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Über eine Ungleichung und ihre Anwendung
bei der Abschätzung des Deckungskapitals einer

gemischten prämienpflichtigen Versicherung
mit steigender Todesfallsumme

Von W. Gruner, Zürich

Einleitung

Die Aufgabe dieses Artikels soll darin bestehen, einen gewissen
Einblick in den Verlauf des Deckungskapitals einer prämienpflichtigen
gemischten Versicherung mit steigender Todesfallsumme zu gewinnen.
Unsere Untersuchungen beschränken sich auf eine spezielle Art der
gemischten Versicherung, bei welcher die Todesfallsumme gleich-
mässig von 0 % bis 100 % der Erlebensfallsumme ansteigt. Jede

gemischte Versicherung mit gleichmässig steigender Todesfallsumme
kann in eine derartige Versicherung und eine gewöhnliche gemischte
Versicherung mit konstanter Todesfallsumme zerlegt werden. Das

Deckungskapital einer gewöhnlichen gemischten Versicherung darf
als leicht berechenbar und daher in der Praxis als bekannte Grösse

angesehen werden, wogegen für gemischte Versicherungen mit steigen-
der Todesfallsumme die Berechnung der notwendigen Hilfszahlen um-
ständlicher ist.

Vom theoretischen Standpunkt gesehen, ist die prämienpflichtige
gemischte Versicherung mit gleichmässig von 0 % bis 100 % der
Erlebensfallsumme steigender Todesfallsumme deshalb interessant,
weil sie — wie die gewöhnliche prämienfreie gemischte Versicherung —
die Eigenschaft besitzt, dass der Verlauf ihres Deckungskapitals, wenn
der Zinsfuss gleich Null gesetzt wird, auch von der andern Bechnungs-
grundlage, der Sterblichkeit, nicht mehr abhängt. Dies lässt sich
anhand der folgenden Überlegung leicht nachweisen:

f
Der Versicherte erhält im Todesfall— der Erlebensfallsumme.

n
(Wir rechnen im folgenden stets netto und nach der kontinuierlichen
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Methode.) Da keine Zinsen angesammelt werden, so wächst der End-
wert der von jedem Versicherten einbezahlten Prämien ebenfalls
linear an, ist also proportional der jeweils versicherten Todesfall-

summe. Damit das Äquivalenzprinzip erfüllt ist, muss offenbar der

Proportionalitätsfaktor 1 sein. Jeder Versicherte erhält also im
Todesfall, spätestens bei Ablauf, zurück, was er einzahlte. Das Dek-

kungskapital ist daher identisch mit der Summe der vom Versicherten
einbezahlten Prämien, somit gleich der versicherten Todesfallsumme,

f
d. h. — der Erlebensfallsumme, unabhängig von irgendwelchen An-

nahmen über die Sterblichkeit.

Wir wollen den Verlauf des Deckungskapitals im zinslosen System
im folgenden kurz als Gnmdwrfcm/ bezeichnen. Für die uns inter-
essierende Versicherungsform ist also der Grundverlauf linear und

unabhängig von der Sterblichkeit. Der Verlauf des Deckungskapitals,
wenn der Zinsfuss von Null verschieden ist, wird vom Grundverlauf
mehr oder weniger abweichen. Es lässt sich nun vermuten, dass diese

Abweichung um so grösser sein wird, je höher der Zinsfuss liegt, und
dass sie überdies vom Verlauf der Sterblichkeit mehr oder weniger
abhängen wird. Das Hauptziel unserer Untersuchung wird sein, eine

obere Schranke der Abweichung vom Grundverlauf zu gewinnen. Es

wird sich herausstellen, dass das Deckungskapital höchstens um
n

<5 • — vom linearen Verlauf abweicht, wobei d die Zinsintensität und m
8

die Versicherungsdauer bedeuten (die Erlebensfallsumme 1 ge-

setzt). Bezeichnet PF; *) das Deckungskapital, so können wir diese

Abschätzung formelmässig schreiben:

f n
JE < d -n 8

Diese Ungleichung gilt jedoch nicht vorbehaltlos. Wir müssen,
abgesehen von gewissen Stetigkeitsvoraussetzungen der vorkommen-
den Funktionen als für die Praxis einzig wesentliche Voraussetzung,
eine mif dem mckf abnehmende Sferbeinfensifäf verlangen. Der

*) Die übliche Bezeichnung Ef für das Deckungskapital reservieren wir für
das Deckungskapital einer anderen Versicherungsform.
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Ausdruck IF, kann auch als Rfsifcoswrnme aufgefasst werden, da

i
ja - die Todesfallsumme darstellt. In diesem Sinne ergibt die obige

Ungleichung direkt eine obere Schranke für die Bisikosumme der
betreffenden Versicherung.

Wir zeigen nun, dass der Ausdruck IF, sich direkt als Dek-
n

kungskapital einer Rentenversicherung auffassen lässt. Dies lässt sich
auf rein algebraischem Wege verifizieren. Wir wollen jedoch hier noch
nicht den ganzen Formelapparat heranziehen, sondern diese Be-

hauptung durch eine ähnliche rein gedankliche Überlegung, wie sie

dem Beweis der Formel 1 — <5a^ zugrunde gelegt werden
kann, erhärten. Wir denken uns, ein Versicherter schliesse eine Ver-
Sicherung folgender Form ab: Er entrichte eine Prämie im Betrage

von jährlich — Der Versicherer vergütet die einbezahlten Prämien

ohne Zins im Todesfall des Versicherten, spätestens hei Ablauf der

Versicherung. Der Versicherte zahlt dann offenbar zuviel, da er der
Zinsen auf den einbezahlten Prämien verlustig geht. Damit nun das

Äquivalenzprinzip gewahrt bleibt, muss sich der Versicherer zudem

verpflichten, dem Versicherten bei Lebzeiten die Zinsen auf den ein-

bezahlten Prämien zu vergüten. Die Zinsen stellen aber nichts anderes
dar als eine steigende Bente. Da nach f Jahren die Summe der ein-

bezahlten Prämien — beträgt, belaufen sich die Zinsen für das Zeit-
" f

element von £ bis f + cZf auf <5 — fU. Zu Lebzeiten des Versicherten,
n

spätestens bis zum Ablauf der Versicherung, erhält der Versicherte
somit eine gleichmässig steigende temporäre Leibrente mit einer

jährlichen Steigerung von <5 • — Das Deckungskapital der ganzen
* "

Versicherung ist — da ja die Zinsen jeweils sofort dem Versicherten
n

vergütet werden.

Wir zerlegen nun diese Versicherung fiktiv in eine Kapitalver-
Sicherung (Police A) und eine Rentenversicherung (Police B).
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Pofo'ce zl : Bapifafoersfc/ierimg. In die Kapitalversicherung werden
die Todesfalleistung und die Erlebensfallsumme eingeschlossen. Für
diese Versicherung zahlt der Versicherte nur einen der Versicherungs-

1

leistung dieser Police entsprechenden Teil P^ der jährlichen Prämie -
der Gesamtversicherung.

Poüfce B: Renfem>emc/ientng. In die Rentenversicherung ist die

oben beschriebene steigende temporäre Rente eingeschlossen. Der
Versicherte zahlt dafür eine Prämie Pg. Es gilt:

P^+P*=~-

Bezeichnen wir noch mit F^ das Deckungskapital der Police A

i
und mit Ig dasjenige der Police B, so wird F^ -|- Fg — (vgl. nach-

stehende Figur).

ty

Die Versicherung der Police A stellt nun gerade die Kapitalver-
Sicherung dar, für welche wir das Deckungskapital abschätzen wollen.

Es ist also F^ Rj,. Der Ausdruck IE stellt dann offenbar

gerade das Deckungskapital der Police B Fg dar.

Es ist für die weitere Verfolgung unserer Aufgabe zweckmässig,
den jährlichen Steigerungsbetrag 1 zu setzen. Wir bezeichnen dann
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mit F, das Deckungskapital einer durch jährliche Prämien finanzierten
gleichmässig steigenden temporären Rente mit einer jährlichen Stei-

gerung vom Betrage 1. Unsere Aufgabe reduziert sich dann dahin,
zu beweisen: „2

Die Ungleichung

Für die mathematische Diskussion sehen wir in der Schreibweise

von der versicherungsmathematischen Deutung der auftretenden
Grössen zunächst ab. Bei der nachfolgenden Untersuchung soll in-
dessen bei den einzelnen Schritten diese Deutung nicht völlig aus
den Augen gelassen werden. Wir führen daher eine Funktion /(<)
ein, die in der versicherungsmathematischen Deutung der Grösse

entspricht. F; lässt sich dann wie folgt schreiben:

1

/(t) j7(t)ZT

n i n i

Jt • /(t) dr- J/(r)dr— j /(r)dr- f m
2 O/O /(r)dr

Der Ungleichung Fj < — entspricht eine Ungleichung zwischen
8

gewissen Integralen über die Funktionen /(i) bzw. <•/(!), und die

Voraussetzungen, die dem Beweis zugrunde liegen, entsprechen ge-
wissen Eigenschaften der Funktion / (1), die wir verlangen. Damit haben
wir eine rein mathematische Formulierung der Ungleichung erreicht.

Es sei also / (1) eine im afrpesc/hossenera dntorrall 0 < 1 <! n er-
klärte Fnnküon mif /ölenden Eic/enscka/ton:

I /(0
II /(f)

III /(*)

IV log / (0

1

d. lu 1

1

0,

isf stolig,

isi monoton nic/d ennekmend,

isl konkero im teeiteren Sinne,

G log / (G)

log/(G)

log/(G)

V 0 /iir G G G *)

G Vgl. zu dieser Sehreibweise: W. Wegmüller, Ausgleichung durch Bern-
stein-Polynome, «Mitteilungen der Vereinigung schweizerischer Versicherungs-
mathematiker », 36. Heft, S. 26.

25



— 390 —

Voraussetzung IV bedeutet bei zweimaliger Differenzierbarkeit
d / 1 d V

der Punktion /ft), dass— /(f) DUO; diese Voraussetzung
df \ /(f) df /

entspricht also der in der Einleitung erwähnten Monotome der Sterbe-

intensifdf.

Unter diesen d Foranssetonngfen gfiZf /ofgrende C/ngfteic/mngf /ür die

Fnnfefion /(f):
n f w < ^2 n

/T-/(r)dr-//(r)dr — J/(r)dr• JT-/(r)dr^ • /(«)-//(r)dr. (1)
f 0 f 0 ® 0

Dabei giff das GZeicbbeifszeicben dann nnd nnr dann, wenn /(f)

eine Konstante nnd f — isf.
2

Beweis der Ungleichung

Wir setzen wie oben

1 r n i i Ï

F(f) — — f T/(r)dr- //(r)dr —//(T)dr- [T-/(r)dr
/(f)//(r)d- ^ I

bT
(2)

Der Ausdruck für F (f) lässt sich zunächst durch eine einfache

Umformung auf folgende Form bringen:

1 ^ f w i

F(f) (t — f)/(r)dr- J/(r)dr + //(r)dr f (f — r)/(r)d
/(f)|7(T)dr^ "

(2 a)

Aus dieser Form ist ohne weiteres ersichtlich,

dass F (0) 0

F (n) 0 (3)

und F (f) > 0 für 0 < f < n

Aus (3) folgt, dass F (t) sein Maximum im Innern des Intervalls
annimmt.



Aus (2) leiten wir eine Differentialgleichung ab, die bei einmaliger
Differenzierbarkeit — was hier nicht vorausgesetzt wird — der Thie-
leschen Reservedifferentialgleichung entspricht.

Es folgt aus (2):

1 1 " ' « 1

F(Z) -/(f) — / t• / (t)dr• J/(r) dr— f/(r)dr- /r/(r)dr
/'/ (r) dr " » ' ° J

0

Hieraus folgt, dass das Produkt F (t) • / (t) als ganze rationale
Funktion von Integralen stetiger Funktionen differenzierbar ist.

Es ergibt sich : (F (f) • / (Z)) / («) • (P — Z) (4)

n

J t/(t) dr
wobei wir P setzen.

n

J7(r)dr
0

Wir bemerken noch, dass nach I P > 0 ist.

Den Beweis der Ungleichung (1) erledigen wir in drei Schritten.

1. Wir beweisen die Ungleichung (1) zunächst für fccmsfawfes /(f).
Die versicherungsmathematische Deutung dieser Annahme ist:
Zins und Sterblichkeit 0.

2. Beim zweiten Schritt nehmen wir an, / (f) sei eine nicht konstante

Exponentialfunktion, d. h. log/(f) isf Zinear, a&er wicZrf 7co?i.sZanZ.

Diese Annahme bedeutet im Hinblick auf das Anwendungs-
beispiel, dass mit konstanter Zins- und Sterblichkeitsintensität
gerechnet wird.

3. Der dritte Schritt umfasst den allgemeinen Fall: log /(î) weise

einen mcMràearen FerZern/ auf.

1. RcTinZZ: /(f) UonsZ.

Aus (2) folgt für /(Z) Const, für beliebiges Z:
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Hieraus ergibt sich unmittelbar: F(f)<— und dann und nur
o ^

dann — wenn f -.8 2

2. »Sc/infF log/(2) linear, aber nicht konstant.

Wir setzen log /(£) — {? i + log C

und daher / (f) C • (W*.

Es ist g > 0 wegen Voraussetzung III. g stellt in unserem Bei-

spiel die Summe der konstanten Sterbe- und Zinsintensität dar. Diesen

Ausdruck setzen wir in (2) ein und erhalten für F(<) die Formel:

F(i)
1

f g - (5)

Da F (f) gemäss (3) sein Maximum im Innern des Intervalls an-

nimmt, können wir das Maximum nach den üblichen Regeln der

Differentialrechnung bestimmen: Wir schreiben für dieses Maximum

(in seiner Abhängigkeit von g) M(g) und erhalten

Mfe)
l i + - log-

wo

Zu zeigen ist : M (g)

Zur Diskussion dieser Ungleichung ist es zweckmässig, die Grösse

2 no einzuführen.

Wir setzen M (g) zF •
Ç? (2)

mit ?(*) 1+-
e* — 1

(7)

Wir wollen nun nicht nur beweisen, dass AI (p) < — bzw.

1 0/
^

9(^)<— ist, für 2 > 0, sondern als Verschärfung——— < 0 für
8 12



393

2 > 0. Damit ist dann zugleich bewiesen, dass allgemein bei kon-
stanter Sterblichkeit der Maximalbetrag mit zunehmendem Zinsfuss
abnimmt.

Für die weitere Entwicklung setzen wir zunächst für 2 > 0:

1
A (2)

,?2

0
•1 + (8)

2 r — 1

Wir versuchen nun, 99(2) durch A(2) darzustellen:

£

\r'—1/ l 1 ^ 1
Es ist — 1 • — 2 • A (2).

- \ 2 2 r—1 2 ^
1/

Integrieren wir diese Gleichung von 0 bis 2 und schreiben als

Integrationsvariable | statt 2, so erhalten wir:

* -/V A (£)<*£
e» — 1

und daher

99(2) A (2) +~ ./|.A(£)d£. (9)
# 0

Die Funktionen 99(2) und A (2) sind analytisch in der Umgebung
von 2=0 und lassen sich daher in Potenzreihen nach 2 entwickeln.
Der Konvergenzradius dieser Reihen ist 2 ?r entsprechend den 2=0
nächstgelegenen Polen von -

-1

B„
Es ist — —-- -2*'.

C* •— 1 vr=0

Hiebei sind B„ die Bernoullischen Zahlen, für welche bekanntlich

gilt: B„=l, —i, £3 55 5,= =0.
5g, 5^, 5g etc. besitzen abwechselndes Vorzeichen.
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Wir erhalten daher als Potenzreihe von A (2)

2" 2 )—2

und aus

A(z)=> — -z*"^ (10)

ç>(z) A(z) + / £• A (£)<!£

für 99(2) den Ausdruck:

r l ^ '

1 1 1

Da Bg " "g
ergibt sich A(0) — und ç?(0) — —

Wir wollen nun zeigen, dass 1' (z) < 0 für z > 0.

Wir bilden für z < 4 die Potenzreihe für A' (z). Diese Reihe ist
alternierend. Sind daher die Quotienten Q,, der absoluten Beträge
aufeinanderfolgender Reihenglieder < 1, so können wir schliessen,
dass A'(z) immer negativ ist, für zP4, da das erste Glied der Reihe

negativ ist.

B,
Es ist A'(z)=V(2r— 2)

2>' o>-3

(2r)!

-®2v+2

Z

2r (2r + 2)!
und 0 : z^

_

2r — 2 B,
'

2r

(2 j>)

Zur weiteren Behandlung von verwenden wir die von Euler
stammende Relation:

ilsC(2v) —1—^(2 tt)**,' 2 (2 j>)
^ '

111wobei f (s) H H + die Riemannsche Zetafunktion
1 2^ 3*

bedeutet.
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Nun ist augenscheinlich £ (2 j> + 2) < £(2r).

Da ferner 2 < 4, r > 2, also < 2,
2r — 2

^ 32 £(2r+ 2) / 6 \*
so erhält man Ç,.< — — < 1, da jeder der

ob f (2 r) \ Z7T /
Faktoren kleiner ist als 1.

Hieraus folgt also A' (2) < 0 für 0 < 2 < 4.

Ist nun 2 > 4, so bilden wir

/ 1 Y 2—4
* ® ~

2 (e* — l),j ~ 22^

Es ist
1 H 1 :•('

< 0, da r > 1.
z(ß*—1)/ 22 (^—1)2

Daher ist A' (2) < 0 für 2 > 4 und daher allgemein für 2 > 0.

Schliesslich folgt daraus A(|)^A(2) für also

jY-A(|)d£>A(2)./ fdf ^--A(2).
0 0 ^

Nun ist

93' (2) A' (2) -| — —- / £ A (f) d £,
£ ^ 0

also 9)' (2) < A' (2) + —- — A' (2) < 0.
2 2

Damit haben wir bewiesen

9;'(2) < 0 für 2 > 0. (12)

Da nun ç?(0) — so erhalten wir 93(2) < - für 2 > 0, also

(ß) < "cT für p > 0. (13)
O
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3. Sc/triff: log / (i) weise einen nichtlinearen Verlauf auf. Der

Beweis dieses Falles wird sich wesentlich auf die bereits erledigten

Spezialfälle stützen. Zu diesem Zwecke leiten wir noch für diese beiden

Spezialfälle aus (4) eine Differentialgleichung II. Ordnung ab:

Es ist ja /(f) C • mit g > 0 und daher

F'(f) P-i +ßF(i).
Schliesslich F" (f) — 1 + p F' (f). (4a)

Daneben gelten die Bandbedingungen F(0) F(n) 0. (4fe)

Aus (4 a) und (4 fr) ist umgekehrt F (f) eindeutig bestimmt.

Wir formen nun Voraussetzung IV, die hier wesentlich wird,
noch um:

Es seien < fg < ^3 3 im übrigen beliebige voneinander ver-
schiedene Stellen im Intervall 0 ^ f hk w.

Dann lässt sich die Ungleichung:

1

1 fg

1 fg

auf die Form bringen:

log /(g—iog/ (g

log /(fi)

log /(<2)

log /(ig)

<0

^9
< log/(g-log/(y

-*i

Wie wir schon zu Beginn des Beweises allgemein feststellten,
nimmt die Funktion F (f) ihr Maximum im Innern des Intervalls an.

T sei eine solche Stelle und f^, tg, ^3> 4 4 weitere Stellen mit
^2 ^3 ^4 •

Es gilt dann:

iog / (g—iog / (g iog/(g—iog/(T) ^ jog / (T)—log / (g iog/(g-iog/W,
F —T T —F F — b.
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Ans dieser Beihe von Ungleichungen folgt dann allgemein:

• - log/fe) —log/fe) log/(g — log/(fg)
~ t'i - — > sup — .p„.

<i<f2^r 2 h TS's<i'4 U U

Wir setzen

01 + 02
— o. (14)

Bei differenzierbarem /(i) ist p^ p pg, und o stellt die negative
Intensität von / (f) an der Stelle i T dar. In unserem Beispiel be-
deutet also p die Summe von Zins- und Sterbeintensität an der Stelle
i T.

Wir konstruieren nun eine Hilfsfunktion:

T

2/ (i) ß-eU-') ju(T) + (t—P) drj. (15)

Wir wollen nun zeigen, dass die Funktion 0 (i) 7 (f) — ?/ (i) > 0

ist, und speziell 0(0) 0 und 0(n) 0 gleichzeitig dann und nur
dann, wenn log/(f) einen linearen Verlauf aufweist.

Zu diesem Zweck betrachten wir zunächst das Intervall
0<tUT.

Ist ii<fg<iT, so folgt aus der obigen Ungleichung:

iog/(y — iog/(y ^ •

Pl P ' 02 •

ig - ii
Hieraus folgt

/><?(2Ml) po(T-^2)
— >- (16)
/(y /(y

Wir setzen nun T—i it und schreiben j/(i) ?/*(m), 7(f) 7*(w),
0(i) 0*(m), /(i) /*(«) und i — P p*(m)

Aus Ungleichung (16) folgt dann:

> » «1 > «2 •

/*N) /*K)
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Setzt man go?<

/* («)

so ist also y(«) eine monoton nichtabnehmende Funktion von w.

Für die weitere Berechnung ist nun noch die Differentialgleichung
(4) für F (f) heranzuziehen. Setzt man auch dort T — f w., so erhält

man die Differentialgleichung:

^
(F*(it) /* (m)) /* («) •»*(«). (4 *)

d it

Nun schreiten wir zur Darstellung von 0* (m)

Es ist zunächst

F*(0) + f e''\c/*(r)dr
0

Daher wird

0* («,) F*(m) — ?/* («) j F* (w) /* (t4) • v (M) — F* (0) — / flf* (r) d i

e ®"|F*(i4)/*(î4)y(u) — F*(0)/*(0)y>(0)— | /*(T)g>*(T)y(T)dr|

Unter Berücksichtigung von (4*) können wir nun 0*(w) schreiben:

,-£W
J / — (F*(t)/*(T))V(T)«Z-

ar
l 0

Der Ausdruck in der geschweiften Klammer liesse sich ohne

weiteres partiell integrieren, wenn y>(r) differenzierbar wäre. Dies

wurde jedoch nicht vorausgesetzt. Da indessen yj(r) monoton ist,
lässt sich der obige Ausdruck für 0*(w) als Stieltjessches Integral
schreiben :

W

0* (m) / F* (t) /* (T) dV (T) (17)
0

Da (u) monoton nicht abnimmt, /*(w) im Intervall positiv ist (nach

Voraussetzung II) und ebenso F*(r)> 0, so folgt 0(f) 0*(m)2ïO.
Nun ist noch zu untersuchen, in welchen Fällen 0(f) 0 ist.
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Es ist bekanntlich

M

J F*(t)/*(t)cZt/>(t) > Min F*(t)/*(t) [v(w) —v(0)].
o 0 < r <( M

Es sei zunächst y(«) nicht konstant.

Dann folgt aus der Monotonie ^>(T)—^(0)>0. Wegen der
Stetigkeit von ;/>(«) (Voraussetzung I) gibt es auch ein mit < T
und (w„) — y (0) > 0.

Da ferner im Intervall 9' m />. nach (3) F*(r)>0 ist, so gilt

"o

J F*(t)/*(T)CZ^(T) > 0
0

T
und daher a fortiori J F*(r)/*(r)d^(r) >0;

0

d.h. <P*(T) <P(0)>0.

Ist aber ^ («) im Intervall 0 < m < T konstant, dann folgt aus
(17) 0(o) 0. Ferner ist dann log /(/) im Intervall 0<J<T linear

und überdies, wegen y(n)= > £=£i und daher auch £=02-/* (w)

Die analogen Rechnungen lassen sich auch für das Intervall
7 * /* n durchführen. Man hat in diesem Fall f— T «. zu setzen.
Man findet ebenso, dass 3>(i)>0 ist und Ö>(w) 0 dann und nur
dann, wenn log /(f) im Intervall 0<f 5k« linear ist und ßi p p2-

Wäre nun sowofe/ 0 (0) a/s crac/i $>(«) 0, so müsste log / (f) in
beiden Intervallen : 0 < / < T und T < / 5h w linear verlaufen und
der Differenzenquotient in beiden Fällen p sein. Hieraus würde
jedoch folgen, dass log /(/) im ganzen Intervall 0</5hn linear
verliefe, ohne an der Stelle f T eine Ecke aufzuweisen, was nach

Voraussetzung ausgeschlossen sein soll.

Nun können wir aus (15) eine Differentialgleichung für ?/(f) ab-
leiten :

-- — p i + 02/(0 •

af
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Durch nochmaliges Differenzieren erhalten wir

^ _l + sJ9. (18,
dF df

Betrachten wir nun die Punktion F(f), welche der Differential-
gleichung (18) genügt und ferner denRandbedingungenF(O) F(w) 0.

F(i) erfüllt offenbar gerade die Bedingungen (4a) und (46), und
rF

es gilt daher F (<) —.

F(f) stellt also den Verlauf des Deckungskapitals dar, bei kon-

stanter Zins- und Sterblichkeitsintensität, wobei diese Intensitäten
denjenigen entsprechen, welche an der Stelle f T im allgemeinen
Pali angenommen werden. Wir können die Aussage verschärfen, indem

wir schreiben

F (f) <( wF • (ra g). (19)

Diese letztere Verschärfung ist zum Beweise der Ungleichung an
sich nicht notwendig, jedoch erzielt man bei unseren Anwendungs-
beispielen noch ein etwas besseres Resutat.

i/(i) lässt sich aus F(/), î/(0) und i/(-re) bestimmen, nach dem

Grundsatz, dass die allgemeine Lösung einer inhomogenen linearen

Differentialgleichung die Summe aus der allgemeinen Lösung der

homogenen und einer speziellen Lösung der inhomogenen Gleichung
ist. Es sei also ?/(f) F(f) + e®' + Cg. und Lg bestimmen
sich aus ?/(0) und y(n) eindeutig. Man findet schliesslich:

f G'' —11 f ß-' — 1 1

»ffl f0 + s(») p- vw_:r| + »(") {VW-T| •

Nun sind die in die geschweiften Klammern gesetzten Ausdrücke

> 0 für 0 < f < n. Da ferner F (0) F (re) 0 so ist wegen
0(0) 0, ^(n) AO, y(0) 0 und ?/(?i) < 0

2/(0^(0-
Das Gleichheitszeichen kann aber nur gelten, wenn ?/(0) und

i/(re) zugleich verschwinden, d.h. aber 0(0) 0(n) 0, was wir
ausschliessen konnten.
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Es ist somit ?/(i) < F (f).

Setzen wir speziell f T, so wird

wegen 7 T) 2/ T)

F(T) <F(T).
Weil aber T eine Maximumstelle von F (f) ist, so gilt daher all-

gemein
F (f) < F T). (21)

Speziell folgt also F (i) < —, (22)
8

womit die Ungleichung (1) vollständig bewiesen ist. Ferner gilt sogar
nach (19) bei nichtlinearem Verlauf von log/(i)

F (f) < • 9?(ng). (23)

Anwendung der Ungleichung

Wir kehren damit zu unserem Beispiel zurück. Wir erhalten dann
für das Deckungskapital TF, der eingangs beschriebenen Kapital-
Versicherung (Police A) die Ungleichung

f d d n
FF < —, (24)

n n 8 8

oder schärfer gefasst:

i d
PF, ^ • TT • Q? (wg).

w
" n

Hiebei bedeutet g die Summe der Sterbe- und Zinsintensität an
der Stelle f T der maximalen Abweichung. Da wir diese Stelle,
ohne die Berechnung durchzuführen, nicht kennen, nützt uns die
Verschärfung der Ungleichung zunächst praktisch nichts. Berück-
sichtigen wir aber, dass die Funktion 99(2) monoton fallend ist mit
wachsendem 2, so können wir schreiben

TF,< d n-99 (nd), wegen d<g. (25)
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Hiebei ist

1

9»(*)= -, 1 + — — log
1 e- —l

Für die Praxis ist es bequemer, solange <5n nicht zu gross, die

anfänglich stark konvergente Potenzreihe zu benützen:

1 1 1
09 (2) 3^ _j j-^ 8 576 25920

Wir erhalten dann für die Abweichung des Deckungskapitals vom
linearen Verlauf:<11 1

TF,< (n<5) M)M ««"-+•• •

7»
' — 8

^ ' 576 25920
^ '

Nachstehend haben wir für ein bestimmtes Beispiel diese Ab-

weichung ausgerechnet. Als Sterblichkeitsgrundlagen wurden die Tafeln

TMG/TFG 1938 gewählt, als technischer Zinsfuss 3 %. Damit jedoch
die Bechnungen nach der kontinuierlichen Methode durchgeführt werden

konnten, wurde innerhalb der einzelnen Jahre die Sterbeintensität als

konstant angenommen. Es ist leicht nachzuweisen, dass dann innerhalb
der gewählten Versicherungsdauer die Voraussetzungen, die wir von der

Funktion /(f) /•>,.. verlangt haben, erfüllt sind.

-Beispiel: Eintrittsalter: a:= 30, Versicherungsdauer: «= 35,

: Deckungskapital der Kapitalversicherung.
Todesfallsumme steigend von 0 % bis 100 % der Erlebensfallsumme.

i œ + i TEi
f

— — Wf
W W

0 30 0,00000 0,00000 0,00000
5 35 0,09087 0,14286 0,05199

10 40 0,19526 0,28571 0,09045
15 45 0,31486 0,42857 0,11371
16 46 0,34077 0,45714 0,11637
17 47 0,36739 0,48571 0,11832
18 48 0,39473 0,51429 0,11956
19 49 0,42281 0,54286 0,12005
20 50 0,45165 0,57143 0,11978
25 55 0,60811 0,71429 0,10618
30 60 0,78822 0,85714 0,06892
35 65 1,00000 1,00000 0,00000
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Das Maximum der Abweichung vom linearen Verlauf wird ca.

f
im Alter 49 erreicht mit IV; 0,12005. Anderseits beträgt die

n
dw

aufgestellte Schranke — =0,12982, die verfeinerte dn • 9?(dn)

0,12744.
*

Die Schranke 0,12744 bedeutet eine Grenze, welche von speziellen
Annahmen über die Sterblichkeit abgesehen von der Monotonie der
Sterbeintensität unabhängig ist. Ist die Sterblichkeit Null, so wird
diese Grenze an einer gewissen Stelle genau angenommen. Wie das

obige Beispiel zeigt, ist auch bei von Null verschiedener Sterblichkeit
der maximale Betrag der Abweichung nur wenig von der theoretischen
Grenze entfernt. Die obige Schranke lässt sich daher auch für eine

approximative Berechnung des Deckungskapitals einer gemischten
Versicherung mit steigender Todesfallsumme verwenden.

Die Untersuchung dieses Problems wurde jedoch nicht nur des-

halb unternommen, um dem Praktiker eine einfache Handhabe für
seine Berechnungen zu bieten; es war zudem beabsichtigt, einen
kleinen Beitrag zum allgemeinen Problem der Abhängigkeit des

Deckungskapitals von seinen Rechnungsgrundlagen zu leisten. Offen-
bar ist es bei der hier diskutierten Versicherungsform mit der schon
in der Einleitung erwähnten Eigenschaft, dass bei zinslosem System
der Verlauf des Deckungskapitals auch unabhängig von der Sterblich-
keit wird, leichter, allgemeine Schranken für das Deckungskapital
aufzustellen als für andere einfachere Versicherungsformen.
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