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Das Zinsfussproblem

Yon Ivo Lah, Ljubljana

Problemstellung und einleitende Bemerkungen

Unter dem Zinsfussproblem versteht man die Aufgabe, irgendeinen
Versicherungswert V_(v) unmattelbar — d. h. ohne vorherige Ermittlung
der Kommutationszahlen D,(v), N (2), S, (1), aber auch ohne An-
wendung von Rekursionsformeln, welche alle ¥, (2) vom hochsten Alter
abwirts nacheinander liefern -— zu berechnen.

Mit dem Zinsfussproblem haben sich schon mehrere Autoren
befasst und dabel eine Menge von Formeln hergeleitet, so dass eine
systematische Schlichtung und Einordnung derselben bereits not-
wendig erscheint. Mit Riicksicht auf die Ausgangswerte, welche bekannt
sein miissen, um V(1) unmittelbar berechnen zu konnen, hat Frucht [1]
die verschiedenen Formeln in drei, Fischer [2] dagegen in vier Gruppen
eingeteilt. Die Finteilung in vier Gruppen wollen wir beibehalten,
jedoch in einer ein wenig abgeinderten Form, und zwar:

Die I. Gruppe umfasst alle jene Liosungsmethoden, bei welchen
nur eine einzige, zum Zinsfusse ¢, berechnete Versicherungstatel —
wir wollen sie Grundtafel nennen — mit den Kommutationszahlen
°D,, ON,, 9S,, °S® ... verwendet wird.

Die II. Gruppe umfasst alle jene Losungsmethoden, bei welchen
zwel oder mehrere zu Zinsfiissen 1, <<1; <1, ... berechnete Ver-
sicherungstafeln — wir wollen sie Grundtafeln nennen — mit den
Kommutationszahlen °D_, °N_, 95, ,°8® .. . 1D 1N _ 1S 1S® . .
D,, ®N,, 28,, 2S®), ... usw. verwendet werden.

Die III. Gruppe umfasst alle jene Liosungsmethoden, die sich auf
das Bestehen eines formelméssigen Ausscheidegesetzes griinden.

Die IV. Gruppe umfasst alle jene Liosungsmethoden, bei welchen
Zeitrentenbarwerte herangezogen werden.
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Frucht hat ausserdem gefunden, dass zwischen den Losungs-
methoden der I. und der II. Gruppe enge Zusammenhinge bestehen
in dem Sinne, dass sich die Formeln der einen Gruppe in die ent-
sprechenden Formeln der anderen Gruppe itiberfithren lassen. Fischer
hat aber den leicht verstdndlichen Satz aufgestellt, dass zwischen
den Formeln der I. und der II. Gruppe tiberhaupt kein tieferer Unter-
schied bestehe, sie seien alle Interpolationsformeln mit dem Zinsfusse
als einziger Verdnderlicher; nur handle es sich in einem Falle um
die oskulierende und im anderen Falle um die iibliche Interpolation.

Trotz des Formelreichtums sind aber die bisherigen praktischen
Erfolge des Zinsfussproblemes als bescheiden zu nennen. Nur fiir den
Barwert der konstanten Leibrente ist es gelungen, Néherungsformeln
aufzustellen, welche fiir die Praxis ausreichend genaue Resultate
liefern, jedoch nur bei den Altern vom 20. Jahre aufwérts und nur
bei einer Spannung des Zinsfusses von ungefihr + 0,5 %, vom Grund-
zinsfusse bzw. von den Grundzinsfiissen.

Dieser Umstand hat entschieden viel dazu beigetragen, dass die
Versicherungstafeln meistens fiir mehrere Zinstiisse berechnet werden.
So z. B. hat man bei der slowenischen Volkssterbetafel, Beobachtungs-
periode 1931—1933 [3], die Kommutationszahlen fiir sieben Zinsfiisse,
nédmlich 0%, 19%, 2%, 3%, 4%, 5%, 6 9%, berechnet. Isfituto
Previdenza [4] hat die Kommutationszahlen der italienischen Volks-
sterbetafel, Beobachtungsperiode 1930—1932, sogar fir zehn Zins-
fiisse, ndmlich 8 9, 8,5 °/, 4 %, 4,25 %, 4,5 %, 4,75 %, 5 %, 5,5 %,
6 %, 6,59, veroffentlicht usw. Die obigen Tafeln erwidhnen wir
deshalb, weil wir an 1hnen verschiedene Formeln des Zinsfuss-
problemes rechnerisch tiberpriift haben. Die slowenische Volkssterbe-
tafel, médnnliches Geschlecht, werden wir im folgenden einfachheits-
halber mit STM und die italienische Volkssterbetafel, minnliches
Geschlecht, mit ITM bezeichnen.

Dieser merkwiirdige Sachverhalt — bunter Formelreichtum
einerseits und die verhéltnisméssig geringe Genauigkeit der Formeln
und beschrinktes Anwendungsgebiet derselben andererseits — fiithrt
uns zu folgenden wvier prinziptellen Fragen des Zinsfussproblemes:

1. Ist es moglich, fiir den Barwert der konstanten Lieibrente strengere
Formeln aufzustellen, welche fir alle Alter und fiir alle in der Ver-
sicherungspraxis vorkommenden Zinsfiisse — sagen wir von 1 9%, bis
6 9%, — wenigstens bis zur dritten Dezimalstelle genaue Werte liefern ?
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2. Ist es moglich, solche strengere Formeln auch fiir andere Ver-
sicherungswerte, z. B. fiir die Barwerte der steigenden und variablen
Rente, fiir Primien, Reserven usw., aufzustellen?

3. Ist die Umkehrung des Zinsfussproblemes mdoglich, d. h. ob
man zu gegebenem Versicherungswerte V, (1) den zugehorigen Zins-
fuss v mit derselben Genauigkeit unmittelbar berechnen kann?

4. Iixistiert eine Grundgleichung des Zinsfussproblemes, aus
welcher, wenn schon nicht alle, wenigstens die meisten und darunter
die besten bereits bekannten Né&herungsformeln hergeleitet werden
konnen ?

Vom praktischen Standpunkte aus ist die dritte Frage besonders
wichtig. Alle Versicherungswerte kann man auch mit Kommutations-
zahlen oder mit Rekursionsformeln exakt berechnen. Die Néherungs-
formeln des Zinsfussproblemes werden daher nur mit der Zeit- und
Arbeitersparnis begriindet. Bei der Umkehrung des Zinsfussproblemes
handelt es sich aber um die grundsitzliche Ldsung einer Aufgabe,
mit welcher man sich bisher noch nicht eingehend befasst hat.

Vom theoretischen Standpunkte aus scheint uns aber die vierte
Frage ganz besonders interessant und reizend. Die Verwandtschaft
der Liosungsmethoden der I. und der II. Gruppe haben bereits Frucht
und Fischer bewiesen. Die Losungsmethoden der III. und der
IV. Gruppe stehen aber vorliufig noch isoliert und scheinbar ohne
jeglichen Zusammenhang mit den ersten zwei Gruppen da. Desgleichen
gibt es auch in einer und derselben Gruppe verschiedene Néherungs-
formeln, die keinen inneren Zusammenhang zu haben scheinen. Dre
Aufstellung ewner Grundglerchung, aus welcher die meisten und darunter
die besten Formeln aller vier Gruppen des Zinsfussproblemes ewnheitlich
hergeleitet werden konnen, bildet den Kern unserer Abhandlung.

3 *
*

Bei unseren Ausfithrungen werden wir wiederholt von den
Stirlingschen Zahlen Gebrauch machen miissen. Weil die Stirlingschen
Zahlen in der Versicherungsmathematik sehr wenig verwendet werden,
wollen wir einige, spéter gebrauchte Formeln, welche wir der Arbeit
Jordans [5] entnommen haben, gleich niederschreiben. Diese Formeln
sind zu Berufungszwecken mit denselben Zahlen wie beim Autor
nur in doppelten Klammern (()) bezeichnet.
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Die Stirlingschen Zahlen erster Art S, dienen zur Transformation
des Faktoriellen

(x),=z(z—1)(x—2) ... (rt—n+41)

in eine Summe von Potenzen

(@ =X S (@)
Die Stirlingschen Zahlen erster Art S), Tab. 1
n/y 1 2 3 4 5 6 7
1 1
2 —1 1
3 2 —3 1
4 —6 11 —6 1
5 24 — 50 35 — 10 1
6 —120 274 —225 85 —15 1
7 720 — 1764 1624  — 1735 175 —21 1

-------------------------------

Die weiteren S, konnen leicht nach der Rekursionsformel
Sip=8"—n£; ((3)

berechnet werden. Fir z =1 bekommen wir aus ((2)), wenn n + 1

> 8= (4)

Ausserdem ist

N

N
Sn—l -
r=k+

1("z?-l) Sy ((31))

Die Stirlingschen Zahlen zweiter Art &), dienen zur Transformation
der Potenz in eine Summe von Faktoriellen

2 = 3 (o), ()
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Die Stirlingschen Zahlen zweiter Art &) Tab. 2
nlv 1 2 3 4 5 6 7
1 1
2 i 1
3 1 3 1
4 1 i 6 1
5 1 15 25 10
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1

...........................

Die weiteren &, konnen leicht nach der Relkursionsformel
=8+ & ((34))

berechnet werden. Die Summe der Produkte der Stirlingschen Zahlen
beider Arten " n

28,8l= > 8/6,=0 bzw. 1 ((45))
r=j

r=j
wenn J + n bzw. ) =n.

Schliesslich bemerken wir noch, dass

1
(:'U) T T

(z 4-n),
% *
*

Beziiglich der Bezeichnung wollen wir uns an die internationalen
Konventionen anlehnen. Zwischen der Zinsintensitiit d, dem Zinsfusse 1,
dem Aufzinsungsfaktor » und dem Diskontfaktor » besteht bekanntlich
die Beziehung

Die Grossen, die sich auf eine oder auf mehrere Grundtafeln
beziehen, werden mit den Indizes 0, 1, 2, ... rechts unten oder, wenn
dieser Platz konventionell fiir andere Bezeichnungen, z. B. fiir das
Alter z oder Rentendauer m usw., bestimmt ist, aber links oben
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bezeichnet, so z. B. 8y, %9, 7o, Vgs %a,, °N,, °S,, 0S¥, OM usw. Die
gesuchten Versicherungswerte als auch die ithnen zugrunde liegenden
Zinswerte haben keine solche Indizes.

Die Niherungswerte werden wir in Prizisionsgrade (n) bzw. in
Prizisionsordnungen [n], n = 0, 1, 2, ... ~, einteilen. Der Prizisions-
grad (=) bzw. die Prizisionsordnung [>] bedeutet den exakten Wert.
So z. B. bedeutet a,,, = a, bzw. a,,, = q,; den Niherungswert der
lebenslinglichen nachschiissigen Leibrente n-ten Prizisionsgrades bzw.
n-ter Priizisionsordnung.

Nebst konstanten nachschiissigen Leibrenten werden wir uns
mehrmals auch mit steigenden nachschiissigen Leibrenten verschie-
dener Grade befassen. Um die etwas komplizierte internationale
Schreibweise zu vereinfachen und so die Formeln iibersichtlicher zu
gestalten, werden wir nachstehende Bezeichnung einfiihren:

% _ g, = =T
Es ist also: NDEH = Jee g == g

§£32;_ s 2

QD) .

Sofern sich I” auf einen bestimmten Grundzinsfuss, z. B. auf i,
beziehen sollte, so bekommt es links oben den entsprechenden Index,
z. B. °I". Die Niherungswerte von I" werden mit If, bzw. mit I,
bezeichnet usw.

Alle im Texte angefithrten Ableitungen (Derivationen) sind,
wenn nichts anderes gesagt, nach der Zinsintensitit genommen, z. B.

of = da und ) = dia

do T dy
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Infolgedessen sind alle Integrationskonstanten, z. B. 4, B, C,, nur
hinsichtlich der Zinsintensitit bzw. des Zinsfusses konstant, sonst
sind aber die Integrationskonstanten Funktionen des Alters z.
# *
L]

Als Ausgangspunkt nehmen wir die Taylorsche Reihe des Barwertes

der konstanten nachschiissigen Leibrente, welche bekanntlich lautet:
] 2 v 0Q) .

D ZO(_UOA) ST+ R, d=i—i, (1)

0 =a,(i) =

Drei Voraussetzungen miissen erfiillt werden, ndmlich: Die Reihe
(1) muss konvergieren — die hoheren Summen der diskontierten
Zahlen 9SU),, sofern sie nicht in der Grundtafel vorliegen, miissen
sich leicht berechnen oder wenigstens abschétzen lassen — und der
Wert des Restgliedes R, muss sich ebenfalls berechnen oder wenigstens
abschitzen lassen.

Die Konvergenz der Reihe (1) im Gebiete der komplexen Zahlen
ist bereits von Wyss, Meissner und Fischer untersucht und bewiesen
worden. Man kann sie aber auch im Gebiete der reellen Zahlen leicht
nachweisen. Nach der ersten Hauptkonvergenzbedingung ist eine
Reihe von positiven Gliedern konvergent, wenn von einem bestimmten
Gliede ab der Quotient aus einem Glied und dem vorgehenden << 1.
In unserem Falle muss also

1 (— o 4)" 1 OSEHD

. o =1
| (—o, 4)” 982,

welchen Ausdruck man mit Riicksicht auf (4) auch schreiben kann

w—r—1 ‘ t )
Zi DI+1-§-1(t + ), 1+ T—{j—l_/
- UO A =0 — / < 1
2‘:& 0D it (- 95

Wenn » hinreichend gross wird, dann werden von einem bestimm-
ten Gliede weiter alle Quotienten, auch bel » = oo, dem absoluten
Werte nach kleiner als 1, wenn nur | —uv,4|< 1. Die Reihe ist
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also fiir alle zwischen 0 %, und 100 9%, liegenden Zinsfiisse 1+ und ¢,
konvergent. Wenn A > 0, dann ist die Reihe (1) alternierend und
so a fortiori konvergent. Aus diesem Grunde ist es zu empfehlen,
immmer wenn nur moglich den Grundzinsfuss ¢, so anzusetzen, dass
er ein wenig unter ¢ zu liegen kommt, weil man so zu bedeutend
genaueren Naherungswerten gelangt. (Vergleiche diesbeziiglich die
Fehler, welche Fischer [2] beim Ubergange von 8 9, zu 2,5 % und
umgekehrt von 2,5 9 zu 3 9%, gefunden hat!)

In den bereits bestehenden Naherungsformeln werden in der
Regel nur °N_ und 95, verwendet, weil sic in den Grundtafeln meistens
berechnet erscheinen. Ausnahmsweise werden auch °S¥? geduldet.
Hohere Summen, OSE:), v > 2, werden gemieden und solche Formeln,
z. B. die von Bdhmer, als praktisch unbrauchbar betrachtet. Christen
hat bereits eine Methode zur ndherungsweisen Berechnung der hoheren
Summen der diskontierten Zahlen der Lebenden entwickelt. In
folgendem Abschnitt geben wir eine neue, sehr einfache Methode an,
die zu genaueren Resultaten fithrt, wozu allerdings die im Anhange
gegebene Tafel der Werte k,(x,7) notwendig ist.

Die Berechnung bzw. Abschidtzung des Restgliedes R, der Reihe
(1) 1st bisher, soviel uns bekannt ist, noch gar nicht ernsthaft in An-
griff genommen. Diese Berechnung bildet einen wichtigen Punkt des
Zinsfussproblemes, auf welchen wir in folgenden Kapiteln wiederholt
auf Umwegen zuriickkommen werden.

Verallgemeinerung der Formel von Poukka

Poukka hat fiir das Zinsfussproblem die sehr wertvolle, von
verschiedenen Autoren oft zitierte und beniitzte Feststellung gemacht,
dass sich fir die gebrduchlichsten Zinsfiisse und Alter das folgende
Doppelverhiltnis der Summen der diskontierten Zahlen der Liebenden

so g |
S, : N, =k %

nicht viel mit dem Zinsfusse 1 und dem Alter x dndert, ja sogar von Tafel
zu Tafel nur wenig verschieden ist und deshalb als Konstante betrachtet
werden kann. Es entsteht nun die Frage, ob nicht auch andere Doppel-
verhiilltnisse von S" diese, fiir das Zinsfussproblem so vorteilhafte,
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Eigenschaft noch im hoheren Masse besitzen. Untersuchen wir zu
diesem Zwecke das allgemeine Doppelverhéltnis

Sn+1) SnAl ‘
W:kn(ﬁ?,?), ’I’L:O,].,Q,.__oo (3)
Bekanntlich ist 1w
Sin):"zl (t+n)nDz+t (4)
n. =0

Stellen wir nun (4) in (3) ein, so bekommen wir nach einigen Um-
formungen

A
1+
w—T W—T n _{_ 1
Z t—l—’fb” +n)an+tDm+z—T
t=07=0
1 .
kn.(x’ 7‘) - W—T W—I (5)
\; +n);z T+n)n :H—t

O

t=0 T=

Daraus schliessen wir zunichst, da alle unter den Summenzeichen
stehenden Grossen nur positiv sein konnen, dass

0<k(z,9)=1, n+0 (6)

Die Variabilitiat (= Differenz zwischen Maximum und Minimum)
des Doppelverhiltnisses (3) ist also mit dem Intervalle (0, 1) begrenzt.
In speziellen Fillen konnen durch besondere Untersuchungen, wie
z. B. die von Frucht [6], die sich natiirlich nur auf das Doppel-
verhiiltnis (2) beziehen, noch viel engere Grenzen gezogen werden.

In zwei Féllen ist der Zéhler des Bruches (5) gleich dem Nenner,
néamlich:

1. wenn t=71=0; das kommt aber nur im hdichsten Alter

x = vor, weil alle S™ =D _, also

k,(w,7) =1
2. wenn n = ~o, also

lim &, (z, ) = 1.

n—» co

Ber hinreichend hohen n kommt der Wert des Doppelverhiltnisses
(8) der Einheit beliebig nahe, und zwar fir jedes Alter, fiir jeden Zins-
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fuss und fir jede Ausscheideordnung, d. h. die Variabilitdt des Doppel-
verhdltnisses (8) nimmt mit wachsendem n unbegrenzt ab, und so
kann k,(x, 1) mat desto mehr Recht als Konstante angenommen werden,
je grosser m ast. Diese Behauptung gilt nicht nur fiir die Lebensver-
sicherung allein, sondern fiir die gesamte Personen- und Sachver-
sicherung, und zwar auch dann, wenn die diskontierten Zahlen D, _,
nicht nur durch Abgang, sondern auch durch Zugang geindert werden.
Das Anwendungsgebiet des Zinsfussproblemes wird so von einem
eng begrenzten Teile der Liebensversicherung auf die gesamte Ver-
sicherung ausgedehnt.

Die Poukkasche Formel (2) ist nur ein Spezialfall des Doppel-
verhéltnisses (3), nédmlich wenn n =1, und braucht keine weiteren
Erorterungen. Der Fall » = 0 muss dagegen noch ein wenig gekldrt
werden. Nebst S = N_wollen wir noch St = D_ setzen. Wir haben
somit

S0 D,
SO — XD,
Si” = ZEFD,
Sf) = il el
Es 1st also
: S, D, -
kO(a;’?) = (Na:)ua (“)

Zu beachten 1st, dass bei niederen Altern und hoéheren Zinsfiissen
ko(x,7) >1 werden kann.

Auf Grund der STM haben wir k,(z, ) fiir alle Alter £ =0, 1,
2 ... 100, fir alle ganzen Zinsfiisse von 0 %, bis 6 9, und fir n =1,
2, 3, 4, 5 auf finf Dezimalstellen genau berechnet. Die Werte von
k,(zx,7), hergeleitet aus anderen Absterbeordnungen, sind selbst-
verstindlich verschieden, jedoch die Differenzen, speziell wenn n > 1,
diirfen 1m grossen und ganzen erst in der dritten Dezimalstelle auf-
treten, wie wir uns tibrigens an der ITM empirisch {iberzeugt haben.
Infolgedessen geben wir im Anhange unserer Abhandlung « Die Tafel der
verallgemeinerten Poukkaschen Zahlen k, (z, 1)», aut zwei Dezimalstel-
len abgerundet, jedoch nur fir die Alter z=1,6,11,21,31 ... 81, 91.
Die Werte von k,(x,7) fir die fehlenden Alter und Zinsfiisse konnen
leicht mittels linearer Interpolation bestimmt werden. Mit Hilfe der
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Tafel im Anhange und der Formel (8) kénnen somit die S" bis n = 6
aller Absterbeordnungen leicht abgeschitzt werden. Die Formeln des
Zinsfussproblemes, welche hohere Summen der diskontierten Zahlen
enthalten, z. B. die von Bohmer, jedoch dieselben in der Grundtafel
nicht enthalten sind, sind so praktisch brauchbar geworden. Zugleich
ist der zweiten Voraussetzung, welche wir an die Taylorsche Reihe (1)
gestellt haben, so bereits entsprochen.

Im rechtwinkligen Koordinatensystem mit der Altersachse x, mit
der Zinsachse ¢+ und mit der Ordinate k, stellen die Funktionen k, (z, 1)
ein Ilichenbiindel durch die Gerade x =, k=1 dar. In der Figur 1
sind die Durchschnittskurven der Flichen k,(z,1), n =0, 1, 2, 3,
4, 5, mit der Ebene 1 = 0 und mit der Ebene x = 0 graphisch dar-
gestellt. Die Kurve ky(z, 09%,) zeigt einen dhnlichen Verlauf wie die
Kurve der Sterbenswahrscheinlichkeiten ¢,, nicht nur hinsichthch
des absoluten Minimums, welches in der Nihe x = 10 legt, sondern
auch hinsichtlich der «Inflexionen», die in den Altersintervallen
20—30 und 90—95 auftreten. Bei hoheren n wird diese Ahnlichkeit
mehr und mehr verwischt, weil sich die Kurven der Geraden
k(x,09%) =1 asymptotisch ndhern. Mit wachsendem Zinsfuss und
wachsenden Ausscheidequotienten nehmen die k, (2, 1) zu. Ausscheide-
ordnungen, denen grossere Ausscheidequotienten zugrunde liegen,
haben also grossere k, (z,1). Zufolge der sékularen Sterblichkeits-
abnahme ist also ein Riickgang der Werte von &, (x,1) zu erwarten.

Die Grundgleichung des Zinsfussproblemes

Der Barwert der konstanten jahrlich nachhinein zahlbaren lebens-
linglichen lieibrente ist bekanntlich

a, = i%JLZ e = 5 u{%ﬂ:D
P l_c t;:__,l X! Dax 1";__11 z+1
Die »-te Ableitung von a, ist also
(—1)" 3
(,) - X gy )
a SN D S
Aus (4) folgt ot
Hgli)lm_ﬂZ(t_i_nﬂl)n]).b—[t (9)
=1
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Das Faktorielle in (9) konnen wir mittels Stirlingschen Zahlen erster

Art in eine Potenzsumme verwandeln, nimlich

t+n—1),= }J = ( 1) Sr g
So geht (9) iber in - =
s = fﬁ_ S5 }‘ S (— 1) wixt’
und mit Hilfe von (8)
S ( ;)!" D, i S o)

SLOL =D Oy
"-'1:1)}1 - D.’L a,
D
9 . x " !
Sg L)H Ef (a’w - a‘x)
D it
SPLy = — _3_:: (a;"— 3a, + 2a;)

Man kann aber auch umgekehrt die Ableitungen von a, durch
die Summen SU), aunsdriicken. Multiplizieren wir zu diesem Zwecke
(10), wo zuerst der Faktor vor dem Summenzeichen auf die andere
Seite gebracht werden muss, mit den Stirlingschen Zahlen zweiter
Art & und bilden wir nachher die Summe von n=1 bis n=1», s0

finden wir infolge ((45))

1
a) = Ij_ E (—1)"n! G SM

Speziell bekommen wir an Hand der Tabelle 2

”’;L (_ S.Lirl) : ]):c
U“;,: - (_" By x+1 + Zqz+1) : ])z

@ = (—S,,,+F68% —658):D,

X

]

|

(11)
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- Mit Hilfe der Stirlingschen:Zahlen konnen wir also alle Summen
der diskontierten Zahlen S, durch Ableitungen des Rentenbar-
wertes al) und umgekehrt alle a{) durch 8% | ausdriicken. Nach dieser
Feststellung wollen wir das Doppelverhiltnis (3) schreiben, wie folgt:

S "j‘ll) S ""'_Il) = kn (.’1} + 1, fL) (S.(z”)l)z (12)

Wenn wir nun die SU, in (12) mittels (10) eliminieren, bekommen wir
eine homogene quadratische Differentialgleichung (n + 1)-ter Ordnung.
Wir wollen sie die Grundglewchung des Zinsfussproblemes nennen. Um
die Schreibweise zu vereinfachen, werden wir im folgenden anstatt
a, schlechtweg a schreiben und ausserdem noch eine neue Funktion

T
einfithren, ndmlich

. n-+1 ,
h,=h,(x+1,7) = ———Fk, (2 4+ 1,1 (13)
n
Die Grundgleichung lautet dann
n41 -n——11 / n1 5D
\NY Oy ) N 1 r Jr (v :
}'_jl‘ n-t-1 (I;( ) ;{ ’Srz—l (l( ) - hnkz__ll bn CL( ) ) (14)

Speziell haben wir

a'e’p, = —kya? (14—0)

(@" —a')a==hya" (14—1)

(""" —3a" 4 2a")a' = hy (@ — a’)? (14—2)

(""" — 60" + 116" —6a’) (&' — ') = hy (@' — Ba"" + 22')* (14—3)

Die beiden ersten Differentialgleichungen (14—0) und (14—1)
sind zwar ebenfalls aus (12) hergeleitet, passen aber scheinbar nicht
in (14). Deshalb werden dieselben in folgendem bis auf weiteres
gesondert behandelt.

Zur Vereinfachung der Formeln fithren wir noch eine weitere
Funktion ein, nimlich
S0,
M,=M,(0) = (— a2 = (Al (), (15)

x



— 181 —

Die Gleichungen (10), (11) und (14) bekommen so folgende einfache
Form o

M, = }__’]1.9;; a') - (10%)
=@, (11%)
B/IN»H "‘J:e---l = hn M;za (14*)

Speziell haben wir, wenn wir noch die Bezeichnung M _, einfiihren,

D
i‘/lvi == Q}x,—g e %H — vpl:
Nw-—'—l
ﬂ/Io = e 2
D:r
S,
M, =da . Patt
D;x:
| 5@)
M, =a"—da — 9 &+l
2 a a Dl_
e Y] ’ 8(3-)
M; =a'""—8a" 4+ 2 = — __]‘i)'“_L

.................

und a =M,
a =M,
a’ =M, + M,
@ =M, +3M,+ M,
a'" = M, +TM,+ 6M, + M,

...............

Die Ableitung von M, 1st wegen ((3)) sehr einfach, nimlich

M =M, +nM, (16)

Infolgedessen 1st

d" (M, v"

=M, v (17)
dr’ ' :
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Die Funktion M, v" hat also die merkwiirdige Eigenschaft, dass
deren Ableitungen und Integrale nach r einfach durch Anderung
von n gebildet werden. Diese fiir Theorie und Praxis der Infinitesimal-
rechnung ausserordentlich wichtige Eigenschaft haben unter anderem

mn ni—1
folgende Funktionen:r—, 1) .(nml)!

n! r
nome erster Art, die Eulerschen Polynome, weiter die Hermiteschen
und die von Jordan [7] gebildeten G-Polynome — die beiden letzt-
genannten nur multipliziert mit gewissen Faktoren. Eben wegen
dieser Kigenschaft kann die Funktion M, ¢" nicht nur bei der Integra-
tion der Grundgleichung (14%*), sondern auch sonst vielfach mit Vor-
teil angewendet werden. Um aber die verschiedenen Iigenarten der
Grundgleichung (14) besser hervortreten zu lassen, werden wir
zunichst ihre Integration auf eine andere Art durchfithren und erst
bei ihren spiteren Integrationen von (17) Gebrauch machen.

, die Bernoallischen Poly-

1

Die Integration der Grundgleichung
Die allgemeine Naherungsformel des Rentenbarwertes

Bei der Integration der Grundgleichung (14) als auch der Glei-
chungen (14-—0) und (14—1) wollen wir annehmen, dass alle k, bzw.
alle h, konstant seien, was nur annahernd der Wirklichkeit entspricht.
Infolgedessen konnen die Integrale nur Niherungswerte von a dar-
stellen, und zwar um so bessere, je kleiner die Variabilitit von k, in
bezug auf die Zinsintensitét ist, d. h. je grosser n ist. Nur im Falle
n = co bekommen wir exakte Rentenbarwerte, weil k_=h_=1.
Die durch Integration ermittelten Naherungsformeln kénnen wir daher
in Prizisionsgrade n =0, 1, 2 ... o einteilen.

Die Gleichung (14—0) lasst sich ohne weiteres integrieren. [hr
Integral als Naherungsformel des O-ten Prizisionsgrades lautet

ay = (4 + Be’)! (18)
WO
k, .

und 4 eine noch niiher zu bestimmende Integrationskonstante bedeutet.
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Die Gleichung (14—1) hat Giittinger [8] aufgestellt und integriert.
Ihr Integral als N#éherungsformel des 1-ten Prézisionsgrades lautet

1

ay = (4 + Be’yih (20)

wo 4 und B zwei noch nidher zu bestimmende Integrat-ionskonstantén
bedeuten. Wir bemerken gleich, dass (20) in (18) iibergeht, wenn
s = 9k = 2.

Infolge ((4)) muss 4 — O @1)
ein partikulires Integral der Grundgleichung (14) sein. Das voll-
stindige Integral findet man aber mittels Variation der Integrations-
konstante €, d. h. wir nehmen an, dass im vollstindigen Integral C
nicht mehr eine Konstante, sondern eine Funktion der Zinsintensitit
se1, also

¢ =C(9)
Durch Differentiation von (21) finden wir
r—1 .
gt =gy (v 1) oW (22)
u=0 I
Nach Einsetzen von (22) in (14) bekommen wir infolge ((31))
".',‘ ( n-2 ( n—1 0) 2
S500 s, 00 h.n(;s,;_lc') (23)
Speziell ist
(C"—CC")C = hy O (23—2)
(C""—38C" + 20" C" = hy (C"" — (") (28—3)

(C7"" — 60" 11" — 60") (€' — C') = hy (C"'——3C"" + 2C")? (23—4)

........................

Die Ditferentialgleichung von ¢ (23) ist aber ganz dieselbe wie die
Differentialgleichung von a (14), nur die Ordnung der Gleichung ist
dadurch um eine Einheit niedriger geworden, der Prizisionsgrad n
ist aber derselbe geblieben. Dieser Umstand ermdglicht eine sehr leichte
Integration der Grundgleichung (14). Das Integral von (23-—2) lautet
mit Riicksicht auf (14—1) und (20)

1

C=(d+ B (24
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(24) multipliziert mit ¢’ gemiiss (21) gibt den Wert von ay, — siehe
(25—2)! —, welchen wir leicht integrieren konnen. So bekommen wir
den Wert von ay — siehe (26—2)! — Es ist also (26—2) das voll-
stindige Integral von (14—2), und wenn wir hy mit hy; vertauschen,
auch das Integral von (23—3), welches mit ¢’ multipliziert gemiiss
(21) den Wert fiir ay, der niichsten Gleichung (14—38) gibt — siehe
(25—3)! —, welchen wir wiederum leicht integrieren kénnen. So finden
wir (26-—3) usw.

!
Q= ¢' (4 + Be’) T (25—2)
2-hg
ajy = Cr6 + ¢’ (4 + Be')Ths (25—38)
3-2hy
ayy = Cy6° 4 Cpe? 4 ¢’ (4 + Be') T (26—4)
n—2 . _ (n=1) - (n-2)hin.
a('“) — 2 g,, evé + GrS (é _I_ Eeﬂ) Ty (25)
r=1
2
gy = Cy + (4 + Be) T (26—2)
3-2hy
g = Cy+ Cre’ + (4 + Be’) s (26—3)
4-8hy

ay = Cy+ Cye® + Cre? + (4 4+ Bed) 1 (26—4)

-------------------

n-2 s , n-—(n—1)hn
O » O i i
Ay = ;_:60),6 + (4 4+ Be") 1-mn (26)

Wir wollen (26) als vollstandiges Integral der Grundgleichung (14)
die allgemeine Ndherungsformel des Rentenbarwertes a nennen. Die
Niherungsformeln einzelner Prézisionsgrade bekommen wir, wenn wir
mn (26) der Reihe nach » =0, 1,2, ... setzen. Im Falle n = 0 wird
der Exponent in (26), welchen wir auch schreiben kinnen

n—mn—Lk nP—@n—1k,
1—h,  n—(n+1Ek,

(27)

9=

gleich —1, und (26) wird so identisch mit (18). Im Falle n =1 wird
(26) 1dentisch mit (20). In der allgemeinen Ndherungsformel des Renten-



— 185 —

barwertes (26) sind also auch die Integrale von (14—0) und (14—1)
wnbegriffen. Diese beiden Differentialgleichungen sind offenbar durch
den Zerfall der Grundgleichung entstanden.

- Die allgemeine Niherungsformel (26) ist aus zwei Teilen zusam-
mengesetzt, nimlich:

1. aus einer DPotenzreihe des Aufzinsungsfaktors r, die bei
n =10, 1 fehlt, und

2. aus einer Potenz des Binoms (4 + Br), welche wir das Schluss-
glied nennen werden. Der Exponent des Schlussgliedes st eine rationale
Funktion nur von » und h, und ist somit fiir ein gegebenes n als
Konstante zu betrachten.

Der wesentliche Teil von a, ist das Schlussglied, nicht aber die
Potenzreihe, welche iibrigens beim O-ten und 1-ten Prézisionsgrade
fehlt, bei folgenden Prizisionsgraden aber einen im Verhaltnis zum
Schlussgliede nur geringen Wert aufweist. Zahlenmissige Beispiele
zeigen niamlich, dass bel wenigen (liedern der Potenzreihe der Wert
des Schlussgliedes relativ gross ist, nimmt aber bei Einschaltung
weiterer (rhieder der Potenzreihe langsam ab. Damit 1st die wohl
bekannte Tatsache gekldrt, warum parabolische Inter- und Extra-
polation der Rentenbarwerte zu ungenauen Werten fiithrt. Weil der
Exponent des Schlussgliedes bei n = 0 gleich — 1 ist, ist es weilter
klar, warum von den Autoren die hyperbolische Inter- und Extra-
polation der parabolischen bevorzugt wird. Noch besser eignet sich
selbstverstindlich die Inter- und Extrapolation nach der Funktion
(4 -+ B)"t, weil dies der Niaherungsformel des 1-ten Prizisionsgrades
entspricht.

Der Prazisionsgrad n bestimmt die Anzahl der Integrations-
konstanten. .Je mehr Integrationskonstanten eine Nédherungsformel
enthiilt, desto bessere Ndherungswerte liefert sie. Die Nédherungs-
formel n-ten Prizisionsgrades enthélt (n 4 1) Integrationskonstanten,
nimlich: 4, B, €, C, ... C, _,. Beim 0-ten Prizisionsgrade haben wir
z. B. nur eine einzige Integrationskonstante A4, der Wert von B ist
nimlich schon in (19) bestimmt.
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Bestimmung der Integrationskonstanten
der allgemeinen Niherungsformel des Rentenbarwertes mittels Summen
der diskontierten Zahlen °S!), einer Grundtafel (I. Gruppe)

Zwischen den Integrationskonstanten 4, B, €, in (25) und den
Integrationskonstanten A, B, C, in (26) bestehen folgende leicht
nachweisbare Beziehungen

1 1
1 1
B = B(By,) o B = B(Bg,)mt (28)
c,
C,==—=,r+0 C.=C»

v -
Wir werden uns deshalb auf die Bestimmung der Integrations-
konstanten 4, B, C, beschrinken.

Die Integrationskonstante 4 in (18) bestimmen wir so, dass der
Néherungswert des O-ten Priizisionsgrades a im Falle 6 == d, dem
entsprechenden Rentenbarwerte der Grundtafel %a gleich wird. Die
Integrationskonstante ergibt sich also aus der Gleichung

4 koro \ !
04 == ( A4+ —u)
\ (2
Daraus folgt

1 kor
A= D0 (29)
Oa o

Die Integrationskonstanten .4 und B der Gleichung (20) hat
(riittinger [8] so bestimmt, dass im Falle 6 = d, sowohl a;;, als auch
seine erste Ableitung a('” den entsprechenden Werten der Grund-
tafel % =%}, und %" = °M; gleich werden. Die beiden Integrations-
konstanten ergeben sich also aus den (ileichungen

1

M, = (4 + Bry) T

hl

B, u_
OM, — ”‘; (4 + Bry)Th
J— l'].
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Daraus folgt M,

OMO -

A =M1 — (1 —h)

(30)
> ongl-h > ° 1
B =M ;"v,(1—h,) .

0

Zur Bestimmung der Integrationskonstanten 4, B,C,,C, ... C,_,
setzen wir in (26) 6 =d, und a,, =% =°M,. So bekommen wir,
wenn wir Kiirze halber » = (4 + Br) schreiben,

-2

"M, = >\ C,r5+ nf (31)
»=0

Die u-te Ableitung von (31) nach r, lautet unter Beachtung von (17)

n—2
oM, 05 = 3 C, ()15 + B g,), nfr (32)

oder . '
"M, = X\ C, ()7 + B rg(g,) " (38)

Y=g

Das zur Berechnung der Integrationskonstanten 4, B, C, notwendige
(ileichungssystem ergibt sich aus (33), wenn wir der Reihe nach setzen
pw=n, (n—1), (n—2) ... 2, 1, 0, nimlich:

= B"r5(4)ame™" | {35,

M,y = B (g), (33, -

- 3”70 ﬂ 2 (qn)n—‘) ﬁgnw” + Cn-— (n 2) 77 : (33’ nﬂQ

== ‘Bn%},rgv.f} (gw)n 3778’?-,“ i + (’nJ’ (n 2) & + Cn 3(” _')) ¥ H & (38’ (O

= B (g), n5r" 4+ C, ,(n—2), r”—i—C’ s(n=3), 77+ ... Covlry (8
=it C 152+ C 7 5 ”“d + ...Cir+C, (3¢
Zunichst berechnet man aus (33, 7) und (33, n—1) die Integrations-

konstanten 4 und B. So findet man die Formeln (85, 4) und (35, B),
m welchen
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n(’ = %J:A - (}“__ 1) hn]

L

Ty == 3Ty = 1 (34)

n

bedeutet. Nachher berechnet man C,_, aus (33, n — 2), ferner C,_, aus
(38, n— 3) usw. der Reihe nach alle €, von C,_, bis ;. Wir kénnen
aber aus dem Gleichungssystem von (83, n— 2) bis (33, ») den Wert
von C, auch allgemein (z. B. mittels Determinanten, unvollstandiger
Induktion usw.) bestimmen. Die Rechnung ist etwas umstidndlich,
sie bietet aber keine prinzipiellen Schwierigkeiten. Deshalb sehen wir
davon ab und schreiben gleich das Resultat in (35, C) nieder.

21 (1—h M, 35, 4
g == n —_— — 99,
7, gMn -1 ) ﬂf ( )
B _1 M |5 1—1 M, (35, B
s n fv T L? J— . s
. n n OMR— 0( ') OE\/Irz—l )
p W=2—y A h—r—4
v _— | oM
AN ey, o 35,0)
V! =0 /‘“ L OMNW o 5

Wenn n = 1, bekommen wir aus (35, 4) und (35, B) die Werte
fir 4 und B der Giittingerschen Gleichung, ndmlich (30). Wenn
n =0, miissen wir in (35, 4) und (35, B) zunichst s, durch k, und
OM, durch °SY  ausdriicken und erst nachher n =0 setzen. Wir
belxommen so die Werte von 4 und B der Niherungsformel des
0-ten Priizisionsgrades, nimlich (29) und (19). In (35, A4) und (35, B)
sind also auch die Werte A und B der Néaherungsformeln des 0-ten und
I-ten Prizisionsgrades inbegriffen, und so eriibrigt sich ewne weitere
gesonderte Behandlung dieser beiden Niherungsformeln baw. der Glei-
chungen (14—0) und (14—1).

Die Integrationskonstanten A4, B, C, sind so bestimmt, dass

Wy = S‘ C,v"+ (4 4 Bry™
**0
mm Falle » = r,

n—2

Ya = D C, 7y + (A 4 Bry)
=0
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Wenn wir nun die untere Gleichung von der oberen abziehen, die
Werte von 4 und B einsetzen und Kiirze halber

OA'IJI"V
oNT __ n-1 _
e oAt @

n-rn-y

schreiben, bekommen wir nach einigen Umformungen

1 oM~ (l_h)’u AOM
C o T L I 0
n QO _I_ }Z——T ’) ') —I_ ” ! 0]\/1;1;1 i OMn—l
Iis 1st aber R
v — 1y =1y [(1 vy 4y —1]
Also
52 LS >
C, (" — 1) = [+ d)—1]Q,.,;
Zl : Z; Zﬂ 7 1€,

Durch Substitution 2 = p — » vereinfacht sich die letste Gleichung

n—2 n—2

Y (— 1)
Zo ()= ( )v)! [ + v d)y" —1]Q,

=1 r=1 p=vp

_y e Q@ij 10 (8) 0+ v ay 1]

(}i n— 9n

01\1 g e n—1
! ()Mn—:

n ‘n‘l’

oM
T ongn-t Mn—

n ?’L

' (1—h,) vy A°M,
0}‘4“4

Wir wollen (36) mit dem Namen die allgemeine Ndiherungsformel
des Rentenbarwertes der I.(Gruppe nennen. Sie unterscheidet sich von
(26) nur dadurch, dass die Integrationskonstanten 4, B, C, durch
die Summen der diskontierten Zahlen 9S0), bzw. durch Funktionen
derselben °M, ausgedriickt sind und dass das Argument r mit
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A = 1—1, ersetzt ist. Die allgemeine Naherungsformel (36) besteht
aus einer Potenzreihe der Zinsfussdifferenz 4 = ¢ — 4, und aus einer
Potenz des Binoms (« + § 4), welche wir ebenfalls Schlussglied nennen
wollen.

Verschiedene Bemerkungen zur I. Gruppe

1. Spezielle Ndiherungsformeln und thre gegenseitigen Beziehungen

Aus der allgemeinen Niaherungsformel des Rentenbarwertes der
I. Gruppe bekommen wir die Ndherungsformeln aller Priizisionsgrade,

wenn wir der Rethe nach n =0, 1, 2 ... setzen, nimlich:
| kovo A°M, | o wedoM, |
— OM, (14 0 0 oy 1 — 0 Tt 36—0
o) 0 oM ] 0 oM, ( )
1
“ (1 —hy) vy 4°M, )
ay, = "My |1+ oM, (36—1)

oy 1 o (,fl+(1mh) AMz)f—:;:—: . _
gy = 4 0+;n: oM, o 7'70111 o f )

R

oder, wenn wir zu den °S!"), und k, zuriickgreifen:

o | 1 kovg AN, | v 1y ?GAOS ¥ 6.0
a = Ya 5.
(0) D, ., N
(2, — 1) 0,498, |4
ay="a |1+ - 86,1
- ONJH 1
A= % {1+ = -(11 L PR A"Sﬁfb)i -~ ]].
; (4= 8ky) OS31 °N,., %S, l

(36, 2)

Beziiglich der Niherungsformel des O-ten Prizisionsgrades sel noch
bemerkt, dass man zuerst die b, und 93, in (36) durch k, und °SU,
ausdriicken muss und erst nachher n = 0 setzen darf, wie wir schon
wiederholt in solchen Iillen gemacht haben.
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Wir haben bereits gesagt, dass durch die Substitution by = 2k, = 2
die Naherungsformel des 1-ten Prézisionsgrades in die des 0-ten Pri-
zisionsgrades itbergeht. Dies 1st aber nur ein Spezialfall der allgemeinen
gegenseitigen Beziehungen der Néherungsformeln. Durch die Substitution

oz,
O"Z\/In = hnr—i —6—1_1-—_
1 n-2
2h, ,—1
h’n = A T
h

geht allgemein die Naherungsformel des n-ten Prézisionsgrades in die
des (n—1)-ten restlos iitber. So kann man also von der Ndherungs-
formel des n-ten Prizisionsgrades ausgehend die Ndherungsformeln aller
niederen Priizisionsgrade (n—1), (n—2) ... 2, 1, 0, herleiten. Bei
dieser Reduktion des Prézisionsgrades ist zu beachten, dass der

e (vo A)"2 : . .
Koeffizient von —(-P-WWS)T, das 1st der Koeffizient des letzten Gliedes
n—2)!

der Potenzreithe in (36)
' 0pf2
Py
07 n—1
M, , ————

0
n72 Mn !

gleich Null wird. Die iibrigen Glieder der Potenzreihe als auch das

Schlussglied verwandeln sich aber in die entsprechenden Glieder

von @, .

Wir kénnen aber auch umgekehrt aus der Niherungsformel des
n-ten Prizisionsgrades, wenn n >0, die Ndherungsformel des (n 4 1)-ten
Priizisionsgrades herleiten. Dazu brauchen wir ausser der Substitution

1 0JI}¢+ 1 Oﬂ’{n%

T
; 1
Y, = e
! 2—h,.
noch das Ghed i 0f2
7’104) ey M
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zur Potenzreihe in a;, hinzuzufiigen. Auf diese Art und Weise kann
man z. B. aus der (iittingerschen Niherungsformel die Néherungs-
formeln aller Prézisionsgrade n = 2,3 ... ~ ohne Aufstellung und
Integration der Grundgleichung und ohne Bestimmung der Integra-
tionskonstanten herleiten.

2. Bezehung zur Taylorschen Revhe

Die allgemeine Naherungsformel des Rentenbarwertes der I. Gruppe
(36) konnen wir schreiben wie folgt:

M

N (0 d)" .
Wy = Z ol "M, + Ry, (37)
wo das Restglied "
A X [k (L—h)v,A0M, "
By = —7—"M ( | (38
o) n! * — ()-, 11—,/ | M. (

(37) verglichen mit (1) zeigt, dass die allgemeine Ndherungsformel des
Rentenbarwertes der 1. Gruppe nichts anderes 1st als ewne bis zur n-ten
Potenz von (—uvyd) entwickelte Taylorsche Reihe des Rentenbarwertes
mat ewner Abschétzung des Restgliedes, welche um so genauer, je grosser
n ist. Der Prazisionsgrad n der Ndiherungsformel qibt also an, wie viele
Glieder der Taylorschen Revhe in die Rechnung einbezogen werden, bevor
man das Restglied abschdtzt. Fs st also:

ONZ—H
% = oy~ T Fo
1 0 oy
Cl.(i) == 61) [ Nﬂ:-}-l_vﬁd ﬁa:--}—l] —l" 1)3(1)
4 0N 0 20Q(2) 71 L
(1(_,) == Waﬁ _L\lx 1 T ,UO A S;L“%*l +‘ ('UU /l)“ ASI’-{-I] | R(B)

a,, kann also deshalb nicht den exakten Rentenbarwert darstellen,
weil das Restglied R, nicht genau berechnet, sondern nur mit R,
niherungsweise bestimmt ist. Durch die Integration der Grundgleichuny
und Bestimmung der Integrationskonstanten mit Hilfe von °SU), bzw.
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M, haben wwr also auf Umwegen das Restglied der Taylorschen Revhe
(1) abgeschitzt. Die dritte Voraussetzung, welche wir an die Taylorsche
Rethe gestellt haben, erscheint somit erledigt. Am FEnde unserer
Abhandlung werden wir noch zeigen, wie und unter welchen Be-
dingungen das Restglied R, exakt berechnet werden kann.

3. Beziehung zu den bekannten Ndiherungsformeln

Bei der Integration der Grundgleichung haben wir k, als eine
vorldufig nicht ndher bestimmte Konstante betrachtet. Nun wollen
wir dieser Grosse spezielle Werte beilegen.

* *
*

Zundchst nehmen wir die untere Grenze k, = 0. Die Grund-
gleichung wird so o

2 “a

Aus M, , = 0 folgt ndmlich, dass auch M, , =0, nicht aber um-
gekehrt, so dass obige Differenzialgleichung in jedem Falle gilt. Thr
vollsténdiges Integral lautet

N\ Y "
By = >C,r

oder nach Bestimmung der Integrationskonstanten C,

"N

Y (g 4)"
= A oy

p!

)

r=10
Das ist aber die Taylorsche Reihe (1) ohne Restglied E,. Man gelangt
zu obiger Formel auch unmittelbar aus (36) durch den Grenziibergang
lim h,—> 0. Speziell haben wir

1 \
®o) = "oy "N (39—0)
1 0
% = op [°N 1 — 20495, 4] (39—1)
1 / (‘)) c

---------------------

13
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Die Formel (39—1) hat Steffensen und die Formel (39—2) van Dorsten
gefunden. Die nicht befriedigende Ann#dherung dieser Formeln und
der parabolischen Inter- und Extrapolation iiberhaupt kénnen wir
auch so erkldren, dass der Wert von k, = 0 entschieden zu klein
genommen 1ist.

* *
*

Nehmen wir nun die obere Grenze k, = 1. Die Grundgleichung
dndert sich in diesem Falle nicht, so dass wir uns eine neue Integration
und eine neue Bestimmung der Integrationskonstanten ersparen konnen ;

!
es gentigt, in (36) einfach h, = L zu setzen. Dabel wird der Ex-
7
ponent des Schlussgliedes g, = — 1. Speziell haben wir:
,4°N ., 1™
ag =" |1+ . FH (40—0)
L 0D:c+1
| Dg A%8,0q 17
gy ="t0 |14 ——T" (40—1)
| 0‘Z\Ta:+1
oS
'UOA 0N$—|~1
—0 |1 — e 40—2
B = ¢ 03 ( )
1 40,4 2%
= ° OSw—!-l

Die Formel (40—1) ist identisch mit (36, 0) rechts. Wir haben ja schon
wiederholt bemerkt, dass im Falle k, = 1, @y in ay, iibergeht. Die
Formel (40—2) ist identisch mit der ersten Formel von Poukka. Die
zwelte Formel von Poukka bekommen wir aus (40—2) durch Elimina-
tion von OSEEL mittels (2), also

OSr—:-I

o4 N

Ay =" |1— (40%)

OSz-}-l
14+ k0,4 o
- z-+1

Wenn wir in (40—2) den Diskontfaktor v, weglassen und ausserdem
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0Q(2) w1 oal) 0Q(2)
Sy mit 5 (085 49830,

A mit A=0—24,

vertauschen — was das Resultat nicht wesentlich dndern kann —,
bekommen wir die Formel von Berger:
S, 41
T fy | ~ Wy (40**)
& 1o ACSA+ S
208x+1
£ ES
*

. Die Werte von k, sind dann der
2 3

2 g 4 "7

und liegen (abgesehen von 0) zwischen der unteren und der oberen

Grenze von k,. Dadurch wird h, =1, und die Grundgleichung wird

Weiter nehmen wir k, =
- n+1

Reihe nach beim 0-ten Prizisionsgrade angefangen: 0,

41 n—1 N 2
Z S;_}_] a(") 2 S':';—l a(") — (2 S:L a("’))
pe==1 v=1 w=1

Das vollstindige Integral lautet

n—-2

apy = >,C, 1" + AF (41)
r=0
oder nach Bestimmung der Integrationskonstanten

n—2 y [ OfH—> opg OMp
\ | (’U OA) an-l Mn—l vo 4 o
P 0 M . My
a(”-) — 4 ” o N gr—r—1 opgn—1 ¢
M M,

|
T V.

Man gelangt zu obiger Formel auch unmittelbar aus (36) durch den
Grenziibergang lim h,—~ 1. Speziell haben wir

aq = a (41—0)
4 Sz41
agy = Cae "7 N1 (41—1)
0g(2)
08 . )2 sy
g = 0 (Sz1) { 1—e OS‘CH} (41—2)

T 20D,sT,
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Die Formel (41—2) hat zuerst Christen und spéater Frucht hergeleitet.
Eliminiert man °S® | mittels (2) und setzt k, = 0,84, so findet man
eine weitere Formel von Frucht

0
a [0.68 n eml.GSvﬂd

Ds:c+1 J
1.68

ONzt+1

(41—1)

Ay =

Die Formel (41—1) haben bis jetzt verschiedene Autoren — wenigstens
unseres Wissens — nur in einer ein wenig gednderten Form aufgestellt,

nédmlich
v 4 LMI

0 a  OM,

Die Grosse o kann als Verbesserung des Integrals (41—1) aufgefasst

. 1 : . :
werden, weil k, = - zu klein genommen ist. Es 1st nach

2
Fvans o=1— M, 8o (41—IT)
vy 4 °M, ,
Franckx und Frucht [9] a=1—0.34 —~o (41—I11I)
0
vod [°M, °M,
Hantsch a=1— — (41—1V)
2 \ %M, )

Die letzte Formel geht iibrigens in die vorletzte iiber, wenn man
0N, mittels (2) bzw. (14*) eliminiert und dabei k; = 0,84 setzt. Eine
dhnliche Formel hat auch Giittinger [8] gefunden, welche sich aller-
dings auf a, und nicht auf «, bezieht. Wenn wir in (41—1)

’UOA 0S$+1 OSw+1

e ONgt1 mit (1 +130A) Nz 41

vertauschen — beide Ausdriicke stimmen ja in den ersten zwei Gliedern
der Reihenentwicklung iiberein—, bekommen wir die 'ormel von Meidell

08z +1

ayy = a(l + vy d) e+ (41—V)

*
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Wenn wir schliesslich noch in (36,1) k, = — setzen, bekommen

wir die Formel von Palmquist

c:]u

?]0 A OSx+1 )“'1-5 (41 *)

apy="% 14—

W ( + 1‘50Nz+1

Bei den meisten Autoren ist dagegen k, = 0,84, also

0.68v,4°8, .
ON

z+1

068

Q) = Oq [1 -+

Die allgememe Formel fiir a,, hat Giittinger [8] aufgestellt, wie wir
bereits erwihnt haben.
* i *

IDne Niherungsformeln der I.Gruppe, welche verschiedene Autoren
gefunden haben, sind also entweder spezielle Integrale der Grundgleichung
des Zinsfussproblemes oder aber Funktionen, die sich diesen Integralen
anndhern und die aus verschiedenen, mehr oder weniger zutreffenden,
zugrunde gelegten Annahmen hergelertet sind. Einige dieser Naherungs-
funktionen kénnen sogar als Verbesserungen der speziellen Integrale
der Grundgleichung betrachtet werden, in welchen der Wert von k,
zu gross oder zu klein genommen ist.

4. Stergende Rente

Sowohl in der Privat- als auch in der Sozialversicherung werden
oft auch steigende Renten gebraucht. Der Barwert der nachschiissigen
steigenden Rente ist bekanntlich

e
A z+1 — (Ia,)x-_— 1— — _“a;: ---a,,

T

Die allgemeine Naherungsformel fiir I bekommen wir aus (25), w
noch die Integrationskonstanten 4, B, Cy zu bestimmen sind, oder
viel einfacher mittels leferentlatlon und Vor7e1chenanderung in (36).

Es 1st (42)
Io— Ti(vod)”—l *OM B 1 oM™ U(,T OMVH ek (1—h,) v,4°M,, -1
" ° r=1 (V—l)' L ' Thy GM?_I _ Tn OMn_z OMn—l
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Beziiglich (42) gilt mutatis mutandis alles, was wir von (36) gesagt
haben. Durch Entwicklung des Schlussgliedes in eine Potenzreihe
finden wir die Taylorsche Reihe mit einer Abschitzung des Restgliedes

R, , nénlich

1 i (v 4) M + R
Wy = =0 r "~ A y n
WO
I ) — © ok, (1—h,) v, 4°M, |
= e g $2, ) (o) [0
(m—1)! e 1—h,/ 1 OM,,
Die Néherungsformeln einzelner Prézisionsgrade n =0,1,2 ... lauten:
kovo4°M, | 0o 4°M, |7
Ty = —eor oty | 14 220 A\ g, [ %
°M , oM,
(1 —hy)ve4°M, |2
I, = —v,r°M, |1 =
(1) 0 1|1+ oM, _.
” (1—hy) v, 4°M, |
I, = —0v,r°M, |1+ by
(2) 0 1 oM,
oder, wenn wir zu den k, und °S__, zuriickgreifen:
kovoA°N_., | ' o498, .4 17
— 0 . = 0] ] S
To = Hvor _] * °D,. R Nyt
‘ C 1ys A 1 2k
I,="%9,r}1 @ty 1) 20 o 12k,
Y °N.iy
(8ky—2) 2, 4°82) | |2
Iy =To,r {1+ ? o‘é 07 TErl sk,
z+1

5. Hohere stergende Renten

Den Barwert der steigenden Rente n-ten Grades definieren wir:

S

m+1_

b,

T

— (IH a)a/ _— I‘?!
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Dadurch kénnen wir den Barwert der konstanten Rente (1) dar-
stellen

== Z(‘) (“_ UOA)TOIV + Rn

Fiir I" gilt zunéchst folgende, aus (3) hergeleitete Formel:

koo (2 4+ 1,9) (I")?

TR =
In—2

Wir kénnen weiter fiir I" Naherungsformeln aller Prazisionsgrade
aufstellen, genau so, wie wir es fiir @ und I getan haben. Wir sehen
jedoch davon ab, weil [? in der Versicherungspraxis nur &usserst
selten, I3 I* ... dagegen iiberhaupt nicht vorkommen. In Folgendem
werden wir nur einige einfachere, fiir das Zinsfussproblem niitzliche
Formeln herleiten. Aus (83, n) und (33, n—1) folgt

M, r\” \
(=) (L) (48)
OMn rﬂ Mo
M ~ 4 r n—1 s 1
n—1 ~ (___) (l)l—hn (44)
°M,_, o, Mo
(43) dividiert durch die h,-te Potenz von (44) gibt
I In—l ,Un—l by
Y ([— ; (45)
ot 011
- Iv a \™M
Fir n =1 finden wir ~ | — (45, 1)
L, %

Durch Rekursion finden wir weiter

I ( T )hn by _1hp 9. by
o0

oy~ g
l'n,vn a hihghg ... hy
und wenn ¥ = n = ~ (0—)
7 a

Obige Formeln ermiglichen unter anderem eine leicht durch-
tithrbare Abschitzung der Barwerte der steigenden Renten bis zum
n-ten Grade, sofern die Grundtafel die °S,_ ,,»=0,1,2...n, enthalt.
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6. Tempordre Renten

Bei temporiren Renten a, 77 wird der Ausscheidequotient nach
m Jahren gleich 1 gesetzt und so die Ausscheideordnung abgeschlossen.
Da unsere Ausfithrungen fiir alle moglichen Ausscheideordnungen
gelten, folgt daraus, dass die Grundgleichung samt allem, was wir
aus ihr hergeleitet haben, auch fiir die tempordren Renten, mogen
diese konstant oder steigend sein, volle Geltung hat. Es bleibt nur
noch zu bemerken, wie die Summen der diskontierten Zahlen der
temporaren Rente OSL”L’-,;,-; aus den Summen der diskontierten Zahlen
der lebenslinglichen Rente °SU), gebildet werden konnen. Es ist
allgemein

) e N mAt—1\
OS:(rq)Ll, m| OS(x-i-l - Z( , ) OS£:+-21+1
t=0

und speziell

0N'+1, m| = ON:a:Jrl —ON

& z-+m+1
08_1;4—1, m) = 081+1 _OS:c+m+1 — mONa:--;-m 51 ‘ \
085:2-)%1, m| OS:(C%%—I - OS.SE)Fm+1 _mosm—i—M~F1 *‘ ('m —; . )ONa:In m+1
Aus OS.S:L, w| werden die k,, h,, M,. ,m, nach den bereits erklirten

Formeln berechnet. Praktischer ist jedoch die temporire Rente als
Differenz zwischen der unmittelbaren und der um m Jahre auf-
geschobenen lebenslédnglichen Rente zu berechnen

!

o m atm
,m| a,—7v ] Cytm (46)

T

aI
Die Niherungsformel n-ten Prizisionsgrades einer temporiren Rente
konnen wir also auch aus den entsprechenden N#herungsformeln der
lebenslanglichen Renten a, und a, . ,, herleiten. Der Diskontfaktor »™
18t leicht zu berechnen, wenn er schon den Zinstafeln nicht entnommen

werden kann, und die /, und I, sind in der Grundtafel enthalten.

7. Varwable Renten

Den Barwert der variablen nachschiissigen Leibrente kénnen wir
schreiben

a, =

e r+i
D, im
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wo «, einen bestimmten Koeffizienten bedeutet, welchen wir jedoch
mit dem Ausscheidequotienten vereinigen konnen, wenn wir schreiben

at Dz+t = Qz—l—t
Hs 18t also
. ] o=
Gy, == D, ;19x+t

Weil unsere Ausfithrungen fiir alle Ausscheideordnungen gelten, gilt
die Grundgleichung genau so wie fiir konstante, steigende, lebens-
lingliche, temporire Renten, auch fiir variable Renten. Es ist aller-
dings meistens praktischer, den Niherungswert fiir a, durch Zerlegen
der variablen Rente in mehrere konstante oder steigende Renten zu

berechnen. N N

Hiermit haben wir gezeigt, dass die Grundgleichung des Zinsfuss-
problemes fiir konstante, steigende, lebensliangliche, temporire, variable,
wie auch immer geartete Renten aller Ausscheideordnungen gilt.

8. Varation von k,

Die Anwendung der Naherungsformel des 2-ten, 3-ten usw. Prii-
zisionsgrades 1st insofern unsympathisch, weil dadurch die héheren
Summen der diskontierten Zahlen in die Rechnung gezogen werden,
welche bekanntlich in der Grundtafel nicht enthalten sind und deshalb
erst berechnet bzw. abgeschitzt werden miissen. Die Niherungsformel
des 1-ten Prézisionsgrades gibt aber bei niederen Altern und bei gros-
seren Zinsspannungen A nicht zu vernachlassigende Differenzen. Um
diesem Ubel abzukommen, werden wir die bisherige Annahme, k, sei
eine Konstante, fallen lassen und k, nicht nur mit Riicksicht auf das
Alter z, sondern auch mit Rucksicht auf den Zinsfuss @ variieren.
Nach verschiedenen Versuchsrechnungen, in welche wir hier nicht
eingehen kénnen, haben wir fir die 8 9%ige STM folgende Néherungs-
forme] gefunden:

ey (2, 1) = ky (2,3 %) + @y (1 —“£> A + @, (1 o “”ai')zdz
¢, = 1.3082 “ v
@, = —6.566
w =85 (47)
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s wiére selbstversténdlich natiirlicher, w = 100 zu setzen, jedoch
um bel niederen Altern — um die handelt es sich ja in erster Linie —
~ genauere Resultate zu erzielen, haben wir fiir © das Alter 85 gewéhlt
und nach diesem Alter einfach ky(z, 1) = k;(x, 89%) gesetzt. Die
Formel (47) gibt auch bei grésseren Zinsspannungen sehr gute Resul-
tate, wie wir uns an etlichen zahlenméssigen Beispielen nicht nur
an der STM, sondern auch an der ITM iiberzeugt haben. Daraus
schliessen wir, dass die Giittingersche Néherungsformel (36,1), in welcher
ky mit ky(x,1) gemiéss (47) zu ersetzen ist, auch bei 3 9%igen Grund-
tateln anderweitiger Absterbeordnungen zu guten Néherungswerten
fithren diirfte.

9. Variation von k,

Die emprrische Variation von k,;, die — wie wir oben bemerkt
haben — zu sehr guten Naherungswerten fithrt, hat den Nachteil,
dass die Koeffizienten (), und @, in (47) vom Grundzinsfusse und von
der Ausscheideordnung abhingig sind. Wir wollen nun an k, eine
systematische, d.h. allgemein anwendbare Variation versuchen. Zu
diesem Zwecke setzen wir

ko(z 4 1,0) =p, >, C, 1 (v + 1)1
=0
Dadurch geht (14—0) iiber in

’

=Sl

Nach Integration bekommen wir

1 &
— =0+ D 0, 7"
a =0

C, ist wohl eine Integrationskonstante, nicht aber andere C,. Wir
werden jedoch sowohl alle C, als auch K, in (49) schlechtweg «In-
tegrationskonstanten» nennen, um so unsere Ausdrucksweise zu ver-
einfachen. Wenn wir nun beim Gliede » = n stehenbleiben und die
folgenden Glieder vernachlissigen, bekommen wir anstatt des exakten

- L1 _ : .
-~ einen Ndherungswert, welchen wir mit —-- bezeichnen wollen. Dabe1
a a’[n]

bedeutet ,, die Prdzisionsordnung der Néherungsformel, also



1 n—%jl ' ‘
?‘]“ = %OCTT} (48)

Wir wollen (48) die allgemeine Ndherungsformel des rezvproken Renten-
barwertes nennen. Das Fehlen des Schlussgliedes bevorzugt (48) fiir
parabolische Inter- und Extrapolation, welche deshalb vmmer nur an
rezvproken Rentenbarwerten und micht an Rentenbarwerten selbst vor-
zumehmen 1st. Die Naherungsformel n-ter Prézisionsordnung hat (n + 2)

«Integrationskonstanten», nimlich C,, C,,C, ... C,.,, dafiir ist sie
aber frei von k,. Durch Substitution r =r,+ A geht (48) iber in
1 n+1
—=> KA (49)
=
Zur Bestimmung von K, K,, K,, ... K, ., brauchen wir (n + 2)

Gleichung, die man durch (n -+ 1)-malige Differentiation von (49)
nach r und nachherigen Umtausch von @ mit 4, und @, mit % bilden
kann. Die u-te Ableitung von (49) nach r lautet:

v S, ( — ] =D\K, (), 4™
i=1 \ a[n] / r=q

WO S‘f(_ die Stirlingschen Zahlen erster Art bedeutet. Setzen wir in
letzter Gleichung 1 =1, und ay,(1y) = % =°M,, so folgt allgemein

(I
K = —> 8 0OoM1H¥W 50
und speziell ' ! ;.Zﬂ (M) (50)
1
Ky=—- (50, 0)
M,
OM.
K= vy | — - (50, 1)
oM
_ vy | M, 2003 i
Ky= —|— e e e 5 (50, 2)
2! UM WM,
3 oM 6O0M. 0N 603’13
Ky— 0| v 2 P (50, 9)
3! N2 oM oM,
7 vg | °M, 8OM,°M, -+ 6°M; 360M30M, L 249 Mt
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Die allgemevne Ndherungsformel des vreziprokem Rentenbarwertes der
1. Gruppe lautet somt

n+1 »

ZZ v! g (M)W (51)

“m =0 =

Aus (51) bekommen wir spezielle Naherungsformeln aller Prézisions-
ordnungen, wenn wir der Reithe nach n =10, 1, 2 ... > setzen. Aus

--— bekommt man ——, wenn man zur Potenzreihe von — das
Uiy A +1] Uy
Glied K, ., A"** hinzufiigt usw. Es ist also

=3

= —— 40,4

1 oM, vOA)Z 2 9002
— + . K, A (51%)
"M, "Mz, "M3 j

2
0

oder

M, (vyd)? [‘w oM,  20M?

Cl;[n]:()][o ll—"‘UOA _i_‘ Ny
| °M,  °M;

-1
. OM, K, A
o, 2! + o }(51**)

1
(51%) stellt die Taylorsche Entwicklung der Iunktion — bis zur
a

(n + 1)-ten Potenz von A dar, jedoch ohne Restglied, welches hier
nicht so wichtig ist wie bet a,,. Der Vergleich von (51**) mit (36—0)
rechts zeigt, dass wir durch dle systematische Variation von %k, nur
zu einer Verbesserung des Schlussgliedes von a, um n weitere Glieder
gelangt sind. Daher ay; = ay, 0 sonst ist aber ap;+ a,,. Jedoch die
Annéherungskraft vor ap, 1st im grossen und ganzen ungefahr dieselbe
wie die von a,,. Zu bemerken ist noch, dass die Konvergenz der Reihe

von ——- nicht immer monoton ist, speziell bei niederen Zinsfiissen,
0

d. h. durch Hinzufiigung eines neuen Gliedes der Reihe kann sich

der Niherungswert manchmal voriibergehend verschlechtern.



— 206 —

Bestimmung der Integrationskonstanten der allgemeinen Naherungs-
formel des Rentenbarwertes mittels Summen der diskontierten Zahlen
#S%) . zweier oder mehrerer Grundtafeln (II. Gruppe)

Die allgemeinen Naherungsformeln der Barwerte der konstanten
und der steigenden Renten konnen geschrieben werden.

n—2
apy— >, C,1" = (4 + Br)" (52—0)
v=0
n—2
Loy + 2, Cv1" = —Brg,(d + Br)» (52—1)
n—2
](Zn) o % Z C”‘ (v)zfrv = é ke (911)2 (A + B T)girz (52——2)

Daraus schliessen wir:

Aus (n + 1) Grundtafeln, welche nur die 0-ten Summen der dis-
kontierten Zahlen “N_, u =0, 1, 2 ... n enthalten, konnen Naherungs-
formeln n-ten Prézisionsgrades gebildet werden. Dazu brauchen wir
die Werte r, und “a in (52—0) einzusetzen und die (n + 1) Gleichungen
m bezug auf 4, B, Cy, C; ... C,_, aufzuldsen.

Aus (n + 1) Grundtafeln, welche ausser den 0O-ten Summen "N,
auch die 1-ten Summen der diskontierten Zahlen #S, enthalten, konnen
Néherungstormeln (2n -+ 1)-ten Prizisionsgrades gebildet werden. Dazu
brauchen wir die Werte r,, “a, “I in (52—0) und (52—1) einzusetzen
und die (2n + 2) Gleichungen in bezug auf 4, B, Cy, Cy, ... C,, ,
aufzulosen usw.

Ahnlich kann man leicht den Priizisionsgrad der Niherungsformel
ermitteln und das zugehorige Gleichungssystem zur Bestimmung der
Integrationskonstanten aufstellen, wenn ein Teil der Grundtafeln nur
die N, der andere Teil die N, und zugleich S, usw. enthélt. Aus ITM
z. B., die N, und S, fiir zehn Zinstiisse und ausserdem die mittlere
Liebenserwartung e, enthalten, kénnen Néherungsformeln 20-sten Pri-
zisionsgrades und aus STM, die N, S,, S? ... S© fiir sieben Zins-
titsse 0%, 1%, 2% ... 69, enthalten, konnen sogar Naherungsformeln
48-sten Prizisionsgrades gebildet werden. Fiir den Bedarf der Ver-
sicherungspraxis reichen jedoch schon die ¢, und a, , hochstens a4 aus.
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Obige Sdtze gelten selbstverstdndlich nicht nur fiir lebenslangliche
konstante, sondern auch fiir steigende temporire, variable, wie auch
immer geartete Renten aller Ausscheideordnungen.

Zur Bestimmung der Integrationskonstanten bei der II. Gruppe
brauchen wir nur das obige Gleichungssystem aufzulésen. Da wir
jedoch mit transzedenten Gleichungen zu tun haben, sind wir nicht
imstande, allgemeine Formeln fiir die 4, B, C, aufzustellen, wie z. B.
bei der I. Gruppe (35, 4), (35, B) (35, C). Eine allgemeine Naherungs-
formel des Rentenbarwertes wie z. B. (36) existiert bei der I1. Gruppe
leider nicht. Infolgedessen konnen wir die Loésungsmethoden der
I1. Gruppe nicht einheitlich behandeln, so etwa wie die der I. Gruppe.
Wir kénnen zwar in jedem konkreten Falle die Integrationskonstanten
durch verschiedene Néherungsverfahren (regula falsi, Newtons-
methode, Iterationsverfahren usw.) bestimmen, jedoch solche Be-
rechnungen sind meistens so zeitraubend, dass sich die Arbeit durchaus
nicht lohnt. Deshalb empfiehlt es sich, von verschiedenen Kunst-
griffen Gebrauch zu machen, bei welchen zwar die Prézision der
Formel einbiisst, jedoch gelangen wir so auf einfacherem Wege zu
praktisch ausreichend genauen Néherungsformeln. Diese Kunstgriffe
kénnen wir einteilen wie folgt:

1. Varwation der Integrationskonstanten. Yine oder mehrere
Integrationskonstanten konnen beim Ubergange des Zinsfusses 1 aus
der Umgebung des einen Grundzinsfusses in die Umgebung des anderen
Grundzinsfusses variiert werden.

2. Heranziehung von héheren Summen der diskontierten Zahlen.
3. Spezelle Ndiherungsverfahren.
4. Abschaffung der Potenz des Schlussgliedes.

Der Vorgang kann am besten an konkreten Beispielen gezeigt
werden. Vorher ist jedoch eine Bemerkung beziiglich des Wertes g,
bzw. k, notwendig. Der Wert von ¢, kénnte zunédchst auf Kosten
eines Prizisionsgrades aus dem Gleichungssystem bestimmt werden,
d. h. anstatt C, mit dem hochsten Index kann ¢, berechnet werden.
Dies ist aber sehr umstéandlich, und ausserdem ist es besser, g, bzw. k,
nach den Grundzinsfiissen zu varileren, d. h. wenn ©+ < 0.5 (15 + 24),
st k(x4 1,1,), sonst aber k,(x + 1,1,) zu nehmen.

* *
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Gegeben sind zwer Grundtafeln mit O-ten Summen der diskontierten
Zahlen. In diesem Falle kann nur eine Naherungsformel des 1-ten
Prizisionsgrades (20) gebildet werden. Das Gleichungssystem lautet

1
%0 = (4 + Bry)ih

1
o = (4 + Br)tm

Daraus folgt

,rl Oal—hl _ 1-hy

1
rola

Iil T q:()
1a1—hl _ oal—h1 (53)
B= -

h—"%

Nach Einsetzen von A und B in (20) bekommen wir folgende
Naherungsformel

a 1 —1 i—iy [ta\'"M] L
o | f ."(—) ] (54)

0 ) Y 0

In diesem einfachen Falle sind also keine Kunstgriffe notig.

1. Gegeben sind zwer Grundtafeln mat den 0-ten und 1-ten Summen
der diskontierten Zahlen. Es konnte eine Néherungsformel des 3-ten
Prézisionsgrades gebildet werden, wenn wir das Gleichungssystem in
allgemeiner Form aufléosen konnten. Weil dies nicht der Fall ist,
nehmen wir lieber die Néherungsformel des 2-ten Prézisionsgrades,
welche wir schreiben

1
) = Cy + —— (4 + Br)» (55)
9o B
Die erste Ableitung ist
a('z) = r(4 + Br)o!
Das Gleichungssystem zur Bestimmung von 4 und B lautet

OM, vy = (4 4+ Bry)?
M0, = (4 + Br)"!
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7y (OM, 0g) T — 1o (1M v,) "2
11—
() — (M2

L%

Daraus folgt

A=

B =

(56)

Die Integrationskonstante C, kann so bestimmt werden, dass die
Kurve (55) entweder durch den Punkt % oder aber durch den Punkt 'a
gehe. Im ersten Falle ist

1
%= "%— (A + Bry)”
9. B
m zwelten Falle aber
10y =la— (4 + Br))"
9. B

DieIntegrationskonstante Cywird also hier varuert. Wenn1<0.5 (14 + %4),
wird °C, sonst aber 1C, berechnet. Infolge der Variation von C geht
die Kurve (55), obwohl sie nur drei Integrationskonstanten hat, durch
vier Punkte, ndmlich durch %, 1o, °I, /. Durch Einsetzen von 4, B,
Cy In (55) gelangen wir zu zwei Naherungsformeln, von denen die
erste lautet

07, . . - . . . . 1 1-h 'Og
g To N || 4, —d, | 4,—ig \ v |
2 1 1 Y1 0 1 0 0/ |
OTwg

Die zweite Formel bekommt man aber durch Umtausch der Indizes
«O» und «1» bei den Grundwerten.

2. Gegeben sind zwer Grundtafeln mit den 0-tem, I-ten und 2-ten
Swmmen der diskontierten Zahlen. Es konnte eine Naherungsformel
des 5-ten Prizisionsgrades gebildet werden, wenn wir das Gleichungs-
system in allgemeiner Form auflésen konnten. Weil dies nicht der Iall
ist, nehmen wir lieber die Niherungstormel des 3-ten Prazisionsgrades,
welche wir schreiben

1
a(g) = Uy —}— CIT —I— “"(“g—)—'—é—;' (A —I—' .E}'f")g3 (58)
3/2

Durch Differentiation bekommen wir

gy — gy = 12 (4 + Br)?™

(57)
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Das Gleichungssystem zur Bestimmung von 4 und B ist
OM, 03 = (4 + Bry

M, v} = (4 + Br,)"®
Daraus folgt
ry (*My )" — 1y (M)

1%

A=

(M v}y — ("Myop)t : (59)

11—

B =

Die Integrationskonstanten €, und C; werden so bestimmt, dass die
Kurve (58) sowohl durch % als auch durch la geht. s ist also

1, (% — Dy) —ry(la — D) (4 4 Bry)’s
00 = 3 . @0 == 2
a7 ' (93)2 B
0, — (fa — @1) — goa — D) o, — (4 —}— B'r:)”3
h—T (gs)2 B

Hier haben wir also keine Variation der Integrationskonstanten,
sondern wir haben anstatt zu den ersten gleich zu den zweiten Summen
der diskontierten Zahlen gegriffen. Die Kurve (58) geht durch die
Punkte %, 'a und °I%, 112, jedoch nicht, wenigstens streng nicht,
durch die Punkte °/ und 'I. Die endgiiltige Néherungsformel des
3-ten Prizisionsgrades bekommt man durch Finsetzen der Integrations-
konstanten 4, B, C,, C; in (58), jedoch wegen der Ausdehnung der
Formel sehen wir davon ab. Wir kénnen € und ', selbstversténdlich
auch so bestimmen, dass die Kurve (58) durch %, °I, °[2, 12, oder
durch 'a, I, 112, °]2 geht. Im ersten Falle ist

1

YTy S S
! A (9;—1) B

(4 + Bry)!

Die Integrationskonstanten 'C, und !C; fiir den zweiten Fall be-
kommen wir einfach durch Umtausch der Indizes «0» und «1» bei den
Grundwerten.

14
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3. Einige Beispiele von speziellen Ndherungsverfahren, welche .die
Auflésung des Gleichungssystems auf Kosten der Prizision erleichtern,
geben wir spéiter bei den Naherungsformeln von Fruchi-Vellat (63),
(65), und Crosato (66).

4. Die Schwierigkeit der Auflosung des Gleichungssystems steckt
in der Potenz des Schlussgliedes. Wenn die Grundtafeln ausser N,
auch S_, oder weiter noch S usw. enthalten, kann diese Schwierigkeit
abgeschafft werden, jedoch wie immer nur auf Kosten der Prizision.
Durch Division von (52—0) mit (52—1), weiter von (52—1) mit
(52—2) usw. bekommen wir

y -, |4 ’
‘P(n)+_§a(m+;}Cvr *B—'U”“"‘(gn’*"’)' =0 (60’1)

n—2 - -
A T . 4
Yoy T B ﬁ(n) — C,r B v()e—r(g,—») | =0 (60,2)
y=1 s "
oo fPESSiIwEEsiEassiiEunEE:
Py = Uy I+ Lo %y = Ly ¥
Yoy = I(n) (9.—1) + 21(271) By = 21%1)” (60%)
Wenn wir nun r, By 5 I(n), I‘?n), ... mit r,, *a,"I,*I? ... vertauschen,

bekommen wir ein System von algebraischen Gleichungen mit den
Unbekannten 5 Cyo, €1, Cy ..., welches wir ohne weiteres auflosen
konnen. So gelangen wir zum Quotientenf , nicht aber zu 4 und B.

Es bleibt uns also noch ein Freiheitsgrad iibrig, welchen wir so aus-
niitzen konnen, dass die Naherungskurve durch alle #a hindurchgeht.
Dieser Bedingung gentigt folgende Gleichung

h—2 [ A o ‘ugn
Ay — Z HCv r (__) o
r=0 B ¢
o [ B (61)

n—2 A
“a— D\ #C, r (——) +r,

ry=0 B " K
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i welcher WiI‘E, C, g, nach den Grundzinsfiissen variieren konnen,

um so grossere Genauigkeit zu erzielen. Allgemeine Formeln fiir die
Unbekannten sind sehr umstindlich, besonders wenn die Grundzins-
fiisse nicht dquidistant sind, deshalb geben wir lieber zwei einfache
Beispiele.

Gegeben sind zwer Grundtafeln mat den 0-ten und I-ten Summen
der diskontierten Zahlen. Aus (60, 1) folgt

A
Py Cogs + B % =0

Dabe1 bedeutet

Wir setzen nun

und weiter, wenn sich ¢ befindet in der Umgebung

von 1, von 1,
Opy = %a’gy + °1 O, ="algy +°1
Ypg = ta’, + U gy = lalg, +

So bekommen wir folgende vier Gleichungen

S

A
O —-°C %2 + (E) g =0 Op, —1Cy g, + (

0

‘) 0(0: 0
1

|
SN——
-
Y
|
<o

A
10— 2C4 %, + (E) o =0 lp,—1Co 19, + (

0

aus welchen folgt
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Die Naherungsformel des 2-ten Prizisionsgrades lautet somit

[ (A ) 149-
s + r )
gy — "“Cy B/, '
= — 1, u=0,1 (61—2)

kg —C, 4
— r
| B ,u+ Ha

Obige Formel haben wir an der ITM, 1,=49%, 1, =59, zahlen-
méssig {iberpriift. Die nach Altern und Grundzinsfiissen abgestufte
ky(z 4 1,1,) haben wir der Tafel der verallgemeinerten Poukkaschen
Zahlen im Anhange unserer Abhandlung entnommen. Obwohl sich
die ky(z +1,7,) auf die STM beziehen, sind wir dennoch zu vor-
ziiglichen Nédherungswerten gelangt, welche mit den exakten Renten-
barwerten fiir alle Alter =0 bis 100 und fiir alle 1 = 39, bis
6.5 9%, — abgesehen von den Differenzen, welche von den vernach-
lissigten Dezimalen herrithren — bis zur dritten Dezimalstelle iiber-

emstimmen. ‘ ,
Auf ahnliche Art und Weise kann man leicht aus drei, vier,
tunf ... Grundtafeln, die N, und S, enthalten, Qzys Qgys Gpgys - - -

berechnen; wir sehen jedoch davon ab, weil diesbeziigliche Formeln
zu viel Raum in Anspruch nehmen wiirden.

Gegeben sind zwev Grundtafeln mat den 0-ten, I-ten und 2-ten Summen
der diskontierten Zahlen. Die Niherungsformel des 4-ten Prizisionsgrades
schretben wir in diesem Falle '

A4 Joa
. |5+
ﬂa‘_ CO_ Cl T” - 02 ’)“i A
{ i - + r
B g

Wegen des hohen Priizisionsgrades brauchen wir keine Variation der
Integrationskonstanten, was die Rechnung wesentlich vereinfacht. Zur

Berechnung von 5’ Cy, C1, €y, haben wir folgendes Gleichungssystem

A
#9’0—0094_017” (gy—1)— Oﬂi (9,—2) + B [oc” +C, + 202"}:] =0

) A
“p 4 Oyr,(9a—1) + 20,7, (9.—2) + B [, —20C,r,] =10, p=0l1
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Die Berechnung der Integrationskonstanten ist sehr einfach. Weil
die Formeln etwas weitldufig sind, schreiben wir dieselben nicht
nieder, sondern wir bemerken nur, dass sie zu vorziiglichen Naherungs-
werten fiihren.

Verschiedene Bemerkungen zur II. Gruppe

1. Beziechung zu den bekannten Interpolationsformeln

Frucht [1] hat folgende Interpolationsformel gefunden

1

t, (1 + A1) = a,(1) ( 14 [a, (5] fhf {la.(+ W] ** —[a, (’i)]_o'ﬁs})um
Weénn wir sinngemiiss setzen -
a, () = % T ho= 4y —i,
a,(t + h) =1la 1+ h =1, Av=1—1,
a, (@ + A1) = ay, 1+ i =1
bekommen wir nach einigen Umformungen

a gy =1 T —1 1g \—0-687_ 1
(1) :l -1 B 4 - 9 (__) :l 0.68 (62)

Y - 0
G (2 (2 () a

Das 1st aber nichts anderes als (54) fiir den Spezialfall k; = 0.84.

*k k
%k

Be1 15 = 0 geht (54) iiber.

1 Ty TR
a(1):6{1i% |:1——(—> }}1-711
1 € .

v 1 w-=x
€= cx: El_ Elz*f
v |
Wir konnen weiter schreiben
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1
. a . . .. . .
Wenn wir den Wert von — in obige Formel fiir a,, einsetzen und die
e

Potenzen in Reihen entwickeln, bekommen wir

1 e—1g
a(l)ze 1—1__-___+ TR

(PR

e —1q i 14 _‘."”:_
a~el|ll—- — t=c| — "
e e

oder, wenn wir noch die Zinsfiisse mit den Zinsintensititen vertauschen,

1aI (si
a.’E i e:c ! (62*)

e.’E

Es 1st also

Das ist aber die Formel, welche Meidell aus gewissen Ungleichungen
von Jensen hergeleitet hat.

* *
¥

Gegeben sind drei Grundtafeln mit 0-ten Summen der diskontier-
ten Zahlen fiir dquidistante Zinsfiisse 14, 1, =1, + d, 15 = 15 + 2d.
Gesucht wird eine Niherungstormel fir “a, wenn 1, =1y 4 ud. Die
Néherungsformel des 1-ten Prizisionsgrades konnen wir schreiben

ay = A1 + Bry
Wenn 4, = 14 + (u ——1)d, ist der Quotient

@ (=25 Vo1t Bga—
“lg 1+Br,,) & 1+ Br,,

oder in weiterer Niherung, weil der absolute Wert von B nicht gross
sein kann, wenn 1, nicht allzusehr von 1, entfernt ist, was ja in der
Versicherungspraxis nicht vorkommt,

"aq
= ~ 1+ Bg,d(1 —Brﬂ_l)

-

und weiter nach einigen Umformungen, wennr, | =1y +d + (u —2)d
eliminiert wird

"

— v [1+ Bg,d— B2g,rod — B2, d%] + (u —2) [— B2 g, d]

,u—-la
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Der Ausdruck in der linken eckigen Klammer ist aber annihernd gleich

2q

+— und der Ausdruck in der rechten eckigen Klammer aber annihernd
a

2a la
gleich g also
“a 2q ' 2q 1
P (e —2) (g = ga—) (63)

Das ist aber die Formel, welche Frucht und Vellat [10] auf anderem
Wege gefunden und mit «metodo der quozienti» benannt haben. Diese
Autoren haben zwar ihre Quotientenmethode an den vorschiissigen
Rentenbarwerten a, entwickelt, jedoch zahlenméssige Beispiele haben
die theoretischen Vermutungen bestétigt, dass sie bei nachschiissigen
Rentenbarwerten a, bessere Niherungswerte liefert.

% 4
*

Den vorausgehenden Fall wollen wir noch mit der Nédherungsformel
des 2-ten Prizisionsgrades behandeln. Diese kann geschrieben werden

@ — Co= A (1 + Br)® (64)

Bilden wir nun die Quotienten

g —C, Bd | | Bg, 1°

2 ~ A —— - il -0,

0q — O 1+ Bry | i 14 Br,
2a —C, [1+ Bd 1% '1+ By, Jd—Q
15 —C, 1+ Blrg+d)| | 14 Bry+4d) !

Wenn d = i, — 1, hinreichend klein ist, diirfen wir niherungsweise
Qo = @, = Q setzen. So wird

lg—C, % —C, 0
% — C, N g —C, B
Daraus folgt
05 2q — 192 20— 1g
Oy = und @ = o

20— 2% + % g —0q
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Die Niaherungsformel lautet -also

—C BA ] B 4. 4
e SN TR L N R

% —C, 1+ Br, 1+4- Br,
oder auch a—C, A a—C, A4
e R Q ¢ und —— o Q d (65)
g —C, a — C,

Diese Naherungsformel haben ebenfalls Frucht und Vellat [10] gefunden
und mit «metodo der quozienty ragguagliati» genannt. Diese Methode
gilt genau so fiir a, wie fir a,.

' * . *

~Infolge (64) konnen wir schreiben

o Bli—iy |
14+ —— —1
a—"% (1 +B*r0>”2 ] 1+ Bry
a—1g - 1+ Br B(1—1,) |
\ + 1 1+ ( 1) 1
1+ Br,

Wenn wir beide Ausdriicke in den eckigen Klammern in Reihen ent-
wickeln und nur die beiden ersten Glieder der Entwicklung behalten,

finden wir . ..
a—"'a (1—}—Br0)”2“ 1—1,
——————— \,‘ ———— e

a-—1a ) T—1y

und ahnlich : _q - y
e ol | SESsssss e
f%a—:3a 1+ Br, Tg— 1y

Durch Multiplikation der beiden letzten Niherungen gelangen wir
zur Formel von Crosato

> P e (66)
a—la %a—*a 1—1 tg—1
s s
*

Die Néherungsformeln der 11. Gruppe, welche verschiedene Autoren
gefunden haben, sind also entweder spezielle Integrale der Grundglerchung
des Zainsfussproblemes oder aber Funktionen, die sich diesen Integralen
anndhern.
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2. Varwation von k,

Wenn die Grundtafeln ausser N, noch S, enthalten, kann k,
systematisch nach Zinsfiissen und Altern variiert werden. Aus (45, 1)
folgt nédmlich

,u-{-lI,vt ,u—}—la
sy log (67,1)

H

“hy(z + 1, 75/1-+~1 -

) = log

‘“‘tU

L

Wenn die Grundtafeln auch hohere S enthalten, konnen auch
weitere k, variiert werden. Aus (45) folgt allgemein

fet IIn Ttk u+1 Innl ,Dn—l
u : S w1 . -1
hn (:B + 1’ ,"'n 417 ?’_u) “ log '“In o * IOg “In_l ’Un_l (67’ n)
o 1

Solche Bestimmung von k, 1st besonders wichtig bei kurzen Renten,
die grossere k, als lebenslingliche Renten haben, und bei Ausscheide-
ordnungen, die sich wesentlich von den Absterbeordnungen unter-
scheiden (z. B. Ausscheideordnungen der Aktiven, Ledigen, Ver-
heirateten usw.), bei welchen die in der Tafel im Anhange gegebenen
verallgemeinerten Poukkaschen Zahlen nicht ohne weiteres an-
gewendet werden diirfen.

3. Varation von k,

Die systematische Variation von k, hat uns zu Néaherungsformeln
einzelner Prizisionsordnungen (48) gefithrt. Wir haben also

1 n+1
=N (68, 0)
a[n] r=0
In n+1
| =20, | (68, 1)
a[_n] y=1 ‘
(L )2, (21, — 1) il
(Tg)* — gy 2Ly — ) S0, (68,2)
a3 r=
(n]
Durch Umtausch von r, ay,, I, I[“’n}, oo omit 7, "a, 4,002 L

bekommen wir ein System von linearen Gleichungen mit den Un-
bekannten C,, C;, C,, ..., welches wir allgemein z. B. mit Deter-
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minanten auflosen konnen. Im Falle dquidistanter Zinsfiisse koénnen
wir aus “a die ap, unmittelbar, d. h. ohne Kenntnis von C,, einfach

1
durch Differenzenbildung von o= berechnen.
‘a

* ¥
*

Die lineare Interpolation zwischen % und la

% (i, —1) + a1 —1)

= q
. i ' . 1 1
liefert zu grosse, die lineare Interpolation zwischen —— und —
a a
Pata (1, — 1)
= )

ta (i, —1) + %a (v —1,)
dagegen etwas zu kleine Nédherungswerte. Folgende Kombination

gy [1—Fky (x4 1,9)] + agy by (x4 1,9) ~a (69)

in welcher k, die Poukkasche Funktion bedeutet, fithrt aber wiederum
zu vorziiglichen Naherungswerten, wie man sich durch Reihenentwick-
lungen iiberzeugen kann. Wegen der Einfachheit ist (69) fiir praktische
Berechnungen ganz besonders geeignet.

4. Gegenseitige Beziehungen zwischen der I. und 11. Gruppe

Die Integrationskonstanten haben wir bet der I. Gruppe so
bestimmt, dass die Ndherungskurve durch mehrere unendlich nahe
liegende Punkte (mehrfachen Punkt), bei der II. Gruppe aber durch
Punkte, die alle oder wenigstens zum Teil in endlichen Entfernungen
voneinander liegen, hindurchgeht. Daraus schliessen wir, dass sowohl die
Integrationskonstanten als auch alle anderen Grossen und Formeln
der II. Gruppe in diejenigen der I. Gruppe iibergehen miissen, wenn
man die diskret liegenden Punkte so verschiebt, dass sie alle zu einem
mehrfachen Punkt zusammenschrumpfen — und umgekehrt, dass
alle Grossen und Formeln der I. Gruppe in diejenigen der II. Gruppe
ibergehen miissen, wenn man aus dem mehrfachen Punkt einen oder
mehrere Punkte in eine endliche Entfernung herauszieht.
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Der Ubergang von der II. zur I. Gruppe erfolgt rechnerisch durch

den Grenziibergang ]
lim (8, —d,) -~ 0

Bei nur zwer Punkten, §,, d,, haben wir

lg =% + %’'dé

Da wir bei der II. Gruppe keine allgemeinen Formeln der Integrations-
konstanten haben, werden wir diesen Grenziibergang am einfachsten
Beispiel, und zwar an der Formel der Integrationskonstante B von
ayy (53) zeigen. Es ist

Oa’ luhl
14+ —dé) —1
l‘ BH 1a1-h1 . 0a1—h1 (oa + Oa'da)l_hl __oal—hl oal—hl Oa
1m b T it
(51—1— 60 Tl - ,ro 660+d6 e 660 ro ed(s R ].

oM,
=R OMflJ_kl Vo (1 —hy) m

= B!, wie in (30)
0

Ahnlich konnen wir nicht nur alle anderen Integrationskonstanten
4, B, 0, von qa, und «Integrationskonstanten» C, von ap, der
II. Gruppe in diejenigen der I. Gruppe umwandeln, sondern auch
die k, bzw. die h,. Die Formel fiir %, (67, n) konnen wir schreiben

1 1 0 W
—py LM, o7 —1,°M, v
no

61—’ 60 l.n an—l UT_I — lﬂ O.M

n-1
n-1Y

Setzen wir nun
M, =°M, + oM. do

‘M, ="M, , + "M, dd

n n—

v, = vy + v,d 0

in obige Gleichung, entwickeln wir nachher die logarithmischen Funk-
tionen in Reihen, so finden wir nach einigen Umformungen

0A 0
4 nt1 n-1 Vo
lim )T = ————"" — %!, wie in (14%)
01~b dl) M'ﬂ,
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Der Fall dreier oder mehrerer diskret liegender Punkte braucht
keiner besonderen Erklirung. Es wird ndmlich zuerst ein Punkt nach
der eben erklarten Weise verschoben und die anderen Punkte dabel
stehen gelassen. Nachdem dies geschehen 1st, wird der zweite Punkt
verschoben und so der Reihe nach alle diskret liegenden Punkte.
Man kann aber auch alle Punkte auf einmal verschieben. So eine
simultane Verschiebung wollen wir an der Formel (60, 1) zeigen. Die
in dieser Formel auftretenden n Doppelpunkte verschieben wir so,
dass sie alle im Punkte % zusammenschrumpfen, durch welchen selbst-
verstindlich die Niherungskurve @, hindurchgehen muss. Infolgedessen
wird @,y = @q, %, = %y, und so kénnen wir (60, 1) schreitben

n—2

A " A4
— o Cory|l—— vgv—_(q1,—»)| =0 70
‘Po‘f‘B 0+%y0lBo g )] (70)
Die A-te Ableitung von (70) nach r, lautet:

d g, A d'a, N 2—:2

- 4 i
—————————— -4 — 4 Crom,|—v,(v—4)—(9,—») | =
dr’ B ar 01.:,-_ o(¥); [ I of )— (g ) 70%)
Es ist aber zufolge (60%), (17) und (16)
d)- Do d/‘. (g-n OMO - OMl) (gn _ 2’) OMA T OMLH (71)
dry drl N h |
d* d* (—O°M, v, oM
O(,G: ( ‘10):__ i+l (71%)
dr; drg rptt
Wenn A =n-—1, bekommen wir aus (70%)
dﬂ-l Po OM”
ant gt TRy . %
lim AR 0 _ n— N (72)
0= 00 \ B d" a, 1 h) M, B
i T

also genau denselben Wert wie durch die Division von (35, 4) mit
d' d* A _
(i’jo ) - , — 1n (70*) eliminieren, finden
dr dr* B

wir nach einer Umformung, wenn wir einfachheitshalber schreiben

(35, B). Wenn wir nun



()Mn
w01 =Mm—A—m—A—1h,

folgende Gleichung

n-2
5 -— AN NOM
ZOW-TS(”);. [1—(1)—”)—J = OM}.M——@"}“

n-101 n-01
aus welcher man zundchst C,_,, nachher € _, usw. der Reihe nach
alle C, von v =n—2,n—38, ... 2, 1, 0 berechnen kann. Wir kénnen
aber C, auch allgemein berechnen (z. B. mittels Determinanten,
unvollstindiger Induktion usw.), jedoch wegen der Umsténdlichkeit
der Berechnung miissen wir davon absehen und schreiben gleich das
Resultat nieder, nidmlich

vy n-2—v 2 0 'nmv—i.
T)O Z it
! ! Vot m, , , "Ml

n'n—y-i +

Das ist aber die Formel (35, C). Bs ist also tatsichlich

lim ¢ = (!

0.’*‘ - ()()

A4
Durch Einsetzen von B und C, in (61) geht diese Formel der II.Gruppe

in die allgemeine Néherungsformel des Rentenbarwertes der I. Gruppe
(86) tiber.

* *

Eine endliche Verschiebung ist nichts anderes als die Summe un-
endlich kleiner Verschiebungen, welche bekanntlich durch bestimmte
Integration berechnet wird. Die Auseinanderziehung der unendlich
naheliegenden Punkte erfolgt rechnerisch also durch Integration der
Differentialgleichungen, die wir aus den Formeln der I. Gruppe durch
Umtausch von d, mit § erhalten. Wir nehmen an, dass die k,, 4, B, C,
so wenig vom Grundzinsfusse abhingen, dass wir iiber diese Un-
genauigkeit hinweggehen diirfen.
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Um die Umwandlung von h, der I. Gruppe in h, der II. Gruppe
zu vollziehen, schreiben wir (14%)

Mn+1 . hI Mn
Mn ! Mn—l

oder mit Riicksicht auf (16)

M, M,
——n=Fh —(n—1)
M Mn—l

n

Bei der Annahme h! = konstant, was der Wirklichkeit nur annihernd
entspricht, bekommen wir durch Integration

M " = B(M, " (79)

wo B eme Integrationskonstante darstellt. Wenn 6 =4,,d,,,, be-
kommen wir aus letzter Formel zwei Gleichungen, aus welchen folgt

u+1 n w+1 ;'\1 n—1
w11 Mﬂ 'D#H'l n—1 vy-i—l
hn = log T ————e i Og 1

“M, “M, o

Wir haben so aus h! durch Integration “hl! gefunden. Siehe (67,n)!
Der Wert von “hI! ist hier durch zwei Grundzinsfiisse bestimmt. Wir
koénnen aber (73) mit Hilfe von (17) noch weiter integrieren und so
weitere Formeln aufstellen, die “h!! durch drei, vier, ... n Grund-

zinsfiisse ausdricken, ndmlich
1
M, _ v"'= (4 4 Br)ihm (73, n—1)
2-hn

Mn—z vn—Z == (A —I— B’I‘) 1-hy, -I— 011—2

M, = (44 Brym4 > C,r
»=0
Damit haben wir aber nichts anderes als die Grundgleichung neuer-
dings, jedoch auf eine andere Art wie frither integriert und die all-
gemeine Niherungsformel des Rentenbarwertes (26) samt ihren Ab-
leitungen gefunden, aus welechen sowohl %, als auch die Integrations-
konstanten 4, B, C, berechnet werden koénnen, vorausgesetzt, wenn
hinreichend Ausgangswerte bekannt sind. Explizite Formeln fir “h,,
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wenn y > 3, kénnen wir jedoch nicht geben, weil wir die Gleichungen
in allgemeiner Form nicht auflésen konnen.

Wenn wir endlich noch d, mit ¢ in den Formeln der Integrations-
konstanten A, B, C, der 1. Gruppe, d. h. in (35, 4), (385, B), (35, C)
vertauschen, erhalten wir drei Differentialgleichungen von o', a”,

a”, ... a™. Um die Integration von 4 und B zu erleichtern, dividieren
wir (35, 4) durch (35, B)

(1 —p)
A M,
N M,
Daraus folgt 1
M, M, 1 r
= —(n—1) = (74)
Mn—l Mn—l A
1—h, B +r

A
Bei der Annahme 5= konstant, was der Wirklichkeit nur annéhernd

entspricht, kénnen wir (74) integrieren. Wir finden so

1
M, v = (4 + Br)th (74%)

Wenn r =r,, r;, bekommen wir aus (74*) zwei Gleichungen, aus
welchen folgt
r, (°M,

n-1

) — 1y (M, 0 )

13—

A=

("M, i) — ("M

n-1

b ) (75)

U”h—"%

Fir n =1, 2,3 bekommen wir aus (75) die bereits oben gefundenen
Werte von 4 und B der II. Gruppe, némlich (53), (56), (59). Durch
weitere Integration von (74*) bekommen wir wieder die allgemeine
Néherungsformel des Rentenbarwertes (26) samt ihren Ableitungen,
weil (74*) mit (73, n — 1) identisch ist. Zu demselben Resultat
gelangen wir auch durch die Integration der Differentialgleichung
von C,. Durch die Auseinanderziehung einzelner Punkte aus dem
mehrfachen Punkt sind wir also zu unserem Ausgangspunkte, ndmlich
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zum Gleichungssystem (52—0), (52—1), (52—2) usw. zuriickgekehrt,
aus welchem die Integrationskonstanten der II. Gruppe zu bestimmen
sind. Wir konnen die Differentialgleichungen von 4, B, C, auch
einzeln, d. h. ohne Kombination mit den anderen zwei Gleichungen,
integrieren, jedoch das hétte keinen praktischen Wert.

Bestimmung der Integrationskonstanten
der allgemeinen Niherungsformel des Rentenbarwertes mittels
Parameter der Ausscheideformen (III. Gruppe)

Einige Ausscheideordnungen lassen sich bekanntlich wenigstens
in gewissen Altersintervallen durch mathematische Formeln darstellen,
welche eine bestimmte Anzahl von Parametern o, f, y ... enthalten.

Es 18t also
=1, 8,97 ...)

Infolgedessen sind sowohl die diskontierten Zahlen °D, als auch alle
Summen derselben %S ebenfalls Funktionen dieser Parameter. Daraus
folgt, dass nicht nur die k,, h,, °M,, sondern letzten Endes auch
alle Integrationskonstanten 4, B, C, bzw. 4, B, C, Funktionen der
Parameter o, f, », ... sein miissen. Man kann also bei solchen Aus-
scheideordnungen anstatt der Summen der diskontierten Zahlen die
Parameter der Ausscheideformeln zur Berechnung der Integrations-
konstanten heranziehen. Als Beispiel wollen wir die Ausscheideformel

von Dormoy

1= K&

nehmen. Einfachheitshalber setzen wir den Proportionalititsfaktor
K =1, so dass die Ausscheideformel

[, = 5"

nur ein einziges Parameter «S» enthiilt. Es ist bei dieser Ausscheide.
formel |

Sw )x+1 ‘
() __ ( o _ q ¢ _
OSCC‘L]. _ (1 S’Uo)y—l’l ’ Y — I! O? 1} 2’ ce. O

kn(x’q“‘):]-: n=20,1,2 ...

Die Ausscheideformel von Dormoy hat also die merkwiirdige Eigen-
schatt, dass alle k, vom Alter z und Zinsfusse 4 unabhiingige Kon-
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stanten sind. Deshalb miissen die Formeln, welche wir im folgenden
fir die Rentenbarwerte herleiten werden, keine Niherungswerte,
sondern exakte Resultate liefern. Es ist weiter

oM — (—1)"»! S,
T (1—Suyt!
, — n-+1
n
Gy == = 1
o (m
n "n-p nn—g

Wenn wir nun obige Werte in (85, 4), (35, B), (35,C) bzw. in (28)
einsetzen, finden wir folgende Ausdriicke fiir die Integrationskon-
stanten

A= 1 A= (—87
1 _1

B=_ B= —(—8) ¢ (76)
S s

¢, =0 C,=0

Der Barwert der konstanten und der steigenden Rente ist also bei
der Ausscheideordnung von Dormoy

()

n—

r\7t  Swv

Pemar’ - I—S’U

n—2 3
= Ser—rdt B — [ st rg =20
=1 - = (1—Sv)*®
Die Formeln der III. Gruppe konnen wir in Prézisionsgrade und
Prizisionsordnungen einteilen, genau so wie die Formeln der I. und
der II. Gruppe. Die Ausscheideordnung von Dormoy hat eine Aus-
nahme, weil bei ihr die Naherungsformeln aller Prizisionsgrade und
Préizisionsordnungen wegen k, =1 exakte Werte geben, was bei
anderen Ausscheideformeln selbstversténdlich nicht der Fall ist.
Der Unterschied zwischen der I. und der II. Gruppe einerseits
und der III. Gruppe andererseits besteht nur in der Formalitit der

15
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Berechnung der Summen der diskontierten Zahlen, mit welchen die
Integrationskonstanten bestimmt werden. Bei der I. und II. Gruppe
werden die “S{" «arithmetisch», d. h. zahlenméssig durch wiederholtes
Addieren der diskontierten Zahlen der Grundtafeln, bei der III. Gruppe
dagegen «algebraisch», d. h. durch die Analyse der Ausscheideformel
ermittelt, weiter nichts. Die Verwandtschaft der III. Gruppe mit
der I. und der II. Gruppe ist also noch grisser als die Verwandtschaft
zwischen der I. und der II. Gruppe. HEs ist klar, dass die Methoden
der I. und der II. Gruppe ohne weiteres auch bei den formelmissigen
Ausscheideordnungen angewendet werden diirfen.

Bis jetzt wurde die IIL. Gruppe als ein corpus separatum des
Zinsfussproblemes betrachtet und diese Ansicht mit folgenden zwei
Argumenten motiviert:

1. Die Formeln der I. und II. Gruppe geben nur Niherungswerte,
die Formeln der III. Gruppe dagegen mathematisch exakte Resultate.

2. Bei der I. Gruppe reicht eine einzige Grundtafel, bei der
II. Gruppe nur einige wenige (zwei, drei, vier ...) Grundtafeln aus,
bet der 1II. Gruppe ist dagegen eine sogenannte « Standardtafel», d. h.
ein ganzes System von sehr vielen, z. B. auf einen Hundertstel des
Prozentes abgestuften Grundtafeln notig.

Diese Ansicht ist nicht richtig. Die Formeln der I. und der
II. Gruppe konnen ebenfalls zu exakten Werten fiihren, wenn wir
nur den Prizigionsgrad bzw. die Prizisionsordnung hinreichend wachsen
lassen. In der Praxis reichen schon die Niherungsformeln des
3-ten oder des 4-ten Prézisionsgrades bzw. Prizisionsordnung aus.
Andererseits bekommen wir auch bei der III. Gruppe nur Niherungs-
werte, wenn wir nur einige, jedoch nicht alle Integrationskonstanten
durch die Parameter ausdriicken. Die Ausscheideformel von Dormoy
bildet dabei, wie bereits bemerkt, wegen k, = 1 eine Ausnahme.

Bei der III. Gruppe ist keine Grundtafel und noch weniger eine
Standardtafel notig, weil wir ja von der Annahme ausgegangen sind,
dass sich alle in Betracht kommenden Hilfsgrossen durch die Para-
meter der Ausscheideformel ausdriicken lassen, wie wir ja iibrigens
an dem konkreten Beispiele der Ausscheideformel von Dormoy
gesehen haben. Die Standardtafeln dienen zur Berechnung der Renten-
barwerte, wenn sich auch die Parameter, also die Ausscheideordnung
selbst, nicht aber der Zinsfuss allein dndert.
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Obwohl die III. Gruppe durch ihre systematische Eingliederung
in das Zinsfussproblem theoretisch sehr interessant erscheint, hat sie
an und fiir sich jedoch keinen praktischen Wert. Abgesehen davon,
dass die praktisch brauchbarsten Ausscheideformeln so kompliziert
sind, dass eine formelméssige Berechnung der Hilfsgrossen k,, k, , “M,
meistens nicht leicht moglich ist, hat keinen Sinn, die Summen der
diskontierten Zahlen 9S¥), bis zur n-ten Ordnung zu berechnen, um
einen Naherungswert des m-ten Prézisionsgrades (Prizisionsordnung)
zu ermitteln, da wir schon aus der 0-ten Summe N_,, den exakten
Wert leicht herleiten kénnen. FEinen praktischen Wert bekommt diese
Gruppe in folgenden drei Fillen:

1. in Verbindung mit der Anderung der Parameter der Aus-
scheideformel, wie Blaschke an dem Makehamschen Sterbegesetz
gezeigt hat,

2. wenn sich Zinsfussénderungen durch Altersinderungen ersetzen
lassen, was bel der Ausscheideformel von Achard der Fall ist,

3. bei der Umkehrung des Zinsfussproblemes.

Die Autoren, welche verschiedene Formeln der III. Gruppe
aufgestellt haben, interessierten sich nie fiir Naherungswerte dieser
Gruppe, sondern sie trachteten ausnahmslos fiir einzelne Ausscheide-
formeln die Summation

w—T

t;}v‘lwﬂ(oc,ﬁ,y .

«algebraisch» durchzufithren, um so zu exakten N_ zu gelangen, was
ihnen allerdings nur bei einfacheren Ausscheideformeln (Moivre,
Dormoy wusw.) gelungen ist. Bei komplizierten Ausscheideformeln
(Achard, Gompertz, Makeham usw.) mussten sie aber die kontinuier-
liche Behandlung anwenden. So z. B. kann man bekanntlich bei der
Makehamschen Ausscheideformel den Barwert der kontinuierlichen
Leibrente mittels der Gammafunktion darstellen usw. Finen ganz
originellen Weg hat aber Hadwiger [11] eingeschlagen. Er versuchte —
ebenfalls in kontinuierlicher Weise —, das Zinsfussproblem ohne Kennt-
nis der Ausscheideformel in allgemeinster Art exakt zu lésen, d. h. aus
gegebenen %, (x, f,y ...) den genauen Wert von a,(x, f,y ...)
unmittelbar zu bestimmen. Seine «Universallosung des Zinsfuss-
problemes» lautet in unserer Schreibweise '



Universal ist diese Losung allerdings nur im Bereiche unserer
III. Gruppe. Ihre praktische Auswertung héngt offenbar von der
Integrierbarkeit der unter den Integralzeichen stehenden Funktionen.
Durchsichtlicher wird Hadwigers Methode in der diskontinuierlichen
Behandlung. Wenn man in seinen Verfahren die Integrale «[» mit

0
den Summen «X», die Differentiation F mit der Differenzenbildung
z

A = f(xz +1)—f(z), die Differentialgleichungen mit den Differenzen-

gleichungen usw. vertauscht, so gelangt man zu folgendem Gegenstiick
der obigen Formel

- 11 ¢ O .
=S I (2) e

0
L i

Die letzte Formel ist in gewisser Beziehung noch universaler als
die vorausgehende, denn sie ist auch dann auswertbar, wenn sich die
angedeuteten Multiplikationen und Summationen nicht «algebraisch»
erledigen lassen. Eine «arithmetische» Berechnung einzelner Produkte
bzw. einzelner Summanden (I. Gruppe) erfordert jedenfalls viel Zeit
und Arbeit. Diese Formel 1st iibrigens identisch mit der wohlbekannten
Reihenentwicklung des Leibrentenbarwertes

a’a: - 'Upm + vzpmpx+1 —|_ v3pmpa;+1 px—|—2 + ek

Nur wenige bereits bekannte Formeln der III. Gruppe, welche
verschiedene Autoren bisher gefunden haben, kénnen wir als spezielle
Integrale der Grundgleichung (14) auffassen. Einen solchen konkreten
Spezialfall stellt eben die von uns behandelte Ausscheideformel von
Dormoy. Der Grund dafiir liegt in der Tatsache, dass die meisten
Ausscheideformeln fiir die «algebraische» Berechnung der Summen #S%’
nicht geeignet erscheinen, weshalb die Autoren — im Gegensatze zu
den Losungsmethoden der anderen Gruppen — durchwegs bestrebt
waren, aus den Ausscheideformeln nur exakte, aber keine Ndherungs-
werte herzuleiten, da die letzten mehr Arbeit erfordern als die ersten.
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Bestimmung der Integrationskonstanten der allgemeinen Nidherungs-
formel des Rentenbarwertes bei Heranziehung von Zeitrentenbarwerten
(IV. Gruppe)

Den Zeitrenten liegt eine mathematische Ausscheideformel zu-
grunde, welche wir definieren

l.y,=1 bzw. 0, wenn {<m bzw. >m

z

Die Zeitrenten an und fir sich sind also schon in der III. Gruppe
inbegriffen, jedoch wegen der Eigenartigkeit, mit welcher sie zur
Losung des Zinsfussproblemes der Leibrenten herangezogen werden,
wird eine besondere Gruppe gebildet. Im Falle m = o haben wir die
sogenannte «ewige Rente». Die Integrationskonstanten finden wir,
wenn wir in (76) S = 1 setzen, also

A——1 e —
B= 11 B=4)—1 (78)
C =0 0, =0

Der Barwert der konstanten und der steigenden ewigen Rente ist
daher exakt (77)

1
G = (=1 41" = 0 (78%)

_ . r

_[Do:—-'r(—-l/—-l -|—rl/—]) zmi—z

Hat m einen endlichen Wert, d. h. die Zeitrente wird nur m Jahre

nachhinein' gezahlt, dann bestimmen wir am einfachsten die exakten

Rentenbarwerte aus der Differenz zwischen der unmittelbaren und
der um m Jahre aufgeschobenen ewigen Rente (46), also

1 1 1"

Qo == == 0 e = .

j T 1 (A (79)
+1

Ifzi_fum “fr—_!_ﬁ _ am—m@m

mTT g 2 11—

Wir konnen selbstverstindlich aber auch fiir die Qi I?ﬁ'l Usw.
die Ndherungsformeln aller Priizisionsgrade und Prizisionsordnungen
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nach den Methoden der I., IL., III. Gruppe aufstellen, genau so wie
fiir die Leibrenten. Die Summen der diskontierten Zahlen koénnen
nach der folgenden Rekursionsformel berechnet werden

Q1) (m +n— 1) pm+1

m

S — — (80)

Daraus folgt
—_nM  —(—1)" —1 m+1

Mn = nid, 4 ( l)wm(:’: + n )nv (81)

Speziell ist
- MO == a:ni'l
e MO + mvm-{—l
L= 1—w

1—m

M, — —8M, + (m 4 2);o™ !

1—o

Aus M, findet man leicht noch h, und ,7,. Die Berechnung von
Néaherungswerten der Zeitrentenbarwerte erfordert aber offenbar
bedeutend mehr Arbeit als die Berechnung von exakten Werten.
Einen praktischen Wert bekommen die Ndherungsformeln der Zeit-
rentenbarwerte erst bei der Umkehrung des Zinsfussproblemes, wie
wir spéter sehen werden.

Die Tatsache, dass sich die exakten Zeitrentenbarwerte fiir alle
Zinstiisse ¢ und alle Dauer m leicht berechnen lassen, hat einige Autoren
dazu bewogen, dass sie die Zeitrentenbarwerte zur Herleitung von
Niherungsformeln der Leibrentenbarwerte herangezogen haben, und
zwar vor allem zur Berechnung von Barwerten der temporiren Leib-
renten a, ;1. Der Unterschied zwischen a5 und a,,, besonders
wenn m klein ist, ist bekanntlich nicht gross, so dass Qo bereits als
eine e wenig {iberschiatzte Niherung von a, . betrachtet werden
kann. Diesbeziigliche Losungsmethoden konnen in zwei Untergruppen
zusammengefasst werden.
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Erste Untergruppe

Bei der ersten Untergruppe werden o

xz, m |(n

gewidhlte funktionelle Beziehung gesetzt, also

y und a;; 1n eine passend

F @y gy ) = O

x, m|(n)?

Die Funktion F' ist auf Grund besonderer Erwagungen zu bestimmen.
Als einfaches Beispiel wollen wir schreiben

Ha, gy = —2 (82)

z, m|(n) P

bedeutet den Ndherungswert der jéhrlich nachhinein zahl-

b
@, m | (n)

baren Annuitét, welche eine z-jihrige Person lebensldnglich, jedoch

hochstens m Jahre, zu zahlen hat, um die Schuld «1» zu tilgen. Der

Quotient aa"_“ stellt daher den Barwert dieser Zahlungen (wenn
z, m |(n

die Annuitéi,-tenf(a)uch im Ablebensfalle der Person gezahlt werden) dar,

welcher einem Leibrentenbarwerte Ha, ., annihernd gleichgesetzt

werden kann. Der Rentenbetrag H ist selbstverstindlich so zu be-

stimmen, dass das Gleichheitszeichen in (82) berechtigt erscheint.

Ubrigens wird H mit den Integrationskonstanten einverleibt. Ist

n =1, bekommen wir aus (82)

1 ,
(A + By = _Im (83)
ax, m | (1)

Die Integrationskonstanten 4 und B konnen nach den Methoden
der einzelnen Gruppen bestimmt werden. Haben wir z. B. zwei Grund-
tafeln zu Zinsfiissen 7, und 2, (II. Gruppe), so heisst es, folgendes
Gleichungssystem aufzulosen:

0q

N\ 1=
m | >
0y
ax, m |

lam_l 1k,
44 —l— BTI =

1 -
ax, m |

A—}—Broz(
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Daraus folgt Ot 1-hy 1, 11y
%, — 19,
z, m x,m
A : I - -
hh—7
(84)
19 . N\1-R 0 1-h
1 0
- g
T, m T, m
B - | . . |
hW—"h

Nach Einsetzen von 4 und B in (83) bekommen wir folgende Néherungs-
formel des 1. Prézisionsgrades

. . . 1
ax'm](l): Oacc,mi [ Uh—1 i T—7% <1am]oax,m)1 l}m (85)

0 y y 0q_ 1 -

Die Grésse a;; ist nach (79) zu berechnen, wenn sie schon den Zins-
tafeln nicht entnommen werden kann. Wenn wir in (85) h; = 2 und
1o = 0 setzen, bekommen wir folgende N&éherungsformel von Borch

m

' l :
Aemin) ( "‘) :Zl ol v la,

1——
G

(85%)
Haben wir dagegen nur eine einzige Grundtafel zum Zinsfusse 1,
(I. Gruppe), dann miissen wir den Punkt 8, so verschieben, dass er
unendlich nahe dem Punkte d, zu liegen kommt, d. h. wir haben zu
setzen
61 — 60 + d6
Yoy = %ag—°1,,dd
l%m"i - Oa’:c, 'rﬁ'[_OI:c, ‘n‘ﬂdﬁ

Durch diese Substitution bekommen wir aus (84) folgende Werte der
Integrationskonstanten:

%\ M -
.A — (Oa 1_(1’-—}'«1) (]a B B Oa 7

@, m | @, m |

O\ Lesi T
B = Vo (1 —hy) e
Oa’m, m | Oa’a:, m| Oa’m |
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Nach Einsetzen von 4 und B in (83) bekommen wir

a

aml()y @

Ox}n] °I, m| L\ s
' [1+(1—h1) 0y 4 (0 2 ’”‘)]hrl (86)

- 0y i 0y —
a’m| am| a’z,nﬂ a’m|

Wenn wir in (86) h, = 2 und 1, = 0 setzen, bekommen wir eine zweite
Néaherungsformel von Borch

m m

Ar m (1) t2=11$+t A m+1 ;tlﬂ': *
” = o 1+ 7w (86%)
m | z 2 lx+t
=i

Eine weitere, recht einfache Formel von Borch bekommen wir, wenn
wir in (83) rein schablonenhaft setzen

I, + 9
A:——————_ll_ 2, B=0, hi=12
namlich
Az, m (1) b + B (86%*)
am lm
Nach Borch 1st
am"i

Die Integrationskonstanten kénnen auch nach den Methoden der
III. Gruppe, d. h. mit Hilfe von Parametern der Ausscheideformeln,
bestimmt werden, was jedoch keinen praktischen Wert hat, weil
@, ) leichter als a, 5,y zu berechnen ist. Wenn z. B. im Alters-
intervalle (z,x + m) die I, , nach dem Gesetze von Dormoy ab-
nehmen, haben wir exakt

m _ - r—S lom \=
az,m|:?:‘l(sv)t:am"|(@)’ V= ) SZ( )m

T

Im Falle linearer Abnahme von I, ist exakt

l,—1

x T+ m
.Im’l
ml,

Ug, ) = A

usw.
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Die Niherungsformeln der ersten Untergruppe der IV.Gruppe,
welche verschiedene Autoren gefunden haben, sind also spezielle Integrale
der Grundgleichung des Zinsfussproblemes oder aber Funktionen, due
sich diesen Integralen anndhern.

Die Niaherungsformeln der ersten Untergruppe konnen also genau
so in einzelne Prézisionsgrade und Prézisionsordnungen eingeteilt
werden wie die Niherungsformeln der drei vorausgehenden Gruppen.
Die Integrationskonstanten konnen also nach den Methoden der
I., II., III. Gruppe bestimmt werden. Schon deshalb muss fiir die
Liosungsverfahren, welche Zeitrentenbarwerte heranziehen, eine beson-
dere, d. h. die IV. Gruppe gebildet werden.

Zweite Untergruppe

Bei der zweiten Untergruppe werden die Leibrentenbarwerte in
Zeitrentenbarwerte umgewandelt und die notwendigen Rechnungen
an den Zeitrentendauern vorgenommen. Nach der Bestimmung der
passenden Zeitrentendauern kehrt man von den Zeitrentenbarwerten
zu den Leibrentenbarwerten zuriick. Hieher gehoéren die Formeln
von Lenzi und Steffensen. Diesbeziigliche Verfahren sind aber ihrem
Wesen nach nichts anderes als eine Umgehung des Zinsfussproblemes,
welches ja nur auf die Interpolation in bezug auf den Zinsfuss, nicht
aber in bezug auf die Rentendauer absieht — so etwa, wie man eine
Wurzelziehung aus einer Zahl durch die Division des entsprechenden
Logarithmus umgehen kann. Bei dieser Untergruppe erscheint eine
Bestimmung der Integrationskonstanten iiberfliissig, und daher fillt
sie aus dem Rahmen unserer Betrachtungen heraus.

Andere Versicherungswerte

Nehmen wir einen Versicherungswert V(1) = V, welcher sich
als eine I'unktion eines einzigen Rentenbarwertes a darstellen lasst,
also V' = V(a). Daraus folgt

a=f()
df
v — 7 V’
R}
d*f df
"o V2 S el
vzt
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Wenn wir mit Hilfe obiger Gleichungen den Rentenbarwert a bzw.
seine Ableitungen a® in (14) eliminieren, so geht die Grundgleichung
iber in
GV, V.,V ...V =0

Das vollstindige Integral dieser Differentialgleichung stellt die all-
gemeine Naherungsformel des Versicherungswertes V(1) dar. Die
Integrationskonstanten kénnen nach den Methoden der vier Gruppen
bestimmt werden, genau so wie bei den Rentenbarwerten. Das voll-
stindige Integral bekommen wir aber auch viel einfacher, wie leicht
einzusehen ist, wenn man schlechtweg in V(a) den Rentenbarwert o
mit dem Néherungswerte a,, vertauscht. Deshalb wollen wir den
Néaherungswert eines Versicherungswertes n-ten Prizisionsgrades bzw.
n-ter Prizisionsordnung definieren

V= Via)
Vo = Viag)

und zwar auch dann, wenn ¥V eine Funktion von mehreren Renten-
barwerten (verschiedener Alter) ist.

(87)

Umkehrung des Zinsfussproblemes

Bei der Umkehrung des Zinsfussproblemes haben wir aus einem
gegebenen Versicherungswerte V(1) = V den Zinsfuss ¢ zu bestimmen.
Zu diesem Ziele gelangen wir so, dass wir in (87) die Ndherungswerte
Viy bzw. 1, mit exakten V, weiter ¢+ mit 5, bzw. 1, vertauschen
und die so entstandenen Gleichungen nach 1, bzw. 7, auflosen.
Infolgedessen konnen wir diesbeziigliche Losungen in Pramsmnsgrade
Toys Y1ys Yzy - - - DZW. in Prézisionsordnungen iy, gy, 9y - - - elnteilen.
Desgleichen konnen wir die verschiedenen Losungsmethoden mit Riick-
sicht auf die uns bekannten Ausgangswerte wiederum in vier Gruppen
zusammenfassen. Damit erscheint die Umkehrung des Zinsfussproblemes
bereits als erledigt. Wir wollen dennoch einige einfachere, fiir die Praxis
wichtige Formeln samt zahlenméssigen Beispielen geben.

1. Gruppe

Aus (36) bekommen wir nach Umtausch von a,, mit a und @
mit 1, folgende Gleichung
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1 Ry M M, 4 (1 =hy) Vg (i =) °M,, |
a:Z;T [vo("’(n)_%)] [OMv_ ] + Y [1 + o)

o In—-1
nnnau M n n-1

y=0

aus welcher i(n) zu berechnen ist. Wenn n =0, 1, 2, kénnen wir fi(n) (88)

explicite darstellen, ndmlich

. . OMO OMO
Yoy = %+ To o, (1 T ) (88—0)
a \1Mm
)
=0+ i (88—1)
(1 —hy) v, “g‘j\“/_[“‘;
0 1-hy
Yo) = % T+ " o, (88—2)
—hy) v, ol

1

Ahnlich kann man Ty @us I (42) und 4y, aus a (51) usw. berechnen.
Wenn ausser a noch I bekannt ist, gestaltet sich die Berechnung
von %, infolge (45,1) sehr einfach. s ist nimlich

_ rol [/ % \™M
Yy = —1
oI a
Wie 4, aus V,(7) berechnet wird, werden wir an einem konkreten

Beispiele zeigen. Die Pramienreserve einer lebenslinglichen Ablebens-
versicherung ist bekanntlich

1 -+ Aoyt
1+ a,

x = Beitrittsalter, ¢t = die zuriickgelegte Versicherungszeit. Wenn
wir 1, bestimmen wollen, haben wir a, und a, , mit der Néherungs-
formel von @, zu ersetzen, in welcher ¢ mit 7, vertauscht ist. Fiir
x =20, t =20 haben wir z. B. nach der STM ,V, = 0.14724. Bei
Anwendung der 3 9,-igen Grundtafel haben wir so zur Bestimmung
VOn g, %y, Yy folgende drei Gleichungen gefunden:

th:l_
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1 - 17.810 [0.59552 - 13.48814,]™

0.85276 =
1 4 22.775 [0.45535 + 18.182i,] "
1 - 17.810 [0.74114 + 8.62881 7, 1562
0.85276 — — [ + V)
1 4 22.775 [0.65142 - 11,6193 4, | -5
3.5086 4 15.3014 [0.82142 - 5.95252 1, ]-2-63636
0.85276 — - | + o

4.5071 + 19.2679 [0.75580 - 8.1399173(2)]‘2'65"636

Daraus folgt auf fiinf Stellen genau
fi(o) = 5.1513 %,
'i(l) = 4.9511 9%,
@'(2) = 4,9999 %,

Weitere Nédherungen haben keine wesentlichen Verbesserungen zur
Folge. Der exakte Wert ist ndmlich + = 5 9%,.

I1. Gruppe

Da wir bei der II. Gruppe keine allgemeine Néherungsformel des
Rentenbarwertes haben, miussen wir zunidchst mit Riicksicht auf die
vorhandenen Ausgangswerte eine passende Iformel aufsuchen. Sind
z. B. zwei Grundtafeln nur mit N, gegeben, dann haben wir die
Formel (54) anzuwenden, aus welcher folgt

P
(1) 1-Hy 041 Py

].a _Oa
Sind in den beiden Grundtafeln nebst N, auch S, gegeben, dann ist
(57) oder (61—2) zu nehmen, aus welchen 1, berechnet werden kann.
Sind mehrere Grundtafeln, die nur N, aber keine S, enthalten, vor-
handen, dann koénnen die Interpolationsformeln von Newton oder

.

Lagrange jedoch an rezvproken Rentenbarwerten s nacht aber an Renten-
a

barwerten “a mit Vorteil angewendet werden. In diesem Falle gelangen

Wir zu i, Usw.
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Wie 4,5 aus V(i) berechnet wird, werden wir an einem konkreten
Beispiele zeigen. Gegeben ist wiederum die Pramienreserve der lebens-
langlichen Ablebensversicherung nach der ITM fir z = 20, ¢ = 20,

und zwar L
a
Voo =1——— 0 — 0.10733
14 ay

Als Grundtafeln stehen uns die 4 %-ige und 5 9%-ige ITM zur Ver-
figung. Die a,, und a4, wollen wir mittels (61—2) ersetzen, also

- |
(ﬂf e

4 1.05
i (‘ﬁ)ﬁ =
A

Um grossere Genauigkeit zu erzielen, nehmen wir <~§> , 10,
1

192

a =10, + (la—1Cy)

g(x +1,5%), die sich auf 4, =59, beziehen, weil 5, offenbar in
der Umgebung von 1, liegt. Wir gelangen so zur folgenden Gleichung

8.2077 + 12.1813 [0.70841 -+ 5.8824,] 295
3.6880 + 14.2241 [0,59494 + 8.101 4] 15710

0.89267 =

Daraus folgt Ty = 6.4994 9

Der exakte Wert ist @ = 6.59% . Die Differenz von - 0.0006 %,
stammt eher von der Ungenauigkeit der Ausgangswerte in der Publi-
kation [4] als von der Ungenauigkeit der Ndherungsformel. Das
Risikokapital, berechnet mit a,, und a,,, macht 0.89267 aus, wie
oben, mit den diskontierten Zahlen dagegen 0.89262, also um 0.00005
weniger.

111. Gruppe

Bei der ITI. Gruppe kénnen wir schon wegen der Verschiedenheit
der Ausscheideformeln keine allgemeine Liosung fiir 1, geben. Es ist
vielmehr zar Bestimmung von i, eine besondere Behandlung bzw.
Analyse jeder einzelnen Ausscheideformel notwendig. Wir miissen
jedoch davon absehen und bemerken nur noch, dass zur Berechnung
von ¢ aus den Zeitrentenbarwerten bereits einige Naherungsformeln
bestehen, z. B. die von Achar, Bayley, De Morgan, die man in den
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Lehrbiichern der politischen Arithmetik und Zinsrechnung, z. B. in der
Arbeit von Forster [12], findet. Analoge Formeln fiir andere formel-
miissige Ausscheideordnungen wiren sehr erwiinscht. In Mangel
solcher Formeln bleibt uns nichts anderes tbrig, als die Methoden
der I. und der II. Gruppe bei Berechnung von i zu beniitzen auch
bei Versicherungswerten, welchen eine formelmissige Ausscheide-
ordnung zugrunde liegt. An folgendem Beispiele wollen wir zeigen,
mit welchem Erfolg die Formeln (88—0), (88—1), (88—2) bei Be-
stimmung von 1, aus a,, angewendet werden konnen. Gegeben sind
z. B. folgende Zeitrentenbarwerte:

m a:m

10 8.4760 4377
20 14.7069 8385
40 22.6547 3726
60 26.9497 5689
80 29.2708 1451

aus welchen 7, zu bestimmen ist. Der Zinsfuss + befindet sich offenbar
in der Umgebung von 4, = 8% . Wir haben deshalb die 3 9;-igen
%M, nach (81) und nachher h, und 7, berechnet und diese Hilfsgrossen

in (88—0) ... eingesetzt und so folgende Naherungswerte gefunden:
- Yo) Yy Up)
10 38.125 204 9%,  38.125 002 9%,  3.125 000 9%,
20 3.125 386 9,  3.125 006 9%,  3.124 999 9,
40 3.125 0189,  3.124 994 9,  3.125 001 9,
60 38.125 7059, 8.124 998 9%,  3.125 000 9,

3.124 991 9,

3.125 001 %,

80  3.125 689 9%

Der exakte Wert ist 4 = 8.125 9. Die Differenzen der letzten Dezi-
male bei 4, diirften eher von den vernachlissigten Dezimalen als
von der Ungenauigkeit der Néherungsformeln abstammen, da wir
ja nur mit 7-stelligen Logarithmen von Vega gearbeitet haben.

Unsere Formeln konnen selbstverstindlich mit demselben Krfolg
auch zur Berechnung des effektiven Zinsfusses (Rentabilitdat) bei
Anleihen verwendet werden.

Mit diesem Problem, natiirlich von ganz anderem Gesichtspunkte
aus, hat sich eingehend Birger Meudell [13] befasst.
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IV. Gruppe

Die IV. Gruppe kommt bei der Umkehrung des Zinsfuss-
problemes nicht in Betracht. Es miisste nebst a, ;1 auch a;;, bekannt
sein, was in der Praxis so gut wie nicht vorkommt, wenn es aber
schon vorkommen sollte, dann kénnte man 7 am einfachsten aus a,;,
nach den unter der III. Gruppe erwihnten Formeln berechnen. Im

Ay, m]

Falle, dass nur der Quotient bekannt sein sollte, konnte man ¢

aﬁj

aus (85) oder (86) berechnen usw.

Zusammenfassung und Schlussbemerkungen

Bevor wir eine Antwort auf die vier eingangs gestellten prin-
zipiellen Fragen des Zinsfussproblemes geben, wollen wir iibersichts-
halber unsere Ausfithrungen kurz zusammenfassen.

Aus der verallgemeinerten Poukkaschen Formel (3) haben wir
zunéchst eine homogene quadratische Differentialgleichung mit den
Stirlingschen Zahlen erster Art und der Funktion k,(z + 1, 1) als
Koeffizienten — die sogenannte Grundgleichung des Zinsfussproblemes
(14) — hergeleitet. Unter der Annahme k,(x + 1, 1) = konstant
haben wir die Grundgleichung integriert und so die allgemeine
Ndherungsformel des Rentenbarwertes ay, (26) gefunden. Unter einer
anderen Annahme, ndmlich k,(x + 1, 1) lasse sich durch eine unend-
liche Potenzreihe des Aufzinsungsfaktors r darstellen, haben wir eben-
falls mittels Integration die allgemeine Ndherungsformel des reziproken

1

Rentenbarwertes —— (48) gefunden. Die in diesen beiden allgemeinen
a
(7]

Néherungsformeln erscheinenden Integrationskonstanten kénnen nur

durch Ausgangswerte bestimmt werden, und zwar bei der I. Gruppe
durch die 9S) einer Grundtafel, bei der II. Gruppe durch die “S¥
zweier oder mehrerer Grundtafeln, bei der III. Gruppe durch die
Parameter der Ausscheideformeln, bei der IV. Gruppe unter Zuhilfe-
nahme von Zeitrentenbarwerten. Die Grossen k, konnen aus denselben
(leichungen wie die Integrationskonstanten berechnet werden. Die
Néherungsformeln, welche bis jetzt verschiedene Autoren aufgestellt
haben, sind entweder spezielle Integrale der Grundgleichung, so z. B.
die Formeln der
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I. Gruppe: Steffensen (39-1), van Dorsten (39-2), Poukka (40-2),
Christen-Frucht (41-2), Palmqvist (41%), Giittinger (36, 1),
II. Gruppe: Frucht (62),
III. Gruppe: Dormoy (77), Barwert der ewigen Zeitrente (78%),
IV. Gruppe: Borch (85%), (86%), (86*%),

oder aber Iunktionen, welche sich den speziellen Integralen der
Grundgleichung anndhern, so z. B. die Formeln der
I. Gruppe: Poukka (40%*), Berger (40**), Frucht (41-I), Evans (41-11),
Franckx-Frucht (41-11I), Hantsch(41--1V), Meidell(41-V),
II. Gruppe: Meidell (62%), Frucht-Vellat (63,) (65), Crosato (66).

Mit Riicksicht auf die Anzahl der Integrationskonstanten bzw. der
Ausgangswerte werden die Ndherungsformeln wn Prdzisionsgrade bzw.
wm Prdzisionsordnungen eingeteslt. Je mehr Ausgangswerte vorliegen,
desto mehr Integrationskonstanten konnen bestimmt werden, und
desto grosser wird die Prézision des Naherungswertes. Die Prizision
kann bei ausreichender Anzahl von Ausgangswerten beliebig, ja sogar
bis zur Exaktheit gesteigert werden. Dem Mangel an Ausgangswerten
kann durch die Werte der Funktion k, (x,1) wn der Tafel vm Anhange
abgeholfen werden. Die Grundgleschung qilt fiir alle wie auch immer
geartete Renten aller Ausscheideordnungen. Niherungsformeln anderer
Versicherungswerte V, (1) kénnen mat Hilfe von ay, bzw. ay, aufgestellt
werden (87). Die zur Berechnung von 1 (Umkehrung des Zinsfuss-
problemes) notwendigen Glewchungen bekommt man aus den Ndiherungs-
formeln durch Umtausch von V,, bzw. V,; mit dem exakten V,(1).
Auf Grund dieser Ausfiihrungen koénnen somit alle vier prin-
zipiellen Fragen des Zinsfussproblemes bejahend beantwortet werden.

* *
%

Schliesslich wollen wir die Grundgleichung des Zinsfussproblemes
noch unter der Annahme, k, sei eine Funktion des Zinsfusses, d. h.

B = b, (1)

integrieren. In diesem Falle muss das vollstindige Integral der Grund-

gleichung den exakten Rentenbarwert darstellen. Die Grundgleichung

(14*) konnen wir schreiben
M, ot

(‘7‘1 vn)2 n-1 'Un—i = hﬂ (r)

16
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Mittels teilweiser Integration (17) findet man leicht

1
] MM”;EE M?@—-i 'Unw—l + r= A _I_ f h’il (Ir) dr
Daraus folgt
M, v” B 1
M, o' r—A—[h,(r)dr

und nach weiterer Integration

dr
ﬂ,j ! — Bef r—A— [hy(r)dr

M n-2 ”_2 0712+Bf fr o f};r_d:dr

--------

n—2
a—?CT’LBf ff[rAfhn yar dr" ! (89)

Wenn wir in (89) &, als Konstante betrachten, bekommen wir die
allgemeine Néherungsformel des Rentenbarwertes (26). Um anstatt
Niherungswerte a;, exakte a zu erhalten, missen hy, hy, Iy ... als
Ffunktionen des Aufzinsungsfaktors r dargestellt werden. Das konnen
wir aber nicht, wenigstens nicht exakt. Ausserdem erfordern solche
Berechnungen so viel Arbeit, dass es praktischer erscheint, bei der
Annahme k, = konstant zu verbleiben, obwohl die Analyse des
Schlussgliedes in (89) interessante Krkenntnisse iiber das Zinsfuss-
problem zeitigen kann. Wenn z. B. die Gleichung

T—A—fhl Y ==

v verschiedene reelle Wurzeln r = oy, ay, @, ... o, hat, so ist exakt

1
a = % 1-hy (au)
I

=1

Die letzte Gleichung geht im Falle einer einzigen Wurzel r — —-—%

— My
in a,, tber. Analoge Formeln fiir den IFall imaginérer, komplexer
und mehrfacher Wurzeln sind leicht nachzubilden. Mit Hilfe des
Schlussgliedes (89) kann man unter anderem auch das Restglied B,
der Taylorschen Reihe (1) exakt berechnen, wo auch immer diese Reihe
abgebrochen wird. (Die dritte Voraussetzung der Taylorschen Reihe.)

*
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Das Zinsfussproblem in obiger Fassung erinnert an verschiedene
Probleme aus anderen Gebieten der Wissenschaft. So eine Analogie
wiire z. B. die klassische Herleitung der Keplerschen Gesetze aus der
Gravitationsformel von Newton. Bei diesem Vergleiche entspricht
die verallgemeinerte Poukkasche Funktion — der Gravitationsformel;
die Grundgleichung des Zinsfussproblemes — den Differential-
gleichungen der Bewegung; die bereits bekannten Niherungsformeln
des Zinsfussproblemes —- den vorher entdeckten Keplerschen Gesetzen
usw. Kine weltere Analogie aus einem naheliegenden Gebiete wire
die Quiquetsche [14] Generalisierung der Sterbegesetze. Bei diesem
Vergleiche entspricht die verallgemeinerte Poukkasche Funktion —
der Bedingung, dass sich in der Versicherung eine Gruppe von N
Personen mit einer anderen Gruppe von nur n << N Personen ersetzen
lisst; die Grundgleichung des Zinsfussproblemes — der wohlbekannten
homogenen linearen Differentialgleichung der Sterbeintensitit

n+1
> O =0

P
v=1

die bereits bekannten Naherungsformeln des Zinsfussproblemes —
den vorher gefundenen Sterbegesetzen usw. Zwei solche Sterbegesetze
als partikulidre Integrale obiger Differentialgleichung wollen wir wegen
welterer Analogien an dieser Stelle erwihnen, ndmlich die Gesetze
von Dormoy und Gompertz:

I, =KS* und I, = K¢~

Im Falle k; = L1 haben wir folgendes partikuldres Integral der Grund-

.2 b
gleichung des Zinsfussproblemes (41)

ay = AB = AB”

Zwischen dem Aufzinsungsfaktor r und dem Rentenbarwerte a besteht
somit bis auf die Parameter dieselbe funktionelle Beziehung wie
zwischen dem Alter x und der Zahl der Lebenden [, des Sterbegesetzes
von Dormoy, oder, zwischen der Zinsintensitit 6 und dem Renten-
barwerte a besteht bis auf die Parameter dieselbe funktionelle Be-
ziehung wie zwischen dem Alter z und der Zahl der Lebenden [, des
Sterbegesetzes von Gompertz. Aus dieser Tatsache konnen selbst-
verstindlich keine Folgerungen gezogen werden. Wir erwihnen sie
nur nebenbei als curiosum.



Anhang

Die Tafel der verallgemeinerten Poukkaschen Zahlen

. S(n+1) S(n—l)
kn(mﬁ @) —_® '

(S(ﬂ))z

T

berechnet auf Grund der slowenischen Volkssterbetafel, mannliches
Geschlecht, Beobachtungsperiode 1931—1933, fir die Alter z =1, 6,
11, 21, 31, 41, 51, 61, 71, 81, 91, fir die Prizisionsgrade n =0, 1, 2,
3, 4, 5 und fiir die Zinsfiisse v = 0 9, 1 %, 2 %, 8 %, 4 %, 5 %, 6 %,.

7 ky ke, k. kg ‘ Iy ‘ ks T
0%

1 0.59 (T 0.78 0.83 0.86 0.88 1
6 0.57 0.71 0.79 0.83 0.86 0.88

11 0.57 0.71 0.79 0.83 0.86 0.88 11
21 0.58 0.72 0.79 0.84 0.86 0.89 21
31 0.59 0.73 0.80 0.84 0.87 0.89 31
41 0.61 0.74 0.81 0.85 0.88 0.90 41
51 0.63 0.76 0.82 0.86 0.89 0.90 51
61 0.68 0.79 0.84 0.88 0.90 0.92 61
71 0.75 0.83 0.88 0.90 0.92 0.93 71
81 0.86 0.89 0.91 0.93 0.94 0.95 81
91 0.92 0.93 0.94 0.94 0.95 0.96 9

1%

1 0.70 0.75 0.80 0.84 0.87 0.88 1
6 0.67 0.75 0.80 0.84 0.87 0.89 6
11 0.66 0.75 0.81 0.84 0.87 0.89 11
21 0.66 0.75 0.81 0.84 0.87 0.89 21
31 0.66 0.75 0.81 0.85 0.87 0.89 31
41 0.66 0.76 0.82 0.85 0.88 0.90 41
51 0.67 0.77 0.83 0.86 0.89 0.91 51
61 0.70 0.80 0.85 0.88 0.90 0.92 61
71 0.77 0.84 0.88 0.90 0.92 0.93 1
81 0.86 0.90 0.92 0.93 0.94 0.95 81
91 0.92 0.93 0.94 0.95 0.95 0.96 91




z ko ke, k, kq k, ks T
2%

1 0.79 0.80 0.83 0.85 0.87 0.89 1
6 0.75 079 0.83 0.85 0.87 0.89 6
11 0.74 0.79 0.83 0.85 0.87 0.89 11
21 0.73 0.78 0.82 0.85 0.88 0.89 21
81 0.72 0.78 0.83 0.86 0.88 0.90 31
41 0.7 0.78 0.83 0.86 0.88 0.90 41
51 0.7 0.79 0.84 0.87 0.89 0.9 51
61 0.73 0.81 0.86 0.88 0.91 0.92 61
71 0.78 0.85 0.88 0.91 0.92 0.93 71
81 0.87 0.90 0.92 0.93 0.94 0.95 81
91 0.92 0.93 0.94 0.95 0.95 0.96 91
3%

1 0.86 0.84 0.85 0.87 0.88 0.90 1
6 0.82 0.83 0.85 0.87 0.88 0.90 6
11 0.81 0.83 0.85 0.87 0.88 0.90 11
21 0.79 0.82 0.84 0.86 0.88 0.90 21
31 0.77 0.81 0.84 0.87 0.88 0.90 31
41 0.75 0.80 0.84 0.87 0.89 0.90 41
51 0.74 0.81 0.85 0.88 0.90 0.91 51
61 0.75 0.82 0.86 0.89 0.91 0.92 61
1 0.80 0.85 0.89 0.91 0.93 0.94 71
81 0.88 0.91 0.92 0.93 0.94 0.95 81
91 0.92 0.93 0.94 0.95 0.95 0.96 91
4%

1 0.91 0.87 0.87 0.88 0.89 0.90 1
6 0.87 0.86 0.87 0.88 0.89 0.90 6
11 0.86 0.86 0.87 0.88 0.89 0.90 11
21 0.84 0.84 0.86 0.88 0.89 0.90 21
31 0.81 0.83 0.85 0.87 0.89 0.90 31
41 0.79 0.82 0.85 0.88 0.89 0.91 41
51 0.77 0.82 0.86 0.88 0.90 0.91 51
61 0.77 0.83 0.87 0.89 0.91 0.92 61
71 0.81 0.86 0.89 0.9 0.93 0.94 71
81 0.88 0.91 0.93 0.94 0.94 0.95 81
91 0.93 0.94 0.94 0.95 0.95 0.96 91




T ‘ Iy ’ ky | k, Iy Iey | ks ‘ T
5 %

1 0.95 0.90 0.90 0.90 0.90 0.91 1
6 0.91 0.89 0.89 0.90 0.90 0.91 6
11 0.89 0.89 0.89 0.89 0.90 0,91 11
21 0.88 0.87 0.88 0.89 0.90 0.91 21
31 0.85 0.85 0.87 0.88 0.90 0.91 31
41 0.82 0.84 0.86 0.88 0.90 0.91 41
51 0.80 0.83 0.86 0.89 0.90 0.92 51
61 0.79 0.84 0.87 0.90 0.91 0.93 61
1 0.82 0.87 0.90 0.92 0.93 0.94 71
81 0.89 0.91 0.93 0.94 0.95 0.95 81
91 0.93 0.94 0.94 0.95 0.96 0.96 91
6%

1 0.98 0.93 0.92 0.91 0.92 0.92 1
6 0.93 0.92 0.91 0.91 0.91 0.92 6
11 0.92 0.91 0.90 0.91 0.91 0.92 11
21 0.91 0.89 0.89 0.90 0.91 0.91 21
31 0.88 0.87 0.88 0.89 0.90 0.91 31
41 0.85 0.86 0.87 0.89 0.90 0.91 41
51 0.82 0.85 0.87 0.89 0.91 0.92 51
61 0.81 0.85 0.88 0.90 0.92 0.93 61
71 0.83 0.87 0.90 0.92 0.93 0.94 71
81 0.89 0.92 0.93 0.94 0.95 0.95 81
91 0.93 0.94 0.95 0.95 0.96 0.96 91
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