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Die Erfahrungsnachwirkung
bei Wahrscheinlichkeiten

Von Ed. Burnens, Bern

§ 1

Einleitung

Wir betrachten eine mit der Zeit veränderliche Wahrscheinlichkeit
für das Eintreffen eines Ereignisses, das wir als «günstig» voraussetzen.
Das Wort «günstig» bedeute in diesem Zusammenhang im allgemeinsten
Sinne die Nützlichkeit des Ereignisses für eine Person oder Personen-

gesarntheit. Während also das günstige Ereignis den betreffenden
Personen einen Vorteil bringt oder zumindest die Verhinderung eines

Nachteiles bedeutet, verursacht ihnen das ungünstige Gegenereignis
einen Schaden, eine Nutzeneinbusse. Die Veränderlichkeit der
betrachteten Wahrscheinlichkeit sei eine Folge der «Erfahrungsnachwirkung».

Wir wollen darunter folgendes verstehen:
Wenn das ungünstige Ereignis tatsächlich eintritt, wird die damit

verbundene Erfahrung die Betroffenen veranlassen, seine Ursachen

zu bekämpfen und möglichst auszuschalten, um einer Wiederholung
entgegenzuwirken. In dieser Reaktion besteht im wesentlichen die

Nachwirkung der gemachten Erfahrung; sie kann ausserdem noch in
der Förderung der Ursachen des günstigen Ereignisses bestehen. Wenn
sich nun im Laufe der Zeit nach Massgabe der ihnen jeweils zukommenden

Wahrscheinlichkeiten die Gegenereignisse einstellen, werden die
dadurch veranlassten Massnahmen eine Zunahme der eingangs
betrachteten Wahrscheinlichkeit für das günstige Ereignis bewirken.

Es ist das Ziel der vorliegenden Arbeit, das mathematische Gesetz

dieser Zunahme zu ermitteln. Obwohl wir uns damit eine rein
theoretische Aufgabe gestellt haben, ist es gewiss von Nutzen, sich das

Prinzip der Erfahrungsnachwirkung bei Wahrscheinlichkeiten an

einigen konkreten Beispielen zu veranschaulichen. Dieses Prinzip

22
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wurde bereits von H. Hadwiger [1] *) aufgestellt und nach der
diskontinuierlichen Methode behandelt. Wir zitieren zunächst ein Modell
aus dieser Arbeit:

Ein Arbeiter sei an einer Maschine beschäftigt und verrichte pro
Zeiteinheit eine Manipulation. Als günstiges Ereignis betrachten wir
jede zulässige Manipulation, als ungünstig die Fehlmanipulationen,
welche einen Betriebsunfall verursachen. Die Erfahrungsnachwirkung
besteht darin, dass sich der Arbeiter diejenigen Manipulationen merkt,
die zu einem Unfall führten, oder dass ihre Wiederholung durch
bestimmte Massnahmen verunmöglicht wird.

Überhaupt eignen sich sehr viele Beispiele von Unfallverhütung
zur Illustration der Erfahrungsnachwirkung. Je mehr sich die Unfälle
in einem menschlichen Tätigkeitsgebiet häufen, desto zahlreicher und
wirkungsvoller sind auch die Gegenmassnahmen, zu denen sie Anlass

geben (Schutzvorrichtungen an Maschinen, bessere Verkehrsregelung,
Ersetzen gefährlicher Rohstoffe — wie z. B. des weissen Phosphors
in der Zündholzfabrikation — durch harmlosere, usw.).

Auch gewisse Erkrankungswahrscheinlichkeiten scheinen der

Erfahrungsnachwirkung unterworfen zu sein. Auftretende Krankheitsfälle

bilden — und dies ganz besonders bei Epidemien — einen Ansporn
zur medizinischen Forschung. Die daraus hervorgehenden neuen und
besseren Medikamente, chirurgischen Methoden, hygienischen
Massnahmen, zweckmässigeren Ernährungsmethoden usw. bewirken eine
gewisse Reduktion der Erkrankungs- und Infektionswahrscheinlichkeiten.

Als letztes Beispiel erwähnen wir die Überlebenswahrscheinlichkeiten

in unseren Volkssterbetafeln. Es ist eine bekannte Tatsache, dass

diese Wahrscheinlichkeiten im Laufe der geschichtlichen Zeit
fortwährend zunehmen (wenigstens trifft dies für Länder zu, die wie die
Schweiz seit längerer Zeit vom Kriege verschont blieben).
Todesursachen sind entweder Altersschwäche, Krankheiten oder solche

gewaltsamer Natur, wie Unfälle, Krieg, Mord, Selbstmord. Wenn wir
vom Kriegsgeschehen absehen, so ist in den meisten Fällen mit der
Wirksamkeit unseres Prinzips der Erfahrungsnachwirkung zu rechnen.
In diesem Zusammenhang möchten wir den Umstand hervorheben,
dass die von uns hergeleiteten Wahrscheinlichkeitsformeln unter
gewissen Voraussetzungen in erster Näherung eine logistische Funktion

*) Die Nummern in eckigen Klammem verweisen auf das Literaturverzeichnis.
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ergeben. Die logistische Punktion wurde bereits wiederholt zur
Darstellung der Überlebenswahrscheinlichkeiten (bzw. der Sterbewahr-
scheinlichkeiten) in ihrer funktionellen Abhängigkeit von der geschichtlichen

Zeit herangezogen (Vergleiche z.B. W. P.Schuler [2], E.Zwinggi
[3], J. Talacko [4], [5], P.Glur [6]!). Unseres Wissens geschah in
diesen Fällen die Wahl des logistischen Ansatzes stets aus praktischen
Gründen, wegen seiner empirischen Eignung für diesen Zweck und
ohne apriorische Motivierung.

Die Wahrscheinlichkeit für das Eintreffen des günstigen
Ereignisses, welche im Mittelpunkt unserer Betrachtungen steht, bezeichnen
wir mit

Dabei bezeichne A(t) das Mass der günstigen Fälle, B(t) das Mass

der ungünstigen Fälle im Zeitpunkt t. Je häufiger sich das

Gegenereignis realisiert, desto stärker werden auch die Reaktionen und
Gegenmassnahmen der betroffenen Personen sein. Die
Erfahrungsnachwirkung wird sich daher — dies ist ihrem Wesen inhärent —
in jedem Zeitpunkt proportional zur Wahrscheinlichkeit 1—p(t) für
das Eintreffen des ungünstigen Ereignisses verhalten. Im Hinbhck
darauf und falls wir noch die Total-Ereignisdichte als konstant voraussetzen,

erscheint uns folgende Ansatzhildung naheliegend:

§ 2

Kontinuierliche Behandlung des Problems

A (t) B (f)
(1)

A (t) A(0)+ a f [l—p(£)]di
0

(2)

(a > 0, b > 0).

Die Zunahme der Masszahl A(t) und die Reduktion von B(t)
seien also proportional zum Erwartungswert der Anzahl Gegenereignisse
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im Zeitintervall 0 bis t. a und b sind dem betreffenden Nachwirkungs-
prozess zugeordnete Konstanten. Unter Berücksichtigung von (2)
erhalten wir für die Wahrscheinlichkeit (1)

i

-4(0) +a f [1—p(£)]d£
pW i •

A (0) + B(0) + (a — b) f [1—p(£)]d£
o

Setzen wir noch zur Abkürzung

A(0) A und B(0)=B, (3)

so gewinnen wir daraus

f'n A-(A + B)p(f)
J [1 p(£)]d£

o (a b) p(t) a

und durch Differentiation

p' (<) 1

[(a—b)p{t)—a]2 [1—p(t)] Ab-j-aB

Integrieren wir diese Differentialgleichung mit Hilfe der Partialbruch-
zerlegung

1 a—b b—a 1

+
[(a — b) p(t) — a]2 [1 -p(t)] b2\(a—b)p(t)—a] b[(a-b)p(t)-a]2 b2[l-p{t)]

so erhalten wir für p(i) die Bestimmungsgleichung

(a — b)p (f) — a

p(f) —1

tb2

e{a-b)p{i)-a _ Cß Ab+aB
^

Ab + aB -i A+B
C — e Ab+aB

B
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Mit Hilfe der Substitutionen

z
1 — (a — b) p (t)

az 4- (a — b)

uy w,; (4)
(a — b) (z -f 1)

B(a — b)
w - e Ai+aB (5)

Ab + aB '

gewinnen wir folgende transzendente Beziehung zwischen den Grössen

2 und w:
w ze (6)

Unsere Aufgabe besteht nun darin, einen expliziten Ausdruck
für z herzuleiten. Diese Inversion lässt sich auf Grund der Bürmann-
Laqrangesehen Reihe vollziehen (vgl. Hurwitz-Courant [7]). Wir
beschreiten hier einen andern Weg, welcher schon von G. Bol [9]
eingeschlagen wurde. Nach einem bekannten Satz der Punktionentheorie
(.Hurwitz-Courant [8]) existiert in einer genügend kleinen Umgebung
des Punktes w 0 eine regulär-analytische und für w 0 verschwindende

Umkehrfunktion z z (id). Sie gestattet die Potenzreihenentwicklung

^
z YscAü" (7)

v=l
mit den Koeffizienten

1 I zdw
c — / (8)'

2 7i i J wr+1

gemäss der Integralformel von Cauchy. Die Integration erfolge aber
einen nicht zu grossen, den Punkt iv 0 umschliessenden Kreis.
Durch die Substitution (6) führen wir in (8) 0 als neue Integrationsvariable

ein. Der neue Integrationsweg, das Bild des soeben erwähnten
Kreises in der 2-Ebene, ist eine kleine, den Punkt z 0 einfach um-
schliessende Kurve. Nach einer weiteren Umformung erhalten wir

'jTCI

1 1

zv~l
+

zv
dz.

Jedes der beiden sich daraus ergebenden Integrale lässt sich wiederum
als Cauchysche Integralformel interpretieren.



Es ist nämlich
(—v)r~2 (—v)'"~l r'"1

e 1—2— + — (_ l)"-'.—
(v — 2)! (v — 1)! vi

Durch Einsetzen in (7) gewinnt man die Potenzreihenentwicklung
der gesuchten Umkehrfunktion

OO j/ 1

—wr. (9)
r=l V!

Der Konvergenzradius B ergibt sich unter Berücksichtigung der
Stirlingschen Beziehung

__ _0_

v! [/27t v vr e
12'' (0 < 0 < 1)

aus der Cauchy-Hadamardschen Formel

i =iira \/— e,B \ vi

R —. (10)
e

Aus (4), (5) und (9) erhalten wir nun folgenden Ausdruck für die
betrachtete Wahrscheinlichkeit:

V e J 1 \ H4.« R1 — a y, I I e

Ab 4- aB
V(t)

~ \(a—b)vW1 / B

-f- aB

Es gilt offenbar lim p(t) 1.
t —oo

Die Potenzreihen in (11) konvergieren gemäss (10) für

B\a — b\ _
'»'+ ««-»> 1

g
-A & -CT .A

-f- aß e

,40 +aß 74 | a — hl -UAtF>
f > log L

e Ab + aB
_ /j 2)

02 ,40 + flß
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Unter den Formeln, welche sich durch Spezialisation aus (11)

gewinnen lassen, möchten wir besonders zwei hervorheben, welche
nach unserer Auffassung trotz ihrer einfachen Struktur den Charakter
der Erfahrungsnachwirkung in typischer Weise auszudrücken
vermögen. Diese beiden Fälle lassen sich auch durch ein einfaches
Urnenschema beschreiben, wie wir im nächsten Paragraphen sehen werden.

Fall I: Die Masszahl A(t) der günstigen Fälle bleibe konstant:

A(t) A(0)=A a 0. (13)

Dieser Spezialfall scheint uns dem Wesen der Erfahrungsnachwirkung,

wie sie im allgemeinen auftritt, ganz besonders zu entsprechen.
Wir bezeichnen ihn deshalb als «Erfahrungsnachwirkung im eigentlichen
(engeren) Sinn». Bei der diskontinuierlichen Behandlung der
Erfahrungsnachwirkung wird er unsere Hauptaufmerksamkeit in Anspruch
nehmen. Es ist dies auch der von H. Hadwiger in dem bereits zitierten
Artikel [1] untersuchte Spezialfall. Das dort erreichte Resultat

V (*) (14)
00 v oj

I _|_ V I)1'"1 e!,£u(i-/J)

T" v!

und die zugehörige Konvergenzbedingung

1

t > log [coew r']
a) A

folgen aus den Formeln (11) und (12), falls man darin noch

B
h X B und — <x> setzt.

A

Fall II: Es sei a b, d. h.: die Summe der Masszahlen

A (f) + B(t) A -f- B konstant.

Aus (11) erhalten wir rein formal

B ta

A+B> (15)
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ein Resultat, welches leicht direkt aus

f

A +a f [1 — p(g)\d£

berechnet werden kann. Die Konvergenzbedingung (12) fällt in diesem

Spezialfall dahin.

§ 3

Diskontinuierliche Behandlung des Problems

Zur diskontinuierlich-mathematischen Erfassung des Prinzips der

Erfahrungsnachwirkung bedienen wir uns der klassischen Methode
des Urnenschemas. Die Schwierigkeiten sind hier erheblicher als bei

der kontinuierlichen Methode, die Resultate komplizierter gestaltet.
Wir werden uns deshalb auf den Fall der Erfahrungsnachwirkung
im eigentlichen Sinn sowie auf den 2. Spezialfall des vorigen
Paragraphen beschränken. Es darf nicht ausser acht gelassen werden,
dass ein Urnenschema, soll es auch brauchbar sein, folgenden
Bedingungen zu genügen hat: Erstens muss es den wirklichen Vorgängen,
zu deren Schematisierung es dient, wenigstens in den Hauptzügen
ihrer Struktur gut entsprechen, das innere Wesen dieser realen
Begebenheiten in typischer Weise charakterisieren. Zweitens muss es

aber auch einfach sein und nicht auf allzu umfangreiche und umständliche

Formeln führen.
Bevor wir uns der oben formulierten Aufgabe zuwenden, möchten

wir daran erinnern, dass das Prinzip der Erfahrungsnachwirkung bei

Wahrscheinlichkeiten im Rahmen der Wahrscheinlichkeitsrechnung
zum Problemkreis der verketteten stochastischen Ereignisse gehört.
Man spricht hier gewöhnlich von verketteten Wahrscheinlichkeiten oder

Markoffsehen Ketten. Die letzten Jahrzehnte brachten ein
ausserordentlich reiches Schrifttum über dieses Spezialgebiet (vgl. J. Hada-
mard und M.Frechet [10], [11]), besonders auch mit Rücksicht auf
die physikalischen Anwendungen. B. Hostinsky zeigte in einem kurzen
Aufsatz in den Berichten der Pariser Akademie der Wissenschaften [12]
(ausführlichere Darlegung in [13]), dass die allgemeine Theorie der
verketteten Wahrscheinlichkeiten beim Studium verschiedener Urnen-
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Schemas verwendet werden kann. Wir jedoch wollen unsere
Untersuchungen ohne Heranziehen dieser allgemeinen Theorie durchführen.
Beim Studium der abhängigen Ereignisse sind ausserordentlich viele
Strukturen von Abhängigkeit denkbar und zu berücksichtigen; die
Theorien über verkettete Wahrscheinlichkeiten bewegen sich deshalb
meistens in sehr weiten Grenzen, sind höchst allgemein gehalten,
und von ihrer Herbeiziehung zur Behandlung des Spezialfalles der

Erfahrungsnachwirkung wäre unseres Erachtens kein besonderer Vorteil

zu erwarten.

Der Eall der Erfahrungsnachwirkung im eigentlichen Sinn lässt
sich durch folgendes Schema charakterisieren:

Urnenschema I: Eine Urne enthalte w weisse und s schwarze

Kugeln. Es wird eine nicht abbrechende Folge von Ziehungen
vorgenommen, wobei jede gezogene weisse Kugel wieder in die Urne
zurückgelegt wird, nicht aber die gezogenen schwarzen Kugeln.

Mit der Zeit wird sich die Zahl der schwarzen Kugeln (das Ziehen
einer schwarzen Kugel entspricht dem Eintreffen des ungünstigen
Ereignisses) gemäss dem Prinzip der Erfahrungsnachwirkung verringern
und damit auch die Wahrscheinlichkeit für das Ziehen einer schwärzen

Kugel. Die Tatsache, dass wir beim Ziehen einer schwarzen Kugel
nicht A schwarze, sondern nur diese eine aus der Urne entfernen,
bedeutet keine Einschränkung der Allgemeinheit. Im ersten Fall mit
A > 1 ist der Verlauf der zu betrachtenden Wahrscheinlichkeit
derselbe, wie wenn wir stets nur eine Kugel herausnehmen und dafür einen

w s
Anfangsbestand von — weissen und schwarzen Kugeln wählen.

A A

Es bezeichne

q„ die Wahrscheinlichkeit für das Ziehen einer schwarzen Kugel
bei der w-ten Ziehung (n > 1),

qn x die Wahrscheinlichkeit dafür, dass nach der n-ten Ziehung noch

genau x schwarze Kugeln in der Urne vorhanden sind

(ft > 0, a; > 0, s — n < & < s).
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Das Additions- und Multiplikationstheorem der Wahrscheinlichkeitsrechnung

liefern unmittelbar

in+i, x

In'

ac -j- 1 w
in, ® + l-f & + 1 W -X in, x (16)

s s—• 1

in-1, s + | in-i, s-1 • • •

W + S W -f- .1-

in 2|
S V

' in-l, s-r ' (17)
r 0 W -j- S V

J n — 1 (n < s + 1)
co •!

s (n > s -f-1).

Im ersten Fall ist die Summation nur bis v n — 1 zu erstrecken;
denn

s-,j 0 für v > n — 1 (es können nicht mehr schwarze Kugeln
herausgenommen worden sein als Ziehungen durchgeführt wurden).
Durch wiederholte Anwendung von (16) erhält man nach m Schritten

x " Qn^m, x-\-m-k
k=0

m~k X + %

n—.
» 1 W+X+l

IV wm-k m-k-?.! + w
2 2 2
/.1=o;.2=o ;.fc=o w+x+Xx w+x+Xx+X2 w+x+Ä^,

mit der Konvention 17 i
Wählen wir m=n, so lautet diese Beziehung in symbolischer

Schreibweise

-f. -.

2
'

ün, x 7o, x-\-n-k
k—0

27
1 1 W-\- X + l

Unter Berücksichtigung von

!?0, x+n-k

k

n 10

w -(- x + + + Xp

II (k x -f- n — s)

|o (k + x + n — s)

erhalten wir daraus, falls wir noch n durch n — 1 und x s — v

ersetzen,

7/7-1, s- 17
s — V + 1,

=i w + s — v + i
n-\-r
17
H l

~(^1 + • ••

2
w

w + s—v + +... -b X,t (0 < v < n —
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Dabei ist
r s — v + i (w + s— r)!s!

i=l w + s— v + i (w + s)\(s — v)l

Die beiden letzten Ausdrücke liefern nun in Verbindung mit (17)
die gesuchte Formel

•s! <» (s—v) (iv + s — v — 1)!—Ln
(w + s)!,.=o (s — r)! /(—l

+fl~i) w 1

V
;./(=o io + s-v + kx+ + A,t (13)

In—1 (w < s 4- 1) o

77=1.
| s (n > s -f- 1) i

Dieses Besultat entspricht unserer zu Beginn des Paragraphen
gestellten Forderung nach einer nicht allzu komplizierten Struktur
in keiner Weise. Es kann wohl kaum zur Berechnung der ''/„-Werte
herangezogen werden, falls es sich nicht gerade um die ersten
Wahrscheinlichkeiten der Folge handelt. Insbesondere eignet sich die Formel
(18) auch nicht zur Untersuchung des asymptotischen Verhaltens von
{In für

Unsere Aufgabe besteht nun darin, eine Näherungsformel
herzuleiten, welche unseren Forderungen besser entspricht. Es bezeichne

En den Erwartungswert der nach dem w-ten Zug noch in der Urne
vorhandenen (weissen und schwarzen) Kugeln. Es gilt offenbar

E0 w + s

-®« w + S — (ll + 12 + • • • + In) • (19)

Eine plausible Näherung für die gesuchte Wahrscheinlichkeit ist

w
2„+i~ 1- —• (20)

K
(19) und (20) führen auf die Bekursion

10

®« + l En + — 1
• (21)



— 340 —

Diese Bekursion entspricht einem Iterationsprozess bezüglich der
rationalen Funktion

w
f(z) z -) 1, (22)

z

da ja geschrieben werden kann:

fn¥) /(/,,-l(*))> fl(Z) /(2)
und ferner

®n ^ fn (®o) •

Wir setzen der Kürze wegen

2 2o> f(zo) =2i. /(2i) =22>

if
Zn +1 H 1

Zn

Die Funktion (22) hat als einzigen und anziehenden Fixpunkt
den Punkt z w. Bs sei w > 1.

Wir beweisen nun folgende Behauptungen:

1. Die Folge der zn(n 0, 1, divergiert für z < 0.

2. Für z > 0 konvergiert die Folge gegen w.

Der Beweis der ersten Behauptung ist trivial (für z < 0 ist

f{z)<z — 1); zum Beweis von 2. treffen wir folgende Fallunterscheidung

:

a) Ist ein zn > w > 1, so erfolgt wegen

Zn+l — W= W)(l— ")
Zn '

W < zn+x < zn.

Die Folge der zH ist monoton abnehmend und beschränkt, hat also

sicher einen Grenzwert. Der Grenzwert einer konvergenten Iterationskette

ist stets ein Fixpunkt, vorausgesetzt, dass dieser regulär ist.
In unserem Fall kommt als Grenzwert nur der (einzige) Fixpunkt
2 m in Frage, d. h. lim zn w.
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b) Ist ein zn < w, so gilt wegen

10

*n+l— Zn 1 >0
Z„

Zn+1 > *„

Bei wachsendem w nehmen auch die zn zu. Springt dabei einmal
ein Glied der Folge über to hinaus, so befinden wir uns nachher im
Fall a). Ist aber

zn<w für alle n 0, 1, 2,

so muss die Folge aus denselben Gründen wie bei a) gegen z w

konvergieren.

Damit ist die Konvergenz der En gegen w sichergestellt.

Zur Lösung der (nicht linearen) Differenzengleichung (21)
verwendet man zweckmässigerweise folgenden weiteren Näherungsansatz:

En+l—En dEn+1

1 dn

Diese Approximation führt uns auf die separierbare Differentialgleichung

dEl to

-- ^-1 (24)
dn En

K~K- (25)

j' KdEl
I El

El -F iv log (El — w) K — n,

wo E die Integrationskonstante bezeichnet.

En K n

(El — w)e~~ e • e~°.

K

Zur Ermittlung von ew setzen wir n 0. Unsere Bestimmungsgleichung

für El lautet jetzt
En s + w—n

(.E*n — w)e w se w (26)
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Wir ersehen daraus, dass

Aus (24) folgt dann ferner

E*n >10. '27)

dK
- <0,dn

K+i<K> C28)

was der Urneninterpretation entspricht.
Um aus (26) eine explizite Darstellung von El zu gewinnen,

setzen wir zunächst
En w(l+z), (29)

s —x — e w

w

Dadurch reduziert sich die Formel (26) auf

zez x.

(30)

(81)

Wir stossen hier auf dieselbe Bestimmungsgleichung für z wie unter (6).
Die Lösung der Inversionsaufgabe lautet gemäss (9) und (10)

2(-iru
mit dem Konvergenzradius

R

(32)

(33)

Falls wir den Ausdruck (30) in (32) und das Resultat in (29) einsetzen,
erhalten wir mit Rücksicht auf (25)

En rv w

und wegen (20) auch

i + Ec-ir1- vi \w
6W

(s-ti)
(34)

1
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Aus (34) und (35) ersieht man unmittelbar, dass

lim En ~ w, (36)
il oü

lim ~ 0. (37)
n—oo

Gemäss (33) konvergiert die Reihe im Ausdruck (35) für

s s~n+1 1

— e w <—,
to e

/ s -i±A\ S

n > 1 -f- w log — e w =s-)-w + l+ wlog —. (38)
\ w 1 w

Sie konvergiert für alle n > 1, falls

s A 1

— ew < —
io e

oder (man vergleiche (6) und (9)!):

-S- < V (_i)'-i 1— e" 0,278464.... (39)
10 r=1 Vi

Bs ist bemerkenswert, dass Formel (35) dieselbe Struktur aufweist
wie der Ausdruck (14) für p(t) bei der kontinuierlichen Methode.
Durch die naheliegenden Setzungen

A w, B s, t n— 1, 6 1,

p (n) 1 — q (n)

geht (14) über in (35). Es ist also

<ln^(l(n— !)> (40)

und es entsprechen sich natürlich auch die beiden Konvergenzbedingungen,

wie man leicht verifizieren kann. Die Formel (35) ist somit
nicht nur die approximative Lösung des Problems (19) und (20),
sondern zugleich auch die exakte Lösung des Problems
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B(n — 1)

iv + B In— 1)
'

If

B(n) s — I qr_._ydv
6

(vergleiche (1), (2) und (13)!). Diese enge Wechselbeziehung zwischen
kontinuierlicher und diskontinuierlicher Methode legt die Vermutung
nahe, dass die Formel (35) recht brauchbare Werte liefert. Umgekehrt
würde, falls sich (35) als gute Näherung herausstellt, die kontinui erhebe

Behandlung des Problems dadurch sozusagen «legitimiert»; denn das

Prinzip der Erfahrungsnachwirkung bei Wahrscheinlichkeiten ist seiner

Natur nach diskontinuierlich und die Darstellung mit Hilfe eines

Urnenschemas deshalb wohl seinem Wesen adäquater als die
kontinuierliche Methode.

Die folgende Tabelle gibt uns einen Vergleich zwischen einigen
(/„-Werten der Formel (35) mit den entsprechenden exakten Werten
gemäss (18). Es wurde darin s 100 und w 1000 angenommen.

n qn nach (18) qn nach (35) Appr. I Appr. II

1 0,09090909 0,09090909 0,0995 0,08950
2 0,09083389 0,09083398 0,0994 0,08943
3 0,09075874 0,09075892 0,0993 0,08936
4 0,09068364 0,09068392 0,0993 0,08929
5 0,09060859 0,09060896 0,0992 0,08922
6 0,09053359 0,09053405 0,0991 0,08915
7 0,09045864 0,09045920 0,0990 0,08908

100 0,08371224 0,0910 0,08264
1000 0,03766174 0,0391 0,03757

Man gewinnt die Approximation I, indem man in (35) die
Reihenentwicklung nach dem 1. Gliede abbricht. Hierbei entsteht eine

logistische Funktion, auf welche wir bereits in der Einleitung hingewiesen
haben. In der Approximation II wurden zwei Eeihenglieder
berücksichtigt. Diese beiden Näherungen des Ausdrucks (35) werden mit
zunehmendem n langsam besser.
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In nebenstehender Tabelle liefert die Formel (35) g„-Werte, welche
bis auf 6 Dezimalen mit den exakten übereinstimmen (bei Auf- bzw.
Abrundung). Allgemein lässt sich zeigen, dass die erste zur Gewinnung
von (35) verwendete Approximation (20) die qn-Werte vergrössert,
während die zweite Approximation (23) umgekehrt eine Verkleinerung
bewirkt. ^ ^

*

Der zweite in der kontinuierlichen Betrachtung angeführte Spezialfall

findet sein diskontinuierliches Analogon im

Urnenschema II: Eine Urne enthalte iv weisse und s schwarze

Kugeln. Es wird eine nicht abbrechende Folge von Ziehungen
vorgenommen, wobei jede aus der Urne gezogene Kugel durch eine weisse

ersetzt wird.
Wir möchten an dieser Stelle auf ein Urnenschema hinweisen,

das bereits Gegenstand verschiedener Arbeiten war und eine gewisse
Ähnlichkeit mit unserem Modell hat: Aus einer Urne mit w weissen

und s schwarzen Kugeln wird eine Folge von Ziehungen vorgenommen
(diese Folge ist nicht immer unbeschränkt fortsetzbar), wobei jede

gezogene weisse Kugel durch 1+^1 weisse, jede gezogene schwarze

durch 1 + A' schwarze Kugeln ersetzt wird. In dieser allgemeinen
Form wurde das Schema von A. Rosenblatt [14] behandelt, im Spezialfall

A A' von G. Pölya und F. Eggenberger [15], [16] unter dem

Namen «Urnenschema der Chancenvermehrung durch Erfolg». Die

Verallgemeinerung des Polya-Modells auf m Farben wurde von
Ch. Jordan [17] vorgenommen.

In unserem Problem bezeichne wieder

qn die Wahrscheinlichkeit, bei der w-ten Ziehung schwarz zu ziehen

(n > 1),

qn x die Wahrscheinlichkeit dafür, dass nach der w-ten Ziehung noch

genau x schwarze Kugeln in der Urne vorhanden sind

(w > 0, x>0, s — n < x <s),

Sn den Erwartungswert der Anzahl nach der n-ten Ziehung in der

Urne vorhandener schwarzer Kugeln.

S0 s

S„ s — (<7i Jr % ~ — I„) (41)

>\
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Wir wenden uns hier zunächst der Aufgabe zu, eine geeignete
Näherungsformel für qn herzuleiten. Dazu dient uns die plausible Annahme

— • (42)
w -f- s

(41) und (42) ergeben die Rekursion

Sn ~ Sn-1 — "

W -f S

w 4- s — 1

sn ~ : Sn-1 •

w + s

Es ist also

/ W + s — 1 \"
;

(43)
\ w + s j

und wegen (42) auch
s l w + s — 1 \"-1

</» - ;

I • (44)
w + s \ w + s /

Aus (43) und (44) erhält man noch die Beziehungen

Sn>Sn+1! (45)

lim Sn ~ 0, (46)
ti=soO

limg„~0, (47)
)l oo

wie es die Urneninterpretation verlangt.

Die exakte Formel kann auf dieselbe Weise hergeleitet werden
wie für das Urnenschema I. Der Rekursion (16) entspricht hier

3«ii,x -—7-+ f1 )?«,*. (48)
IV -|- s \ 10 + s

der Gleichung (17)
w s — v

%='£-- 2n-l, s-, (49)
..=0 IV + S

\ n — 1 (n < s + 1)
10= j

I s [n > s -f- 1)
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D.as der Formel (18) entsprechende Resultat lautet

s «> (s— v) (s —1)!
In ^ n(w + s)",tHo (s—v)! iJi

V (w + v - Ax - — X
• (50)

Ermittelt man nun aus den Formeln (44) und (50) die ersten qn-Werte,
so findet man vollkommene Übereinstimmung, und man überzeugt
sich bald von der Äquivalenz der beiden Ausdrücke. Es gilt die
Beziehung

(51)

Die direkte Überführung von (50) in (51) ist äusserst umständlich.
Wir beschreiten deshalb einen anderen Weg zum Beweis unserer
Behauptung.

Die betrachtete Wahrscheinlichkeit ist von der Form

s — d
<ln •

10 + S

Mit Hilfe des Multiplikations- und Additionstheorems der
Wahrscheinlichkeitsrechnung gewinnt man die Rekursion

s — d — 1

1n+1 9« ; — + (1—2») In- (52)
w -\- s

Falls nämlich im n-ten Zug eine weisse Kugel gezogen wird (die
Wahrscheinlichkeit hierfür ist 1 — qn), so ist die Wahrscheinlichkeit für das

Ziehen einer schwarzen Kugel im (n + l)-ten Zug gleich wie im w-ten,
also — qn. Wird umgekehrt im n-ten Zug schwarz gezogen und die Zahl
der schwarzen Kugeln um eine vermindert, so ist die Wahrscheinlichkeit

für das Ziehen einer solchen im nächsten Zug

s - d — 1

w + s
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Aus (52) gewinnt man
w + s — 1

ln + 1 In ; '
W + s

womit sich (51) leicht induktiv beweisen lässt.

Auch hier lässt sich eine Verwandtschaft zwischen den Resultaten
nachweisen, die sich aus der kontinuierlichen und diskontinuierlichen
Behandlung des Problems ergeben. Setzen wir nämlich in (15)

A w, 13 s, t — n — 1,

p(n) l—q(ri),

w + s

a= (w + s) log
IV -(- s — 1

so erhalten wir daraus die Formel (51). Es gilt demnach die Beziehung

?„ ?(«—!). (53>

und qn erweist sich auch als Lösung von

B(n — 1)
3» ;

w + s
n

IV + s f13 (n) s — (w + s) log / qr+1 dv.
w + s — 1 J

o

Es folgen einige Werte von qn für w 1000 und s 100:

n (}n n qn

1 0,09090909 8 0,09033215
2 0,09082645 9 0,09025003
3 0,09074388 10 0,09016799
4 0,09066138 11 0,09008602
5 0,09057896 12 0,09000412
6 0,09049662 13 0,08992230
7 0,09041435 14 0,08984055
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§ 4

Verallgemeinerung auf den Fall verschiedener

Grundwahrscheinlichkeiten

Die Wahrscheinlichkeit für das Eintreffen des günstigen
Ereignisses sei hier mit P(f) bezeichnet, die Gegenwahrscheinlichkeit
mit Q(t) 1 — P (t).

In unseren bisherigen Ausführungen trafen wir die Annahme,
dass die durch die Erfahrungsnachwirkung verursachte Reduktion
von Q (t) in einem bestimmten Proportionalitätsverhältnis zur Frequenz
des ungünstigen Ereignisses steht, ganz gleichgültig, ob dieses mehrere
Ursachen haben, ob es durch verschiedene Umstände herbeigeführt
werden kann oder nicht.

Nun betrachten wir den allgemeineren Fall, in welchem
verschiedene, sich ausschliessende Umstände das Eintreffen des

ungünstigen Ereignisses bewirken können, jeder mit einer bestimmten
Wahrscheinlichkeit zu erwarten ist und die Erfahrungsnachwirkung
je nach vorhandener Ursache verschieden ausfällt. Wir setzen ferner

voraus, dass stets einer der betrachteten Umstände realisiert ist.
Offenbar ist dieser Tatbestand in unserem Beispiel der

Sterbewahrscheinlichkeit weitgehend verwirklicht. Die möglichen Umstände
sind hier das Kranksein (es könnten auch verschiedene wichtige Krankheiten

ausgeschieden und für sich betrachtet werden; Kranksein
infolge Unfall ist auszuschliessen), das Verunfallen (im allgemeinsten
Sinn, falls nicht wieder unterteilt wird) und der dritte Umstand, der
durch die Negation der beiden ersten charakterisiert wird. Das
Eintreffen jedes Umstandes ist mit einer bestimmten Wahrscheinlichkeit
zu erwarten, einer davon ist stets realisiert, und in jedem der drei
Fälle besteht eine spezielle Sterbewahrscheinlichkeit.

* *

Wir wenden uns zuerst wieder der kontinuierlichen Methode zu.
Es sei r die Wahrscheinlichkeit für das Eintreten des Umstandes
U (ju, 1, 2, to) Der Umstand I7/( soll mit der Wahrscheinlichkeit

(t) -
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zum Eintreffen des ungünstigen Ereignisses führen, wobei A (t) das

Mass der günstigen, Bß(t) das Mass der ungünstigen Fälle im Zeitpunkt
t bezeichnen soll. Es gilt nach Definition

U + rz + + rm 1, (54)

Q (0 U <Zi (*)+••• + rm qm (t). (55)

Setzen wir noch
t

A„ (0 At, (°) + a,Jß f q„ (f)
ö

t

o

so können wir unser Problem auf den Spezialfall des 2. Paragraphen
zurückführen. Jede Wahrscheinlichkeit q (t) ist durch die Formel (11)

resp. (14) oder (15) gegeben, falls wir darin a durch a r und b durch

b/trft ersetzen. ^ _

Die diskontinuierliche Fassung des Problems führt auf denselben
Sachverhalt. Wir denken uns hier ein Urnenschema mit m Urnen

Ui,U9, EL. Jede Urne U„ enthalte w„ weisse und s„ schwarze
X ' 6t ' III f.1 f-t /(

Kugeln
(^ 1,2, TO).

Es wird eine nicht abbrechende Folge von Ziehungen vorgenommen,
wobei z. B. im Fall der Erfahrungsnachwirkung im eigentlichen Sinn
die gezogenen Kugeln nicht mehr in die betreffende Urne zurückgelegt
werden, wenn sie von schwarzer Farbe sind, wohl aber die weissen.

Die Wahrscheinlichkeit dafür, dass bei der Ziehung gerade die Urne
U/t getroffen wird, sei r

Es bezeichne ferner

Eß(ri) den Erwartungswert der (weissen und schwarzen) Kugeln in
Uß nach der n-ten Ziehung,

qfl (n) die Wahrscheinlichkeit, bei der w-ten Ziehung eine schwarze Kugel
aus Ufl zu ziehen, falls man bereits auf diese Urne gestossen ist,

Qn die Wahrscheinlichkeit für das Ziehen einer schwarzen Kugel
beim «-ten Zug.
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Es gilt nach Definition

U + r2 + ...rm 1, (56)

Qn rl 1l(n) + + Un Im (n) (57)
und

(«) «>„ + s,< —»'.« (!)+••+ % (n)]. (58)

Die Approximationen

w„
qAn + 1) ~ 1

E,{n)

liefern in Verbindung mit (58) die dem Ausdruck (21) entsprechenden
Rekursionen

W V

EAn + l) Ell(n) + -^~rll.
Hier können wir also nicht ohne weiteres auf die Formel (85) zurückgreifen,

da sich die Anfangsdaten nicht nur in den Konstanten
unterscheiden. Die ganze Rechnung lässt sich aber ohne Schwierigkeit
wie im 3. Paragraphen durchführen und ergibt

1
1

i + v (_ i)-i l—(lAe - {s^r«+r»]

,.=i vi \wfl/

Abschliessend möchten wir noch bemerken, dass die in den

Paragraphen 2 und 3 hergeleiteten Formeln unter Umständen auch dann
verwendbar sind, wenn verschiedene Ursachen das Eintreffen des

ungünstigen Ereignisses bewirken können. Die auftretenden Grössen sind
dann einfach als Durchschnittswerte zu betrachten. Man wird die

komplizierteren Formeln dieses letzten Paragraphen nur heranziehen,
falls einer oder einigen Ursachen relativ zu den andern eine besonders

grosse Bedeutung zukommt und die mit ihnen verbundene
Erfahrungsnachwirkung von auffallender Charakteristik ist.
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