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Die elementaren Mittelwerte

Von H. Jecklin und M. Eisenring, Ziirich

1.

Wenn wir, um mit einem einfachen Beispiel zu beginnen, zwei

positive Grossen a; << a, haben, go sind bekanntlich M = —é— (ay + ay)

1
und der positive Wurzelwert M = (a, - a,)2 stets Mittelwerte, d. h.

zwischen @, und a, gelegene Grossen; ebenso liefert:

1 1
M = g [“1 + ay + (ay - 0'2)2]
stets einen Mittelwert, denn es gilt ja:
3a, <a,+ a, + a; < a;+ a, + (a, a2)'zl>' < a, + ay, + a, < 3a,

Dagegen liegt z. B. M’ = —é— - (@, + a4 + a,a,) nur zwischen a, und a,,

wenn gleichzeitig gilt:
2a, 2a,
und  a, >

a, <<
! 1+ a, 1-+a,

Man kann sich nun die Aufgabe stellen, moglichst umfassende
Klassen von Mittelwertformeln aufzustellen bzw. abzugrenzen, die
beziiglich der vorgegebenen — als positiv vorauszusetzenden — Gréssen
Mittelwerte liefern. Die vorliegende Arbeit ist ein Versuch in dieser
Richtung, soweit es sich um elementare Mittelwerte handelt. Die Dar-
legungen erheben ibrigens in den ersten drei Abschnitten nicht durch-
wegs Anspruch auf Originalitit, indem gewisse Teilbereiche schon
andernorts Behandlung gefunden haben. Wir nennen insbesondere
an ilteren Arbeiten jene von Schlomilch («Uber Mittelgrossen ver-
schiedener Ordnungen», Zeitschr. f. Math. u. Phys. 1858) und von
Lipps («Die Theorie der Kollektivgegenstinde», Leipzig 1902) und
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als neuere einschlagige Veroffentlichung das erste Kapitel im Buche
«Inequalities» von Hardy, ILattlewood und Pdlya (Cambridge 1934).
Dagegen mangelt unseres Wissens bisher eine umfassende und syste-
matische Theorie der elementaren Mittelwerte.

Es sel gegeben eine Reithe von n positiven Grossen:

0<a’1 <a2 <a3<--. \<\a',”

Soll fiir diese n Grossen ein Mittelwert M = f(a,, a5, ... a,) formel-
méssig bestimmt werden — im Gegensatz zu den der mathematischen
Statistik eigenen lagebedingten Mitteln —, so hat M auf jeden Fall
folgenden Bedingungen zu geniigen:

a) es muss eine reelle, stetige und eindeutige Funktion der a, sein;

b) es muss ausserdem eine symmetrische Funktion der a; sein;

c) es muss stets @, < M < a, (wobel das eine oder das andere Gleich-
heitszeichen — wie wir zeigen werden — in gewissen Grenzfillen
gilt, wihrend beide offenbar fiir den Fall a, = a, = a, gelten
miissen).

Soll nun weiter die Rechenvorschrift f(a;) durch eine algebraische
Formel gegeben sein — 1m Gegensatz z. B. zu den transzendenten
Mitteln —, so erscheint es im Hinblick auf den vorgenannten Punkt b)
gegeben, die sogenannten elementarsymmetrischen Funktionen der a;
als Ausgangspunkt zu wihlen. Die elementarsymmetrischen Funk-
tionen spielen bekanntlich eine grundlegende Rolle in der Theorie
der Gleichungen n-ten Grades mit n positiven Wurzeln. Bezeichnen
wir diese mit @, ... a,, so geht man aus von der Darstellung:

(z—a)(z—ay) ... (x—a,) =0 (1)
Ausmultipliziert und geordnet nach Potenzen von z erhilt man:
gt —s 2" gt — ... 18, =0
Hierin sind:
Si=a+ay+ ... +a,=Da
Sp =018y + @yag+ ... +a,a,= Da;a, t+k

—_— iy j ¥ -]
83 = Uy Uylg + Ay Ay + ... + 0,0, 0, = Da;aa,t+k+1

8, == Gyl y .0 6, = [Ja,
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die elementarsymmetrischen Funktionen der a,. Es besteht also all-
gemein s, aus (T:) Summanden, die je ein Produkt aus ¢ verschiedenen
a; sind; d. h. s, ist ein spezielles (?)-gliedriges isobares Polynom vom

Gewicht ¢ in den a,. Somit kénnen wir die folgenden n grundlegenden

Mittelwerte M (s,) fiir die Grossen a, ... a, definieren:

8 1
M(31)=*7‘1‘:—n“' Za’i

()

Von den grundlegenden Mittelwerten M (s,) ist also M (s,) das arith-
metische und M (s,) das geometrische Mittel.

Um der unter Punkt @) niedergelegten Forderung nach Ein-
deutigkeit Geniige zu leisten, ist die wichtige Festsetzung zu treffen,
dass bei Wurzeln stets nur der positive Wert in Betracht zu ziehen ist.
Der Wurzelexponent ist bezeichnend fiir die Ordnung des Mittelwertes.

Die Zahl der grundlegenden Mittelwerte ist stets gleich der An-
zahl n der zu mittelnden Grossen a;.

Sind zunichst alle a; einander gleich und = @, so wird auch
M(s,) = a, womit die Bedingung ¢) erfillt ist. Sind nun nicht alle a,
einander gleich, so ist M(s,) sicher ein Mittelwert, d. h. zwischen a,
und a, gelegen, denn es ist, wie leicht einzusehen:
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(Z) caf < s < (;:) cak, und damit

L

k
<a,

'Sk
a, < [~
n
()

Mit Hilfe der Mittelwerte M(s,) konnen wir der Gleichung (I)
auch die folgende Form geben (Schreibweise mit Binomialkoeffizienten),
die uns im weiteren dienlich sein wird:

r/ n

o (7)Mo 4 () e = (D) ey 0 ap

Wir behaupten nun die Existenz der folgenden wichtigen Reihe
von Ungleichungen:

M(s,) <M(s, ) < ... <M(sy) <M(s) (I1I)

Lediglich zur Illustration des beim allgemeinen Beweis einzuschla-
genden Verfahrens beweisen wir den Satz (III) zunichst fiir M (s,)
und M (s;) bei n= 3:

Es werde s, konstant gehalten — also a,a, + @, a5+ aya; =C —,
und wir fragen nach der Beschaffenheit der Werte a,, a,, a;, welche
unter dieser Bedingung ein maximales s, liefern. Wir schreiben:

C—a,a
83 == @y -+ Ay - (g : a; - @y - ————

ay, + a,

Als erste Bedingung fir ein maximales s; muss die erste partielle
Ableitung von s; nach @, verschwinden und die zweite negativ sein.
Man erhilt C = a,(a; + 2a,), also nach Kinsetzung von C':a; = as,
wobei die zweite Ableitung = — 2 (a, + ;) (a; + a5)~° wird. Wesentlich
fiir den allgemeinen Beweis ist nun der Umstand, dass wir wegen der
Symmetrie der Funktion s; in a; sofort das Resultat der partiellen
Ableitung nach a, angeben konnen, da man in den obigen Ausdriicken
lediglich a@; mit a, zu vertauschen braucht: C = a,(a, + 2a,) und
@y = a5. Unter allen Werte-Tripeln a,, a,, a5, die ein konstantes s,
liefern, erzeugt also jener Tripel das maximale sy.,.,, in welchem
ay = Gy = a3 = a. Daraus folgt 3a®> = s,, oder, anders geschrieben:
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a@ = M (s,), und andererseits ergibt sich das gesuchte Maximum als
S3max) = (@)%, Nun ist offenbar: /
S3 s3(max.) (d)a Sg

Sg
— = —— oder — < ——
So 8y 3a® ad 3a*

N
|

Die rechte Seite der letzten Ungleichung ist =1, da ja 8d* = s,
ist, die linke Seite aber 1st <1, da stets s; < Sype) = . Hs ist
somit statthaft, aus der linken Seite der Ungleichung die dritte und
aus der rechten die zweite Wurzel zu ziehen:

1 1

S 9" S o

3 3 < 2 2
asd 3a?

oder nach Erweiterung mit a:

: 83 -"é- 82 ';'
=) () b M) < Msy

Diese Beweismethode ldsst sich ohne weiteres auf den allgemeinen
Fall itbertragen: Man hilt s, konstant = ¢ und sucht jene Zusammen-
setzung In den — jetzt mit Ausnahme eines einzigen beliebigen a
verdnderlichen —a,, welche ein maximales s, erzeugt. Zur Be-
stimmung von s, ;¢ (may, ersetzt man in s, ., = f{a;, a5 ... ) z B.
a,, das man aus der Gleichung s, =C linear durch a,,, und s
ausdriicken kann; so erhilt man s, =F(ay,ay ... a,4,s,). Nun
miissen wieder simtliche n — 1 partiellen Ableitungen von F nach a,_,
verschwinden. Das ergibt ein System von n-—1 Gleichungen in a; .,
von identischem Aufbau in dem Sinne, dass in der ersten Gleichung
a, Plitze einnimmt, die in der zweiten a,, in der dritten a; usw.
innehat. Das System wird also befriedigt durch die Loésungsgruppe
@ =@y = ... =a,, =d; durch Ersetzung eines andern a; als a, in
der Funktion f erhdlt man analog auch noch @, = d und deshalb
a=M(s,), so dass gilb: fir s, a 186 a; =a, also Sy =

— n k41 iT 18 .
(lc n 1) (@*"". Nun hat man:

max.)

max.

S S S
k+1 ¢ k
& e = 1=- 22 oder auch

Sk+1(max) S (""> . G*
k




_ 1
Sttt W [ NE g M(s, ) < M(sy)
n k1 n) i*
a a
(k £ 1) (k

was zu bewelsen war.

Der damit bewiesene Satz (III) ist eine Verallgemeinerung bzw.
Verschirfung des Satzes, dass das arithmetische Mittel stets grisser
ist als das geometrische Mittel.

2.

Bekanntlich liefert jede algebraische Verbindung von elementar-
symmetrischen Funktionen stets wieder symmetrische algebraische
Funktionen, und umgekehrt ldsst sich jede symmetrische algebraische
Funktion als algebraische Iunktion der elementarsymmetrischen
Funktionen darstellen. Auf dieser Grundlage lassen sich aus den im
ersten Kapitel betrachteten grundlegenden Mittelwerten auf ver-
schiedene Art weitere Mittelwertformeln gewinnen.

Wir leiten vorerst drei ebenso einfache wie wichtige Huilfssdtze

Z 1
her. Zu diesem Zwecke bezeichnen wir vereinfachend mit (—ﬁ)l

irgendeinen Mittelwert der Ordnung !. Des weiteren seien gegeben
zwel positive, aber nicht gleichzeitig verschwindende Groéssen h und k.

. 2y \7 Z\T . .
Sind M, = {— und M, = — mit [ und ¢t > 0 zwel
N, N,
Mittelwerte, so liefert die folgende Verkniipfung einen neuen Mittel-

wert, M:
ZN\F [ Z\F R e
M=\|{—)" (= Multiplikationssatz.
N, Ny

Z\"* 25"

Denn aus a" < (1_\;) < a!* und al* < (Fz) < al¥ folgt sofort durch
1 2

Multiplikation entsprechender Positionen der Ungleichungen

h [
(a )lh+tic - ﬁ . é < (a )lhvl-tk
1 Nl Nz n

AP ANY
a, < ((E\_I:) . (N2> ) <a,

also
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Zy

1 Z.\L
Sind M, = | — ' und M, = (r—z)l zwel Mittelwerte gleicher
N, N,
Ordnung mit positivem [, so liefert folgende Formel einen neuen
Mittelwert: % 5w BT
M _ 1° + 2"
N,-h+ N, -k

1
) z 1. Additronssatz.

Z, - h

Denn aus al < <a) oder al - N,-h<Z -h<a -N,-h
L

einerseits und der analogen Ungleichung mit den Werten Z,, N,, k

andererseits folgt durch Addition der entsprechenden Ungleichungs-

positionen:

ay - (Ny b+ Ny B)<Z - h+Zy-k<a,- (N h+ Ny - k)

Zl'h_i_Zz'k ‘;_
oder a, < <a,
Nl'h+N2‘7c

. . Zi\v ZN\NT
Sind schliesslich M, = {-— ) und M, = - mit positiven ! und
1 2
t, zwel Mittelwerte verschiedener Ordnung, so erhilt man mit folgender

Formel wieder einen Mittelwert:

(Zy - W)T 4 (2 - k)T

M= 1 i
(Ny-B)7 + (Ny- k)

11. Additionssatz.

Der Beweis folgt unmittelbar aus der bekannten Tatsache, dass

a ¢ a a-+c¢ ¢
wenn — << —, dann — < - < —
b d b bt+d d

In Anwendung auf die grundlegenden Mittelwerte ergibt die Ver-
bindung des Multiplikations- und des I. Additionssatzes die Moglich-
keit der Bildung von Mittelwerten der Gestalt:

>0, [[sh \+ wobei 0 <6, )

i
ZQ@H(Q) S m-h=1t fir jedes [[

M =
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Wir haben hier im Zghler ein isobares Polynom in s, vom Ge-
wicht t. Die Darstellungsmoglichkeit wéchst rasch mit der Zahl n
der a;. Lassen wir nur positive ganzzahlige h zu, so ist der Zahler
flir t = 6=

bein=2:0,-854+0,.-53+6,-51-5,+ O,-5}-55
‘If@s‘36+@7'3:13'33""@8'32'34‘!‘@9'33“{‘@10'3§+@11'31'32'33

Als ganz einfaches Beispiel eines Mittelwertes nach (IV) nennen wir:

1

ma(”
2
oder speziell fir n = 2

1 1
M= <(a1+az)azaz>3 . [% (a%az_'_alag)]a

M=

2.1

Dass ein generelles Analogon zum Multiplikationssatz fiir Division
nicht bestehen kann, ist leicht einzusehen. Denn aus af < R at
1

N
und a] < s o a), oder, w.d.1. a;" > -23 > a,", folgt vorerst lediglich
2 2

_ Z1'Nz>tlfr
a &(
' Nl'Zz

Unter bestimmten Voraussetzungen konnen aber auch aus dieser
Verkniipfung Mittelwerte hervorgehen. So 1st vor allem

E\r
M= (V)

, 1=+ r stets emn Mittelwert.
v (5)

Um dies zu beweisen, haben wir wieder zu zeigen, dass zunéchst gilt:

/]
=




< a, oder also

n n n
“1'8"(t+1)“‘8“1'<t>g“”'s"(tM)

In der Tat konnen wir uns den Mittelteil s, - (T) e &y - (t -Z 1)

— das eine Summe von (’:’) ( ) _t 1) Produkten mit je ¢t verschiedenen

a, als Faktoren ist — entstanden denken, indem jedes Produkt passend

N

durch ein a; erweitert wird. Nun ist s, - ( t)ebenfalls eine Summe von

(t :’_ 1) (?) Produkten, aber von je ¢t 41 verschiedenen a; als Fak-

toren, und sicher grosser, als wenn s, - (t " 1) durchwegs mit a; er-

weltert wird — wie links aussen in der Ungleichung — und kleiner
als bei durchgiingiger Erweiterung mit a, wie rechts aussen. In An-
wendung des Multiplikationssatzes folgt nun:

n n ) n
Sii1 t 8, t—1 $i41 t—1 0

2
a1< . B . = . <a‘l’i

1
8 e n t—r
Eoly

<a,

~

eine Ungleichung, die giltig bleibt fiir ¢ <. r, denn es ist

1

()] \()-

Der Fall t = » wird spiter gesondert zur Behandlung gelangen.
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Wir konnen den nach Formel V gebildeten Mittelwerten eine
besondere Interpretation geben, wozu jedoch ein Wort iiber die so-
genannten gewogenen Mittel vorauszuschicken ist. Ein gewohnlicher
elementarer Mittelwert der Grossen a,(1=1, 2, ... n) ist — wie wir
noch zeigen werden — stets von der Gestalt

e (ioxe)

wobei >\ z; ein n-gliedriges, symmetrisches, isobares Polynom in den
a, vom Gewichte ¢ ist. Fin gewogener Mittelwert, gekennzeichnet
durch die positiven Gewichte g,(v=1,2, ... n), kann dann stets
als der entsprechende gewohnliche Mittelwert mit einem g- statt
n-gliedrigen Polynom aufgefasst werden, wobel der Summand z, im
ganzen g¢,-mal vorkommt und g = > g, ist. Es ist dann also das

gewogene Mittel M :
v — (Zgi ' Z@>%

! 19
Nach dieser Vorbemerkung ist leicht einzusehen, dass das Mittel

/n 1
St & t—r
r

(3)-

gleich ist einem gewogenen elementaren Mittel der Ordnung (¢ —7),
wobel die Summanden von s, als Gewichte fungieren. Zwei einfache
Beispiele fir » = 4 mogen dies verdeutlichen, wobei die Gewichte
durch eckige Klammern kenntlich gemacht sind:

65, 3(a,a,05 + a;0y0y + Q) A3y + Gy Qg Qy)

4s, 2(a,a9 + a1 05 + A a4 + Gy 05 + Ay ay + Qg a4)

et angtagg] ay+ [agg+ agg + agg] ag+ [agp F agg + ag ] ag+ [agg + agp+ 33 04

(@03 + Qg+ gy + [ag3+ay+agy] + [ap+ay+ay] + [ap+ast “_23]

(wobel wir a; a; mit a,; abgekiirzt haben)
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1
( 6005050 )‘2‘_
Qg T G13 + Qyq + Qog + Agq + Agy

' 168, \
9) t—4;r=2; M:(—4>2=
Sg
B ( [@34] @15 + [@04] @15 4 [@a5) Ayg + [@14] Qog + [@15] Aog + [a12] 254 );
[asa] + [22] + [ass] + [a] + [a] + [ag]
Nach dieser Bemerkung iiber gewogene Mittel wenden wir uns

wieder der Formel V zu und koénnen darin insbesondere t —r =1
setzen und erhalten eine besondere Gruppe von Mittelwerten von der

Form

n
S, ,
M — al <t> o S0t (E+ 1) _ M (sy4)

- St'(zﬁl) R M'(s)

Wir zeigten soeben, dass

Sy Si11 Sy

(2

AN

oder a, - M'(s)) < M'*'(s,,,) < a,-M'(s,). Wenn also a, >1 und
damit alle a; > 1, ist sicher M'(s,) < M*'*'(s,,,), und wenn a, <1
und damit alle a; < 1, so ist sicher M'(s)) > M'*!(s,,,). Im Gegen-
satz zu den Mitteln M (s,) selbst lasst sich also bei deren Potenzen
M*(s,) keine allgemein giiltige Ungleichung fiir zwei aufeinander-
folgende Werte angeben. Wir behaupten aber die Giiltigkeit der
folgenden Reihe von Ungleichungen:

=y sy

M (Sl) S

Der erste dieser Mittelwerte ist das arithmetische Mittel, der
letzte — wie man sich leicht iiberzeugt — das harmonische Mittel:
n

1 2
und Batz (VI) ist daher eine Verallgemeinerung und Verschirfung des
Satzes, dass das arithmetische Mittel stets grosser ist als das har-

(V)

Mz(sz) M3(33) -Mt(st) M!‘H(st»-w) Mn(sn)
> > T onem o B ok
M(s) ~ M2(s,) T MUy T Mis) M (s, )
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monische Mittel. — Es kann iibrigens nach dem oben Gesagten das
harmonische Mittel aufgefasst werden als gewogenes arithmetisches
Mittel, wobei jeder der n Werte a, die ibrigen (n—1) Werte als
Gewicht hat. |

Um nun den Satz (VI) zu beweisen, denken wir uns die reziproken

1 1 1
Werte der a;, also —, — ... — als die n reellen positiven Wurzeln
al a’2 a’n

einer Gleichung n-ten Grades, welche wir in der Form (II) schreiben:

n " J— /n J— n n
mm(1>-N1-m 1+(2)-N§-m 2—...j<n)-Nn=O

/

1
Dabei bedeuten die N, die grundlegenden Mittelwerte der — und
a.

7

man iiberlegt sich leicht, dass folgende Bezichung zu den grund-
legenden Mittelwerten der a; besteht:

N . Mn_l (Sn—l) . N2 . anz (Sn-z) Nn_l L M (Sl) . Nn“— 1
omrs) T M) T M)t MP(s,)

n. n

In Anwendung von Satz (III) auf obige Gleichung muss gelten:

4> N,; oder

n?

Ni>sNy> Nys ... >

N,

Aus den beiden ersten Gliedern der obigen Ungleichungsreihe folgt
insbesondere

( M (s, ) )2 M (s,,) M" (s, ) M"(s,)
=~ oder >
Mﬁ (sn) M " (Sn) M - (Sn—2) Mn*l (Sn—l)

Wir kénnen diese Aussage auch auf Gleichung (II) beziehen, was
besagt, dass bei einer Gleichung n-ten Grades mit n positiven Wurzeln
beziiglich der in den drei letzten Gliedern auftretenden Mittelwert-
potenzen die eben genannte Ungleichung gilt. Die Ableitung einer
Gleichung n-ten Grades mit n verschiedenen positiven Wurzeln ist
eine Gleichung (n — 1)-ten Grades mit n— 1 ebenfalls positiven

Sa)
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Wurzeln, die aber durchwegs verschieden sind von jenen der urspriing-
lichen Gleichung. Die erste Ableitung von (II) ergibt, nach Division
durch n:

7 — (n—;l) cM(sy) - 2" - (n;1> " ME(sp) - & — ... £ M (s,,) =0

Das hierin auftretende Mittel M (s,) ist also das k-te grundlegende
Mittel der n—1 Wurzeln der abgeleiteten Gleichung, zugleich aber
auch das k-te grundlegende Mittel der » Wurzeln der urspriinglichen
Gleichung. Nachdem wir mit der Ableitung wieder eine Gleichung
mit lauter positiven Wurzeln haben, gilt beziglich der in den letzten
drei Gliedern enthaltenen Mittelwertspotenzen die vorgenannte Un-

gleichung, also
M 2 (sn—2) M " (Sn—l)

=
M = (Sn—a) M = (Sn~2)

Durch sukzessive weitere Ableitungen ergibt sich somit der Beweis
von Satz (VI).

Die Verwertung des zweiten Additionssatzes allein oder in Ver-
bindung mit Satz (V) zeigt weitere Moglichkeiten der Bildung einer
Vielzahl von Mittelwerten. Wir nennen nur zwei ganz einfache Bei-
spiele (ausgeschrieben fiir speziell n = 2):

81+ 8y 81 4y + Ay + g ay(a; 4 ay) ! 2(at + 8a, a,+ a3)

1 M = ’ =
(1) (,n> o 24+1.921 5 (a,+ ay)
n + -
2
@) M— 8 + (82)'21-“ Cay+(ay ag)% + a, (nicht zu verwechseln
) M= T 3 mit dem arithmetisch-
n + (2> geometrischen Mittel)

Auch zu den Additionssitzen gibt es kein generelles Analogon
fiir Subtraktion. Wenn wir z. B. in der nach (IV) gebildeten einfachen
Formel

2 1
$4+6-5 \}

1)+

M:
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fiir @ auch negative Werte zulassen, so existiert fiir @ ein Intervall,
innerhab welchem M kein Mittelwert ist. Denn schreiben wir die
Formel

si+0-s

T /m\? A
1)+l
so 1st dies beziiglich M2 und @ eine gebrochene lineare Funktion, d. h.
bildmissig eine gleichseitige Hyperbel mit zu den Koordinatenachsen
parallelen Asymptoten. M2 als Funktion von @, und damit M, kann

beliebig hohe positive und negative Werte annehmen, also a, unter-
und a, iiberschreiten. Wenn speziell n = 2, so ist

V2 — @i + a3+ (2 + 0)aya,
i 446 ’

was bei einem Wert fiir @ innerhalb der Grenzen

2 2 2 2 % ..
Bay—a;—2a,0, and 30— —2a,8,  (beide Grossen
5 5 . :
ay y— a a, ay — a2 sind negativ)

keinen Wert M zwischen a; und a, ergibt.

Wenn wir daher in Formel (IV)

M = = 11 N'm - h =t fiir jedes ,
2 J

n h
Se11(,)

auch negative @, zulassen, so wird eine nichtsystematische Wahl
der @; kaum viel Erkennenswertes liefern. Wir konnen aber z. B. die
®; so wihlen, dass im Zihler Potenzsummen der Summanden der s,
resultieren, was immer mdglich ist; denn jede ganze symmetrische
Funktion f(a,, a, ... a,) ist als rationale ganze Funktion der n ele-
mentarsymmetrischen Funktionen s, ... s, darstellbar. Ist insbeson-
dere f in den a; homogen vom Grad I, so ist die Darstellung isobar
vom Gewicht 1.
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Wir bezeichnen die Potenzsumme von s, vom Grad ¢ mit ,p,.
BEs 1st beispielsweise:

P1=0 G+ o+ 0,5 1= 00+ 8+ ... a0,
Pe=0+ a3+ ... ars ape= (00)2 + (0 a)2 + ... + (4,44,)

---------------------------

-----------

Demnach ist ,p, eine homogene Funktion der a; vom Grade k-t ==
und ermoglicht eine isobare Darstellung durch die elementarsymme-
trischen Funktionen vom Gewicht k-{=1, also in der Gestalt
20, [[5h, wobei > m-h=1fir jedes [[. Die Darstellung ist
eindeutig, jedes ,p, ist nur durch eine einzige Wahl der @, darstellbar.
So 1st z. B.:

g, =1,

K
= g2 — Sect * St s [—1]7Y) ;s wobei:
kP2 % Z et * Skt ] ) s, =0 fiir m>n

Wahlen wir nun die @, in Formel (IV) so, dass im Zahler Potenz-
summen der elementarsymmetrischen Funktionen resultieren, so haben
wir:

1
M=\t pp—y (VID)

und dies ist sicher ein Mittelwert, denn es ist

t (T e
a’l' pe <Tpk<a’il. r

Ist speziell r =1, so haben wir den bekannten Fall des gewohnlichen

Potenzmittels o ANDFRST
M= _z__f_) i (_ﬁ-i-i) ‘
n . no,

Wir studieren nachstehend die Klasse der Potenzmittel genauer.
Sie ist vor allem deshalb interessant, weil in ihr die bekannten
einfachen Mittelwerte (arithmetisches, geometrisches, harmonisches,
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kontraharmonisches und quadratisches Mittel) als benachbarte Spezial-
fille enthalten sind. Es tritt daher der verwandtschaftliche Zusammen-
hang dieser Mittelwerte klar in Frscheinung, und ihre Stellung zu-
einander lisst sich sehr leicht iiberblicken.

Da sich die Potenzsummen als Funktionen der elementarsymme-
trischen Funktionen darstellen lassen, muss jeder Satz {iber die grund-
legenden Mittelwerte ein Gegenstiick bei den Potenzmitteln haben.
Man wird sich sofort die Frage stellen, ob fiir zwei Potenzmittel:

1 1 1 1
Mlz(———-Eaﬁ)t und M, = (—— -Za’f)k

n 7

eine analoge Bildung zu (V), also

Za‘- L

M: T\t

(26!’5)

auch wieder einen Mittelwert liefert. Wir setzen ¢t —k =1 und

schreiben ferner hinfort der Kinfachheit halber iiberall dort fiir
a; = a, wo Missverstdndnisse ausgeschlossen sind. Wir setzen kiinftig:

a*tt' \L & und I beliebige reelle Grossen
2 )l 8 (VII)

> a” —oo <k, 1<+

Dass es sich hiebei tatsdchlich um Mittelwerte handelt, d. h. dass
a, < M(k,l) < a,, 18t leicht zu zeigen. Man {iberlege sich wvorerst,
dass — wenn man [ positiv voraussetzt — gilt:

St \4
- (22

2 ak—l

und a! <at <al, also auch

a-Sat=Sd <N dt=Ya"<Sal -aF=al- S

M(k,l):(

und damit
e aFH AL
a{<—f"—-—k—<a,ﬂ, bzw. al<(—z'v - >l<an
Da Sa
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. . Qy Gy,
Anderseits 1st — <1 und — >1, also
a a
ai - Dat-adf < Da* <al - Dlat-df
L S\
und damit af < !, baw. a, < <a,
Z ak— ak—l

Es 1st also sowohl a, < M (k, 1) < a, als auch a, < Mk, —1) < a,.
Der Fall | = 0 wird separat behandelt werden.

Wir setzen nun in M (k, 1) speziell I =1, also

2 ak+1 Z ak{l 2 a

M(k,1) = ——— und behaupten

zak Ea’k Zakl

Es sel af=1"b;. Da a; >0, ist b, immer positiv, ob nun k . 0.
Mithin ist zu zeigen, dass

b, b,
Da; b D — (D1b)2 baw. Da; b, > ——(D1b,)2 > 0 ist.
ai ai

Ausmultipliziert erhélt man:

# al

2 2 \ 2 1 E Ut P
h+%+~«+m+( SR {1 MR T e S b, 1b,
a 2 a 1/ an a’n—l

—[b} + b5+ ... 4 b+ 2byby + 2b by - . +2m¢d

a;,—a . a; — . 2 (a_n_w _a’n2
=b1b2"(_1—‘i)*+b1ba‘u+---+bn_1bn‘““l—"—"l“>0,

Ay Qg @, ag Ay 1 Ay

denn es ist b;b, >0, a;a; > 0 und (a;—a;)?> 0. Wir haben somit
bewiesen:

gkt 20, B Zaz za n va‘l
Za Za’” Ea Za‘l Ea"z

> —> ... (X
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In der Reihe dieser Ungleichungen ist insbesondere:

“=— das kontraharmonische Mittel (K. H. M.),

das arithmetische Mittel (A. M.),

das harmonische Mittel (H. M.),
St

und es gilt demnach stets K. H. M. > A. M. s> H. M.

Setzen wir a¥ = g,, so ist

Sdt Sy,
Sd T S

Die obige Reihe ist daher eine Erweiterung des A. M. auf spezielle
gewogene A. M., wobei die Gewichte Potenzen der Grossen a, selbst
sind. Zufolge der Ungleichungen (IX) gilt:

Ea"_Za"_m:<zak) Sd Nt Set Na N

31 k1 2 a1 2 ak1 2 a1 E ak2 e 2 a n n
also: —=

S (5 ®

Ebenfalls wegen der Ungleichungen (IX) gilt weiter

k-mal

. ! : i
Eak+l | Eak+1 . 31 o Z aF 2 o v o+ Vakﬂ Za}
Eak E aF za Eak+1 'g‘ ak+l—2 S‘ak +1- TR Za
I-mal
N g+ gL
also: *—{_é:-”;;—< (*Z 5 )Z; I1>1 (XD
214 e

Iir k = 0 gilt insbesondere:

/ 4 l
n n n n




— 141 —

Setzt man hier fiir ] = 2, so hat man

> a\y
< (2
n

n

Sey_ e

n

Es ist dies der bekannte Satz, dass das Quadrat eines arithmetischen
Mittels kleiner ist als das arithmetische Mittel der Quadrate der
Basisgrossen; und die Verallgemeinerung lautet: Die I-te Potenz
eines A. M. 1st kleiner als das A. M. der I-ten Potenzen der Basisgrossen.
Aus X und XI zusammen folgt

Ze (Zeyi,

ANIPEE
n .0

In einfacher Umformung erhalten wir aus XI:

= -+l Skt S @kt 1
—~2 ol (—i—k—> oder >
@ a

7
( > a‘”l)’ ( > a”)l 1
Beidseitig mit ( E a* l)z ! multipliziert, ergibt:

1

. k413 1 kefel x Bt ; L 1 i\ L
%Z'L < _Z_ﬁ__ baw. ;?___ el _Z “ boxan
U S S S

Setzt man hierin — [ an Stelle von I, so folgt

( X a )“7 N ( a )fl _ ( et )?: - ( e )z

Z ak-{-—l Z ak Z ak—l

oder, wenn man k durch k - [ ersetzt:

Bti4+1 1 k+1\ 1
Eps (B
aC
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Zufolge (XII) und XIII) gilt die folgende Ungleichungsreihe:

(B (B, (20,
,z( DL ) ( Ezaa_ >%> L (zZai _ )ﬁ ( 22; )1

> (™ (A

oder auch: ... M(k,l+1)> Mk, )> M(k,l—1)> .... Es ist
dies das Gegenstiick zu Satz III.

(XIV)

\%

Man iiberlegt sich leicht, dass

gL
lim >a Iim

Fir k=0 insbesondere ergibt sich die Reihe der gewdhnlichen

Potenzmittel :
(S (50 ()= () (5

(XV)
L L I Xdvy >a
Hierin 1st( ) das quadratische und —— das arithmetische

n n

\%

Mittel, und es ist damit erwiesen: es ist immer: Qu. M. A. M.

Wie ohne weiteres einzusehen, ist

S g 2ak+l+1 Zak+l
PRl
za"’ S‘a " 2&"

oder ay - M (k) < M1k, 14 1) <a, - M'(k,])

a;
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Wenn demnach @, > 1 und damit alle a; > 1, ist sicher M'(k,1) <
< M'"'(k,14 1), wenn aber a, <1 und damit alle a; <1, so ist
sicher M'(k,1) > M'*'(k,l1+1). Im Gegensatz zu den Mitteln
M(k, 1) lasst sich also fiir die Potenzen M'(k,l) keine allgemein
giiltige Ungleichungsreihe angeben. Dagegen lasst sich mit Potenzen-
Quotienten das Gegenstiick zu Satz VI aufstellen. Es gilt namlich

M, l—]—l) M (k, 0) . M (e, 1—1)
M) - MUk i—1) MU, 1—2)

\

denn ausgeschrieben — wobei sich immer > a* in den Nennern weg-
kiirzt — haben wir

2ak+lkl Zak+l Zak-}-l -1

\ s \

2 G,k +1 = 2 ak+l—1 Z ak+l—2

und dies ist die bekannte und bereits bewiesene Reihe IX.

In X1V interessiert insbesondere der zunichst unbestimmte Aus-
-\ k _l_

druck fir M(k, 0); némlich ( k>° . Um seine Bestimmung vor-

Da

zunehmen, betrachten wir M (k, 0) als

lim M (k, z) = l1m( EZ:: )ﬁ

=0

und operieren nach bekannter Methode mit dem Logarithmus des
Ausdrucks M (k, z):

1
ImnMkE,z2)=—- In ———=

Dies ist fiir £ = 0 ein unbestimmter Ausdruck, zu dessen Bestimmung
Zahler und Nenner einzeln zu differenzieren sind:
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d ¢ ’ d Zak+w> d k+z k+x
= Inf(z) - f'(x) E;( Se ) —L—Z?Za, B Da Ina

B Zak—'—x B ~-T B e ' B
72 T St Siak
k+x
Z ln aa + 1 ak-i—:l: ( ak+m)2 a1k+.’l:
= Zak+x :Zak+x'lnna = In Ha

Eis 18t daher

lim M (k, ) = lim (Ha

=0 =0

—1 -
ak'rw)2ak+z )z ak

also M(k,0) = (Ha

Insbesondere 1st

a’\3ao
= (Ha ) Ha , d. h. das geometrische Mittel!

Aus der Ungleichung XV folgt demnach, dass stets A. M.s G. M.
Dieser bekannte, aber an sich nicht ohne welteres evidente Satz
ergibt sich also hier in leichter Folgerung.

Setzen wir auch hier wieder a* =g,, so kann M(k,0), k + 0,
als spezielles gewogenes geometrisches Mittel aufgefasst werden, mit
Potenzen der Basisgrossen als Gewichten:

sdes

1

[1a

Aus XII und XIII ist zu folgern
(Zak+l+1> (ZG’HHI)T e ( ZakH)z
>
gt S Sd
Daraus folgt aber auch

() B~

- (ZZGE )% (;j )k} (Za-z) (gi:)t... (XVI)




— 145 —

Wiederum iiberlegt man sich leicht, dass auch in bezug auf &k — wie
bereits fiir | erwiahnt — gilt:

v A
Z ak+l -
y = 2 lk > an
lim >0 lim

k=—co k= 4+ oo

Insbesondere folgt fiir I =1 aus XVI wieder die bereits bekannte
Reihe IX.

Aus XVTI und XIIT folgt aber auch:

Zak+l ZG’EH-H) - Eak+l+2 ?%
( zla Zak+1 ) Zak+1

und es gilt demnach

1 k142 _1 E+1-+4y _1
e e A
a” a a

Die vorstehenden Ungleichungen héatten sich zum Teil auch
gewinnen lassen unter Bezugnahme auf die Ungleichungen von
Steffensen-Jensen. Wir haben jedoch eine in sich geschlossene elemen-
tare Herleitung vorgezogen, da damit ein besserer Einblick in die
Klasse der Mittelwerte M (k, 1) gegeben ist.

4.

In Zusammenfassung des in Abschnitt 3 Gesagten kénnen wir
nunmehr feststellen: Nehmen wir von M {k,[) die vier Positionen
k, 0, (k-+t,0), (k,1+t) und (k+1t, | +1t) — fir die wir die spéter

noch zu verallgemeinernde Bezeichnung «benachbart» einfithren wollen,

sofern wir ¢ = + 1 nehmen —, so gilt stets:

tir festes I: M (k, 1) Mk +t,1), nach XVI
fiir festes k: M (k, 1) < Mk, 141, nach XIV
fir k—1 konstant: M(k, ) < M+t 1+1t), nach XVII
fir & 4 1 konstant: M (k, 14 1t) < M(k +t,1), nach XIV

10
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Denken wir uns die Gesamtheit der M (k, I)-Werte als eine Flache
im Raum iiber der k, I-Ebene reprisentiert, so gibt uns das folgende
Schema ein Bild iiber deren Verlauf bzw. Anstieg und Abfall (die Fliache
fallt in Richtung der Pfeile):

(k, 14 t) 3 (- t, 14 1)

—_— -k

S

(k + 1,

Betrachten wir kurz das durch ganzzahlige Werte von &k und ! gegebene
Gitter: Nachdem M (k, 1) = M (k + 1, — 1), tritt jeder Wert M (k, 1)
zweimal auf, mit Ausnahme der geometrischen Mittelwerte M (k, 0).
Oder mit andern Worten: Jede zur l-Achse parallele Wertereihe tritt
auch auf parallel zur Winkelhalbierenden des 2. und 4. Quadranten,
der Schnittpunkt der beiden Reihen liegt in M (k, 0).

Es lohnt sich, noch die néchste Umgebung von M (0, 0) genauer
zu betrachten, wie sie in nachstehendem Schema wiedergegeben ist
(die Pfeile zeigen in Richtung kleinerer Mittel):



L Ya St
M(-1,1)= M@O)="2 | M11n==
Yat (©.1) n L1 Sa
I |
Y
—k —-— M(O,()):Ha?l: B
i
n Ta b
M©O,-1)=— | Ma,-1)=*" M2 1= ="
O-t)= o | M(1-y= 22 a1 = 2

s

| S

e oo [24]
n

Es 1st also stets:

Z a? N a2\ L NMa 1 n
il 2 il -=
> > > ar =
ST el (GRS e
d. h. KHM == Qu.M. = A.M. > G.M.> H.M.

Die Fliche z = M (k, 1) ist — entsprechend den Fundamental-
eigenschaften der Mittelwerte — eindeutig und liegt zwischen den
Ebenen z = a; und z = a,. Die Parameterlinien [ = konstant bzw.
k = konstant haben die Geraden z = a; und 2z = a, als Asymptoten
(wir haben die einschligigen vier Grenzwerte welter oben bereits er-
wihnt), und zwar wachsen die Ordinaten z mit wachsenden Werten
k, bzw. I, monoton. Jede Kurve (k) = konst. hat einen Wendepunkt;
dieser verschiebt sich mit wachsendem (k) im Sinne kleinerer k(1).
Von besonderem Interesse sind die Wendepunkte der Parameterlinien
k = 0 bzw. |l = 0: sie inzidieren im Zentrum der Fliche, dem Punkte
Z = M (0,0). — Offenbar gibt es zu jedem zwischen a, und a, le-
genden Wert m und einem beliebig vorgegebenen endlichen k(l) stets
ein und nur ein (k) derart, dass M (k,l) = m. Zu jedem solchen m
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gibt es also unendlich viele Wertepaare k/l, die die Gleichung M (k,I) =m
erfiillen; z = m stellt das System der Niveaulinien unserer Fliche dar.
Auf der durch das Flachenzentrum gehenden Niveaulinie liegen z. B.
alle jene Mittelwerte, die gleich dem geometrischen Mittel sind. Die
folgende Skizze zeigt die Projektion in die k/l-Ebene der Niveaulinien
in der Niahe von M (0, 0) fir den Fall n» =2, mit a; =1 und a, = 2.

Z 120 133 {Z 150 +{_ier 180 189 1.9%
s % R
1.11 \ \ \ \\ \ \\ \ \
i \ R \ \ \ \
\ h A \ \ \ \
\ \\ \\ }{ \\ 2 % \ 1 \
\ \ \ X \ \
\ \ ooy \ \ \ \
% \ Ny \ \ \ \
.06 ; : \ \
L R OR ®Ray oy kY
\ \ \\ \ \. \ \\ \ \
\ Y \ \ \
k=3 N -2 N -1 N Vo4 v 2N SN
X" X X \ ﬁ\ \ A) \ L e AY
\ 3 N\, \ \ \ \ \ \
\\ \\ \ \\ \ \ \\ \\ \
1 \ \ \ \ \ \\ \ \ \\
4 % % ko CoR
\ ' R R Q b\
: \ 1 \ \ \ \ \ \
\ \ \ =21\ ]\ A AN
\ \ \ \ NN % \
\ \ ' 3 VoL \ A
\ \ \ \\ \ \ \\ \
\ \ \ \ A\ \ X

Im vorstehenden speziellen Beispiel erkennt man die Niveaulinie
durch M (0, 0) als Gerade, deren Projektion in der k/l-Ebene durch
unendlich viele Gitterpunkte geht; in der Tat gt ja fir n = 2:
Mk, —2k) = (ay - az)‘;'. (Wir werden weiter unten beweisen, dass
es auf jeder Fliche M (k, I) eine gerade Niveaulinie gibt, die stets den
Richtungskoeffizienten — 2 hat, im allgemeinen Fall aber nicht mehr
durch das Flachenzentrum lduft.)

Fiir beliebige n erhdlt man nach leichter Umformung als Gleichung
der Projektion in die k/lI-Ebene der Niveaulinie fiir den Mittelwert M:

Saf(at—mh)y =0
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Fir I = 0 liefert diese Gleichung keinen bestimmten Wert fiir k;
in diesem Fall muss k aus dem weiter oben hergeleiteten Grenzwert
tiir M (k, 0) bestimmt werden, und man erhilt

ak

H(g) =1 als Bestimmungsgleichung fiir k.
m

Die Kenntnis der Parameterlinien allein geniigt nicht, um sich
eine klare Vorstellung iiber das Verhalten der Flache z im Unendlichen
zu bilden: alle Parameterlinien k& == konst. und ! = konst. (mit end-
lichen Konstanten) streben ja mit wachsenden (fallenden) I bzw. k
den Extremalwerten a,(a,) zu, woraus sofort folgt, dass die Fliche im
I. Quadranten (d. h. also bei positiven k und 1) die Asymptoten-Ebene
2z =a, und 1m III. Quadranten (negative k und ) die Asymptoten-
Ebene z = a; besitzt. Ihr Verhalten im II. und IV. Quadranten
bleibt zunichst unbestimmt. Immerhin zeigt bereits die Existenz
der ja gerade diesen beiden (Quadranten zustrebenden Niveaulinien
(vgl. unsere Skizze), dass der Schnitt der Flache M (k, l) mit der un-
endlich fernern Ebene in den genannten kritischen Quadranten
2-Werte annehmen muss, die stetig von a, bis a, wachsen. Wir werden
nachstehend untersuchen, wo diese Werte liegen, und zeigen, dass

1) sich fiir jede Niveaulinie die beiden Asymptotenrichtungen be-
stimmen lassen;

2) das Biischel der Asymptotenrichtungen ¢ nur den Winkelraum

T o< F ertillt.
9 4

Diese beiden KEigenschaften geben — wie wir durch eine zylin-
drische Orthogonalprojektion der unendlich fernen Ebene veranschau-
lichen werden — Aufschluss iiber die unendlich ferne Kurve der Fliche
Mk, ).

Wir fithren zunédchst Polarkoordinaten in der k/l-Ebene ein:
=7r-cosp; l =r-sin@. Entsprechend erhidlt man:

N 7 (sin @ + cos ) 1
Qa o
Mk,l) =2z= (>—' )' e (XVIII)

N ,r-Co8 @
Sa
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Um nun die 2-Werte der unendlich fernen Kurve in Funktion von ¢
zu erhalten, hat man offenbar I, = lim 2z zu bestimmen. Man hat vorerst:

r =00

In 2 a’ (sing + coBep) In Z al ' eos®

TSN

InL =

Die Differentiation von Ziahler und Nenner dieses Quotienten liefert:

L= sin g - ((sin(p -+ cos ¢) Za"(sm‘f’ +es9) Ina coS @ Ea"m"’ ‘Ina )

zar-(smqo+cos(p) Zar-cosqo

Nun sind vier Fille zu unterscheiden:

1) sin @ + cos @ > 0 und gleichzeitig cos ¢ > 0; unter diesen Vor-
aussetzungen liefert die obige Formel:

InL,=sin" ¢ -((sinp 4 cos ¢) - Ina, —cos g -Ina,) =Ina,
also L, =.a,;
2) sin @ + cos ¢ > 0 aber cos ¢ <0,
hier liefert die allgemeine Formel
In Ly = sin™ @ - ((sin ¢ + cos ¢) In @, — cos ¢ - In a,)
a,l‘ +etgp

also L= t
as'e®

3) sin @ + cos ¢ << 0 aber cosgp >0
wieder aus der allgemeinen Formel:
In Ly =sin™ ¢ - ((sin @ + cos @) * In a; — cos ¢ - In a,)

ai +clge

L3:

aztgw
4) sin ¢ 4 cos ¢ << 0 und auch cos ¢ <0
analog zu 1) erhilt man schliesslich
Ly=a,

An diesen Resultaten ist bemerkenswert, dass die Grenzwerte L,
nur Funktionen von a; und q, sind, also von der Anzahl und Ver-
teilung der dazwischenliegenden a;, 1 <7 <n, nicht abhingen.
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Die Funktionen fiir L, bringen nun in verschiedener Hinsicht
weiteres Licht in die Struktur unserer Fliche M (k, I):

Die k/l-Ebene teilt sich also nach folgendem Schema in zwei
(Doppel-) Sektoren auf, wobei die in den Sektoren angeschriebenen
Werte jene der Punkte der unendlich fernen Kurve in den entsprechen-
den Intervallen angeben:

+1

Wie man sich durch Einsetzen der Intervallgrenzen von ¢, also
n 3n 3Bax T=n
2’ 4 2’
stetig. Andererseits zeigt eine Untersuchung der abgewickelten ortho-
graphischen Zylinderprojektion Unstetigkeiten der ersten Ableitung
an den Intervallgrenzen, d.h. die Kurve hat in den genannten Punkten
Ecken.

@ = bzw. , iberzeugt, 1st die unendlichferne Kurve

Bezeichnen wir den der Kurve zugewandten Winkel der Asymp-
toten als Offnung der Kurve, so gilt der Satz: Die Offnung der Niveau-
linien ist stets = 1350,
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Da die Niveaulinien stetig von konvexen zu konkaven Kurven
ibergehen, muss stets eine (und nur eine) Gerade darunter sein; und
zwar lagst sie sich leicht bestimmen: liegt sie doch dann vor, wenn die
beiden Asymptoten der Niveaulinie zusammenfallen, d. h. also dann,
wenn fiir ein bestimmtes ¢ dasselbe (unendlichferne) z erhalten wird
wie fiir die Richtung ¢ + . Daraus folgt die Bestimmungsgleichung
fiir ¢:

a?12+ct9fp a}+ota(n+fp) a}-i-cw*r’
ctgp - ctg(z+ ) - ctg
Gq ay, Ay
Ia’n 1+ctgy ay clgep /an —-clgeop
also: — = | et ={=
a / @y L]
1
woraus: 1+ ctgp =—ctge also i) g = g

Die Kenntnis des Wertes der Kotangente des der geraden Niveau-
linie zukommenden Wertes ¢, gestattet nun aber, das Niveau (d. h.
den Wert von z = M (k, I)) dieser Geraden zu bestimmen:

1+ clgep
a, g i
2

2 == =

a
afti?y - a

e (al ' an)
Das heisst:

Alle Mittelwerte, die gleich dem geometrischen Mittel aus dem
kleinsten und dem grissten der zu mittelnden Werte a; sind, liegen
auf der Fliche z = M (k, l) auf einer Geraden, deren Projektion in
der k/l-Ebene den Richtungskoeffizienten — 2 hat.

Im bereits skizzierten Spezialfall n = 2 geht diese Gerade durch
das Flichenzentrum, da fiir diesen Fall ja gilt

M©,0) = [Ja;" = (ay - a5)*

Die nachstehende Skizze stellt eine orthogonale Zylinderprojek-
tion (Achse des Rotationszylinders durch das Flachenzentrum senk-
recht zur k/l-Ebene) der unendlichfernen Kurve der Fliche M (K, )

dar und veranschaulicht einige der oben hergeleiteten Eigenschaften.



Miveau
Z=Q,

5.

Wir kehren zuriick zum Mittelwert nach Formel VII:

1
M= [ T k-r=t
n
*)
Die hiedurch reprisentierte Klasse von Mittelwerten gibt verallge-
meinerte Potenzmittel, wobei aber nicht Potenzsummen der a, selbst,
sondern solche iiber Kombinationen der a, zur Klasse r auftreten. —

Es sei auch hier vorerst die Frage geklért, ob fiir zwei derartige Mittel-
werte:




i ..]..
M= [-—"\"und M,= P\
n
(%)
eine Quotientenbildung analog zu V wieder Mittelwerte liefert. Wir
erhalten eine Formel der Gestalt

oder, wenn wir s =r + q und w = k + 1 setzen:
1
n TR IIEC . Yy
kqg+1
r+qPr+1 ('r) 1+ilr+a)

n \
(T ta) P
Diese Formel liefert in der Tat unter gewissen Nebenbedingungen

Mittelwerte. Der Beweis ergibt sich in Weiterfithrung der Herleitung
von Formel V. Es wurde dort bereits bewiesen, dass

a8, * " <s -n<a-s- "
1Sr T—l—l r-+1 r nr,r_f_l

Ersetzen wir zunichst die a; durch af, so bleibt unter der vorlédufigen
Beschrinkung auf positive k die folgende Ungleichung richtig:

ak . . ' n < . n < ak . . "

1" Pk (T-{—l r—]—lpk r n " Pk T-{—l

Die wiederholte Anwendung des Multiplikationssatzes liefert
n

r+qpk : r

S

T_I__ q +Pr

Diese Ungleichung kann man in folgender Weise erweitern: Man
multipliziert @’ mit al"+9, ¢* mit al"*? und im Mittelglied jeden

Mk,l;r,q = (XIX)

G =< <a, fir kg>0 (XX)
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Summanden mit einem entsprechenden Produkt aus (r + q) ver-
schiedenen a!, so dass man erhilt:

i
n
r+qPry1” 7

'p"'<”f-tq>

Diese Erweiterung ist allerdings nur so lange zuldssig, als I(r + q)
positiv bleibt; da aber (r 4 q) eine Kombinationsklasse bezeichnet
und daher stets positiv ist, folgt, dass I > 0 sein muss. Es folgt also,
dass M(k, I; r, g) sicher ein Mittelwert ist, wenn sowohl I > 0 als auch
kg >0, und zwar iiberzeugt man sich leicht, dass nur das Produkt
kg > 0 sein muss, also sehr wohl gleichzeitig k << 0 und ¢ << 0 sein
darf, ohne dass sich in Ungleichung XX etwas dndert. Ist aber kq < 0
(sei es wegen k<< 0, ¢ >0, oder wegen k>0, ¢<<0, wobei in letz-
terem Fall stets | ¢| < r bleiben muss), so kehrt sich die Ungleichung

XX um in
p . (ln)
r+ql’k r "

ay? > >
?'pk ’ (,r + q>

Eine Erweiterung ist nun nur zuldssig, wenn I(r 4 q) < 0, also
[ < 0; alsdann aber erhidlt man fiir M(k,; r, q) wieder ein Mittel,

und es gilt demnach .
n —_—
r+qpk+l . (T> kg+1(r+1q)

. n
rpk ,r+q

ist stets ein Mittel, wenn kq und ! gleiche Vorzeichen haben.

k 1 k B
alq . al(r‘!‘Q) < < aﬂq . aﬁ‘(r Fq)

ME,l;r,q =

Es liegt nun nahe, die Mannigfaltigkeit dieser Mittel in &hnlicher
Weise zu untersuchen, wie wir dies weiter oben mit den Mitteln
Mk, 1) getan haben. Vor allem sei festgehalten, dass die behandelte
Mittelwertsklasse M (k,[) lediglich einen Spezialfall von M (k,1;r,q)
darstellt, insofern, als — wie man sich leicht tiberzeugt — gilt:

Mk, 1;1,0) = M, )
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Wir priifen zunéchst den Definitionsbereich der vierparametrigen
Schar der M (k, l; r, q): wéhrend fiir die Exponenten k und ! sdmt-
liche reellen Werte zuléssig sind, konnen fiir die Indizes r und ¢ — die
ja Kombinationsklassen der » Basisgrissen a, anzeigen — nur natiir-
liche Zahlen in Frage kommen, die zudem durch die folgenden Un-
gleichungen limitiert sind:

O<r<n; 0<r4+q<n

Als Ordnungsschema fiir die Mannigfaltigkeit der M (k,I; r, q)
sind verschiedene Wege gangbar: Kinmal liegt der Gedanke nahe, die
M als Punkte eines vierdimensionalen Hyperflichenstreifens im fiinf-
dimensionalen Raum aufzufassen. Von einem «Streifen» muss des-
halb gesprochen werden, weil die Dimensionen r und ¢ durch obige
Ungleichungen begrenzt sind. Wichtiger ist der Hinweis, dass die
Hyperfliche einen recht speziellen Charakter aufweist, ist doch ihr
vierdimensionaler Raum nur in den Richtungen der k und ! stetig
(und differenzierbar) mit Punkten besetzt, wihrend in den Rich-
tungen r und ¢ fiir endliche n lediglich eine diskrete — durch vor-
genannte Ungleichungen bestimmbare — Anzahl Gitterpunkte als
Punkte der Hyperfliche existieren.

Dieser Unterschied zwischen den beiden Dimensionspaaren k, !
und 7, ¢ kann gut auch durch das folgende Beispiel des Uberganges
vom A.M. zum G.M. veranschaulicht werden, einerseits namlich
durch stetiges Vorriicken in der Richtung abnehmender [, andererseits
durch sprungweises Fortschreiten in der Richtung (treppenartig) stei-
gender 7:

1
M(0,1;1,0) »M(O,7;1,0> ~ M(0,0;1,0)
Na N 1
dh AM =" . ><Zaz)> ... > [Jav = G.M. (gem. XV)
mn n liml=00
M(0,1;1,0) ~ M(0,1;7,0) - M(0,1;n,0)

a
d.h. A.M. = Z > >

1
¥

1
> ...> [[a» = G.M. (gem. I1I)

3

(7

NS
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Die partiellen Diskontinuitdten in der Mannigfaltigkeit M (k, 1; r, q)
hindern nun allerdings nicht, nach dem Beispiel des Verfahrens bei
M(k,I) die Frage nach «benachbarten Mitteln» aufzuwerfen, wobei
als benachbart alle jene Werte anzusprechen sind, deren Parameter
sich von den ihnen zugeordneten k, I, 7, ¢ um -+ 1, 0 oder — 1 unter-
scheiden. Denkt man sich den Wert M(k, I; 7, q) als Zentrum eines
vierdimensionalen Wiirfels von der Seite 8, so hat man als benach-
barte Werte offenbar alle Gitterpunkte, die auf der Hyperoberflache
dieses Hyperwiirfels liegen. Thre Zahl lidsst sich sofort als 8*—1 = 80
angeben. Diese 80 benachbarten Werte kinnen — abgestuft nach ihren
Entfernungen vom zentralen Gitterpunkt — in vier Gruppen geteilt
werden: 8 Werte liegen je paarweise im Abstand 1 auf den vier Achsen
k, 1,7, q; 24 Werte liegen in den Mitten der den Hyperwiirfel begren-
zenden Quadrate, 82 in den Mitten der Kanten und 16 stellen schliess-
lich die Ecken des Hyperwiirfels dar. Wir lassen angesichts dieser
recht zahlreichen Nachbarschaft die Frage offen, ob sich nach dem
Beispiel fiir M (k, l) auch hier Systeme von Ungleichungen aufstellen
lassen. Is scheint dies iibrigens schon deshalb nicht vordringlich,
weil alle bekannten und praktisch vorkommenden Mittel — wie wir
gesehen haben — bereits in der Klasse der M (k, l), und zwar in un-
mittelbarer Nachbarschaft des Zentrums M (0, 0), vorkommen und
sich dort ihre Rangordnung zwanglos ergeben hat.

Die diskrete Anzahl der Punkte r|q gestattet nun eine andere
Gruppierung der M (k, I; r, q) : Man stelle sich zunéchst ein rechteckiges
Gitter mit den Seiten 1 < r< n und — (n—1) < q< + (n—1)
vor, innerhalb welchem offenbar alle zuldssigen Punkte r;q liegen
miissen. Die Besetzung dieses Gitters umfasst aber wegen der Un-
gleichung 0 <7 + ¢ <7 nur ein Parallelogramm (besetzte Punkte
= -}, leere Stellen = o):



\q: —(n-1) —(n-92) —1 0 +1 (n-2) (n—-1)
P g
1 o o + + + o+
2 0 +F + + + o
3 o + 4+ + o
n—2 o ° £ £ =
1 o + o4+ o
n + + + 4+ 0B o

Man sieht, dass in diesem Tableau n2 Stellen besetzt sind. Jedem
dieser Punkte ist eine Mittelwertformel zugeordnet, die im Prinzip
einer analogen Behandlung wie M (k, [) zugénglich ist, d. h. eine stetige
Mannigfaltigkeit von =<2 Formeln fiir Mittelungen reprisentiert. Von
besonderem Interesse sind die Eckpunkte des obigen Parallelogramms:
Wir haben bereits gesehen, dass der Eckpunkt M (k, [;1,0) = M (k, 1) .
Die Ficke M (k,1;n,1 —mn) und die zu ihr diametrale M (k,1;1,n—1)

sind im Aufbau korollar:
1

, ECLTG"I-I \ e s

MW%LW~D:Q_ J‘”’
n - Ha

n- Haku>ln+(iz—1)k

M@¢m1mm:( Sa
a

und gehen insbesondere fiir I = 0 ineinander iiber.

Vor allem bemerkenswert 1st nun aber der vierte KEckpunkt, d. h.
der Diametralwert zu M (k D), d.1. M(k,1;n,0); man sieht némlich

sofort, dass M (k,I;n Han = G. M.!

Diese besondere Mlttelwertformel ist aber nicht die einzige, die
— von zwel Parametern unabhéingig — mit dem geometrischen Mittel
identisch ist; vielmehr zeigt eine leichte Determinierung des zundchst
unbestimmten Ausdrucks fir M (0, 0; r, q), dass

M(©,0;r,q) = Han
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Anderseits ist der eben erwihnte Ausdruck nicht die einzige a
priori unbestimmte Position in der Mannigfaltigkeit der M (k, I; r, q) .
Mit den bereits mehrfach verwendeten Mitteln ldsst sich bestimmen

1

M(k,0;r,0) — ('”'( 7.9 (1. a)")m (XXI)

wenn man unter [[ a die Produkte der a; mit r verschiedenen
Faktoren (d. h. also die Summanden von s,) versteht.

Die Formel XXI ist ein — allerdings etwas kompliziertes — ge-
wogenes geometrisches Mittel. Man sieht dies am besten an einem
Beispiel; wiahlen wir n =4, »r = 2 und schreiben wir wieder aus
Griinden der Abkiirzung fiir a; a; = a;;, so haben wir:

YR
Mk, 05 2,0) = [ (a9 % - (ay) ™ - (03 - (a) ™ - (1)1 - (ag9) ™| =
n=4

PG R PR AC R S A I AR A IPEAC A S
1

j P k k k k1"
2[af2 + @iy + ajy + gy + G5y + a34]

wobel H =

Man sieht leicht, dass der auf Seite 143 ausfithrlich hergeleitete
Grenzwert fir M (k, 0) nur einen Spezialfall von XXI fiir r = 1 dar-
stellt. Sodann erweist sich auch der bisher unerledigt gebliebene Iall

=7 in Formel V als Spezialfall von XXI, indem k& = 1 zu setzen ist.

Ausser den unbestimmten Werten lassen sich auch noch eine
Reihe von andern Reduktionsfillen anfithren, wie z. B.:

1 s \4

M@1,0;0,q9) = q% 7 — __?:_ q
(@) G

1
M@©,1;7,0)= [\ "= [

d.h. also: M(1,0;0,8 = DM(0,1;t,0).
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6.

Nachdem die Potenzsummen sich als ganze rationale Funktionen
der elementarsymmetrischen Funktionen darstellen lassen, kanu die
Anwendung des Maltiplikationssatzes und der Additionssidtze auf die
verallgemeinerten Potenzmittel allein oder in Kombination mit ge-
wohnlichen Potenzmitteln oder grundlegenden Mittelwerten nichts
prinzipiell Neues fordern. Ganz allgemein kann gesagt werden, dass
damit eine Methode gegeben ist, um eine uniibersehbare Vielfalt von
algebraischen Mittelwertformeln zu gestalten. Wir schliessen darum
unsere Ausfithrungen mit der Angabe einiger einfacher charakteristi-
scher Beispiele:

1) Es seien gegeben zweil reelle Werte 0 < a, << a,. Dann konnen
wir unter Verwendung von Multiplikations- und erstem Additionssatz
den folgenden Mittelwert bilden

1

1
M = (n +1 (a;z i ag + a; a, ((1,’11_3 - ag—2) | aflz ag (a';z—-i 8 ag—ti) ey, ))n

wobel der letzte Term in der Klammer gleich ist:

n n
filr gerades n: a,2 * a,2

n-1

fiir ungerades n: (a; - ay) 2 - (a, + ay)

Eine einfache Umordnung des Klammerausdrucks in a; und a,
ergibt: '

a‘;l—!—l_agﬁ—l

-1 -2 2 -1

al +aay+aiay+ ... F a0y +ay = —
1= Og

und wir konnen dem Mittelwert die Gestalt geben

nt1 1
y

—antt L
M:((n +1) (al—az)>

2) Als Beispiel fiir eine Anwendung des zweiten Additionssatzes
denken wir uns gegeben eine Reihe von Mittelwerten

o+
M(k,l):L k=0,1,2...h

dt



— 161 —

Es 1st dann auch:

N\
E’l' Zica?:.*_l
Y %
% zkai

ein Mittelwert, ndmlich ein arithmetisches Mittel:

2 (s 23}

Fiar h = 8 z. B. resultiert

N Qi@ Faltaita)  Dla(a (o1 +1)+1)
N@tata+)  Dlafa (o +1)+1)

3) Bei der Anwendung der Additionssitze kann man die einzelnen
Mittelwerte auch als unechte Briiche mit Nenner 1 anschreiben. Haben
wir beispielsweise die drei Mittelwerte

2t X Da
> a? ’ Sa " on
so sind u. a. folgende Aasdriicke auch Mittelwerte:

3
2.0 +Naz 4+ Ma )
Daz = ~ Sat4Dla a4 Da- Dad

1 +Da+ n _Ea2—|—za-2a2+ n- > a®

. . —“
mit den Gewichten Zl‘ca:f.

’

> a S’a*‘_{_z‘
ST TR T TR LI L0 LI LI
1 + 1 4+ »n Mat-Dla+Da - Dal4 n - Da-Dla

M;—i (Zas >0 2“)___ MNa2-Dla-n+ Da2-Dat-n4 Da-Da Da
3 >ﬁ‘a2 Za n Eaz.Za.n+2a .Za2,n+ n _Zag_za
11

_.E_

[
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Wie man sieht, sind dies Mittelwerte, die auch direkt unter Verwendung
von Gewichten nach dem zweiten Additionssatz zu erhalten sind:

wenn —- , h=1,2,...m Mittelwerte sind, so ist auch

h Z‘ (Zy, - Gh)
Dk (NG

ein Mittelwert, wobei (G, beliebige positive Gréssen bezeichnen.

4) Wir geben nun ein Beispiel fiir Anwendung des Multiplikations-
satzes: Hs selen gegeben die beiden Mittelwerte:

; ' = Na?\+
M, = 2 _\*ung M, = (ﬂ) = ( o )2
n n

) S 1Pz \ 1 . . ,
so ist auch M= [———"-\*ein Mittelwert. Fiir n =3

insbesondere erhalten wir:

W ((a1a2+a1a3+ A Ay) (af—l—afﬁ—]—ag))%_
- 3 : 3 -

1 "
— |w§(afa2—i— &y + aiay -+ aja; + aday + @i ay + (a; + ay + ay) a1a2a3)} '

e < S3* 8 \ L
Nun st (:3“ cay gy (a; + ay+ ag) ) = [ ————

\ L

ein Mittelwert, und ebenso ist
1 3 3 3 3 3 3 “}
g (ayay + azaq 4 ajag + aza; + aya; 4 a3ay)

sofort als Mittel zu verifizieren, denn es ist

4 ) :
bay < aja, + aja, + ofay + aja, + ajag + aja, < 6aj
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Bemerkenswert ist aber, dass dieser letztere Mittelwert in Darstellung
durch die elementarsymmetrischen Funktionen die Gestalt hat

0

(3= () )

also der Formel IV entspricht, welche a priori nur fiir positive Koef-
fizienten der s, Mittelwerte garantiert. Es ist deshalb vielleicht nicht
unniitz, hier nochmals zu betonen, dass Formel IV, namlich

NCRN FES .2
— /rn, h ’
6, 11( )

die fundamentale Formel zur Bildung elementarer Mittelwerte ist.
Wenn die @, (. 0) derart gewihlt werden, dass im Zihler ein in den
a; qymmetmsehes isobares Polynom vom Gewicht ¢ und von lauter
positiven Summanden entsteht, so ist M sicher ein Mittelwert. Diese
Aussage kann sinngeméss auf den ersten Additionssatz direkt iiber-
tragen werden. Kin Beispiel hiefiir:

2
Sy 85 —287— 858 1

M =

Sm-h=t fir jedes [],

5) Seien gegeben die beiden Mittelwerte:

M ( 2a"“>% ( D 1Pk )% und M ( 20’2'(H” )ﬁ (ZIPZUH )21_
My=|Z— ) === 2=\ T ) T
L S S .o, Sa* 1P

Y el

. 1
Q " 1 Prt) Z 1P2 (k—Ll)\)E-l

so 1st auch M =
' K 1Pk — Z 1Pax

ein Mittelwert, denn im Zahler steht de facto ein in @; a; homogenes
Polynom mit lauter positiven Summanden, indem némlich der ge-
nannte Mittelwert sich auch schreiben ldsst:

o N\ 1
W — ( 2?’1;-%1)2-1
\ }_j2pk

d. h. der Formel VII mit r =2, ¢ = 0 entspricht. Der Beweis ist
sofort erbracht, wenn man sich iiberlegt, dass

(2 1’Pk)2 == Z 1P+ 2 Z op  1st.
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6) Schliesslich gestattet eine mehrfache Anwendung des I. Addi-
tionssatzes elne inhaltlich bereits behandelte, der Form nach aber
neue Fassung eines gewichteten Potenzmittels:

Es seien Z,= >\aiitt, N.=Dali; by >ky> ... >k, >0

m

/Z- 1
dann ist M, = (YVL)I ein Mittel; und ebenso 1st ein Mittel:

j“

: i
u (@1'ZI+@2-22+...+(~)m-zm>—;- Z(@j-zj. :
®,"N,+6, N+ ...+0,-Z, Z@j'N,-

fal (0,08 Oyl L+ 0, akm) al(@alt L O, akm) L \)—}
( (O a8t + Opa2 + ... + 6, d"m) + (@it + ... + 0, ain) + ..

nehmen wir nun als k; natiirliche Zahlen (was fiir die Eigenschaft der
obigen Formel als Mittelwert — wie wir wissen — in keiner Weise Be-
dingung ist, aber ihre einfache Schreibweise ermdglicht), so ist offenbar:

Pla,) = Z @; - ali

ein beliebiges Polynom vom Grade k; in a, und durchwegs positiven
Koeffizienten 0, .

Nun ldsst sich unser Mittelwert schreiben:

M — ‘ai - Play) + a)- Pag) + ... +a};‘P(an)>§
( Pla,) + Pla) +...+ Plg)

also .

’Eaﬁ-P( 1)%
M:(\ ZP(G: )

Wir wissen aber auch, dass der Ausdruck

(Za’-li -Gy \)%
6,

dann immer ein Mittel ist, wenn G, > 0.
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Werden die Gewichte (-; nun durch beliebige positiv definite I'unk-
tionen von a;, also G; =F,(a;) > 0 ersetzt, so ist sowohl die soeben
ausfihrlich hergeleitete wie auch die folgende allgemeinere Formel
unmittelbar evident:

LRI

M= sofern F(a,) > 0.
(\ EFi(ai) / )
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