Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 46 (1946)

Artikel: Näherungswerte für die gemischte Versicherung mehrerer verbundener

Leben

Autor: Jecklin, Heinrich

DOI: https://doi.org/10.5169/seals-966875

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Näherungswerte für die gemischte Versicherung mehrerer verbundener Leben

Von Heinrich Jecklin, Zürich

1. Bei unseren Betrachtungen gehen wir aus von der Ungleichung von Steffensen

$$\frac{\sum_{\alpha}^{\beta} \Phi(t) f(t) g(t)}{\sum_{\alpha}^{\beta} \Phi(t) g(t)} \geq \frac{\sum_{\alpha}^{\beta} f(t) g(t)}{\sum_{\alpha}^{\beta} g(t)},$$

wobei $\Phi(t)$ und f(t) zwei positive, nicht zunehmende Funktionen und g(t) eine positive Funktion sind 1). Setzen wir insbesondere

$$\Phi(t) = l_{y+t}, \ f(t) = l_{x+t}, \ g(t) = v^{t}, \text{ so folgt } \frac{a_{xy\overline{n}|}}{a_{y\overline{n}|}} > \frac{a_{x\overline{n}|}}{a_{\overline{n}|}},$$
oder
$$a_{xy\overline{n}|} > \frac{a_{x\overline{n}|} \cdot a_{y\overline{n}|}}{a_{\overline{n}|}}, \tag{I}$$

wie dies von Steffensen selbst schon gezeigt wurde ²). Die damit gegebene Näherung für die temporäre Verbindungsrente fand eingehende Behandlung durch Bjoraa ³). In Umkehrung von I haben wir

$$\frac{1}{a_{xy\overline{n}|}} < \frac{a_{\overline{n}|}}{a_{x\overline{n}|} \cdot a_{y\overline{n}|}},\tag{II}$$

¹⁾ Vgl. Berger, «Mathematik der Lebensversicherung», S. 101.

²) Steffensen, «On a Generalization of certain inequalities by Tchebychef and Jensen», Skandinavisk Aktuarietidskrift 1925, 3—4.

³⁾ Bjoraa, «Eine angenäherte Methode zur Berechnung von Verbindungsrenten», Skandinavisk Aktuarietidskrift 1929, 3.

$$\text{und damit} \qquad P_{xy\overline{n}|} = \frac{1}{\mathsf{a}_{xyn|}} - d < \frac{\mathsf{a}_{n|}}{\mathsf{a}_{x\overline{n}|} \cdot \mathsf{a}_{y\overline{n}|}} - d \,.$$

Diese Näherung für die Prämie der gemischten Versicherung auf zwei Leben ist bekannt 1), sie gibt stets einen höheren Wert als den genauen Prämiensatz, und zwar steigt der Fehler mit x, y und n.

Benützen wir nun die Approximation der Verbindungsrente für die Reserveberechnung, so folgt in multiplikativer Verbindung von I

$$\begin{array}{c} \text{und II} & \frac{a_{x+t,\,y+t,\,\overline{n-t}\,|}}{a_{xy\overline{n}\,|}} \sim \frac{a_{x+t,\,\overline{n-t}\,|} \cdot a_{y+t,\,\overline{n-t}\,|} \cdot a_{\overline{n}\,|}}{a_{x\overline{n}\,|} \cdot a_{y\overline{n}\,|} \cdot a_{\overline{n-t}\,|}} \,, \\\\ \text{also} \quad {}_{t}V_{xy\overline{n}\,|} = 1 - \frac{a_{x+t,\,y+t,\,\overline{n-t}\,|}}{a_{xy\overline{n}\,|}} \sim 1 - \frac{a_{x+t,\,\overline{n-t}\,|} \cdot a_{y+t,\,\overline{n-t}\,|} \cdot a_{\overline{n}\,|}}{a_{x\overline{n}\,|} \cdot a_{y\overline{n}\,|} \cdot a_{\overline{n-t}\,|}} = \text{(III)} \\\\ = 1 - \frac{(1 - {}_{t}V_{x\overline{n}\,|}) \, (1 - {}_{t}V_{y\overline{n}\,|})}{(1 - {}_{t}V_{\overline{n}\,|})} \,. \end{array}$$

Damit ist eine Näherungsformel, die von Zwinggi²) in schöner Darstellung unter Zuhilfenahme des Begriffes der Sterbeintensität aufgestellt wurde, auf anderem Wege elementar abgeleitet. Die Approximation III kann nicht mehr als gerichtete Ungleichung angegeben werden, da sie sich als Multiplikation zweier entgegengesetzt gerichteter Ungleichungen ergeben hat. Da sich hieraus jedoch eine Kompensation im Fehler gegenüber dem genauen Wert ergeben muss, ist zu erwarten, dass die Näherung III für die Reserve im allgemeinen besser ist als die Näherung III für die Prämie. Sofern sich überhaupt eine positive Abweichung des genäherten vom genauen Reservewert ergibt, kann dies nur in den ersten Versicherungsjahren der Fall sein, mit steigendem t muss wegen II die approximierte Reserve zu klein ausfallen, wie sich dies auch in den numerischen Beispielen der genannten Arbeit Zwinggis zeigt.

2. Da das Produkt zweier oder mehrerer positiver Funktionen wieder eine solche Funktion ist, gilt die erweiterte Steffensche Ungleichung

¹) Vgl. Meyer, «Näherungsmethoden für Versicherungen verbundener Leben». Neumanns Zeitschrift für Versicherungswesen 1928, 7.

²) Zwinggi, «Ein Multiplikationssatz für das Deckungskapital», Mitteilungen der Vereinigung schweizerischer Versicherungs-Mathematiker, Bd. 45, 2.

$$\frac{\sum_{n=0}^{\beta} F_{0} F_{1} F_{2} \dots F_{n} F_{n+1} G}{\sum_{n=0}^{\beta} F_{0} F_{1} F_{2} \dots F_{n} G} \ge \frac{\sum_{n=0}^{\beta} F_{1} F_{2} \dots F_{n} F_{n+1} G}{\sum_{n=0}^{\beta} F_{1} F_{2} \dots F_{n} G}$$

wobei $G, F_0, F_1 \dots F_{n+1}$ positive Funktionen darstellen, von welchen zumindest F_0 und F_{n+1} nicht zunehmend sind. Denn man kann das Produkt $F_1 F_2 \dots F_n G$ als eine einzige positive Funktion betrachten und hat dann die ursprüngliche Ungleichung von Steffensen. Es folgt hieraus im speziellen

$$\frac{a_{x_1x_2...x_k\overline{n}|}}{a_{x_1x_2...x_{k-1}\overline{n}|}} > \frac{a_{x_2x_3...x_k\overline{n}|}}{a_{x_2x_3...x_{k-1}\overline{n}|}} > \dots > \frac{a_{x_{k-1}x_k\overline{n}|}}{a_{x_{k-1}\overline{n}|}} > \frac{a_{x_k\overline{n}|}}{a_{\overline{n}|}}.$$

Auf dem Wege der Substitution, d. h. in fortschreitender Anwendung

$$\begin{array}{ll} \text{der N\"{a}herung} & a_{x_1x_2\ldots x_k\overline{n}|} > \frac{a_{x_1x_2\ldots x_{k-1}\overline{n}|} \cdot a_{x_2x_3\ldots x_k\overline{n}|}}{a_{x_2x_3\ldots x_{k-1}\overline{n}|}} \\ \\ \text{erh\"{a}lt man leicht} & a_{x_1x_2\ldots x_k\overline{n}|} > \frac{a_{x_1\overline{n}|} \cdot a_{x_2\overline{n}|}\ldots a_{x_k\overline{n}|}}{(a_{\overline{n}|})^{k-1}}, \\ \\ \text{bzw.} & P_{x_1x_2\ldots x_k\overline{n}|} = \frac{1}{a_{x_1x_2\ldots x_k\overline{n}|}} - d < \frac{(a_{\overline{n}|})^{k-1}}{a_{x_1\overline{n}|} \cdot a_{x_2\overline{n}|}\ldots a_{x_k\overline{n}|}} - d, \end{array} \tag{IV}$$

eine Näherungsformel, auf welche Verfasser in anderem Zusammenhange hingewiesen hat 1). Für die Prämienapproximation liefert dieses Verfahren jedoch keine guten Resultate, der Fehler steigt mit k und n rasch. Dagegen ist zu erwarten, dass sich in Anwendung auf die Reserveberechnung der gemischten Versicherung auf mehrere verbundene Leben

$${}_{t}V_{x_{1}x_{2}...x_{k}\overline{n}|} \sim 1 - \frac{a_{x_{1}+t,\overline{n-t}|} \cdot a_{x_{2}+t,\overline{n-t}|} \cdot a_{x_{k}+t,\overline{n-t}|}}{a_{x_{1}\overline{n}|} \cdot a_{x_{2}\overline{n}|} \dots a_{x_{k}\overline{n}|}} \left(\frac{a_{\overline{n}|}}{a_{\overline{n-t}|}}\right)^{k-1}$$
 (V)

brauchbare Näherungswerte ergeben werden. Es gelten hier die nämlichen Überlegungen wie bei zwei verbundenen Leben. Immerhin

¹) Jecklin, «Über den Zusammenhang zwischen gewissen Zusatzversicherungen, Prämienzerlegungen und Approximationen in der Lebensversicherungstechnik», Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker, Bd. 44, 2.

zeigt sich, dass die numerischen Resultate nicht besser sind als jene, die auf Basis der nachfolgend behandelten Verallgemeinerung der Formel von Lidstone erhalten werden.

3. Für die Prämienapproximation ist, wie wir darlegen werden, die Näherungsformel von Lidstone 1) in ihrer Ausdehnung auf mehrere Leben unbedingt vorzuziehen. Für zwei verbundene Leben gilt bekanntlich $P_{xy\overline{n}|} \sim P_{x\overline{n}|} + P_{y\overline{n}|} - P_{\overline{n}|}, \tag{VI}$ und als eine (aber nicht einzige) Verallgemeinerung dieser Formel kann man offenbar setzen

$$P_{x_1x_2...x_k\overline{n}|} \sim \sum_{i=1}^{k} P_{x_i\overline{n}|} - (k-1) \cdot P_{\overline{n}|}. \tag{VII}$$

Das angenehme an dieser Näherung ist, dass der Fehler nicht mit nunbedingt steigt, sondern bei wachsendem n bis zu gewisser Grenze sogar abnimmt. Um die Sachlage klarer überblicken zu können, betrachten wir vorerst die Prämie der gemischten Versicherung auf zwei gleichaltrige Personen. Es gilt:

$$P_{xx\overline{n}|} = 2P_{x\overline{n}|} - P_{\overline{n}|} + \frac{1}{a_{x\overline{n}|}} \left(\frac{a_{x\overline{n}|}}{a_{xx\overline{n}|}} + \frac{a_{x\overline{n}|}}{a_{\overline{n}|}} - 2 \right). \tag{VIII}$$

Ersetzen wir hier in der Klammer den Quotienten $\frac{a_{x\overline{n}|}}{a_{xx\overline{n}|}}$ durch die Näherung $\frac{a_{\overline{n}|}}{a_{x\overline{n}|}}$, so folgt

$$2P_{x\overline{n}|} - P_{\overline{n}|} + \frac{1}{a_{x\overline{n}|}} \left(\frac{a_{\overline{n}|}}{a_{x\overline{n}|}} + \frac{a_{x\overline{n}|}}{a_{\overline{n}|}} - 2 \right) = \frac{a_{\overline{n}|}}{a_{x\overline{n}|} \cdot a_{x\overline{n}|}} - d > P_{xx\overline{n}|},$$

d. h. die Approximation gemäss IV. Der letztere Klammerausdruck ist immer positiv. Denn setzen wir $\frac{a_{\overline{n_1}}}{a_{x\overline{n_1}}} = X$, so haben wir in der Klammer die Funktion $Y = X + \frac{1}{X} - 2$ (Hyperbel aus Superposition der Winkelhalbierenden, der gleichseitigen Hyperbel und der

¹) Lidstone, «On a method of approximately calculating Net Premiums for Endowment Assurances of two Joint Lives», Journal of the Institute of Actuaries, Bd. 33.

Konstanten — 2), welche für X > 1 — und das ist für $\frac{a_{\overline{n}|}}{a_{x\overline{n}|}}$ erfüllt—immer Werte > 0 liefert. Betrachten wir nunmehr den Klammerausdruck in VIII. In Anwendung der Ungleichung von Steffensen folgt, dass $\frac{a_{x\overline{n}|}}{a_{xx\overline{n}|}} < \frac{a_{\overline{n}|}}{a_{x\overline{n}|}}$ ist. Setzen wir $\frac{a_{x\overline{n}|}}{a_{xx\overline{n}|}} = X$ und $\frac{a_{\overline{n}|}}{a_{x\overline{n}|}} = X + A$ — A positiv —, so haben wir in der Klammer die Funktion $Y = X + \frac{1}{X + A} - 2 = X + \frac{1}{X} \cdot \frac{X}{X + A} - 2$. Nachdem $\frac{X}{X + A} < 1$, wird im Vergleich zur vorgängig betrachteten Hyperbel der Scheitel gesenkt, und es kann auch für X > 1 — was für $\frac{a_{x\overline{n}|}}{a_{xx\overline{n}|}}$ der Fall — für Y ein Wert ≤ 0 resultieren. Im Falle Y = 0, was erfüllt ist, wenn $\frac{1}{X + A} = 2 - X$, d. h. wenn $\frac{a_{x\overline{n}|}}{a_{\overline{n}|}} = 2 - \frac{a_{x\overline{n}|}}{a_{xx\overline{n}|}}$, ist $P_{xx\overline{n}|} \equiv 2P_{x\overline{n}|} - P_{\overline{n}|}$, d. h. die Näherung liefert den genauen Wert.

Für k gleichaltrige Leben haben wir im Sinne der unter VII gegebenen Verallgemeinerung der Lidstoneschen Formel

$$P_{\underbrace{x\ldots x\overline{n}|}} = k \cdot P_{x\overline{n}|} - (k-1) P_{\overline{n}|} + \frac{1}{a_{x\overline{n}|}} \left(\frac{a_{x\overline{n}|}}{a_{\underline{x\ldots x\overline{n}|}}} + (k-1) \frac{a_{x\overline{n}|}}{a_{\overline{n}|}} - k \right).$$

Für den Quotienten $\frac{a_{x\overline{n}|}}{\underbrace{a_{x\ldots x\overline{n}|}}_{k}}$ kann man, wie sich in der Folge aus

XIV ergibt, die Näherung $(k-1)\cdot\frac{a_{x\overline{n}|}}{a_{xx\overline{n}|}}-(k-2)$ setzen. Der Klammerausdruckerhält dann die Gestalt $(k-1)\left(\frac{a_{x\overline{n}|}}{a_{xx\overline{n}|}}+\frac{a_{x\overline{n}|}}{a_{\overline{n}|}}-2\right)$, d. h. wir haben — nachdem k-1>0 — die gleiche Bedingung für das Nullwerden des Korrekturgliedes der Näherung wie bei zwei Personen. Es muss also die durch x und n gegebene Position für beste Näherung nach der Formel

$$P_{\underbrace{x\dots x\overline{n}}_{k}} \sim k \cdot P_{x\overline{n}} - (k-1) \cdot P_{\overline{n}}$$
(IX)

von der Zahl k der gleichaltrigen Lebenden ziemlich unabhängig sein. Bei den in Tabelle 1 nach S. M. 1921/30 zu $3\frac{1}{2}$ % gerechneten

Beispielen besteht beste Näherung ungefähr bei den Positionen 30/30, 35/28, 40/26, 45/24, wobei jeweils die erste Ziffer x und die zweite n bedeutet.

4. Der Näherungsformel von Lidstone liegt offenbar die an sich einfache Idee zugrunde, dass man sich die Prämie der gemischten Versicherung aufgebaut denken kann aus der reinen Sparprämie $P_{n|}$, welche für jedes versicherte Leben additiv zu erweitern ist um die vom Zins abhängige Sterblichkeitskomponente. Man hat beispielsweise

bei einem Leben:

$$P_{\overline{xn}} = P_{\overline{n}} + \Delta_{\overline{xn}}$$
, wobei $\Delta_{\overline{xn}} = P_{\overline{xn}} - P_{\overline{n}}$;

bei zwei verbundenen Leben:

$$\begin{split} P_{xy\overline{n}|} &= P_{x\overline{n}|} + \varDelta_{y\overline{n}|} = P_{y\overline{n}|} + \varDelta_{x\overline{n}|} \sim P_{\overline{n}|} + \varDelta_{x\overline{n}|} + \varDelta_{y\overline{n}|}, \\ \text{wobei} \quad \varDelta_{x\overline{n}|} &= P_{xy\overline{n}|} - P_{y\overline{n}|} \sim P_{x\overline{n}|} - P_{\overline{n}|}, \ \varDelta_{y\overline{n}|} = P_{xy\overline{n}|} - P_{x\overline{n}|} \sim P_{y\overline{n}|} - P_{\overline{n}|}; \end{split}$$

bei drei verbundenen Leben:

$$\begin{split} P_{xy;\overline{n}|} &= P_{xy\overline{n}|} + \varDelta_{z\overline{n}|} = P_{xz\overline{n}|} + \varDelta_{y\overline{n}|} = P_{yz\overline{n}|} + \varDelta_{x\overline{n}|} \sim P_{x\overline{n}|} + \varDelta_{y\overline{n}|} + \varDelta_{z\overline{n}|} \sim \\ &\sim P_{y\overline{n}|} + \varDelta_{x\overline{n}|} + \varDelta_{z\overline{n}|} \sim P_{z\overline{n}|} + \varDelta_{x\overline{n}|} + \varDelta_{y\overline{n}|} \sim P_{\overline{n}|} + \varDelta_{x\overline{n}|} + \varDelta_{y\overline{n}|} + \varDelta_{z\overline{n}|} + \varDelta_{z\overline{n}|}, \\ &\text{wobei} \qquad \varDelta_{x\overline{n}|} = P_{xy;\overline{n}|} - P_{yz\overline{n}|} \sim P_{xz\overline{n}|} - P_{z\overline{n}|} \sim P_{xy\overline{n}|} - P_{y\overline{n}|} \sim P_{xn|} - P_{n|}, \\ &\text{und analog für } \varDelta_{y\overline{n}|} \text{ und } \varDelta_{z\overline{n}|}. \end{split}$$

Man sieht, dass mit steigender Zahl der verbundenen Leben die Möglichkeiten der näherungsweisen Zusammensetzung der Prämie auf k Leben aus solchen für eine geringere Anzahl Leben zufolge der kombinatorischen Gegebenheiten rasch zu einer unübersichtlichen Vielzahl anwachsen. Die generelle Regel ist jedoch sehr einfach zu merken: Wird die Prämie $P_{x_1x_2...x_k\overline{n}|}$ nach Lidstone approximiert, so muss in der Näherung jeder Index $x_1, x_2, \ldots x_k, n$ sovielmal mehr in Versicherungswerten mit posititivem Vorzeichen als in solchen mit negativen Vorzeichen vorkommen, als er im vorgenannten Symbol für den zu approximierenden Wert auftritt. Zum Beispiel:

$$\begin{split} &P_{xyzw\overline{n}|} \sim P_{xyw\overline{n}|} + P_{xz\overline{n}|} + P_{yz\overline{n}|} - P_{xy\overline{n}|} - P_{z\overline{n}|}, \\ &P_{xxyy\overline{n}|} \sim P_{xxy\overline{n}|} + P_{xy\overline{n}|} - P_{x\overline{n}|}, \end{split}$$

wobei nur je eine Darstellung aus der Vielzahl der betreffenden Möglichkeiten herausgegriffen ist.

Die einfachste Art der Approximation, welche der Regel entspricht, ist in jedem Falle die unter VII wiedergegebene. Es ist dies aber unter den diversen Möglichkeiten für k>2 natürlich nicht die beste Näherung; für diese müssen offenbar Verbindungsrenten mitverwendet werden. Aus den k Indizes $x_1, x_2, \ldots x_k$ der gemischten Prämie auf kverbundene Leben lassen sich je $\binom{k}{k-t}=\binom{k}{t}$ verschiedene Gruppen von k—t Leben bilden. Zählen wir die reine Sparprämie mit, so haben wir im ganzen $\sum_{t=0}^{k} {k \choose t} = 2^k - 1$ verschiedene Prämienwerte $P_{(k-t)n+}$, welche für die Bildung der Approximation, unter Berücksichtigung vorgenannter Regel, zur Verfügung stehen. Hiebei bezeichnen wir mit (k-t) die aus der gegebenen Zahl k verbundener Leben ausgewählte Gruppe von k-t Leben, wobei $0 < t \le k$. Überlegt man sich nun, dass jeweils in den $\binom{k}{t}$ Gruppen von (k-t) Elementen jeder der k Indizes $x_1, x_2, \ldots x_k$ insgesamt $\binom{k-1}{t}$ mal vorkommt, so ergibt sich als eine verallgemeinerte Lidstonesche Näherung der gemischten Prämie auf k verschiedenaltrige Leben unter Verwendung aller aus den k Leben heraushebbaren Gruppen niedrigeren Umfanges

$$P_{(k)\overline{n}|} \sim \sum P_{(k-1)\overline{n}|} - \sum P_{(k-2)\overline{n}|} + \sum P_{(k-3)\overline{n}|} - \dots + P_{\overline{n}|},$$
 (X)

(wobei der letzte Term positiv oder negativ ist, je nachdem k ungerade oder gerade). Die Summenzeichen bedeuten, dass je $\binom{k}{t}$ verschiedene Prämien der Gruppe (k-t) zu berücksichtigen sind. Offensichtlich ist die Regel erfüllt. Denn nachdem allgemein

$$\sum_{t=0}^{a} \binom{a}{t} (-1)^{t} = (1-1)^{a} = 0, \text{ und daher } \sum_{t=1}^{a} \binom{a}{t} (-1)^{t+1} = 1, \text{ ergibt sich in Anwendung auf die Zählung der Vorzeichen der Terme der$$

Näherung in bezug auf jeden einzelnen der Indizes $x_1, x_2, \ldots x_k$ offenbar $\sum_{1}^{k-1} \binom{k-1}{t} (-1)^{t+1} = 1 \text{, und hinsichtlich der Vorzeichen in bezug auf den Index } n \text{ analog } \sum_{1}^{k} \binom{k}{t} (-1)^{t+1} = 1 \text{.}$

Wir wollen Formel X für die Fälle k=3 und 4 beispielsmässig illustrieren, wobei wir einfachheitshalber statt der Indizes $x_1, x_2, x_3 \ldots$ nur $1, 2, 3 \ldots$ schreiben und den Index n ganz weglassen:

$$\begin{split} P_{123} \sim (P_{12} + P_{13} + P_{23}) - (P_1 + P_2 + P_3) + P, \\ \\ P_{1234} \sim (P_{123} + P_{124} + P_{234} + P_{134}) - \\ \\ - (P_{12} + P_{13} + P_{14} + P_{23} + P_{24} + P_{34}) + (P_1 + P_2 + P_3 + P_4) - P. \end{split}$$

Bedeute, in einer analogen Symbolik, wie sie für die sog. Z-Formeln¹) in der Theorie der Verbindungsrenten gebräuchlich ist,

$$3_0 = P$$
 $3_1 = P_1 + P_2 + \dots + P_k$
 $3_2 = P_{12} + P_{13} + \dots + P_{k-1,k}$
 \dots
 $3_k = P_{123} \dots k$

so kann man der Formel X die einfache Gestalt geben

$$P_{(k)\overline{n}|} \sim \sum_{1}^{k} \beta_{k-t} \cdot (-1)^{t+1}.$$

In der Praxis vermittelt die Approximation X gegenüber der genauen Auswertung kaum noch einen Vorteil. Man wird, je nach den eventuell schon vorhandenen Verbindungsrenten, eine Kombination zwischen den beiden Extremen VII und X wählen, im Sinne der zur Illustration der generellen Regel gegebenen Beispiele.

¹⁾ Vgl. Berger, «Mathematik der Lebensversicherung», S. 162.

5. Es lohnt sich, das Problem speziell für den Fall von k gleichaltrigen verbundenen Leben noch etwas näher zu betrachten, nicht nur weil die Sachlage dann übersichtlicher wird und die Güte der Approximationen sich besser abschätzen lässt, sondern insbesondere auch im Hinblick darauf, dass in der Praxis bei der gemischten Versicherung auf verbundene Leben vielfach auf das mittlere technische Alter abgestellt wird.

Die Regel für die Approximierung in Verallgemeinerung der Lidstoneschen Formel kann für den Fall der gemischten Versicherung auf k gleichaltrige verbundene Leben leicht formelmässig gefasst werden. Bezeichne $P_{[k|\overline{n}]} = P_{\underbrace{x \dots x\overline{n}}|}$ den genauen Wert der Prämie, so ist

$$P_{[k]\overline{n}|} \sim \sum_{0}^{k-1} \alpha_t \cdot P_{[t|\overline{n}|}, \tag{XI}$$

wobei die α_t so zu wählen sind, dass $\sum \alpha_t = 1$ und gleichzeitig $\sum t \cdot \alpha_t = k$. In besonderer Anwendung kann man Formel X auf den Fall gleichaltriger Leben beziehen und erhält

$$P_{[k]\overline{n}]}\!\sim \sum_1^k inom{k}{t} \cdot P_{[k-t]\overline{n}]} \cdot (-1)^{t+1}.$$

Als eine praktisch wertvollere Verifikation von XI sei die folgende genannt:

$$P_{[k]n|} \sim b \cdot (P_{[a]n|} - P_{[a-1]n|}) + P_{[k-b]n|}, \ 0 < b \le k, \ 0 < a < k.$$
 (XII)

Setzen wir speziell b = k, so folgt:

$$P_{[k|\overline{n}|} \sim k \cdot (P_{[a|\overline{n}|} - P_{[a-1]\overline{n}|}) + P_{\overline{n}|},$$
 (XIII)

und wenn hier wieder für a der Wert 1 gewählt wird, resultiert die bereits erwähnte Formel IX:

$$P_{[k|\overline{n}]} \sim k \cdot (P_{x\overline{n}|} - P_{\overline{n}|}) + P_{\overline{n}|} = k \cdot P_{x\overline{n}|} - (k-1) \cdot P_{\overline{n}|}.$$

Setzen wir in XII speziell b = k - a, so haben wir:

$$P_{[k]\overline{n}|} \sim (k-a) \cdot (P_{[a]n|} - P_{[a-1]\overline{n}|}) + P_{[a]\overline{n}|} = (k-(a-1)) \cdot P_{[a]\overline{n}|} - (k-a) \cdot P_{[a-1]\overline{n}|}.$$
 (XIV)

Ist z. B. k=5, so ergeben sich folgende handliche Näherungen für $P_{[5]\overline{n}]}$:

In Tabelle 2 sind eine Anzahl numerischer Beispiele hiefür nach S. M. 1921/30 zu $3\frac{1}{2}$ % zusammengestellt.

A priori würde man vielleicht erwarten, dass eine Näherung mit Formel XIII um so bessere Resultate zeitige, je näher a bei k liegt. Dem ist aber nicht so, wie die numerischen Beispiele deutlich zeigen. Der Grund ist leicht einzusehen. Schreiben wir

$$P_{[k]\overline{n}]} = P_{\overline{n}]} + \sum_{1}^{k} \Delta_{t}, \text{ wobei } \Delta_{t} = P_{[t]\overline{n}]} - P_{[t-1]\overline{n}]},$$

so ist $\Delta_k \sim \Delta_{k-1} \sim \ldots \sim \Delta_1$, worauf ja, wie bereits erwähnt, die Lidstonesche Näherungsmethode basiert. Es ist aber nicht möglich, bei gegebenem n für beliebiges x in der Reihe der Δ_t gerichtete Ungleichheitszeichen zu setzen. Für $x+n \leq 60$ gilt immerhin im allgemeinen $\Delta_t < \Delta_{t+1}$. Wenn nun, wie in Formel XIII, das k-fache einer einzigen Differenz aus der Reihe $\Delta_1 \ldots \Delta_k$ zur Approximierung verwendet wird, so ist klar, dass das Resultat besser ausfällt, wenn das verwendete Δ_a ungefähr der Mitte der Reihe entnommen wird, als wenn es links oder rechts extrem liegt, denn es handelt sich

um die Approximation
$$k \cdot \Delta_a \sim \sum_1^k \Delta_t$$
.

Die Differenz Δ_k selbst kann zur Näherung keine Verwendung finden, da zu ihrer Feststellung der genaue Prämienwert $P_{[k|n]}$ bekannt sein müsste. Es liegt aber nahe, die Summe der übrigen k-1 Differenzen im Verhältnis $\frac{k}{k-1}$ zu erhöhen, was zur Näherung führt:

$$P_{[k|\overline{n}]} \sim P_{\overline{n}|} + \frac{k}{k-1} \sum_{1}^{k-1} \Delta_t = \frac{1}{k-1} \left(k \cdot P_{[k-1]\overline{n}|} - P_{\overline{n}|} \right), \quad (XV)$$

also für k=5 z. B. $P_{[5]n]} \sim \frac{5}{4} P_{[4]\overline{n}|} - \frac{1}{4} P_{\overline{n}|}$, oder allgemeiner, indem man auf weniger als k-1 Differenzen abstellt, z. B. auf t=k-a bis k-b+1, b>a:

$$P_{[k|\overline{n}]} \sim P_{\overline{n}]} + \frac{k}{b - a} \sum_{k-b+1}^{k-a} \Delta_t = P_{\overline{n}]} + \frac{k}{b - a} \left(P_{[k-a|\overline{n}]} - P_{[k-b]\overline{n}]} \right). \quad (XVI)$$

Ist hier speziell b = k, so folgt

$$P_{[k|\overline{n}]} \sim P_{\overline{n}]} + \frac{k}{k-a} \sum_{1}^{k-a} \Delta_t = \frac{1}{k-a} \left(k \cdot P_{[k-a]\overline{n}]} - a \cdot P_{\overline{n}} \right), \quad 0 < a < k,$$

und ist b = a + 1, so ergibt sich die bereits genannte Formel XIII. Numerische Beispiele zu Formel XV finden sich in Tabelle 2.

6. Man kann sich fragen, ob die Lidstonesche Näherungsformel

analog wie für die Prämie auch für die Berechnung der Reserve verwendet werden darf. In der Tat setzt Jacob 1) bezüglich des Deckungskapitals der gemischten Versicherung auf zwei verbundene $_{t}V_{xyn|}\sim _{t}V_{x\overline{n}|}+_{t}V_{y\overline{n}|}-_{t}V_{\overline{n}|},$ Leben ohne jedoch diese Approximation näher zu begründen. Es handelt sich hier jedoch keineswegs nur um eine Formelbildung per analogiam, indem man von der Überlegung ausgehen könnte, dass bekanntlich das Deckungskapital gemischter Versicherungen für vorgegebenes n und t innerhalb gewisser Grenzen mit dem Eintrittsalter nicht stark variiert, und dass weiter der Übergang zu verbundenen Leben einer Alterserhöhung der einlebigen Versicherung vergleichbar ist, so dass von Näherungsformeln für die Reserveberechnung verbundener Leben in weitem Umfange befriedigende Resultate erwartet werden dürfen. Man hat vielmehr davon auszugehen, dass man die gewöhnliche gemischte Versicherung auffasst als zusammengesetzt aus einer reinen Sparversicherung und einer temporären Todesfallversicherung mit fallender Summe, nämlich

¹) Jacob, «Approximationsmethoden in der Versicherungsmathematik», Ungarische Rundschau für Versicherungswissenschaft, 1937, 7.

$$P_{\overline{n|}} = P_{\overline{n|}} + \frac{1}{a_{x\overline{n|}}} \sum_{0}^{n-1} C_{x+t} \cdot (1 - t_{t+1} V_{\overline{n|}}) = P_{\overline{n}} + \frac{1}{a_{x\overline{n|}}} \cdot \frac{1}{a_{\overline{n|}}} \cdot \sum_{0}^{n-1} C_{x+t} \cdot a_{\overline{n-t-1}} = P_{\overline{n|}} + \frac{1}{a_{x\overline{n|}}} \cdot \frac{1}{a_{\overline{n|}}} \cdot \frac{1}{a_{\overline{n|}}} \cdot (a_{\overline{n|}} - a_{x\overline{n|}}) = P_{\overline{n|}} + \frac{1}{a_{x\overline{n|}}} - \frac{1}{a_{\overline{n|}}}. \tag{XVII}$$

Bei der Reservebildung ist der auf genannte Todesfallversicherung entfallende Teil offenbar

$${}_{t}V_{x\overline{n}|}^{\prime >} = \frac{1}{a_{\overline{n}|}} \left(a_{\overline{n-t}|} - a_{x+t,\overline{n-t}|} \right) - \left(\frac{1}{a_{x\overline{n}|}} - \frac{1}{a_{\overline{n}|}} \right) a_{x+t,\overline{n-t}|} = \\ = \frac{a_{\overline{n-t}|}}{a_{\overline{n}|}} - \frac{a_{x+t,\overline{n-t}|}}{a_{x\overline{n}|}} = {}_{t}V_{x\overline{n}|} - {}_{t}V_{\overline{n}|}.$$

Macht man nun die vereinfachende Annahme, dass auch die gemischte Versicherung auf zwei Leben sich additiv zusammensetze aus der reinen Sparversicherung und zwei temporären Versicherungen fallender Summe genau wie in XVII, so erhalten wir als genäherte Reserveformel

$${}_{t}V_{xy\overline{n}|} \sim {}_{t}V_{\overline{n}|} + \left(\frac{a_{\overline{n-t}|}}{a_{\overline{n}|}} - \frac{a_{x+t,\overline{n-t}|}}{a_{x\overline{n}|}}\right) + \left(\frac{a_{\overline{n-t}|}}{a_{\overline{n}|}} - \frac{a_{y+t,\overline{n-t}|}}{a_{y\overline{n}|}}\right) = {}_{t}V_{x\overline{n}|} + {}_{t}V_{y\overline{n}|} - {}_{t}V_{\overline{n}|}. \tag{XVIII}$$

In sinngemässer und konsequenter Ausdehnung des Gedankenganges auf die Versicherung mehrerer verbundener Leben zeigt sich sodann, dass alle die für die Näherung der Prämie angeführten Formeln auch für die Berechnung des Deckungskapitals gelten.

Aus den vorgängigen Überlegungen lassen sich bezüglich des Reserveverlaufes gewisse Folgerungen ziehen. Da die Reserve einer temporären Versicherung mit in beschriebener Art fallender Summe (Annuitätenversicherung) in dem der gemischten Versicherung zukommenden Tafelintervall fast stets negativ ausfällt 1), wird bei verbundenen Leben die Reservekurve meist tiefer verlaufen als bei der einfachen gemischten Versicherung. Die auf Grund der Lidstoneschen

¹) Vgl. Jequier, «L'assurance d'annuités, cas particulier de l'assurance temporaire», Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker, Bd. 39.

Näherung gerechnete Reserve wird sodann im allgemeinen niedriger sein als der genaue Wert. Denn die geschilderte Prämienzerlegung impliziert, dass mit den Sterbenswahrscheinlichkeiten wie mit abhängigen Wahrscheinlichkeiten (totalen Ausscheideursachen) gerechnet wird. Man ersieht dies gut in der Darstellung durch die Rekursionsformel

$$\frac{(_{t-1}V_{(k)\overline{n}|} + P_{(k)\overline{n}|}) (1+i) - \sum_{1}^{k} q_{x_i+t-1}}{1 - \sum_{1} q_{x_i+t-1}}.$$
 (XIX)

Zufolge Wegfalls der Korrekturglieder für unabhängige Wahrscheinlichkeiten ist die rechnungsmässige Risikoprämie zu gross, die Reserve daher zu klein. Eine Verbesserung, insbesondere in den ersten Versicherungsjahren, kann sich daraus ergeben, dass anderseits das in die Rechnung eingehende Risikokapital (als Differenz der Versicherungssumme zur reinen Sparreserve) zu klein ist.

Einige numerische Beispiele zur approximativen Berechnung des Deckungskapitals sind in Tabelle 3 aufgeführt.

Tabelle 1

Grundlagen S. M. 1921/30 zu 3½ %

Prämiensätze in Promillen der Versicherungssumme

$$a \colon P_{\underbrace{x \dots xn_{\parallel}}_{k}}$$
. (Genauer Prämienwert)

$$b \colon k \cdot P_{\overline{xn}|} - (k-1) \cdot P_{\overline{n}_{+}}. \quad \text{(Formel IX)}$$

x	n	k=2		k=3		k=4		k=5	
		a	b	a	b	a	b	(t	b
30	5	183,692	183,686	185,459	185,441	187,233	187,196	189,012	188,951
	10	86,808	86,789	89,062	89,004	91,335	91,219	93,628	93,434
	15	55,349	55,315	58,037	57,936	60,757	60,557	63,508	63,178
	20	40,399	40,354	43,579	43,448	46,796	46,542	50,046	49,636
	25	32,183	32,144	35,923	35,813	39,685	39,482	43,462	43,151
	30	27,429	27,430	31,768	31,787	36,077	36,144	40,348	40,497
35	5	184,425	184,410	186,565	186,527	188,713	188,644	190,871	190,761
	10	87,964	87,934	90,813	90,722	93,688	93,509	96,591	96,297
	15	56,972	56,922	60,494	60,346	64,060	63,770	67,668	67,194
	20	42,543	42,481	46,812	46,639	51,125	50,797	55,470	54,955
	25	34,887	34,845	39,960	39,864	45,028	44,884	50,077	49,903
	30	30,716	30,782	36,580	36,815	42,320	42,847	47,927	48,877
40	5	185,926	185,914	188,823	188,783	191,735	191,652	194,663	194,521
	10	90,165	90,115	94,145	93,993	98,173	97,871	102,247	101,749
	15	59,856	59,769	64,873	64,617	69,960	69,465	75,109	74,313
	20	46,149	46,050	52,263	51,992	58,424	57,934	64,609	63,876
	25	39,257	39,228	46,469	46,439	53,607	53,650	60,645	60,861
	30	35,864	36,086	44,033	44,771	51,892	53,456	59,455	62,137
45	5	188,509	188,478	192,722	192,629	196,966	196,780	201,239	200,931
	10	93,775	93,667	99,639	99,321	105,597	104,975	111,642	110,629
	15	64,423	64,243	71,839	71,328	79,376	78,413	87,008	85,498
	20	51,738	51,556	60,716	60,251	69,725	68,946	78,713	77,641
	25	45,920	45,936	56,306	56,501	66,448	67,066	76,317	77,631

Tabelle 2

Grundlagen S. M. 1921/30 zu 3½ %

Prämiensätze in Promillen der Versicherungssumme

1:
$$P_{[5|\overline{n}|} = P_{\underbrace{x...xn}|}$$
. (Genauer Wert)

2:
$$5 P_{x\overline{n}} - 4 P_{\overline{n}}$$
. (Formel IX)

$$3 \colon 5\,P_{[4|\overline{n}|} - 10\,P_{[3|\overline{n}|} + 10\,P_{[2|\overline{n}|} - 5\,P_{[1|\overline{n}|} + P_{\overline{n}|}. \quad \text{(Formel X)}$$

4:
$$5(P_{[2|\overline{n}]} - P_{[1]\overline{n}]}) + P_{\overline{n}]}$$
. (Formel XIII)

5:
$$5(P_{[3]\overline{n}|} - P_{[2]\overline{n}|}) + P_{\overline{n}|}$$
. (Formel XIII)

6:
$$4P_{[2]\overline{n}|} - 3P_{[1]\overline{n}|}$$
. (Formel XIV)

7:
$$3 P_{[3]\overline{n}]} - 2 P_{[2]\overline{n}]}$$
. (Formel XIV)

8:
$$1\frac{1}{4}P_{[4]\overline{n}]} - \frac{1}{4}P_{\overline{n}|}$$
. (Formel XV)

x	n	1	2	3	4	5	6	7	8
30	5	189,012	188,951	189,026	188,991	189,011	188,981	188,993	188,997
	10	93,628	93,434	93,629	93,534	93,629	93,513	93,570	93,579
	15	63,508	$63,\!178$	63,508	63,348	63,513	63,314	63,413	63,428
	20	50,046	49,636	50,046	49,861	50,066	49,816	49,939	49,954
	25	43,462	43,151	43,456	43,346	43,506	43,307	43,403	43,405
	30	40,348	40,497	40,347	40,497	40,412	40,497	40,446	40,417
35	5	190,871	190,761	190,876	190,836	190,876	190,821	190,845	190,847
	10	96,591	96,297	96,584	96,454	96,604	$96,\!421$	96,511	96,520
	15	67,668	67,194	67,673	67,453	67,683	67,400	67,538	67,557
	20	$55,\!470$	54,955	55,486	55,266	55,511	55,203	55,350	55,365
	25	50,077	49,903	50,081	50,106	50,171	50,067	50,106	50,084
	30	47,927	48,877	47,932	48,552	48,037	48,617	48,308	48,221
40	5	194,663	194,521	194,666	194,591	194,661	194,575	194,617	194,625
	10	102,247	101,749	102,244	102,004	102,259	101,952	102,105	102,127
	15	$75,\!109$	74,313	75,098	74,748	75,158	74,661	74,907	74,932
	20	64,609	63,876	64,611	64,376	64,736	64,275	64,491	64,489
	25	$60,\!645$	60,861	60,636	61,006	60,866	60,977	60,893	60,807
	30	59,455	62,137	$59,\!482$	61,032	59,562	61,253	60,371	60,186
45	10	111,642	110,629	111,644	111,174	111,679	111,064	111,367	111,407
	15	87,008	85,498	87,003	86,398	87,153	86,218	86,671	86,702
	20	78,713	77,641	78,706	78,551	79,056	78,369	78,672	78,615
	25	76,317	77,631	76,331	77,551	76,736	77,567	77,078	76,859

Tabelle 3

Grundlagen S. M. 1921/30 zu 3½ %

Reservesätze in Promillen der Versicherungssumme

1:
$$_{t}V_{[5|\overline{n}|} = _{t}V_{\underbrace{x...x\overline{n}|}}$$
. (Genauer Wert)

2:
$$1 - \frac{(1 - {}_{t}V_{x\overline{n}})^{5}}{(1 - {}_{t}V_{\overline{n}})^{4}}$$
. (Formel V)

3:
$$5 \cdot {}_{t}V_{\overline{n_{1}}} - 4 \cdot {}_{t}V_{\overline{n_{1}}}$$
. (Formel IX)

$$4 \colon 5 \cdot {}_tV_{[4]\overline{n}]} - 10 \cdot {}_tV_{[3]\overline{n}]} + 10 \cdot {}_tV_{[2]\overline{n}]} - 5 \cdot {}_tV_{[1]\overline{n}]} + {}_tV_{\overline{n}]}. \quad (\text{Formel X})$$

5:
$$5 \cdot ({}_{t}V_{[3|\overline{n}]} - {}_{t}V_{[2|\overline{n}]}) + {}_{t}V_{\overline{n}]}$$
. (Formel XIII)

6:
$$3 \cdot {}_{t}V_{[3|\overline{n}|} - 2 \cdot {}_{t}V_{[2|\overline{n}|}$$
. (Formel XIV)

7:
$$1\frac{1}{4} \cdot {}_{t}V_{[4]\overline{n}]} - \frac{1}{4} \cdot {}_{t}V_{\overline{n}]}$$
. (Formel XV)

8:
$$\frac{(_{t-1}V+P)(1+i)-5\,q_{x+t-1}}{1-5\,q_{x+t-1}}$$
 (Formel XIX, P nach Formel XIV approximient)

$$\frac{x = 35}{}$$

n	t	1	2	3	4	5	6	7	8
20	5	180,30	176,65	176,73	180,11	180,51	179,36	179,47	177,20
	10	386,17	379,15	379,99	386,05	386,38	384,46	384,70	377,80
	15	635,62	628,40	631,73	635,55	635,59	634,41	634,61	617,33
25	5	147,65	144,62	144,65	147,62	148,11	147,11	147,12	146,07
	10	305,67	297,35	297,36	305,64	306,53	303,87	304,02	300,90
	15	474,50	460,76	461,68	474,48	475,31	471,29	471,69	462,64
	20	676,91	662,76	667,91	676,90	677,00	674,28	674,71	648,85
30	5	134,64	136,01	136,48	134,63	135,29	135,74	135,42	136,13
	10	273,58	271,01	272,04	273,59	275,25	274,52	274,03	277,53
	15	410,29	399,19	399,61	410,30	412,97	409,30	408,96	416,37
	20	548,15	527,04	527,42	548,12	550,90	544,16	544,33	555,58
	25	710,24	685,92	692,51	710,21	711,25	705,71	706,30	718,01