den Schluss zu, dass
die Karup-Kingsche Formel vom theoretischen und teilweise auch
vom praktischen Standpunkt aus nicht zu Resultaten fithrt, die als
vollkommen befriedigend bezeichnet werden koénnen.

Den Interpolationsformeln fiinfter Ordnung ist zweifellos eine
orgssere Bedeutung zuzuschreiben, weil sie bet der Berechnung der
interpolierten Werte mehr Glieder mitwirken lassen und daher an-
genommen werden darf, dass sie in vielen Fillen zufriedenstellendere
Resultate erbringen werden. Entsprechend dem frither aufgestellten
Kritertum wird sich das Interesse in erster Linie dem Verlauf der
Reihe der fiinften Differenzen zuwenden. Wenn die Interpolations-
formel niedriger als fanften Grades ist, dann wird, wie leicht ein-
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zusehen, immer 6%y, = 0 sein, ebenso wie bei Intervallfiinftelungen
durch die gewohnliche Interpolationsformel dritter Ordnung oder
durch die Karup-Kingsche Formel, und nur bei Interpolationsformeln
vom fiinften oder hoheren Grade werden die §°y, nicht verschwinden.
Ausserdem findet man die merkwiirdige Frscheinung, dass bei den
TFormeln dritten Grades die unter Beriicksichtigung ihres Vorzeichens
aufsummierten finften Differenzen innerhalb der Fiinferintervalle den
Wert Null ergeben, das heisst, dass die Summe der Werte der positiven
und negativen Differenzen einander gleich ist. Dies ist der Fall bei
beiden Formeln von Henderson und bei der ausgleichenden oskula-
torischen Interpolationsformel von Jenkins. Dieser Umstand ergibt
eine sehr einfache Kontrolle der durchgefiihrten numerischen Rech-
nungen und erklirt auch gewisse Beziehungen, die zwischen den
Differenzen bestehen, wie z. B. bei der gewohnlichen Interpolations-
formel dritter Ordnung

13 " - 13
T4 O Yo.a = 0Ypu = — Y. = 4 0 Yo

bei der Spragueschen Formel

Be1l der Formel von Henderson vom Jahre 1921 besteht die Be-
ziehung
Yoo = —0Yp.55 0°Yo.4 = — Yy

ber Jenkins’ ausgleichender Interpolationsformel eroibt sich
o p O

1
3 Y6 = — Yy

1
Yy = ) Yoy = —

und bei der praktischen Anwendung beider Formeln zeigt sich daher
eine systematische Unregelmissigkeit in der fiinften Differenzenreihe,
die im Widerspruch zu dem vorhin aufgestellten Glattekriterium steht.

Um sich ein besseres Bild machen zu konnen, seien im nachstehenden
die finften Differenzen von einigen der erwihnten Formeln angefithrt :
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Gewohnliche Interpolations- Jenkins ausgleichende
formel dritter Ordnung: Interpolationsformel:

x Y, g Uy Uy Uy Uy | OY, Uy Uy Uy Uy Uy Uy Uy

=

0.0 125 0 0 0 0 0| 4500 0 O 0 0 0 0 0
0-2 125 4 16 24 16 -4 | 4500 -1 12 -39 56 -39 12 -1
0-4 125 13 -62 78 -52 13| 4500 -3 36 —-117 168 -117 36 -3
0-6 125 -13 52 -78 52 -13 4500 3 -36 117 -168 117 -36 3
08 125 4 -16 24 -16 41 4500 1 -12 39 -56 39 -12 1

Hendersons Formel Hendersons Formel
vom Jahre 1906 vom Jahre 1921

. 8B 5
T O°Y, UgUq Uy Uy Uy Ug Uy | OPY, U Uy Uy U Uy Uy Uy

0070 0 0 O O O O O} 750 0 O 0 0 0 0 0
0-2750-3 14-24 16 1 -6 2| 750 4 -23 56 T4 56 -23 4
04750 1 2 -22 48 47 22 4| 750 -13 81 -207 278 -207 81 -13
0-6 750 4 -22 47 48 22 -2 -1 | 750 13 -81 207 -278 207 -81 13
0-870 -2 6 -1-16 24-14 3| 750 -4 23 -56 T4 -56 23 4

Bei den Formeln vierten Grades, z. B. den reproduzierenden
Interpolationsformeln von Shovelton und Jenkins, muss selbstver-
standlich 6°y, = 0 sein, und die Summe der sechsten Differenzen,
unter Beriicksichtigung ihres Vorzeichens, ergibt folglich fiir jede
Fuanfergruppe den Wert Null, z. B. sechste Differenzen von Shoveltons
tangierender Interpolationsformel:

2 0%y,  u, U4 U Uy Us, Us Uy
0-0 2500 -13 57 =90 50 15 =27 8
0-2 2500 15 =50 25 100 -175 110 -25
0-4 2500 15 =90 225 -300 225 -90 15
0-6 2500 -25 110 -175 100 25 -50 15
0-8 2500 8 -27 15 50 -90 57 -13

Die Formel von Buchanan ergibt, wie praktische Berechnungen
zeigen, nicht besonders gute Resultate, ebenso von Reilly und Jenkins
abgeleitete reproduzierende Interpolationsformeln mit kontinuierlichen
dritten und vierten Ableitungen, mit anderen Worten, bei Anwendung
des vorhin aufgestellten Kriteriums auf diese Formeln erhalten wir
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nicht so zufriedenstellende Ergebnisse wie bei Anwendung von anderen
Kriterien, die nicht so streng sind. Es wurde z. B. von Jenking darauf
hingewiesen, dass die Ermissigung des Grades bel ausgleichenden
Interpolationsformeln den Vorteil mit sich bringt, dass sie Differenzen-
rethen von grosserer Glatte und weniger irreguliren Schwankungen
hervorbringt. Aus den vorstehenden Untersuchungen und den nach-
folgenden Entwicklungen geht jedoch hervor, dass diese Behauptung
nicht den Tatsachen entspricht, und weiter ergibt sich die Schluss-
folgerung, dass die Abdnderung des letzten Gliedes der gewohnlichen
Interpolationsformel derart beschaffen sein soll, dass sie zu keiner
Gradermiissigung fiithrt, wenn in den héheren Differenzenreihen syste-
matische Unregelmissigkeiten vermieden werden sollen.

Ableitung neuer Interpolationsformeln

Wir gehen von der Karupschen Feststellung aus, dass sich die
oskulatorischen Interpolationsformeln von den gewdhnlichen nur durch
das letzte Glied unterscheiden, und setzen daher wie Jenkins

£(&2—1
Suy + (—6_“)”52'“'0 + @ (&) 0% uy

I

Y,
x(x2—1)

+ zuy - ‘T”azul + @ () 0%y

wobel wir annehmen, dass die Darstellung
p(r)=a-+br+ ca®+ da® +ext 4 fa?
oilt. Die Ableitungen der Interpolationskurve sind daher

8&2_1 321
OPug— @' (&) 0*ug + uq +

Yp = —Uy——— 0%, + @' () 0%y

)
Y. = §0%uy + ¢ (&) 6*uy + x0%u; + @' () 0wy
g = By () Sty - Py + ¢ (1) Sty

W = @ ) Oy + g (2) Ot



— 31 —
und die Ableitungen der Funktion ¢ (z)

@ () =b+ 2cx + 3da® + 4des®+ Sfad

" (] = 2¢ +6dx + 12ea® + 20f 23
¢ (x) = 6d + 24ex 4+ 60fa?
g (Z) = 24e - 120fx

Durch Gleichsetzung der Funktionswerte an der Stelle u, ergibt
sich fiir die erste Kurve 2 =1, &= 0 und fir die zweite Kurve
z=0, £=1, folglich

® (0) 0*ug + uy + @ (1) 6wy = uy + @ (1) 0%y + ¢ (0) S,y
oder

¢ (0) (0%1y — 0%uy) = 0 (A)

welche Bedingung nur dann erfiillt sein kann, wenn ¢ (0) = 0 ist,
da nach Voraussetzung die vierten Zentraldifferenzen nicht einander
gleich sind, woraus folgt, dass ¢ (0) =a = 0.

Aus der Gleichsetzung der ersten Ableitungen im Punkte

1 2
—— Uy + 5 0*ug— @' (0) 6%y + uy + o 0%uy + ¢’ (1) 0tuy =

2 1
=—ty— 0%*u, — ¢’ (1) 6%, + thy——- 02y + @' (0) 6%y

ergibt sich
1 2 TN (A4 \4 '
— (ug—2uy + uy) +*é~ (0%uy + 402Uy + 0%uy) = ¢ (0) (0*uy 4 0tuy) —2¢" (1) 6%uy

oder

1
5 0ty = @' (0) (6%uy— 20%u, + 6'uy) + 20%u, ¢ (0) —26%, @' (1)

und schliesshch

¢’ (0) %1y = 26%u; | —¢"(0) +¢'(1) + oy (€)
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Da i der endgiiltigen Formel sechste Zentraldifferenzen nicht
vorkommen sollen, muss der Koeffizient von 6% verschwinden,

@ (0) =b=0
und daher auch der Klammerausdruck auf der rechten Seite

1

¢ (1) =b+20+8d+de 4 5f=——

Die Kontinuitat der zweiten Ableitungen im Punkte u, verlangt
" (0) 0*ug +- 0%uy + @ (1) 0%uy = 62wy + ¢"' (1) 6wy + 9™ (0) 0w,
oder @"" (0) (0%uy— 6tuy) = 0 (D)

daher ¢" (0) = 2¢ = 0.

Die dritten Ableitungen werden kontinuierlich im Punkte u,,
wenn die Gleichung

—8%uy— """ (0) 0up + 62y + ¢ (1) Obuy = — 02wy — """ (1) B2y -+ 02y + ¢ (0) 01y

erfullt ist. Durch Zusammenfassung der entsprechenden Glieder erhalten
wir

— (82ug—20%u, + 6%up) = 9" (0) (61up +- 0%uip) — 29" (1) 0%uy

und nach Umformung
;-

— ¢ (0) 8%y = 20%u, [— () + ¢ O + (E)

Das Nichtauftreten von sechsten Differenzen in der Formel

verlangt
""" (0)=6d=0

und daraus folgt

@ (1) = 6d + 24e + 60f =—;~
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Kontinuierliche vierte Ableitungen ergeben sich aus
@ (0) 0tug + @™ (1) 0%y = @™ (1) 6%y + """ (0) S*uy
oder ' """ (0) (6*uy— 0*uy) = 0 ' (F)
was bedeutet, dass ¢ (0) = 24e =

Wenn die Interpolationsformel die gegebenen Werte reproduzieren
goll, muss noch die Bedingung

p)=a+b+ct+dt+etf=0 (B)

erfillt sein.

Um nun eine ausgleichende Interpolationsformel zu bestimmen,
deren erste drei Ableitungen kontinuierlich sind, miissen die Gleichungen

a=b=c¢c=d= 10

4e + 5f s
e T e
12
1
24e + 60f = —
2
erfilllt sein, woraus die Werte
B 15 f— 8
T 707 1T a0
folgen. Die endgiiltige Formel lautet daher
g5 —1) £ (8&—15)
— e DR otu
oty o T 510 °
M3=
& (x*—1) 52 zt(8z—15) 5
— P U
+ zuy + 5 1 940 1
mit einer Abweichung von —7/o40 6%, an den Kardinalpunkten,

die auch in folgender Form geschrieben werden kann:



& Ya Uy U4 Up Uy Us Us
0-0 750000 -21875 87500 618750 87500 21875 0
0-2 750000 -11008 7965 582220 205630 -34740 —67
0-4 750000 -4131 -32420 482990 346860 —42355 -944
0-6 750000 -944 —-42355 346860 482990 -32420 -4131
0-8 750000 —67 -34740 205630 582220 7965 -11008

Die fiinften Differenzen sind:

x Py, U_o U4 Uy Uy Uy Us Uy
0-0 750000 -960 4800 -9600 9600 —4800 960 0
0-2 750000 -877 4452 -9105 9440 -5055 1212 —67
0-4 750000 81 204 -2235 5280 -5685 2964 609
0-6 750000 609 —-2964 5685 -5280 2235 -204 81
0-8 750000 67 -1212 5055 -9440 9105 -4459 87T

Wenn jedoch die interpolierten Werte durch die Fiinfergruppen
G, ausgedriickt werden sollen, ergibt eine einfache Umformung die
Darstellung:

w yz‘ Gﬂ:—lﬂ G;rf) Ga, Gm +5 Gx+10
0-0 750000 -10867 68668 105198 -12932 —67
0-2 750000 —6877 33508 132738 —8492 —877
0-4 750000 -3187 6748 142878 6748 —3187
06 750000 -877 -8492 132738 33508 —6877
0-8 750000 -67 -12932 105198 68668 -10867

Die durch die Anwendung dieser neuen Formel erzielten Resultate
lassen erkennen, dass die Verbindung der interpolierten Werte be-
deutend glatter ist als bei Anwendung irgendeiner der bisher in Vor-
schlag gebrachten Formeln und daher diesen iiberlegen ist. Die fiinften
Differenzen sind klein und liegen auf einer Wellenlinie, ohne irgend-
welche Spriinge zu zeigen, und auch die sechsten Differenzen geben
immer sehr gute Resultate. Dieser Umstand lisst nun die Vermutung
aufkommen, dass bei Beriicksichtigung hoherer Ableitungen die Glitte
zunebmen wird, aber das ist nicht der Fall, denn es treten in der Mitte
der Fiinfergruppen der fuanften Differenzen merkliche Springe auf.
Die Rechnung ergab:
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Anzahl der Abweichungen

Formel kontinuierlichen an den Koeffizient von §*u,
Ableitungen  Kardinalpunkten
11 x° (26— 15 %)
M4 4 — —
480 480
115 28 (504 — 536 x | 147 22
M5 5 — —- ( + i
5376 5376
25 2 (186 — 159z + 4822
M6 6 — = e ( )
1344 1344
28 28 (297 — 506 z + 297 22 — 60 23)
M7 7 — o
1584 1584

Auch die Kardinalpunkte reproduzierenden Formeln mit héheren
kontinuierlichen Ableitungen geben keine besseren Resultate:

Anzahl der
Formel  kontinuierlichen Koeffizient von ¢§*u,
Ableitungen
25 (2 —1) (— 4622 + 1875 —105)
5M 5
168
2 (x—1) (—752% 4 211 z — 152)
6M 6
192

Wenn der Grad der Funktion ¢ (z) auf 4 erméssigt wird, wodurch
f =0, und unter der Annahme, dass nur die beiden ersten Ableitungen
kontinuierlich sind, ergibt sich

a=b=c¢c=10
3d + 4e = 1
TAe="0
1
94e = -
2
8 B 3
woraus VTR e = T

folgt und schhesslich die Formel



— 380 —

21 3(8£—8
@1, B8

U — otu
E 0 —l_ 0 144 0
M2 ==
et o(@—1) . #Eo—8)
LUy + —— S e (Y
! 6 ! 144 !

Die Abweichung an den Kardinalpunkten betrigt —5/144 6%u,.
Die durch ihre Anwendung erzielten Ergebnisse sind nicht so gut wie
bei Anwendung der Formel M 3, doch schneidet sie im Vergleich mit
der ausgleichenden Formel von Jenkins z. B. sehr gut ab. Setzen wir
in den obigen Gleichungen ¢ = 0, erhalten wir 8d = —1/19, Jenkins’
Formel.

Wird nun vorausgesetzt, dass die sechsten Differenzen ver-
schwinden, so ergeben sich einige interessante Resultate. Die Hypothese
von verschwindenden sechsten Differenzen wurde, soweit festgestellt
werden konnte, nur einmal, und zwar bei der Entwicklung von Hen-
dersons Formel vom Jahre 1921, verwendet. Unter dieser Voraus-
setzung werden die beiden Bedingungsgleichungen (C) und (E) trans-
formiert in

’ ’ 1 .
¥ (0) =9 (1) + - )
oder
1
20—}—8d+4e+5f:_ﬁ
und
s rHer 1
P 0) =g (1) — ©
oder
24 60f = o
e+ 60f = )

woraus hervorgeht, dass die Grossen b und d unbestimmt bleiben.
Um nun unter der Voraussetzung von verschwindenden sechsten
Differenzen eine ausgleichende Interpolationsformel zu erhalten, deren
erste vier Ableitungen kontinuierlich sind, wiren die Konstanten aus
den Bedingungsgleichungen (A), (c), (D), (e) und (F) zu bestimmen.
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Setzt man willkiirlich b = 0, so folgt aus den Bedingungsgleichungen

g=b=¢c=e=(

1
§d |- Bf = o
+ 5f 19
60f = .
=
und die Formel
s 1) @ (82— 5)
u, — % —
Sug + P Tea o~ 0
M4 A =
x(x2—1) S, + 23 (22— 5) "
LU —_— f2u S AR—
5 . 1 120 1

Die Abweichung an den Kardinalpunkten betrigt — 1/30 0%u, .
Bei Anwendung dieser Formel treten nun &dhnliche Erscheinungen
auf wie bei den frither entwickelten Formeln M 4 bis M7, ndmlich
ein Sprung in der Reihe der fiinften Differenzen, und zwar in der
Mitte der Funfergruppen, der besonders deutlich zum Vorschein
kommt, wenn man die Reihe der sechsten Differenzen bildet. Dabei
15t zu bemerken, dass die Summe der absoluten Werte der fiinften
Differenzen bei allen Beispielen, die zu diesem Zwecke gerechnet
wurden, dusserst klein 1st und, was die Grosse anlangt, mit der Formel
M 8 konkurrieren kann. Der erwihnte Sprung in der Differenzenreihe
bewirkt daher weniger zufriedenstellende Resultate, doch sind diese
Spriinge kaum zu erkennen, wenn die interpolierten Werte nur auf
drei oder vier Ziffern berechnet werden sollen. Die Formel M 4 A
1st daher besonders geeignet, zu zeigen, dass die ausschliessliche Be-
trachtung der Grosse der Differenzen oder deren Summe nicht als
Kriterium geeignet ist und dass daher dem vorhin aufgestellten Gléitte-
kriterium mehr Bedeutung beizumessen wiire.

Wenn wir noch auf Grund der Annahme von verschwindenden
sechsten Zentraldifferenzen Interpolationsformeln untersuchen, welche
die Kardinalpunkte reproduzieren, so ergeben sich, wenn die Kon-
tinuitat der ersten drei Ableitungen verlangt wird, die Bedingungs-
gleichungen



g=ig=10
btd+e+f=0
1
Bd 4ot 5f=——
1

Setzt man f = 0, um den Grad der Funktion ¢ (x) auf 4 zu reduzieren,
folgt
5 8 3

b:*%“*, _‘Mw-——————, B o e
144 144 144

und die Interpolationsformel lautet:

§(88—1) £(§—1) (882 —5)
o+ g P b
ya: e
z(x?—1) 5 z(x—1) (Bx2—5) 5
+ wuy + FE Uy + 144 Uy

Diesen Werten jedoch entspricht die berithmte Spraguesche Inter-
polationsformel, die hier unter ganz anderen Voraussetzungen abgeleitet
wurde. Wenn jedoch die Kontinuitit der ersten vier Ableitungen
verlangt wird, so folgt unter Annahme von verschwindenden sechsten
Zentraldifferenzen

ff = fr==gi==1

btd4f=0
1

1

60f =—

2



4 5 1

woraus b=——, d= fo=——
120 120

190

folgt, und diesen Werten entspricht die gewohnliche Interpolations-
formel mit konstanten fiinften Differenzen.

Schliesslich wére noch eine Gruppe zu erwihnen, der die Formeln
angehoren, die unter der Voraussetzung, dass die sechsten Differenzen
verschwinden, nur kontinuierliche erste und dritte Ableitungen haben.
Die Bedingungsgleichungen sind

a=10
b+c+d+e+f=0
1
2¢ +3d 4 4e + 5f:__i§,
1
24e + 60]‘:——5

Es stehen zur Verfiigung fiinf Unbekannte und drei Gleichungen,
30 dass zwel Grossen willkiirlich festgesetzt werden konnen. Nehmen
wir an, dass b = f = 0, so ergibt sich die bereits erwiihnte tangierende
Interpolationsformel von Shovelton. Eine neue tangierende, die Kar-
dinalpunkte reproduzierende Interpolationsformel, also b = 0, deren
Reproduktionsgrad 4 ist und die ausserdem die HKigenschaft hat, dass
die Summe der Quadrate der fiinften Differenzen ein Minimum wird,
lautet

L) E2(&—1) (1458% —168&—175)
Uy + ———— 0%, S4u
oty vt 2376 0
MMT =
z(z?—1) N 22 (x—1) (14522 —168 2 —-175) -
TU —_— 0°U : ”
Tt a3 2376 i

Wenn nun in dieser Formel die Zentraldifferenzen durch die
gegebenen Werte ersetzt werden und die Koetfizienten auf vier Dezi-
malen gekiirzt werden, um eine in der Praxis leichter anwendbare
Formel zu erhalten, ergibt sich die Formel BM, die von Beers unter
vollstindigem Verzicht auf Kontinuitdt von Differentialquotienten
abgeleitet wurde, ein bemerkenswertes Ergebnis. Zu dieser Gruppe
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gehort auch die von Greville abgeleitete Formel GM. Ergéinzend wére
za bemerken, dass die Formel von Beers in dem spéter zu behandelnden
Beispiel tatsichlich die kleinste Summe der Quadrate der fiinften
Differenzen ergibt, und es scheint vom theoretischen Standpunkt aus
bemerkenswert, dass andere Formeln, die ebenfalls zu dieser Gruppe
gehoren, wohl eine grossere Summe der Quadrate der fiinften Diffe-
renzen hervorbringen, wihrend die Summe der absoluten Werte der
funften Differenzen geringer ist als bei Anwendung von Beers Formel.
Von diesen Formeln seien zwel angefiihrt:

1 1
g+ E(E—1) 8y - £(5—1) (150 88— 205 £ — 18— 6) b,

MMA =
1 1
+ xu; 4 = r(22—1) 6%u, + o z(x—1) (150 23 -— 205 22 — 13 £ — 6) 6%y
1 | 1
Eug + — E(E28—1) 0%uy + ———— E(E—1) (85083 — 485 &% + 3£ — 14) o'y,
- 6 1920
MMC =

1 1
+ zu, + = x(x2—1) 6%y + opom z(x—1) (35023 —485 2% - Bx—14) d*yy

Aus diesem Beispiel geht nun hervor, was auch bei anderen
Untersuchungen gefunden wurde, dass die Formel, die in einem ge-
gebenen Falle die Summe der Quadrate einer bestimmten Differenzen-
reihe zu einem Minimum macht, nicht mit der Formel identisch sein
muss, welche die kleinste Summe der absoluten Werte dieser Diffe-
renzenreihe hervorbringt. Auf dieses sicherlich interessante Resultat
soll bei anderer Gelegenheit zuriickgekommen werden.

In der Praxis werden im allgemeinen nur Interpolationstormeln
angewendet, die maximal finf Differenzen beriicksichtigen. Wenn man
daher aus theoretischen Grinden Interpolationsformeln mit sieben
Differenzen untersuchen will, so geht man von der Darstellung aus

1 1
g +- E&(Ez——l) 0*uy + 190 £(&—1) (8 —4) 6'uy + @ (&) 0°uy

1
5 x(x2—1) (2> —4) 6*u; + @ (x) 0%y

e
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und erhélt durch Differenzierung die folgenden Bedingungsgleichungen :

p(0) =0
7' (0) 85y = 2850, ((m PR 63())
@ (0)=0
quﬁmzﬂ“%(WWhmw”w%+%)
¢""(0)=0
g 0) 21— 200 (97 1) 97 ) —
@) =0

wobel

pl)=a+br+ca>+da®+ext+ fa®+ gab + ha

Folgt man dem Entwicklungsgang von Jenkins, um eine repro-
duzierende Interpolationsformel mit vier kontinuierlichen Ableitungen
zu erhalten, so ergibt sich aus den Bedingungsgleichungen

a=b=c=d=¢e¢=0

f+9+h=0

1
5f+6g +Th=—
[+ b9 P
1
60f + 1209 + 210k = s
und daher die bereits von Jenkins verdffentlichte Formel

E(E—1)(9&-13) d%u,

e 5(52-1)(§2*—4)64uo—-240

1
Euy + o £(82—1) 0%uy +
Y=

1 1 1
-+ zu — z(x2—1) 824y + —— z(x2—1) (22 —4) 44, — —— 2°(x—1) (92— 13) 6%«
Fxuy + p ( ) 6%y + 120 ( I ) 0%y 240 ( ) 1



— 386 —

Als ausgleichende Interpolationsformel erhdlt man bei willkiir-
licher Nullsetzung von h, wodurch der Grad auf 6 ermissigt wird,

1 i 1
Sty (8 1) B - - E(E 1) (2= ) oty + - £ (22-13) 0%,

Y. =
1 1 1
+ zUy + — x(22—-1) %u, + —— z (22 —1) (22 —4) 6*uy + —— 2%(22—13 x) o%u
1 6 ( ) 1 120 ( )( ) 1 1920 ; 8 x) 0%,
Wird jedoch f = 0 gesetzt, so ergibt sich die Formel
Eug + : £(&2-1)0° : E(52—1) (25 —d4)g* : £5(35—22¢) 0°

U - - Uy + —— - — Uy + ———— — U

" s * 190 ( " 3360 Y
Y =

1 1
+ zu; r) z (2% —1)6%u, + 0 z(x>—1) (a®—4) 6%, 4

28 (35— 22 x) 6%,
3360

Will man eine die Kardinalpunkte reproduzierende Formel be-
stimmen, deren erste drei Abteilungen kontinuierlich sind, ergibt sich
die bereits von Jenkins veroffentlichte Formel, wihrend sich nach
der Spragueschen Methode die im Anhang aufgenommenen Formeln
ergeben, die von Reilly in einer anderen Schreibweise mitgeteilt
wurden.

Wird jedoch der Ableitung die Hypothese von verschwindenden
achten Zentraldifferenzen zugrunde gelegt, folgt aus den Bedingungs-
gleichungen

a=g=eg=g=10

1
3d + 5 The= —
+ 5f + 2

1
60f + 210k = — —

2520h =

o | =

woraus dann unter der weiteren Annahme, dass die ersten sechs Ab-
lettungen kontinuierlich sind, die ausgleichende Interpolationsformel
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1 1 1
g+ - E(E 1) g+ E(E) (B Pt BT

o=

1 1
-+ zu, + = x(x2—1) 0%u, + T x(22—1) (22 —4) 6*u, +

)

23 (22 —T)2 8w
5040 ( f ot

hervorgeht. Die reproduzierende Interpolationsformel verlangt noch

b+d-+f+h=0
und als Resultat gewinnen wir die Konstanten

36 49 14 1
f=——, h=
5040

—, A=, ——,
5040 5040 5040
und als Formel die gewoéhnbiche Interpolationsformel mit siebenten

Differenzen in Everetts Form.

Wie wir gesehen haben, fithren die Ableitungen nach der Spra-
gueschen Methode nicht immer zu denselben Resultaten wie andere
Methoden. Der Unterschied der Ergebnisse wird zum Teil durch den
verschiedenen Reproduktionsgrad bewirkt. Die Methoden von Sprague
und Lidstone fithren fast immer auf Formeln, die einen hoberen
Reproduktionsgrad aufweisen als die mittels der Funktion ¢(x) ab-
geleiteten. Die nach beiden Methoden abgeleiteten Formeln fanfter
Ordnung besitzen einen Reproduktionsgrad von 4, wihrend der Re-
produktionsgrad von den mittels der Funktion ¢(z) entwickelten
Formeln im allgemeinen nur 3 ist. Dies bewirkt auch, dass der Grad
der Funktion ¢(z) bei den Formeln, die dem Spragueschen oder
Lidstoneschen Typus angehoren, im allgemeinen hoher sein muss.
Da die Lidstonesche Methode nur das letzte Glied der Interpolations-
formel abdndert, weisen folglich die mittels seiner Methode abgeleiteten
Formeln einen héheren Reproduktionsgrad auf, als die nach anderen
Methoden gebildeten Formeln. Aus den bisherigen theoretischen Unter-
suchungen geht hervor, dass keine dieser Methoden von vornherein
einen sicheren Schluss auf den Verlauf der héheren Differenzenreihen
zuliisst, und soll die Untersuchung dieses interessanten Problems bei
anderer Gelegenheit in Angriff genommen werden.
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Praktische Anwendungen

A.

Zunichst soll die Anwendbarkeit der frither abgeleiteten Inter-
polationsformel fiir Intervalldrittelungen auf das von Greville be-
handelte Problem gezeigt werden. Es handelt sich um die Konstruktion
einer Sterbetafel fiir die tarbige Frauenbevolkerung im Staate Georgia
der Vereinigten Staaten. Die Sterbenswabrscheinlichkeiten weisen
namlich an den Kardinalpunkten 67 und 72 eine Verminderung auf,
und um diese sicherlich nicht den tatsichlichen Verhéltnissen ent-
sprechende Erniedrigung auszumerzen, fand er nach einigen Versuchen
eine Formel, die jedoch den anderen Nachteil hat, dass sie die Ab-
lebenswahrscheinlichkeiten bis etwa zum Alter 50 bedeutend ver-
grossert, dann gegeniitber den Beobachtungen verringert ete. Da die
beobachtete Unregelmassigkeit besonders bei den Altern 67 und 72
auftritt, kénnen diese beiden Werte einer Ausgleichung unterzogen
werden. Verwendet man z. B. die Ablebenswahrscheinlichkeiten fir
die Alter 47, 62, 77 und 92, um das Mittelintervall zu dritteln, erhilt
man bel Anwendung der gewdhnlichen Interpolationsformel

Je; = 0.049015 (original); und 0.054422 (interpolierter Wert);
(se = 0.047986 (original); und 0.056718 (interpolierter Wert).

Aus der nachstehenden Tabelle ist das Ergebnis zu ersehen,
welches sicherlich den praktischen Wert der Intervalldrittelungen zu
Auge fithrt. Die Originaldaten stehen in der zweiten Kolonne, die von
Greville bestimmten in der dritten, und die vierte Kolonne enthiilt
die Werte an den Kardinalpunkten, die bei Anwendung der Formel M 3
resultieren, wenn fir die Alter 67 und 72 an Stelle der Originalwerte
«ie oben erwdhnten interpolierten Werte verwendet werden.
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Alter Einjéhrige Ablebenswahrscheinlichkeit

T Originalwerte Greville Formel M 3
17 0.005276

22 0.007695

27 0.009245 0.00959 0.00921
32 0.010995 0.01228 0.01113
37 0.014991 0.01590 0.01477
49 0.018620 0.02134 0.01887
47 0.026750 0.02895 0.02651
52 0.035785 0.03718 0.03643
57 0.050372 0.04322 0.04955
62 0.053004 0.04764 0.05326
67 0.049015 0.05225 0.05440
72 0.047986 0.05856 0.05648
7T 0.062616 0.07252 0.06266
82 0.082943 0.09078 0.08514
87 0.127088 0.10861 0.12858
92 0.129191

97 0.143769

B.

Die Konstruktion der venezolanischen Volkssterbetafel 1941/1942

Im nachstehenden soll nun die Anwendung der neu abgeleiteten
Formel M3 auf die Konstruktion der obigen Sterbetafel gezeigt werden,
der die Volkszihlung vom 7. Dezember 1941 und die Sterbetfille der
zwel Jahre 1941/42 zugrunde liegen. Die Wanderungshewegung wurde
nicht beriicksichtigt und hitte auch kaum einen nennenswerten Ein-
fluss ausgeiibt, da sie in diesem Zeitraum sehr gering war. Ferner wurde
darauf verzichtet, die Bevolkerung fiir den 31. Dezember 1941 zu be-
rechnen, da die geringen Abénderungen sicherlich die Ergebnisse nicht
gedindert hitten, denn die aus der Volkszdhlung sich ergebenden Be-
setzungszahlen, die fir die einzelnen Alter verdtfentlicht wurden,
weisen ganz bedeutende systematische Unregelméssigkeiten auf. Die
Sterbetille sind nur in 10jihrigen Altersgruppen verdffentlicht worden,
mit Ausnahme der ersten 10 Lebensjahre, welche in drei Gruppen
0-1, 1-5 und 5-10 geteilt wurden. '

Bei der Volkszdhlung wurde auch eine Gruppe «unbekannten
Alters» mitgefithrt (6908 Personen), die proportionell auf die verschie-
denen Gruppen aufgeteilt wurden, das heisst, die Originalgruppen
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(Kolonne 1) wurden mit 3850771 : 3843863 multipliziert (Kolonne 2).
Die von Deming [38] ausgearbeitete Methode zur Aufteilung dieser
Gruppe konnte nicht angewendet werden, da die erforderlichen sta-
tistischen Unterlagen nicht beschafft werden konnten.

Um aus den Zehnergruppen die gewiinschten Fanfergruppen zu
gewinnen, wurden die Zehnerintervalle der aufsummierten Lebenden
(Kolonne 3) und Toten (Kolonne 5) mit Hilfe der gewéhnlichen Inter-
polationsformel mit konstanten fiinften Differenzen

256 Yos = 3 1yg— 25139 + 150 Yy + 150 55— 25 14 + 3 Y350

halbiert und so die Werte fiir die Alter 25, 35, ... etc. gewonnen.
Der dem Alter 15 entsprechende Wert wurde durch Anwendung der
Palmqvistschen Interpolationsformel [89] aus den Altern 10, 20 und 30
bestimmt. Durch Differenzenbildung wurden — mit Ausnahme der
ersten drer Gruppen — die erforderlichen Fiinfergruppen errechnet
(Kolonnen 4 und 6).

Palmqvist geht von der Taylorschen Reihenentwicklung

h2

Hahy=F{g)+ b1 (o) +—-1" ()

aus, macht von der FEulerschen Substitution

h oz
y h:
o+ h 1—=z

& ==

Gebrauch und erhilt bei Vernachlissigung von héheren als den zweiten
Potenzen von z

f@+ ) =f() + af @)z + az? [f(w) + —gmf” (w)]

Der Parameter o« wird nun so bestimmt, dass der Koeffizient von
22 verschwindet.
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Werden die Werte f(z—¢), f(x), f(z + &) als bekannt voraus-
gesetzt und wird der Abstand der Ordinate des gesuchten Wertes von
xz mit h bezeichnet, bekommt man nach Durchfithrung der obigen
Substitutionen die endgiiltige Formel

20 [f(x) —f(z— )] [[ (x + &) — f ()]
[f(e—e)—2f(e) +flx+ )] h—[f(z + &) —f(z—¢)] £

a4 1) = (o) —

wobel im gegenwirtigen Falle h = 5 und ¢ = 10 zu setzen wiire.

Zur Bestimmung der Besetzungszahlen der Lebenden bzw. Toten
an den Kardinalpunkten fir die Alter 7, 12, 17 und 22 wurde von der
gewohnlichen Interpolationsformel fiinfter Ordnung Gebrauch gemacht.

y; = 0.176896 Gy + 0.068416 Gy — 0.074624 Gy, + 0.086416 Gy — 0.007104 Gy
s = —0.007104 G5 + 0.212416 Gy — 0.002624 Gy, — 0.008584 Gy 1 0.000896 Gy,
o= 0.000896 G5 — 0.011584 Gyo + 0.221876 G5 — 0.011584 Gy + 0.000896 (7,

und fiir die iibrigen Alter wurde die neue Formel M3 verwendet.
750000 y,., = — 3187G,_,, + 6748G, ; + 142878G, 4 6748G, , — 31876,

wobel die G, die Fiinfergruppen (Kolonnen 4 und 6) darstellen. Die
Besetzungszahlen fiir die Alter 5-9 wurden provisorisch mittels der
gewohnlichen Interpolationsformel funfter Ordnung bestimmt.

Die Verstorbenen wurden nur nach vollendeten Geburtsjahren
bekanntgegeben, so dass eine exakte Bestimmung der Ablebenswahr-
scheinlichkeiten nicht moglich ist. Da aber festgestellt wurde, dass
die Zahl der Todesfille innerhalb des ersten Lebensjahres und der
Geburten in den beiden Jahren 1941/1942 nur geringfiigice Ande-
rungen aufweist, wurde die diesem Zeitraum entsprechende Toten-
gesamtheit durch die im selben Zeitraum Geborenen dividiert 32328 :
273649 und der erhaltene Wert als néherungsweise Ablebenswahr-
scheinlichkeit fiir das erste Liebensjahr angenommen. Der tatsidchliche
Wert diirfte merklich hoher sein, da die Registrierung in manchen
Teilen des Landes mangelhaft ist, und es wurden schon bei anderer
Gelegenheit die diesbeziiglichen Daten auf ihre Glaubwiirdigkeit hin
untersucht [40].
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Gruppe (1)  (2)  (3) 4 6 (6 « 10,
-8 380633
0 128325 128556 3850771 128556 125911 32328 - 3 221389
1 449668 450476 3722215 450476 93583 19921 2 111168
5 522646 523585 3271739 523585 73662 5501 7 50362
10 875673 877247 2748154 465401 68161 3208 12 33119
15 2282753 411846 64953 3939 17 47343
20 694940 696189 1870907 380528 61014 5649 22 74694
25 1490379 315661 55365 5719 27 90588
30 466747 467585 1174718 256140 49646 5506 32 107134
35 918578 211445 44140 5321 37 125289
40 342535 343151 707133 188086 38819 5403 42 142864
45 519047 155065 33416 5049 47 162482
50 194908 195258 363982 112827 28367 4296 52 188567
55 251155 82431 24071 4053 57 243663
60 107864 108058 168724 63496 20018 4321 62 335845
65 105228 44562 15697 4016 67 442691
70 40379 40452 60666 25913 11681 3144 T2 592847
75 34753 14539 8537 2552 77 849421
80 15753 15781 20214 9780 5985 2247 82 1100880
85 10434 6001 3738 1728 87 1354092
90 3804 3811 4433 2734 2010 1036 92 1746773
95 1699 1077 974 557
100 621 622 622 417
3843863
2 6908
3850771

Schwierigkeiten ergaben sich auch bei der naherungsweisen Be-
stimmung der Ablebenswahrscheinlichkeiten in der Altersgruppe 1-4.
Zunichst wurde eine Nidherungsformel verwendet [41], die unléngst
vom theoretischen und praktischen Standpunkt aus nédher untersucht
wurde [42]. Es hat sich ndmlich gezeigt, dass nach den in den Ver-
einigten Staaten Nordamerikas vorhandenen Statistiken mit ziemlicher
Genauigkeit die Ablebenswahrscheinlichkeiten durch das zentrale

Sterblichkeitsverhiltnis der faktischen Bevélkerung

e = 1— e=nymg (a-bymy)

filr Gruppen dargestellt werden kann, wobei sich fir 2 =1, n=4
die Werte

ergaben,

a = 0.9806,

b= 2.079
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folglich My = 19921 : 900952 = 0.022111
oder o = 0.079337,

doch scheint dieser Wert etwas zu klein zu sein. Dann wurde fiir diese
Altersgruppe mittels des zentralen Sterblichkeitsverhiiltnisses der
Ausdruck

2 my

4
—) = (.084649
2 4 gmy

4Q1:1_“<1‘*‘

berechnet, der den tatsichlichen Verhiltnissen eher zu entsprechen
scheint. Um nun die Ablebenswahrscheinlichkeiten fiir die einzelnen
Alter zu bestimmen, wurden auf Grund der erhaltenen Werte

l, = 100000 [, = 88186
I, = 80721 I, == 78945

5]

durch neuerliche Anwendung der Palmqvistschen Formel die Lebenden
fiir die Alter 1-5 bestimmt und daraus die Ablebenswahrscheinlich-
keiten fiir die ersten 5 Altersjahre gewonnen. Im Intervall 5-9 scheinen
die auf diese Art errechneten Werte zuerst etwas zu hoch und dann
etwas zu niedrig zu sein. Iis wurde auch der Versuch gemacht, die
gesuchten Werte durch Anwendung einer von Oppermann [43] stam-
menden Formel, die durch Hinzufiigen eines (Gliedes etwas anpassungs-
fihiger gemacht wurde [44], zu erhalten

—log,p,=al e +bz+ ca)z+ da?

aber die Resultate unterscheiden sich nur unwesentlich. Die Ab-
lebenswahrscheinlichkeiten, die fiir die Kardinalpunkte 7, 12, 17, 22, 27
bestimmt wurden, wurden unter der Annahme von konstanten vierten
Differenzen verlingert und durch Anwendung der Formel M3 end-
giiltig die Sterbenswahrscheinlichkeiten fiir die Alter 5 bis 71 berechnet.
In den hochsten Altern scheinen die vorhandenen Daten durch un-
richtige Altersangaben von den tatsichlichen Verhiltnissen sehr abzu-
weichen, da die Ablebenswahrscheinlichkeiten tiberaus niedrig aus-
fallen. Wir haben daher durch Fxtrapolation mit konstanten vierten
Differenzen die Ablebenswahrscheinlichkeiten vom Alter 71 an bis

26

="
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zum Schluss der Tafel bestimmt und dadurch erreicht, dass die Tafel-
bevilkerung als hochstes Alter 100 erreicht. Zur Berechnung der
Werte wurde von der nachstehenden Tabelle Gebrauch gemacht, wobei
die Werte

Ge; = 0.0441686, At = 0.0025062, A2 = 0.0002242, A3= 0.0000869, A*= 0.0000020

verwendet wurden.

Tabelle der zur Extrapolation erforderlichen Koeffizienten

A2 i A3 Vi A i Vi At
1 — — — 21 210 1330 5985
2 1 — — 22 231 1540 7315
3 3 1 - 23 253 1771 8855
4 6 4 1 24 276 2024 10626
5 10 10 5 25 300 2300 12650
6 15 20 15 26 325 2600 14950
7 21 35 35 27 351 2925 17550
8 28 36 70 28 378 3276 20475
9 36 84 126 29 406 3654 23751

10 45 120 210 30 435 4060 27405

11 55 165 330 31 465 4495 31465

12 66 220 495 32 496 4960 35960

13 8 286 715 33 528 5456 40920

14 91 364 1001 34 561 5984 46376

15 105 455 1365 35 595 6545 52360

16 120 560 1820 36 630 7140 58905

17 136 - 680 2380 a7 666 7770 66045

18 153 816 3060 38 703 3436 73815

19 171 969 3876 39 741 9139 82251

20 190 1140 4845 40 780 9880 91390

Die Rechnung wurde mit 7 Dezimalen durchgefithrt, und dann
wurden die Werte auf 5 Stellen abgerundet. Die fiinften Differenzen
zwischen den Altern 17 und 66 wurden mit 7 Dezimalstellen in die
Tabelle aufgenommen, da der Grossteil der Differenzen geringer als
eine Einheit der fiinften Dezimale ist.

Der Vollstindigkeit halber wurde auch ein Vergleich der tatsich-
lichen und erwartungsgemissen Sterbefille vorgenommen. Bei DBe-
rechnung der erwartungsgemissen Sterbefille fiir jedes Altersjahr auf
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Grund der Volkszihlungsdaten ergeben sich in jeder Finfergruppe
weniger erwartungsgemaisse als tatsdchliche Sterbefille, eine logische
Folge der Uberbesetzung der auf Null und Fiinf endenden Alter, der
Anfangsalter in jeder Gruppe. Wir haben daher ein durchschnittliches
zentrales Sterblichkeitsverhdltnis fir die Funfergruppen nach der
Formel

cebildet und die erwartungsgemiissen Sterbefille mittels
2G, - ;m,

berechnet. Das Ergebnis fiir die Alter 5-70 ist in der folgenden Tabelle
verzeichnet.

Sterbefille
Altersgruppe E = erwartungsgemisse T = tatsichliche BT

5- 5500 5501 -1

10- 3224 3208 16

15— 3966 3939 27

20— 5578 5649 -71

25— 5764 5719 45

30— 5524 5506 18

35— 5320 5321 -1

40— 5410 5403 v

45— 5066 5049 17

50—~ 4327 4296 31

55— 4096 4053 43

60— 4308 4321 -13

65— 4021 4016 5
Total 62104 61981 123

Das Vorherrschen von positiven Abweichungen und deren geringe
Grosse muss als zufriedenstellendes Ergebnis angesehen werden, da
die Besetzungszahlen der einzelnen Alter in der tatsichlichen Be-
volkerung schneller abnehmen als in der Sterbetafelbeviélkerung.
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Venezolanische Volkssterbetafel (Minner und Frauen) 1941/1942

0

x L, d, 105 ¢, e, 107 A5,
0 100.000 11.814 11.814 46 .68

1 88.186 3.467 3.931 51.87

2 84.719 1.924 2.272 52.97

3 82.795 1.226 1.480 53.19

4 81.569 848 1.040 52.98

5 80.721 559 692 52.53

6 80.162 472 589 51.90

7 79.690 402 505 51.20

8 79.288 348 439 50.46

9 78.940 308 390 49.68

10 78.632 280 356 48 .87

11 78.352 265 338 48.04

12 78.087 260 333 47 .20

13 77.827 265 341 46.36

14 77.562 280 361 45 .59

15 77.282 303 391 44 .68

16 76.979 331 430 43 .85

17 T6.648 364 475 43 .04 55
18 76.284 401 526 42 .24 54
19 75.883 441 581 41.56 34
20 75.442 480 636 40.70 -30
21 T4.962 515 688 39.96 -60
292 T4.447 548 736 39.23 —61
23 73.899 576 779 38.592 —-57
24 73.323 598 816 37.82 -1
25 T2.725 617 848 37.13 38
26 72.108 634 879 36.44 14
27 71.474 649 909 35.76 10
28 70.825 666 940 35.08 9
29 70.159 681 971 34.41 =7
30 69.478 698 1.004 33.74 -7
31 68.780 714 1.038 33.08 9
32 68.066 730 1.072 32.49 10
33 67.336 746 1.108 31.77 10
34 66.590 761 1.143 31.11 9
35 65.829 777 1.180 30.47 -6
36 65.052 791 1.216 29.83 —4
37 64.261 804 1.251 29.19 -4
38 63.457 816 1.287 28 .55 -5
39 62.641 828 1.322 27.92 -13
40 61.813 839 1.357 27.29 1
41 60.974 849 1.392 26.66 19
4 60.125 859 1.428 26.03 21
43 59.266 868 1.465 25.40 29
44 58.398 877 1.502 24 .77 25
45 57.521 886 1.540 24.14 -10
46 56.635 894 1.579 23 .51 —-40
47 55.7T41 903 1.620 22.87 —49
48 54.838 911 1.662 22 .24 37
49 53.927 921 1.708 21.61 17
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=4 0 n
z . d, 105 ¢, e, 107 A5 q,
50 53.006 933 1.760 20.98 28
51 52.073 948 1.820 20.34 -16
52 51.125 966 1.890 19.T1 -21
53 50.159 990 1.972 19.08 —-26
54 49.169 1016 2.068 18.46 —65
55 48.153 1049 2.178 17.83 4
56 47.104 1085 2.304 17.22 97
57 46.019 1126 2.446 16.61 104
58 44.893 1169 2.603 16.02 97
59 43.724 1212 2.774 15.43 5
60 42.512 1258 2.957 14.86 —64
61 41.254 1298 3.148 14.30 =27
62 39.956 1336 3.344 13.75 ~21
63 38.620 1369 3.544 13.20 -1
64 37.251 1397 3.749 12.67 172
65 35.854 1420 3.961 12.15 36
66 34.434 1440 4.183 11.63 —243
67 32.994 1457 4.417 11.11
68 31.537 1472 4.667 10.60
69 30.065 1486 4.941 10.10
70 28.579 1499 5.245 9.59
71 27.080 1513 5.589 9.10
72 25.567 153 5.982 8.61
73 24.037 1546 6.434 8.12
74 22.491 1564 6.953 7.65
75 20.927 1580 7.550 7.18
76 19.347 1593 8.235 6.73
T 17.754 1601 9.017 6.29
78 16.153 1600 9.907 5.86
79 14.553 1589 10.915 5.45
80 12,964 1562 12.052 5.05
81 11.402 1520 13.329 4.68
82 9.882 1458 14.757 4.32
83 8.424 1377 16.348 3.98
84 7.047 1277 18.112 3.66
85 5.770 1157 20.061 3.36
86 4.613 1025 22,208 3.08
87 3.588 881 24.565 2.82
88 2.707 735 27.143 2.57
89 1.972 591 29.955 2.34
90 1.381 456 33.014 2.13
91 925 336 36.333 1.93
92 589 235 39.925 1.75
93 354 155 43.803 1.58
94 199 96 47.981 1.43
95 103 54 52.472 1.30
96 49 28 57.291 1.16
97 21 13 62.451 1.03
98 8 5 67.966 0.92
99 3 2 73.851 0.82
100 1 1 80.122 0.73
101 0.131 86.792 0.64
102 0.017 93.877 0.55
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C.

Mit vollem Recht wurde beméngelt, dass die bisher auf dem Gebiete
der Interpolationsrechnung veroffentlichten Arbeiten viele Formeln
enthalten, aber nur wenige kritische Vergleiche ihrer Resultate. Da
nun der Wert von Interpolationsformeln insbesondere von den prak-
tischen Resultaten abhingt, die durch ihre Anwendung erzielt werden,
so wurden in den folgenden Tabellen fiir das von Beers gewihlte
Beispiel die Werte der fiinften Differenzen nach einigen Interpolations-
formeln mit funften Differenzen aufgenommen. Es handelt sich dabei
um die Ausgleichung von «dem Ablebensrisiko ausgesetzten Personen»,
deren Originaldaten in IFunfergruppen vertffentlicht wurden [45].
Im nachstehenden sind die erforderlichen Grundzahlen mit ihren
Differenzen vermerkt.

z =N A= A A8 A A5

T
15 24815451 247705 592450 493893 —413830 -34233
20 24567746 840155 1086343 80063 —-448063 471954
25 23727591 1926498 1166406 —-368000 23891 —-475078
30 21801093 3092904 798406 -344109 —451187 599283
35 18708189 3891310 454297 ~795296 148096 371636
40 14816879 4345607 —340999 —647200 519732 -152937
45 10471272 4004608 -988199 -127468 366795 -337368
50 6466664 3016409 —-1115667 239327 29427 —-4413
55 3450255 1900742 -876340 268754 25014 —102665
60 1549513 1024402 607586 293768 =T7651
65 525111 416816 -313818 216117
70 108295 102998 -97701
75 5297 5297
80 0

Wenn auch ein Beispiel nicht geniigt, um iiber den Wert einer
Formel im Vergleich zu anderen ein endgiltiges Urteil zu fillen, so
lassen doch die Ergebnisse erkennen, welche Formel gute Resultate
erwarten lisst. Ks hingt natarlich auch von den zu interpolierenden
Werten und insbesondere vom Verlauf ihrer Differenzen ab, welche
Interpolationsformeln im gegebenen Falle die besseren Resultate
ergeben. Aus der Tabelle geht hervor, dass von den reproduzierenden
Interpolationsformeln die Formeln MMA, MMC, MMT und die von Beers
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fast gleichwertige Resultate ergeben. Unmittelbar folgen die Formeln
von Henderson vom Jahre 1906 sowie die von Shovelton und in wei-
terem Abstande die oskulatorischen und ganz zuletzt die Formel von
Henderson vom Jahre 1921. Alle diese Formeln sind weit davon ent-
fernt, um auf Grund des neu aufgestellten Glittekriteriums als zu-
friedenstellend bezeichnet zu werden. Der Grund liegt eben darin,
dass verlangt wird, dass die Originalwerte unverdndert bleiben sollen.

Von den ausgleichenden Interpolationsformeln gibt wohl die
Formel M3 weitaus die besten Resultate, die fiinften Differenzen liegen
auf einer kontinuierlichen Wellenlinie, ohne irgendwelche Spriinge
aufzuweisen. Wenn man von der Kontinuitit der Grosse und des Vor-
zeichens absieht, kommen unmittelbar die Formeln M4 A und M2,
doch bemerkt man bei der Formel M4 A deutlich den bereits frither
erwihnten Sprung innerhalb jedes Funferintervalles. Dasselbe wiire
ibrigens auch von der ausgleichenden Formel von Jenkins zu sagen,
die erst in weitem Abstande folgt.

Wenn die zu interpolierenden Werte nur aus wenigen Ziffern
bestehen, 3—5ziffrige Grossen z. B., dann werden natiirhch die Spriinge
nicht so deutlich in Erscheinung treten.

Da die beiden ersten und die letzten zwei Intervalle nicht mit
derselben Interpolationsformel untergeteilt werden konnen und die
Losung dieses Problems nicht als einheitlich bezeichnet werden kann,
so wurden nur die interpolierten Werte der iibrigen Intervalle beriick-
sichtigt. Aus demselben Grunde wurde auch das Problem der un-
gleichen Intervalle nicht behandelt.

Erginzend wire noch zu bemerken, dass die Behandlung von Inter-
polationsformeln, die eine gerade Anzahl von Differenzen beriick-
sichtigten, theoretisch keine neuen Ergebnisse bringt. s ist nur zu
beriicksichtigen, dass in diesen Fillen nicht ein Mittelintervall inter-
poliert wird, sondern dass der Mittelpunkt des Interpolationsintervalles
mit den Kardinalpunkten zusammenfillt. Aus diesem Grunde hat
Greville die treffenden Bezeichnungen Endpunkt- und Mittelpunkt-
formel angewendet.
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Fiinfte Differenzen von Beers’ Beispiel, gerechnet nach den Formeln

B MMA |H1906| SH |H1921| M3 | M4 A | M2 M4 JM

25 -205 0 0 0 —44 -11 0 =52 0
26 1131 524 | 1332 2102 82 -178| -210| -1247| -T710
27 —-1967 | —4264 | -3182[-10566| -380| —-481| -514| -1268| -2130
28 —1360 | 1346| -145| 10566 -23 621 835 776 | 2130
29 1232 2394 | 2345 -2102 555 318 240 | 1284 710

30 2832 0 0 0 604 151 0 717 0
31 86 653 934 | -5019 594 464 421 120 242
32 580 2000 | 2853 16511 335 1030 1262 -139 727
33 =556 | —1979| -2829 |-16511| -332( —1031 | -1264 142 | 727
34 -103| -674| =960 5019 | -598| —465| —421| -120| -242
35 —2850 0 0 0| -608| -152 0 -T22 0
36 228 | -904| -553 5128 | —609| -507| -473| -1302| -840
37 —1117| —4367| —3695|-20427 | —435| -1149| -1387| -979| -2521
38 173 3539 2751 | 20427 321 1189 | 1478 839 2521
39 443 1732 1596 | -5128 743 547 482 1312 840
40 3596 0 0 0 767 192 0 i1 0

41 2644 3586 4306 | 1017 668 267 134 463 248
42 -3563 | 2189 | —-3007 4538 | -366 403 660 | —221 T44
43 —3826 | —4284 | —4372| -4538| -527 -92 52| 871 | -T744
44 2599 2887 3850 1017 381 44 —-69| —-381| -248

45 2230 0 0 0 476 119 0 565 0
46 643 1772 1443 | -2105 448 292 240 | 1474 810
47 -516 2399 743 | 11172 84 606 T80 1076 | 2429
48 -1146 | —-3857 | —2405(-11172| -285| -536( -619| 1321 | —2429
49 538 -314 394 2105 -212| 222 -226| -1455| -810
50 -918 0 0 0] -196 —49 0 -232 0

51 —1305| -1022| -1875| —495| -147 12 66 | 1002 530
52 1974 3470 2416 4664 290 122 66 1161 1590
53 1753 -202 1310 | —4664 161 279 —426| -610{ —1590
54 —1342 | 2246 | 2244 495 -381| -169 -98 | -1044 | 530

55 -2024 0 0 0] —-432( -108 0| -513 0
56 =956 | 1322 -1768 1815 | —-394| -218| -159 48 -35
57 1099 591 300 | —5654 40 —417| =569 337 -104
58 1499 1688 2298 5654 274 308 319 47 104
59 =890 -957| -1103| -1815 ‘2.5 109 137 =76 35
60 -26 0 0 0 ~6 -1 0 =T 0
61 =279 | 258 -351 —-491 -+ 3 40 70 55
62 466 653 702 1803 84 90 92 102 166
63 348 61 112 —1803 15| -124| =170 18] —166
64 =299 —456| -548 491 -120 -65 -47 =79 -55
65 -616 0 0 0| -131 -33 0| -156 0

25854 | —29295 | -29037 | —93507 | —6308 | —6287 | —6652 (-12795 [-13881
26094 | 29295 | 29685 93507 6869 | 6915 7304 | 12464 [ 13881

Total | 51948 | 583590 | 58722187014 | 13177 | 13202 | 13956 | 25259 | 27762
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Fiinfte Differenzen von Beers’ Beispiel, gerechnet nach den Formeln

. Summe der Differenzen Siiisiis, A
ormel
) — absoluten Werte
negative Werte positive Werte

MMA 25854 26094 51948
MMC 25895 26061 51956
BM 26168 26476 52644
MMB 26516 26890 53406

M 26831 27273 54104
MMT 27100 27585 54685
H1906 29295 29295 58590
SH 29037 29685 58722
SP 45553 45654 91207
J3 47879 44284 92163
J2 50120 47531 97651
R3 56367 55851 112218
B 57968 58612 116580
J4 64944 60377 125321
R4 79432 78303 157735
H1921 93507 93507 187014
M3 6308 6869 13177
M4A (6287 6915 13202
M2 6652 7304 13956
VB 8037 9330 17367
M4 12795 12464 25259
JM 13881 38581 27762
VC 24815 27403 52218
VA 30890 29596 60486
VM 81424 82515 163939




(1) Bezeichnung. (2) Name des Autors. (3) Veroffentlicht in: (4) Grad. (5) Reproduktionsgrad. (6) Kontinuierliche Ableitungen.

Interpolationsformeln dritter, fiinfter und siebenter Ordnung

(1) @) 3) @|6)| © @ () Q)
Interpolationsformeln dritter Ordnung
Everett JIA, XXXV, 3130 ]| z(zx2-1):6 0
KK Karup 2-te IVK. 31211 ] z%(x—-1):2 0
G105 Greville TASA, XLV. 5|1211,2] —z3(x-1)22-3):2 0
3M4 Michalup e 511 1-3| z¢(6-2x):20 3/20
Greville RATA, XXXIV. 51210 | -2@-1)B0z2-T7522-0672-2):192 0
Michalup — s 51210 | -z(z-1)B0z*-T522-112-06):96 0
Michalup — 31210 | 2(x-1)R22x+ 1):48 0
Interpolationsformeln fiinfter Ordnung
SH Shovelton JIA, XLVII. 41411 | 23(z-1)(x-5):48 0
H1906 Henderson | TASA, IX. 31311 22(1-x):12 0
BT Beers TASA, XLVI. 4131 ] z201-32+ 22):86 -1/36
M1 Michalup — 4131 | (85 22-198 x—43): 4080 -13/340
G110 Greville TASA, XLV. 3131 z2(x-2):12 -1/12
MMT Michalup — 5141 | 22(z—-1) (145 22— 168 z — 175) : 2376 0
H1921 Henderson | TASA, XXII. 31312 xz(1-2%:36 0
Michalup — 4 (3|2 | 2(xz—-1)Bx2-5):144 0
SPp Sprague JIA, XXII. 514 |1,2 z8(z-1)Bx-7):24 0

c0v



J2
JM
G111
VA
VB
vC
M2
M4A
J3
M3
R3
M4
J4
R4
M5
5M
M6
6M
M7
BM
GM
MMA
MMB
MMC
VM
BM4
GM4

Buchanan
Jenkins
Jenkins
Greville
Vaughan
Vaughan
Vaughan
Michalup
Michalup
Jenkins
Michalup
Reilly
Michalup
Jenkins
Reilly
Michalup
Michalup
Michalup
Michalup
Michalup
Beers
Greville
Michalup
Michalup
Michalup
Vaughan
Beers
Greville

JIA, XLIL.
RAIA, XV.

TASA, XXVIII.

TASA, XLV,
JIA, LXXIL
JIA, LXXIL
JIA, LXXIIL.

RATA, XV.

RATA, XIIL

RATA, XV.
RATA, XIV.

RATA, XXXIIL

RAIA, XXIV.

JIA, LXXIL

RATA, XXXIV.
RATA, XXXIV.
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2 (x—-1)Bx-4):12
z3(l—1z):12

—z3: 36

23 (22-3):12

z3(2-3x):72

i (z—2):24

238 x—5): 36

2} (3x-8):144

z?(z2-5): 120

zt(x—-1)(Tx-11): 48

z4(8 z —15): 240

zt(x—-1)(—14 22 352 - 23): 24

z5(15 = —26) : 480

z5(x—-1) (11 z—-16): 60

z3(z—1) (46 23— 161 =2 + 193 £ —80): 24
— 25(504 — 536 2 + 147 z*): 5376

x8(x—1) (—46 22 4 137 . —105): 168
—z7(48 z2 - 159 z + 136): 1344

27(x-1) (75 2% + 211 z-152): 192

— 28(- 60 z® 4 297 22— 506 = + 297): 1584
z(z—1)(50 22 - 67T 22 -11 x—2): 384
z(z—1) (150 z® - 185 z2 - 121 = - 2): 1920
z(z—1) (150 23— 205 z2— 13 z—6): 960
z(z—-1) (50 2*-6522-21 z—2):480
x(z—1)(350 z%—485 22 -+ 3 z—14): 1920
z(— 625 z* 4- 3125 z® - 3625 z2 4 175 x — 514) : 24000
z (625 x* — 1825 22— 780 x — 84) : 48000

2 (1250 z* 4 13125 23— 24500 22 — 1425 z - 1362) : 240000

0
0
~1/36
~1/12
~1/72
~1/24
~1/18
~5/144
~1/30
0
~7/240
0
~11/480
0
0
~115/5376
0
~25/1344
0
~98/1584
0
0
0
0
0
~0.061
~0.043
~0.0538

807



o) ‘ @ ®) || © 20 @ (1)
Interpolationsformeln siebenter Ordnung

Jenkins RATIA, XV. T15 |14 —z%(x-1) (9 x—13): 240 0
Michalup — 715 |1-4] 2%(35—22 x): 3360 13-3360
Michalup — 65 |14 2°(22-13 z): 1920 3/640
Michalup — 715 |1-4| 23(35 - 13 x2): 5040 11/2520
Jenking RATA, XV, 65|13 —x(xz—-1) (29 x—45): 960 0
Reilly RAIA, XIII. 5156 (1,2 z3(x-1)(-8z -+ 11): 180 0
Reilly RATA, XIII. 6 [1-3] z*(x—1) (B9 x2—-222 z -+ 145): 720 0
Reilly RAIA, XIV. 916 |14 z°(z—-1) (-290 z® 4 1015 22 - 1216 = -+ 503): 720 0

40} 4
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