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Die elementaren Mittelwerte
Von H.Jeeklin und M. Eisenring, Zürich

1.

Wenn wir, um mit einem einfachen Beispiel zu beginnen, zwei

positive Grössen al < a2 haben, so sind bekanntlich M — • (a, a2)
1

und der positive Wurzelwert M (ax • a2)- stets Mittelwerte, d. h.

zwischen aL und a2 gelegene Grössen; ebenso liefert:

M= [ax -f a2 + (aj • a2) I]

stets einen Mittelwert, denn es gilt ja:

3Oj <«!-)- ci2 + a1 < «j + a2 -j- (at a2) 2 < a1 -f fl2 -f- a2 < 3a2

Dagegen liegt z. B. M' • (a1 4- a2 + Uju2) nur zwischen a1 und a2,

wenn gleichzeitig gilt:
2a2 2aj

ax < und a2 >
1 + ö2 1 + ai

Man kann sich nun die Aufgabe stellen, möglichst umfassende
Klassen von Mittelwertformeln aufzustellen bzw. abzugrenzen, die

bezüglich der vorgegebenen — als positiv vorauszusetzenden — Grössen

Mittelwerte liefern. Die vorliegende Arbeit ist ein Versuch in dieser

Richtung, soweit es sich um elementare Mittelwerte handelt. Die
Darlegungen erheben übrigens in den ersten drei Abschnitten nicht durchwegs

Anspruch auf Originalität, indem gewisse Teilbereiche schon

andernorts Behandlung gefunden haben. Wir nennen insbesondere
an älteren Arbeiten jene von Schlömilch («Über Mittelgrössen
verschiedener Ordnungen», Zeitschr. f. Math. u. Phys. 1858) und von
Lipps («Die Theorie der Kollektivgegenstände», Leipzig 1902) und



— 124 —

als neuere einschlägige Veröffentlichung das erste Kapitel im Buche

«Inequalities» von Hardy, IÄttlewood und Pölya (Cambridge 1934).
Dagegen mangelt unseres Wissens bisher eine umfassende und
systematische Theorie der elementaren Mittelwerte.

Es sei gegeben eine Reihe von n positiven Grössen:

0 < a1 < a2 < a3 < < an

Soll für diese n Grössen ein Mittelwert M f(a1,a2, an) formel-
mässig bestimmt werden — im Gegensatz zu den der mathematischen
Statistik eigenen lagebedingten Mitteln —, so hat M auf jeden Fall
folgenden Bedingungen zu genügen:

a) es muss eine reelle, stetige und eindeutige Funktion der a- sein;
b) es muss ausserdem eine symmetrische Funktion der ai sein;

c) es muss stets < M < an (wobei das eine oder das andere Gleich¬

heitszeichen — wie wir zeigen werden — in gewissen Grenzfällen

gilt, während beide offenbar für den Fall ai an gelten
müssen).

Soll nun weiter die Rechenvorschrift / («j durch eine algebraische
Formel gegeben sein — im Gegensatz z. B. zu den transzendenten
Mitteln —, so erscheint es im Hinblick auf den vorgenannten Punkt b)
gegeben, die sogenannten elementarsymmetrischen Funktionen der ai
als Ausgangspunkt zu wählen. Die elementarsymmetrischen
Funktionen spielen bekanntlich eine grundlegende Rolle in der Theorie
der Gleichungen n-ten Grades mit n positiven Wurzeln. Bezeichnen
wir diese mit an, so geht man aus von der Darstellung:

(x — Oj) (x — a2) (x — an) 0 (I)

Ausmultipliziert und geordnet nach Potenzen von x erhält man:

xn — xn~x + s2 xn~2 — + sn — 0

Hierin sind:

Sl oq + a2 + + an V a.

ata2 + axa3 + + o„-, an 2 ak> 1 * k

S3 — al a2 aZ al a2 a4 ~t~ • • • + an-2 an-1 % ^ i ai ak al ' ^ T k T l

sn — aia2a3 an — JjjTa,



die elementarsymmetrischen Funktionen der at. Es besteht also

allgemein st aus n, Summanden, die je ein Produkt aus t verschiedenen

(n\
ai sind; d. h. st ist ein spezielles

^ j-gliedriges isobares Polynom vom

Gewicht t in den ai. Somit können wir die folgenden n grundlegenden

Mittelwerte M (sk) für die Grössen ax an definieren:

n n

M(sn) (Sn)n (JJaiYn

Von den grundlegenden Mittelwerten M (sk) ist also M (st) das
arithmetische und M(sn) das geometrische Mittel.

Um der unter Punkt a) niedergelegten Forderung nach
Eindeutigkeit Genüge zu leisten, ist die wichtige Festsetzung zu treffen,
dass bei Wurzeln stets nur der positive Wert in Betracht zu ziehen ist.
Der Wurzelexponent ist bezeichnend für die Ordnung des Mittelwertes.

Die Zahl der grundlegenden Mittelwerte ist stets gleich der
Anzahl n der zu mittelnden Grössen ai.

Sind zunächst alle oH einander gleich und a, so wird auch

M{sk) — a, womit die Bedingung c) erfüllt ist. Sind nun nicht alle at
einander gleich, so ist M(sk) sicher ein Mittelwert, d.h. zwischen aL
und an gelegen, denn es ist, wie leicht einzusehen:
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lj a\ < h < U) an, und damit

Mit Hilfe der Mittelwerte M(sk) können wir der Gleichung (I)
auch die folgende Form geben (Schreibweise mit Binomialkoeffizienten),
die uns im weiteren dienlich sein wird:

x" -Q M (s,) x"-1 + 2) («2) *"-2 -"•••" (n) M"(S") ° (II)

Wir behaupten nun die Existenz der folgenden wichtigen Reihe

von Ungleichungen:

M (sn) < M (vi) < • • • < M (s2) < M (Sl) (III)

Lediglich zur Illustration des beim allgemeinen Beweis einzuschlagenden

Verfahrens beweisen wir den Satz (III) zunächst für M(s2)
und M (s3) bei n 3:

Es werde s2 konstant gehalten — also a1 a2 a1a3-\- a2a3 C —,
und wir fragen nach der Beschaffenheit der Werte a1, a2, a3, welche

unter dieser Bedingung ein maximales s3 liefern. Wir schreiben:

C — a2
s3 a1 • a2 • a3 cti • a2

«i + u2

Als erste Bedingung für ein maximales s3 muss die erste partielle
Ableitung von s3 nach a1 verschwinden und die zweite negativ sein.

Man erhält C — a1(a1 + 2a2), also nach Einsetzung von C: at as,
wobei die zweite Ableitung — 2(a2 -f- a3) (a2 + a2)~3 wird. Wesentlich
für den allgemeinen Beweis ist nun der Umstand, dass wir wegen der

Symmetrie der Funktion s3 in ai sofort das Resultat der partiellen
Ableitung nach a2 angeben können, da man in den obigen Ausdrücken
lediglich «j mit a2 zu vertauschen braucht: C a2(a2 + 2«^ und

«2 a3. Unter allen Werte-Tripeln u1, a2, a3, die ein konstantes s2

liefern, erzeugt also jener Tripel das maximale s3(maxj, in welchem

a1 — a2 a3 — d. Daraus folgt 8ä2 s2, oder, anders geschrieben:
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ä M (s2), und andererseits ergibt sich das gesuchte Maximum als

s3(maX.) (d)3. Nun ist offenbar:

S3 53(max.) (d)3 S3 S2

— < oder — <
s2 s2 3d2 d3 3d2

Die rechte Seite der letzten Ungleichung ist 1, da ja 3d2 s2

ist, die linke Seite aber ist <1, da stets s3 < s3(max j
d3. Es ist

somit statthaft, aus der linken Seite der Ungleichung die dritte und
aus der rechten die zweite Wurzel zu ziehen:

oder nach Erweiterung mit d:

(y)2> d. h. M(s3) < M(s2)

Diese Beweismethode lässt sich ohne weiteres auf den allgemeinen
Fall übertragen: Man hält sk konstant C und sucht jene Zusammensetzung

in den — jetzt mit Ausnahme eines einzigen beliebigen a
veränderlichen —at, welche ein maximales sA+i (max.) erzeugt. Zur
Bestimmung von si+1(max) ersetzt man in sft+1 /(«], a2 an) z. B.

an, das man aus der Gleichung sk~C linear durch ai:^u und sk

ausdrücken kann; so erhält man sk+1—F(a1,a2 an_^,sk). Nun
müssen wieder sämtliche n — 1 partiellen Ableitungen von F nach ai rj. „
verschwinden. Das ergibt ein System von n — 1 Gleichungen in ai=|-n

von identischem Aufbau in dem Sinne, dass in der ersten Gleichung
a1 Plätze einnimmt, die in der zweiten a2, in der dritten a3 usw.
innehat. Das System wird also befriedigt durch die Lösungsgruppe
<ij a2 an_t d; durch Ersetzung eines andern ai als an in
der Funktion / erhält man analog auch noch an d und deshalb

ä==M(sk)> so dass gilt: für sA+i(max.) ist a,i=ä, also sfc+1(max.)
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d.h. M(sfcfl) < M(sk)

"u
was zu beweisen war.

Der damit bewiesene Satz (III) ist eine Verallgemeinerung bzw.

Verschärfung des Satzes, dass das arithmetische Mittel stets grösser
ist als das geometrische Mittel.

2.

Bekanntlich liefert jede algebraische Verbindung von
elementarsymmetrischen Funktionen stets wieder symmetrische algebraische
Funktionen, und umgekehrt lässt sich jede symmetrische algebraische
Funktion als algebraische Funktion der elementarsymmetrischen
Funktionen darstellen. Auf dieser Grundlage lassen sich aus den im
ersten Kapitel betrachteten grundlegenden Mittelwerten auf
verschiedene Art weitere Mittelwertformeln gewinnen.

Wir leiten vorerst drei ebenso einfache wie wichtige Hilfssätze

z\ther. Zu diesem Zwecke bezeichnen wir vereinfachend mit

irgendeinen Mittelwert der Ordnung l. Des weiteren seien gegeben
zwei positive, aber nicht gleichzeitig verschwindende Grössen h und k.

Sind M, f^ ' und M2 (—\ ' mit l und t > 0 zwei
\nJ \nJ

Mittelwerte, so liefert die folgende Verknüpfung einen neuen Mittelwert

M:
h j.\ i

M M J+tk Mvltiplikationssatz.

[Z \Ä /Z \k
Denn aus a[h < I — J < äff1 und a[k < — j < afk folgt sofort durch

\n2/
Multiplikation entsprechender Positionen der Ungleichungen

fZ \h /Z \k
(^)lh+tl!<[^) ' (jf) <ian)U+tk

also
N

2iY (z2\k\jh-rik
Ul<' [nJ '

\N2 ' ' <a"
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Z1 \| /ZA-}
Sind M, I — und M9 I — zwei Mittelwerte gleicher\nJ \nJ

Ordnung mit positivem l, so liefert folgende Formel einen neuen
Mittelwert:

/ Zx • h + Z2 k V|
M I. Additionssatz.

\NX h N2 k /
Zi-h

Denn aus a\ < < a oder a\ Nt h < Z. • h < al N. • h
Nx h

einerseits und der analogen Ungleichung mit den Werten Z2, N2, k
andererseits folgt durch Addition der entsprechenden Ungleichungspositionen

:

a[ (Nt • h + N2 k) < Zt • h + Z2 • k < aln (Ni • h + N2 • k)

/Z1.h + Z2.k\±
oder a, < < an{N^h + N.-kJ

/ZA-f (Z2\±
Sind schliesslich M, — und M„ I — mit positiven l und\nJ \NJ
t, zwei Mittelwerte verschiedener Ordnung, so erhält man mit folgender
Formel wieder einen Mittelwert:

(Z, • h)T + (Z2 k)T
M II. Additionssatz.

(N, h)T + (N2 k)T

Der Beweis folgt unmittelbar aus der bekannten Tatsache, dass

a c a a -f- c c
wenn — < — dann — < < —

b d b b d d

In Anwendung auf die grundlegenden Mittelwerte ergibt die

Verbindung des Multiplikations- und des I. Additionssatzes die Möglichkeit

der Bildung von Mittelwerten der Gestalt:

M / 2gii7**m \T bei o <
(IV)

2 m h t für jedes ]J
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Wir haben hier im Zähler ein isobares Polynom in sk vom
Gewicht t. Die Darstellungsmöglichkeit wächst rasch mit der Zahl n
der ai. Lassen wir nur positive ganzzahlige h zu, so ist der Zähler
für t 6 :

bei w 2 : 04 • s® -f 02 • s2 + 03 • s4 • s2 + 04 • s4 • s2

bei n 6 : 04 s® -f 02 • s\ s2 + 03 • sf ss + 04 • s? • s4 + 05 • s4 • s5 +
+ • S6 + • S1 • S2 + • S2 • S4 + • S2 + ®10 ' S3 + ®11" S1 ' S2 ' S3

Als ganz einfaches Beispiel eines Mittelwertes nach (IV) nennen wir:

M

oder speziell für n 2

(ai ~f~ ^2) ®i \TM
2-1

(a\a2+ axa§

Dass ein generelles Analogon zum Multiplikationssatz für Division

nicht bestehen kann, ist leicht einzusehen. Denn aus at < < a'

Nt N>

und a[ < < arn oder, w. d. i. a* > > anr, folgt vorerst lediglich
No Zo

/Z.-N^
al %: Ui-.'1 • Z2

Unter bestimmten Voraussetzungen können aber auch aus dieser

Verknüpfung Mittelwerte hervorgehen. So ist vor allem

M t -f r stets ein Mittelwert. (V)

Um dies zu beweisen, haben wir wieder zu zeigen, dass zunächst gilt:
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dj < t+1
•

^ 7 < a oder also
' n
t + 1

n\ ln\ In
t + l) ^St+1'\t) ^a"'S<'[t+ 1

(ij^\ If]/I aus st •

/ v +1
— das eine Summe von ('")(, „ Produkten mit je t verschiedenenWv + V
at als Paktoren ist — entstanden denken, indem jedes Produkt passend

n\
J,

t -L l) t/ ^>r0(^u'i^en' a^er von Je ' + 1 verschiedenen ai als Fak-
fh \

toren, und sicher grösser, als wenn st • /
^ j durchwegs mit a1

erweitert wird — wie links aussen in der Ungleichung — und kleiner
als bei durchgängiger Erweiterung mit an wie rechts aussen. In
Anwendung des Multiplikationssatzes folgt nun:

n\ / n \ jn

durch ein ai erweitert wird. Nun ist st+i ebenfalls eine Summe von

„1 ^ "t + l \V sl V V _ S( + l V ^ „2
n \ st I n\ st_i / n \ sH

t +1/ \ V V + V
und in wiederholter Anwendung dieses Procedere allgemein

ai< "7-\ \<a>

eine Ungleichung, die gültig bleibt für t ^ r, denn es ist

Der Fall t r wird später gesondert zur Behandlung gelangen.
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Wir können den nach Formel V gebildeten Mittelwerten eine
besondere Interpretation geben, wozu jedoch ein Wort über die

sogenannten gewogenen Mittel vorauszuschicken ist. Ein gewöhnlicher
elementarer Mittelwert der Grössen «y (i 1, 2, n) ist — wie wir
noch zeigen werden — stets von der Gestalt

wobei 2 z% ein w-gliedriges, symmetrisches, isobares Polynom in den

ai vom Gewichte t ist. Ein gewogener Mittelwert, gekennzeichnet
durch die positiven Gewichte g^i— 1,2, n), kann dann stets
als der entsprechende gewöhnliche Mittelwert mit einem g- statt
n-gliedrigen Polynom aufgefasst werden, wobei der Summand zi im

ganzen Pj-mal vorkommt und g 2 ^ dann also das

gewogene Mittel Mg:

Nach dieser Vorbemerkung ist leicht einzusehen, dass das Mittel

gleich ist einem gewogenen elementaren Mittel der Ordnung (t — r),
wobei die Summanden von sr als Gewichte fungieren. Zwei einfache

Beispiele für n — 4 mögen dies verdeutlichen, wobei die Gewichte
durch eckige Klammern kenntlich gemacht sind:

1) *= 8;
3(a1a2a3 + a1 a2 «4 + «4 «3 «4 + «2 a3 aA)

4 s2 2 («4 a2 + a1a3 + a4 «4 + a2a3 + «2 ai + a3 a4)

[«23 + «24 + ß34] al + [al3 + al4 + ^34] a2 + [a12 + a14 + ^24] °Z + [fl12 + fl13 + fl2.s]

[a23 + a24 + «34] + [a13 + «14 + a34] + [a12 + «14 + a24] + [«i2 + %3 + a23]

(wobei wir a; «y mit abgekürzt haben)



— 133 —

/6s,\-g- / 6 • a,a9anü, \4-
2) f 4; r=2; Af —)\ ^2 / \ ^12 ^13 ^14 ^23 ^24 ^34 '

[a34] a12 + [a24] u13 + [^23] °i4 + [^14] a23 + [aia] a24 + [^12] a34 2

[ffl34] + [a24] + [a23] + [ai4] + [al3] + ["u] /
Nach dieser Bemerkung über gewogene Mittel wenden wir uns

wieder der Formel V zu und können darin insbesondere t — r 1

setzen und erhalten eine besondere Gruppe von Mittelwerten von der
Form

' n\
}) •(* + Mt+1(si+4)

M
n \ st • (n— t) Ml (st)

t + l
AVir zeigten soeben, dass

- < / x < a>

n\ 1 n \ 'Int) [t + l) [t
oder a4 • Ml (st) < M,+1 (st+i) <%• Ml (s{). AVenn also > 1 und
damit alle ai > 1, ist sicher < Mt+i (st+1), und wenn an < 1

und damit alle a{ < 1, so ist sicher Ml (st) > Mt+1(st+1). Im Gegensatz

zu den Mitteln M(st) selbst lässt sich also bei deren Potenzen
Ml (st) keine allgemein gültige Ungleichung für zwei aufeinanderfolgende

AVerte angeben. AVir behaupten aber die Gültigkeit der

folgenden Beihe von Ungleichungen: (VI)

M*(s2) Ms (s3) M'(st) Ml+1 (s,+1) M"(sn)
M(sJ > — > > > —-—- > ———— > • • >M (sx) M2 (s2) Mt~1(si+ M' (st) M'"l(sn_t)

Der erste dieser Mittelwerte ist das arithmetische Mittel, der
letzte — wie man sich leicht überzeugt — das harmonische Mittel:

2T?-

und Satz (VI) ist daher eine Verallgemeinerung und A^erschärfung des

Satzes, dass das arithmetische Mittel stets grösser ist als das har-
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monische Mittel. — Es kann übrigens nach dem oben Gesagten das

harmonische Mittel aufgefasst werden als gewogenes arithmetisches
Mittel, wobei jeder der n Werte a{ die übrigen in—1) Werte als

Gewicht hat.

Um nun den Satz (VI) zu beweisen, denken wir uns die reziprokenIII.Werte der ai, also —, — — als die n reellen positiven Wurzeln
«1 «2 an

einer Gleichung «-ten Grades, welche wir in der Form (II) schreiben:

xn~l + Q 0

1

Dabei bedeuten die Nt die grundlegenden Mittelwerte der — und
ai

man überlegt sich leicht, dass folgende Beziehung zu den

grundlegenden Mittelwerten der besteht:

N M^(yl)-?T2 M"-2(y2) ^ M(Sl)
}jn_

1

M"(sn)
' 2

Mn (sn)
"" ^ M"(sn)

' n Mn (sn)

In Anwendung von Satz (III) auf obige Gleichung muss gelten:

N± > Nz > Na > > > Nn; oder

/ M" 1
(s„_i) \

^ / Mn 2
(s„_2) \T^ ^

M (sj) 1 Vn 1

V M"(sn) )>{ Mn(sn) >'">\Mn(sn)J >\ M"(.g/ "%)
Aus den beiden ersten Gliedern der obigen Ungleichungsreihe folgt
insbesondere

/^(Vih1 M"-2(v2) M^{sn_,) Mn (sn)

> oder >
V Mn (sn) M" (sn) M"~2 (sn_2) M-1^)

Wir können diese Aussage auch auf Gleichung (II) beziehen, was

besagt, dass bei einer Gleichung n-ten Grades mit n positiven Wurzeln
bezüglich der in den drei letzten Gliedern auftretenden Mittelwertpotenzen

die eben genannte Ungleichung gilt. Die Ableitung einer

Gleichung «-ten Grades mit n verschiedenen positiven Wurzeln ist
eine Gleichung (n — l)-ten Grades mit n — 1 ebenfalls positiven
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Wurzeln, die aber durchwegs verschieden sind von jenen der ursprünglichen

Gleichung. Die erste Ableitung von (II) ergibt, nach Division
durch n:

«r1 - • M(Sl) aT2 + • M2(s2) a^>_ + Mn~l(sn_j) 0

Das hierin auftretende Mittel M(sk) ist also das fe-te grundlegende
Mittel der n — 1 Wurzeln der abgeleiteten Gleichung, zugleich aber
auch das fc-te grundlegende Mittel der n Wurzeln der ursprünglichen
Gleichung. Nachdem wir mit der Ableitung wieder eine Gleichung
mit lauter positiven Wurzeln haben, gilt bezüglich der in den letzten
drei Gliedern enthaltenen Mittelwertspotenzen die vorgenannte
Ungleichung, also

M"-2(y2)
^

M"~3(Vs)
>

M-2(V2)

Durch sukzessive weitere Ableitungen ergibt sich somit der Beweis

von Satz (VI).

Die Verwertung des zweiten Additionssatzes allein oder in
Verbindung mit Satz (V) zeigt weitere Möglichkeiten der Bildung einer
Vielzahl von Mittelwerten. Wir nennen nur zwei ganz einfache
Beispiele (ausgeschrieben für speziell n 2):

1 _ Sj + s-j-sj1 ax + a2 + % a2 K + a2yl 2 (q2 + 3 + a2)

fn\ 2 + 1 • 2"1 5 • (a, + a2)
n + (aj"B

i i('M Sl + 2 ai + (ai av2 + a2 (nicht zu verwechseln

(nXy ' 3 mit dem arithmetisch-
n + \ 2 / geometrischen Mittel)

Auch zu den Additionssätzen gibt es kein generelles Analogon
für Subtraktion. Wenn wir z. B. in der nach (IV) gebildeten einfachen
Formel

/ 5? + & • s2 \ ¥M 1 2 ^
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für 0 auch negative Werte zulassen, so existiert für 0 ein Intervall,
innerhab welchem M kein Mittelwert ist. Denn schreiben wir die
Formel

S1 H~ © ' S2
M2

so ist dies bezüglich M2 und 0 eine gebrochene lineare Funktion, d. h.

bildmässig eine gleichseitige Hyperbel mit zu den Koordinatenachsen
parallelen Asymptoten. M2 als Funktion von 0, und damit M, kann
beliebig hohe positive und negative Werte annehmen, also ax unter-
und an überschreiten. Wenn speziell n 2, so ist

_
al + at + (2 + 0) «i a2

~
4 + 0 '

was bei einem Wert für 0 innerhalb der Grenzen

3otj dg 2a1o2 3 a\ a2 2oj02 (beide Grössen
— und

axa2 — af a^ — a2 sind negativ)

keinen Wert M zwischen ax und an ergibt.

Wenn wir daher in Formel (IY)

M (—^~J "*—n m \ 1, V m • h t für jedes 7T,

auch negative Qi zulassen, so wird eine nichtsystematische Wahl
der 0i kaum viel Erkennenswertes liefern. Wir können aber z. B. die

©i so wählen, dass im Zähler Potenzsummen der Summanden der sk

resultieren, was immer möglich ist; denn jede ganze symmetrische
Funktion f(ax,a2 an) ist als rationale ganze Funktion der n
elementarsymmetrischen Funktionen sn darstellbar. Ist insbesondere

/ in den o; homogen vom Grad l, so ist die Darstellung isobar
vom Gewicht l.
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Wir bezeichnen die Potenzsumme von sk vom Grad t mit kpt.
Es ist beispielsweise:

lPl al + a2 + • • + an > 2P1 al a2 + al a2 + • • • + °n-l an

1V2 a\ + «2 + • " • + al ; 2P2 («1 a2)2 + K «3)2 + • • • + K_1 an)2

iPi «1 + «2 + • • • + <4; 2Vi Ka2)' + M'+'" + (Vi %)'

Demnach ist kpt eine homogene Funktion der vom Grade k-t l
und ermöglicht eine isobare Darstellung durch die elementarsymme-
trischen Funktionen vom Gewicht k t 1, also in der Gestalt

n*». wobei für jedes ]j[. Die Darstellung ist
eindeutig, jedes kpt ist nur durch eine einzige Wahl der 0i darstellbar.
So ist z. B.:

hVi «* — 2 • 2 (Vi ' h-vt ' [— 1]M); w°bei: S° ~~ *'
(=i sm 0 fur m > n

Wählen wir nun die 6h in Formel (IV) so, dass im Zähler
Potenzsummen der elementarsymmetrischen Funktionen resultieren, so haben
wir:

M / rPk \ '
; k • r t (VII)

n
r

und dies ist sicher ein Mittelwert, denn es ist

< (") < rVk < < '

Ist speziell r 1, so haben wir den bekannten Fall des gewöhnlichen
Potenzmittels „iPt \f /5>\TM ' ' '—

3.

Wir studieren nachstehend die Klasse der Potenzmittel genauer.
Sie ist vor allem deshalb interessant, weil in ihr die bekannten
einfachen Mittelwerte (arithmetisches, geometrisches, harmonisches,
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kontraharmonisches und quadratisches Mittel) als benachbarte Spezialfälle

enthalten sind. Es tritt daher der verwandtschaftliche Zusammenhang

dieser Mittelwerte klar in Erscheinung, und ihre Stellung
zueinander lässt sich sehr leicht überblicken.

Da sich die Potenzsummen als Punktionen der elementarsymmetrischen

Punktionen darstellen lassen, muss jeder Satz über die
grundlegenden Mittelwerte ein Gegenstück bei den Potenzmitteln haben.
Man wird sich sofort die Frage stellen, ob für zwei Potenzmittel:

Vi (-D SafTuad

eine analoge Bildung zu (V), also

2«:
auch wieder einen Mittelwert liefert. Wir setzen t — 1c ~ l und
schreiben ferner hinfort der Einfachheit halber überall dort für
a,. a, wo Missverständnisse ausgeschlossen sind. Wir setzen künftig:

/ V, ak+1 \ t k und l beliebige reelle Grössen
M (k, l) — (VIII)V ' \ 2«* / -oo<M<+co
Dass es sich hiebei tatsächlich um Mittelwerte handelt, d. h. dass

a1 < M(k,l) < an, ist leicht zu zeigen. Man überlege sich vorerst,
dass — wenn man l positiv voraussetzt — gilt:

5X \f

und a\ < al <.aln, also auch

ai ' 2 ak 2 a'l ' ak < 2 2 a'+k < 2 an ' ak — an ' 2
und damit

yy+! / y,
o{ < < aln, bzw. ax < )' < an

a
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al an
Anderseits ist — < 1 und — > 1, also

a a

a{-2a-'.a*<2y<^-2 a1 ak

Vafc Va' VT
und damit a[ < ^ < aln, bzw. ax < ^ J < an

Es ist also sowohl ax< M(k,l) < an als auch a1< M(k, — /) < an.
Der Fall l 0 wird separat behandelt werden.

Wir setzen nun in M (k, l) speziell 1 1, also

yy+i yy+i yyM(k, 1) — und behaupten — >
2«' 2«* 2«*"1

Es sei ak bi. Da ai > 0, ist b{ immer positiv, ob nun t ^ 0.
Mithin ist zu zeigen, dass

2ai&< • 2 —> (2&i)2>bzw- 2°i-bi • 2——(2b»)2>0 ist-
ai ai

Ausmultipliziert erhält man:

/ üh /o«_i a>„ \
tf + b\ + • • + b2n + 1 |£>i&2 + • • • + 1 bn_tbn

\a2 axJ \ an an_J

— [^i 4" + • • ~H + ^b1b.i -f- • • • + 2&„_! ?>„] —

(«i — a2)2 («i~a3)2 K-i — an?
— bxb2 \- bjbz [-••• + bn_tbn > 0,

al a 2 al a3 an-1 an

denn es ist b{bj >0, ata- > 0 und {ai — a-)2 > 0. Wir haben somit
bewiesen:

2 ak+l yak y«2 2a n 2 er1

> > • • • > T >
2«* ' 22« M 2«1 2«"'

2a" 2cfi:
> — > > (IX)

2«"* 2«*'
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In der Reihe dieser Ungleichungen ist insbesondere:

2"
2«
2>

n

n

2

das kontraharmonische Mittel (K. H. M.),

das arithmetische Mittel (A. M.),

— das harmonische Mittel (H. M.),
2a_1

und es gilt demnach stets K. H. M. > A. M. > H. M.

Setzen wir aj git so ist

2a?+1 2 ai-0i
2«? 2 gt

Die obige Reihe ist daher eine Erweiterung des A. M. auf spezielle

gewogene A. M., wobei die Gewichte Potenzen der Grössen ai selbst
sind. Zufolge der Ungleichungen (IX) gilt:

xy 2ak 2«* \k 2a" 2a'c~1 2«2 2« 2a*

xy-1 xy-1 V2 o*"1/ 2^ 2a*~2 2« n

2«" l n J

Ebenfalls wegen der Ungleichungen (IX) gilt weiter

v^1 xy+1 /2a*HY 2ftfc+1 2a" 22a*+! 2
"

xy V 2a" J<~2a" '2a"+12a*+!~2'2afc+w 2"'

"l!0; (>1

Für fc 0 gilt insbesondere:

w \ n / \n n
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Setzt man hier für l 2, so hat man

n / n

Es ist dies der bekannte Satz, dass das Quadrat eines arithmetischen
Mittels kleiner ist als das arithmetische Mittel der Quadrate der
Basisgrössen; und die Verallgemeinerung lautet: Die Z-te Potenz
eines A. M. ist kleiner als das A. M. der Z-ten Potenzen der Basisgrössen.
Aus X und XI zusammen folgt

2« y2«!\i 2«'
< —— <

2«'"1

In einfacher Umformung erhalten wir aus XI:

it+l (]y+1 V 2a,c+!
— > -=-r- oder >xy 7 (2«*+1)! (2a")M

Beidseitig mit (2ak+1)1 1 multipliziert, ergibt:

2 a"+l V / 2ak+l V"1 /' 2ak+l \ui / 2 a"+l x A

> bzw- ^ > —^r^r- (xn)y/ \ 2ak+17 V

Setzt man hierin — l an Stelle von Z, so folgt

2»" f2^y.b„. f 2°* v;
\ 2»*' V 2°"' \2«".

oder, wenn man k durch k -j- Z ersetzt:

"*+'+1\r+i /2a"+!\T
2a* 7 V 2«'

> (xni)
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Zufolge (XII) und XIII) gilt die folgende Ungleichungsreihe:

;o»+.^ ^ /IX+1\
> /IX^/ \ ^ ' ''' V 2a* / V 2«" / V 2fli

t 2«* \h 2«*
> 1 ^ I >•••>! -^^TTTT I > ^ fc_; I >

2«i_v \]>y-2/ \2«"+1"v \2a'

oder auch: M(k,l + 1) > M(k,T) > M(k,l — 1) > Es ist
dies das Gegenstück zu Satz III.

Man überlegt sich leicht, dass

/ 5>fc+! \T
1 \ Ut /

lim \ 2ja ' hm
l —OD l -f- OD

Für k 0 insbesondere ergibt sich die Reihe der gewöhnlichen
Potenzmittel:

1 Hf. • • > (¥)'. (*)> ©*>(£)>
(XV)

/' 2fl2 Y«"
• 2aHierin ist I das quadratische und das arithmetische

\ n / n

Mittel, und es ist damit erwiesen: es ist immer: Qu. M. > A.M.

Wie ohne weiteres einzusehen, ist

Vafc+i X>*+!+1 Yal+I
Oi • U. < „ < an ^4*1 \ U, -1

2«" 2a*

oder ax • Ml (k,l) < Ml+1(k, l + 1) < an • Ml (k, T)
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Wenn demnach at > 1 und damit alle ai> 1, ist sicher Ml (k, l) <
< Ml+1 (k, l -f- 1), wenn aber an< 1 und damit alle ai< 1, so ist
sicher Ml (k, l) > Ml+i [k, l + 1). Im Gegensatz zu den Mitteln
M(k,l) lässt sich also für die Potenzen Ml(k,l) keine allgemein
gültige Ungleichungsreihe angeben. Dagegen lässt sich mit Potenzen-
Quotienten das Gegenstück zu Satz VI aufstellen. Es gilt nämlich

Ml+1(k, l + 1) Ml(k,l) M1'1 (k,l — 1)

" ' > MÜkJ) > M^ikJ — l)
> Ml~2 (k,l — 2)

> " '

denn ausgeschrieben — wobei sich immer 2 in den Nennern
wegkürzt — haben wir

yy+!"*> 2a"+!
>

2afc+!_1
>

^ak+l'2
>

und dies ist die bekannte und bereits bewiesene Reihe IX.

In XIV interessiert insbesondere der zunächst unbestimmte Aus-

2 a* YÖ~

druck für M(k, 0); nämlich —-J
° Um seine Bestimmung vor¬

zunehmen, betrachten wir Mik, 0) als

/ vak+x x 1
lim M (k, x) lim — —

2ax=o x=o

und operieren nach bekannter Methode mit dem Logarithmus des

Ausdrucks M(k, x):

1 V alt+x 1

In M (k, x) — — - In — — • In / (x)
x 2 x

Dies ist für x 0 ein unbestimmter Ausdruck, zu dessen Bestimmung
Zähler und Nenner einzeln zu differenzieren sind:
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d f,~\ d fZ a,k+x

ixmm rw sS-"-

1 1

a^Xak+x I ak\?,ak

ft V ok+x1,«" V 2">+' So>"

SJ-tT' - ^W- • - >" (iT»"'")5^
2a*+x 2a

Es ist daher

lim M(k,x) lim 1/7« r also M(k,0) 1/7«
X=0 £=0

Insbesondere ist

X
M(0,0) \/7a / (//«)«, d.h. das geometrische Mittel!

Aus der Ungleichung XV folgt demnach, dass stets A. M. > G. M.
Dieser bekannte, aber an sich nicht ohne weiteres evidente Satz

ergibt sich also hier in leichter Folgerung.

Setzen wir auch hier wieder a\ git so kann M(k, 0), k #= 0,
als spezielles gewogenes geometrisches Mittel aufgefasst werden, mit
Potenzen der Basisgrössen als Gewichten:

(l7«9)a

Aus XII und XIII ist zu folgern

va*+«+i\-L /2«i+i+1V+i /2«s+'x4
> i >

xy+1 \ 2«* / V 2«"
Daraus folgt aber auch

«* \T.2«fc+,+1v2 /2«i+M. 2<
> 1

2«fc+1 / > 1 2«" /
>

\ 2«^ / 53"'> \ 2«^ >

2«2\f / 2« \! n \+ /' 2
V2«w/ V2«"!/ VI•••> > h^-rr <XVI)

,o-l \ JL



Wiederum überlegt man sich leicht, dass auch in bezug auf k — wie
bereits für l erwähnt — gilt:

s- ,fc+I vi
lim V '

Um "

k — oo k — -f- oo

Insbesondere folgt für l 1 aus XYI wieder die bereits bekannte
Reihe IX.

Aus XYI und XIII folgt aber auch:

*+'^ /2x+,+ivf V+1

2«* / \ V 2a*+t

und es gilt demnach

/ S^Xyl- /2«""yh</2^Vi_
V 2»* / V 2"*" ' 1 2»*" '

Die vorstehenden Ungleichungen hätten sich zum Teil auch

gewinnen lassen unter Bezugnahme auf die Ungleichungen von
Sieffensen-Jensen. Wir haben jedoch eine in sich geschlossene elementare

Herleitung vorgezogen, da damit ein besserer Einblick in die

Klasse der Mittelwerte M (k, 1) gegeben ist.

4.

In Zusammenfassung des in Abschnitt 3 Gesagten können wir
nunmehr feststellen: Nehmen wir von M(k,T) die vier Positionen

(k, /), (k -f t.l), (k,l 4-1) und (k + t, l -f-1) — für die wir die später
noch zu verallgemeinernde Bezeichnung «benachbart» einführen wollen,
sofern wir t + 1 nehmen —, so gilt stets:

für festes l: M(k,l) < M (k t, l), nach XVI

für festes k: M(k,l) < M (k, l -f- f), nach XIV

für k — l konstant: M(k,l) < M(k + t, l + f), nach XVII

für k l konstant: M (k, l + t) < M (k + t, T), nach XIV
10
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Denken wir uns die Gesamtheit der M(k, l)-Werte als eine Fläche
im Raum über der k, Z-Ebene repräsentiert, so gibt uns das folgende
Schema ein Bild über deren Verlauf bzw. Anstieg und Abfall (die Fläche
fällt in Richtung der Pfeile):

+ 2

Betrachten wir kurz das durch ganzzahlige Werte von k und l gegebene
Gitter: Nachdem M(k, l) M(fc + Z, — l), tritt jeder Wert M(k, l)
zweimal auf, mit Ausnahme der geometrischen Mittelwerte M(k, 0).
Oder mit andern Worten: Jede zur l-Achse parallele Wertereihe tritt
auch auf parallel zur Winkelhalbierenden des 2. und 4. Quadranten,
der Schnittpunkt der beiden Reihen liegt in M (k, 0).

Es lohnt sich, noch die nächste Umgebung von M(0, 0) genauer
zu betrachten, wie sie in nachstehendem Schema wiedergegeben ist
(die Pfeile zeigen in Richtung kleinerer Mittel):
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M(0,2)
n

iW(-U) —!L
2X1

V

1
T,a

M{0,1) —
n

I

2>2
M( 1.1) -^-

— a

-fc

N |
Af(0,0) [Jar

1 V
—

M(0,-1)
n

~ A/ (1, -1)
n

V

V a2

I

— l

\ T

M{2,-2)= X2 i
n

Es ist also stets:

5>2 /2>2\i 2> n-J-> > > Ha" >
2« V » / » 2a_1

d. h. KHM > Qu. M. > A. M. > G. M. > H. M.

Die Fläche z M (k, T) ist — entsprechend den Fundamentaleigenschaften

der Mittelwerte — eindeutig und liegt zwischen den

Ebenen z al und z an. Die Parameterlinien l konstant bzw.
k konstant haben die Geraden z a1 und z an als Asymptoten
(wir haben die einschlägigen vier Grenzwerte weiter oben bereits

erwähnt), und zwar wachsen die Ordinaten z mit wachsenden Werten
k, bzw. I, monoton. Jede Kurve l(k) konst. hat einen Wendepunkt;
dieser verschiebt sich mit wachsendem l(k) im Sinne kleinerer k(l).
Von besonderem Interesse sind die Wendepunkte der Parameterlinien
k 0 bzw. 1 0: sie inzidieren im Zentrum der Fläche, dem Punkte
Z M{0,0). — Offenbar gibt es zu jedem zwischen a1 und an

liegenden Wert to und einem beliebig vorgegebenen endlichen k(T) stets
ein und nur ein l(k) derart, dass M(k,l) to. Zu jedem solchen m
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gibt es also unendlich viele Wertepaare k/l, die die Gleichung M (k, T) =m
erfüllen; z m stellt das System der Niveaulinien unserer Fläche dar.
Auf der durch das Flächenzentrum gehenden Niveaulinie hegen z. B.
alle jene Mittelwerte, die gleich dem geometrischen Mittel sind. Die

folgende Skizze zeigt die Projektion in die k/l-Ebene der Niveaulinien
in der Nähe von M (0, 0) für den Fall n — 2, mit a1 1 und a2 2.

z 1.20 1.33 12 1.50 +tyl67 1.80 1.89 1.94

1.11

1.06

-k

lo3

v v \ \\ \ \ \\ x v \
\ v \ x. \\ \ \ \ V

\ \ \ \ \
\ \ \ \\ \ \ \ V\ -3 \ -2 \ -4 v. vi

\ x \ v

\ v \ \

\ \ \
2 \ \ \ \

\ \ \ \
\ V ^

i1 k k \ '

\ \ \ \^ \ \ \\ A \ 2 \ 3 \
s v \ \ l

X \ \ \
^ ^ \ -4

\ \ \ \
\ \ \ \
\ \ \ \ o
\ \ \ \-2-
\ \ \ \
\ \ \ x

* \ \\ V \ \

< \ 1 \ 1 \ 1 \\ \ \ \ \\ \ \ \ \
\ \ \

\ ^ \ \ \\ \ ^ \ \
\ \ \ \ \\ \ \\ \ \ \ \

V \ \ x

\ \ \
Im vorstehenden speziellen Beispiel erkennt man die Niveaulinie
durch M{0, 0) als Gerade, deren Projektion in der kjl-Ebene durch
unendlich viele Gitterpunkte geht; in der Tat gilt ja für n 2:

M(k,— 2k) (ax • a2)i~. (Wir werden weiter unten beweisen, dass

es auf jeder Fläche M (k, l) eine gerade Niveaulinie gibt, die stets den

Bichtungskoeffizienten — 2 hat, im allgemeinen Fall aber nicht mehr
durch das Flächenzentrum läuft.)

Für beliebige n erhält man nach leichter Umformung als Gleichung
der Projektion in die kjl-Ebene der Niveaulinie für den Mittelwert M:

2ak(al —m!) 0
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Für I 0 liefert diese Gleichung keinen bestimmten Wert für k;
in diesem Fall muss k aus dem weiter oben hergeleiteten Grenzwert
für M (k, 0) bestimmt werden, und man erhält

ak

— | 1 als ßestimmungsgleichung für k.
mJ

Die Kenntnis der Parameterlinien allein genügt nicht, um sich
eine klare Vorstellung über das Verhalten der Fläche z im Unendlichen
zu bilden: alle Parameterlinien k =--- konst. und l konst. (mit
endlichen Konstanten) streben ja mit wachsenden (fallenden) l bzw. k
den Extremalwerten an(a^) zu, woraus sofort folgt, dass die Fläche im
I. Quadranten (d. h. also bei positiven k und l) die Asymptoten-Ebene
z an und im III. Quadranten (negative k und T) die Asymptoten-
Ebene z a1 besitzt. Ihr Verhalten im II. und IV. Quadranten
bleibt zunächst unbestimmt. Immerhin zeigt bereits die Existenz
der ja gerade diesen beiden Quadranten zustrebenden Niveaulinien
(vgl. unsere Skizze), dass der Schnitt der Fläche Mik, l) mit der
unendlich fernem Ebene in den genannten kritischen Quadranten
2-Werte annehmen muss, die stetig von a1 bis an wachsen. Wir werden
nachstehend untersuchen, wo diese Werte liegen, und zeigen, dass

1) sich für jede Niveaulinie die beiden Asymptotenrichtungen be¬

stimmen lassen;

2) das Büschel der Asymptotenrichtungen <p nur den Winkelraum

JT 9 7Z

— < (p < — erfüllt.
2 4

Diese beiden Eigenschaften geben — wie wir durch eine
zylindrische Orthogonalprojektion der unendlich fernen Ebene veranschaulichen

werden — Aufschluss über die unendlich ferne Kurve der Fläche

M(k, l).

Wir führen zunächst Polarkoordinaten in der kjl-Ebene ein:
k r cos (p ; l r sin cp. Entsprechend erhält man:

• nr- (sin <p + cos <p) \ 1

M(k, T) z — ^ (XVIII)
V Ya"008*1 J
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Um nun die 2-Werte der unendlich fernen Kurve in Funktion von <p

zu erhalten, hat man offenbar L lim z zu bestimmen. Man hat vorerst:
r oo

In 2 a' 'sin,? + cos,p' ln 2 ar'cos<p
In L

r • sin <p

Die Differentiation von Zähler und Nenner dieses Quotienten liefert:

(sin <p + cos cp) lainv + C0Sf,') In a cos cp V ,f cos''! • In a
In L — sin 1

cp
qT-(sin«?? 4- cos(p) ^ cosy

Nun sind vier Fälle zu unterscheiden:

1) sin cp + cos <p > 0 und gleichzeitig cos <p > 0; unter diesen

Voraussetzungen liefert die obige Formel:

ln L1 — sin"1 <p ((sin <p -f- cos <p) • ln an — cos cp In an) In an

also Lx =.an;

2) sin cp -f- cos cp > 0 aber cos cp < 0,

hier liefert die allgemeine Formel

In L2 sin"1 cp • ((sin cp -f- cos cp) ln an — cos <p • ln ax)

also L,
gl + ctg <p

2' actgv

8) sin 9o cos <p < 0 aber cos cp > 0

wieder aus der allgemeinen Formel:

In L3 sin-1 cp • ((sin <p -\- cos <p) • ln a1 — cos cp • In an)

a
1 + ctg <p
1

actg<p

4) sin <p cos cp < 0 und auch cos 95 < 0

analog zu 1) erhält man schliesslich

L4 ax

An diesen Resultaten ist bemerkenswert, dass die Grenzwerte Li
nur Funktionen von at und an sind, also von der Anzahl und
Verteilung der dazwischenliegenden a-, 1 < j < n, nicht abhängen.
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Die Funktionen für Lt bringen nun in verschiedener Hinsicht
weiteres Licht in die Struktur unserer Fläche M (fc, T):

Die k/l-Ebene teilt sich also nach folgendem Schema in zwei

(Doppel-) Sektoren auf, wobei die in den Sektoren angeschriebenen
Werte jene der Punkte der unendlich fernen Kurve in den entsprechenden

Intervallen angeben:

Wie man sich durch Einsetzen der Intervallgrenzen von <p, also

a: 3s 3K 7J:
cp — bzw. —, —, ——, ——, überzeugt, ist die unendhchferne Kurve

stetig. Andererseits zeigt eine Untersuchung der abgewickelten
orthographischen Zylinderprojektion Unstetigkeiten der ersten Ableitung
an den Intervallgrenzen, d. h. die Kurve hat in den genannten Punkten
Ecken.

Bezeichnen wir den der Kurve zugewandten Winkel der Asymptoten

als Öffnung der Kurve, so gilt der Satz: Die Öffnung der Niveaulinien

ist stets > 135°.
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Da die Niveaulinien stetig von konvexen zu konkaven Kurven
übergehen, muss stets eine (und nur eine) Gerade darunter sein; und
zwar lässt sie sich leicht bestimmen: liegt sie doch dann vor, wenn die
beiden Asymptoten der Niveaulinie zusammenfallen, d. h. also dann,
wenn für ein bestimmtes <p dasselbe (unendlichferne) z erhalten wird
wie für die Richtung <p n. Daraus folgt die Bestimmungsgleichung
für (p:

nl + clg<p nl + ctg {71 + (p) nl + ctg<p
an al al

act gcp Qctg(;z + tp) gCtgep

\l + ctgv / a \ct g rp / \-ctg<p
also: U -\äj
woraus: 1 + ctg <p — ctg <p also ctg q> —

Jt

Die Kenntnis des Wertes der Kotangente des der geraden Niveaulinie

zukommenden Wertes tpg gestattet nun aber, das Niveau (d. h.

den Wert von z M(k, Z)) dieser Geraden zu bestimmen:

%i+ct^g ani x" n" / \-A_
2 ^— —r («1 • an)2

7agrp-

Das heisst:
i

Alle Mittelwerte, die gleich dem geometrischen Mittel aus dem

kleinsten und dem grössten der zu mittelnden Werte ai sind, liegen
auf der Mäche z M(k,l) auf einer Geraden, deren Projektion in
der Zc/Z-Ebene den Richtungskoeffizienten — 2 hat.

Im bereits skizzierten Spezialfall n 2 geht diese Gerade durch
das Flächenzentrum, da für diesen Fall ja gilt

M(0,0) [Jatn («t • a2y

Die nachstehende Skizze stellt eine orthogonale Zylinderprojektion

(Achse des Rotationszylinders durch das Flächenzentrum
senkrecht zur Zc/Z-Ebene) der unendlichfernen Kurve der Fläche M (k, l)
dar und veranschaulicht einige der oben hergeleiteten Eigenschaften.
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U

5.

Wir kehren zurück zum Mittelwert nach Formel VII:

M I k-r t

Die hiedurch repräsentierte Klasse von Mittelwerten gibt
verallgemeinerte Potenzmittel, wobei aber nicht Potenzsummen der a; selbst,

sondern solche über Kombinationen der ai zur Klasse r auftreten. —
Es sei auch hier vorerst die Frage geklärt, ob für zwei derartige Mittelwerte

:
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und M2
r^k

eine Quotientenbildung analog zu Y wieder Mittelwerte liefert. Wir
erhalten eine Formel der Gestalt

M= s-w v, r-k t

oder, wenn wir s r -f- q und w k -j- l setzen:

r + qVu+l- L + "
M{k, l; r, q) | — T-^~ (XIX)

n \
\r + q)'rPk

Diese Formel liefert in der Tat unter gewissen Nebenbedingungen
Mittelwerte. Der Beweis ergibt sich in Weiterführung der Herleitung
von Formel V. Es wurde dort bereits bewiesen, dass

n \ (n

Ersetzen wir zunächst die ai durch a\, so bleibt unter der vorläufigen
Beschränkung auf positive k die folgende Ungleichung richtig:

< rVu ' (r + l) < r + lP* (") < «« * rVk ' (f " j)
Die wiederholte Anwendung des Multiplikationssatzes liefert

r + lP* ' (")
a\q < —f < an > fÜr H > 0 (xx)

C

Diese Ungleichung kann man in folgender Weise erweitern: Man

multipliziert a\q mit aj(r+,), akq mit alJr! q) und im Mittelglied jeden
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Summanden mit einem entsprechenden Produkt aus (r -f- q)

verschiedenen a\, so dass man erhält:

Diese Erweiterung ist allerdings nur so lange zulässig, als l(r + q)

positiv bleibt; da aber (r + q) eine Kombinationsklasse bezeichnet
und daher stets positiv ist, folgt, dass l > 0 sein muss. Es folgt also,
dass M(k,l; r, q) sicher ein Mittelwert ist, wenn sowohl l > 0 als auch

kq~> 0, und zwar überzeugt man sich leicht, dass nur das Produkt
kq > 0 sein muss, also sehr wohl gleichzeitig k < 0 und q < 0 sein

darf, ohne dass sich in Ungleichung XX etwas ändert. Ist aber kq< 0

(sei es wegen k < 0, q > 0, oder wegen k > 0, q < 0, wobei in
letzterem Fall stets j g | < r bleiben muss), so kehrt sich die Ungleichung
XX um in

Eine Erweiterung ist nun nur zulässig, wenn l(r q) < 0, also

l< 0; alsdann aber erhält man für M(k,l; r, q) wieder ein Mittel,
und es gilt demnach

ist stets ein Mittel, wenn kq und l gleiche Vorzeichen haben.

Es liegt nun nahe, die Mannigfaltigkeit dieser Mittel in ähnlicher
Weise zu untersuchen, wie wir dies weiter oben mit den Mitteln
M(k,l) getan haben. Vor allem sei festgehalten, dass die behandelte
Mittelwertsklasse M(k,l) lediglich einen Spezialfall von M(k,l;r,q)
darstellt, insofern, als — wie man sich leicht überzeugt — gilt:

M(k,l; 1,0) M(k, l)



Wir prüfen zunächst den Definitionsbereich der vierpararaetrigen
Schar der M(k,l; r, q): während für die Exponenten k und l sämtliche

reellen Werte zulässig sind, können für die Indizes r und q — die

ja Kombinationsklassen der n Basisgrössen ai anzeigen — nur natürliche

Zahlen in Frage kommen, die zudem durch die folgenden
Ungleichungen limitiert sind:

Als Ordnungsschema für die Mannigfaltigkeit der MQc,l\ r, q)

sind verschiedene Wege gangbar: Einmal liegt der Gedanke nahe, die

M als Punkte eines vierdimensionalen Hyperflächenstreifens im fünf-
dimensionalen Raum aufzufassen. Von einem «Streifen» muss
deshalb gesprochen werden, weil die Dimensionen r und q durch obige

Ungleichungen begrenzt sind. Wichtiger ist der Hinweis, dass die

Hyperfläche einen recht speziellen Charakter aufweist, ist doch ihr
vierdimensionaler Raum nur in den Richtungen der k und l stetig
(und differenzierbar) mit Punkten besetzt, während in den

Richtungen r und q für endliche n lediglich eine diskrete — durch
vorgenannte Ungleichungen bestimmbare — Anzahl Gitterpunkte als

Punkte der Hyperfläche existieren.

Dieser Unterschied zwischen den beiden Dimensionspaaren k, l
und r, q kann gut auch durch das folgende Beispiel des Überganges

vom A. M. zum G. M. veranschaulicht werden, einerseits nämlich
durch stetiges Vorrücken in der Richtung abnehmender l, andererseits
durch sprungweises Fortschreiten in der Richtung (treppenartig)
steigender r:

0 < r < n; 0<r-f-g<M

d. h. A. M. > >
n

an G. M. (gem. XV)

d.h. A.M.

M(0,1; 1,0) M(0,1; r,0) M(0,l;m,0)

A. M. — >...>/—^—\ r > > fja » G. M. (gem. III)
n \ t n
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Die partiellen Diskontinuitäten in der Mannigfaltigkeit M(k,l;r, q)

hindern nun allerdings nicht, nach dem Beispiel des Verfahrens bei

M(k,T) die Frage nach «benachbarten Mitteln» aufzuwerfen, wobei
als benachbart alle jene Werte anzusprechen sind, deren Parameter
sich von den ihnen zugeordneten k, l, r, q um +1,0 oder — 1

unterscheiden. Denkt man sich den Wert M(k,l; r, q) als Zentrum eines

vierdimensionalen Würfels von der Seite 8, so hat man als benachbarte

Werte offenbar alle Gitterpunkte, die auf der Hyperoberfläche
dieses Hyperwiirfels liegen. Ihre Zahl lässt sich sofort als 34—1 =80
angeben. Diese 80 benachbarten Werte können — abgestuft nach ihren
Entfernungen vom zentralen Gitterpunkt — in vier Gruppen geteilt
werden: 8 Werte liegen je paarweise im Abstand 1 auf den vier Achsen
k, l,r,q; 24 Werte liegen in den Mitten der den Hyperwürfel begrenzenden

Quadrate, 32 in den Mitten der Kanten und 16 stellen schliesslich

die Ecken des Hyperwürfels dar. Wir lassen angesichts dieser
recht zahlreichen Nachbarschaft die Frage offen, ob sich nach dem

Beispiel für M (7c, T) auch hier Systeme von Ungleichungen aufstellen
lassen. Es scheint dies übrigens schon deshalb nicht vordringlich,
weil alle bekannten und praktisch vorkommenden Mittel — wie wir
gesehen haben — bereits in der Klasse der M(k, l), und zwar in
unmittelbarer Nachbarschaft des Zentrums M(0, 0), vorkommen und
sich dort ihre Rangordnung zwanglos ergeben hat.

Die diskrete Anzahl der Punkte r [ q gestattet nun eine andere

Gruppierung der M (7c, l; r, q): Man stelle sich zunächst ein rechteckiges
Gitter mit den Seiten 1 < r < n und — (n — 1) < q < + (n — 1)

vor, innerhalb welchem offenbar alle zulässigen Punkte r j q liegen
müssen. Die Besetzung dieses Gitters umfasst aber wegen der

Ungleichung 0 < r + q < n nur ein Parallelogramm (besetzte Punkte

+ leere Stellen o):
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q= -(w —1) -(n-2) • —1 0 +1 • •• (n-2) (n-1)

r
1 0 o ° + + + +
2 0 0 + + • + o

3 o o + + V 0 0

n - 2 o o + + -f O 0

n-1 0 + h + + O 0

n ~r + -r o 0 0

Man sieht, dass in diesem Tableau n2 Stellen besetzt sind. Jedem
dieser Punkte ist eine Mittelwertformel zugeordnet, die im Prinzip
einer analogen Behandlung wie M(Je, T) zugänglich ist, d. h. eine stetige
Mannigfaltigkeit von oo2 Formeln für Mittelungen repräsentiert. Von
besonderem Interesse sind die Eckpunkte des obigen Parallelogramms:
Wir haben bereits gesehen, dass der Eckpunkt M(k, l; 1, 0) M(k, T).

Die Ecke M(k,l;n, 1 — n) und die zu ihr diametrale M(k,l;l,n— 1)

sind im Aufbau korollar:

und gehen insbesondere für l 0 ineinander über.

Vor allem bemerkenswert ist nun aber der vierte Eckpunkt, d. h.

der Diametralwert zu M(k,l), d.i. M(k,l;n, 0); man sieht nämlich

sofort, dass M(k, l;n, 0) J/a« G. M.!

Diese besondere Mittelwertformel ist aber nicht die einzige, die

— von zwei Parametern unabhängig — mit dem geometrischen Mittel
identisch ist; vielmehr zeigt eine leichte Determinierung des zunächst
unbestimmten Ausdrucks für M (0, 0; r, q), dass

M(0,0;r,g) /Ja»
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Anderseits ist der eben erwähnte Ausdruck nicht die einzige a

priori unbestimmte Position in der Mannigfaltigkeit der M(Jc,l; r, q).
Mit den bereits mehrfach verwendeten Mitteln lässt sich bestimmen

]

M(k,0;r, 0) (J[~^ ^ LTM*)(XXI)
wenn man unter nra die Produkte der ai mit r verschiedenen
Paktoren (d. h. also die Summanden von sr) versteht.

Die Formel XXI ist ein — allerdings etwas kompliziertes —
gewogenes geometrisches Mittel. Man sieht dies am besten an einem

Beispiel; wählen wir n= 4, r= 2 und schreiben wir wieder aus
Gründen der Abkürzung für ai — at], so haben wir:

[rjlC nit fjk ftk rik nk HB

K2) 12 • Ks) 13 • M 14 • («23) 23 • («24) 24 • («34) 34J

n=4

r(a2 + a3 + °S o»°2 (°j + °3 + a4). aS + a3 + fl$
• afi (°i + "* + at)f| 1 a 3 4 J '

1

wobei E —.
2 [ß'12 + ffl13 "b ^14 + ^23 ~b ®24 ~b ^34]

Man sieht leicht, dass der auf Seite 143 ausführlich hergeleitete
Grenzwert für M(k, 0) nur einen Spezialfall von XXI für r 1

darstellt. Sodann erweist sich auch der bisher unerledigt gebliebene Fall
t r in Formel Y als Spezialfall von XXI, indem k — 1 zu setzen ist.

Ausser den unbestimmten Werten lassen sich auch noch eine

Reihe von andern Reduktionsfällen anführen, wie z. B.:

M(l,0;0,g)

d. h. also: M (1, 0; 0, f) M (0, 1; t, 0).



— 160 —

6.

Nachdem die Potenzsummen sich als ganze rationale Funktionen
der elementarsymmetrischen Funktionen darstellen lassen, kann die

Anwendung des Multiplikationssatzes und der Additionssätze auf die

verallgemeinerten Potenzmittel allein oder in Kombination mit
gewöhnlichen Potenzmitteln oder grundlegenden Mittelwerten nichts
prinzipiell Neues fördern. Ganz allgemein kann gesagt werden, dass

damit eine Methode gegeben ist, um eine unübersehbare Vielfalt von
algebraischen Mittelwertformeln zu gestalten. Wir sohliessen darum
unsere Ausführungen mit der Angabe einiger einfacher charakteristischer

Beispiele:

1) Es seien gegeben zwei reelle Werte 0 < a1 < a2. Dann können
wir unter Verwendung von Multiplikations- und erstem Additionssatz
den folgenden Mittelwert bilden

M (-1— « + an2 +ax a2 «2 + a*"2) + a2 a2« + a^)
\n + 1 /

wobei der letzte Term in der Klammer gleich ist:

n n

für gerades n: ax 2 • a2 2

n-1

für ungerades n: (ax a2) 2 • (ax + a2)

Eine einfache Umordnung des Klammerausdrucks in a1 und a2

ergibt:
a«+i anei

< + af1 a2 + «r2 «2 + • • • + «i aV + «S — —
«j — a2

und wir können dem Mittelwert die Gestalt geben

<+1 — an2+1 \|M -
\(n + 1) (ax — a2) /

2) Als Beispiel für eine Anwendung des zweiten Additionssatzes
denken wir uns gegeben eine Reihe von Mittelwerten

yy+1
M(fc, 1) ^ k 0,1,2 h

2°
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Es ist dann auch:

22«:+1

22«
ein Mittelwert, nämlich ein arithmetisches Mittel:

2("<2«)

22«
mit den Gewichten 2«-

Für h 3 z. B. resultiert

*, (at+ai+ai+o-i) «i («i («< (o<+1)+1)+1)
M

2(a? +°i+ai+1) ai (°i (ai+1)+1)

3) Bei der Anwendung der Additionssätze kann man die einzelnen
Mittelwerte auch als unechte Brüche mit Nenner 1 anschreiben. Haben
wir beispielsweise die drei Mittelwerte

2>3 2"2 S>
2 «2

' 2 a n

so sind u.a. folgende Ausdrücke auch Mittelwerte:

yyy j_ V a2 + Y a
2«2 ^ ^ 2«3 + 2«2-2«2 + 2«-2«2

1 + Va + n Va2+2« -2«2+ w*2a2

2 «3 2 «2~ 1 ^ +2«2>» '2« 2a3-2a + 2a2-2a2 + 2a-2a2-2'
l + l + n 2fl2-2a + 2a -2fl2+ n •2a2-2<

m=.
1 /2a3 2ß2 2a\ 2a3-2a-n + 2a2-2a2-w + 2a-2a2-2a

' 1——
2«2 2a n J 2a2-2a-w + 2a -2a2-n + n -2a2-2a

ii



— 162 —

Wie man sieht, sind dies Mittelwerte, die auch direkt unter Verwendung
von Gewichten nach dem zweiten Additionssatz zu erhalten sind:

wenn h 1,2, m Mittelwerte sind, so ist auch
^h

2(VeÄ)

ein Mittelwert, wobei Gh beliebige positive Grössen bezeichnen.

4) Wir geben nun ein Beispiel für Anwendung des Multiplikationssatzes:

Es seien gegeben die beiden Mittelwerte:

iPa\y /2>2n'

S2 ' lPi \ --
so ist auch M / \4 ein Mittelwert. Eiir n 3

'

,2! ' n

insbesondere erhalten wir:

K a2 + a1a3 + a2 a3) {a\ + a\ + a23) \ |M —
3 • 3

1 H
— (et3 @2 -k ^2 ^1 ~k ^1 ^3 ~k ^3 ~~k ^2 ^3 ~k ^3 ^2 ~k kh ~~k ^2 ~~k ^3) ^2 ^3)

Nun ist - • a1 a2 a3 (ax + a2 + a3)
3

ein Mittelwert, und ebenso ist

1
• (a\a2 -f al ax -f a\a3 -f- a® a,x -\- a\a3-\- a33 a2)

sofort als Mittel zu verifizieren, denn es ist

6a4 < a\a2 + ala1 + a\a3 + alax + a\a3 + a?3a2 < 6a4
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Bemerkenswert ist aber, dass dieser letztere Mittelwert in Darstellung
durch die elementarsymmetrischen Funktionen die Gestalt hat

also der Formel IV entspricht, welche a priori nur für positive
Koeffizienten der sk Mittelwerte garantiert. Es ist deshalb vielleicht nicht
unnütz, hier nochmals zu betonen, dass Formel IV, nämlich

/ V 0 /Ts" \ 1

M / ^ ' 11 m \ ', V m • fe f für jedes JJ,
Ise.'lTC)

die fundamentale Formel zur Bildung elementarer Mittelwerte ist.
Wenn die 6h (^ 0) derart gewählt werden, dass im Zähler ein in den

symmetrisches isobares Polynom vom Gewicht t und von lauter
positiven Summanden entsteht, so ist M sicher ein Mittelwert. Diese

Aussage kann sinngemäss auf den ersten Additionssatz direkt
übertragen werden. Ein Beispiel hiefiir:

5) Seien gegeben die beiden Mittelwerte:

'V T) / Vff^+b\^- /V r, \-h-3f1=(^-V= ' und m2 22 W
\ y,*J \ E^) \ y/ J \ ylP.2k2iVh ' \ E«2* ' \ EiP»

lP/c-ri)2 E 1P2 (k-r

(Ei 1Pk}2 Elfe
so ist auch M

V (E1P*)2—Eife /
ein Mittelwert, denn im Zähler steht de facto ein in a( a) homogenes

Polynom mit lauter positiven Summanden, indem nämlich der
genannte Mittelwert sich auch schreiben lässt:

^ /EaPt-nY^T
"

E«a /
d. h. der Formel VII mit r 2, q 0 entspricht. Der Beweis ist
sofort erbracht, wenn man sich überlegt, dass

(E A)2 E1P2» + 2 " E 2P4 ist-
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6) Schliesslich gestattet eine mehrfache Anwendung des I.
Additionssatzes eine inhaltlich bereits behandelte, der Form nach aber

neue Fassung eines gewichteten Potenzmittels:

Es seien 2 a\j+l > 2 ai'; K> h> > km > 0

,zi\fdann ist M - ein Mittel; und ebenso ist ein Mittel:

M
e1'Z1 + e2-za+... + Gn-zm\/2 • zi \-r

' N-l + 02 • N2 + + 0m • Zm \ 'S] 0. N

a[- (0^ + 02a1^ + + 0ma\n)+al2{©1ak2i + +0m4m)+ ••• \l
(0,^1 + 02a\2 + + 0ma{») + (0,^1 + + 0m o*») + /

nehmen wir nun als kj natürliche Zahlen (was für die Eigenschaft der

obigen Formel als Mittelwert — wie wir wissen — in keiner Weise

Bedingung ist, aber ihre einfache Schreibweise ermöglicht), so ist offenbar:

p(fflj)=y|0,. a)i

ein beliebiges Polynom vom Grade in ai und durchwegs positiven
Koeffizienten 0;-.

Nun lässt sich unser Mittelwert schreiben:

]/[ _ / ai' P (ai) + a2 ' -P (az) + • • • + al' P (an) \!
\ P (al) + P (a2) + • • + P ian)

also

\ '

Wir wissen aber auch, dass der Ausdruck

2X-g«\t
2G<

dann immer ein Mittel ist, wenn Gt > 0.
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Werden die Gewichte nun durch beliebige positiv definite
Funktionen von at, also Gt F% (at) > 0 ersetzt, so ist sowohl die soeben

ausfuhrlich hergeleitete wie auch die folgende allgemeinere Formel
unmittelbar evident:

M=i V sofern F (a) > 0.
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