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Das Zinsfussproblem
Von Ivo Lah, Ljubljana

Problemstellung und einleitende Bemerkungen

Unter dem Zinsfussproblem versteht man die Aufgabe, irgendeinen
Versicherungswert Vx(i) unmittelbar — d. h. ohne vorherige Ermittlung
der Kommutationszahlen Dx(i), Nx(i), Sx(i), aber auch ohne
Anwendung von Eekursionsformeln, welche alle Vx(i) vom höchsten Alter
abwärts nacheinander liefern — zu berechnen.

Mit dem Zinsfussproblem haben sich schon mehrere Autoren
befasst und dabei eine Menge von Formeln hergeleitet, so dass eine

systematische Schlichtung und Einordnung derselben bereits
notwendig erscheint. Mit Eücksicht auf die Ausgangswerte, welche bekannt
sein müssen, um Vx(i) unmittelbar berechnen zu können, hat Frucht [1]
die verschiedenen Formeln in drei, Fischer [2] dagegen in vier Gruppen
eingeteilt. Die Einteilung in vier Gruppen wollen wir beibehalten,
jedoch in einer ein wenig abgeänderten Form, und zwar:

Die I. Gruppe umfasst alle jene Lösungsmethoden, bei welchen

nur eine einzige, zum Zinsfusse i0 berechnete Versicherungstafel —
wir wollen sie Grundtafel nennen — mit den Kommutationszahlen
°DX, °NX, °SX, «ISf, verwendet wird.

Die II. Gruppe umfasst alle jene Lösungsmethoden, bei welchen
zwei oder mehrere zu Zinsfüssen i0 < ix < i2 berechnete

Versicherungstafeln — wir wollen sie Grundtafeln nennen — mit den
Kommutationszahlen °DX, °NX, °SX, °42>, Wx, 1NX, 1SX, ^
*DX, *Nt, 242), usw. verwendet werden.

Die III. Gruppe umfasst alle jene Lösungsmethoden, die sich auf
das Bestehen eines formelmässigen Ausscheidegesetzes gründen.

Die IV. Gruppe umfasst alle jene Lösungsmethoden, bei welchen
Zeitrentenbarwerte herangezogen werden.
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Frucht hat ausserdem gefunden, dass zwischen den
Lösungsmethoden der I. und der II. Gruppe enge Zusammenhänge bestehen
in dem Sinne, dass sich die Formeln der einen Gruppe in die

entsprechenden Formeln der anderen Gruppe überführen lassen. Fischer
hat aber den leicht verständlichen Satz aufgestellt, dass zwischen
den Formeln der I. und der II. Gruppe überhaupt kein tieferer Unterschied

bestehe, sie seien alle Interpolationsformeln mit dem Zinsfusse
als einziger Veränderlicher; nur handle es sich in einem Falle um
die oskulierende und im anderen Falle um die übliche Interpolation.

Trotz des Formelreichtums sind aber die bisherigen praktischen
Erfolge des Zinsfussproblemes als bescheiden zu nennen. Nur für den

Barwert der konstanten Leibrente ist es gelungen, Näherungsformeln
aufzustellen, welche für die Praxis ausreichend genaue Resultate
liefern, jedoch nur bei den Altern vom 20. Jahre aufwärts und nur
bei einer Spannung des Zinsfusses von ungefähr + 0,5 % vom Grund-
zinsfusse bzw. von den Grundzinsfüssen.

Dieser Umstand hat entschieden viel dazu beigetragen, dass die

Versicherungstafeln meistens für mehrere Zinsfüsse berechnet werden.
So z. B. hat man bei der slowenischen Volkssterbetafel, Beobachtungsperiode

1931—1933 [3], die Kommutationszahlen für sieben Zinsfüsse,
nämlich 0 %, 1 %, 2 %, 3 %, 4 %, 5 %, 6 %, berechnet. Istituto
Previdenza [4] hat die Kommutationszahlen der italienischen
Volkssterbetafel, Beobachtungsperiode 1930—1932, sogar für zehn
Zinsfüsse, nämlich 3 %, 3,5 %, 4 %, 4,25 %, 4,5 %, 4,75 %, 5 %, 5,5 %,
6 %, 6,5 %, veröffentlicht usw. Die obigen Tafeln erwähnen wir
deshalb, weil wir an ihnen verschiedene Formeln des

Zinsfussproblemes rechnerisch überprüft haben. Die slowenische Volkssterbetafel,

männliches Geschlecht, werden wir im folgenden einfachheitshalber

mit STM und die italienische Volkssterbetafel, männliches
Geschlecht, mit ITM bezeichnen.

Dieser merkwürdige Sachverhalt — bunter Formelreichtum
einerseits und die verhältnismässig geringe Genauigkeit der Formeln
und beschränktes Anwendungsgebiet derselben andererseits — führt
uns zu folgenden vier prinzipiellen Fragen des Zinsfussproblemes:

1. Ist es möglich, für den Barwert der konstanten Leibrente strengere
Formeln aufzustellen, welche für alle Alter und für alle in der
Versicherungspraxis vorkommenden Zinsfüsse — sagen wir von 1 % bis
6 % — wenigstens bis zur dritten Dezimalstelle genaue Werte liefern
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2. Ist es möglich, solche strengere Formeln auch für andere

Versicherungswerte, z. B. für die Barwerte der steigenden und variablen
Rente, für Prämien, Reserven usw., aufzustellen?

3. Ist die Umkehrung des Zinsfussproblemes möglich, d. h. ob

man zu gegebenem Versicherungswerte Vx(i) den zugehörigen Zinsfuss

i mit derselben Genauigkeit unmittelbar berechnen kann?

4. Existiert eine Grundgleichung des Zinsfussproblemes, aus

welcher, wenn schon nicht alle, wenigstens die meisten und darunter
die besten bereits bekannten Näherungsformeln hergeleitet werden
können

Vom praktischen Standpunkte aus ist die dritte Frage besonders

wichtig. Alle Versicherungswerte kann man auch mit Kommutations-
zahlen oder mit Rekursionsformeln exakt berechnen. Die Näherungsformeln

des Zinsfussproblemes werden daher nur mit der Zeit- und

Arbeitersparnis begründet. Bei der Umkehrung des Zinsfussproblemes
handelt es sich aber um die grundsätzliche Lösung einer Aufgabe,
mit welcher man sich bisher noch nicht eingehend befasst hat.

Vom theoretischen Standpunkte aus scheint uns aber die vierte
Frage ganz besonders interessant und reizend. Die Verwandtschaft
der Lösungsmethoden der I. und der II. Gruppe haben bereits Frucht
und Fischer bewiesen. Die Lösungsmethoden der III. und der
IV. Gruppe stehen aber vorläufig noch isoliert und scheinbar ohne

jeglichen Zusammenhang mit den ersten zwei Gruppen da. Desgleichen

gibt es auch in einer und derselben Gruppe verschiedene Näherungsformeln,

die keinen inneren Zusammenhang zu haben scheinen. Die
Aufstellung einer Grundgleichung, aus ivelcher die meisten und darunter
die besten Formeln aller vier Gruppen des Zinsfussproblemes einheitlich

hergeleitet werden können, bildet den Kern unserer Abhandlung.

* **

Bei unseren Ausführungen werden wir wiederholt von den

Stirlingschen Zahlen Gebrauch machen müssen. Weil die Stirlingschen
Zahlen in der Versicherungsmathematik sehr wenig verwendet werden,
wollen wir einige, später gebrauchte Formeln, welche wir der Arbeit
Jordans [5] entnommen haben, gleich niederschreiben. Diese Formeln
sind zu Berufungszwecken mit denselben Zahlen wie beim Autor
nur in doppelten Klammern bezeichnet.
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Die Stirlingschen Zahlen erster Art S'n dienen zur Transformation
des Faktoriellen

(x)n x(x— 1) (x — 2) (x — n + 1)

in eine Summe von Potenzen

((2))
v 1

Die Stirlingschen Zahlen erster Art S'n Tab. 1

n/v 1 2 3 4 5 6 7

1 1

2 —1 1

CO1CO 1

4 —6 11 — 6 1

5 24 — 50 35 —10 1

6 —120 274 — 225 85 -15 1

7 720 —1764 1624 — 735 175 — 21 1

Die weiteren S'n können leicht nach der Eekursionsformel

S'^^S^-nS: ((3))

berechnet werden. Für x 1 bekommen wir aus ((2)), wenn n 4 1

2s;-o
r l

sli 2(V)s;
v=fc + l

((4))

Ausserdem ist

((31))

Die Stirlingschen Zahlen zweiter Art Q'n dienen zur Transformation
der Potenz in eine Summe von Paktoriellen

a?=2<3»(a0v ((33))
r 1
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Die Stirlingschen Zahlen zweiter Art Q'n Tab. 2

n/v 1 2 3 4 5 6

1 1

2 1 1

8 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21

Die weiteren Qvn können leicht nach der Rekursionsformel

s;;.! er1 + * ((34))

berechnet werden. Die Summe der Produkte der Stirlingschen Zahlen
beider Arten „ „

2s;®j 2.si®; 0 bzw-1 ((45))
V=j V=j

wenn j 4= n bzw. j n.

Schliesslich bemerken wir noch, dass

1
(x)_n -—-—-+ n)„

* *
*

Bezüglich der Bezeichnung wollen wir uns an die internationalen
Konventionen anlehnen. Zwischen der Zinsintensität d, dem Zinsfussef,
dem Aufzinsungsfaktor r und dem Diskontfaktor v besteht bekanntlich
die Beziehung

1

e=l -\-1 r — —
v

Die Grössen, die sich auf eine oder auf mehrere Grundtafeln
beziehen, werden mit den Indizes 0, 1, 2, rechts unten oder, wenn
dieser Platz konventionell für andere Bezeichnungen, z. B. für das

Alter x oder Rentendauer m usw., bestimmt ist, aber links oben
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bezeichnet, so z.B. d0, i0, r0, r0, °ax, °NX, °SX, 0Sj?', °Mn usw. Die

gesuchten Versicherungswerte als auch die ihnen zugrunde liegenden
Zinswerte haben keine solche Indizes.

Die Näherungswerte werden wir in Präzisionsgrade (ri) bzw. in
Präzisionsordnungen [w], n 0, 1, 2, oo, einteilen. DerPräzisions-
gracl (sc) bzw. die Präzisionsordnung [oo] bedeutet den exakten Wert.
So z. B. bedeutet ax^ a(n) bzw. a[n] den Näherungswert der

lebenslänglichen nachschüssigen Leibrente w-ten Präzisionsgrades bzw.

n-ter Präzisionsordnung.
Nebst konstanten nachschüssigen Leibrenten werden wir uns

mehrmals auch mit steigenden nachschüssigen Leibrenten verschiedener

Grade befassen. Um die etwas komplizierte internationale
Schreibweise zu vereinfachen und so die Formeln übersichtlicher zu
gestalten, werden wir nachstehende Bezeichnung einführen:

IK

Nx+l

(Iva)x l"x =- lv

Es ist also: 1° a n
T>,

^x+l
b. i

,Q(2)

_ x+1_ T2

D-r

o<3>

'•Itl
Dr

P

Sofern sich 1v auf einen bestimmten Grundzinsfuss, z. B. auf i0,
beziehen sollte, so bekommt es links oben den entsprechenden Index,
z. B. °r. Die Näherungswerte von I" werden mit I[n) bzw. mit l[nj
bezeichnet usw.

Alle im Texte angeführten Ableitungen (Derivationen) sind,
wenn nichts anderes gesagt, nach der Zinsintensität genommen, z. B.

da dva
a und «M

dd dö"



Infolgedessen sind alle Integrationskonstanten, z.B. A, B, Cv, nur
hinsichtlich der Zinsintensität bzw. des Zinsfusses konstant, sonst
sind aber die Integrationskonstanten Funktionen des Alters x.

Als Ausgangspunkt nehmen wir die Taylorsche Eeihe des Barwertes
der konstanten nachschüssigen Leibrente, welche bekanntlich lautet:

Drei Voraussetzungen müssen erfüllt werden, nämlich: Die Reihe
(1) muss konvergieren — die höheren Summen der diskontierten
Zahlen 0S,£}.1, sofern sie nicht in der Grundtafel vorliegen, müssen
sich leicht berechnen oder wenigstens abschätzen lassen — und der
Wert des Restgliedes Bn muss sich ebenfalls berechnen oder wenigstens
abschätzen lassen.

Die Konvergenz der Reihe (1) im Gebiete der komplexen Zahlen
ist bereits von Wyss, Meissner und Fischer untersucht und bewiesen

worden. Man kann sie aber auch im Gebiete der reellen Zahlen leicht
nachweisen. Nach der ersten Hauptkonvergenzbedingung ist eine

Reihe von positiven Gliedern konvergent, wenn von einem bestimmten
Gliede ab der Quotient aus einem Glied und dem vorgehenden < 1.

In unserem Falle muss also

welchen Ausdruck man mit Rücksicht auf (4) auch schreiben kann

a M*) ~"-E(— M)"0<Siti +A i — i0 (1)
1JX r —0

~(-v0Ay «s«!

cw—x—l <i
v °^Wh (* + "),

1=0

Wenn v hinreichend gross wird, dann werden von einem bestimmten

Gliede weiter alle Quotienten, auch bei v =o, dem absoluten
Werte nach kleiner als 1, wenn nur j—v0 A | < 1. Die Reihe ist
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also für alle zwischen 0 % und 100 % liegenden Zinsfüsse i und i0
konvergent. Wenn A >0, dann ist die Eeihe (1) alternierend und
so a fortiori konvergent. Aus diesem Grunde ist es zu empfehlen,
immer wenn nur möglich den Grundzinsfuss i0 so anzusetzen, dass

er ein wenig unter i zu liegen kommt, weil man so zu bedeutend

genaueren Näherungswerten gelangt. (Vergleiche diesbezüglich die
Fehler, welche Fischer [2] beim Übergänge von 3 % zu 2,5 % und
umgekehrt von 2,5 % zu 3 % gefunden hat!)

In den bereits bestehenden Näherungsformeln werden in der

Eegel nur °NX und °SX verwendet, weil sie in den Grundtafeln meistens
berechnet erscheinen. Ausnahmsweise werden auch 0S^ geduldet.
Höhere Summen, °S^',v>2, werden gemieden und solche Formeln,
z. B. die von Böhmer, als praktisch unbrauchbar betrachtet. Christen
hat bereits eine Methode zur näherungsweisen Berechnung der höheren
Summen der diskontierten Zahlen der Lebenden entwickelt. In
folgendem Abschnitt geben wir eine neue, sehr einfache Methode an,
die zu genaueren Eesultaten führt, wozu allerdings die im Anhange
gegebene Tafel der Werte kn(x,i) notwendig ist.

Die Berechnung bzw. Abschätzung des Eestgliedes Bn der Eeihe
(1) ist bisher, soviel uns bekannt ist, noch gar nicht ernsthaft in
Angriff genommen. Diese Berechnung bildet einen wichtigen Punkt des

Zinsfussproblemes, auf welchen wir in folgenden Kapiteln wiederholt
auf Umwegen zurückkommen werden.

Verallgemeinerung der Formel von Poukka

Poukka hat für das Zinsfussprohlem die sehr wertvolle, von
verschiedenen Autoren oft zitierte und benützte Feststellung gemacht,
dass sich für die gebräuchlichsten Zinsfüsse und Alter das folgende
Doppelverhältnis der Summen der diskontierten Zahlen der Lebenden

S(2) S
-I--'=k1(x,i) (2)

^ X

nicht viel mit dem Zinsfüsse i und dem Alter x ändert, ja sogar von Tafel
zu Tafel nur wenig verschieden ist und deshalb als Konstante betrachtet

werden kann. Es entsteht nun die Frage, ob nicht auch andere
Doppelverhältnisse von diese, für das Zinsfussproblem so vorteilhafte,
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Eigenschaft noch im höheren Masse besitzen. Untersuchen wir zu
diesem Zwecke das allgemeine Doppelverhältnis

g{n+l) g(n-l)
kn(x,i), 71= 0, 1, 2, oo (3)

(SW)2

Bekanntlich ist
1 X

S^^~^(t + n)nDx+t (4)
71! f=o

Stellen wir nun (4) in (3) ein, so bekommen wir nach einigen
Umformungen

1+
<

OJ—X co—x ' ^ I 1

2 2 (t + n)n(* + n)nBx+lBx+T
f=0r=0 j T

n
kn (X>l) (6)

2 2 (< + W)»(T + n)nDx+l Dx + t
t=0t=0

Daraus schliessen wir zunächst, da alle unter den Summenzeichen
stehenden Grössen nur positiv sein können, dass

0 < kn(x, i) 1, 7i 4 0 (6)

Die Variabilität Differenz zwischen Maximum und Minimum)
des Doppelverhältnisses (3) ist also mit dem Intervalle (0, 1) begrenzt.
In speziellen Fällen können durch besondere Untersuchungen, wie

z. B. die von Frucht [6], die sich natürlich nur auf das
Doppelverhältnis (2) beziehen, noch viel engere Grenzen gezogen werden.

In zwei Fällen ist der Zähler des Bruches (5) gleich dem Nenner,
nämlich:

1. wenn t r=0; das kommt aber nur im höchsten Alter
x co vor, weil alle S^ Du, also

kn(co, i) 1

2. wenn 77 00, also

lim kn(x, i) 1.
n—*~ 00

Bei hinreichend hohen n kommt der Wert des Doppelverhältnisses
(3) der Einheit beliebig nahe, und zwar für jedes Alter, für jeden Zins-
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fuss und für jede Ausscheideordnung, d. h. die Variabilität des

Doppelverhältnisses (3) nimmt mit wachsendem n unbegrenzt ab, und so

kann kn (x, i) mit desto mehr Recht als Konstante angenommen werden,

je grösser n ist. Diese Behauptung gilt nicht nur für die Lebensversicherung

allein, sondern für die gesamte Personen- und
Sachversicherung, und zwar auch dann, wenn die diskontierten Zahlen Dx+t
nicht nur durch Abgang, sondern auch durch Zugang geändert werden.
Das Anwendungsgebiet des Zinsfussproblemes wird so von einem

eng begrenzten Teile der Lebensversicherung auf die gesamte
Versicherung ausgedehnt.

Die Poukkasche Formel (2) ist nur ein Spezialfall des

Doppelverhältnisses (3), nämlich wenn n 1, und braucht keine weiteren

Erörterungen. Der Fall n 0 muss dagegen noch ein wenig geklärt
werden. Nebst S!j.0) Nx wollen wir noch S^-1' Dx setzen. Wir haben
somit

SF]=D,
4°' ZDX

S« ZZDX
S® ZZZDX

Es ist also

km ~f, m

Zu beachten ist, dass bei niederen Altern und höheren Zinsfüssen

k0(x, i) > 1 werden kann.
Auf Grund der STM haben wir kn(x,i) für alle Alter x 0, 1,

2 100, für alle ganzen Zinsfüsse von 0 % bis 6 % und für n — 1,
2, 3, 4, 5 auf fünf Dezimalstellen genau berechnet. Die Werte von
kn(x, i), hergeleitet aus anderen Absterbeordnungen, sind
selbstverständlich verschieden, jedoch die Differenzen, speziell wenn n > 1,
dürfen im grossen und ganzen erst in der dritten Dezimalstelle
auftreten, wie wir uns übrigens an der ITM empirisch überzeugt haben.

Infolgedessen geben wir im Anhange unserer Abhandlung«Die Tafel der

verallgemeinerten Poukkaschen Zahlen kn(x,i)», auf zwei Dezimalstellen

abgerundet, jedoch nur für die Alter $ 1,6,11, 21, 31 81, 91.

Die Werte von kn(x,i) für die fehlenden Alter und Zinsfüsse können
leicht mittels linearer Interpolation bestimmt werden. Mit Hilfe der
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Tafel im Anhange und der Formel (3) können somit die S^ bis n 6

aller Absterbeordnungen leicht abgeschätzt werden. Die Formeln des

Zinsfussproblemes, welche höhere Summen der diskontierten Zahlen
enthalten, z. B. die von Böhmer, jedoch dieselben in der Grundtafel
nicht enthalten sind, sind so praktisch brauchbar geworden. Zugleich
ist der zweiten Voraussetzung, welche wir an die Taylorsche Keihe (1)

gestellt haben, so bereits entsprochen.
Im rechtwinkligen Koordinatensystem mit der Altersachse x, mit

der Zinsachse i und mit der Ordinate stellen die Funktionen kn(x, i)
ein Flächenbündel durch die Gerade x a>, k =- 1 dar. In der Figur 1

sind die Durchschnittskurven der Flächen kn(x,i), n 0, 1, 2, 3,

4, 5, mit der Ebene 1 0 und mit der Ebene x 0 graphisch
dargestellt. Die Kurve ko(x,0%) zeigt einen ähnlichen Verlauf wie die
Kurve der Sterbenswahrscheinlichkeiten qx, nicht nur hinsichtlich
des absoluten Minimums, welches in der Nähe x 10 liegt, sondern
auch hinsichtlich der «Inflexionen». die in den Altersintervallen
20—30 und 90—95 auftreten. Bei höheren n wird diese Ähnlichkeit
mehr und mehr verwischt, weil sich die Kurven der Geraden

ksa(x,0%) l asymptotisch nähern. Mit wachsendem Zinsfuss und
wachsenden Ausscheidequotienten nehmen die kn(x, i) zu. Ausscheideordnungen,

denen grössere Ausscheidequotienten zugrunde liegen,
haben also grössere kn(x, i). Zufolge der säkularen Sterblichkeitsabnahme

ist also ein Rückgang der Werte von kn(x,i) zu erwarten.

Der Barwert der konstanten jährlich nachhinein zahlbaren
lebenslänglichen Leibrente ist bekanntlich

Die Grundgleichung des Zinsfussproblemes

y.K ,eAI

Die r-te Ableitung von ax ist also

(— 1)" xAV<"7)
1

(«)
Jt

1 t

Aus (4) folgt
1 <JÜ~X

'
1 j" "H n 1)« J^x+t

nl fTi
(9)
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Das Faktorielle in (9) können wir mittels Stirlingschen Zahlen erster
Art in eine Potenzsumme verwandeln, nämlich

(t + n- 1)„ V 8-n | f 2 (- 1)»+"S; f
v — Y r — t

So geht (9) über in
/ JVl n ai—x

n\ ,,=i ,=i
und mit Hilfe von (8)

n
* Ss»°«' (!°)

Speziell bekommen wir an Hand der Tabelle 1

#£U=Dxax

s?U=-i>X

Äi+i — 3a* + 2o^

Man kann aber auch umgekehrt die Ableitungen von a3, durch
die Summen ausdrücken. Multiplizieren wir zu diesem Zwecke

(10), wo zuerst der Faktor vor dem Summenzeichen auf die andere
Seite gebracht werden muss, mit den Stirlingschen Zahlen zweiter
Art S" und bilden wir nachher die Summe von n 1 bis n v, so

finden wir infolge ((45))

(ii)
Vx M=1

Speziell bekommen wir an Hand der Tabelle 2

< (— <SWl) : Dx

<>l ={~Sx+,+-2Sfll):l)x
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Mit Hilfe der Stirlingschen Zahlen können wir also alle Summen
der diskontierten Zahlen S'"^, durch Ableitungen des Bentenbar-
wertes a£'> und umgekehrt alle a<!'> durch ausdrücken. Nach dieser

Feststellung wollen wir das Doppelverhältnis (3) schreiben, wie folgt:

+ 1, i) (S£'> t)a (12)

Wenn wir nun die SF[t in (12) mittels (10) eliminieren, bekommen wir
eine homogene quadratische Differentialgleichung (n -f- l)-ter Ordnung.
Wir wollen sie die Grundgleichung des Zinsfussproblemes nennen. Uni
die Schreibweise zu vereinfachen, werden wir im folgenden anstatt

ax schlechtweg a schreiben und ausserdem noch eine neue Funktion
einführen, nämlich

h„ hn (x -f-1, i) _!Ü_L fc (a; + 1, i) (13)
n

Die Grundgleichung lautet dann

Speziell haben wir
a' e px — k0 a2 (14—0)

(a" — a') a — hx a'2 (14—1)

(«"' — 3a" + 2a') a' k2 (a" — a')2 (14—2)

(a"" — Ga'" + IIa" — 6a') (a" — a') hz (a'" — 3a" + 2a')2 (14—3)

Die beiden ersten Differentialgleichungen (14—0) und (14-—1)

sind zwar ebenfalls aus (12) hergeleitet, passen aber scheinbar nicht
in (14). Oeshalb werden dieselben in folgendem bis auf weiteres

gesondert behandelt.

Zur Vereinfachung der Formeln führen wir noch eine weitere
Funktion ein, nämlich

«(")

Mn=M„(x) (- 1 (-1 fn\{I"a)x (15)



Die Gleichungen (10), (11) und (14) bekommen so folgende einfache
Form

n

(10*)
g l

ai*)=YiQZMa (11*)
n— 1

Mu.nMa^hnMl (14*)

Speziell haben wir, wenn wir noch die Bezeichnung M^ einführen,

~i/t ^ar+l
M a%n +, vPx

M0 — a

Mj a'

Mz=a" — a' 2 X+1

Ac

y,+i

«5+1

A
42!,

D,

Ms o'"— 8a" + 2a' — 6
«gti
A,

und a M0

a' Mx

a" M1+Ma
a'" M1 3M2 f M3

a"" A/, + 7 A^ + 6A4 + Mt

Die Ableitung von Mn ist wegen ((3)) sehr einfach, nämlich

M'h= Mn.x +nM„ (16)

Infolgedessen ist
d ^MnV ^

M v'1" (17)
dr"
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Die Funktion Mn v" hat also die merkwürdige Eigenschaft, dass

deren Ableitungen und Integrale nach r einfach durch Änderung
von n gebildet werden. Diese für Theorie und Praxis der Infinitesimalrechnung

ausserordentlich wichtige Eigenschaft haben unter anderem
r» (_i)»-i(n_i)!

folgende Funktionen: —, die Bernoullischen Poly-
n\ r"

nome erster Art, die Eulerschen Polynome, weiter die Hermiteschen
und die von Jordan [7] gebildeten G-Polynome — die beiden

letztgenannten nur multipliziert mit gewissen Faktoren. Eben wegen
dieser Eigenschaft kann die Funktion Mn v" nicht nur bei der Integration

der Grundgleichung (14*), sondern auch sonst vielfach mit Vorteil

angewendet werden. Um aber die verschiedenen Eigenarten der

Grundgleichung (14) besser hervortreten zu lassen, werden wir
zunächst ihre Integration auf eine andere Art durchführen und erst
hei ihren späteren Integrationen von (17) Gebrauch machen.

Die Integration der Grundgleichung

Die allgemeine Näherungsformel des Rentenbarwertes

Bei der Integration der Grundgleichung (14) als auch der
Gleichungen (14—0) und (14—1) wollen wir annehmen, dass alle kn bzw.
alle hn konstant seien, was nur annähernd der Wirklichkeit entspricht.
Infolgedessen können die Integrale nur Näherungswerte von a
darstellen, und zwar um so bessere, je kleiner die Variabilität von lcn in
bezug auf die Zinsintensität ist, d. h. je grösser n ist. Nur im Falle
n oo bekommen wir exakte Bentenbarwerte, weil kx 1.

Die durch Integration ermittelten Näherungsformeln können wir daher
in Präzisionsgrade n =0, 1, 2 einteilen.

Die Gleichung (14—0) lässt sich ohne weiteres integrieren. Ihr
Integral als Näherungsformel des 0-ten Präzisionsgrades lautet

a{0) (A + Be*)'1 (18)

wo

B — (19)
Vx

und A eine noch näher zu bestimmende Integrationskonstante bedeutet.
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Die Gleichung (14—1) hat Güttinger [8] aufgestellt und integriert.
Ihr Integral als Näherungsformel des 1-ten Präzisionsgrades lautet

i
a(1) (A + Be3) >hi (20)

wo A und B zwei noch näher zu bestimmende Integrationskonstanten
bedeuten. Wir bemerken gleich, dass (20) in (18) übergeht, wenn
/fj 2&J 2.

Infolge ((4)) muss ^ ^ (a)
ein partikuläres Integral der Grundgleichung (14) sein. Das

vollständige Integral findet man aber mittels Variation der Integrationskonstante

C, d. h. wir nehmen an, dass im vollständigen Integral C

nicht mehr eine Konstante, sondern eine Funktion der Zinsintensität
sei, also

C C(d)

Durch Differentiation von (21) finden wir

«(•) e-» ^ —
(22)

,<=o Vi14/
Nach Einsetzen von (22) in (14) bekommen wir infolge ((31))

2 s; GW 2 SU C("» / SU CMY (23)
— l 7" l \v l

Speziell ist
(G" — C')C h2 C'2 (23—2)

(C'" — 3C" + 2C') C Ä, (C" — C")2 (23—3)

(C"" — 6C'" + 11C" — 6C") (C" — C') MC""—3C + 2C')2 (23—4)

Die Differentialgleichung von C (23) ist aber ganz dieselbe wie die

Differentialgleichung von a (14), nur die Ordnung der Gleichung ist
dadurch um eine Einheit niedriger geworden, der Präzisionsgrad n
ist aber derselbe geblieben. Dieser Umstand ermöglicht eine sehr leichte

Integration der Grundgleichung (14). Das Integral von (23—2) lautet
mit Rücksicht auf (14—1) und (20)

l
C (A + Be^T-hJ (24)
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(24) multipliziert mit <P gemäss (21) gibt den Wert von a('2) — siehe

(25—2)! —, welchen wir leicht integrieren können. So bekommen wir
den Wert von n(2) — siehe (26—2)! — Es ist also (26—2) das

vollständige Integral von (14—2), und wenn wir h2 mit h3 vertauschen,
auch das Integral von (23—3), welches mit eö multipliziert gemäss
(21) den Wert für a('3) der nächsten Gleichung (14—3) gibt — siehe

(25—3)! —, welchen wir wiederum leicht integrieren können. So finden
wir (26—3) usw.

l

a{2)
e'! (A + Be') i-** (25—2)

a('3) e* + e* (A + B e)Wa3' (25—3)
3-2hi

a' Gx e* + C2 e2'* + e'5 (A + B (25—4)

n—2 (n-1) — (n-2)hn

1W 2 <Lre"ö + e'S (A + B e'5)' 1 "*» (25)

«(a) co + (-4 + Be') i-Z (26-2)
3—2/i3

a(3) C0 + C, e» + (A + Be') i-*, (26-3)
4-3/(4

a(i) C0 + C1e"+ C2e* + (A + Be')~^ (26-4)

n 2 n -(rt-l)Ä»i

%) 2 e"Ä +(A + Be')-i^T (26)
r —0

Wir wollen (26) als vollständiges Integral der Grundgleichung (14)
die allgemeine Näherungsformel des Rentenbarwertcs a nennen. Die

Näherungsformeln einzelner Präzisionsgrade bekommen wir, wenn wir
in (26) der Eeihe nach n 0, 1, 2, setzen. Im Falle n — 0 wird
der Exponent in (26), welchen wir auch schreiben können

_ n — (n — 1) h„
_

n* — (n2 — 1) k„
J"

1 — K n—(n + l)fc„

gleich —1, und (26) wird so identisch mit (18). Im Falle n — 1 wird
(26) identisch mit (20). In der allgemeinen Näherungsformel des Renten-
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barwertes (26) sind also auch die Integrale von (14—-0) und (14—1)
inbegriffen. Diese beiden Differentialgleichungen sind offenbar durch
den Zerfall der Grundgleichung entstanden.

Die allgemeine Näherungsformel (26) ist aus zwei Teilen
zusammengesetzt, nämlich:

1. aus einer Potenzreihe des Aufzinsungsfaktors r, die bei

n -- 0, 1 fehlt, und

2. aus einer Potenz des Binoms (A Br), welche wir das Schlussglied

nennen werden. Der Exponent des Schlussgliedes ist eine rationale
Funktion nur von n und hn und ist somit für ein gegebenes n als

Konstante zu betrachten.

Der wesentliche Teil von o(K) ist das Schlussglied, nicht aber die
Potenzreihe, welche übrigens beim 0-ten und 1-ten Präzisionsgrade
fehlt, bei folgenden Präzisionsgraden aber einen im Verhältnis zum
Schlussgliede nur geringen Wert aufweist. Zahlenmässige Beispiele
zeigen nämlich, dass bei wenigen Gliedern der Potenzreihe der Wert
des Schlussgliedes relativ gross ist, nimmt aber bei Einschaltung
weiterer Glieder der Potenzreihe langsam ab. Damit ist die wohl
bekannte Tatsache geklärt, warum parabolische Inter- und
Extrapolation der Bent.enbarwerte zu ungenauen Werten führt. Weil der

Exponent des Schlussgliedes bei n — 0 gleich — 1 ist, ist es weiter
klar, varum von den Autoren die hyperbolische Inter- und
Extrapolation der parabolischen bevorzugt wird. Noch besser eignet sich

selbstverständlich die Inter- und Extrapolation nach der Funktion
(A + Iii)''1, weil dies der Näherungsformel des 1-ten Präzisionsgrades

entsprieht.

Der Präzisionsgrad u bestimmt die Anzahl der Integrationskonstanten.

Je mehr Integrationskonstanten eine Näherungsformel
enthält, desto bessere Näherungswerte liefert sie. Die Näherungsformel

n-ten Präzisionsgrades enthält (n -f-1) Integrationskonstanten,
nämlich: A, Ii. C0, G1 Cn_3. Beim 0-ten Präzisionsgrade haben wir
z. B. nur eine einzige Integrationskonstante A, der Wert von B ist
nämlich schon in (19) bestimmt.
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Bestimmung der Integrationskonstanten

der allgemeinen Näherungsformel des Rentenbarwertes mittels Summen

der diskontierten Zahlen einer Grundtafel (I. Gruppe)

Zwischen den Integrationskonstanten A, B, Cr in (25) und den

Integrationskonstanten A, B, C,. in (26) bestehen folgende leicht
nachweisbare Beziehungen

i t

A — A (Bgn) ff» A A (Bij„) ff«-1

B — B {Bg„) ~~i» B B {B(j„)l^ (28)

C
Cr=-=?-,v* 0 ff, - C, v

v

Wir werden uns deshalb auf die Bestimmung der Integrationskonstanten

A, B, Cr beschränken.

Die Integrationskonstante A in (18) bestimmen wir so, dass der

Näherungswert des ü-ten Präzisionsgrades im Falle ö — d0 dem

entsprechenden Rentenbarwerte der Grundtafel °a gleich wird. Die

Integrationskonstante ergibt sich also aus der Gleichung

n I a
^°rn \

Daraus folgt
1 k0 r0

A -- (.29)
°« V,

Die Integrationskonstanten A und B der Gleichung (20) hat
Güttinger [8] so bestimmt, dass im Falle <5 — r)0 sowohl a(1) als auch
seine erste Ableitung a(',, den entsprechenden Werten der Grundtafel

°a ~ °M0 und °a' °M1 gleich werden. Die beiden Integrationskonstanten

ergeben sich also aus den Gleichungen

°M0= (A + Br0)'GiH

oMi J^{A+Br0)^



Daraus folgt
A 0Mlnhl 1 — (1 — Äl)

°M1

B m^v0{\—hÄ
»Ml

(30)

°Mn

Zur Bestimmung der Integrationskonstanten A, B, C0, Cx Cn_2

setzen wir in (26) d — r30 und a(n) °a ----- °M0. So bekommen wir,
wenn wir Kürze halber r\ (A Br) schreiben,

°Mn 2Crr0+ ^O"
r=0

(31)

Die ^«-te Ableitung von (31) nach r0 lautet unter Beachtung von (17)

oder

°M,X 2 CAAJV1 + B'1 (gn)a 1o"

°M„ V Cv (v)ßf0 + B^rUg,,)^»

(32)

(33)

Das zur Berechnung der Integrationskonstanten A, B, Cv notwendige
Gleichungssystem ergibt sich aus (33), wenn wir der Reihe nach setzen

/.i n, (n — 1), (w — 2) 2, 1, 0, nämlich:

°M„ irrKgXvr" (33, n)

«M,m ^B^rtl(g„Uvr"-1 (33, n-1)

«M„_2 B''-2^(c,X^r-l'2 + Cn^n-Vrl-2 (S3, ti^-2)

X_;! /,>» M;; 3 (f/„)^3 v<r,+3 + Cn_2 (» - 2)! C2 + C)Ki (» - 3)! r''"3 (33, n~3)

°M„ B/v^Q^r- + CU(n-2),rr + Cn_3(n-3)rr»-3 + - -. C>!r; (33, r)

X - + X2C2 + C'„_3r»-3 + • • • (X + C0 (33, 0)

Zunächst berechnet man aus (33, n) und (33, n-1) die Integrationskonstanten

A und B. So findet man die Formeln (35, A) und (35, B),
in welchen
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,tnQ n [A — (A— 1) hn]
/.—I

1Ji- H-11'0
: (84)

bedeutet. Nachher berechnet man C^2 aus (33, n— 2), ferner Cn_3 aus

(33, n — 3) usw. der Reihe nach alle Cv von C'n a bis C0. Wir können
aber aus dem Gleichungssystem von (33, n — 2) bis (33, v) den Wert
von Cy auch allgemein (z. B. mittels Beterminanten, unvollständiger
Induktion usw.) bestimmen. Die Rechnung ist etwas umständlich,
sie bietet aber keine prinzipiellen Schwierigkeiten. Deshalb sehen wir
davon ab und schreiben gleich das Resultat in (35, C) nieder.

Ä

B

C.

i mu
Ä °M'n

1 °M"

1 — (1 — ÄJ "M~

°M"
9n

1;0 — K)

v

n n

•o ^ (-1)

°MLrj-n

n-2-v

Vif L-i
;.=o

AI
°M.

«mit*
n °M"uJln-v-K 11 n

(35, A)

(35, B)

(85, C)

Wenn n 1, bekommen wir aus (85, Ä) und (35, B) die Werte
für A und B der Güttingerschen Gleichung, nämlich (30). Wenn
ii — 0, müssen wir in (35, A) und (35, B) zunächst hn durch kn und
°Mn durch ausdrücken und erst nachher n 0 setzen. Wir
bekommen so die Werte von A und B der Näherungsformel des

0-ten Präzisionsgrades, nämlich (29) und (19). In (35, A) und (35, B)
sind also auch die Werte A und B der Näherungsformeln des 0-ten und
1-ten Präzisionsgrades inbegriffen, und so erübrigt sich eine weitere

gesonderte Behandlung dieser beiden Näherungsformeln bzw. der

Gleichungen (14—0) und (14—1).

Die Inlegrationskonstanten A, B, Cr sind so bestimmt, dass

%) 2 G"r" + (A + Br)'J"

im Dalle r rn

.•^CX+iA + BroY»
»•=0
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Wenn wir nun die untere Gleichung von der oberen abziehen, die
Werte von A und B einsetzen und Kürze halber

o.-ym-r„"=1 0fr

schreiben, bekommen wir nach einigen Umformungen

\n) " Qo +^ rÖ) + i m>ix

n7i„ "m:;

— K) ^0 A °Mn

Es ist aber

Also
r' — ro= ro [(i + vo dy— i]

" £

Zc-fr"-
??- 2 71-2—r 1 v ;W (— J)'

r 1 A 0

[(1 + P„4)'-1]Qh,

Durch Substitution / p — v vereinfacht sich die letzte Gleichung

/(- i
C,. (ry r'0)

"~2 1\»-vV (—])-
L-! vi (o v)

t — 1 n— i'
'

[(i + vo^y — i] Q(>

V (-1)-'

71—£i

-2
(>=1

Endlich bekommen wir so

n- 2

<?„

2
r—0

(vo Ay
°M„

71 °M"~nJln-v IV1 n

°^-i
°M"_1

1 +
°M„-1

Wir wollen (80) mit dem Namen die allgemeine Näherungsformel
des Bentenbarwertes der I. Gruppe nennen. Sie unterscheidet sich von
(26) nur dadurch, dass die Integrationskonstanten A, B, Cr durch
die Summen der diskontierten Zahlen bzw. durch Funktionen
derselben °MI ausgedrückt sind und dass das Argument r mit
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A i— i0 ersetzt ist. Die allgemeine Näherungsformel (36) bestellt
aus einer Potenzreihe der Zinsfussdifferenz A i — i0 und aus einer
Potenz des Binoms (« + ß A), welche wir ebenfalls Schlussglied nennen
wollen.

Verschiedene Bemerkungen zur I. Gruppe

1. Spezielle Näherungsformeln und ihre gegenseitigen Beziehungen

Aus der allgemeinen Näherungsformel des Rentenbarwertes der
I. Gruppe bekommen wir die Näherungsformeln aller Präzisionsgrade,
wenn wir der Reihe nach n — 0, 1, 2 setzen, nämlich:

«(o) — °M0

aC) — Wo

1 + 'o ^ °Mo
°M~,

°Mn
v0A°Ml
'•mT

1 +
(1 hf) v0A °M1

°M„

I(2) — °M0 +
i m\

2n2 °M2
+

(1 h2) v0 A °M2

°M1
»2_1

(36—0)

(36-1)

(36—2)

oder, wenn wir zu den und klt zurückgreifen:

W(0) — °a

n( I, "a

1 +

1 +

a(2) — °a | 1 +

k0 ü0 A °NX

"IK-<

(2k1^l)v0AQSxli

°^t,

(4-3^)0^«^,

?• A °So °j+l

i

(36.0)

(36.1)

(3fca-2) v0A °S^l{
1 _)_ ~^ 12-3k2 __ i

°S

4-3Ä2

(36,2

Bezüglich der Näherungsformel des 0-ten Präzisionsgrades sei noch

bemerkt, dass man zuerst die hn und °Mn in (36) durch kH und °N2+i

ausdrücken inuss und erst nachher n 0 setzen darf, wie wir schon

wiederholt in solchen Bällen gemacht haben.
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Wir haben bereits gesagt, dass durch die Substitution h1 '2k
1 2

die Näherungsformel des 1-ten Präzisionsgrades in die des 0-ten
Präzisionsgrades übergeht. Dies ist aber nur ein Spezialfall der allgemeinen
gegenseitigen Beziehungen der Näherungsformeln.Durch die Substitution

°Mn h„
°M2H-l

«-2

geht allgemein die Näherungsformel des n-ten Präzisionsgrades in die
des (n—l)-ten restlos über. So kann man also von der Näherungsformel

des n-ten Präzisionsgrades ausgehend die Näherungsformeln aller
niederen Präzisionsgrade (n — 1), (n — 2) 2, 1, 0, herleiten. Bei
dieser Pieduktion des Präzisionsgrades ist zu beachten, dass der

(Mr2Koeffizient von-
(n —2)!

der Potenzreihe in (36)

das ist der Koeffizient dos letzten Gliedes

jrOMn 2 *v±n

gleich Null wird. Die übrigen Glieder der Potenzreihe als auch das

Schlussglied verwandeln sich aber in die entsprechenden Glieder

von a(n

Wir können aber auch umgekehrt aus der Näherungsformel des

re-ten Präzisionsgrades, wenn n >0, die Näherungsformel des (n + l)-ten
Präzisionsgrades herleiten. Dazu brauchen wir ausser der Substitution

1

°M„

noch das Glied
(o0*r
(n — 1)!

°A/„
n °M

n [ - fi-rl
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zur Potenzreihe in a(n) hinzuzufügen. Auf diese Art und Weise kann

man z. B. aus der Cfüttingerschen Näherungsformel die Näherungsformeln

aller Präzisionsgrade n — 2, H <^> ohne Aufstellung und

Integration der (frundgleichung und ohne Bestimmung der
Integrationskonstanten herleiten.

2. Beziehung zur Taylorschen Beihe

Die allgemeine Näherungsformel des Bentenbarwertes der I.Gruppe
(36) können wir schreiben wie folgt:

«I->=2^w°m-+bW (37)
r—0

wo das Bestglied

(vaAY ^ h„ \ (l—h,)vaA°Mn ''

BM
V 0 J HP > (n) — - — (38)<»> ri! ",4f

(37) verglichen mit (1) zeigt, dass die allgemeine Näherungsformel des

Bentenbarwertes der 1. Gruppe nichts anderes ist als eine bis zur n-ten
Potenz von (—v0A) entwickelte Taylorsehe Beihe des Bentenbarwertes

mit einer Abschätzung des Bestgliedes, welche um so genauer, je grösser

n ist. Der Präzisionsgrad n der Näherungsformel gibt also an, wie viele

Glieder der Taylorschen Reihe in die Rechnung einbezogen werden, bevor

man das Bestglied abschätzt. Es ist also:

°N
„ — xM I E>
a(°) _ 07") "(")

X

a(i) tyn [°^ n v0 A °SX f J -f- R^i,
T

«(ä) _ „o J + (Vg /])- 0Sf[ ,] + fl(2)

n(n) kann also deshalb nicht den exakten Bentenbarwert darstellen,
weil das Bestglied Bn nicht genau berechnet, sondern nur mit B(b)

näherungsweise bestimmt ist. Durch die Integration der Grundgleichung
und Bestimmung der Integrationskonstanten mit Hilfe von °NM

L
bzw.
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Mv haben wir also auf Umivegen das Restglied der Taylorschen Reihe

(1) abgeschätzt. Die dritte Voraussetzung, welche wir an die Taylorsche
Reihe gestellt haben, erscheint somit erledigt. Am Ende unserer
Abhandlung werden wir noch zeigen, wie und unter welchen
Bedingungen das Restglied Rn exakt berechnet werden kann.

3. Beziehung zu den bekannten Näherungsformeln

Bei der Integration der Grundgleichung haben wir kn als eine

vorläufig nicht näher bestimmte Konstante betrachtet. Nun wollen
wir dieser Grösse spezielle Werte beilegen.

Zunächst nehmen wir die untere Grenze kn 0. Die
Grundgleichung wird so n+1

2 S£+i a{"] 0
V — 1

Aus Mn^ 0 folgt nämlich, dass auch Mn+l 0, nicht aber

umgekehrt, so dass obige Differenzialgleichung in jedem Falle gilt.
Unvollständiges Integral lautet

n

%) 2
i'=0

oder nach Bestimmung der Integrationskonstanten Cr

v~^ (v0 AY

r= 0

Das ist aber die Taylorsche Reihe (1) ohne Restglied Rn. Man gelangt
zu obiger Formel auch unmittelbar aus (36) durch den Grenzübergang
lim hn-*- 0. Speziell haben wir

°(0) (39-°)
X

aW (M-V
X

a(2) ^ [°Nx+-v0A°Sx^ + (v0A)*°S® ,] (39-2)

13
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Die Formel (89—1) hat StefJensen und die Formel (39—2) van Dorsten

gefunden. Die nicht befriedigende Annäherung dieser Formeln und
der parabolischen Inter- und Extrapolation überhaupt können wir
auch so erklären, dass der Wert von kn 0 entschieden zu klein

genommen ist.

Nehmen wir nun die obere Grenze kn 1. Die Grundgleichung
ändert sich in diesem Falle nicht, so dass wir uns eine neue Integration
und eine neue Bestimmung der Integrationskonstanten ersparen können;

n + 1

es genügt, m (36) einfach h„ zu setzen. Dabei wird der

Exponent des Schlussgliedes gn

1 +

1. Speziell haben wir:

"(0)

hü

\D

'V,
v0A°Nx+1

°D,

1 +

£+1

v0A °SX+1

°N,

1 —

£+1

„
°S,

£+ 1

1 -j- v0 A

£+1

Wi£+1

°S„£-j- 1

(40—0)

(40-1)

(40—2)

Die Formel (40—1) ist identisch mit (36, 0) rechts. Wir haben ja schon

wiederholt bemerkt, dass im Falle k1 1, a(1) in a(0) übergeht. Die
Formel (40—2) ist identisch mit der ersten Formel von Poukka. Die
zweite Formel von Poukka bekommen wir aus (40—2) durch Elimination

von mittels (2), also

o(1) °a
">Aw.

£+ 1

0.Q

l + klVoA - X+1

(40*)

°N

AVenn wir in (40—2) den Diskontfaktor u0 weglassen und ausserdem
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mit i-pSW1+»S«U)

A mit A d — d0

vertauschen — was das Resultat nicht wesentlich ändern kann
bekommen wir die Formel von Berger:

°S.

l(2)

x+1

1 — °N.

4.^ + °^1 +
2°SI+i

(40**\

Weiter nehmen wir
n

w +1
Die Werte von />-„ sind dann der

Reihe nach beim 0-ten Präzisionsgrade angefangen: 0, ^ y > ~j~ • • •

und liegen (abgesehen von 0) zwischen der unteren und der oberen
Grenze von l;n. Dadurch wird hn 1, und die Grundgleichung wird

ll-J-1

E^+ifflWSs^i°(r)= 2^
Das vollständige Integral lautet

•>) ^0,1* + AB* (41)

oder nach Bestimmung der Integrationskonstanten

(® oA)r
Z\uo£

vi
°M„ - °Mlz[

°M"' °Mr1

Man gelangt zu obiger Formel auch unmittelbar aus (36) durch den

Grenzfibergang limfeB-»-l. Speziell haben wir

61(0) a

—Vq A
°S,>x+l

*(1)

(2)

vae
oN,x+1

(°sx+1)*

2 °Dt^+1
1 — e

-2t?o^l
042li
°8,'ai+l

(41-0)

(41-1)

(41-2)



— 196 —

Die Formel (41—2) hat zuerst Christen und später Frucht hergeleitet.
Eliminiert man mittels (2) und setzt fc1 0,84, so findet man
eine weitere Formel von Frucht

a(i) 1.68

1.88v0d
°S.•x+1

0.68 + e
' ' "Nx+i (41-1)

Die Formel (41—1) haben bis jetzt verschiedene Autoren — wenigstens
unseres Wissens — nur in einer ein wenig geänderten Form aufgestellt,
nämlich

I'd A «M1

o(1) °M0e~

Die Grösse a kann als Verbesserung des Integrals (41—1) aufgefasst

werden, weil kx -Z zu klein genommen ist. Es ist nach

vn A °M, 1
Evans a 1 - - (41—11)

°M0 3.8 — 20i
v ;

V zl 4"

Franckx und Frucht f9j a 1 — 0.34 — (41—III)L J
oMo

^ '

v0A /°M2 »MjX
Hantsch a 1 — (41—IV)

2 \°M1 °M0 /
Die letzte Formel geht übrigens in die vorletzte über, wenn man
°M2 mittels (2) bzw. (14*) eliminiert und dabei k± 0,84 setzt. Eine
ähnliche Formel hat auch Güttinger [8] gefunden, welche sich
allerdings auf SLX und nicht auf ax bezieht. Wenn wir in (41—1)

Bo^0,sa:+l

e "x+i mit, (1 -)- Zl) Z+1

vertauschen — beide Ausdrücke stimmen ja in den ersten zwei Gliedern
der Reihenentwicklung überein—, bekommen wir die Formel von Meidell

hü

"«x+i
°lv.°a(l + v0A) ÜA^+1 (41—V)
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Wenn wir schliesslich noch in (36,1) kl -^- setzen, bekommen
wir die Formel von Palmqvist

l v0A°S*+1\-1JS
aw °a( I-) (41*)1'

V l-S°Nt+1

Bei den meisten Autoren ist dagegen k1 0,84, also

a{1) "et
0.68 »0 A°SX+1

°Nx+l

1

0.68

Die allgemeine Formel für a(1) hat Güttinger [8] aufgestellt, wie wir
bereits erwähnt haben.

Die Näherungsformeln der I. Gruppe, welche verschiedene Autoren
gefunden haben, sind also entweder spezielle Integrale der Grundgleichung
des Zinsfussproblemes oder aber Funktionen, die sich diesen Integralen
annähern und die aus verschiedenen, mehr oder weniger zutreffenden,
zugrunde gelegten Annahmen hergeleitet sind. Einige dieser Näherungsfunktionen

können sogar als Verbesserungen der speziellen Integrale
der Grundgleichung betrachtet werden, in welchen der Wert von kn

zu gross oder zu klein genommen ist.

4. Steigende Rente

Sowohl in der Privat- als auch in der Sozialversicherung werden
oft auch steigende Renten gebraucht. Der Barwert der nachschüssigen
steigenden Rente ist bekanntlich

S,

D.
(Ia)x=I:

Die allgemeine Näherungsformel für 1 bekommen wir aus (25), wo
noch die Integrationskonstanten A, B, Gv zu bestimmen sind, oder
viel einfacher mittels Differentiation und Vorzeichenänderung in (36).
Es ist (42)

>):
Mr1*'2 °M„

°Mnn:f

71 °Mnnr^n-v n

vnr «Mt\
°m:n-2

1 +
(1—hn)v0A°M„ 7ji-1
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Bezüglich (42) gilt mutatis mutandis alles, was wir von (36) gesagt
haben. Durch Entwicklung des Schlussgliedes in eine Potenzreihe
finden wir die Taylorsche Reihe mit einer Abschätzung des Restgliedes

nämlich
X -1 I Vn AI I

-°K + BW1{n)=~^ rv Mr~l
°'Zj (v 1)!

WO

(»o^r1 ^ / h

Rw v0r --- °Mn > (n l)„r
(t»—1)!

* /
1' 1

1 — hY

(l—K) voA °M„

"m;:,

Die Näherungsformeln einzelner Präzisionsgrade n 0,1,2 lauten:

J(o) — r0Mx

J(D —»o r°Mi

J(2) — ®0r°Ml

1 +

1 +

1 +

A ^ °M0

°M_,

°M0

(1 — h2) v0A °M2

°^i

— v0r°Ml
v0 A °Mj

°Mn

A
l-h.

i
Iw,

oder, wenn wir zu den fcn und °&E+1 zurückgreifen:

J<o, «Ir0r

J(1) 0JA0r

I{2) °Iv0r

1 +

1 +

1 +

^0 «0 ^ °^x+1

°DX+1

(Zk2—l)v0A°Sx+1

(3^-2)
°S*-l

°lvQr 1 + "
°AT_

_2A"!

•2

2-3A«

5. Höhere steigende Beuten

Den Barwert der steigenden Bente n-ten Grades definieren wir:

S{n)
X+1 - (I" a)x 1"
D,
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Dadurch können wir den Barwert der konstanten Bente (1)
darstellen

n

r=0

Für I" gilt zunächst folgende, aus (3) hergeleitete Formel:

K-i (x +1.») (J"_1)2

Wir können weiter für I" Näherungsformeln aller Präzisionsgrade
aufstellen, genau so, wie wir es für a und I getan haben. Wir sehen

jedoch davon ab, weil I2 in der Versicherungspraxis nur äusserst

selten, Is 14 dagegen überhaupt nicht vorkommen. In Folgendem
werden wir nur einige einfachere, für das Zinsfussproblem nützliche
Formeln herleiten. Aus (33, n) und (33, n—1) folgt

Mn

°Mn \r0 1 \V0,

Wl i T \ n~* / Yi \ *
mn~1 r \ / V \tfr
°Mn-l \r01 \V0,

(43) dividiert durch die hn-te Potenz von (44) gibt

Invn / P"-1®*-1 \*»
/"XJ

Ojnvn y 0jn-lvn-l

(43)

(44)

(45)

Iv
Für n 1 finden wir ~ — (45,1)

°P v0 \ °a

Durch Bekursion finden wir weiter

InVn l In^vn^' \hnhn-lhn-2'--hn-,'-rl

°invn0 \ °r
In Vn / Cl \

und wenn v n ~

Obige Formeln ermöglichen unter anderem eine leicht
durchführbare Abschätzung der Barwerte der steigenden Benten bis zum
w-ten Grade, sofern die Grundtafel die °S'_C_rj, v 0,1,2 n, enthält.
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6. Temporäre Beriten

Bei temporären Renten ax~^ wird der Ausscheidequotient nach

to Jahren gleich 1 gesetzt und so die Ausscheideordnung abgeschlossen.
Da unsere Ausführungen für alle möglichen Ausscheideordnungen
gelten, folgt daraus, dass die Grundgleichung samt allem, was wir
aus ihr hergeleitet haben, auch für die temporären Renten, mögen
diese konstant oder steigend sein, volle Geltung hat. Es bleibt nur
noch zu bemerken, wie die Summen der diskontierten Zahlen der

temporären Rente
j aus den Summen der diskontierten Zahlen

der lebenslänglichen Rente 0Sjj.v}_1 gebildet werden können. Es ist
allgemein

_ ooM' Np (m + ' A ooM)
x+1, m| °x4-l \

^
I + l

t=0 ^

und speziell

0 7U _ 0 AI 0 7\J
£ + 1, m | ±yx+l ±yx+m fl

00 __ 0Q OO —TO 07U

oo(2) _ oo(2) oq(2) moq
/ m -j- 1 \

Q

as+l kJx+m +1 "l "x-l-m + l \ 2 /

Aus werden die kn, hn, Mn, njcs nach den bereits erklärten
Formeln berechnet. Praktischer ist jedoch die temporäre Rente als

Differenz zwischen der unmittelbaren und der um to Jahre
aufgeschobenen lebenslänglichen Rente zu berechnen

^-vn^-ax+m (46)
lx

Die Näherungsformel n-ten Präzisionsgrades einer temporären Rente
können wir also auch aus den entsprechenden Näherungsformeln der

lebenslänglichen Renten ax und ax+m herleiten. Der Diskontfaktor vm

ist leicht zu berechnen, wenn er schon den Zinstafeln nicht entnommen
werden kann, und die lx und lx+m sind in der Grundtafel enthalten.

7. Variable Renten

Den Barwert der variablen nachschüssigen Leibrente können wir
schreiben

1

Vx « 1



wo «( einen bestimmten Koeffizienten bedeutet, welchen wir jedoch
mit dem Ausscheidequotienten vereinigen können, wenn wir schreiben

Es ist also
2 OJ~X

7-, —%+1

Weil unsere Ausführungen für alle Ausscheideordnungen gelten, gilt
die Grundgleichung genau so wie für konstante, steigende,
lebenslängliche, temporäre Renten, auch für variable Renten. Es ist
allerdings meistens praktischer, den Näherungswert für ax durch Zerlegen
der variablen Rente in mehrere konstante oder steigende Renten zu
berechnen.

Hiermit haben wir gezeigt, dass die Grundgleichung des Zinsfuss-

problemes für konstante, steigende, lebenslängliche, temporäre, variable,
wie auch immer geartete Renten aller Ausscheideordnungen gilt.

Die Anwendung der Näherungsformel des 2-ten, 3-ten usw.
Präzisionsgrades ist insofern unsympathisch, weil dadurch die höheren
Summen der diskontierten Zahlen in die Rechnung gezogen werden,
welche bekanntlich in der Grundtafel nicht enthalten sind und deshalb

erst berechnet bzw. abgeschätzt werden müssen. Die Näherungsformel
des 1-ten Präzisionsgrades gibt aber bei niederen Altern und bei
grösseren Zinsspannungen A nicht zu vernachlässigende Differenzen. Um
diesem Übel abzukommen, werden wir die bisherige Annahme, kt sei

eine Konstante, fallen lassen und k1 nicht nur mit Rücksicht auf das

Alter x, sondern auch mit Rücksicht auf den Zinsfuss i variieren.
Nach verschiedenen Versuchsrechnungen, in welche wir hier nicht
eingehen können, haben wir für die 3 %ige STM folgende Näherungsformel

gefunden:

8. Variation von kt

Qx 1.3082

Q2 — 6.566

co — 85 (47)
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Es wäre selbstverständlich natürlicher, to 100 zu setzen, jedoch
um bei niederen Altern — um die handelt es sich ja in erster Linie —
genauere Resultate zu erzielen, haben wir für to das Alter 85 gewählt
und nach diesem Alter einfach ki(x, i) k1(x, 3%) gesetzt. Die
Eormel (47) gibt auch bei grösseren Zinsspannungen sehr gute Resultate,

wie wir uns an etlichen zahlenmässigen Beispielen nicht nur
an der STM, sondern auch an der ITM überzeugt haben. Daraus
schliessen wir, dass die Güttingersche Näherungsformel (86,1), in welcher
fc1 mit ki (x, i) gemäss (47) zu ersetzen ist, auch bei 3 %igen Grundtafeln

anderweitiger Absterbeordnungen zu guten Näherungswerten
führen dürfte.

9. Variation von k0

Die empirische Variation von fcj, die — wie wir oben bemerkt
haben — zu sehr guten Näherungswerten führt, hat den Nachteil,
dass die Koeffizienten Q1 und Q2 in (47) vom Grundzinsfusse und von
der Ausscheideordnung abhängig sind. Wir wollen nun an k0 eine

systematische, d. h. allgemein anwendbare Variation versuchen. Zu
diesem Zwecke setzen wir

K (x + 1, i) Vx S Cr+i (" + !)r''
r=0

Dadurch geht (14—0) über in

--a- Ec,+i(* + 1K+1
a2 ,.=o

Nach Integration bekommen wir

— c»+2^d'+1
a T=o

C0 ist wohl eine Integrationskonstante, nicht aber andere G'„. Wir
werden jedoch sowohl alle Cr als auch Kr in (49) schlechtweg
«Integrationskonstanten» nennen, um so unsere Ausdrucksweise zu
vereinfachen. Wenn wir nun beim Gliede v n stehenbleiben und die

folgenden Glieder vernachlässigen, bekommen wir anstatt des exakten
1 1

einen Näherungswert, welchen wir mit bezeichnen wollen. Dabei
«

bedeutet M die Präzisionsordnung der Näherungsformel, also
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1 n + l-«[„] r 0

(48)

Wir wollen (48) die allgemeine Näherungsformel des reziproken Renten-
barwertes nennen. Das Fehlen des Schlussgliedes bevorzugt (48) für
parabolische Inter- und Extrapolation, welche deshalb immer nur an
reziproken Rentenbarwerten und nicht an Rentenbarwerten selbst
vorzunehmen ist. Die Näherungsformel n-ter Präzisionsordnung hat (n + 2)

«Integrationskonstanten», nämlich C0,C1,C2 Cn+l, dafür ist sie

aber frei von kn. Durch Substitution r r0 + A geht (48) über in

1

[«]

n+1

2^"v=0
(49)

Zur Bestimmung von K0, Kx, K2, Kn+1 brauchen wir (n 2)

Gleichung, die man durch (n + l)-malige Differentiation von (49)
nach r und nachherigen Umtausch von i mit i0 und mit °a bilden
kann. Die /e-te Ableitung von (49) nach r lautet:

H / 1 \W n+X

^2^ -- =y,Kv(v)flA^
/. \n] /

wo S'u die Stirlingschen Zahlen erster Art bedeutet. Setzen wir in
letzter Gleichung i i0 und a[n] (i0) °a °M0, so folgt allgemein

und speziell

1

~°M~K

Kx- i-o

K,

K,

K,

VQ

27

'o

4!

°M1

°m2

0MQ

°m3

~°K

°Ml

v'. ;.=i

2°Afj

0Mq

6°M»

0Mq

°M4 S°M1°M3 + 6

mi
24°M*

"Mf
+

('.V;;

(50)

(50.0)

(50.1)

(50.2)

(50, 3)

(50,4)
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Die allgemeine Näherungsformel des reziproken Rentenbarwertes der

I. Gruppe lautet somit

1

>] 2
=0 X—l

(51)

Aus (51) bekommen wir spezielle Näherungsformeln aller
Präzisionsordnungen, wenn wir der Eeihe nach n 0, 1, 2 =» setzen. Aus11 1

— bekommt man wenn man zur Potenzreihe von das

>] [nfl]
Glied Kn., A" h2 hinzufügt usw. Es ist also

>]

°M,
- A

°Mj

°Ml
+

K^)2
2!

°M2

»M20
+

2»M\

»Ml
+ K An+'' n+1 (51*)

oder

:°il/0 1- ' vo ^
°m" + (V^

2!

»M, 2°M?
1 -

°Mn °M! + »M0Kn+lA«^\

1

(51**)

(51*) stellt die Taylorsche Entwicklung der Punktion — bis zur
a

(>i + l)-ten Potenz von A dar, jedoch ohne Eestglied, welches hier
nicht so wichtig ist wie bei aDer Vergleich von (51**) mit (36—0)
rechts zeigt, dass wir durch die systematische Variation von k0 nur
zu einer Verbesserung des Schlussgliedes von a(0) um n weitere Glieder

gelangt sind. Daher a[0j a.(0), sonst ist aber + a(n). Jedoch die

Annäherungskraft vor ist im grossen und ganzen ungefähr dieselbe

wie die von a()l). Zu bemerken ist noch, dass die Konvergenz der Eeihe
1

von — nicht immer monoton ist, speziell bei niederen Zinsfüssen,
aM

<1. h. durch Hinzufügung eines neuen Gliedes der Eeihe kann sich

der Näherungswert manchmal vorübergehend verschlechtern.



— 205 —

Bestimmung der Integrationskonstanten der allgemeinen Näherungs-
formel des Rentenbarwertes mittels Summen der diskontierten Zahlen

zweier oder mehrerer Grundtafeln (II. Gruppe)

Die allgemeinen Näherungsformeln der Barwerte der konstanten
und der steigenden Renten können geschrieben werden.

n—2

a[n)— 2 B,,rr + Br)°" (52—0)
v=0

J(n) + 2 c»vr" — Brgn(A + Br)0n~l (52—1)
v 1

2 CMS + Br)^ (52-2)

Daraus schliessen wir:

Aus (n + 1) Grundtafeln, welche nur die 0-ten Summen der
diskontierten Zahlen /lNx, [i 0,1, 2 n enthalten, können Näherungsformeln

w-ten Präzisionsgrades gebildet werden. Dazu brauchen wir
die Werte r und fla in (52—0) einzusetzen und die (n + 1) Gleichungen
in bezug auf A, B, C0, Cx Cn_2 aufzulösen.

Aus (n + 1) Grundtafeln, welche ausser den 0-ten Summen >'NX

auch die 1-ten Summen der diskontierten Zahlen ßSx enthalten, können

Näherungsformeln (2n + l)-ten Präzisionsgrades gebildet werden. Dazu
brauchen wir die Werte r f,I in (52—0) und (52—1) einzusetzen

und die (2n -j- 2) Gleichungen in bezug auf A, B, C0, Cj, C.2n l

aufzulösen usw.
Ähnlich kann man leicht den Präzisionsgrad der Näherungsformel

ermitteln und das zugehörige Gleichungssystem zur Bestimmung der

Integrationskonstanten aufstellen, wenn ein Teil der Grundtafeln nur
die Nx, der andere Teil die Nx und zugleich Sx usw. enthält. Aus ITM
z. B., die Nx und Sx für zehn Zinsfüsse und ausserdem die mittlere
Lebenserwartung ex enthalten, können Näherungsformeln 20-sten

Präzisionsgrades und aus STM, die Nx, Sx, S^ S'(.6) für sieben
Zinsfüsse 0%, 1 %, 2% 6% enthalten, können sogar Näherungsformeln
48-sten Präzisionsgrades gebildet werden. Pür den Bedarf der

Versicherungspraxis reichen jedoch schon die a(2) und a(3), höchstens a(4) aus.
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Obige Sätze gelten selbstverständlich nicht nur für lebenslängliche
konstante, sondern auch für steigende temporäre, variable, wie auch
immer geartete Renten aller Ausscheideordnungen.

Zur Bestimmung der Integrationskonstanten bei der II. Gruppe
brauchen wir nur das obige Gleichungssystem aufzulösen. Da wir
jedoch mit transzedenten Gleichungen zu tun haben, sind wir nicht
imstande, allgemeine Formeln für die A, B, Cv aufzustellen, wie z. B.
bei der I. Gruppe (35, A), (35, B) (35, C). Eine allgemeine Näherungsformel

des Rentenbarwertes wie z. B. (36) existiert bei der II. Gruppe
leider nicht. Infolgedessen können wir die Lösungsmethoden der

II. Gruppe nicht einheitlich behandeln, so etwa wie die der I. Gruppe.
Wir können zwar in jedem konkreten Falle die Integrationskonstanten
durch verschiedene Näherungsverfahren (regula falsi, Newtonsmethode,

Iterationsverfahren usw.) bestimmen, jedoch solche

Berechnungen sind meistens so zeitraubend, dass sich die Arbeit durchaus
nicht lohnt. Deshalb empfiehlt es sich, von verschiedenen Kunstgriffen

Gebrauch zu machen, bei welchen zwar die Präzision der
Formel einbüsst, jedoch gelangen wir so auf einfacherem Wege zu
praktisch ausreichend genauen Näherungsformeln. Diese Kunstgriffe
können wir einteilen wie folgt:

1. Variation der Integrationskonstanten. Eine oder mehrere

Integrationskonstanten können beim Ubergange des Zinsfusses i aus
der Umgebung des einen Grundzinsfusses in die Umgebung des anderen
Grundzinsfusses variiert werden.

2. Heranziehung von höheren Summen der diskontierten Zahlen.

3. Spezielle Näherungsverfahren.

4. Abschaffung der Potenz des Schlussgliedes.

Der Vorgang kann am besten an konkreten Beispielen gezeigt
werden. Vorher ist jedoch eine Bemerkung bezüglich des Wertes gn

bzw. kn notwendig. Der Wert von gn könnte zunächst auf Kosten
eines Präzisionsgrades aus dem Gleichungssystem bestimmt werden,
d. h. anstatt Cv mit dem höchsten Index kann gn berechnet werden.
Dies ist aber sehr umständlich, und ausserdem ist es besser, gn bzw. kn

nach den Grundzinsfüssen zu variieren, d.h. wenn i < 0.5 (i0 U),
ist kn(x -)- 1, iQ), sonst aber kn(x + 1, U) zu nehmen.

* **
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Gegeben sind zwei Grundtafeln mit 0-ten Summen der diskontierten
Zahlen. In diesem Falle kann nur eine Näherungsformel des 1-ten
Präzisionsgrades (20) gebildet werden. Das Gleichungssystem lautet

l
°a= (A Br0) i-N

l
xa (A + Brf) i-N

r1 °a1~hl — r01a1'hl
A -

i0

1a1~hl — °a1~hl ^
B=

Daraus folgt

%-i In

Nach Einsetzen von A und B in (20) bekommen wir folgende
Näherungsformel

ad)
1-Aj 1

1- h-t (54)

In diesem einfachen Falle sind also keine Kunstgriffe nötig.

1. Gegeben sind zwei Grundtafeln mit den 0-ten und 1-ten Summen
der diskontierten Zahlen. Es könnte eine Näherungsformel des 3-ten

Präzisionsgrades gebildet werden, wenn wir das Gleichungssystem in
allgemeiner Form auflösen könnten. Weil dies nicht der Fall ist,
nehmen wir lieber die Näherungsformel des 2-ten Präzisionsgrades,
welche wir schreiben

a(2) Co H (A Br)g* (55)
02 "

Die erste Ableitung ist

a(2) — r(A -j- Br)92'1

Das Gleichungssystem zur Bestimmung von A und B lautet

°MlVo= (A + Br^1
=(A + BrJ'rl
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Daraus folgt r1 (°M1 vg)17,2 — r0 (1M1 vx)1

B
(1M1v1)1~h2 (°M1v0)1~hi

h %

Die Integrationskonstante C0 kann so bestimmt werden, dass die
Kurve (55) entweder durch den Punkt °a oder aber durch den Punkt %

gehe. Im ersten Kalle ist

°C0 °a ~(A + Broy*
Ch

im zweiten Kalle aber

1C0=1« ^-(^ + 5^"
92 B

Die Integrationskonstante C0wird also hier variiert. Wenn i s; 0.5 (i0 + ix),
wird °O0, sonst aber 1C0 berechnet. Infolge der Variation von C0 geht
die Kurve (55), obwohl sie nur drei Integrationskonstanten hat, durch
vier Punkte, nämlich durch °a, la, °I, rI. Durch Einsetzen von A, B,
C0 in (55) gelangen wir zu zwei Näherungsformeln, von denen die

erste lautet

°I v0 i, — in
a,.» °a -)

92 (lIv^1

°lvo

i i — ig fiIv1
\ °-^ ®o /'

\ l-Äa" °08 |

-1 (57)

Die zweite Kormel bekommt man aber durch Umtausch der Indizes
«0» und «1» bei den Grundwerten.

2. Gegeben sind zwei Grundtafeln mit den 0-ten, 1-ten und 2-ten

Summen der diskontierten Zahlen. Es könnte eine Näherungsformel
des 5-ten Präzisionsgrades gebildet werden, wenn wir das Gleichungssystem

in allgemeiner Eorm auflösen könnten. Weil dies nicht der Kall
ist, nehmen wir lieber die Näherungsformel des 3-ten Präzisionsgrades,
welche wir schreiben

«(s, Co + Cxr + —i—- (A + Br)" (58)
(9s) 2

B2

Durch Differentiation bekommen wir

°(s) —«('s) r2(A + Br)"**
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Das Gleichungssystem zur Bestimmung von A und B ist

°M2vl =(A + Broy°~2

m2v\ {A + Br^*-2
Daraus folgt

A=-

B-

"i "o

(W2^)^-(OM2^
^0

,2\1—Ä3 /071/f „,2\1-Ä3 (^)

Die Integrationskonstanten CQ und C1 werden so bestimmt, dass die

Kurve (58) sowohl durch °a als auch durch % geht. Es ist also

__
r1(°a — 0o)—ro{1a — 01) _ (A + Br0)«*

0 — • 0 — / \ D2H %o (<73)2 B

?a-01)~(°a-0o) (A + Br
(93)2 B2

Hier haben wir also keine Variation der Integrationskonstanten,
sondern wir haben anstatt zu den ersten gleich zu den zweiten Summen
der diskontierten Zahlen gegriffen. Die Kurve (58) geht durch die
Punkte °a, xa und °I2, U2, jedoch nicht, wenigstens streng nicht,
durch die Punkte °i und 1I. Die endgültige Näherungsformel des

3-ten Präzisionsgrades bekommt man durch Einsetzen der Integrationskonstanten

A, B, C'0, Ci in (58), jedoch wegen der Ausdehnung der
Formel sehen wir davon ab. Wir können C0 und Cx selbstverständlich
auch so bestimmen, dass die Kurve (58) durch °a, °I, °I2, 1I2, oder

durch Ja, 1I, 1I2, °Z2 geht. Im ersten Falle ist

°Ci °M1v0
1

(A + Br0y
(ffs — VB

°C0= °a — °C1ro — 0o

Die Integrationskonstanten 1C'0 und 1C1 für den zweiten Fall
bekommen wir einfach durch Umtausch der Indizes «0» und «1» bei den

Grundwerten.
11
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3. Einige Beispiele von speziellen Näherungsverfahren, welche,die
Auflösung des Gleichungssystems auf Kosten der Präzision erleichtern,
geben wir später bei den Näherungsformeln von Frucht-Vellat (63),
(65), und Crosato (66).

4. Die Schwierigkeit der Auflösung des Gleichungssystems steckt
in der Potenz des Schlussgliedes. Wenn die Grundtafeln ausser Nx
auch Sx, oder weiter noch S'^ usw. enthalten, kann diese Schwierigkeit
abgeschafft werden, jedoch wie immer nur auf Kosten der Präzision.
Durch Division von (52—0) mit (52—1), weiter von (52—1) mit
(52—2) usw. bekommen wir

?(»>•

A.

+ ~B aW +2C'''r"
v—Q

n-2

V(»r

B
vv — {gn — v)

A
-g-v(v)2 — v(gn — v)

0 (60,1)

0 (60,2)

WO

f(n) ®(n) 9n ~f~ -^(n)

V>(n) -^(n) (9n 1) +

"<«) J(n)*>

ßln) — ^Jfn) v (60*

Wenn wir nun r, a(n), I(nj, lfn), mit r/t, ''a, ''1, ''I2, vertauschen,
bekommen wir ein System von algebraischen Gleichungen mit den

A
Unbekannten —, C0, C\, C2 welches wir ohne weiteres auflösen

A
können. So gelangen wir zum Quotienten—, nicht aber zu A und B.

B
Es bleibt uns also noch ein Freiheitsgrad übrig, welchen wir so
ausnützen können, dass die Näherungskurve durch alle ''a hindurchgeht.
Dieser Bedingung genügt folgende Gleichung

V)'
v=0

n—2

- V f'C rvX I V ' fl
v=0

+ r

+ r»

"9n

(61)



in welcher wir —, C, gn nach den Grundzinsfüssen variieren können,
B

um so grössere Genauigkeit zu erzielen. Allgemeine Formeln für die
Unbekannten sind sehr umständlich, besonders wenn die Grundzins-
füsse nicht äquidistant sind, deshalb geben wir lieber zwei einfache

Beispiele.
Gegeben sind zwei Grundtafeln mit den 0-ten und 1-ten Summen

der diskontierten Zahlen. Aus (60,1) folgt

A
<P{2) ^o9z 4

Jß
ai*(2) 0

Dabei bedeutet

Wir setzen nun

<P(2) — a(2) 92 + (2)

a,(2)

a„ — °I v0 und aj U vx

und weiter, wenn sich i befindet in der Umgebung

von ig von it

Vo °a°9 2 + 01 Vi °«Vi + °I

>cpg 1a°(/2 + 11 Vi la V2 + 11

So bekommen wir folgende vier Gleichungen

A
Vo °V)°g2 +

Vo-% °92 +

aus welchen folgt

A

B Jo

1

B

B

a0= 0

0

Vi-nV2 +

Vi 1 Vi v2 +

^4

B

B/i

oc0= 0

ax 0

Vo —Vo

°V Vo + — )*<>

V1 — Vi
a, —a„

V2
Vi +

4

ß/l
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Die Näherungsformel des 2-ten Präzisionsgrades lautet somit

a(2) "Co

"a —"Cn

B
+ r

B
4- rl ' U

jx 0,1 (61-2)

5 % zahlen-Obige Formel haben wir an der ITM, i0 4(
mässig überprüft. Die nach Altern und Grundzinsfüssen abgestufte
k2(x + 1, i,,) haben wir der Tafel der verallgemeinerten Poukkaschen
Zahlen im Anhange unserer Abhandlung entnommen. Obwohl sich

die k2(xJrl,i/l) auf die STM beziehen, sind wir dennoch zu
vorzüglichen Näherungswerten gelangt, welche mit den exakten Renten-
barwerten für alle Alter x 0 bis 100 und für alle i 8 % bis

6.5 % — abgesehen von den Differenzen, welche von den vernachlässigten

Dezimalen herrühren — bis zur dritten Dezimalstelle
übereinstimmen.

Auf ähnliche Art und Weise kann man leicht aus drei, vier,
fünf Grundtafeln, die Nx und Sx enthalten, «(3), u(4), u(5),

berechnen; wir sehen jedoch davon ab, weil diesbezügliche Formeln
zu viel Raum in Anspruch nehmen würden.

Gegeben sind zwei Grundtafeln mit den 0-ten, 1-ten und 2-ten Summen
der diskontierten Zahlen. Die Näherungsformel des 4-ten Präzisionsgrades
schreiben wir in diesem Falle

htr Co — Dir — C2r2

"a — Co — C4 ru -Crf

A

B
+ r

A
b f

B "

(61-4)

Wegen des hohen Präzisionsgrades brauchen wir keine Variation der

Integrationskonstanten, was die Rechnung wesentlich vereinfacht. Zur

Berechnung von — C0, C4, C2, haben wir folgendes Gleichungssystem

/J<p C0gt Clrfl(gi—1) — C2r^(g,4 — 2) + — [a;, + Cx + 2 C2rfl] 0

"V + Cxrtl(j/4-1) + 2C2r* (9i-2) + - [ß„ - 2C2r„] 0, ,« 0,1
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Die Berechnung der Integrationskonstanten ist sehr einfach. Weil
die Formeln etwas weitläufig sind, schreiben wir dieselben nicht
nieder, sondern wir bemerken nur, dass sie zu vorzüglichen Näherungswerten

führen.

Verschiedene Bemerkungen zur II. Gruppe

1. Beziehung zu den bekannten Interpolationsformein

Frucht [1] hat folgende Interpolationsformel gefunden

ax(i +Ar) ax(i) (l + [ax «f68 {[ax (i + k)]"0'68 - K W]"0'6

1

0.68

Wenn wir sinngemäss setzen

ax(i) °a

hax (i + h) 1a

ax (i + A i) a(1) % + A i i
bekommen wir nach einigen Umformungen

1/7

h ix

Ai — i-

a.(i)

"a

% % %Q

va

-0.68 1

~076~8

vl "0 *1 *0

Das ist aber nichts anderes als (54) für den Spezialfall k1

(62)

0.84.

Bei i0 0 geht (54) über

«(!) « 1 1-1 —
e

u J üj—X

« % y- 2 lx+t
lx (=1

Wir können weiter schreiben

I l
UÄT

1
e — *a
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tl^Avnn A1 fin» j,*d)Wenn wir den Wert von — in obige Formel für am einsetzen und die
e

Potenzen in Reihen entwickeln, bekommen wir

i e — xa

ad) e 1
: H • • •(1>

ii e

Es ist also ;

a^e(l -y=e(-y
oder, wenn wir noch die Zinsfüsse mit den Zinsintensitäten vertauschen,

/ ifl \ »

«.~M — r (®2*)
e„

Das ist aber die Formel, welche Meidell aus gewissen Ungleichungen
von Jensen hergeleitet hat.

* **

Gegeben sind drei Grundtafeln mit 0-ten Summen der diskontierten

Zahlen für äquidistante Zinsfüsse i0, i1 i0 -)- d, i2 + 2d.
Gesucht wird eine Näherungsformel für ,la, wenn % i0 Die

Näherungsformel des 1-ten Präzisionsgrades können wir schreiben

a(l) A(1 + Br)"
Wenn i L i0 -j- (/< — 1 )d, ist der Quotient

"a l Bd y» _
1

1 -j- — oo 1 -f- Bgxi
1 + BVi / ^ + Br,i

oder in weiterer Näherung, weil der absolute Wert von B nicht gross
sein kann, wenn i nicht allzusehr von i0 entfernt ist, was ja in der

Versicherungspraxis nicht vorkommt,

ß a

u-'a ~ 1 + Bg^il—BrY

und weiter nach einigen Umformungen, wenn r t r0 -)- d + (ft — 2)d
eliminiert wird

fl~la - [1 + Bgid-B*gir0d-B*gicP] + (^ — 2) [-BT-g^]
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Der Ausdruck in der linken eckigen Klammer ist aber annähernd gleich
2a
—- und der Ausdruck in der rechten eckigen Klammer aber annähernd

u
gleich —-

1/1
also

+ (ß — 2) (63)

Das ist aber die Formel, welche Frucht und Vellat [10] auf anderem

Wege gefunden und mit «metodo dei quozienti» benannt haben. Diese

Autoren haben zwar ihre Quotientenmethode an den vorschüssigen
Rentenbarwerten a.x entwickelt, jedoch zahlenmässige Beispiele haben
die theoretischen Vermutungen bestätigt, dass sie hei nachschüssigen
Bentenbarwerten ax bessere Näherungswerte liefert.

Den vorausgehenden Fall wollen wir noch mit der Näherungsformel
des 2-ten Präzisionsgrades behandeln. Diese kann geschrieben werden

fl(2) B0~ A (1 Bf)

Bilden wir nun die Quotienten

S2 (64)

Cn

°« - -cn
1

Bd

2«-c0
ki-<7n

1 +

1 + Br0

Bd

92

rvj
Bg*

1 + B (r0 + d)
1 +

1 + Br0

Bg2

— Qo

1 + B(r0 + d)
— Qi

Wenn d \

Q0 Q1 Q setzen. So wird
i0 hinreichend klein ist, dürfen wir näherungsweise

hi —

°a - Cf,

2a — C„
Q

Daraus folgt

C0
ua"a

2a — 2 ki + °a
und Q

La — ui
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Die Näherungsformel lautet also

a — Cn

Cn

oder auch

1 +

Cn

BA
1 + Br0

J

1 +
B92

1 + Br0
Q~

Cn
>Q* und

Cn
Qd

(65)

(65)
2<1 C0

Diese Näherungsformel haben ebenfalls Frucht und Vellat [10] gefunden
und mit «metodo dei quozienti ragguagliati» genannt. Diese Methode

gilt genau so für a.x wie für ax.

* *

Infolge (64) können wir schreiben

a - a

1 +Br0N"
1 + Brx

1 +
B (i ig)

1 + Br0

1 +
B(i — ii)
1 + Br,

— 1

Wenn wir beide Ausdrücke in den eckigen Klammern in Reihen
entwickeln und nur die beiden ersten Glieder der Entwicklung behalten,
finden wir „ „1 + Broy^ t — i0

und ähnlich

a -

a -

"a—-a

1 -f- Brx i — il
1 -|- Brj V2"1 it — i2

1 Br0 J i0 i2

Durch Multiplikation der beiden letzten Näherungen gelangen wir
zur Formel von Crosato

a-

a -

- °a 1a-

hi °a-
(66)

Die Näherungsformeln der II. Gruppe, welche verschiedene Autoren
gefunden haben, sind also entweder spezielle Integrale der Grundgleichung
des Zinsfussproblemes oder aber Funktionen, die sich diesen Integralen
annähern.
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2. Variation von k1

Wenn die Grundtafeln ausser Nx noch Sx enthalten, kann kl
systematisch nach Zinsfüssen und Altern variiert werden. Aus (45, 1)

folgt nämlich

Wenn die Grundtafeln auch höhere enthalten, können auch
weitere kn variiert werden. Aus (45) folgt allgemein

Solche Bestimmung von kn ist besonders wichtig bei kurzen Kenten,
die grössere kn als lebenslängliche Renten haben, und bei Ausscheideordnungen,

die sich wesentlich von den Absterbeordnungen
unterscheiden (z. B. Ausscheideordnungen der Aktiven, Ledigen,
Verheirateten usw.), bei welchen die in der Tafel im Anhange gegebenen

verallgemeinerten Poukkaschen Zahlen nicht ohne weiteres
angewendet werden dürfen.

Die systematische Variation von k0 hat uns zu Näherungsformeln
einzelner Präzisionsordnungen (48) geführt. Wir haben also

{x + 1, iß+1 — i log —-— : log
'Iv„

(67,1)

3. Variation von k0

1 n+i

a[n]
— 2<V
a\nl » 0

(68,0)

(68,1)

2(-^[n])2 a[n](2-^[n] ^[n])
(68, 2)

r 1

Durch Umtausch von r, a[n], 1'^, mit rfl, !'a, "I, ''I2,
bekommen wir ein System von linearen Gleichungen mit den
Unbekannten C0, Cj, C2, welches wir allgemein z. B. mit Deter-
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minanten auflösen können. Im Falle äquidistanter Zinsfüsse können
wir aus f'a die unmittelbar, d. h. ohne Kenntnis von Cr, einfach

durch Differenzenbildung von — berechnen.
''a

* **

Die lineare Interpolation zwischen °a und la

°a(i1 — i) + la(i — i0)

liefert zu grosse, die lineare Interpolation zwischen — und —°a la
°a la (it — i0)

1a(i1 — i) + °a(i — i0)
[0]

dagegen etwas zu kleine Näherungswerte. Folgende Kombination

o(0) [1 — fcx(x + 1, i)] + a[0] k1(x+l,i)^>a (69)

in welcher k1 die Poukkasche Funktion bedeutet, führt aber wiederum
zu vorzüglichen Näherungswerten, wie man sich durch Reihenentwicklungen

überzeugen kann. Wegen der Einfachheit ist (69) für praktische
Berechnungen ganz besonders geeignet.

4. Gegenseitige Beziehungen zwischen der I. und II. Gruppe

Die Integrationskonstanten haben wir bei der I. Gruppe so

bestimmt, dass die Näherungskurve durch mehrere unendlich nahe

liegende Punkte (mehrfachen Punkt), bei der II. Gruppe aber durch
Punkte, die alle oder wenigstens zum Teil in endlichen Entfernungen
voneinander liegen, hindurchgeht. Daraus schliessen wir, dass sowohl die

Integrationskonstanten als auch alle anderen Grössen und Formeln
der II. Gruppe in diejenigen der I. Gruppe übergehen müssen, wenn
man die diskret liegenden Punkte so verschiebt, dass sie alle zu einem
mehrfachen Punkt zusammenschrumpfen — und umgekehrt, dass

alle Grössen und Formeln der I. Gruppe in diejenigen der II. Gruppe
übergehen müssen, wenn man aus dem mehrfachen Punkt einen oder

mehrere Punkte in eine endliche Entfernung herauszieht.
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Der Übergang von der II. zur I. Gruppe erfolgt rechnerisch durch
den Grenzübergang

lim idu — öo) - 0

Bei nur zwei Punkten, d0, d1; haben wir

di d0 -j- dö

°a + °a'dd

Da wir bei der II. Gruppe keine allgemeinen Formeln der Integrationskonstanten

haben, werden wir diesen Grenzübergang am einfachsten

Beispiel, und zwar an der Formel der Integrationskonstante B von
aa) (53) zeigen. Es ist

t °a' \l~hl
1 -l dö —1

iai^_o0i-*i roa + oa'dd)1-hi — »al-hl °al~hl
lim Bu

V ;

r, — r0 e*<>+di> e'So
r<) eM — l
°M,

°MÜ'"t0(l — }h) 1- B1, wie in (30)
°M0

Ähnlich können wir nicht nur alle anderen Integrationskonstanten
A, B, Cr von a,n) und «Integrationskonstanten» Cr von a(n] der

II. Gruppe in diejenigen der I. Gruppe umwandeln, sondern auch
die kn bzw. die hn. Die Formel für °hn (67, n) können wir schreiben

ouilim "hl
Ol- ln 1Mn-l ®i l„ i'o

Setzen wir nun
mn mn + oM'ndö

°m^i + "M^dö

V1 ®o + v'odd

in obige Gleichung, entwickeln wir nachher die logarithmischen
Funktionen in Reihen, so finden wir nach einigen Umformungen

°M
lim °h" °h', wie in (14*)
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Der Fall dreier oder mehrerer diskret liegender Punkte braucht
keiner besonderen Erklärung. Es wird nämlich zuerst ein Punkt nach
der eben erklärten Weise verschoben und die anderen Punkte dabei
stehen gelassen. Nachdem dies geschehen ist, wird der zweite Punkt
verschoben und so der Reihe nach alle diskret liegenden Punkte.
Man kann aber auch alle Punkte auf einmal verschieben. So eine

simultane Verschiebung wollen wir an der Formel (60, 1) zeigen. Die
in dieser Formel auftretenden n Doppelpunkte verschieben wir so,
dass sie alle im Punkte °a zusammenschrumpfen, durch welchen
selbstverständlich die Näherungskurve a(n) hindurchgehen muss. Infolgedessen
wird 9s0, a0, und so können wir (60,1) schreiben

fo + ~
B

ao + Cv 1

v 0

— Vnv-
B

(On-

Die ^-te Ableitung von (70) nach r0 lautet:

dl cp0 A d'~ a0
+ __ _____ + 4

ti—c

B

Es ist aber zufolge (60*), (17) und (16)

d>'
<Po dl (9n °M0 — %) (gn — X) °MX -

dri

Wenn X n

dr;, J.
ro

dl <x0 dk{—°M1v0) °M

dr'o dr'i "hl
'0 '0

1, bekommen wir aus (70*)

0

v0(v — X) — (gH—v)

A + l

(70)

0

(70*)

(71)

(71*)

d" <Po

/ A ^11

lim I —
i>0\ B

drjp1

drV

°M„_

®o(l"
°Mn

— (72)

also genau denselben Wert wie durch die Division von (35, A) mit

(35, B). Wenn wir nun
d 9?0 d'

in (70*) eliminieren, finden
drl ' dr" ' B

wir nach einer Umformung, wenn wir einfachheitshalber schreiben
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N-.
°Mn-

n )ax — (11 — A) — (n — X — 1) h„

folgende Gleichung

n-2
(v—X)N

n-).vl
°M;

1V0M;.+1

aus welcher man zunächst C„_2, nachher Cn_3 usw. der Eeihe nach
alle Cv von v n — 2,n — 3, 2, 1, 0 berechnen kann. Wir können
aber Cr auch allgemein berechnen (z. B. mittels Determinanten,
unvollständiger Induktion usw.), jedoch wegen der Umständlichkeit
der Berechnung müssen wir davon absehen und schreiben gleich das

Resultat nieder, nämlich

C
V n-2-y

V0

v< Zjy" A=0

"I)'
Ä\

°M
0

Das ist aber die Formel (35, C). Bs ist also tatsächlich

lim C" C\
ö[r*~ ö«

A
Durch Emsetzen von — und Cr in (61) geht diese Formel der II. Gruppe

B
in die allgemeine Näherungsformel des Rentenbarwertes der I. Gruppe
(36) über.

* *
*

Eine endliche Verschiebung ist nichts anderes als die Summe
unendlich kleiner Verschiebungen, welche bekanntlich durch bestimmte

Integration berechnet wird. Die Auseinanderziehung der unendlich

naheliegenden Punkte erfolgt rechnerisch also durch Integration der

Differentialgleichungen, die wir aus den Formeln der I. Gruppe durch
Umtausch von ä0 mit d erhalten. Wir nehmen an, dass die kn, A, B, Cv

so wenig vom Grundzinsfusse abhängen, dass wir über diese Un-

genauigkeit hinweggehen dürfen.
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Um die Umwandlung von hn der I. Gruppe in hn der II. Gruppe
zu vollziehen, schreiben wir (14*)

M,n-\-1

M„
K

Mn

oder mit Rücksicht auf (16)

ML

M.
hl

M'n-l (n — 1)

Bei der Annahme h* konstant, was der Wirklichkeit nur annähernd

entspricht, bekommen wir durch Integration

Mnvn

wo B eine Integrationskonstante darstellt. Wenn ö ö„

(73)

be-"/t > *>+i >

kommen wir aus letzter Formel zwei Gleichungen, aus welchen folgt

"K1 log
+1M vnlvln >4-1

flM„ vi
' log

n-l >4-1

Wir haben so aus h'n durch Integration ah1nJ gefunden. Siehe (67, n)!
Der Wert von ist hier durch zwei Grundzinsfüsse bestimmt. Wir
können aber (73) mit Hilfe von (17) noch weiter integrieren und so

weitere Formeln aufstellen, die durch drei, vier, n
Grundzinsfüsse ausdrücken, nämlich

l
=(A + Br)iA

2-hn

Mn_2vn~2 (A + Br)i-hn -f- Cn_2

(73, n—1)

n-2

M0 (A + Br),J"+ 2 Cvry
v—0

Damit haben wir aber nichts anderes als die Grundgleichung neuerdings,

jedoch auf eine andere Art wie früher integriert und die
allgemeine Näherungsformel des Rentenbarwertes (26) samt ihren
Ableitungen gefunden, aus welchen sowohl kn als auch die Integrationskonstanten

A, B, Cv berechnet werden können, vorausgesetzt, wenn
hinreichend Ausgangswerte bekannt sind. Explizite Formeln für uhn,
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wenn fi > 3, können wir jedoch nicht geben, weil wir die Gleichungen
in allgemeiner Form nicht auflösen können.

Wenn wir endlich noch d0 mit Ö in den Formeln der Integrationskonstanten

A, B, Cv der I. Gruppe, d.h. in (35,^4), (35,5), (35, C)

vertauschen, erhalten wir drei Differentialgleichungen von a', a",
a'", a'-nK Um die Integration von A und B zu erleichtern, dividieren
wir (35, Ä) durch (35, B)

M.i-V-KV " Mn_,

B
n b\ M"

o(l —hn)
Daraus folgt

Mn

Mn_,

(«-!)= (74)
A

B
M« M~> l-K ± + r

Bei der Annahme — konstant, was der Wirklichkeit nur annähernd

entspricht, können wir (74) integrieren. Wir finden so

l
Mn_, vn~l (A + Br) i-»» (74*)

Wenn r r0, r,, bekommen wir aus (74*) zwei Gleichungen, aus
welchen folgt

u ^-iy-hn- r0 ('M^ »r1)1-"«

B
(mn_1vrThn-(°Mn.1vV)1-hn (75)

Für n 1, 2, 3 bekommen wir aus (75) die bereits oben gefundenen
Werte von A und B der II. Gruppe, nämlich (53), (56), (59). Durch
weitere Integration von (74*) bekommen wir wieder die allgemeine
Näherungsformel des Bentenbarwertes (26) samt ihren Ableitungen,
weil (74*) mit (73, n — 1) identisch ist. Zu demselben Besultat
gelangen wir auch durch die Integration der Differentialgleichung
von Cv. Durch die Auseinanderziehung einzelner Punkte aus dem

mehrfachen Punkt sind wir also zu unserem Ausgangspunkte, nämlich
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zum Gleichungssystem (52—0), (52—1), (52—2) usw. zurückgekehrt,
aus welchem die Integrationskonstanten der II. Gruppe zu bestimmen
sind. Wir können die Differentialgleichungen von A, B, Cv auch
einzeln, d. h. ohne Kombination mit den anderen zwei Gleichungen,
integrieren, jedoch das hätte keinen praktischen Wert.

Bestimmung der Integrationskonstanten
der allgemeinen Näherungsformel des Rentenbarwertes mittels

Parameter der Ausscheideformen (III. Gruppe)

Einige Ausscheideordnungen lassen sich bekanntlich wenigstens
in gewissen Altersintervallen durch mathematische Formeln darstellen,
welche eine bestimmte Anzahl von Parametern a, ß, y enthalten.
Es ist also

lx=lx^'ß'Y • •)

Infolgedessen sind sowohl die diskontierten Zahlen °DX als auch alle
Summen derselben °S^ ebenfalls Funktionen dieser Parameter. Daraus

folgt, dass nicht nur die kn, hn, °Mn, sondern letzten Endes auch
alle Integrationskonstanten A, B, Cr bzw. A, B, C, Funktionen der

Parameter a, ß, y, sein müssen. Man kann also bei solchen

Ausscheideordnungen anstatt der Summen der diskontierten Zahlen die

Parameter der Ausscheideformeln zur Berechnung der Integrationskonstanten

heranziehen. Als Beispiel wollen wir die Ausscheideformel

von Dormo ii
lx K Sx

nehmen. Einfachheitshalber setzen wir den Proportionalitätsfaktor
K 1, so dass die Ausscheideformel

lx S*

nur ein einziges Parameter «S» enthält. Es ist bei dieser Ausscheideformel

(Sv0y+1

(i -Sv0y
°SW1= * -1,0,1,2,...1+1 1 w+» ' ' ' ' '

kH(x,i) — 1, n 0, 1, 2

Die Ausscheideformel von Dormoy hat also die merkwürdige
Eigenschaft, dass alle kn vom Alter x und Zinsfusse i unabhängige Kon-
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stanten sind. Deshalb müssen die Formeln, welche wir im folgenden
für die Eentenbarwerte herleiten werden, keine Näherungswerte,
sondern exakte Resultate liefern. Es ist weiter

oM (-1)'»! St*

K

(i -Sv0y+i

n + 1

n

— 1

{n)n-e
nJl"-e nn~e

Wenn wir nun obige Werte in (35, A), (35, B), (35, C) bzw. in (28)

einsetzen, finden wir folgende Ausdrücke für die Integrationskonstanten

j
A —l A —(—S)~*

5 4 B -(—S)"T (76)

Cv 0 Cr =0

Der Barwert der konstanten und der steigenden Rente ist also bei
der Ausscheideordnung von Dormoy

«~2
_ / r \ 1 Sv

2 r
v—0

I _±1-2 Sv

a=S,c-r"+{A+Br)"=r1+j=T^r, <")

^Crf — r (A -)- Br)Sn
1 ==—r[—(—S)2—r(—S) 8]

(1— Sif
Die Formeln der III. Gruppe können wir in Präzisionsgrade und

Präzisionsordnungen einteilen, genau so wie die Formeln der I. und
der II. Gruppe. Die Ausscheideordnung von Dormoy hat eine

Ausnahme, weil bei ihr die Näherungsformeln aller Präzisionsgrade und

Präzisionsordnungen wegen kn 1 exakte Werte geben, was bei

anderen Ausscheideformeln selbstverständlich nicht der Fall ist.
Der Unterschied zwischen der I. und der II. Gruppe einerseits

und der III. Gruppe andererseits besteht nur in der Formalität der

15
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Berechnung der Summen der diskontierten Zahlen, mit welchen die

Integrationskonstanten bestimmt werden. Bei der I. und II. Gruppe
werden die ßS{^ «arithmetisch», d. h. zahlenmässig durch wiederholtes
Addieren der diskontierten Zahlen der Grundtafeln, bei der III. Gruppe
dagegen «algebraisch», d. h. durch die Analyse der Ausscheideformel
ermittelt, weiter nichts. Die Verwandtschaft der III. Gruppe mit
der I. und der II. Gruppe ist also noch grösser als die Verwandtschaft
zwischen der I. und der II. Gruppe. Es ist klar, dass die Methoden
der I. und der II. Gruppe ohne weiteres auch bei den formelmässigen
Ausscheideordnungen angewendet werden dürfen.

Bis jetzt wurde die III. Gruppe als ein corpus separatum des

Zinsfussproblemes betrachtet und diese Ansicht mit folgenden zwei

Argumenten motiviert:
1. Die Formeln der I. und II. Gruppe geben nur Näherungswerte,

die Formeln der III. Gruppe dagegen mathematisch exakte Resultate.

2. Bei der I. Gruppe reicht eine einzige Grundtafel, bei der

II. Gruppe nur einige wenige (zwei, drei, vier Grundtafeln aus,
bei der III. Gruppe ist dagegen eine sogenannte «Standardtafel», d. h.
ein ganzes System von sehr vielen, z. B. auf einen Hundertstel des

Prozentes abgestuften Grundtafeln nötig.

Diese Ansicht ist nicht richtig. Die Formeln der I. und der

II. Gruppe können ebenfalls zu exakten Werten führen, wenn wir
nur den Präzisionsgrad bzw. die Präzisionsordnung hinreichend wachsen
lassen. In der Praxis reichen schon die Näherungsformeln des

3-ten oder des 4-ten Präzisionsgrades bzw. Präzisionsordnung aus.
Andererseits bekommen wir auch bei der III. Gruppe nur Näherungswerte,

wenn wir nur einige, jedoch nicht alle Integrationskonstanten
durch die Parameter ausdrücken. Die Ausscheideformel von Dormoy
bildet dabei, wie bereits bemerkt, wegen kn 1 eine Ausnahme.

Bei der III. Gruppe ist keine Grundtafel und noch weniger eine

Standardtafel nötig, weil wir ja von der Annahme ausgegangen sind,
dass sich alle in Betracht kommenden Hilfsgrössen durch die
Parameter der Ausscheideformel ausdrücken lassen, wie wir ja übrigens
an dem konkreten Beispiele der Ausscheideformel von Dormoy
gesehen haben. Die Standardtafeln dienen zur Berechnung der Benten-
barwerte, wenn sich auch die Parameter, also die Ausscheideordnung
selbst, nicht aber der Zinsfuss allein ändert.
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Obwohl die III. Gruppe durch ihre systematische Eingliederung
in das Zinsfussproblem theoretisch sehr interessant erscheint, hat sie

an und für sich jedoch keinen praktischen Wert. Abgesehen davon,
dass die praktisch brauchbarsten Ausscheideformeln so kompliziert
sind, dass eine formelmässige Berechnung der Hilfsgrössen kn,hn, flMn
meistens nicht leicht möglich ist, hat keinen Sinn, die Summen der
diskontierten Zahlen bis zur n-ten Ordnung zu berechnen, um
einen Näherungswert des n-ten Präzisionsgrades (Präzisionsordnung)
zu ermitteln, da wir schon aus der 0-ten Summe Nx+1 den exakten
Wert leicht herleiten können. Einen praktischen Wert bekommt diese

Gruppe in folgenden drei Fällen:

1. in Verbindung mit der Änderung der Parameter der
Ausscheideformel, wie Blaschke an dem Makehamschen Sterbegesetz
gezeigt hat,

2. wenn sich Zinsfussänderungen durch Altersänderungen ersetzen
lassen, was bei der Ausscheideformel von Achard der Fall ist,

3. bei der Umkehrung des Zinsfussproblemes.

Die Autoren, welche verschiedene Formeln der III. Gruppe
aufgestellt haben, interessierten sich nie für Näherungswerte dieser

Gruppe, sondern sie trachteten ausnahmslos für einzelne Ausscheideformeln

die Summation

0)—X

yy z*+( (<*> ß>y
(=0

«algebraisch» durchzuführen, um so zu exakten Nx zu gelangen, was
ihnen allerdings nur bei einfacheren Ausscheideformeln (Moivre,
Dormoy usw.) gelungen ist. Bei komplizierten Ausscheideformeln

(Achard, Gompertz, Makeham usw.) mussten sie aber die kontinuierliche

Behandlung anwenden. So z. B. kann man bekanntlich bei der
Makehamschen Ausscheideformel den Barwert der kontinuierlichen
Leibrente mittels der Gammafunktion darstellen usw. Einen ganz
originellen Weg hat aber Hadwiger [11] eingeschlagen. Er versuchte —
ebenfalls in kontinuierlicherWeise —, das Zinsfussproblem ohne Kenntnis

der Ausscheideformel in allgemeinster Art exakt zu lösen, d. h. aus

gegebenen °ax+t(a, ß, y den genauen Wert von ax(a, ß,y
unmittelbar zu bestimmen. Seine «Universallösung des

Zinsfussproblemes» lautet in unserer Schreibweise
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o

Universal ist diese Lösung allerdings nur im Bereiche unserer
III. Gruppe. Ihre praktische Auswertung hängt offenbar von der

Integrierbarkeit der unter den Integralzeichen stehenden Funktionen.
Durchsichtlicher wird Hadwigers Methode in der diskontinuierlichen
Behandlung. Wenn man in seinen Verfahren die Integrale «J» mit

e>

den Summen «27», die Differentiation mit der Differenzenbildung

A —f(x + 1) — fix), die Differentialgleichungen mit den Differenzengleichungen

usw. vertauscht, so gelangt man zu folgendem Gegenstück
der obigen Formel

Die letzte Formel ist in gewisser Beziehung noch universaler als

die vorausgehende, denn sie ist auch dann auswertbar, wenn sich die

angedeuteten Multiplikationen und Summationen nicht «algebraisch»
erledigen lassen. Eine «arithmetische» Berechnung einzelner Produkte
bzw. einzelner Summanden (I. Gruppe) erfordert jedenfalls viel Zeit
und Arbeit. Diese Formel ist übrigens identisch mit der wohlbekannten

Reihenentwicklung des Leibrentenbarwertes

Nur wenige bereits bekannte Formeln der III. Gruppe, welche

verschiedene Autoren bisher gefunden haben, können wir als spezielle

Integrale der Grundgleichung (14) auffassen. Einen solchen konkreten
Spezialfall stellt eben die von uns behandelte Ausscheideformel von
Dormoy. Der Grund dafür liegt in der Tatsache, dass die meisten
Ausscheideformeln für die «algebraische» Berechnung der Summen
nicht geeignet erscheinen, weshalb die Autoren — im Gegensatze zu
den Lösungsmethoden der anderen Gruppen — durchwegs bestrebt

waren, aus den Ausscheideformeln nur exakte, aber keine Näherungswerte

herzuleiten, da die letzten mehr Arbeit erfordern als die ersten.

X

a*=vpx + v2pxpx+1 + v3pxpx+1px+2 +
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Bestimmung der Integrationskonstanten der allgemeinen Näherungsformel

des Rentenbaxwertes bei Heranziehung von Zeitrentenbarwerten

(IV. Gruppe)

Den Zeitrenten liegt eine mathematische Ausscheideformel
zugrunde, welche wir definieren

lx+t 1 bzw. 0, wenn t<,m bzw. > m

Die Zeitrenten an und für sich sind also schon in der III. Gruppe
inbegriffen, jedoch wegen der Eigenartigkeit, mit welcher sie zur
Lösung des Zinsfussproblemes der Leibrenten herangezogen werden,
wird eine besondere Gruppe gebildet. Im Falle m oo haben wir die

sogenannte «ewige Rente». Die Integrationskonstanten finden wir,
wenn wir in (76) S 1 setzen, also

a=—I y—r
B +1 B + ]/"=! (78)

c„ o a o

Der Barwert der konstanten und der steigenden ewigen Rente ist
daher exakt (77)

«oo (— 1 + r)_1 -T-' I (78*)

^ -r(-|CT+r^r2 ^
Hat m einen endlichen Wert, d. h. die Zeitrente wird nur m Jahre
nachhinein gezahlt, dann bestimmen wir am einfachsten die exakten
Rentenbarwerte aus der Differenz zwischen der unmittelbaren und
der um m Jahre aufgeschobenen ewigen Rente (46), also

1 1 1-
a»n —®m7T —

% i
r / r m

(79)

Wir können selbstverständlich aber auch für die am |, lm usw.
die Näherungsformeln aller Präzisionsgrade und Präzisionsordnungen
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nach den Methoden der I., II., III. Gruppe aufstellen, genau so wie
für die Leibrenten. Die Summen der diskontierten Zahlen können
nach der folgenden Bekursionsformel berechnet werden

S,«,_r + »-l m -1-1

<S2? - (80)
1 —v

Daraus folgt

Speziell ist

<81)

M0=am]

— M0 -f- mvm+1
M, P1 —v

M ~2Mi-(OT + 1)2^m+1
2

1 —V

_ -3M2+(m + 2)3^+1
3 l—v

Aus Mn findet man leicht noch hn und nn(>. Die Berechnung von
Näherungswerten der Zeitrentenbarwerte erfordert aber offenbar
bedeutend mehr Arbeit als die Berechnung von exakten Werten.
Einen praktischen Wert bekommen die Näherungsformeln der
Zeitrentenbarwerte erst bei der Umkehrung des Zinsfussproblemes, wie
wir später sehen werden.

Die Tatsache, dass sich die exakten Zeitrentenbarwerte für alle
Zinsfiisse i und alle Dauer m leicht berechnen lassen, hat einige Autoren
dazu bewogen, dass sie die Zeitrentenbarwerte zur Herleitung von
Näherungsformeln der Leibrentenbarwerte herangezogen haben, und

zwar vor allem zur Berechnung von Barwerten der temporären
Leibrenten ax -m |. Der Unterschied zwischen ax -m |

und am|, besonders

wenn m klein ist, ist bekanntlich nicht gross, so dass a—( bereits als

eine ein wenig überschätzte Näherung von ax ^ betrachtet werden
kann. Diesbezügliche Lösungsmethoden können in zwei Untergruppen
zusammengefasst werden.



Erste Untergruppe

Bei der ersten Untergruppe werden --j(n) und am |
in eine passend

gewählte funktionelle Beziehung gesetzt, also

F{ax,m\[n)> am) ®

Die Funktion F ist auf Grund besonderer Erwägungen zu bestimmen.
Als einfaches Beispiel wollen wir schreiben

Ha«,Äi(») —— (82)
®x, m i (n)

1
bedeutet den Näherungswert der jährlich nachhinein zahl-

®x, m \ (n)

baren Annuität, welche eine sc-jährige Person lebenslänglich, jedoch
höchstens m Jahre, zu zahlen hat, um die Schuld «1» zu tilgen. Der

Quotient —— stellt daher den Barwert dieser Zahlungen (wenn
m j(w)

die Annuitäten auch im Ablebensfalle der Person gezahlt werden) dar,
welcher einem Leibrentenbarwerte Hax ni |(n) annähernd gleichgesetzt
werden kann. Der Bentenbetrag H ist selbstverständlich so zu
bestimmen, dass das Gleichheitszeichen in (82) berechtigt erscheint.

Übrigens wird H mit den Integrationskonstanten einverleibt. Ist
n 1, bekommen wir aus (82)

i a_
(A + Bry~hl (83)

ax,m |(1)

Die Integrationskonstanten A und B können nach den Methoden
der einzelnen Gruppen bestimmt werden. Haben wir z. B. zwei Grundtafeln

zu Zinsfüssen i0 und i1 (II. Gruppe), so heisst es, folgendes

Gleichungssystem aufzulösen:



Daraus folgt

A

B
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l-Ä,

'ar wtx, m I

'0 \¥|
1-Ä,

m |

1-äi / 0.
W4 |

x, m |

1-Ä!
(84)

1«

Nach Einsetzen von A und B in (83) bekommen wir folgende Näherungsformel

des 1. Präzisionsgrades

xm |(t)

*m\

l % — l,
— + " :

in _. on \ i-»i
um | x, m |

0 \ ®x, vi |

1

ÄDI (85)

Die Grösse aOT |
ist nach (79) zu berechnen, wenn sie schon den

Zinstafeln nicht entnommen werden kann. Wenn wir in (85) 7^ 2 und
i0 0 setzen, bekommen wir folgende Näherungsformel von Borch

xm |(1) l
2*x+t

mL
+

i X.
(85*)

lm |

Haben wir dagegen nur eine einzige Grundtafel zum Zinsfusse i0
(I. Gruppe), dann müssen wir den Punkt Ö1 so verschieben, dass er
unendlich nahe dem Punkte d0 zu liegen kommt, d. h. wir haben zu
setzen

dl d0 + dd

1n — *m\- °Im]dö

"in I ax, m \
dx m\dd

Durch diese Substitution bekommen wir aus (84) folgende Werte der

Integrationskonstanten:

A

B :

Vi
^x, m |

1—Äi °1.
x, m | °im |

1-äi

V0 (1 ^l)
°I.

x, m \ m |
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Nach Einsetzen von A und B in (83) bekommen wir

ct.% m |(1)

am |

x, m |

in |

(1—Äj) v0A
°I.

y, m | °i

x, m | |

1

Äi—1
(86)

Wenn wir in (86) h1 2 und i0 0 setzen, bekommen wir eine zweite
Näherungsformel von Borch

a.'x, m ,(1)
2':
i*= i

'x+t

a.m |
ml.

1 + i m + 1 2":'x-f-1

2 'x-f £

(86*)

Eine weitere, recht einfache Formel von Borch bekommen wir, wenn
wir in (83) rein schablonenhaft setzen

h +

nämlich

Nach Borch ist

a.'x, m |(1)

B 0, hx= 2

^
Ix

Im |

(86**)

|

Die Integrationskonstanten können auch nach den Methoden der

III. Gruppe, d. h. mit Hilfe von Parametern der Ausscheideformeln,
bestimmt werden, was jedoch keinen praktischen Wert hat, weil

ax m| leichter als aXj—|(n) zu berechnen ist. Wenn z. B. im
Altersintervalle (x, x -\- m) die lx+t nach dem Gesetze von Dormoy
abnehmen, haben wir exakt

%m\= 2 (SVY
(=1

r—S

s
: s

l x 1

Im Falle linearer Abnahme von lx+t ist exakt

ax,m\ — am\~
'x-\-m

mL m |

USW.
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Die Näherungsformeln der ersten Untergruppe der IV. Gruppe,
welche verschiedene Autoren gefunden haben, sind also spezielle Integrale
der Grundgleichung des Zinsfussproblemes oder aber Funktionen, die
sich diesen Integralen annähern.

Die Näherungsformeln der ersten Untergruppe können also genau
so in einzelne Präzisionsgrade und Präzisionsordnungen eingeteilt
werden wie die Näherungsformeln der drei vorausgehenden Gruppen.
Die Integrationskonstanten können also nach den Methoden der

I., II., III. Gruppe bestimmt werden. Schon deshalb muss für die

Lösungsverfahren, welche Zeitrentenbarwerte heranziehen, eine besondere,

d. h. die IV. Gruppe gebildet werden.

Zweite Untergruppe

Bei der zweiten Untergruppe werden die Leibrentenbarwerte in
Zeitrentenbarwerte umgewandelt und die notwendigen Rechnungen
an den Zeitrentendauern vorgenommen. Nach der Bestimmung der

passenden Zeitrentendauern kehrt man von den Zeitrentenbarwerten
zu den Leibrentenbarwerten zurück. Hieher gehören die Formeln
von Lenzi und Steffensen. Diesbezügliche Verfahren sind aber ihrem
Wesen nach nichts anderes als eine Umgehung des Zinsfussproblemes,
welches ja nur auf die Interpolation in bezug auf den Zinsfuss, nicht
aber in bezug auf die Rentendauer absieht — so etwa, wie man eine

Wurzelziehung aus einer Zahl durch die Division des entsprechenden
Logarithmus umgehen kann. Bei dieser Untergruppe erscheint eine

Bestimmung der Integrationskonstanten überflüssig, und daher fällt
sie aus dem Rahmen unserer Betrachtungen heraus.

Andere Versicherungswerte

Nehmen wir einen Versicherungswert Vx(i) V, welcher sich
als eine Funktion eines einzigen Rentenbarwertes a darstellen lässt,
also V V (o). Daraus folgt

a f(V)

d2f df
a" —- V'2 H V"

dV2 dV
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Wenn wir mit Hilfe obiger Gleichungen den Rentenbarwert a bzw.
seine Ableitungen aw in (14) eliminieren, so geht die Grundgleichung
über in

G(V, V, V", F<*+1)) 0

Das vollständige Integral dieser Differentialgleichung stellt die
allgemeine Näherungsformel des Versicherungswertes Vx(i) dar. Die

Integrationskonstanten können nach den Methoden der vier Gruppen
bestimmt werden, genau so wie bei den Rentenbarwerten. Das
vollständige Integral bekommen wir aber auch viel einfacher, wie leicht
einzusehen ist, wenn man schlechtweg in V (a) den Rentenbarwert a
mit dem Näherungswerte a(n) vertauscht. Deshalb wollen wir den

Näherungswert eines Versicherungswertes w-ten Präzisionsgrades bzw.
w-ter Präzisionsordnung definieren

J(n) ^ (%))
(87)

^]=F(aw)
und zwar auch dann, wenn V eine Funktion von mehreren
Rentenbarwerten (verschiedener Alter) ist.

Umkehrung des Zinsfussproblemes

Bei der Umkehrung des Zinsfussproblemes haben wir aus einem

gegebenen Versicherungswerte Vx(i) V den Zinsfuss i zu bestimmen.
Zu diesem Ziele gelangen wir so, dass wir in (87) die Näherungswerte

bzw. I)'„j mit exakten V, weiter i mit i{n) bzw. vertauschen
und die so entstandenen Gleichungen nach bzw. auflösen.

Infolgedessen können wir diesbezügliche Lösungen in Präzisionsgrade
*i{0), i(ij, 1^2) • • • bzw. in Präzisionsordnungen i[0j, i^, i^ einteilen.

Desgleichen können wir die verschiedenen Lösungsmethoden mit Rücksicht

auf die uns bekannten Ausgangswerte wiederum in vier Gruppen
zusammenfassen. Damit erscheint die Umkehrung des Zinsfussproblemes
bereits als erledigt. Wir wollen dennoch einige einfachere, für die Praxis

wichtige Formeln samt zahlenmässigen Beispielen geben.

I. Gruppe

Aus (36) bekommen wir nach Umtausch von a{n) mit a und i
mit i())) folgende Gleichung
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1

:Z,! °M„
Oltfn-vn~l

Jt«MZ
+ mi,

71 °M'nJln lYlt
n-1

1 +
(1 -hn)v0(i{n)-i0)°Mn Qn

°Mn<

aus welcher i(n) zu berechnen ist. Wenn n 0,1, 2, können wir i{n

explicite darstellen, nämlich

°Mn

'(.!)

fc(0) »0 + *o
m,

a

°MC

hp' % +
°MC

(1— h,)v0
»Mi

%

"(2) — h) +

„7l2°M2
(a-m0)

2 U +1
°M[

1—^2

2—^2 ^

(1 h2) v0
°M2

lw —
rpl

— 1

,v*=i- 1 + a*

(88)

(88—0)

(88-1)

(88—2)

Ähnlich kann man i(fl) aus I (42) und i[ri] aus a (51) usw. berechnen.
Wenn ausser a noch I bekannt ist, gestaltet sich die Berechnung

von i,,, infolge (45,1) sehr einfach. Es ist nämlich

Wie aus Vx (i) berechnet wird, werden wir an einem konkreten
Beispiele zeigen. Die Prämienreserve einer lehenslänglichen Ablebens-

versicherung ist bekanntlich
1 + a*+t

x Beitrittsalter, t — die zurückgelegte Yersicherungszeit. Wenn
wir bestimmen wollen, haben wir ax und ax+t mit der Näherungsformel

von a(n) zu ersetzen, in welcher i mit i(n) vertauscht ist. Für
x 20, t 20 haben wir z.B. nach der STM ,VX 0.14724. Bei

Anwendung der 3 %-igen Grundtafel haben wir so zur Bestimmung
von i(0), i(1), i(2) folgende drei Gleichungen gefunden:



— 237 —

1 + 17.810 [0.59552 + 13.483 iJ"1
0.85276

1 + 22.775 [0.45535 + 18.182i(0)]"1

1 + 17.810 [0.74114 + 8.62881 iJ"1-6625
0.85276 ^

1 + 22.775 [0.65142 + H.6193^,]-1-5625

3.5086 + 15.3014 [0.82142 + 5.95252 ^f9J"2-63636
0.85276

1 ^
4.5071 + 19.2679 [0.75580 + 8.13991 f(2)]"2-63636

Daraus folgt auf fünf Stellen genau

t(0) 5.1513 %

i(1) 4.9511 %

»(2) 4.9999 %

Weitere Näherungen haben keine wesentlichen Verbesserungen zur
Folge. Der exakte Wert ist nämlich i 5 %.

II. Gruppe

Da wir bei der II. Gruppe keine allgemeine Näherungsformel des

Eentenbarwertes haben, müssen wir zunächst mit Rücksicht auf die

vorhandenen Ausgangswerte eine passende Formel aufsuchen. Sind

z. B. zwei Grundtafeln nur mit Nx gegeben, dann haben wir die

Formel (54) anzuwenden, aus welcher folgt

i01a1~hl — ix -f- — i0) ad~hl

Sind in den beiden Grundtafeln nebst Nx auch Sx gegeben, dann ist
(57) oder (61—2) zu nehmen, aus welchen i(2) berechnet werden kann.
Sind mehrere Grundtafeln, die nur Nx, aber keine Sx enthalten,
vorhanden, dann können die Interpolationsformeln von Newton oder

Lagrange jedoch an reziproken Rentenbarwerten nicht aber an Renten-

barwerten ,la mit Vorteil angewendet werden. In diesem Falle gelangen

wir zu i[n] usw.
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Wie aus l^(i) berechnet wird, werden wir an einem konkreten
Beispiele zeigen. Gegeben ist wiederum die Prämienreserve der
lebenslänglichen Ablebensversicherung nach der ITM für x 20, t 20,
und zwar

1 + a40
20^20 — 1

1 + a2

0.10738

Als Grundtafeln stehen uns die 4 %-ige und 5 %-ige ITM zur
Verfügung. Die a20 und ai0 wollen wir mittels (61—2) ersetzen, also

a=iC0+(1a-1G0)
¥) + 1 +

+ 1.05

Um grössere Genauigkeit zu erzielen, nehmen wir 1CIi\'
offenbar in

o'

g(x + 1,5 %), die sich auf i1 5 % beziehen, weil i(2)

der Umgebung von liegt. Wir gelangen so zur folgenden Gleichung

0.89267

Daraus folgt

3.2077 + 12.1813 [0.70841 + 5.832 f(2)]"

3.6880 + 14.2241 [0,59494

t(2) 6.4994 %

hioi i(2)]-2-18715

Der exakte Wert ist i 6.5 %. Die Differenz von + 0.0006 %
stammt eher von der Ungenauigkeit der Ausgangswerte in der
Publikation [4] als von der Ungenauigkeit der Näherungsformel. Das

Risikokapital, berechnet mit a20 und a40, macht 0.89267 aus, wie
oben, mit den diskontierten Zahlen dagegen 0.89262, also um 0.00005

weniger.

III. Gruppe

Bei der III. Gruppe können wir schon wegen der Verschiedenheit
der Ausscheideformeln keine allgemeine Lösung für t'(n) geben. Bs ist
vielmehr zur Bestimmung von i(M) eine besondere Behandlung bzw.

Analyse jeder einzelnen Ausscheideformel notwendig. Wir müssen

jedoch davon absehen und bemerken nur noch, dass zur Berechnung
von i aus den Zeitrentenbarwerten bereits einige Näherungsformeln
bestehen, z. B. die von Achar, Bayley, De Morgan, die man in den
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Lehrbüchern der politischen Arithmetik und Zinsrechnung, z. B. in der
Arbeit von Förster [12], findet. Analoge Formeln für andere formel-
mässige Ausscheideordnungen wären sehr erwünscht. In Mangel
solcher Formeln bleibt uns nichts anderes übrig, als die Methoden
der I. und der II. Gruppe bei Berechnung von i zu benützen auch
bei Versicherungswerten, welchen eine formelmässige Ausscheideordnung

zugrunde liegt. An folgendem Beispiele wollen wir zeigen,
mit welchem Erfolg die Formeln (88—0), (88—1), (88—2) bei
Bestimmung von %j aus am | angewendet werden können. Gegeben sind

z. B. folgende Zeitrentenbarwerte:

10 8.4760 4377
20 14.7069 8385

40 22.6547 3726

60 26.9497 5689

80 29.2708 1451

aus welchen zu bestimmen ist. Der Zinsfuss i befindet sich offenbar
in der Umgebung von i(0) 3 %. Wir haben deshalb die 3 %-igen
°Mn nach (81) und nachher hn und nne berechnet und diese Hilfsgrössen
in (88—0) eingesetzt und so folgende Näherungswerte gefunden:

m ho) ho \i)
10 3.125 204% 3.125 002 % 3.125 000 %
20 3.125 386 % 3.125 006 % 3.124 999 %
40 3.125 018 % 3.124 994 % 3.125 001 %
60 3.125 705 % 3.124 998 % 3.125 000 %
80 3.125 689 % 3.124 991 % 3.125 001 %

Der exakte Wert ist i 3.125 %. Die Differenzen der letzten Dezimale

bei i(2) dürften eher von den vernachlässigten Dezimalen als

von der Ungenauigkeit der Näherungsformeln abstammen, da wir
ja nur mit 7-stelligen Logarithmen von Vega gearbeitet haben.

Unsere Formeln können selbstverständlich mit demselben Erfolg
auch zur Berechnung des effektiven Zinsfusses (Rentabilität) bei

Anleihen verwendet werden.
Mit diesem Problem, natürlich von ganz anderem Gesichtspunkte

aus, hat sich eingehend Birger Meideil [13] befasst.
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IV. Gruppe

Die IV. Gruppe kommt bei der Umkehrung des Zinsfuss-
problemes nicht in Betracht. Es müsste nebst aXt m-j auch am^ bekannt
sein, was in der Praxis so gut wie nicht vorkommt, wenn es aber
schon vorkommen sollte, dann könnte man i am einfachsten aus om-|

nach den unter der III. Gruppe erwähnten Formeln berechnen. Im

Falle, dass nur der Quotient x'm^ bekannt sein sollte, könnte man i
am\

aus (85) oder (86) berechnen usw.

Zusammenfassung und Schlussbemerkungen

Bevor wir eine Antwort auf die vier eingangs gestellten
prinzipiellen Fragen des Zinsfussproblemes geben, wollen wir übersichtshalber

unsere Ausführungen kurz zusammenfassen.
Aus der verallgemeinerten Poukkaschen Formel (3) haben wir

zunächst eine homogene quadratische Differentialgleichung mit den

Stirlingschen Zahlen erster Art und der Funktion kn(x1, i) als

Koeffizienten — die sogenannte Grundgleichung des Zinsfussproblemes
(14) — hergeleitet. Unter der Annahme kn(x + 1, i) konstant
haben wir die Grundgleichung integriert und so die allgemeine

Näherungsformel des Bentenbarivertes a(n) (26) gefunden. Unter einer
anderen Annahme, nämlich k0 (x -)- 1, i) lasse sich durch eine unendliche

Potenzreihe des Aufzinsungsfaktors r darstellen, haben wir ebenfalls

mittels Integration die allgemeine Näherungsformel des reziproken

Bentenbarivertes (48) gefunden. Die in diesen beiden allgemeinen

Näherungsformeln erscheinenden Integrationskonstanten können nur
durch Ausgangswerte bestimmt iverden, und zwar bei der I. Gruppe
durch die °Seiner Grundtafel, bei der II. Gruppe durch die }

zweier oder mehrerer Grundtafeln, bei der III. Gruppe durch die
Parameter der Ausscheideformeln, bei der IV. Gruppe unter Zuhilfenahme

von Zeitrentenbarwerten. Die Grössen kn können aus denselben

Gleichungen wie die Integrationskonstanten berechnet werden. Die

Näherungsformeln, welche bis jetzt verschiedene Autoren aufgestellt
haben, sind entweder spezielle Integrale der Grundgleichung, so z. B.

die Formeln der
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I. Gruppe: Steffensen (39-1), van Dorsten (39-2), Poukka (40-2),
Christen-Frucht (41-2), Palmqvist (41 *), Güttinger (36,1),

II. Gruppe: Frucht (62),

III. Gruppe: Dormoy (77), Barwert der ewigen Zeitrente (78*),
IV. Gruppe: Borch (85*), (86*), (86**),

oder aber Funktionen, welche sich den speziellen Integralen der

Grundgleichung annähern, so z. B. die Formeln der

I. Gruppe: Poukka(40*),Berger(40**),Frucht(41-1),Evans(41-11),
Franckx-Frucht (41-III),Hantsch(41-IV),Meidell(41-V),

II. Gruppe: Meideil (62*), Frucht-Vellat (63,) (65), Crosato (66).

Mit Rücksicht auf die Anzahl der Integrationskonstanten bzw. der

Ausgangswerte werden die Näherungsformeln in Präzisionsgrade bzw.

in Präzisionsordnungen eingeteilt. Je mehr Ausgangswerte vorliegen,
desto mehr Integrationskonstanten können bestimmt werden, und
desto grösser wird die Präzision des Näherungswertes. Die Präzision
kann bei ausreichender Anzahl von Ausgangswerten beliebig, ja sogar
bis zur Exaktheit gesteigert werden. Dem Mangel an Ausgangswerten
kann durch die Werte der Funktion kn(x,i) in der Tafel im Anhange
abgeholfen werden. Die Grundgleichung gilt für alle wie auch immer

geartete Renten aller Ausscheideordnungen. Näherungsformeln anderer

Versicherungswerte Vx(i) können mit Hilfe von a(n) bzw. aufgestellt
werden (87). Die zur Berechnung von i (Umkehrung des

Zinsfussproblemes notwendigen Gleichungen bekommt man aus den Näherungsformeln

durch Umtausch von bzw. mit dem exakten Vx (i).
Auf Grund dieser Ausführungen können somit alle vier

prinzipiellen Fragen des Zinsfussproblemes bejahend beantwortet werden.

* *
*

Schliesslich wollen wir die Grundgleichung des Zinsfussproblemes
noch unter der Annahme, kn sei eine Funktion des Zinsfusses, d. h.

K K(r)

integrieren. In diesem Falle muss das vollständige Integral der

Grundgleichung den exakten Rentenbarwert darstellen. Die Grundgleichung
(14*) können wir schreiben

Mn+lv«+l—n-+A Mn tT1 7i„ (r)
(Mnv")2 '

10
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Mittels teilweiser Integration (17) findet man leicht

M vn 1 + r A + f h„(r)dr
Mvn

Daraus folgt v i
Mn_1 vn 1 r — M — j hn(r) dr

und nach weiterer Integration

M„_! ®"_1 =BeJ r-A-fhn(r)ir

Mn^vn~2 Cn_% + bJJ r-A-fw& dr

Wenn wir in (89) hn als Konstante betrachten, bekommen wir die

allgemeine Näherungsformel des Rentenbarwertes (26). Um anstatt
Näherungswerte a(n) exakte a zu erhalten, müssen h1, h2,h3 als

Funktionen des Aufzinsungsfaktors r dargestellt werden. Das können
wir aber nicht, wenigstens nicht exakt. Ausserdem erfordern solche

Berechnungen so viel Arbeit, dass es praktischer erscheint, bei der
Annahme kn konstant zu verbleiben, obwohl die Analyse des

Schlussgliedes in (89) interessante Erkenntnisse über das Zinsfussproblem

zeitigen kann. Wenn z. B. die Gleichung

v verschiedene reelle Wurzeln r —a1; a2, a3, a,, hat, so ist exakt

Die letzte Gleichung geht im Falle einer einzigen Wurzel r

in a(1) über. Analoge Formeln für den Fall imaginärer, komplexer
und mehrfacher Wurzeln sind leicht nachzubilden. Mit Hilfe des

Schlussgliedes (89) kann man unter anderem auch das Restglied Rn

der Taylorschen Reihe (1) exakt berechnen, wo auch immer diese Reihe

abgebrochen wird. (Die dritte Voraussetzung der Taylorschen Reihe.)

r — A — J h^rfdr 0

A
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Das Zinsfussproblem in obiger Fassung erinnert an verschiedene
Probleme aus anderen Gebieten der Wissenschaft. So eine Analogie
wäre z. B. die klassische Herleitung der Keplerschen Gesetze aus der
Gravitationsformel von Newton. Bei diesem Vergleiche entspricht
die verallgemeinerte Poukkasche Funktion — der Gravitationsformel;
die Grundgleichung des Zinsfussproblemes — den Differentialgleichungen

der Bewegung; die bereits bekannten Näherungsformeln
des Zinsfussproblemes — den vorher entdeckten Keplerschen Gesetzen

usw. Eine weitere Analogie aus einem naheliegenden Gebiete wäre
die Quiquetsche [14] Generalisierung der Sterbegesetze. Bei diesem

Vergleiche entspricht die verallgemeinerte Poukkasche Funktion —
der Bedingung, dass sich in der Versicherung eine Gruppe von N
Personen mit einer anderen Gruppe von nur n < N Personen ersetzen

lässt; die Grundgleichung des Zinsfussproblemes — der wohlbekannten
homogenen linearen Differentialgleichung der Sterbeintensität

n + 1

2 cj? =0
V 1

die bereits bekannten Näherungsformeln des Zinsfussproblemes —
den vorher gefundenen Sterbegesetzen usw. Zwei solche Sterbegesetze
als partikuläre Integrale obiger Differentialgleichung wollen wir wegen
weiterer Analogien an dieser Stelle erwähnen, nämlich die Gesetze

von Dormoy und Gompertz:

lx KS* und lx Kg°x

Im Falle ~, haben wir folgendes partikuläres Integral der

Grundgleichung des Zinsfussproblemes (41)

a{i) =ABr ABe')

Zwischen dem Aufzinsungsfaktor r und dem Rentenbarwerte a besteht
somit bis auf die Parameter dieselbe funktionelle Beziehung wie
zwischen dem Alter x und der Zahl der Lebenden lx des Sterbegesetzes

von Dormoy, oder, zwischen der Zinsintensität d und dem
Rentenbarwerte a besteht bis auf die Parameter dieselbe funktionelle
Beziehung wie zwischen dem Alter x und der Zahl der Lebenden lx des

Sterbegesetzes von Gompertz. Aus dieser Tatsache können
selbstverständlich keine Folgerungen gezogen -werden. Wir erwähnen sie

nur nebenbei als curiosum.
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Änhang

Die Tafel der verallgemeinerten Poukkaschen Zahlen

S£,+1»S?-1)
K(x,i)

(SW)2

berechnet auf Grund der slowenischen Yolkssterbetafel, männliches
Geschlecht, Beobachtungsperiode 1931—1933, für die Alter x 1, 6,

11, 21, 31, 41, 51, 61, 71, 81, 91, für die Präzisionsgrade n 0, 1, 2,

3, 4, 5 und für die Zinsfüsse i 0 %, 1 %, 2 %, 3 %, 4 %, 5 %, 6 %.

X h h h2 h K h X

1

6

11

21

:JL

41

51

61

7t
81

91

1

6

11

21

31

41

51

61

71

81

91

0.59
0.57
0.57
0.58
0.59
0.61
0.63
0.68
0.75
0.86
0.92

0.70
0.67
0.66
0.66
0.66
0.66
0.67
0.70
0.77
0.86
0.92

0.71
0.71
0.71
0.72
0.73
0.74
0.76
0.79
0.83
0.89
0.93

0.75
0.75
0.75
0.75
0.75
0.76
0.77
0.80
0.84
0.90
0.93

0

0.78
0.79
0.79
0.79
0.80
0.81
0.82
0.84
0.88
0.91
0.94

1

0.80
0.80
0.81
0.81
0.81
0.82
0.83
0.85
0.88
0.92
0.94

%

0.83
0.83
0.83
0.84
0.84
0.85
0.86
0.88
0.90
0.93
0.94

°ZZo

0.84
0.84
0.84
0.84
0.85
0.85
0.86
0.88
0.90
0.93
0.95

0.86
0.86
0.86
0.86
0.87
0.88
0.89
0.90
0.92
0.94
0.95

0.87
0.87
0.87
0.87
0.87
0.88
0.89
0.90
0.92
0.94
0.95

0.88
0.88
0.88
0.89
0.89
0.90
0.90
0.92
0.93
0.95
0.96

0.88
0.89
0.89
0.89
0.89
0.90
0.91
0.92
0.93
0.95
0.96

1

6

11

21

31

41

51

61

71

81

91

1

6
11

21

31

41

51

61

71

81

91
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X k0 fc, fc2 K h X

2%
1 0.79 0.80 0.83 0.85 0.87 0.89 1

6 0.75 0.79 0.83 0.85 0.87 0.89 6

11 0.74 0.79 0.83 0.85 0.87 0.89 11

21 0.73 0.78 0.82 0.85 0.88 0.89 21

31 0.72 0.78 0.83 0.86 0.88 0.90 31

41 0.71 0.78 0.83 0.86 0.88 0.90 41

51 0.71 0.79 0.84 0.87 0.89 0.91 51

61 0.73 0.81 0.86 0.88 0.91 0.92 61

71 0.78 0.85 0.88 0.91 0.92 0.93 71

81 0.87 0.90 0.92 0.93 0.94 0.95 81

91 0.92 0.93 0.94 0.95 0.95 0.96 91

3 °//o
1 0.86 0.84 0.85 0.87 0.88 0.90 1

6 0.82 0.83 0.85 0.87 0.88 0.90 6

11 0.81 0.83 0.85 0.87 0.88 0.90 11

21 0.79 0.82 0.84 0.86 0.88 0.90 21

31 0.77 0.81 0.84 0.87 0.88 0.90 31

41 0.75 0.80 0.84 0.87 0.89 0.90 41

51 0.74 0.81 0.85 0.88 0.90 '0.91 51

61 0.75 0.82 0.86 0.89 0.91 0.92 61

71 0.80 0.85 0.89 0.91 0.93 0.94 71

81 0.88 0.91 0.92 0.93 0.94 0.95 81

91 0.92 0.93 0.94 0.95 0.95 0.96 91

1

6
11

21

31

41

51

61

71

81

91

0.91
0.87
0.86
0.84
0.81
0.79
0.77
0.77
0.81
0.88
0.93

0.87
0.86
0.86
0.84
0.83
0.82
0.82
0.83
0.86
0.91
0.94

0.87
0.87
0.87
0.86
0.85
0.85
0.86
0.87
0.89
0.93
0.94

0.88
0.88
0.88
0.88
0.87
0.88
0.88
0.89
0.91
0.94
0.95

0.89
0.89
0.89
0.89
0.89
0.89
0.90
0.91
0.93
0.94
0.95

0.90
0.90
0.90
0.90
0.90
0.91
0.91
0.92
0.94
0.95
0.96



— 246 —

X /c0 ki k.2 h K h X

5%
1 0.95 0.90 0.90 0.90 0.90 0.91 1

6 0.91 0.89 0.89 0.90 0.90 0.91 6

11 0.89 0.89 0.89 0.89 0.90 0.91 11

21 0.88 0.87 0.88 0.89 0.90 0.91 21

31 0.85 0.85 0.87 0.88 0.90 0.91 31

41 0.82 0.84 0.86 0.88 0.90 0.91 41

51 0.80 0.83 0.86 0.89 0.90 0.92 51

61 0.79 0.84 0.87 0.90 0.91 0.93 61

71 0.82 0.87 0.90 0.92 0.93 0.94 71

81 0.89 0.91 0.93 0.94 0.95 0.95 81

91 0.93 0.94 0.94 0.95 0.96 0.96 91

6 °//o

1 0.98 0.93 0.92 0.91 0.92 0.92 1

G 0.93 0.92 0.91 0.91 0.91 0.92 6

11 0.92 0.91 0.90 0.91 0.91 0.92 11

21 0.91 0.89 0.89 0.90 0.91 0.91 21

31 0.88 0.87 0.88 0.89 0.90 0.91 31

41 0.85 0.86 0.87 0.89 0.90 0.91 41

51 0.82 0.85 0.87 0.89 0.91 0.92 51

61 0.81 0.85 0.88 0.90 0.92 0.93 61

71 0.83 0.87 0.90 0.92 0.93 0.94 71

81 0.89 0.92 0.93 0.94 0.95 0.95 81

91 0.93 0.94 0.95 0.95 0.96 0.96 91
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