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Uber den Begriff «Exzess»
in der mathematischen Statistik

Von E. Michalup, Caracas

Die formelmissice Darstellung des FExzesses nach Pearson ist

withrend Charlier den Ausdruck
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herleitet, wobei @, dic Wahrscheinlichkeitstunktion und ¢} deren ite
Ableitungen bedeuten. Hiezu schreibt Charlier [1]: «Der lixzess I
beeintlusst die symmetrische I'orm der Frequenzlkurve nicht, verindert
aber die durch die Normalkurve bestimmte Verteilung der Elemente auf
die verschiedenen Klassen. Ist der Fixzess positiv, so ist die Anzahl von
Iilementen in der Nihe des Mediums grogser als bei normaler Verteilung.
Die Frequenzkurve erhoht sich in der Mitte (also in der Umgebung des
Mediums) iiber die Normalkurve (hieraus der Name [fzzess) und die
Definition des lixzesses ist so gewihlt, dass diese lirhohung gleich ist der
wmit f multiplizierten Hohe der Normalkurve.» Anderson [2] in seinem
etwas polemisch gehaltenen, jedoch ausgezeichneten Buch bemerlkt,
dass «was die geraden Momente um das arithmetische Mittel anbetritft,
s0 ist es moglich, mit ihrer Hilfe eine gewisse Vorstellung von der
Steilheit der Verteilungsreihe zu bekommeny, ohne sich aber weiter
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iiber diesen Punkt auszubreiten. v. Mises [3] ist etwas vorsichtiger
und meint, dass ein positiver lixzess bedeutet, dass in der gegebenen
Verteilung grossere Abweichungen vom Mittelwert stirker, kleinere
Abweichungen schwiicher vertreten sind als bei der Gaullschen Ver-
teilung. Das Umgekehrte ist Kennzeichen negativen Exzesses. Jedoch
lisst seine graphische Darstellung die Vermutung aufkommen, dass
er zur Ansicht Charliers hinneigt. In seinem originell geschriebenen
Buch begniigt sich Jordan [4] zu bemerken, dass es sich beim lixzess
um eine Art Digpersionskoeffizient hoherer Ordnung handelt, der zu-
sammen it der Schiefheit in der mathematischen Darstellung der
Pearsonschen Verteilungskurven von Bedeutung ist. Das in Nord-
amerika weit verbreitete Lehrbuch von Richardson [5] bringt im Prin-
zip die Charliersche Behauptung, dass bei positivem lxzess die Anzahl
der Hlemente um das arithmetische Mittel grosser ist als bei normaler
Verteilung und dass bei negativem Fixzess die Verteilungskurve
flacher ist als bei der normalen Verteilung. Iine dieser Erklirung
entsprechende graphische Darstellung ist beigegeben. Man kénnte
noch eine grosse Anzahl von anderen Werken iiber mathematische
Statistik erwihnen, weleche analoge Lrliuterungen dieses Begriffes
bringen. Von anderen Autoren hingegen wird nur der formelmissige
Ausdruck angefithrt, und man kann daher vermuten, dass sie die
Ansicht [6] Willigens teilen, wonach es sich um einen, von der
Magseinheit itbrigens unabhiingigen, reinen Zahlenwert handelt. Mit
dieser Art der Darstellung begniigen sich z B. Henderson [7] und
Wolfenden [8] in ihren von der Actuarial Society of America und
Hardy [9] in seinem vom Institut of Actuaries in HEngland heraus-
gegebenen Lehrbiichern. I8 scheint, dass Lindeberg [10] als erster
auf die unrichtige Brklirung dieses Begriffes aufmerksam gemacht hat.
lir schlug die folgende Definition vor: «lis sei p die in Prozenten der
gesamten Variantenzahl ausgedriickte Anzahl derjenigen Varianten,
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die zwischen den Grenzen M — 3 und M -+ 5 liegen. Weiter sei 4 die

Wahrscheinlichkeit, dass ein Fehler, der dem GauBschen Gesetz folut,
absolut genommen, kleiner als der halbe Mittelfehler austillt. Unter
dem Hxzess wird die Zahl

B =p—10021

verstanden. Der exakte Wert von 4 ist ja gleich
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in den meisten Anwendungen diicfte es aber geniigen, 4= 0,383 zu
nehmen. Als Mass des Tixzesses wiire ulso im allgemeinen die Differenz

I=p-—383

anzusehen. Dann wendet er seine Formel auf das Charliersche Bohnen-
beispiel an und findet, dass ein positiver Iixzess nach seiner Definition
nicht als nachgewiesen angesehen werden kann, wihrend nach Charlier
ein positiver Kxzess als sicher festgestellt erscheint.

Jedenfalls hat weder seine Kritik noch seine neue Definition die
ihr vebithrende Beachtung gefunden, und man kann annehmen, dass
die Hauptursache darin liegt, dass das von ihm gewihlte Beispiel
nicht gentigend deutlich den Wert seiner Arbeit hervortreten liess.
198 hat daher 20 Jahre gedauert, bis neuerdings auf das Unrichiige
der fast allgemein als richtig angesehenen Definition hingewiesen
wurde, und Kaplansky [11] zeigt nun an einigen symmetrischen und
kontinuierlichen Verteilungen, dags bel positivem [ixzess nach der
Definition von Pearson und Charlier die Kurve beim Scheitelpunkt
tiefer als die Normalkurve liegen kann und dass bei negativem Fixzess
die Verteilungskurve beim Scheitel einen héheren Wert annehmen kann
als die Gaulsche Fehlerkurve.

Wir wollen nun ergiinzend zeigen, dass die von Lindeberg gegebene
Definition auch in diesen Fillen eine richtige Auskunft iber den
tatsiichlichen lixzess gibt. Die Streuung der beiden normalisierten

Verteillungen
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st die Finheit. Das vierte Moment der ersten Verteilung ist 2,75,
demzufolge ist der Fxzess negativ sowohl nach Pearson
16
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By — B == — 0,25

als auch nach Charlier
E = —10,03125

withrend in Wirklichkeit die Kurve beim Nullpunkt hoher liegt als
die Normalkurve, denn

P(0) =

ST
Bfx 4

und der der Normalkurve entsprechende Wert betrigt bloss

1
= 0,399.

]/27;7
Nach der Lindebergschen Definition erhalten wir
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also einen positiven Hxzess
E=2392—383= 4109

in voélliger Ubereinstimmung mit den tatsiichlichen Verhiltnissen.

Be1 der zweiten Verteilung betrigt dasg vierte Moment 8,125 und

1 9
S —— = 0,387 < 0,399.
2)/o0n  6)n 4
Der Exzess ist daher positiv sowohl nach Pearson
fo—3 =+ 0,125
als auch nach Charlier

E = + 0,015625

withrend in Wirklichkeit und nach Lindeberg
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ein negativer Kxzess vorliegt. Aus denselben Griinden kann daher das
von Milton Da Silva Rodrigues [12] angefithrte Mass fir den Hxzess
nicht als Ausdruck fiir den tatsiichlichen Fxzess angesehen werden.
Ob Relationen von absoluten Momenten existieren, wie sie z. B.
Friedli [18] untersucht hat, die eher geeignet sind, sich ein Bild itber
die Verteilungskurve und deren Form machen zu kénnen, soll hier
nicht untersucht werden. Das Problem bleibt offen, ob es Verteilungen
uibt, welche positiven Kxzess im Sinne der Lindebergschen Definition
haben, deren Scheitelpunkt aber unterhalb der Normalkwrve liegt
oder umgekehrt.
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