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Lineare Abhängigkeit
und Äquivalenz von Punktsystemen

Von H. Kreis, Winterthur

X

>i > 2 Punkte L\(xl, jj,) zwei Oorade <jx inul auf eindeutige Art so

bestimmen, da,ss die Streuung dor Punkte in bezug aid' diese Geraden

minimal wird. Im erslen balle wird die Summe der Quadrate (l\ x)2,

im zweiten balle die der Quadrate (A ;/)2 zu einem Minimum.

Analog lassen sieh dureli Punkte l\(x/,,//;,•>a) b'1 Räume

drei Rhenen <pc, und </> auf eindeutige Art so bestimmen, dass die

Streuung der Punkte in der A'-, Y- und Z-Richtung in hezug auf diese

12
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drei Ebenen minimal wird. Im ersten Ealle ist die Summe der n-
Quadrate {A a:)2, im zweiten Falle die der Quadrate (A y)2 und im
dritten Falle die der Quadrate (Az)2 ein Minimum.

Die Geraden yx und gy sind die sogenannten Hegressionsgeruden
des ebenen Punktsystems; in Analogie dazu können die drei Ebenen
(px, cpy und cp2 als Eegresttionsebvmm des räurrdiclion Punktsystems
bezeichnet werden.

Gegenstand dieser Arbeit ist der Peweis der beiden folgenden
allgemeinen Lehrsätze:

l. Äquivalenz in der Ebene

Zu einem beliebigen ebenen Punktsystem gibt es unzählig viele
äquivalente Dreiecke L'2 E3, die mit dem gegebenen System die
Regressionsgeraden gx und gy gemeinsam haben.

Die Gesamthoit dieser äquivalenten Kckpunkte /4 liogt auf einer
Ellipse, der Äquivalenzellipse.
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Die Regressgeraden (jx und y verbinden die Berührungspunkte
der zur X- bzw. F-Achso parallelen Tangenten der Äquivalenzellipse.

II. Äquivalenz im liaumc

'An einem beliebigen räumlichen Punktsystem gibt es unzählig
viele äquivalente Tetraeder l<]y 7fa Ii3 ß4, die mit dem gegebeneu

Punktsystem die Regressionsebenon <px, tp und cpo gemeinsam haben.

Die Gesamtheit dieser äquivalenten Eckpunkte l'i liegt auf einem

Ellipsoid, dem Äqnivalenzellipsoid.
Dio Regressionsebenen <px, <p und <p enthalten die Beruhrungs-

ellipsen des zur A'- bzw. Y- und Z-Achse parallelen Tangentiat-
zylinders des Aquivalenzellipsoids.

I. Äquivalenz in der Ebene

Gegeben sei ein ebenes, normiertes Punktsystem

Ul)' k= 1
>

'2> 3 • - n-

Wir setzen also voraus:

V xk 0, ^yk--= 0

<4 4 :r 1
> ah

1

fk J
•

n n

1 ^Wenn wir noch die Hümme a - s.xij (anfuhren, so wird der
n —

TCorrelationskoeffizient G allgetnoin durch das Verhältnis definiert

so dass in einem normierten System der Wert von C mit dem Wert
von a1 übereinstimmt.

Zwei Punktsysteme heissen äquivalent, wenn sie folgende
Bedingungen erfüllen:

1. beide Systeme haben den gleichen Schwerpunkt 0:



172

•2. die Streuungen a in beiden Systemen sind gleich:

.T£ vX'X&x'x' ^ ' Gyi) **H'ii1 ' ^ '

S3, die Korrelationskoeffizienten beider Systeme sind gleich:

<4 oder G - C'

Wenn also ein Dreieck Ei(a1,bl) E2(a2, b2) E3(u3, b:,) mit dem

Punktsystem (1) äquivalent sein soll, so müssen folgende Gleichungen
gelten:

0,ul -p ff2 -j- a3

by -|- b2 b3 0,

ri\ -h a\ + a\ 3,

fcf h bl+ fc|=3,

a1b1 f a2b2 + a3b3 3 G

[

A

1

A2

2 A

(•2)

Multipliziert man mit den beigesetzten Faktoren und addiert,
so wird

(aL + Xby) + (a 2 + A62) + («3 + A 63) 0,

(«x + A6J2 + (ft2 + Xb2f -h (n3 + lb3f - 0,

wenn der Parameter A so gewählt wird, dass

3 A2 + 6 C A + 3 - 0,

A G I i | I Ca

Setzt man zur Abkürzung

(•')

(0

(f>)

ftt Xbl w1, f«2 + Xbo ~ w2, (f.) h A63

so lassen sich die Gleichungen (3) schreiben

+ w2 + w3 0,

w\ + w\ + w\ 0.

Hieraus folgt durch Quadrieren und Subtrahieren

Wy w2 -(- w2 w3 + 'W3 ivy 0,

w,

(«)
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<1. Ii. wlt w2 und w3 können als die Wurzeln einer rein-kuhischen

Gleichung aufgofasst werden, so dass

G
y

G £2 i '^3 —~ ^ ^3

wo c eine beliebige Zahl, cq, s2, e3 die dritten Einheitswurzeln
bedeuten. bis ist somit allgemein

6,e1 - aq + A/;t und t-fij -- aq Atq,

C£2 -- na -p Xb2 ce2 —a2-'r Äb2, C*)

C£;j «3 A63 ce3 — a., -f- Ab.j,

wo c, e, A die konjugiert-komplexen Werte von c, e, X bedeuten.

Durch Multiplikation der Gleichungspaare (7) ergibt sich

cc — f -p (A + A) cqtq -|- XAb'f

oder, infolge Gleichung (4)

A |- Ä — -20, A A t

cc —a'f — 2Ccq/q pb'f.

Analog cc --- a2 - 2 Ca2b2 -|- t>'3, (8)

cc - «3 2 Ca3 b3 -p b3.

Die Koordinaten der Punkte /'j\ E2 E3 genügen demnach der Gleichung

x2 + if — 2Cxy cc,

die, weil die Konstante C stets absolut kleiner oder höchstens gleich I

ist, eine Ellipse, die Aquivnlenzelli-pse, darstellt. Um den Wert des

Absolutgliedes cc zu ermitteln, addieren wir die drei Gleichungen (8)

und erhalten mit Kücksicht auf die Definitionsgleiclumgen (2)

dec («'f + <4 + "is) "XG(a1b1 p a2b2 P anb:i) (b'f -\- b'i -|- fq).

cc -- 2 — 2 C2.

Die Gleichung der Aquivalenzellipse lautet somit

,i;2 + f — 2 0 t ij 2 — 2 C2. (10)



— 174 —

Hie hängt ausschliesslich von clem einzigen Parameter C, d. h. vom
Korrelationskoeffizienten des ursprünglichen Punktsystems ab. Die
Achsen der Ellipse fallen mit den Winkelhalbierenden des Achsenkreuzes

zusammen.

Die Grenzpunkte Gx,(fx bzw. 0 ,0^ der Kurve, in welchen die

Tangenten parallel zu den Koordinatenachsen sind, cl. h. die Punkte
mit absolut grössten Ordinaten bzw. Abszissen, lassen sich unmittelbar
aus Gleichung (10) bestimmen. Diese liisst sich folgenderniassen
schreiben

(y — Cxf + (1 — C'2) ;t2 2 — 2 C'2.

Hieraus folgt

somit

und zugleich

(1- --C'2) P2<;2 —2 C'2,

(1 -^^„. 2-2 C'2

(y — Cr)2 0.



Für die Gerade OG ergibt, sich die Gleichung

OGy:y— Cx — O (11)

und als Koordinaten der Grenzpunkte Gy und G*:

x= -I [/a", y — ± 0 |/2

Schreibt man Gleichung (10) umgekehrt in der Form

(a — Gyf + (1 — C2) y2 2 — 2 C2,

so erhält man

(l-C2)^ 2-2(7®
und zugleich

(x — G y)2 0.

[tntsprechend lautet also die Gleichung von

OGa:x — Cy= 0. (12)

Analog sind die Koordinaten der Gronzpunkte Gx und G*:

x=+C]/%,y — ± 1/2

Von besonderem Interesse sind die äquivalenten Dreiecke (lx G'x G'x

und G G' (r" die einen Grenzpunkt zu einer Ecke haben. Da die

Seitenhalbierenden der äquivalenten Dreiecke sich im Schwerpunkt
0 treffen, lassen sich die Koordinaten der beiden fehlenden Eckpunkte
berechnen. Es resultieren folgende Koordinaten:

^

1/2 Cj 2 1
G,, x — ; y + 1/ —

2

1/2 C1/2 1/3-3 C2

und analog

'!l 2 2 1/2
G\j 2 1/3 — 3C2

_

[/ 2



— 176 —

Gibt man sich einen beliebigen Punkt Ex der Äquivalenzellipse,
so sind die beiden anderen Eckpunkte E2 Ea vollständig bestimmt,
indem man die Strecke E, 0 um die Hälfte über 0 hinaus verlängert,
und durch den Endpunkt die Parallele zur Ellipsentangente in E,
zieht. Diese Parallele schneidet aus der Gllpise die gesuchten Ecken

heraus. Wie Steiner [61 gezeigt hat, sind sämtliche äquivalente Dreiecke

flächengleich; es sind die grösstmöglichen Dreiecke, die sich der

Ellipse (10) einschreiben lassen.

Es sei nun Ex E2 Es irgendein äquivalentes Dreieck des gegebenen

Punktsystems, ferner y px q die Gleichung einer Geraden, auf
welche die Eckpunkte des Dreieckes parallel zur Y-Achse projiziert,
werden sollen. Dabei gehört zu jeder Ecke Ek (nk,bk) ein bestimmtes
Bild E'k(ak, yk puh + q). Hie Konstanten p und q sollen nun so

bestimmt werden, dass die Summe der quadratischen Abweichungen

<s' (tJi — bi)' + {th - -I- {fh - E,)2

oder
S (pu L -|- q - bL)2 + (pa2 + q — b2)2 (paa + q - p)2

ein Minimum wird. Mit Rücksicht auf Gleichung (2) ist

S 3 p2 + 3 q2 + 3 - 6 Cp =- 3 q2 + 8 (p - C)2 + 3 (1 - C2).

Der Ausdruck für S wird offensichtlich zu einem Minimum, wenn die

Quadrate q2 und (p — G)2 verschwinden, d. h. wenn q — 0 und p - C

ist. Hie gesuchte Gerade hat also die Gleichung

(ly:y=rCx. (1-1)

Diese Gerade y geht durch den Schwerpunkt 0; sie ist unabhängig vom

angenommenen äquivalenten Dreieck. Nimmt man z. B. das spezielle

äquivalente Dreieck G G' G" mit der zur Y-Achse parallelen Seite

G'u G" zu Hilfe, so verbindet yv die Mitte dieser Seite mit dem oxtremen
Grenzpunkt G rechts. Die Gerade (14) ist demnach identisch mit dem

Durchmesser Gy GtJ der Äquivalenzellipse. Auf ähnliche Art können

wir die Eckpunkte ElE2E3 auf eine zweite Gerade x-~ py-\-q
parallel zur X-Achse projizieren. Die Summe

,S' (pbl q- ([ _ a,)2 |_ (pb2 + q - a2)2 h (pb3 + q u.,)2
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wird am kleinsten, wenn g 0 und p C gewählt werden, so dass

die Gleichung der zweiten Geraden lautet

gx\x=Cy. (ITS)

Diese Gerade <jx ist ebenfalls unabhängig vom gewählten Dreieck.

Wählt man insbesondere das ausgezeichnete Dreieck Gx G'x G"x, so ver-
bindet die Gerade gx die Mitte der zur X-Achse parallelen Dreieckseite

G'XG"X mit dem höchsten Grenzpunkt Gx. Die Gerade gx ist somit
identisch mit dem Durchmesser GXG*X der Äquivalenzellipse.

Y

Die zusammengehörigen x- und y-Werte sind dann und nur dann
voneinander linear abhängig, wenn die beiden Regressionsgeraden
und g zusammenfallen, d. h. wenn die Gleichungen x — Cy und // C.r
identisch sind. Die Bedingung dafür lautet:

C2=l. (Iii)

Gen Werten C -r- l entsprechend liefert Gleichung (10) die Kllipson-
RJeichungen (.,-,#



Diesen beiden Gleichungen entsprechen als .Bilder die doppelt gedachten
Diagonalen des Quadrates, dem sämtliche Äquivalenzellipsen (10)
einbeschrieben sind.

Dem anderen Grenzweit 0 von C entspricht die Gleichung

x2 + ;/2 2

des Inkreises des nämlichen Quadrates.

Für den von den Regressionsgeraden eingeschlossenen Winkel
G 0(rx y ist allgemein

-- — C
C 1/1 \*r'

G

Für C 7b 1 ist der Winkel y 0° und der Ausdruck - — Cj= 0;
2 \ C J

1/1 \
für (7=0 ist der W inkel y 90° und der Ausdruck - G ^.Y

2 V G

1 1 \Je kleiner also der absolute Wert des Ausdruckes- --(?) ist,
2\G

desto schwächer streuen die äquivalenten Punkte um die Regressionsgeraden.

Nach Voraussetzung (1) haben wir für die Streuungen den Wert l

angenommen, sind aber axx und ajm nicht gleich der Finheit, so hat

man in den erhaltenen Gleichungen (10), (11) und (12) x :axx an Stelle

von x und y: a an Stelle von y zu setzen, so dass die Gleichungen
der Äquivalenzellipse und der Regressionsgeraden allgemeiner lauten

:r2 «2 2 C

-r+ V x y= 2 — 2 C'2, (10')
(^xx f'a>i ^xx

y Cx
OG 0, (IL')

'

a!)!l

x C y
OGx :

J 0. (12')
®xx ^ ity
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Analog findet man als Koordination dor Eckpunkte des

äquivalenten Dreieckes G G' G" allgemeiner

t;,:—= |/2"; —=C7 2 (13')
aw

" ca ijij f

ai/|/ ^ auy

II. Äquivalenz im Räume

Gegeben sei irgendein dreidimensionales, normiertes System von
n Punkten Gk(xk, ijk, zk) J 2 n), so dass

\>A 0, 2^ 0, v^0,
J

2 4 i > <4 12lj yl =1 > °i- 2 4 =1
n n n

angenommen wird. Setzt man ferner

1 1 1
2 XH 2 X ^ 2 XI

ff», - 2 x v> <4 - 2 s/2 > <T"x
re

2«® >

so lassen sich folgende Korrelationskoeffizienton

n _
a-uJ 11 _

°<J- n _
c7-'

12 — > (y23 ~" ' J 31 —
<7«%, %0A- °A- Ku-

allgemein definieren. In einem normierten System stimmen die Werte
dieser Koeffizienten C'ta, 6'23 und C31 mit den Werten von o^, <4
und überein.

Zwei Punktsysteme im Räume heissen äquivalent, wenn

1. beide Systeme den gleichen Schwerpunkt haben;

- die Streuungen in beiden Systemen gleich sind:

a.lX ~ G3X ' aiHl °W ' °ZZ " azz >
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8. die Korrelationskoeffizienten beider Systeme gleich sind:

C'12 ~= Cti, C23 C23, C3l — C.M

Soll demnach das Punktquadrupel Ek(ak,bk,ck), (]; 1, 2. 3. 4)

mit dem vorliegenden System von n Punkten äquivalent sein, so

müssen definitionsgemäss folgende Bedingungen erfüllt werden:

r/j -f "2 + "3 " h

bi-r b2b3 + 0,

1 ~i_ c2 v C3 ~f" C4 - 0,

ni -b«2 -!-«3 + «4" " 4>

"l~ ^2 ~k '-Ti "k ^4 - i > 0 "0

*2 '2 1 v *
C, ~t~ C-j -}- e_j 4

«A -f «2^2 + »A + "4^4 - 4t:12,

C'i " b>, ('2 i~ fyW3 k; C] - 1 fi;j
''1 "l ~L C2 "i "T '-3 'l3 + C4 "4 " 4 (.'31

Aus diesen zu erfüllenden Bedingungen (17) geht unmittelbar hervor,
dass zwei äquivalente Quadrupel gleiche Trägheitsmomente in bezug
auf jede beliebige Ebene haben. Es seien in der Tat E1 E2 Es 77

4 und
/7, E2E'3E't zwei äquivalente Quadrupel und

71: x cos 7. + j] cos ß + z cos y —• p - - 0

irgendeine Ebene. Für das erste Quadrupel ist das Trägheitsmoment 1

in bezug auf 71

I (oleosa + bk cos ß + ck cosy p)2 (18)

4 cos2 a + 4 cos2 ß + 4 cos2 y + 4 p2 -f 8 C12 cos 7. cos ß + 8 C23 cos ß cos 7 + 8 C31 cos y cos a

Kür das Trägheitsmoment V des zweiten Quadrupels wird man den

gleichen Ausdruck wie für I erhalten, so dass 1 — I' ist.
Wenn ferner zwei äquivalente Punktquadrupel E\ 77, 77, Ei und

E\ El, El Ea in einem Element. 77
4 übereinstimmen, so liegen die anderen
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sechs Momente in einer Ebene. Dies geht aus dem soeben bewiesenen

Lehrsatz hervor, indem wir die Trägheitsmomente beider Quadrupel
in bezug auf die Ebene 77, 77

2 77., berechnen und einander gleichsetzen:

c] («A cos a. + bh cos ß + ck cos y -f- p)2 V cos a + b'h cos ft - ft c[ cos y — p)-.

Nach Voraussetzung ist aber ut^=-a[, 6,,— b\, c4 ej, so dass die

beiden entsprechenden Glieder auf beiden Seiten der Gleichung sich

aufheben. Ausserdem verschwinden auf der linken Seite die drei
ersten Quadrate; es müssen rechts auch sämtliche Quadrate
verschwinden, d. h. die Abstände der Eckpunkte E[ 772 773 von der Ebene

77, 772 773 verschwinden: beide Dreiecke 77, /7a 773 und 77J 772 773 liegen
in derselben Ebene.

Sämtliche Dreiecke, die mit einem festen Funkte E, äquivalente
Tetraeder bestimmen, können als äquivalente Dreiecke in einer Ebene n
aufgefasst werden. Wenn nämlich die Ebene

v : x cos a -f y cos ft -ft z cos y — p — 0

normal zu der gemeinsamen Ebene n dieser Dreiecke ist, so bedeutet
die Beziehung 1= 1' nichts anderes, als dass die Dreiecke1 77, 772 77.,

und 77 j 77a 77.', gleiche Trägheitsmomente in bezug auf die Schnittlinie
der Ebenen n und v, somit in bezug auf sämtliche Gerade der Ebene n
halieu. Die Dreiecke /7, /72 772, Vi[li'tE'3, sind demnach
äquivalente Dreiecke in einer Ebene. Nach dem Äquivalenzsatz der Ebene
haben diese Dreiecke denselben Schworpunkt und sind einer bestimmten

Ellipse eingeschrieben. In jeder Seitenfläche eines äquivalenten
Tetraeders 77, 772 77a 77,, liegt eine solche Ellpise, die durch die drei
Eckpunkte des Telraodors eindeutig bestimmt ist. Das Tetraeder
77, /7a 77., 77,, selbst bestimmt ein Ellipsoid, dessen Mittelpunkt in dem

Schwerpunkt des Tetraeders liegt und auf welchem die vier erwähnten
Ellipsen liegen. Die Transversalen von den Eckpunkten nach den

Schworpunkton der gegenüberliegenden Dreiocksflächen sind den
Dreiecksebenen konjugiert. Die Tangentialebenen dieses Ellipsoids
üa den Eckpunkten /7, 772 773 77,, sind infolgedessen den gegenüberliegenden

Dreiocksflächen parallel.
Alle diese äquivalenten Tetraeder sind inhaltsgleich und die Totra-

eder von grösstem Volumen, die sich dem 'Ellipsoid einschreiben lassen

[Ol. Ausserhalb und innerhalb dieses Ellipsoids, das wir als Äquivalenz-
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ellipsoid des Punktsystems bezeichnen wollen, gibt es kein weiteres

äquivalentes Tetraeder mehr. Denn gäbe es ein solches E\ Ji'a 773 /7,',,

so könnte man dem Ellipsoid ein äquivalentes Totraeder 73, 77
a 73,, 73.,

so einzeichnen, dass beispielsweise die Ebenen /3173a73;J und 731 73j 73',

parallel wären. Die Abstände der vierten Eckpunkte und des gemeinsamen

Schwerpunktes von diesen parallelen Grundflächen wären aber

für das eine Tetraeder grösser als für das andere. Die Trägheitsmomente

I und I' der beiden äquivalenten Totraeder in bozug auf
eine der beiden Grundebenen wären also verschieden gross, was der

Voraussetzung widerspricht.
Die Gleichung des Aquivalenzellipsoids ist von der Komi

A, x2 + A 2 i/2 -Mg + 2 7312 x ij + 2 yz + 2 B,3 xz — A (19)

Um die Koeffizienten zu bestimmen, suchen wir die Berührungspunkte
GX,G ,G4 des Ellipsoids mit den zu den YZ-, XZ- und XY-Ebeneri
parallelen Tangentialebenen.

Gx{ax, b2, c3) z.B. ist die Spitze eines äquivalenten Tetraeders,

dessen Grundfläche G'XG"XG'X in der Ebene x
1

liegt. Gleichung
(17) ergibt

13 *

also

°? + 3
»

13

a.
1/73

3

Setzt mau diese Werte in Gleichung (17) ein, so resultierl

bx — C12 [/13; cx Cl3 J ;j

Die Grenzpunkte Gx, G Gz haben folgende Koordinaten:

Gc ([/ 3 ; C12 j 13; C'13 [/13),

G„(6'ial/"3; [/dl C^j3), (20)

G':(C'13l/3";023l/i; 1/3).

Wird berücksichtigt, dass in diesen Punkten die Tangentialebenen zu
den Koordinatenebenen parallel laufen, so ergeben sich hieraus leicht
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die Koeffizienten von Gleichung (19). Die Gleichung des Äquivalonz-
ellipsoids erscheint dementsprechend in der Gestalt:

(1 - 6*) x2 + (1 - C%) y* + (1 _ Gl,) z2 + 2 (Cw C.i2 - C12) .c y + (21)

+ 2 (C21C13 ~ Cy yz + 2 (C32 C2l-C31) zx 8 (1 - C%- - - C% + 2 (JK C& C3l).

Ähnlich wie es in der Ebene geschah, lassen sich die Eckpunkte irgendeines

äquivalenten Tetraeders auf eine beliebige Ebene parallel zur
-V- oder Y- oder Z-Achse projizieren.

Es seien Kk (a,., bk, ck), k= 1, 2, 3, 4, die Eckpunkte, die wir
parallel zur X-Achse auf die Ebene

zu projizieren haben. Die Ebenenkonstanten p,q,r sollen derart
bestimmt werdet!, dass die Hümme der Quadrate

ein Minimum wird. Mit Rücksicht auf die Gleichung (17) ergibt, sich

sofort

'S' 4 V* + 4 <? + 4 r2 + 4 + 8 Gw pq — 8 C12 p — 8 CUi q. (23)

Bei initialer Summe S muss r ----- 0 sein. Die gesuchte Projektionsebene
(22) muss deshalb durch den Schwerpunkt des Tetraeders /^ J?2 7?3 KA

gehen. Der Ausdruck

x =: py 4- qz + r (22)

s =-= (x"-~ aft)2 ^ (vh + <ick + »•—Ok)2

,S< 4 V2 + 4 q* + 4 + 8 6'23 pq - 8 C12 p — 8 C13 q

ist am kleinsten, wenn die Gleichungen

öS

öp
— 0 und

dS
- o

erfüllt sind, d. h.

Hieraus folgt

P ^23 'l — ^ 12 >

^23 '/ + 7 C'lli •

(i cy p C
12 Cl3 032

(1 — Gl,) q G13 C'12 (723



Die Gleichung der Projektionsebene <px mit minimaler Streuung der

Eckpunkte in der X-Richtung lautet

cPj: a - @l3) x (C12 - C13 C32) y + (C13 - C12 Cm) z. (24)

llildet man aus der Gleichung des Ellipsoids (21) die Gleichung der
Polarebene des unendlich fernen Punktes Ux der X-Achse

Ux : a;0 oc ; y0 0; z0 0,

so ergibt sich die nämliche Gleichung (24). Diese Ebene (24) enthält
infolgedessen die Berührungskurve des um das Äquivalenzellipsoid
gelegten Tangentialzylinders, dessen Mantellinien parallel nur X-Achse
laufen.

Analog gibt es bezüglich der Y- und Z-Richtung zwei Ebenen

Vii '• (1 ^ls) y (@33 @21 @ is) 2 4" (^21 ^23 @3l) Z '
(25)

Vz '• 4 @2\) Z ~ (@31 — C32 ^'21) X 4" (@32 ~ @31 @l'i) V '

für welche die Punkte des Systems in der Y-, bzw. Z-Richtung die

kleinste Streuung aufweisen. In diesen Ebenen <p und cpz liegen
die Berührungskurven der beiden Tangentialzylinder des Äquivalenz-
ellipsoids, deren Mantellinien parallel zur Y-, bzw. Z-Achse sind.

Falls nun das ursprüngliche System von ^-Punkten I'k(xk,yk,zk)
linear abhängig ist, müssen die drei Regressionsebonen <pc, q> und (p,

in eine zusammenfallen. Die Bedingung dafür ist das Verschwinden der

symmetrischen Determinante der Ebenengleichungen (24) und (25):

1-^3 @13 @32

P P
13 u 23 ' C'ia

cL2 cl2cw-cl3
@VJ @21 @13 ^23

@12 @23 '@13 @31 @13 ^23 ^ ^12

0. (2(1)

Gleichung (26) ist zugleich die Bedingung dafür, dass das Äquivalenz-
ellipsoid (21) zerfällt.
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Beim speziellen Fall eines ebenen Punktsystems hat man 012 — 0,
GVi 0 unci C23 =- 0 zu setzen. Gleichung (26) geht dann in

1

G

0

G
1

0

über, oder C2 — 1: ein ßesultat, das Gleichung (16) bestätigt.

Wenn die Streuungen axx, <r unci azz nicht auf clon Wert «l»
normiert sincl, so hat man iri clen obigen Gleichungen des Ellipsoids (21)

und clor Begressionsebenen (24) und (25)

x durch x : ax,c,

y durch y : ayu

und z durch z : az,

zu ersetzen.

Wenn ein System von n > 2 Paaren bzw. n > 3 Tripeln von
zusammengehörigen Werten auf den Grad ihrer linearen Abhänyiykeit
untersucht werden soll, so gestatten die beiden Aquivalenzlehrsätze
eine wesenl liehe Veranschaulichung der Aufgabe. Geometrisch
ausgedrückt, tritt im ersten falle ein Dreieck, im zweiten Falle ein Tetraeder

an Stelle eines mehr oder weniger umfangreichen Wertesystems.
Die obigen Ausführungen zeigen aber auch, class durch den einzigen
Korrelationskoeffizionton G bei einem System von zwei Variaboln
bzw. durch die drei Korrelationskooffizienten Ol2, G'23 und C31 bei

einem System con drei Variabein keine allgemeinen, weitreichenden
Aussagen über das Abhängigkeitsverhältnis dieser Variabein zu
erwarten sind. Die Korrelationsmethode setzt vielmehr leistungsfähigere

Prufungsverfahren voraus.

1.5
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