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Uber eine Ungleichung und ihre Anwendung
bei der Abschéatzung des Deckungskapitals einer
gemischten pramienpilichtigen Versicherung
mit steigender Todesfallsumme

VYon W. Gruner, Ziirich

Einleitung

Die Aufgabe dieses Artikels soll darin bestehen, einen gewissen
Einblick in den Verlauf des Deckungskapitals einer pramienpflichtigen
gemischten Versicherung mit steigender Todesfallsumme zu gewinnen.
Unsere Untersuchungen beschriinken sich auf eine spezielle Art der
gemischten Versicherung, bei welcher die Todesfallsumme gleich-
missig von 0 9%, bis 100 % der Erlebensfallsumme ansteigt. Jede
gemischte Versicherung mit gleichmissig steigender Todesfallsumme
kann in eine derartige Versicherung und eine gewdhnliche gemischte
Versicherung mit konstanter Todesfallsumme zerlegt werden. Das
Deckungskapital einer gewohnlichen gemischten Versicherung darf
als leicht berechenbar und daher in der Praxis als bekannte Grosse
angesehen werden, wogegen fiir gemischte Versicherungen mit steigen-
der Todesfallsumme die Berechnung der notwendigen Hilfszahlen um-
standlicher ist.

Vom theoretischen Standpunkt gesehen, 1st die primienptlichtige
gemischte Versicherung mit gleichmiissig von 0 9%, bis 100 9%, der
Erlebensfallsumme steigender Todesfallsumme deshalb interessant,
weil sie — wie die gewdhnliche primienfreie gemischte Versicherung —
die Kigenschaft besitzt, dass der Verlaaf ihres Deckungskapitals, wenn
der Zinsfuss gleich Null gesetzt wird, auch von der andern Rechnungs-
grundlage, der Sterblichkeit, nicht mehr abhéngt. Dies ldsst sich
anhand der folgenden Uberlegung leicht nachweisen:

Der Versicherte erhalt im Todesfall% der Erlebensfallsumme.
(Wir rechnen im folgenden stets netto und nach der kontinuierlichen
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Methode.) Da keine Zinsen angesammelt werden, so wichst der FEnd-
wert der von jedem Versicherten einbezahlten Préamien ebenfalls
linear an, i1st also proportional der jeweils versicherten Todesfall-
summe. Damit das Aquivalenzprinzip erfiillt ist, muss offenbar der
Proportionalititsfaktor = 1 sein. Jeder Versicherte erhilt also im
Todesfall, spitestens bei Ablauf, zuriick, was er einzahlte. Das Dek-
kungskapital ist daher identisch mit der Summe der vom Versicherten
einbezahlten Primien, somit gleich der versicherten Todesfallsumme,

d. h. — der Hrlebensfallsumme, unabhingig von irgendwelchen An-
n

nahmen tber die Sterblichkeit.

Wir wollen den Verlauf des Deckungskapitals im zinslosen System
im folgenden kurz als Grundverlauf bezeichnen. Fiir die uns inter-
essierende Versicherungsform ist also der Grundverlauf linear und
unabhéngig von der Sterblichkeit. Der Verlauf des Deckungskapitals,
wenn der Zinsfuss von Null verschieden ist, wird vom Grundverlaaf
mehr oder weniger abweichen. Kg lidsst sich nun vermuten, dass diese
Abweichung um so grésser sein wird, je héher der Zinsfuss liegt, und
dass sie iiberdies vom Verlauf der Sterblichkeit mehr oder weniger
abhingen wird. Das Hauptziel unserer Untersuchung wird sein, eine
obere Schranke der Abweichung vom Grundverlauf zu gewinnen. Es
wird sich herausstellen, dass das Deckungskapital hochstens um

n
- r vom linearen Verlauf abweicht, wobei 6 die Zinsintensitit und n

die Versicherungsdauer bedeuten (die Erlebensfallsumme — 1 ge-
setzt). Bezeichnet W,1) das Deckungskapital, so koénnen wir diese
Abschitzung formelmiissig schreiben:

n
& .

W -
8

S| -
IA

Diese Ungleichung gilt jedoch nicht vorbehaltlos. Wir miissen,
abgesehen von gewissen Stetigkeitsvoraussetzungen der vorkommen-
den Funktionen als fiir die Praxis einzig wesentliche Voraussetzung,
eine mat dem Alter nicht abnehmende Sterbeintensitit verlangen. Der

1) Die tibliche Bezeichnung V¢ fiir das Deckungskapital reservieren wir filr
das Deckungskapital einer anderen Versicherungsform.
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Ausdruck — — W, kann auch als Ristkosumme aufgefasst werden, da
n

ja — die Todesfallsumme darstellt. In diesem Sinne ergibt die obige
n

Ungleichung direkt eine obere Schranke fiir die Risikosumme der
betreffenden Versicherung.

Wir zeigen nun, dass der Ausdruck — — W, sich direkt als Dek-
n

kungskapital einer Rentenversicherung auffassen Ligst. Dies lisst sich
auf rein algebraischem Wege verifizieren. Wir wollen jedoch hier noch
nicht den ganzen Formelapparat heranziehen, sondern diese Be-
hauptung durch eine dhnliche rein gedankliche Uberlegung, wie sie
dem Beweis der Formel A = 1— daz; sugrunde gelegt werden
kann, erhirten. Wir denken uns, ein Versicherter schliesse eine Ver-
sicherung folgender Form ab: Er entrichte eine Primie im Betrage

1 o ;
von jahrlich — . Der Versicherer vergiitet die einbezahlten Priamien
n

ohne Zins im Todesfall des Versicherten, spitestens bei Ablauf der
Versicherung. Der Versicherte zahlt dann offenbar zuviel, da er der
Zinsen auf den einbezahlten Primien verlustig geht. Damit nun das
Aquivalenzprinzip gewahrt bleibt, muss sich der Versicherer zudem
verpflichten, dem Versicherten bei Liebzeiten die Zinsen auf den ein-
bezahlten Pramien zu vergiiten. Die Zinsen stellen aber nichts anderes
dar als eine steigende Rente. Da nach ¢ Jahren die Summe der ein-

bezahlten Primien — betriigt, belaufen sich die Zinsen fir das Zeit-
(L

t : ;
element von ¢ bis ¢+ dt auf 6 — dt. Zu Lebzeiten des Versicherten,
n

spiatestens bis zum Ablauf der Versicherung, erhiilt der Versicherte
somit eine gleichmissig steigende temporire Leibrente mit einer
: 1 .
Jéhrlichen Steigerung von &-— . Das Deckungskapital der ganzen
n
t . g : g
Versicherung ist — , da ja die Zinsen jeweils sofort dem Versicherten
n

vergitet werden.

Wir zerlegen nun diese Versicherung fiktiv in eine Kapitalver-
sicherung (Police A) und eine Rentenversicherung (Police B).
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Police A: Kapitalversicherung. In die Kapitalversicherung werden
die Todestalleistung und die Erlebensfallsumme eingeschlossen. HFiir
diese Versicherung zahlt der Versicherte nur einen der Versicherungs-

leistung dieser Police entsprechenden Teil P, der jihrlichen Pramie —
n

der Gesamtversicherung.

Police B: Rentenversicherung. In die Rentenversicherung ist die
oben beschriebene steigende tempordire Rente eingeschlossen. Der
Versicherte zahlt dafiir eine Primie P,. Ks gilt:

1
Pyt Py=
(]

Bezeichnen wir noch mit V, das Deckungskapital der Police A

[
und mit V7, dasgjenige der Police B, so wird V, -+ Vp = — (vgl. nach-
n

stehende Figur).

(e o e o e T e o m o

\f,

Die Versicherung der Police A stellt nun gerade die Kapitalver-
sicherung dar, fiir welche wir das Deckungskapital abschétzen wollen.

: 3
BEs ist also V; =W,. Der Ausdruck — — W, stellt dann oftenbar
n

gerade das Deckungskapital der Police B 1/, dar.

Es ist fiir die weitere Verfolgung unserer Aufgabe zweckmissig,
den jéhrlichen Steigerungsbetrag = 1 zu setzen. Wir bezeichnen dann
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mit V, das Deckungskapital einer durch jihrliche Primien finanzierten
gleichmissig steigenden temporéren Rente mit einer jéhrlichen Stei-
gerung vom Betrage 1. Unsere Aufgabe reduziert sich dann dahin,
zu beweisen:

2
y<
- 8

Die Ungleichung

Fir die mathematische Diskussion sehen wir in der Schreibweise
von der versicherungsmathematischen Deutung der auftretenden
Grossen zunichst ab. Bei der nachfolgenden Untersuchung soll in-
dessen bei den einzelnen Schritten diese Deutung nicht véllig aus
den Augen gelassen werden. Wir fithren daher eine Funktion f()
ein, die in der versicherungsmathematischen Deutung der Grésse D, ,
entspricht. V, ldsst sich dann wie folgt schreiben:

1 n i n i
Vo= . fr-f(t)dr-ff(r)drwff(r)dr-fr-f(r)dr ;
fo) [f@adr ° " °

2
Der Ungleichung ¥V, < % entspricht eine Ungleichung zwischen

gewissen Integralen iiber die Funktionen f(f) bzw. ¢-f(f), und die
Voraussetzungen, die dem Beweis zugrunde liegen, entsprechen ge-
wissen Kigenschaften der Funktion f (f), die wir verlangen. Damit haben
wir eine rein mathematische Formulierung der Ungleichung erreicht.

Es set also f(f) ewne im abgeschlossenen Intervall 0 =t <n er-
kldrte Funktion mat folgenden Higenschaften:

I @) 18t stetiy,
T f() >0,
IIT f() 18t monoton nicht zunehmend,

IV logf(t) st konkav wm weiteren Sinne,
1 ty log £ (t1) 1
1 by log f(t) | =0 fiir H,=t,=13%.

1ty logf(ts)

1) Vgl zu dieser Schreibweise: W. Wegmiiller, Ausgleichung durch Bern-
stein-Polynome, «Mitteilungen der Vereinigung schweizerischer Versicherungs-
mathematiker», 36. Heft, S.26.

d. h.

25
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Voraussetzung IV bedeutet bei zweimaliger Differenzierbarkeit

d 1 d
der Funktion f(f), dass = (—— f—@— o f(t)> =0; diese Voraussetzung

entspricht also der in der Einleitung erwihnten Monotonse der Sterbe-
1ntensitit.

Unter diesen 4 Voraussetzungen qilt folgende Ungleichung fiir die
Funktron f(t):

[o-t@ar: f1@ar—[i@dr [ vfede= 10 [fmde. 0

Daber qult das Gleichheitszeschen dann und nur dann, wenn f(t)

n
etne Konstante und t = 5 9.8t.

Beweis der Ungleichung

Wir setzen wie oben

1 n t n t
V() = {frf(r)dr-ff(r)dr——tff(r)d'c-fr-f(r)dr .

i ndr
012 %

Der Ausdruck fur V7 (f) lisst sich zunéchst durch eine einfache
Umformung auf folgende I'orm bringen:

Vo =— | fe—0imdr [ 1@ar + [1war [ t—0 6.
o fe)de ° . .
Aus dieser Form ist ohne weiteres ersichtlich,
dass V(0)=0 ]
Vn)=0 (3)
und V() >0 fur 0 <t <n [

Aus (3) folgt, dass ¥ (¢) sein Maximum im Innern des Intervalls
annimmt.



Aus (2) leiten wir eine Differentialgleichung ab, die bei einmaliger
Differenzierbarkeit — was hier nicht vorausgesetzt wird — der Thie-
leschen Reservedifferentialgleichung entspricht.

Hs folgt aus (2):
1 ” t n 3
Vie)-flt) = —— fr-f(r)dr-ff(r)dr~~ff(r)dr-frf(v:)dr}.
ff(l’)d’[f t 0 t 0

o

Hieraus folgt, dass das Produkt V(t)-f(t) als ganze rationale
Funktion von Integralen stetiger Funktionen differenzierbar ist.

Es ergibt sich: gt (V@) -f@)=71(@)- (P—1) (4)
fnrf(r)dr
wobel wir P="- setzen.
f]‘(r)dr

Wir bemerken noch, dass nach I P > 0 ist.

Den Beweis der Ungleichung (1) erledigen wir in drei Schritten.

1. Wir beweisen die Ungleichung (1) zunichst fir konstantes f(t).
Die versicherungsmathematische Deutung dieser Annahme ist:
Zins und Sterblichkeit = 0.

2. Beim zweiten Schritt nehmen wir an, f(¢) sei eine nicht konstante
Exponentialfunktion, d. h. log f 1) vst linear, aber nicht konstant.
Diese Annahme bedeutet im Hinblick auf das Anwendungs-
beispiel, dass mit konstanter Zins- und Sterblichkeitsintensitéit
gerechnet wird.

3. Der dritte Schritt umfasst den allgemeinen Fall: log f(t) weise
einen michtlinearen Verlouf auf.

1. Schratt: f(t) = Const.
Aus (2) folgt firr f(t) = Const. fiir beliebiges i:

t-(m—1) n: 1/ nm\®
V(t);:“___z ZK—'Q(tmé .
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2
Hieraus ergibt sich unmittelbar: V(t)g-—g und dann und nur
n? n
dann =— —, wenn ¢t = —.
8 2

2. Schritt: log f(t) linear, aber nicht konstant.

Wir setzen logf(t) = —o-t 4 logC
und daher fit) = C-e*.

Hs ist o > 0 wegen Voraussetzung III. p stellt in unserem Bei-
spiel die Summe der konstanten Sterbe- und Zinsintensitét dar. Diesen
Ausdruck setzen wir in (2) ein und erhalten fiir V () die Formel:

1| no
Vi) =— thn—e’”"ﬂT

ele—1)4. 5
Da V (t) gemiss (3) sein Maximum im Innern des Intervalls an-
nimmt, kénnen wir das Maximum nach den tublichen Regeln der
Differentialrechnung bestimmen: Wir schreiben fiir dieses Maximum
(in seiner Abhingigkeit von ¢) M (p) und erhalten

no 0
M(Q) — -éz— o | + "éni’__——_—]f — ].Og o1 . (6)

,n2
Zn zeigen ist: M (o) < T

Zur Diskussion dieser Ungleichung ist es zweckmissig, die Grosse
z = mo einzufithren.

Wir setzen M (o) = n?- p(z)
. 1 z g
mit ) =—|—1+4 s T . 7
Ple) = b (7)
Wir wollen nun nicht nur beweisen, da.ss M (o) < s bzw.
1 . do(;
@ (2) < 3 1st, fiir 2> 0, sondern als Verschirfung ? () < 0 fur
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2> 0. Damit 1st dann zagleich bewiesen, dass allgemein bei kon-
stanter Sterblichkeit der Maximalbetrag mit zunehmendem Zinsfuss

abnimmt.

Fir die weitere Entwicklung setzen wir zunéchst fir z > 0:

(8)

1] 1+z .
22 2_!_

] |

Wir versuchen nun, ¢(2) durch A(z) darzustellen:

2\
. (\(32—1) 1 1z 1
Esisp —M—=—-——1—-— = s A (2] 5
( Z ) z 2 —1 2
\e®— 1,

Integrieren wir diese Gleichung von 0 bis 2z und schreiben alg
Integrationsvariable & statt z, so erhalten wir:

2 g 2
log o —g—ofé:-?u(t)dff

und daher

Z

1
P(0) =1 +— - [£-Ade. ©)

[¢]

Die Funktionen ¢(z) und A(2) sind analytisch in der Umgebung
von z = 0 und lassen sich daher in Potenzreihen nach z entwickeln.
Der Konvergenzradius dieser Reihen ist 27 entsprechend den 2z = 0

2

néchstgelegenen Polen von o

. 2 - B,
B o -
eZW]- y=0 ‘VE

Hiebei sind B, die Bernoullischen Zahlen, fiir welche bekanntlich

; 1
gllf}: Bo:l, Blz———--z—, B3:B5:B7: oo = .

By, B,, By ... etc. besitzen abwechselndes Vorzeichen.
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Wir erhalten daher als Potenzreihe von A(2)

L = Bzv 2y -2
() _Z o (10)
und aus
1 z
@ (2) = Al2) + —éé‘ff‘;{(f)df

1 1
Da By== 5 ergibt sich A(0) = I und ¢(0) =— .

Wir wollen nun zeigen, dass A'(z) << 0 fur 2 > 0.

Wir bilden fir 2 < 4 die Potenzreihe fur A'(z). Diese Reihe ist
alternierend. Sind daher die Quotienten ), der absoluten Betrige
aufeinanderfolgender Reihenglieder <1, so konnen wir schliessen,

negativ ist.

G B
Bs ist V(=S (Q2y—2) —r . g2
§ 18 (2) 32:5( v ) @)
‘B2v+2\
2 2 0!
und . == L (27 +2) 2
2y —2 | By,
(22)!

Zur weiteren Behandlung von @, verwenden wir die von uler
stammende Relation:

| Ba |

1
29) = - 2m),
@) =3 @t 27
. 1 1 1 o .
wobei £(s) = ETl + s = £ + ... die Riemannsche Zetafunktion

bedeutet.
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Nun ist augenscheinlich §(2v + 2) < £(2v).

Da ferner 24, y>2, also

32 2 2 6
so erhdlt man @ = : t@2v+2) . (
36 $(2v) 27

HFaktoren kleiner ist als 1.

2
>< 1, da jeder der

Hieraus folgt also A'(2) < 0 fiir 0 << 2 <4.

Ist nun 2 >4, so bilden wir

#0=( 0 )~

1 ’ c_ 1 -Lg.pf
(_;fﬁ T € Ea <0, da > 1.
pie —1) e —1p

Hs 1st

Daher ist 4'(2) << 0 fir 2> 4 und daher allgemein fir 2> 0.

Schliesslich folgt daraus A(&) = A(z) fir &= 2, also

fea@as=ae)-feas="7 00,

Nun ist
2 % 2
o6 =10+ feagas,
also 7@ < V() + zf) . ’lf) — 2 (5) < 0.

Damit haben wir bewiesen

@' (z) < 0 fur z > 0. (12)

1 ; Lo
Da nun ¢(0) = 5 0 erhalten wir @ (z) < 3 far 2> 0, also

n2

Mp) < ri fir 0 >0. (13)
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3. Sehritt: log f(t) weise einen nichtlinearen Verlauf auf. Der
Beweis dieses Falles wird sich wesentlich auf die bereits erledigten
Spezialfille stiitzen. Zu diesem Zwecke leiten wir noch fiir diese beiden
Spezialfille aus (4) eine Differentialgleichung II. Ordnung ab:

Es ist ja f(f) = C - € mit ¢ =0 und daher
V't =P —t+poV().
Schliesslich V)= —14oV'({). (4a)

Daneben gelten die Randbedingungen V (0) = V (n) = 0. (4b)

Aus (4a) und (4b) ist umgekehrt V (f) eindeutig bestimmt.

Wir formen nun Voraussetzung IV, die hier wesentlich wird,
noch um:

s selen t, < t, <<ty 8 im ibrigen beliebige voneinander ver-
schiedene Stellen im Intervall 0 <t < n.

Dann lisst sich die Ungleichung:
1 ty log 1(ty)
1 by log f(ts) =0
Lty log f(ts)

auf die Form bringen:

log f(t5) — log 1 (¢,) 2 log f (tz)j log f(t) .

t3 b tz — t2 S tl

Wie wir schon zu Beginn des Beweises allgemein feststellten,
nimmt die Funktion V () ihr Maximum im Innern des Intervalls an.
T sei eine solche Stelle und t,, t,, t3, t, 4 weitere Stellen mit
<t < T<il;<t,.

Es gilt dann:

log f (ta) — log f (t) - log f(ty) —log {(T) _ Logf(T)—logf(t) i log f (1) —log /)

bty = §, —elF = Pt = ty—th
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Aus dieser Reihe von Ungleichungen folgt dann allgemein:

; Joglt)—logflt) log f(ty) —log f (t5)

— 0y == 1N ; ; s sup t-— ; == —Q,.
fiste=T 2R I=ta<iy 413

Wir setzen
01+ 9

g @ (14)

Bei differenzierbarem f (¢) ist o = o == 0,, und o stellt die negative
Intensitat von f(f) an der Stelle ¢t = T dar. In unserem Beispiel be-
deutet also p die Summe von Zins- und Sterbeintensitit an der Stelle
t=1,

Wir konstruieren nun eine Hilfsfunktion:
T
y () = e TV 4 [ e T (z—P) dr. (15)
i

Wir wollen nun zeigen, dass die Funktion @(t) = V() —y () =0
1st, und speziell @(0) = 0 und @ (n) = 0 gleichzeitig dann und nur
dann, wenn log f(f) einen linearen Verlauf aufweist.

7Zu diesem Zweck betrachten wir zuniichst das Intervall
0=t<T.

Ist ¢, <t, <T, so folgt aus der obigen Ungleichung:

log f(t;) —logf(t) _

B e Py
== = Q == Q E
b1, &1 2

Hieraus folgt
e T-t1) e T-t2)

=
fll) — f(t)

Wir setzen nun 7T—t = und schreiben y(t) = y*(u), V() = V*(w),
D(t) = O*(u), f(t) = f*(u) und t — P = ¢*(u).

(16)

Aus Ungleichung (16) folgt dann:

e et

>
) = ()

) Uy S Ug.



Setzt man

so ist also w(w) eine monoton nichtabnehmende IFunktion von w.
I'ir die weitere Berechnung ist nun noch die Differentialgleichung
(4) tiir V (t) heranzuziehen. Setzt man auch dort T'— ¢ = u, so erhilt
man die Differentialgleichung:

d
o (H ) £ ) = ) g (). (4%

Nun schreiten wir zur Darstellung von @*(u).

s 1st zunichst

y*(u) = e {V*(O) + f e g*(7) dr].

Daher wird
D) = V() — () = € {V*(u) () - () — TH0)— [ e g*(r)dr}

- 8‘@”{17*(%) () lor) — T(0) P4(0) p(0)— [ 4(2) g*(2) pl) o).

Unter Berticksichtigung von (4*) kénnen wir nun @* (u) schreiben:

D*(u) = GQ“JI(V*(%)f*(u)) +p(u) — (V*(0) *(0)) w(0)— /%(V*(T)f*(r))w(’f)d‘

Der Ausdruck in der geschweiften Klammer liesse sich ohne
weiteres partiell integrieren, wenn w(7) differenzierbar wire. Dies
wurde jedoch nicht vorausgesetzt. Da indessen w(7) monoton ist,
lisst sich der obige Ausdruck fiir @*(u) als Stieltjessches Integral
schreiben:

B () = € [ V*(2) *(2)dy (). (1)

Da () monoton nicht abnimmt, f*(u) im Intervall positivist (nach
Voraussetzung II) und ebenso V*(7)=>0, so folgt @ ()= &*(u)=0-

Nun ist noch zu untersuchen, in welchen Fillen @ (f) = 0 ist.
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s 18t bekanntlich
JV*@) () dy(r) = Min V*(2)* () [y () —  (0)] -
o 0=r<<u

Iis sei zundchst o (u) nicht konstant.

Dann folgt aus der Monotonie w(T)—(0)>0. Wegen der
Stetigkeit von ¢ (u) (Voraussetzung I) gibt es auch ein u, mit u, < T
und (u,) — p(0) 0.

Da ferner im Intervall 0 < 7=, nach (3) V*(z) >0 ist, so gilt
JVE@) (@) dy(r) >0

7
und daher a fortiori [ V*(2)f*(v)dy(z) > 0;

d. h. ®*(T) = B (0) > 0.

Ist aber w(u) im Intervall 0 <« <7 konstant, dann folgt aus
(17) @(0) = 0. Ferner ist dann log f(f) im Intervall 0 <<#=<"T linear

— (;‘9“
()

Die analogen Rechnungen lassen sich auch fir das Intervall
T <t<n durchfithren. Man hat in diesem Fall { —T — u zu setzen.
Man findet ebenso, dass @(f) =0 ist und @(n) = 0 dann und nur
dann, wenn log f(f) im Intervall 0 ¢ < linear ist und p; = o = p,.

und iiberdies, wegen w(u) , 0=p; und daher auch ¢ = p,.

Wire nun sowohl @(0) als auch @(n) =0, so misste log f({) in
beiden Intervallen: 0 <¢t<7T und T =<{¢<mn linear verlaufen und
der Differenzenquotient in beiden Fillen = p sein. Hieraus wiirde
Jedoch folgen, dass log f() im ganzen Intervall 0 <¢<m linear
verliefe, ohne an der Stelle t =T eine KEcke aufzuweisen, was nach

Voraussetzung ausgeschlossen sein soll.

Nun kénnen wir aus (15) eine Differentialgleichung fiir y(¢) ab-
leiten:

dy :
-~ =P—t+ t).
0 Foy(®)
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Durch nochmaliges Differenzieren erhalten wir

d2y dy _
— =] L. 18
iz it (o)
Betrachten wir nun die Funktion F'(f), welche der Differential-
gleichung (18) geniigt und ferner den Randbedingungen I(0) == I'(n) == 0.
F (t) erfullt offenbar gerade die Bedingungen (4a) und (45), und

,nZ
es gilt daher F(f) << ik

F (1) stellt also den Verlauf des Deckungskapitals dar, bei kon-
stanter Zins- und Sterblichkeitsintensitit, wobel diese Intensititen
denjenigen entsprechen, welche an der Stelle ¢ = 7' im allgemeinen
Fall angenommen werden. Wir konnen die Aussage verschirfen, indem

wir schreiben
F() <n?- pno). (19)

Diese letztere Verschirfung ist zum Beweise der Ungleichung an
sich nicht notwendig, jedoch erzielt man bei unseren Anwendungs-
beispielen noch ein etwas besseres Resutat.

y(t) lasst sich aus F'(f), y(0) und y(n) bestimmen, nach dem
Grundsatz, dass die allgemeine Liésung einer inhomogenen linearen
Differentialgleichung die Summe aus der allgemeinen Losung der
homogenen und einer speziellen Liosung der inhomogenen Gleichung
ist. s sei also y(f) = F(t) + C; e + Cy. C; und C, bestimmen
sich aus y(0) und y(n) eindeutig. Man findet schliesslich:

v0=PO+y0t— G v ST @

Nun sind die in die geschweiften Klammern gesetzten Ausdriicke
>0 fur 0<<t<<m. Da ferner V(0)= V(n)=0, so ist wegen
D0)=0, Dn)=0, y(0)<0 und y(n) <0

YOS F@).

Das Gleichheitszeichen kann aber nur gelten, wenn y(0) und
y(n) zugleich verschwinden, d.h. aber @(0) = ®@(n) = 0, was Wit
ausschliessen konnten.
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Tis ist somit y(t) < F'(1).
Setzen wir speziell t = T, so wird

wegen V(I) = y(T)
V(1) < F(T).

Weil aber T eine Maximumstelle von V (f) ist, so gilt daher all-
gemein

V() < F(T). (21)
n2
Speziell folgt also Vi) < 5 (22)

womit die Ungleichung (1) vollstindig bewiesen ist. Ferner gilt sogar
nach (19) bei nichtlinearem Verlauf von log f (f)

Vit) <n?-gno). (23)

Anwendung der Ungleichung

Wir kehren damit zu unserem Beispiel zuriick. Wir erhalten dann
fur das Deckungskapital W, der eingangs beschriebenen Kapital-
versicherung (Police A) die Ungleichung

RS SN A (24)

oder schirfer gefasst:
t 0
—— W, <— -n2.p(np).
n n
Hiebei bedeutet o die Summe der Sterbe- und Zinsintensitéit an
der Stelle £ =T der maximalen Abweichung. Da wir diese Stelle,
ohne die Berechnung durchzufiihren, nicht kennen, niitzt uns die
Verschérfung der Ungleichung zunichst praktisch nichts. Beriick-
sichtigen wir aber, dass die Funktion ¢(2) monoton fallend ist mit
wachsendem 2z, so konnen wir schreiben

t
—— W, <dén-p(nd), wegen 6=p. (25)
n . ;



Hiebel ist

Fir die Praxis ist es bequemer, solange dn nicht zu gross, die
anfinglich stark konvergente Potenzreihe zu bentitzen:
1 1 1

2

. 4
s " m6 T omea0 © T

Wir erhalten dann fir die Abweichung des Deckungskapitals vom
linearen Verlauf:

¢ 1 1 1
%‘*Wz §8— (nd) T 576 (no)® + 95990 (no)>—+ ...
Nachstehend haben wir fiir ein bestimmtes Beispiel diese Ab-

weichung ausgerechnet. Als Sterblichkeitsgrundlagen wurden die Tafeln
TMG/TFG 1938 gewiihlt, als technischer Zinstuss 3 9%,. Damit jedoch
die Rechnungen nach der kontinuierlichen Methode durchgefiithrt werden
konnten, wurde innerhalb der einzelnen Jahre die Sterbeintensitit als
konstant angenommen. Es ist leicht nachzuweisen, dass dann innerhalb
der gewiihlten Versicherungsdauer die Voraussetzungen, die wir von der
Funktion f(f) = D, , verlangt haben, ertillt sind.

Beisprel: Eintrittsalter: z = 80, Versicherungsdauer: n = 35,
W,: Deckungskapital der Kapitalversicherung.
Todesfallsumme steigend von 0 9%, bis 100 %, der Erlebenstallsumme.

t T+t Wi L] x_ Wi
n n

0 30 0,00000 0,00000 0,00000

5 35 0,09087 0,14286 0,05199
10 40 0,19526 0,28571 0,09045
15 45 0,31486 0,42857 0,11371
16 46 0,34077 0,45714 0,11637
17 47 0,36739 0,48571 0,11832
18 48 0,39473 0,51429 0,11956
19 49 0,42281 0,54286 0,12005
20 50 0,45165 0,57143 0,11978
25 55 0,60811 0,71429 0,10618
30 60 0,78822 0,85714 0,06892
35 65 1,00000 1,00000 0,00000
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Das Maximum der Abweichung vom linearen Verlauf wird ca.

[
mm Alter 49 erreicht mit — — W, = 0,12005. Anderseits betrigt die
n

)
aufgestellte Schranke 73?1 = 0,12932, die verfemnerte dn - @(dn) =
= 0,12744.

Die Schranke 0,12744 bedeutet eine Grenze, welche von speziellen
Annahmen iiber die Sterblichkeit abgesehen von der Monotonie der
Sterbeintensitit unabhiingig ist. Ist die Sterblichkeit Null, so wird
diese Grenze an einer gewissen Stelle genau angenommen. Wie das
obige Beispiel zeigt, ist auch bei von Null verschiedener Sterblichkeit
der maximale Betrag der Abweichung nur wenig von der theoretischen
Grenze entfernt. Die obige Schranke lisst sich daher auch fiir eine
approximative Berechnung des Deckungskapitals einer gemischten
Versicherung mit steigender Todesfallsumme verwenden.

Die Untersuchung dieses Problems wurde jedoch nicht nur des-
halb unternommen, um dem Praktiker eine einfache Handhabe fiir
seine Berechnungen zu bieten; es war zudem beabsichtigt, einen
kleinen Beitrag zum allgemeinen Problem der Abhingigkeit des
Deckungskapitals von seinen Rechnungsgrundlagen zu leisten. Offen-
bar ist es bei der hier diskutierten Versicherungsform mit der schon
i der Einleitung erwiihnten Figenschaft, dass bei zinslosem System
der Verlauf des Deckungskapitals auch unabhingig von der Sterblich-
keit wird, leichter, allgemeine Schranken fir das Deckungskapital
aufzustellen als fiir andere einfachere Versicherungsformen.
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