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Zur mathematischen Darstellung
wachsender Gesamtheiten

Von P. IVol/z, Zürich

Im Heft 19 dieser Mitteilungen erschien im Jahre 1924 eine

grössere Abhandlung, verfasst von Herrn Dr. F. Eggenberger, über
die Wahrscheinlichkeitsansteckung. Der Verfasser zeigt anhand zahl-
reicher Beispiele, wie überraschend gut sich das von Prof. Pölva er-
dachte Urnenschema für die Darstellung statistischer Erscheinungen
eignet.

Eggenberger bezeichnet als Hauptziel seiner Arbeit die Auf-
Stellung eines einfachen Schemas, welches gestattet, die statistischen
Erscheinungen, die durch Verkettung und Ansteckung hervorgerufen
werden, zu erfassen. Dazu stellt er folgende, sehr lehrreiche Über-
legungen an : Haben wir ein bestimmtes Schema, das einfach ist und
von dem wir vermuten, dass es Vorgänge der Wirklichkeit in der
Hauptsache gut wiedergibt, so ist es dann einzig und allein Sache der

Erfahrung und damit der Statistik, den Beweis zu erbringen, dass

jene Sätze, die wir aus unserem Schema herleiten, auch wirklich
brauchbar sind. Trifft das zu, dann haben wir mehr gewonnen,
als wenn wir für bestimmte beobachtete Ereignisse eine möglichst ein-
fache Funktion gefunden haben, die uns dieselben mit der gewünschten
Genauigkeit wiedergibt. In der Tat entspricht das Urnenschema der
Struktur der Ereignisse. Von den Funktionen können wir aber nichts
weiteres aussagen, als dass sie innerhalb der in Betracht kommenden
Grenzen die Erfahrungsresultate wiedergeben.

Tatsächlich ermöglicht das Urnenschema der Chancenvermehrung
nicht nur eine mathematische Beschreibung zahlreicher Vorgänge aus
der Statistik, wie die Darstellung der Todesfälle an Infektionskrank-
heiten usw., sondern gleichzeitig auch das Verständnis für das Zu-
standekommen dieser Vorgänge zu fördern. Das Urnenschema ent-
spricht, wie sich Eggenberger ausdrückt, der Struktur der Ereignisse.
Es ist in der Tat ein ausgezeichnetes Beispiel für eine gedankliche
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Konstruktion der Wirklichkeit und bestätigt die auf Grund allgemeiner
Überlegungen von Prof. Gonseth gewonnene Erkenntnis, wonach

unser Wissen über das wirkliche Geschehen durch abstrakte schema-

tische Darstellungen bereichert und vertieft werden kann.
Es liegt im Wesen einer gedanklichen Konstruktion, dass sie,

ähnlich wie eine physikalische Theorie, auf Grund neuer Erfahrungs-
tatsachen ausgebaut, verfeinert und ergänzt werden kann oder Anlass

gibt zur Aufstellung einer neuen Theorie, die dem wirklichen Ge-

schehen näher kommt. So zeigt es sich, dass das Urnenschema der

Chancenvermehrung durch ein anderes ergänzt werden kann, das

in mancher Hinsicht als leistungsfähiger bezeichnet werden darf.
In seiner Abhandlung über «Wahrscheinlichkeit unstetiger Vor-

gange bei kontinuierlich wirkenden Ursachen)) (Commentarii Mathe-
matici Helvetica vol. 15 fasc. 1) hat der Verfasser dieser Zeilen ge-

zeigt, dass man mit Hilfe eines Urnenschemas die statistischen Vor-

gänge, wie sie sich in offenen Gesamtheiten zeigen, in sehr allgemeiner
Weise darstellen kann. Es zeigt sich, dass das gleiche Urnenschema,
wie es dort verwendet wurde, in entsprechender Weise sich auch auf

einseitig geschlossene Gesamtheiten übertragen lässt. Unter ewsei%
geschossenen Gesamtheiten verstehen wir entweder solche, die keinen

Zugang an Mitgliedern aufweisen und daher nur durch deren Aus-
scheiden sich vermindern, oder solche, die keinen Abgang, wohl aber

einen Zugang von Mitgliedern zu verzeichnen haben. Die ersteren
werden als geschossene Gesamtheiten schlechthin bezeichnet und

spielen besonders in der Versicherungsmathematik eine grosse Bolle,
Ein Beispiel für eine solche Gesamtheit bildet die Gesamtzahl der

Bürger eines Landes, die im gleichen Kalenderjahr geboren wurden.

Gesamtheiten, die nur einen Zugang haben, heissen icac/tsende Gesamt-
heiten. Ein Beispiel für eine solche bildet die Zahl der seit Beginn
unseres Jahrhunderts in der Schweiz an Scharlach gestorbenen
Personen.

Es zeigt sich, dass man auf Grund des soeben erwähnten Urnen-
schémas zu verschiedenen Wahrscheinlichkeitsgesetzen gelangt, je
nachdem man die Vorgänge in einer offenen, geschlossenen oder
wachsenden Gesamtheit zur Darstellung bringt. Im Falle der offenen
Gesamtheit wird man zu einer allgemeinen Form der Poissonschen

Verteilung geführt. Im Falle der geschlossenen Gesamtheit erhält
man eine zweidimensionale Schar von Bernoullischen Verteilungen
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und damit eine einwandfreie und übersichtliche Darstellung ver-
schiedener Sätze der Versicherungsmathematik. Die Übertragung
des gleichen Urnenschemas auf wachsende Gesamtheiten, wie solche
durch Ansteckung oder allgemein durch Vermehrung entstehen, führt
zu einer zweidimensionalen Schar von Pascalsehen Verteilungen und
damit zu einer Verallgemeinerung der Theorie der Wahrscheinlich-
keitsansteckung. Das soll im folgenden gezeigt werden.

Das Urnenschema, von dem wir ausgehen, ist sehr einfach. Es
besteht aus einer einzigen Urne, die weisse und schwarze Lose in einem
bestimmten Mischungsverhältnis enthält, so class die Wahrscheinlich-
keit, ein weisses Los zu ziehen, gleich u und die Wahrscheinlichkeit,
dass ein schwarzes Los erscheint, gleich 1 — » ist. Nun nehmen
wir an, ein bestimmtes Individuum sei Träger einer ansteckenden
Krankheit und es sei die Wahrscheinlichkeit, dass dieses Individuum
an einem bestimmten Zeitpunkt ein weiteres ansteckt, gleich der Wahr-
scheinlichkeit r, aus der vorgelegten Urne ein weisses Los zu ziehen.

Wir stellen uns zunächst die Aufgabe, die Wahrscheinlichkeit
zu bestimmen, class das Individuum während der Zeit f ein anderes

ansteckt. Dabei wollen wir vorderhand annehmen, class eine An-
steckung nur in m bestimmten Zeitpunkten erfolgen kann und dass

der Entscheid, ob eine solche Übertragung tatsächlich eintritt oder

nicht, jedesmal durch Ziehung eines Loses aus der Urne gefällt wird.
Offenbar ist unter dieser Voraussetzung die Wahrscheinlichkeit, dass

durch das betrachtete Individuum insgesamt s Ansteckungen ein-

treten, gleich:

Die Zahl der zu erwartenden Ansteckungen ist gleich m-u. Sie

ist zu vergleichen mit der Zahl der tatsächlich erfolgten Ansteckungen
und kann aus der Statistik gewonnen werden. Wir setzen sie gleich
/.< f. Damit ist m» «f. Hieraus lässt sich r und damit auch % be-

in (1) ein, so wird damit der Erwartungwert /tf nicht verändert, dieser
ist vielmehr unabhängig von der Wahl von to. Mit m haben wir die
Zahl der Zeitpunkte bezeichnet, in denen voraussetzungsgemäss
während der Zeit f eine Ansteckung möglich sein soll. In Wirklichkeit

(1)

rechnen. Es ist c - und üq 1 —^. Setzt man diese Werte
TO TO
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ist es nun so, dass im allgemeinen eine Ansteckung durch einen Krank-
heitsträger jederzeit erfolgen kann. In diesen Fällen wird m unendlich

gross. Man erhält aus (1) für die entsprechende Wahrscheinlichkeit
den Ausdruck:

(,M • f)®
_(2) lim w j— e

für m =©o 5

Formel (2) stellt den exakten Ausdruck für die Wahrscheinlich-
keit dar, dass während der Zeit 0 bis f insgesamt s Ansteckungen
durch den anfänglich vorhandenen Krankheitsträger erfolgen. Es

handelt sich um eine zweiparametrige Poissonsche Verteilung. Der

Erwartungswert ist, wie man sich leicht überzeugen kann, unverändert

geblieben und gleich g • f.
Mit Hilfe von (2) kann die Wahrscheinlichkeit berechnet werden,

dass ein im Zeitpunkt f 0 vorhandener Krankheitsträger während
der Zeit f zu s Ansteckungen Anlass gibt. Allgemein interessiert es den

Mathematiker nicht, allein diese Wahrscheinlichkeiten berechnen zu

können, er möchte vielmehr auch die Grundlagen kennenlernen, nach

denen clie Ausbreitung einer ansteckenden Krankheit vor sich geht,
unter Beachtung der Tatsache, dass die vom ersten Krankheitsträger
angesteckten Individuen ihrerseits ebenfalls zu neuen Ansteckungen
Anlass geben. Auf Grund des Urnenschemas lässt sich auch für diesen

allgemeinen Fall eine entsprechende Formel finden. Um sie in mög-
liehst anschaulicher Weise herleiten zu können, nehmen wir vorder-
hand wieder an, die Ansteckung könne während der Zeit- 0 — f nur
an m bestimmten Zeitpunkten eintreten. Wir berechnen zunächst die

Wahrscheinlichkeit, dass überhaupt keine Ansteckung erfolgt. Diese

ist offenbar gleich der Wahrscheinlichkeit, aus der vorgelegten Urne

m Mal nacheinander ein schwarzes Los zu ziehen, also gleich «o>
woraus man gestützt auf die oben eingeführte Substitution bei Über-

gang zur Grenze m OO

(3)

erhält. Wie oben dargelegt, bedeutet p • f die Zahl der Ansteckungen,
die bei gleicher Ansteckungswahrscheinlichkeit durch einen Krankheits-
träger während der Zeit 0 bis f zu erwarten sind.

Zur Berechnung der Wahrscheinlichkeit, dass während der Zeit
0 bis f wit?' e« Mwsfecfemp erfolgt, ist zu berücksichtigen, dass es nicht
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gleichgültig ist, wann diese Ansteckung stattfindet. Je früher sie

eintritt, um so grösser ist die Gefahr, dass ein weiteres Individuum bis

zum Ablauf des Zeitintervalles angesteckt wird. Es ist die Wahrschein-
lichkeit, dass eine Ansteckung im ersten Zeitpunkt erfolgt und nachher
keine mehr, gleich » • nämlich gleich der Wahrscheinlichkeit w,
dass in diesem ersten Zeitpunkt eine Ansteckung tatsächlich statt-
findet, multipliziert mit der Wahrscheinlichkeit, dass in den folgenden
Zeitpunkten keine Ansteckung weder durch den ursprünglich vor-
handenen noch durch den neu entstandenen Krankheitsträger erfolgt,
also mit

Die Wahrscheinlichkeit, dass eine Ansteckung im zweiten Inter-
vall eintritt, ist entsprechend zu berechnen. Sie ist gleich

In ähnlicher Weise lassen sich die Wahrscheinlichkeiten einer

Ansteckung für die folgenden Zeitpunkte berechnen. Die gesuchte
Wahrscheinlichkeit für eine Ansteckung während des ganzen Zeit-
intervalles ist offenbar gleich der Summe dieser Einzehverte:

-2 ^2m-3 4.... 4. „„»-1 0»-i (1 _ „»•).

Wenn wir wieder zur Grenze übergehen, so erhalten wir endgültig

(4) <f'(l — W")-

In gleicher Weise kann man fortfahren und die Wahrscheinlich-
keit berechnen, dass insgesamt s Ansteckungen während der Zeit 0 bis f

erfolgen. Man erhält dafür den folgenden Ausdruck:

(5) e-'"(i —

Bei grösseren Werten von -s zeigt es sich, dass die Ableitung
dieser Eorrnel nach dem soeben für s 0 und s 1 dargelegten Yer-
fahren ziemlich umständlich wird, weil die zu bildenden Ausdrücke
in « und immer grösser und unübersichtlicher werden. Die Gültig-
keit von (5) lässt sich, nachdem sie für s 0 und s 1 erwiesen ist,
einfach durch den Schluss von s auf s + 1 bestätigen. Es ist näm-
lieh, wie aus (3) und (4) folgt, die Wahrscheinlichkeit, dass während
eines Zeitintervalles cüf eine Ansteckung erfolgt, gleich,«-dt. Damit
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erhält man für die Wahrscheinlichkeit, dass im Zeitpunkt r eine weitere
und letzte Ansteckung erfolgt, nachdem bereits s -{- 1 Krankheits-
träger vorhanden sind, den Ausdruck:

(s + 1) e~"* (1 — rZr.

Da t einen beliebigen Wert zwischen 0 und f annehmen kann, haben

wir über diesen Ausdruck zu integrieren. Das ergibt:

*

(s 4- 1) (j-^ds+2) J-

0

«h;s+i (1 —

in Übereinstimmung mit der allgemeinen Formel (5). Formel (5)

stellt eine zweidimensionale Schar von Verteilungen dar, da sowohl /t
als auch f alle Werte zwischen 0 und oo annehmen können. Man über-

zeugt sich leicht, dass die Summe der Wahrscheinlichkeiten gemäss (5)

für alle möglichen Werte von s gleich eins wird. — Wie im folgenden
gezeigt werden soll, lässt (5) noch wesentliche Erweiterungen zu.

Erweiterung auf n Merkmalträger

Formel (5) gibt die Wahrscheinlichkeiten an für eine bestimmte

Ausbreitung einer Krankheit oder sonst eines Merkmales, unter der

Annahme, dass im Zeitpunkt 0 nur em Träger dieses Merkmales vor-
handen ist. Ganz allgemein ist es wünschenswert, zu wissen, wie die

Ausbreitung erfolgt, wenn zu Beginn der Untersuchung bereits mehrere

Träger vorhanden sind. Wir nehmen also an, dass zurzeit 0 statt

nur ein insgesamt n ansteckungs- bzw. vermehrungsfähige Individuen
vorhanden sind, und suchen die Wahrscheinlichkeit zu bestimmen, dass

während der Zeit 0 bis f wieder insgesamt s Ansteckungen erfolgen.
Bezeichnet man mit s- die Zahl der Ansteckungen, die durch das Ute

Individuum erfolgen, so ist die Wahrscheinlichkeit, dass insgesamt
gerade -j- Sg -f • • • + s„ s Übertragungen stattfinden, gemäss (5)

offenbar gleich dem Produkt der Wahrscheinlichkeiten

oder gleich _ g-/.;)*.
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Nun kann aber dieses Ereignis auf soviel Arten zustande kommen, als

man Ausdrücke der angegebenen Gestalt in verschiedener Weise bilden

kann. Ihre Anzahl ist dass sich die gesuchte Wahr-

scheinlichkeit wie folgt darstellen lässt:

(6) +

Eine einfache Bestätigung für die Richtigkeit dieser Formel erhält
man wie folgt:

In ähnlicher Weise wie bei der Bernoullischen Verteilung lassen

sich auch hier alle möglichen Fälle aus der nachstehenden Darstellung
berechnen :

(g-/u _j_(l —r'") +2*<r"' (l—r"')' + • • )"•

Nach den allgemeinen Multiplikationssätzen für geometrische Reihen
erhält man tatsächlich für den Koeffizienten vom 2® den mit Formel (6)

gegebenen Ausdruck.

Erweiterung auf zeitlich veränderliche

Ansteckungswahrscheinlichkeiten

Es zeigt sich, dass (6) noch einer wesentlichen Verallgemeinerung
fähig ist. Bis anhin wurde angenommen, der Erwartungswert für die

durch einen Krankheitsträger zu erwartenden Ansteckungen sei eine

lineare Funktion der Zeit, nämlich gleich In Wirklichkeit ist
es jedoch so, dass die Ansteckungswahrscheinlichkeiten sich mit der

Zeit ändern, so dass auch der betrachtete Erwartungswert im all-
gemeinen eine Funktion von f ist, die wir mit it(f) bezeichnen wollen.
Wir werden nun zeigen, dass (6) auch dann noch gilt, wenn an Stelle

von • f der Ausdruck « (i) tritt. Zunächst nehmen wir an, die Kon-
stante /t erfahre nach Ablauf der Zeit G eine einmalige Änderung und
nehme bis zum Zeitpunkt f den konstant bleibenden Wert r an. Es

ist dann die Wahrscheinlichkeit, dass während des ersten Zeitinter-
valles G IM, während des zweiten — Gl M insgesamt m + «a «

Ansteckungen erfolgen, gemäss (6) gleich

J | ^ ü~ M 1\
£-71« <1 (I g-(n+si)vf2 ^ — (V'*)® *.
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Da s-L und Sg der einzigen Bedingung, dass ihre Summe gleich s er-
geben muss, unterliegen, haben wir alle Werte w(i) bei denen
die Bedingung -f- Sg s erfüllt ist, zusammenzuzählen. Dafür
erhält man

«>(*)„;, S V(1-éT.Sl + Sa=S V ^ /
Wie man sieht, bleibt (6) formal unverändert. Im Exponent erscheint
der gesamte Erwartungswert, der sich nunmehr aus zwei Summanden
zusammensetzt. Man kann also sagen, dass das durch (6) gegebene

Grundgesetz auch bei einer zeitlichen Veränderung der Ansteckungs-
Wahrscheinlichkeiten erhalten bleibt. Dieses Resultat lässt aber auch
unmittelbar erkennen, dass man einer mehrmaligen Veränderung der
Grösse durch entsprechende Einteilung des Intervalles Rechnung
tragen kann. Die Eorm des Ausdruckes bleibt gegenüber solchen

Änderungen invariant. Wird schliesslich ^ überhaupt eine Funktion
der Zeit, so kann durch fortgesetzte Unterteilung des Intervalles
0 bis f den Veränderungen von ^(f) mit beliebiger Genauigkeit Rechnung
getragen werden. In diesem Falle ist für den Erwartungswert in (6)

*

an Stelle von //, • 1 der Wert «.(f) J/.<(t)cD einzusetzen. Als einzige
0

Bedingung muss vorausgesetzt werden, dass /,<(r) integrabel bleibt.
Die Formel (6) nimmt damit folgende allgemeine Gestalt an:

(7) ^ ® ~ ^ ß-") (1 _
Dieser Ausdruck gestattet, für jede Zeitstrecke und bei zeitlich

beliebig veränderlichem Erwartungswert die Wahrscheinlichkeiten
für den Eintritt einer bestimmten Anzahl von Ansteckungen zu be-

rechnen. Allgemein gesprochen stellt (7) eine zweidimensionale Schar

von PascaGckew Verteilungen dar. Für jeden Wert von f sind unend-
lieh viele Werte von w(t) möglich.

Erwartungswert und Streuung

Aus Formel (7) lässt sich nun die zu erwartende Zahl der Merkmal-
träger — bei ansteckenden Krankheiten die zu erwartende Zahl der

Erkrankungen — am Ende des Zeitintervalles f berechnen. Man hat
dazu den Ausdruck
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a(f) 2 + n) w(*)„.,
s-0

auszuwerten. Um die Berechnung bequem durchführen zu können,
bemerken wir, dass die mit (7) gegebenen Werte aus der Entwicklung
des folgenden Ausdruckes in eine binomische Reihe erhalten werden
können. Es ist

S=oo

(8) (f"<o + c (i_£"«>))-» V \ g-»««) (i — -z*.
s=0

Die formale Übereinstimmung des Ausdruckes links des Gleichheits-
Zeichens in (8) mit der üblichen Darstellung der Bernoullischen Ver-
teilung mit Hilfe einer stochastischen Veränderlichen ist augenfällig.

Aus (8) lassen sich durch Differenzieren nach 2 in bekannter
Weise sowohl der Erwartungswert als auch die Streuung berechnen.
Bezeichnen wir den ersteren mit a(f) und den zweiten mit a(f), so

erhält man dafür:

(9) a(<) a(0)e"">

und ebenso

(10) <yï(*) ne"(0(e"(0 —1).

Betrachtet man die Grössen und 1 — so wie sie in (8) ein-
gehen, als die «Wahrscheinlichkeiten» einer Bernoullischen Verteilung,
so erkennt man, dass der Erwartungswert und die Streuung sich in
gleicher Weise zusammensetzen, wie wenn es sich tatsächlich um eine
Bernoullische Verteilung handeln würde.

Gleichung (9) zeigt, wie die Zahl der Merkmalträger sich ent-
wickelt, wenn ihre anfängliche Zahl o(0) ist. Ihre Ähnlichkeit mit der

entsprechenden Formel für geschlossene Gesamtheiten ist augenfällig.
Der Unterschied besteht bloss darin, dass der Exponent hier positiv,
dort negativ ist. Sofern die erste Ableitung von w(i) existiert, erhält
man für die Intensität der Zunahme von a(<) die Darstellung

(11) =a/©=/«(f)-
a(f)
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Die Grösse /«(i) ist somit die Intensität der Vermehrung und
berechnet sich in gleicher Weise wie z. B. die Sterblichkeitsintensität
bei geschlossenen Gesamtheiten, nur erscheint sie hier positiv, dort
aber negativ.

Man sieht aus diesen wenigen Andeutungen, dass zwischen der

mathematischen Theorie der geschlossenen und der wachsenden
Gesamtheiten eine weitgehende und sehr interessante Dualität be-

steht.

Setzt man für w(£) in (7) einen konstanten Wert ein, nämlich

Zn(l-fd), so erhält man folgenden Spezialfall:

Abgesehen von der Bezeichnungsweise stellt dieser Ausdruck

genau die von Eggenberger in der eingangs erwähnten Abhandlung
mitgeteilten und in der Literatur als Verteilungsfunktion für die

Wahrscheinlichkeitsansteckung bekannt gewordene Formel dar. (Vgl.
auch Haller, Verteilungsfunktionen, Band 45, dieser Mitteilungen.)

Anhand eines grossen statistischen Materials hat Eggenberger
gezeigt, dass es mit Hilfe der aus dem Urnenschema der Chancenver-

mehrung abgeleiteten Verteilungsfunktion (12) möglich wird, stati-
stische Erscheinungen zu erfassen und darzustellen, die sich durch die

üblichen bekannten Verteilungsfunktionen nicht in befriedigender
Weise beschreiben lassen. Da die durch (7) mitgeteilte Verteilungs-
funktion auch die Zeit als Variable enthält und damit einen Ereiheits-

grad mehr besitzt, dürfte sie in manchen Fällen eine engere Anpassung
an die tatsächlichen Verhältnisse und damit eine nicht unwesentliche

Verfeinerung der Theorie ermöglichen.
Zu erwähnen ist, dass mit der unter (7) angegebenen allgemeinen

Verteilungsformel nicht nur die verschiedenartigen Probleme der An-

steckung untersucht werden können, sondern auch die verschiedenen

Erscheinungen der Vermehrung. In der Tat können die Vorgänge

Die Verteilung von Eggenberger-Polya

(12)

Anwendungsgebiet
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des Wachstums auf Portpflanzung von Lebewesen durch Befruchtung
und Teilung zurückgeführt werden, d. h. auf Vorgänge, die sich im
Prinzip von der Ausbreitung eines Merkmals durch Ansteckung nicht
unterscheiden. Formel (9) zeigt auch, dass derartige Erscheinungen
exponential vor sich gehen, entsprechend der allgemeinen Auffassung
über die biologischen Gesetze des Wachstums.

Eine besondere Erscheinung des Wirtschaftslebens, die ein typi-
sches Beispiel für eine wachsende Gesamtheit darstellt, ist die Kapital-
bildung. Tatsächlich gibt in unserer Wirtschaft jede Kapitaleinheit
in der Regel Anlass zu einer Vermehrung durch Verzinsung. Inwie-
weit Formel (7) für die Bestimmung der Wahrscheinlichkeit einer

unternormalen oder überdurchschnittlichen Verzinsung verwendet wer-
den kann, müsste noch gezeigt werden. In diesem Zusammenhang
begnügen wir uns, darauf hinzuweisen, dass durch (9) auch das Gesetz

der Kapitalbildung bei kontinuierlicher Verzinsung und veränderlichen
Zinsintensitäten wiedergegeben wird.
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