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Lineare Abhadngigkeit
und Aquivalenz von Punktsystemen

Von H. Kreis, Winterthur
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Durch die Methode der kleinsten Quadrate lassen sich durch
n> 2 Punkte B (x,, 4,) #»wel Gerade g, und ¢, auf eindeutige Art so
bestimmen, dass die Streuung der Punkte in bezug auf diese Geraden
minimal wird, [m ersten Falle wird die Summe der Quadrate (A x)2,
im zweiten Falle die der Quadrate (4 4)? zu einem Minimum.,

Analog lassen sich dureh n>3 Punktbe L (%, 4, ,7,) Im Raume
dret Fhenen ¢, Py und ¢, auf eindeutige Art so h(\slnnmvn dass die
Strenung der Punkte in der X-, Y- und Z-Richtung in berug aut diese

12
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drei EXbenen minimal wird. Im ersten Falle ist die Summe der n-
Quadrate (4 x)%, im zweiten Falle die der Quadrate (432)2 und im
dritten Talle die der Quadrate (42)? ein Minimum.

Die Geraden g, und g, sind die sogenannten Regressionsgeraden
des ebenen Punktsystems; in Analogie dazu kinnen die drei Fbenen
Py @, und @, als Begressionsebenen des viumlichen Punktsystems
bezeichnet werden.

Gegenstand dieser Avbeit ist der Beweis der beiden folgenden all-
gemeinen Lehrsitze:

L. Aquivalenz in der Fbene

Zu einem beliebigen ebenen Punktsystem gibt es unaihlig viele
iquivalente Dreiecke [1) F, iy, die mit dem gegebenen System die
Regressionsgeraden ¢, und g, gemeinsam haben.

Die Gesamtheit dieser fiquivalenten lekpunkte 5 liegt auf einer
Ellipse, der Aquivalenzellipse.
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Die Regressgeraden ¢, und ¢, verbinden die Beriihrungspunkte
der zmr X- bzw. Y-Achse parallelen Tangenten der Aquivalenzellipse.

LI Aquivalenz im Raume

Zu emem beliebigen viiumlichen Punktsystem gibt es unzihlig
viele dquivalente Tetraeder Ity If, Iy Iy, die mt dem gegebenen
Punktsystem die 1{egressionseben(-,n Pes @, und @, gemeinsam haben.

Die Gesamtheit dieser aquivalenten lekpunkte I9 liegt aut einem
Ellipsoid, dem dquivalenzellipsoid. '

Die Regressionsebenen ¢, @, und ¢, enthalten die Berithrungs-
ellipsen des zur X- bzw. Y- und Z-Achse parallelen Tangential-
zylinders des Aquivalenzellipsoids.

I. Aquivalenz in der Ebene
Gegeben sel ein chenes, normiertes Punktsystem

PI» (:Llh" Yi)s k=1,2,3.,

Wir setzen also voraus:

N D= (), 2 Jk =)
1« ;
2N L2 2 TN, 2
Faa ™7 " A\—J w=1, 0, = " Y = - (1)

Wenn wir noch die Summe ¢

) % 7 1y fi3 J ( r. ) .
"= EJ ay einfithren, so wird dex

Korrelationskoeffizient ¢ allgemein durch das Verhélinis definiert

Y2,
L) = Oyt Ouy Oy s

80 dass in einem normierten System der Wert von ¢ mit dem Wert
von ¢ iibereinstimmd.
Ziwel Punktsysteme heissen dquivalent, wenn sie folgende Be-
dingungen erfiillen:
1. beide Systeme haben den gleichen Schwerpankt 0

N = a0, Sy — Ny = 0;
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2. die Streaungen o in beiden Systemen sind gleich:

By == T =5 L 5 O, = Oy = 1:

3. die Korrelationskoeffizienten beider Systeme sind gleich:

2 __ 2 Ve YL
0y, = Oy, oder O'= (",

Wenn also ein Dreieck 7, (e, by) Iy(ag, by) Fy(ag, by) mit dem
Punktsystem (1) dquivalent sein soll, so miisgen folgende Gleichungen

gelten:

ty -+ ay,+  az=0, 1
b+ b+ b;=0, A
ai + aj a3=3, 1 (2)
b4 W+ bE=3, A2
ay by + agby + 30, =30C . 22

Multipliziert man mit den beigesetzten [akboren und addiert,
s0 wird

(g -+ Aby) + (ag -+ Aby) + (ay 4+ Abg) == 0,

(g -+ A0)% - (ay 4 Aby)? -+ (ay + Ab5)% = 0, )
wenn der Parameter 4 so gewihlt wird, dass
BA2 604 +38=0, (h)
Ae=—C ki1 Cy (%)
Setzb man zur Abkirzung
a, + Aby =wy, ay + Lby = wy, a; -+ Aby = w,,
s0 lassen sich die Gleichungen (3) schreiben
wy + wy + 1wy =0,
(6)

i s o
wy + w, + w; = 0.
Hieraus folgt durch Quadrieren und Subtrahieren

Wy Wy + Wy g + wywy, =0,
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d. h. w,, w, und w; konnen als die Wurzeln einer rein-kubischen
(rleichung aunfgefasst werden, so dass

wo ¢ cine beliebige Zahl, &, ,, ¢; die dritten linheitswurzeln be-
denten.  Hs 18t somit allgemein

cep==ay + Ab, und  ce = ap | Aby,
08, =y + Aby Gy == Uy -+ Aby, (7)

&y oy - Aby,

e

wo ¢, ®, A die konjugiert-komplexen Werte voun ¢, ¢, 2 bedeuten.
Dureh Multiplikation der Gleichungspaare (7) ergibt sich
. 9 7 e
¢t = aj + (A4 A)a, b, -+ 1407,
oder, mfolge Gleichung (4)
AdA=—2C, Ad=1
e GO ¢ 5 ] 2
cC = al I Z C(,l:l bl |" bl‘ .
Analog ¢¢ == ay—2Cayb, |- b, (S)
¢ == as— 2 Cayb, | b
A | 3v3 R
Die Koordinaten der Punkte I, B, I, geniigen demnach der Gleichung
142 35 O h
x? yt-—20my = ¢t (1)

die, weil die Konstante € stets absolut kleiner oder hochstens eleich 1
ist, eine lillipse, die Aquivalenzellipse, darstellt. Um den Wert des
Absolutgliedes ¢¢ zu ermitteln, addieren wir die drei Gleichungen (8)
und erhalten mit Riicksicht aut die Definitionsgleichungen (2)
g o i 2 .2 Ye T2 2 2
€C = 2 == 2 02 .

Die (ileichung der Aquivalenzellipse lautet somit

2220y =92 2(2. (10)
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Sie hangt ausschliesslich von dem einzigen Parameter ¢, d. h. vom
Korrelationskoeffizienten des urspriinglichen Punktsystems ab. Die
Achsen der Ellipse fallen mit den Winkelhalbierenden des Achsen-
kreuzes zusammen.

all
G,

b
(Jy

Die Grenzpunkte G, ,(i; baw. G, 0, der Kurve, in welchen die
Tangenten parallel zu den Koordinatenachsen sind, d. h. die Punkte
mib absolut grossten Ordinaten bzw. Abszissen, lassen sich unmittetbar
aus Gleichung (10) bestimmen. Diese lisst sich folgendermassen
schreiben

(y—Ca)*+ (1-—0% a2=2—2C2.
Hieraus folgt

(1-—-CHa2<2—20%

somit

(1-—C?) a2

“max.

= 2—2(?
und zugleich -
(y—Cu)P=0.



Fir die Gerade OG, ergibt sich die Gleichung
0G,:y—Cx=0 (11)
und als Koordinaten der Grenzpunkte G, und G,
=+ ]/7‘24, ==t O VQ
Schreibt man Gleichung (10) umgekehrt in der Form

(z—CyP+(1—0%y2=2—-20C2,
so erhilt man '

(1 - 02) y?nax. = 2-—32(%
und zugleich

(x—Cy)E=0.
Fintsprechend lautet also die Gleichung von
OG,:x—Cy=0. (12)
Analog sind die Koordinaten der Grenzpunkte (f, und G, :
s b OY2 g1 |2

Von besonderem [nteresse sind die dquivalenten Dreiecke (7, G
und (,}'” G; i};, die einen Grenzpunkt zu einer Iicke haben. Da die
Seitenhalbierenden der fdquivalenten Dretecke sich irma Schwerpunkt
0 tretten, lassen sich die Koordinaten der beiden fehlenden Fekpunkte

berechnen. kg resultieren folgende Koordinaten:

(13)

N cya  1/3—3C
,fH P = — 2 i 3 y S s —*2———— ;I— / - ‘:)J___
/o Cya /8 —-3C
ry bl = 5 e e

2 2 2
und analog N

y c|e 3—3C? )
(J:l. £ ool s —24 —— = _.___2,‘___. p y e #Mz__...
cyy 1/3=8C¢

r': : = — ~~g— = B : Y= — M___ .
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(ibt man sich einen beliebigen Punkt 14, der Aquivalenzellipse,
so sind die beiden anderen Fckpunkte I, I5, vollstindig bestinmt,
indem man die Strecke {i; 0 um die Hilfte iiber 0 hinaus verlingert,
und durch den Emdpunkt die Parallele zur Ellipsentangente i I,
zieht. Diese Parallele schneidet aus der Ellpise die gesuchten licken
heraus. Wie Steiner [6] gezeigt hat, sind séimtliche dquivalente Drei-
ecke flichengleich; es sind die grosstmoglichen Drelecke, die sich der
Ellipse (10) einschreiben lassen.

Iis sei nun F}y It, I, irgendein dquivalentes Dreteck des gegebenen
Punktsystems, ferner y = px + ¢ die Gleichung einer Geraden, auf
welche die Fekpunkte des Dreieckes parallel zur Y-Achse projiziert
werden sollen. Dabei gehort zu jeder licke [, (a,,b,) ein bestimmtes
Bild E(a,,y, = pa, +q). Die Konstanten p und ¢ sollen nun so
bestimmt werden, dags die Summe der quadratischen Abweichungen

S = (Y —b)* + (Yo — )" + (i —by)”
oder

S=pay+q—0)*+ (pay -+ q—by)* (pag -+ ¢ —p)*
ein Minimum wird. Mit Riicksicht auf Gleichung (2) st
S :'sz +3¢24+3—6Cp=38¢2-+8(p—0)243(1-—C?.

Der Ausdruck fiir S wird offensichtlich zu emem Minimum, wenn die
Quadrate ¢* und (p — C)? verschwinden, d. h. wenn ¢=0 und p = C
wt. Die gesuchte Gerade hat also die Gleichung

g,y = Cux. (14)

Diese Gerade g, geht durch den Schwerpunkt 0; sie ist unabhéingig vom
angenommenen dquivalenten Dreleck. Nimmt man z. B. das spezielle
iquivalente Dreieck ¢, G, (7, mit der zur Y-Achse parallelen Seite
a, (}; zu Hilte, so verbindet ¢, die Mitte dieser Seite mit dem extremen
Grenzpunkt (7, rechts. Die Gerade (14) ist demnach identisch mif dem
Durchmesser ¢, G, der Aquivalenzellipse. Auf ihnliche Art kinnen
wir die Bekpunkte I, I, B, aut eine zweite Gerade x = py -} ¢
parallel zur X-Achse projizieren. Die Summe

S = (pby +q-—a)? F (pby + q-—a)* + (pby + ¢ —1y)*
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wird am klemsten, wenn g == 0 und p = C gewiihlt werden, so dass
die Gleichung der zweiten Geraden lautet

it § =02l (15)

Diese Gerade ¢, ist ebenfalls unabhiinglg vom gewihlten Dreteck.
Wiihlt man insbesondere das ausgezeichnete Dreieck (7, (7, (7, so ver-
bindet die Gerade g, die Mitte der zur X-Achse parallelen Dreieck-
seite (7, (+, mit dem hochsten Grenzpunkt G,. Die Gerade ¢, ist somit
identisch mit dem Durchmesser , G, der Aquivalenzellipse.

)

Die zusammengehorigen - und y-Werte sind dann und nur dann
voneinander lnear abhingig, wenn die beiden Regressionsgeraden ,
und g, zusammentallen, d. h. wenn die Gleichungen x = Uy und y - ('
identisch sind. Die Bedingung dafiir lautet:

02 =1, (16)
Den Werten ' - - 1 entsprechend liefert Gleichung (10) die Ellipsen-

gleichungen
- B¢ (x4 )= 0.
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Diesen beiden Gleichungen entsprechen als Bilder die doppelt gedachten
Diagonalen des Quadrates, dem siimtliche Aquivalenzellipsen (10) ein-
beschrieben sind.

Dem anderen Grenzweirt 0 von C' entspricht die Gleichung

a4yt =2
des Inkreiges des nimlichen Quadrates.

I'iir den von den Regressionsgeraden eingeschlossenen Winlkel
(, 0, = v 1st allgemeln

1
Eﬁc 171

LGy = e =2 9 ( C e O'> .
[+ ——0C

i

0;

o)

/

1/1
Fir ¢'= + 1 st der Winkel y = 0° und der Ausdruck 5( il

|

|

1/1 )
fite ¢ = 0 ist der Winkel 9y = 90° und der Ausdruck 3 (E o C’) =,

Je kleiner also der absolute Wert des Ausdruckes 2(0 O) ist,

desto schwicher streuen die dquivalenten Punkte um die Regressions-
geraden.

Nach Voraussetzung (1) haben wir tiir die Streuungen den Wert 1
angenommen, sind aber ¢, und o, nicht gleich der linheit, so hat
man in den erhaltenen Gleichungen (10), (11) und (12) z: 0, an Stelle
von x und y:o, an Stelle von y zu sebzen, so dass die Gleichungen
der Aquivalenzellipse und der Regressionsgeraden allgemeiner lauten

@2 i* R ‘ ,
ST A VS S ¥ ) (10
O’;&L G;;;,: G:ca: Uuu

7 Cux
R | (11
. GU.’.‘ O-CL"J.‘
T o
oG, Y . (12)
g, o
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Analog findet man als Koordination der Fekpunkte des dqui-
. - ] .
valenten Dreieckes (7, () 7 allgemeiner

;7 .y )
G o2 o [ H g = OB 13
o (R cle T),f-'f?fc?
Ge = — |2 Ly oo § e

, o 2 2

zr "y

: 1. ) [ §--8(2
RN VSR L .

il 2 Gy 2 -

II. Aquivalenz im Raume

(regeben sel wgendein dreidimensionales, normiertes System von
n Punkten L, (x,, y.,2,), (k=1,2..... n), so dass

W | W
Dimp=0, My=0, X z=0,

1 1 1
RN SN R 2
G.‘r.u: - Tb \ Lk - 1 Gw T " }_J yk _ 1 H G:: — n \‘,__J dl - 1
- ! [ i L . »
angenommen wird. Setzt man ferner
oy, = 12!?/ o =y Yo, 0o = ! T
o W < - - 2 i N ~ e
xy 7 UG n ¢ n ’
s0 lassen sich folgende Korrelationskoetfizienten
o, 0, o
— Ty T i ¥ <
012 T s (/23 R ey 631 e
O’:Z'.'U GU!] U.‘,‘U O‘*‘ U"" G

allgemein definieren. In einem normierten System stimmen die Werte
dieser Koettizienten €y, Cyy und Cy; mit den Werten von o2, o,
und 6%, iiberein.
Zwel Punktsysteme im Raume heissen dquivalent, wenn
L. beide Systeme den gleichen Schwerpunkt haben;
2. die Streuungen in beiden Systemen gleich sind:

! !

O = Gn’ Gyy = Opy» 0., == 0,
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3. die Korrelationskoeffizienten beider Systeme gleich sind:
v/ 1 o 7 { e | !
012 = Yoy 623 "— 0239 (’31 T (/'31 :

Soll demmach das Punktquadrupel I, (a,,b,,¢), (h=1,2.3.4)
mit dem vorliegenden System von n Punkten dquivalent sein. so
miissen definitionsgemiiss folgende Bedingungen erfilllt werden:

| | | -
a;, +a;+ a3+ a,=0,

by + by + by +b, =0,

¢ +6 +¢ +¢ =0,

2 2 2 2
a;+a; +a;+a; =4,
b} + b5 02 b =4, (17)
24 | =) i ~) 9
¢ +6 4+ +¢ =4,

ayby, -+ agb, + azby + a,b, = 40,

byey +bycy + byoy +byey = 40,

€1y + Gty + 305+ cyay=40Cy.
Aus diesen zu erfillenden Bedingungen (17) geht unmittelbar hervor,
dass zwei dquivalente Quadrupel gleiche Triigheitsmomente in bezug

auf jede beliebige Ibene haben. Iis seien in der Tat I, E, F, I/, und
77 I ! .. .
Iy By By By zwel diquivalente Quadrupel und

2% cos o1y cos B+ 2 cos y—p=0

irgendeine Kbene. Fiir das erste Quadrupel ist das Trigheitsmoment |
m bezug auf =

= : (ay cosa 4 b, cos 8+ ¢, cosy — p)? (18)
—=4cos?a+4cos? 44 cos?y + 4 p2 480, cosx cos B4 SCo c0s B cosy + 84, COSy cosa

Fiir das Trigheitsmoment 1" des zweiten Quadrupels wird man den
gleichen Ausdruck wie fiir I erhalten, so dass 1= T ist.

Wenn ferner zwei dquivalente Punktquadrupel E, F, E, I, und
I, By B By in einem Element F, itbereinstimmen, o liegen die anderen
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sechs Flemente in einer Kbene. Dies geht aus dem soeben bewiesenen
Lehrsatz hervor, indem wir die Trigheitsmomente beider Quadrupel
in bezug auf die Kbene I, I, I, berechnen und einander gleichsetzen:

}__, (e, cos o -+ by 008 f§ +- ¢, cos y 4 p)E = D] (et cos o0+ by, cos ff - ¢, COS Yy — p)2.

Nach Voraussebzung ist aber a,=a,, b,= by, ¢, ¢;, so dass die
beiden entsprechenden Glieder auf beiden Seiten der Gleichung sich
aufheben.  Ausserdem verschwinden auf der linken Seite die dvel
ersten Quadrate; es miissen rechts auch simtliche Quadrate ver-
schwinden, d. h. die Abstinde der Fekpunkte F| It Ii; von der Fbene
li, B, Iy verschwinden: beide Dreiecke B, It, Fy und B{ B, I legen
in derselben Ebene.

Samtliche Dreiecke, die mit einem festen Punkte I, dquivalente
Tetraeder bestimmen, kénnen als diquivalente Dreiecke in einer Ebene &
aufeefasst werden. Wenn nimlich die Kbene

VI COS o - 1 COS ﬁ -2 cos Y —p = ()

uormal zu der gemeinsamen Ebene 7 dieser Dreiecke ist, so bedeutet
die Beziehung [ = [" nichts anderes, als dass die Drelecke [0, I, I,
und I5; 1, By gleiche Trigheitsmomente in bezug auf die Schnittlinie
der Ibenen 7 und », somitb in bezug auf simtliche Gerade der Kbene =
baben. Die Dreiocke ) F, Iy, K U, I8, ... .. sind demnach dqui-
valente Dreiecke in einer Fibene. Nach dem Aquivalenzsatz der Ithene
haben diese Dreiecke denselben Schwerpunkt und sind einer bestimm-
ten Ellipse cingeschrieben. In jeder Seitentliche eines dquivalenten
Tetraeders foy Iy, Ity I, liegt eine solche Bllpise, die durch die drei
lickpunkte des Tetraeders cindeutig bestimmt ist. Das Tebraoder
U1, 1y By selbst bestimmt ein Tillipsoid, dessen Mittelpunkt in dem
Sehwerpunkt des Tetraeders liegt und anf welchem die vier erwiihnten
Ellipsen liegen. Die Transversalen von den Eekpunkten nach den
Schwerpunkten der gegeniiberliegenden Dreiecksflichen sind  den
Dreiecksebenen konjugiert. Die Tangentialebenen dieses Ellipsoids
i den Fekpunkten £ T, By B, sind infolgedessen den gegeniiber-
liegenden Dreieckstlichen parallel.

Alle diese fquivalenten Tetraeder sind inhaltggleich und die Tetra-
eder von grosstemn Volumen, die sich dem #llipsoid einschreiben lassen
[6]. Ausserhalb und innerhalb dieses Bllipsoids, das wir als dquivalenz-
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ellipsoid des Punktsystems bezeichnen wollen, gibt es kein weiteres
dquivalentes Tetrasder mehr. Denn giibe es ein solches | I, F, I},
s0 konnte man dem Fllipsoid ein dquivalentes Tetraeder 14, I, Ivy 14,
so einzeichnen, dass beispielsweise die Whenen If, I, Ey und IV | I,
parallel wiren. Die Abstinde der vierten lickpunkte und des gemein-
samen Schwerpunktes von diesen parallelen Grundflichen wiiven aber
fir das eine Tetraeder grosser als fir das andere. Die ''riigheits-
momente [ und 1" der beiden dquivalenten Tetraeder in bezug auf
eine der beiden Grundebenen wiiren also verschieden gross, was derv
Voraussetzung widerspricht.

Die Gleichung des Aquivalenzellipsoids ist von der Form

Ayat + Ay y? + 4322 + 2 Bxy + 2B yz + 2B a2=4d. (19)

Um die Koeffizienten zu bestimmen, suchen wir die Bertthrangspunkte
G,,G,, ¢, des Bllipsoids mit den zu den YZ-, XZ- und XY-Ebenen
parallelen Tangentialebenen.

(G (e, by, cy) z B. ist die Spitze eines dquivalenten Tetraeders,

a
i ol ol 1 . g0
dessen Grundfliche G, G, G, in der libene = — 5 Hegt. Gleichung
(17) ergibt )
9
a
2 ¢ 1 ;
a3 - (-— ‘) =F
also V__
%
4y = [/::};(tgzcbg:(t:l == H—«?

Setzt man diese Werte in G[eiciumg (17) ein, so I.'!‘fh'l'l]tiel't-.
by = Chy - l/?: 0, = Cly - V??
Die Grenzpunkte (v, (+, (v, haben folgende Koordinaten:
G ()35 Cra /35 Cis ) 3),
G,(Cr)/8;)8;Cul8), (20)
G: (013 V?a 023 I/E, l/‘—S) .

Wird beriicksichtigt, dass in diesen Punkten die Tangentialebenen zu
den Koordinatenebenen parallel laufen, so ergeben sich hieraus leicht
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die Koeffizienten von Gleichung (19). Die Gleichung des Aquivalenz-
ellipsoids erscheint dementsprechend in der Gestalt:
12 ; 12 2y . f “f f o ¢
(1—Ch)a*+ (11— 0y + (1 —C) 2+ 2(Cylsp—CUp)ay+  (21)
+ 90 f 1 . ; f . 0/ 12 12 2 f f ~t
-2 (Cay Oy — Cap) Y2 + 2 (Cop Uy — Cp) 2 = 3 (1 — Oy - O — Oy + 20, Oy Oy
Ahnlich wie es in der Ibene geschah, lassen sich die Fekpunkte ivgend-
eines dquivalenten Tetraeders auf eine beliebige libene parallel zur
X- oder Y- oder Z-Achse projizieren.
s seten I («,, b,,c), k=1, 2, 3, 4, die lickpunkte, die wir
parallel zur X-Achse auf die KEbene
£=py+qz+7r (22)

7zt projizieren haben. Die Kbenenkonstanten p, ¢, r sollen derart
bestimmt werden, dass die Summe der Quadrate

S =N (:'Els; - a’!c)z — 4\...: (p b.’u + q&y, +r— alﬂ)g

e

e Minimum wird. Mit Ricksicht auf die Gleichung (17) ergibt sich
sofort '

N=dp?tdg?-Fdr244+8Cupg—8C,p-—8C,q. (23)
Bei minaler Summe S muss » = 0 sein. Die gesuchte Projektionsebene

(22) muss deshalb durch den Schwerpunkt des Tetraeders Ity IS, gy I,
gehen. Der Ausdruck

S=dp2t4q®+4+80upg—8SC,p—8C4q
ist am kleinsten, wenn die Gleichungen
(58 (SS
— =0 umd — =20
op dq
erfullt sind, d. h.
P+ Cuq=Cy,

Cosp +q = Chs-
(1-—C3) p = Cyp — Cyy Oy,
(1— 033) q= U3 — C13 Css.

Hievaus folgt
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Die Gleichung der Projektionsebene ¢, mit minimaler Streuung der
Fiekpunkte in der X-Richtung lautet

g, (1—0Ch) v = (013 —Cy Oy y + (O3 — Cra Cp) 2. (24)

Bildet man aus der Gleichung des Ellipsoids (21) die Gleichung der
Polarebene des unendlich fernen Punktes U, der X-Achse

Uvog=iss Yp=0;25=20,

so ergibt sich die némliche Gleichung (24). Diese Eibene (24) enthiilt
infolgedessen die Berithrungskurve des um das Aquivalenzellipsoid
celegten Tangentialzylinders, dessen Mantellinien parallel zur X-Achse
lanfen.

Analog gibt es beztiglich der Y- und Z-Richtung zwei benen

Py * (L — O‘fa’.) Y= (Coy3— Uy Cpg) 2 4 (Uyy - Cyy Ugy) 2, (25)
Yie)
By Sl = Ogl) 2= (Cgy — Cg Cg1) & + (Cgo~— U3y C12) ¥,

titr welche die Punkte des Systems in der Y-, bzw. Z-Richtung die
lleinste Streuung aufweisen. In diesen Ibenen ¢, und ¢, liegen
die Berithrungskurven der beiden Tangentialsylinder des Aquivalenz-
ellipsoidy, deren Mantellinien parallel zur Y-, bzw. Z-Achse sind.

Ifalls nun dasg urspriingliche Systerm von n-Punkten [, (z,, v, 2,)
linear abhdingig ist, miissen die drei Regressionsebenen ¢, @, und ¢,
i eine zusammenfallen. Die Bedingung dafiv ist das Verschwinden der
symmetrischen Determinante der Hbenengleichungen (24) und (25):

X 2 & 1 1 g 1
l o 623 (’ 13 632 T C.lz 012 (’23 T 6.13

Cyg Upg— Oy 1L — 0%3 Up Gy —Cy | = 0. (26)
012 023 o 013 Uzt 013 - 023 1— 0%2

(tleichung (26) ist zugleich die Bedingung dafiir, dass das Aquivalens-
ellipsoid (21) zerfillt.
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Beim speziellen Fall eines ebenen Punktsystems hat man 0y, = 0,
U3 = 0 und Cyy = 0 zu setzen. Gleichung (26) geht dann in

1 —C 0
— 1 0 | =1
0 0 1

tiber, oder €2 == 1: ein Resultat, das Gleichung (16) bestitigt.

Wenn die Streuungen o,,, o, und o, nicht auf den Wert «1»
normiert sind, so hat man in den obigen Gleichungen des Ellipsoids (21)

und der Regressionsebenen (24) und (25)
z durch z:0,,,

y durch y:0,,

und 2z durch z:0,,
zu ersetzen.

Wenn ein System von n>2 Paaren bzw. n >3 Tripeln von
zusammengehorigen Werten auf den Grad threr linearven Abhimgigkeit
untersucht werden soll, so gestatten die beiden Aquivalenzlehrsiitze
eine wesentliche Veranschaulichung der Aufgabe. Geometrisch aus-
gedriickt, tribt im ersten Ialle ein Dreieck, im zwetten falle ein Tetra-
eder an Stelle eines mehr oder weniger umfangreichen Wertegystems.
Die obigen Ausfihrungen zeigen aber auch, dass durch den einzigen
Korrelationskoeftizienten €' bei einem System von zwei Variabeln
bzw. durch die drei Korrelationskoeffizienten €', Chy und Cyy bei
einemn System von drei Variabeln keine allgemeinen, weitreichenden
Aussagen tiber das Abhiingigkeitsverhiltnis dieser Varviabeln zu er-
warten sind.  Die  Korrelationsmethode setzt  vielmehr leistungs-
tihigere Pritfungsverfahren voraus.



— 186 —

Literaturnachweis

[L] O. clnderson: Eintithrung in die mathematische Statistik. Wien 1935,
[2] £, Czuber: Die statistischen Forschungsmethoden. Wien 1921,

[3] G Jung: Fneyklopedie der mathematischen Wissenschaften, vierter Band:
Mechanik, erster Band: Ceometrie der Massen,

|4+] W. Laetzmann: Uber die Beurteilung der Letstungen in der Schule, Mathe-
matisches/ Psychologisches/ Piidagogisches,  Leipzig 1927,

[5] “l. Lander: Statistische Methoden, Basel [9:45,
[6] . Stevner: J. fiir: Math., 30 (1846) = Gesam. Werke 2, 5. 347.



	Lineare Abhängigkeit und Äquivalenz von Punktsystemen

