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Über Verteilungsgesetze
vom Poissonschen Typus

Yon W. f/acto/ger, Bern

1. Problemstellung

Das für die mathematische Statistik grundlegende Poissonsche
Gesetz

(1) <p„(z) —-e~* (0< œ < oo ; n 0,1,2,
w!

das jeder natürlichen Zahl w 0, 1, 2, einen durch die Formel
gegebenen Wahrscheinlichkeitswert zuweist, spielt in verschiedenen
Teilen der Naturwissenschaft und Technik eine entscheidende Eolle.
Wir erwähnen beispielsweise die Anwendung auf Dichteschwankungen
in Kolloiden und GasenB und auf die Erscheinungen derRadioaktivität®)
sowie auf Fragen des Fernsprechwesens®). In der Versicherungswissen-
schaft beherrscht dieses Verteilungsgesetz die Statistik der seltenen
Ereignisse*), wie sie etwa bei der Erfassung der Kinderselbstmorde
Anwendung gefunden hat; hier tritt es ferner bei der mathematischen
Behandlung verschiedener Bisikoprobleme auf und hat in der neueren
Theorie der Sachversicherung zum Beispiel grosse Bedeutung erhalten®).

B B. Fürfk: Schwankungserscheinungen in der Physik. Braunschweig 1920
(Sammlung Vieweg, H. 48).

B I/. ü. BoBfctewe«: Die radioaktive Strahlung als Gegenstand wahrscheinlich-
keitstheoretischer Untersuchungen. Berlin 1918.

B G. Bückte und F. I/ubberger: Der Fernsprechverkehr als Massenerscheinung
mit starken Schwankungen. Berlin 1924.

B B. r. Boröriemew Das Gesetz der kleinen Zahlen. Leipzig 1898.
B P. BiebeseM: Einführimg in die Sachversicherungsmathematik. Veröffent-

lichungen des Deutschen Vereins für Versicherungswissenschaft 56, Berlin 1936.
— P. Biebesete: Die mathematischen Grundlagen der Sachversicherung. Berichte
des zwölften internationalen Kongresses der Versicherungsmathematiker, Luzern
1940. — PF. Günter Mckermonn: Eine Erweiterung des Poissonschen Grenzwert-
satzes und ihre Anwendung auf die Risikoprobleme in der Sachversicherung.
Schriften des mathematischen Instituts imd des Instituts für angewandte Mathe-
matik der Universität Berlin 4 (8) 1939.
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Die Vorzugsstellung, die das Verteilungsgesetz einnimmt, liegt
einerseits darin begründet, dass es sich unmittelbar der Behandlung
eines Grundschemas der Wahrscheinlichkeitsrechnung anschliesst,

indem sich (1) in bekannter Weise durch Grenzübergang *) aus der

Newtonschen Formel gewinnen lässt, andererseits auch darin, dass

es sich durch seine funktionalen Eigenschaften auszeichnet.

Indem wir die Haupteigenschaften des Poissonschen Gesetzes

zusammenfassen, ergeben sich die vier grundlegenden Relationen:

(I) 3>„(a:);>0 (0<£<°o;ra 0,1,2, ...);
oo

(Ii) 2^»(*) i;
n=0

(2)
oo

(III)
tt=0

n

(iv) (® + ?/) 2 (®) (») •

A=0

Diese vier Beziehungen stehen mit geeigneten wahrscheinlichkeits-
theoretischen Deutungen im engen Zusammenhang. Eine im Hinblick
auf die Gesetze (2) aufschlussreiche Interpretation des Verteilungs-
gesetzes (1) ist die folgende:

Man denke sich im zeitlichen Ablauf zufallsartig und unabhängig

gleichartige Ereignisse verteilt, so dass im Mittel auf die Zeiteinheit
ein Ereignis entfällt. In diesem Falle stellt (1) die Wahrscheinlichkeit
dar, dass in einem beliebig gewählten Zeitintervall der Länge a; genau w

Ereignisse stattfinden

So ergeben sich die Bedingungen (I) und (II) in trivialer Weise.

Die Relation (III) hängt mit der Voraussetzung über die Ereignis-
dichte zusammen. Betrachtet man endlich ein Zeitintervall der

B R. Mises: Wahrscheinlichkeitsrechnung und ihre Anwendung in der
Statistik und theoretischen Physik. Leipzig und Wien 1931, bes. S. 146—148.
Betreffend allgemeinere Grenzübergänge vgl. auch: H. PoKac2ek-Ge'iring'er: Uber
die Poissonsche Verteilung und die Entwicklung willkürlicher Verteilungen. Zeit-
sehr, angew. Math, und Mechanik S 1928. Ferner: R. «. Mises: Über die Wahr-
scheinlichkeit seltener Ereignisse. Zeitschr. angew. Math, und Mechanik 1 1921.

-) M. lümifckine: Asymptotische Gesetze der Wahrscheinlichkeitsrechnung.
Ergebnisse der Mathematik und ihrer Grenzgebiete 2 (4), Berlin 1933.
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Länge a: + î/, so führt die Berücksichtigung aller Möglichkeiten, in
welcher die n Ereignisse auf die Teilintervalle a: und 2/ aufgeteilt werden
können, durch Anwendung des Multiplikations- und Additionssatzes
der Wahrscheinlichkeitsrechnung zum Additionstheorem (IV).

Eine vom theoretischen Standpunkt aus gesehen naheliegende, für
die praktische Statistik nicht überflüssige Frage kann so formuliert
werden : Ist das Poissonsche Gesetz (1) die einzige Lösung der vier Be-
dingungen (2), oder gibt es noch weitere Yerteilungsgesetze dieser Art

Um die Antwort auf die gestellte Frage vorwegzunehmen, be-
merken wir, dass es das Ziel der vorliegenden Arbeit ist, die Wege zur
Gewinnung anderer Lösungen vorzuzeigen, die Eigenschaften aller
dieser Lösungen anzugeben und ihre Gesamtheit zu charakterisieren.
Jede Lösung, die also die vier Bedingungen von (2) simultan erfüllt,
wollen wir ein Verteilungsgesetz vom Poissonschen Typ nennen.

Bevor wir an die Bildung neuer Lösungen oder also an die Kon-
struktion von Verteilungsgesetzen vom Poissonschen Typus heran-
treten, wollen wir untersuchen, welche Eigenschaften sich allein aus
den vier Postulaten (I) bis (IV) von (2) ableiten lassen. Die durch diese

vier Bedingungen gegebene Bindung wird, wie wir unten sehen werden,
die Natur der zulässigen Funktionen wesentlich vorbestimmen, anderer-
seits ist sie nicht stark genug, um das Poissonsche Gesetz (1) allein als

Lösung hervorgehen zu lassen.

Zunächst folgt aus (I) und (II), dass

2. Eigenschaften der Lösungen

(3) o<;0„(x)<i

sein wird. Ähnlich folgt aus (III) ausserdem

(4) 0 < 5>„ (œ) < — (n > 1).
%

Aus (I) und (III) allein schliesst man auf

(5) 0„(O)=O (n^l),
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während sich jetzt im Hinblick auf (II) noch

(6)_ *„(0) 1 (« 0)

ergibt.

Für w 0 bedeutet (IV) das Bestehen der Funktionalgleichung

(7) 0o(®+2/) <Po(®)<Po(»)»

die mit Bücksicht auf die durch (3) gegebene Beschränktheit nach

einem bekannten Satz *) nur die Lösung

(8) 0o(z) e~"* (o>0)

zulässt. Wir beweisen jetzt, dass

(9) e-~p„(z)

ist, wo fj>(a:) ein Polynom w-ten Grades von a; bezeichnet. Durch (9)

ist also die Form der in Betracht fallenden Lösungen unseres Problems

wesentlich eingeschränkt. Den Beweis führen wir durch das Verfahren
der Induktion : Wir nehmen an, dass (9) für n 0, 1, m — 1

bereits bewiesen sei. Nach (8) trifft dies in der Tat für m 1 zu,
indem ja Pg(a;) 1 ist. Zeigen wir jetzt, dass (9) auch für w m

richtig ist! Machen wir auch für n m den Ansatz (9), so ist offenbar

zu beweisen, dass dann f^a;) tatsächlich ein Polynom w-ten Grades

ist. Die Verwertung des erwähnten Ansatzes lässt nun aus (IV) die

für die unbekannte Funktion P„(a;) gültige Funktionalgleichung

n-1

(10) P„ (® + J/) P„ (®) + P„ (2/) + S (®) P-A (2/)
A=1

hervorgehen. Mit Bücksicht auf die aus (4) entspringende Ungleichung

0<P„(a;)<— e"* (^>1)
n

*) Über diese durch (7) dargestellte, insbesondere aber auch über die durch
Logarithmierung hervorgehende Funktionalgleichung besteht eine grosse Spezial-
literatur. Eine der letzten Behandlungen der (komplexen, multiplikativen) Glei-

chung vgl. man bei L. Fietom: Zur Kennzeichnung des Sinus und verwandter
Funktionen durch Funktionalgleichungen. Journal reine angew. Math. IS6 1—14.
1944.
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schliessen wir auf

P»(®+2/)—P«(p) ,in 1
0 < < £g«Ü + ?/) \ ^

?/ w /—i A (to — A)

Aus dieser Beschränktheit der Differenzenquotienten folgt nun zu-
nächst, dass Ijj(p) stetig sein muss. Wenn wir jetzt (10) nach ?/ von
0 bis 1 integrieren, was im Hinblick auf die soeben erwiesene Stetigkeit
zulässig ist, so können wir die Darstellung

£+ 1 M-l

p„(®) /p„(«)df-2^p,(®)
£ 2=0

folgern, wobei wir noch die Integrale

C,= JP, (»)<*«/
0

eingeführt haben. Die rechte Seite enthält neben Polynomen (induktive
Voraussetzung!) ein Integral über einer stetigen Punktion, so dass

wir nun schliessen können, dass P„(h) differenzierbar ist. — Wenn
wir also jetzt (10) nach y differenzieren und dann y 0 setzen, so

geht die Beziehung

dl) P„'(S) S#-a(0)PA(S)
2=0

hervor. Auf der rechten Seite steht ein Polynom (to — l)-ten Grades.
Also ist ,P„(a;) ein Polynom TO-ten Grades. Damit ist der Induktions-
beweis abgeschlossen.

Wenn die Ableitungswerte

(12) P„'(0) a,,

besonders bezeichnet werden, so lässt sich die Beziehung (11) mit
Berücksichtigung von (5) als Integralrekursion

tt-1 £

(13) P„(z) a„a; + 2 /P;.© ^ A! 1)
2=1 0

anschreiben. Da wegen (I) und (5) offenbar

17
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(14) a„2>0 (v>l); ^ 0

sein muss, schliesst man auf Grund der Rekursion (13) induktiv leicht,
dass die Polynome I^(a:) nur positive Koeffizienten haben.

Die Integralrekursion (13) gestattet übrigens, die Polynome durch
die Ableitungswerte (12) darzustellen; rekursiv ergeben sich die Formeln

Po(s)=l;

Pi(a:)

(15) Pg(a;) i {«i a:^ + 20^3:} ;

Pg (a:) — {a® a;® + 6% ag ^ + 6ag a;} ;

»

P4 (cc) {a* a;" + 12 a;® + (24 % «g + 12 0^) a^ -f 24 04 a;).

Es ist indessen zu beachten, dass die Zahlenfolge (12) neben (14)

noch weiteren Bedingungen zu genügen hat, wenn die Polynome (15)

zu einer Lösung des hier zugrunde gelegten Problems gehören sollen.

Die hier massgebenden notwendigen und hinreichenden Bedingungen
werden sich später in einem anderen Zusammenhang noch ergeben

(vgl. Formel 26).

Eine elementare Diskussion lehrt, dass die sich auf Grund der

Polynome (15) ergebenden Funktionen (9) einen einfachen glocken-

förmigen Verlauf zeigen, indem sie für n>l bei 0 beginnen, bei

einem Abszissenwert a;„ ein Maximum erreichen, und dann wieder

asymptotisch gegen 0 abnehmen (vgl. Figur *). Diese wohlbekannte

gestaltliche Eigenschaft des Poissonschen Gesetzes in Abhängigkeit
vom Parameter a; ist also allen Verteilungsgesetzen von dem von uns

betrachteten Typus gemeinsam.

Für die Abszisse as„ des Maximums von 3>„(a:) gilt die algebraische

Bestimmungsgleichung
-P«' («) — aP„(z) 0,

*) Die nebenstehende Darstellung der normalen Poissonschen Verteilungs-
funktionen wurde dem Verfasser von Herrn P. Glur, Bern, zur Verfügung gestellt.
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0,, (a;) 2, 3, 14 ;
71
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welche wir in der Form
£ P„' (x)

(16) ar' P„(s)

schreiben wollen; so erkennt man nämlich, dass sich die linke Seite
als ein gewogenes arithmetisches Mittel der Zahlen 1,2, n deuten
lässt, so dass sich die Beziehung

1 n
(17) — <®„< —

ergibt. Man beachte, dass beispielsweise beim normalen Poissonschen
Gesetz (1) m und a 1 ist, so dass in (17) also das Gleichheits-
zeichen auf der rechten Seite in Betracht kommt.

3. Komposition von Lösungen

In dem nachfolgenden Abschnitt zeigen wir, wie man aus bereits

vorgegebenen Verteilungsgesetzen vom Poissonschen Typus neue

Lösungen gewinnen kann. Die in diesem Zusammenhang erwähnten

Kompositionen stellen funktionale Operationen dar, die also, auf

Lösungen angewendet, nicht aus der Klasse der Lösungen hinaus-
führen. - Insofern unendliche Reihen in Betracht fallen, wollen wir
uns darauf beschränken, die Rechnungen nur formal durchzuführen;
es sei jedoch darauf hingewiesen, dass die Durchführung mit strikten
Konvergenzbetrachtungen usw. wohl möglich ist, immerhin aber

Umstände verursacht, die dem bescheidenen gesteckten Ziel dieses Ab-

Schnittes nicht recht angemessen sind.
Wir besprechen drei Kompositionen dieser Art, nämlich die

Intermittierung, die Faltung und die Entwicklung.

1. Die .Zniemidiemng:

Ds sei 0„(r) eine Lösnnty imd 7t eine wedüHic7ie Zahl, dann ist awcls

0 (n ± m 7c)

(18) ^„(r)

eine Lösnng.

(n m 7c)
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Der Beweis ist sehr einlach: Postulat (I) gilt trivialerweise.
(II) gilt, da offenbar

ist. Ebenso ist

n=0 m=0 \ /
so dass auch (III) erfüllt wird. Endlich rechnet man aus, dass

n

S %a(®) %«-;.(«/) 0
;.=o

ist, falls n Sf mfc ist, da dann in der Summe nie gleichzeitig A vfc

und « — A /<fc ausfällt. Ist dagegen n mfc, so ergibt sich für die
oben angeschriebene Summe der Ausdruck

S T ^»-v T") f) z».(® + >

womit auch die Geltung von (IV) verifiziert ist.

2. hie Dahnng:

Ks -sei sowokZ <P„(as) ufo anc/t ¥*,,(:r) eine Lösnngr. Dann isf anc/t

/a > 0
« /

(19) Z„(®) E^M^(/S®) I /3>0

eine Lösnngr. V* 0 ~

Beweis: Postulat (I) ist trivialerweise erfüllt. Die Verifikation von
(II) ergibt sich aus

S(Ê - V0hz.ri)( VV'jdaaj 1.
"=o n=o \;.=o / \;.=o / \,«=o /
Zur Verifikation von (III) haben wir einen Kunstgriff anzuwenden,
indem wir in der Summe
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oo oo / Ti \
2 » z» (®) S « S ^ (« ®) ^ (£«)
n=0 w=0 \A=0 /

auf der rechten Seite w durch A + (tc — A) ersetzen. So lässt sich dann

die Summe umschreiben in

/oo \ /oo \ /oo \ / OO \
2 A (««) (2^(0®) + 2 ^M 2 ^(0®) '

\;.=o / \«=o / V=o / \u=o

woraus sich der Wert aa; -f /5a; x ergibt.

Endlich haben wir

» n / r \ /n-r \
2 /> (®) (2/) 2(2 ^M^ (0®) 2 (« ?/) (0^) •

r=0 r=0 \;.=0 / V=0 /

Die Transformation /« ß — A : r A + ff ergibt für diese Summe

» / £ \ / W-£> \
2(2^- (« ®)^ (« 22) 2 ^ (0 ®) (0 22) '
o=0 \;.=0 / \a=0

oder also
n

2 ^ (<* ® + * 2/) (0 ® + 02/) X« (® + 2/) >

2=0

wodurch auch Postulat (IV) verifiziert ist.

3. Die EwfwicfcZww/:

Ds sei soicofeZ ^„(®) aZs awcfe eine Lösmw/. Dan?!, isf anc/t

oo

(20) Z,(®) 2^»W^(®)
;.=o

eine Löswm/.

Es ist hier zu beachten, dass es sich um eine Eeihenentwicklung
der neuen Lösung nach den Punktionen der gegebenen Lösung #„(®)

handelt, wobei die Koeffizienten der Entwicklung durch die Funktionen
der zweiten gegebenen Lösung W„(a;) geliefert werden!
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Beweis: Postulat (I) ist trivialerweise erfüllt. Zur Verifikation
von (II) rechnen wir

OO / OO \ OO / OO \ oo

«=o n=o \;.=o / ;.=o \n=o / ;.=o

und analog zu derjenigen von (III)
OO / OO ^ OO / OO \ oo

5>z«(®) 2« S S 2>^»W ®i(*) 2^i(«) «-
"=0 «=0 v.=0 ' ;.=o \n=0 / ;.=o

Um endlich auch (IV) zu bestätigen, schreiben wir

m m / oo \/oo \

S x, (®) Z-, (2/) E F- W ^ (®) 2 «V* (-») (2/) >

r=0 i—O \/.=0 / V=0 /
oder

oo oo / rn - oo oo

2 S 2 ^ W »V, C«) ^ (®) ^ (?/) 2 2 ^ (* + /") (®) ^ (2/) •

/.=0 ,K=0 \i'=0 / ;.=o ,«=0

Setzen wir noch A + /a g, so erhält die Summe die Gestalt

2 (e) (2 (®) ^o-;. (2/)) 2 (e) ^ (® + ») Zm (® + 2/)
5=0 y.=o / g=o

was zu zeigen war.

4. Erzeugung von Lösungen

Nachfolgend werden wir ein Verfahren besprechen, das einer-
seits Verteilungsgesetze vom Poissonschen Typus in beliebiger Anzahl
zu liefern imstande ist, andererseits auch eine vollständige Charakteri-
sierung aller möglichen Lösungen gestattet. — Das bekannte Verfahren,
dessen wir uns bedienen wollen, besteht darin, die Funktionen als
Koeffizienten einer Potenzreihenentwicklung einer geeigneten analy-
tischen Funktion einzuführen. Wie wir sogleich sehen werden, erlauben
die in Betracht fallenden erzeugenden Funktionen eine einfache funk-
t-ionentheoretische Charakterisierung, so dass die Gesamtheit aller
Lösungen leicht überblickt werden kann.
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Wir beweisen nämlich den folgenden Erzeugungssatz :

Notwendig und /mtretc/iewä da/ür, dass die Fmfcfiotien 3>„(a;) em

Fertethmgsgesetz »om Poissowsc/ien Tgpits, das die Bedingungen
fcis f'IFJ er/itïZt, darste®, ist das Besiegen einer Identität der Form

oo

(21) 2
irofcei g>(z), der erzengende Exponent, eine anatgtisc/ie Fnn/dion fce-

zeichnet, die den nac/tsteTiend an/ge/üÄrten tier Bedingungen genügt:

(1°) 99 (z) in J z I < 1 regntär;

(11°) ^"'(0)^0 (n (> 1) ;

(IIP) g.(l) 0 *) ;

(TV") ç>'(l) ==1*).

(22)

*) Zu den Bedingungen (111°) und (IV°) ist noch die folgende

Zusatzbemerkung zu machen: Wenn der Punkt z 1 eine Singularität
von 99 (z) darstellt, was nach dem Satz von Firanti-Bienes *) sicher

dann der Fall ist, wenn der Konvergenzradius der Potenzreihe in

(21) 1 ist, so sollen 99(1) und 99'(1) die Grenzwerte

g)(l) lim 99 (z) und 99'(1) lim 99'(z)
S->-1-0 2-^1-0

bezeichnen. Dass sich dieser Fall tatsächlich einstellen kann, lehrt
das Beispiel

6f,z»-l"TA 3
*

n=l

Zur Illustration des Erzeugungssatzes diene noch die Bemerkung,
dass dem normalen Poissonschen Gesetz (1) als erzeugender Exponent
die Funktion
(23) 99 (z) z — 1

zugeordnet ist.

B Vgl. -E. Landau: Darstellung und Begründung einiger neuerer Ergebnisse
der Punktionentheorie. Berlin 1916, bes. S. 65.
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Wir beweisen nun den Erzeugungssatz :

eg) Notwendig. Es sei ein Verteilungsgesetz tZ>„(r) vom Poisson-
sehen Typ vorgegeben. Wir bilden

oo

cojyr;«] 2
n=0

Im Hinblick auf (3) ist co[a; ; sicher im Kreise U | < 1 regulär. Durch
Multiplikation der im Einheitskreis absolut konvergenten entsprechen-
den Potenzreihen, gefolgt von der Anwendung des Additionstbeorems
(IV), leitet man die Funktionalgleichung

<w [r ; 2] co [z/ ; 2] co [r + 2/ ; 0]

ab. Nach bekannten Sätzen *) ist also

co[a;;*]

Die hier auftretende Funktion 99(2) muss nach der oben gemachten
Feststellung auch in |z|<l regulär sein. Damit ist (1°) verifiziert.

Nach (21) gilt
cZ cZ

cZa; tZP* ®=0
2=0

Bedenken wir, dass wegen (I) und (5) für «. >1 offenbar 5>,',(0) > 0
sein muss, so ist damit (11°) verifiziert.

Nun gilt weiter nach dem M Zöschen Stetigkeitssatz 2)

2 ö>„(s) lim ^ 1,
M=0 2-^1-0

und ebenso

2 « lim — (1)^ ® •

n=0 3-^1-0 ^
*) Siehe Fussnote Seite 242.
*) Vgl. IT. Jfwopp; Theorie und Anwendung der unendlichen Reihen. 3. Aufl.,

Berlin 1931, S. 179.
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Auf diese Weise folgt 99(f) 0 und 99'(1) 1, also (111°) und (IV°).
Vgl. hierzu auch die Zusatzbemerkung zu diesen beiden Bedingungen.

Hinreichend. Es sei 99(0) eine Funktion, die den gestellten
Bedingungen (22) genügt. Die Potenzreihenentwicklung (21) konver-

giert sicher im Kreis I 2 I < 1. Durch Multiplikation zweier ent-

sprechender Beihen gewinnt man für die Funktionen 3>„(a;) das

Additionstheorem (IV). Aus der Darstellung

folgert man weiter leicht, dass wegen (11°) auch (I) erfüllt ist. Mit
Bücksicht auf (I) kann nun aus der durch (111°) und (IV°) geforderten
Existenz der entsprechenden Grenzwerte über die Umkehrung des

H&eZschen Stetigkeitssatzes auf Konvergenz und Summe der Beihen

in (II) und (III) geschlossen werden, womit auch diese Postulate veri-
fiziert sind.

Während des Beweises des Erzeugungssatzes ergab sich die Be-

ziehung
œ<"> (0)

(24) ö>;(0) ^ ^
Wi

welche eine Belation zwischen der Lösung und ihrem erzeugenden

Exponenten herstellt. Beachten wir, dass für n > 1

(25) 0;(O) P„'(O) a„

gilt, wobei wir wieder die mit (12) eingeführten Ableitungswerte in den

Kreis unserer Betrachtungen ziehen.
Der Erzeugungssatz gibt uns nun die Möglichkeit, die notwendigen

und hinreichenden Bedingungen dafür, dass. die mit den Polynomen
(15) gebildeten Funktionen (9) eine Lösung darstellen, zu formulieren.
Diese lauten offenbar

a„ > 0 ;

(26) W=1

00

2 "»= 1,
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da ja die Identität
oo

(27) 99 (2) — a + 2 «W"
n=l

besteht. Der Bedingung (26) entnimmt man noch, dass Lösungen
nur für
(28) 0 < a < 1

möglich sind.

Mit (23) haben wir einen erzeugenden Exponenten 99(2), der die

Bedingungen (22) erfüllt, angegeben. Um auf methodische Weise

möglichst viele neue Erzeugungen zu gewinnen, ist es von Interesse,
Operationen zu kennen, die aus bereits vorliegenden erzeugenden
Exponenten neue ebensolche hervorgehen lassen.

Wie man leicht nachrechnet, sind mit 99(2) und 99(2) auch die

nachfolgend angeführten Funktionen erzeugende Exponenten:

1- |cp(^) (Ä 1, 2, 3, ...);
/c

2. a 99 (2) -f- /? 9) (2), a>0;/?)>0;a-j-/3=l;
e. [<*<*>].

Wir möchten noch darauf hinweisen, dass die drei angeführten
Bildungen der Reihe nach den drei betrachteten Kompositionen der
Lösungen entsprechen, nämlich der Intermittierung, der Faltung und
der Entwicklung.

5. Integralrelationen

Zum Abschluss der vorstehend entwickelten Theorie der Ver-
teilungsgesetze vom Poissonschen Typus treten wir noch kurz auf
die Integrale

(29) J„=/<M®)a®
0

ein. Zunächst soll eine Abschätzung für die Integralwerte abgeleitet
werden. Nach der Integralrekursion (13) kann im Hinblick auf (26)
auf die Ungleichung
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0 < P„(a:) < a J 2 P;. (0 j (» ^ 1)

0

geschlossen werden, aus der sich induktiv die Abschätzung

xA, /'« — 1\ cP a:"

(30) 0< /)(•''; ' 2 (»^1)

gewinnen lässt. Durch Integration von (9) ergibt sich jetzt

2«-i
(31) 0< J,,<(n^l).

Durch die Abschätzung (31) wird jedenfalls sichergestellt, dass

die Potenzreihe
oo

«=o

in einem Kreis von positivem Radius konvergiert.

Da im Kreis | 21 < 1 der Realteil P [/'] < 1 ausfällt, ergibt sich

auf Grund von (27) für den Realteil des erzeugenden Exponenten
95(2) die Beziehung

BM*)]<0,

wobei noch die Summenrelationen (26) Berücksichtigung fanden.

Somit kann also im Kreis j 2 | < 1

00 jf
ö 9»(a)

gesetzt werden. Die Integration von (21) ergibt somit

(32) *- 2^"-
9? (2) n=0

Diese Beziehung gestattet also, die Integrale (29) als Koeffizienten
einer Potenzreihenentwicklung zu gewinnen.
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Nach (111°) kann

1 — 2 1

9? (h) />(2) —9?(1)'\

2—1

geschrieben werden, so dass sich mit (IV°)

Ihn
*

-no ç>(2) 95'(1)

ergibt. Nach einem bekannten Theorem von IJardy-Lihfezeood *)
kann man hieraus auf das Bestehen der asymptotischen Relation

(33) lim
^0 + 4 + • • • + 4

1 -f- TO

schliessen. Die Folge der Integrale (29) braucht als solche nicht zu
konvergieren. Ist dies jedoch der Fall, so muss nach (33) offenbar

(34) lim J„=l
gelten.

Wie man leicht verifiziert, gilt für das normale Poissonsche Gesetz (1)

sogar
(35) 4=1 4 0,1,2,...).

Die Tabelle (2) der vier Haupteigenschaften (I) bis (IV) des Poisson-
sehen Gesetzes lässt sich also noch durch die Integralbedingung

00

(V) [ <44)da; 1

0

ergänzen. — Es lässt sich nun leicht nachweisen, dass das Poissonsche
Verteilungsgesetz (1) die einzige Lösung der fünf simultan gestellten
Bedingungen (I) bis (V) darstellt.

In der Tat ergibt die Verbindung von (35) und (32) für den er-
zeugenden Faktor die bereits mit (23) angeführte Funktion, die nach
der Darstellung (21) das Poissonsche Gesetz erzeugt.

*) Hard?/ and LhÖewood: The Messenger of Mathematics, Ser. 2, 43 141, 1914.
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Die Postulate (I) bis (V) charakterisieren demnach das Poisson-
sehe Verteilungsgesetz in eindeutiger Weise.

6. Eine spezielle Lösung

Nachdem durch die in der vorliegenden Abhandlung entwickelten
Theorie der Verteilungsgesetze vom Poissonschen Typus verschiedene

Wege zur Gewinnung von Lösungen aufgezeigt wurden, soll nun noch
in diesem letzten Abschnitt eine spezielle Lösung entwickelt werden,
die auch ihrer sonstigen analytischen Beziehungen wegen von In-
teresse sein dürfte.

Als Ausgangspunkt wählen wir die durch die Differentiations-
formel

/ d y
(36) B„(x) g"* s — )e* (ra 0,1, 2,

definierten Polynome. Die Formel ist so zu verstehen, dass der rechts
in der Klammer stehende Differentialoperator m-mal nacheinander

angewendet werden soll. Offensichtlich ist

(37)

und für n > 1 ergibt sich aus (36) mühelos die Differentialrekursion

(38) (x) x {(x) + B,'_i (x)},

welche eine fortlaufende Berechnung der Polynome ermöglicht. So

erhält man

E„(x) 1

-Bi(x) x

i?a(x) x^ + x
(39)

(x) x® + 3x® + x

J?4(x) x* -j- 6x® + 7x® -j- x

Bj, (x) x® -f lOx"* -f 25x® -j- 15x^ -j- x.



Wir zeigen jetzt, dass

/ £

(40) %„(®) -
e/ -fi-îr

ni

ein Verteilungsgesetz vom Poissonschen Typus darstellt. In der
Tat: Ersetzt man in der Differentiationsformel (86) r durch am",
so kann diese in der folgenden Gestalt geschrieben werden:

so dass sich
" cT

da" '

und damit die Darstellung der Polynome durch eine erzeugende
Funktion

(41) gi(e--l) =2
(®)

n
n=0

ergibt. Eine einfache Umrechnung liefert jetzt

oo

(42) e*W^-i) V ^(s)A
n=0

so dass als erzeugender Exponent die Funktion

(43)
Ç9 (2) — 1

erkannt wird. Diese genügt aber den in (22) aufgestellten notwendigen
und hinreichenden Bedingungen für die Erzeugung eines Verteilungs-
gesetzes vom Poissonschen Typus.

Den wesentlichen Bestandteil der Funktion (40) bildet das mit
(36) eingeführte Polynom, mit dem wir uns noch kurz befassen wollen.

Wenn wir in (36) auf der rechten Seite für die Exponentialfunktion
die Potenzreihe einsetzen, so gewinnen wir nach der gliedweisen Aus-
führung der Differentiationen die Darstellung
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(44) B„(s) ^2 TT®*'
r=0

Diese erlaubt durch eine einfache Rechnung das Bestehen der Rekur-
sionsformel

(45) B„+i(®) ®Ê(")^(®)

zu bestätigen. Eine interessante Tatsache ergibt sich, wenn wir zu
der Anschrift von (44) die normale Poissonsche Verteilung (1) heran-
ziehen. So lässt sich nämlich

oo

(46) B„(®) 2^(®)
schreiben, eine Beziehung, welche darlegt, dass sich die Polynome
B„(a:) als m-te Momente der Poissonschen Verteilung deuten lassen.

Indem wir auf die ursprünglich gegebene wahrsclieinlichkeits-
theoretische Interpretation zurückgreifen, erkennen wir, dass der

Polynomwert R„(r) den Erwartungswert der w-ten Potenz der Er-

eignisanzalil in der Zeitspanne » darstellt. — Besondere Beachtung
verdienen die Erwartungswerte, die sich auf die Zeiteinheit beziehen.

Es handelt sich um die Zahlwerte

(47) 4,= B„(1),

welche von 1 ausgehend auf Grund der Rekursion

OB)

fortlaufend berechnet werden können und die in enger Beziehung zu

kombinatorischen Fragen stehen *).

Wenn wir endlich die Darstellung (44) noch für die Anschrift der

hier betrachteten speziellen Verteilung (40) heranziehen, so lässt sich

mit weiterer Verwendung des Zeichens für die normale Poissonsche

Verteilung (1) die Entwicklung

G H. Dadwiger: Gruppierung mit Nebenbedingungen. Mitteilungen der

Vereinigung schweizerischer Versicherungsmathematiker 43 113—122, 1943.
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oo

(49)
r=oo

angeben. Sie zeigt, dass sich unsere Lösung aus der normalen Poisson-
sehen Verteilung (1) durch das Kompositionsverfahren (20), das wir
dort als Entwicklung bezeichneten, ergibt.

Endlich folgern wir noch für die Integrale unserer speziellen
Lösung die Formel

oo oo oo

(50) / Z»(®)<2« 2 ~ J 4 •

0 r=0 0

18
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