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Uber Verteilungsgesetze
vom Poissonschen Typus

Von H. Hadwiger, Bern

1. Problemstellung

Das fiir die mathematische Statistik grundlegende Poissonsche
Gesetz

) B, (1) = —e* (0<z<oo;m=0,1,2,...),

das jeder natiirlichen Zahl m =0, 1, 2, ... einen durch die Formel
gegebenen Wahrscheinlichkeitswert zuweist, spielt in verschiedenen
Teilen der Naturwissenschaft und Technik eine entscheidende Rolle.
Wir erwéihnen beispielsweise die Anwendung auf Dichteschwankungen
in Kolloiden und Gasen?) und auf die Erscheinungen der Radioaktivitiit?2)
sowie auf Fragen des Fernsprechwesens?). In der Versicherungswissen-
schaft beherrscht dieses Verteilungsgesetz die Statistik der seltenen
Freignisse4), wie sie etwa bei der Erfassung der Kinderselbstmorde
Anwendung gefunden hat; hier tritt es ferner bei der mathematischen
Behandlung verschiedener Risikoprobleme auf und hat in der neueren
Theorie der Sachversicherung zum Beispiel grosse Bedeutung erhalten?).

1) R. Firth: Schwankungserscheinungen in der Physik. Braunschweig 1920
(Sammlung Vieweg, H. 48).

%) L. v. Bortkiewicz: Die radioaktive Strahlung als Gegenstand wahrscheinlich-
keitstheoretischer Untersuchungen. Berlin 1913.

%) G. Riickle und F. Lubberger: Der Fernsprechverkehr als Massenerscheinung
mit starken Schwankungen. Berlin 1924.

*) L. v. Bortkiewicz: Das Gesetz der kleinen Zahlen. Leipzig 1898.

®) P. Ruebesell: Einfithrung in die Sachversicherungsmathematik. Verdffent-
lichungen des Deutschen Vereins fiir Versicherungswissenschaft 56, Berlin 1936.
— P. Riebesell: Die mathematischen Grundlagen der Sachversicherung. Berichte
des zwélften internationalen Kongresses der Versicherungsmathematiker, Luzern
1940. — W. Giinter Ackermann: Eine Erweiterung des Poissonschen Grenzwert-
satzes und ihre Anwendung auf die Risikoprobleme in der Sachversicherung.
Schriften des mathematischen Instituts und des Instituts fiir angewandte Mathe-
matik der Universitit Berlin 4 (8) 1939.
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Die Vorzugsstellung, die das Verteilungsgesetz einnimmt, liegt
einerseits darin begriindet, dass es sich unmittelbar der Behandlung
eines Grundschemas der Wahrscheinlichkeitsrechnung anschliesst,
indem sich (1) in bekannter Weise durch Grenziibergang ) aus der
Newtonschen Formel gewinnen ldsst, andererseits auch darin, dass
es sich durch seine funktionalen Eigenschaften auszeichnet.

Indem wir die Haupteigenschaften des Poissonschen Gesetzes
zusammenfassen, ergeben sich die vier grundlegenden Relationen:

O D,(x)=0 0<zr<oo;n=0,1,2,...);

1m >\ P,(z) =1;
n=0

(11I) i wD, (w) = &;

| V) D, (z+y) = Z D, (y)-

Diese vier Beziehungen stehen mit geeigneten wahrscheinlichkeits-
theoretischen Deutungen im engen Zusammenhang. Eine im Hinblick
auf die Gesetze (2) aufschlussreiche Interpretation des Verteilungs-
gesetzes (1) 1st die folgende:

Man denke sich im zeitlichen Ablauf zufallsartig und unabhéngig
gleichartige Ereignisse verteilt, so dass im Mittel auf die Zeiteinheit
ein Freignis entfillt. In diesem Falle stellt (1) die Wahrscheinlichkeit
dar, dass in einem beliebig gewiihlten Zeitintervall der Linge z genau n
Ereignisse stattfinden 2).

So ergeben sich die Bedingungen (I) und (IT) in trivialer Weise.
Die Relation (III) héingt mit der Voraussetzung iiber die Ereignis-
dichte zusammen. Betrachtet man endlich ein Zeitintervall der

1) R.w. Mises: Wahrscheinlichkeitsrechnung und ihre Anwendung in der
Statistik und theoretischen Physik. Leipzig und Wien 1931, bes. S.146—148.
Betreffend allgemeinere Grenziiberginge vgl. auch: H. Pollaczek-Geiringer: Uber
die Poissonsche Vertellung und die Entwicklung willkiirlicher Verteilungen. Zeit-
schr. angew. Math. und Mechanik 8 1928. Ferner: R.v. Mises: Uber die Wahr-
scheinlichkeit seltener Ereignisse. Zeitschr. angew. Math. und Mechanik 1 1921.

2) A. Khintchine: Asymptotische Gesetze der Wahrscheinlichkeitsrechnung-
Frgebnisse der Mathematik und ihrer Grenzgebiete 2 (4), Berlin 1933.
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Lénge x4y, so fihrt die Beriicksichtigung aller Moglichkeiten, in
welcher die n Freignisse auf die Teilintervalle « und y aufgeteilt werden
kénnen, durch Anwendung des Multiplikations- und Additionssatzes
der Wahrscheinlichkeitsrechnung zum Additionstheorem (IV).

Kine vom theoretischen Standpunkt aus gesehen naheliegende, fiir
die praktische Statistik nicht iiberfliissige Frage kann so formuliert
werden: Ist das Poissonsche Gesetz (1) die einzige Liosung der vier Be-
dingungen (2), oder gibt es noch weitere Verteilungsgesetze dieser Art ?

Um die Antwort auf die gestellte Frage vorwegzunehmen, be-
merken wir, dass es das Ziel der vorliegenden Arbeit ist, die Wege zur
Gewinnung anderer Losungen vorzuzeigen, die Figenschaften aller
dieser Liosungen anzugeben und ihre Gesamtheit zu charakterigieren.
Jede Losung, die also die vier Bedingungen von (2) simultan erfiillt,
wollen wir ein Verteilungsgesetz vom Poissonschen Typ nennen.

2. Eigenschaften der Losungen

Bevor wir an die Bildung neuer Losungen oder also an die Kon-
struktion von Verteilungsgesetzen vom Poissonschen Typus heran-
treten, wollen wir untersuchen, welche Eigenschaften sich allein aus
den vier Postulaten (I) bis (IV) von (2) ableiten lassen. Die durch diese
vier Bedingungen gegebene Bindung wird, wie wir unten sehen werden,
die Natur der zulissigen Funktionen wesentlich vorbestimmen, anderer-
seits ist sie nicht stark genug, um das Poissonsche Gesetz (1) allein als
Losung hervorgehen zu lassen.

Zungchst folgt aus (I) und (II), dass
(3) 0<®,(x)<1

sein wird. Ahnlich folgt aus (III) ausserdem
x
(4) 0<2,@<— (1)

Aus (I) und (III) allein schliesst man auf

(5) 2,0 =0 (=1,
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withrend sich jetzt im Hinblick auf (II) noch

(6) ?,0)=1 (n=0)
ergibt.

Fiir n = 0 bedeutet (IV) das Bestehen der Funktionalgleichung

(M) Dy (z+y) = Do) Dy (y)

die mit Riicksicht auf die durch (3) gegebene Beschrénktheit nach
einem bekannten Satz ') nur die Lésung

(8) Dy(z) = €% (a>0)
zuldsst., Wir beweisen jetzt, dass
9) D, (z) = € P, ()

ist, wo P,(z) ein Polynom n-ten Grades von z bezeichnet. Durch (9)
ist also die Form der in Betracht fallenden Losungen unseres Problems
wesentlich eingeschrinkt. Den Beweis fithren wir durch das Verfahren
der Induktion: Wir nehmen an, dags (9) fir n=20, 1, ... m—1
bereits bewiesen sei. Nach (8) trifft dies in der Tat fir m = 1 zu,
indem ja F(z) =1 1st. Zeigen wir jetzt, dass (9) auch fir n=m
richtig ist! Machen wir auch fiir n = m den Ansatz (9), so ist offenbar
zu beweisen, dass dann P,(z) tatsichlich ein Polynom n-ten Grades
ist. Die Verwertung des erwihnten Ansatzes lisst nun aus (IV) die
far die unbekannte Funktion P,(z) giltige Funktionalgleichung

(10) am+w=aw+&@+gama¢w

hervorgehen. Mit Riicksicht auf die aus (4) entspringende Ungleichung

0<B@<—e* (n=1)
<~ >

1) Uber diese durch (7) dargestellte, insbesondere aber auch iiber die durch
Logarithmierung hervorgehende Funktionalgleichung besteht eine grosse Spezial-
literatur. Hine der letzten Behandlungen der (komplexen, multiplikativen) Glei-
chung vgl. man bei L. Vietoris: Zur Kennzeichnung des Sinus und verwandter

Funktionen durch Funktionalgleichungen. Journal reine angew. Math. 186 1—14,
1944,



schliessen wir auf

ar n-1
()gP”(x + ) —5,(2) gf_“’ L petlaty) kﬁ_l_*ﬁ .
=, L)

Aus dieser Beschrinktheit der Differenzenquotienten folgt nun zu-
nichst, dass P, (z) stetig sein muss. Wenn wir jetzt (10) nach y von
0 bis 1 integrieren, was im Hinblick auf die soeben erwiesene Stetigkeit
zuléssig ist, so konnen wir die Darstellung

B&) = [ B dt— S 0y, B(z)

folgern, wobei wir noch die Integrale

1
C,= [E(y)dy.
0

emgefithrt haben. Die rechte Seite enthélt neben Polynomen (induktive
Voraussetzung!) ein Integral iiber einer stetigen Funktion, so dass
wir nun schliessen konnen, dass F,(z) differenzierbar ist. — Wenn
wir also jetzt (10) nach y differenzieren und dann y = 0 setzen, so
geht die Beziehung

(11) B/(z) = >\ B (0) B (x)

hervor. Auf der rechten Seite steht ein Polynom (n—1)-ten Grades.
Also ist P, (z) ein Polynom n-ten Grades. Damit ist der Induktions-
beweis abgeschlossen.

Wenn die Ableitungswerte

(12) P0) = a,

v

besonders bezeichnet werden, so lisst sich die Beziehung (11) mit
Berticksichtigung von (5) als Integralrekursion
n—1 T

(13) B (z) = az -+ D\ 6, [ dE (n=1)
=1 0

anschreiben. Da wegen (I) und (5) offenbar
17
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(14) ' 0,20 (¥=1); ay=20

sein muss, schliesst man auf Grund der Rekursion (13) induktiv leicht,
dass die Polynome P,(x) nur positive Koeffizienten haben.

Die Integralrekursion (13) gestattet tibrigens, die Polynome durch
die Ableitungswerte (12) darzustellen ; rekursiv ergeben sich die Formeln

Pytay==1;

R(®) = o

{ai 22 + 2ap 2} ;

DO |

{of 2® + 60y ay 2% + 6ag z};

| =

®

1
Bz = 5 lat ot 1202 ay 23 + (24 0y a5 + 1203) 2% + 24 0,7}

Fs ist indessen zu beachten, dass die Zahlenfolge (12) neben (14)
noch weiteren Bedingungen zu gentigen hat, wenn die Polynome (15)
zu einer Losung des hier zugrunde gelegten Problems gehoren sollen.
Die hier massgebenden notwendigen und hinreichenden Bedingungen
werden sich spiter in einem anderen Zusammenhang noch ergeben
(vgl. Formel 26).

Fine elementare Diskussion lehrt, dass die sich auf Grund der
Polynome (15) ergebenden Funktionen (9) einen einfachen glocken-
formigen Verlauf zeigen, indem sie fir m>1 bei 0 beginnen, bei
einem Abszissenwert , ein Maximum erreichen, und dann wieder
asymptotisch gegen 0 abnehmen (vgl. Figur?). Diese wohlbekannte
gestaltliche Eigenschaft des Poissonschen Gesetzes in Abhiingigkeit
vom Parameter z ist also allen Verteilungsgesetzen von dem von uns
betrachteten Typus gemeinsam.

Fiir die Abszisse x, des Maximums von @, () gilt die algebraische
Bestimmungsgleichung
E!(x) —aB,(z) =0,

1) Die nebenstehende Darstellung der normalen Poissonschen Verteilungs-
funktionen wurde dem Verfasser von Herrn P. Glur, Bern, zur Verfiigung gestellt.
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welehe wir in der Form

z P (x
(16) J“(_) —ax

L.(z)
schreiben wollen; so erkennt man nidmlich, dass sich die linke Seite
als ein gewogenes arithmetisches Mittel der Zahlen 1, 2, ... n deuten
lisst, so dass sich die Beziehung

IA

Ty ="y

1 n
(17) — -

a a
ergibt. Man beachte, dass beispielsweise beim normalen Poissonschen
Gesetz (1) z,=mn und a =1 ist, so dass in (17) also das Gleichheits-
zeichen auf der rechten Seite in Betracht kommt.

3. Komposition von Lgsungen

In dem nachfolgenden Abschnitt zeigen wir, wie man aus bereits
vorgegebenen Verteilungsgesetzen vom Poissonschen Typus neue
Losungen gewinnen kann. Die in diesem Zusammenhang erwihnten
Kompositionen stellen funktionale Operationen dar, die also, auf
Losungen angewendet, nicht aus der Klasse der Losungen hinaus-
fihren. — Insofern unendliche Reihen in Betracht fallen, wollen wir
uns darauf beschrinken, die Rechnungen nur formal durchzufiihren:
es sel jedoch darauf hingewiesen, dass die Durchfithrung mit strikten
Konvergenzbetrachtungen usw. wohl mdéglich ist, immerhin aber
Umsténde verursacht, die dem bescheidenen gesteckten Ziel dieses Ab-
schnittes nicht recht angemessen sind.

Wir besprechen drei Kompositionen dieser Art, némlich die
Intermittierung, die Faltung und die Entwicklung.

1. Die Intermittierung:

Fs sei @, (x) eine Lisung und k eine natiirliche Zahl, dann st auch

0 (n +mk)
(18) Zn () =

ewne Losung.
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Der Beweis ist sehr einfach: Postulat (I) gilt trivialerweise.
(11) gilt, da offenbar

n=0

Z Aﬂ = o}?: @m (E{) j:
m=0 llc Y.

1st. Ebenso 1st

i’i’bxn ]’uz @ ( ) %:::1;,
n=0 U

m=0

so dass auch (ITI) erfullt wird. Endlich rechnet man aus, dass

Z X/ ){ﬁ—i == ()
ist, falls » + mk ist, da dann in der Summe nie gleichzeitig 1 = vk

und n—A=puk ausfillt. Ist dagegen n=mk, so ergibt sich fir die
oben angeschriebene Summe der Ausdruck

womit auch die Geltung von (IV) verifiziert ist.

2. Die Faltung:

Es sev sowohl @, (x) als auch ¥, (x) ewne Losung. Dann ist auch

x>0
(19) 1) = B, (00) ¥, (B) | B0
7=0
wt 8 =1

ewne Lisung.

Beweis: Postulat (I) ist trivialerweise erfiillt. Die Verifikation von
(II) ergibt sich aus

oo

an(w)tg(gd%(w wﬂx) (Z@ ”><

n=0

ZT ﬁx)

w=0

Zur Verifikation von (IIT) haben wir einen Kunstgriff anzuwenden,
mdem wir in der Summe
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gnxn(aﬁ) win(ZQD wx) P, ﬁm))

n=0 ‘,:

auf der rechten Seite n durch A4 (n— 1) ersetzen. So ldsst sich dann
die Summe umschreiben in

(gz@(m )(

woraus sich der Wert ax + fz = z ergibt.

S, 60) + (3200 ) (S w0,

w=0 A

Endlich haben wir

2/1 X (Y) = %(2 D, (wz) ¥, , ﬁm)(ﬂi@ . {L(By):)'

=0

Die Transformation g = o -—A4; » = 4+ o ergibt fiir diese Summe

3 (S a2, o ) (S 209,
0=0 \2A=0 y
oder also

N @, (aw+ ap) P, (Br+ By) = xu(e+ ¥),

=0

n

wodurch auch Postulat (IV) verifiziert ist.

3. Die Emtwicklung:

Es sei sowohl @ (x) als auch W, (x) eine Losung. Dann 1st auch

=0
ewne Ldsung.

Es ist hier zu beachten, dass es sich um eine Reihenentwicklung
der neuen Losung nach den Funktionen der gegebenen Lisung @, (%)
handelt, wobei die Koeffizienten der Entwicklung durch die Funktionen
der zweiten gegebenen Losung ¥, (z) geliefert werden!
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Beweis: Postulat (I) ist trivialerweise erfiillt. Zur Verifikation
von (II) rechnen wir

oo

S =55 mwo0) -

n=0

1

(iff’ D) #,(0)— 3 0, =1,

n=0 / A=0

und analog zu derjenigen von (III)

;’ﬂ;/n(m)_;o (/Z‘P ) %‘(;n&” )éﬂ(x)zgﬂ@i(m)zx

Um endlich auch (IV) zu bestitigen, schreiben wir

210 1) = (2,00, ) (S0t 0, 0)),
oder

DS 0)) 2,08, 00) — 33 5, W o) 2,0 B,).

2

Setzen wir noch A+ p =, so erhilt die Summe die Gestalt

o0

S, (0 (Z @, (2)®, , (y)) — S, (0@, (@ 4+ 4) = 1 (2 1),

0=0 0=0

Was zu zeigen war.

4. Erzeugung von Losungen

Nachfolgend werden wir ein Verfahren besprechen, das einer-
seits Verteilungsgesetze vom Poissonschen Typus in beliebiger Anzahl
zu liefern imstande ist, andererseits auch eine vollstindige Charakteri-
sierung aller méglichen Ligsungen gestattet. — Das bekannte Verfahren,
dessen wir uns bedienen wollen, besteht darin, die Funktionen als
Koeffizienten einer Potenzreihenentwicklung einer geeigneten analy-
tischen Funktion einzufithren. Wie wir sogleich sehen werden, erlauben
die in Betracht fallenden erzeugenden Funktionen eine einfache funk-
tionentheoretische Charakterisierung, so dass die Gesamtheit aller
Losungen leicht iiberblickt werden kann.
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Wir beweisen nédmlich den folgenden KErzeugungssatz:

Notwendig und hinrewchend dafiir, dass die Funktionen @, (x) ewn
Verteilungsgesetz vom Poissonschen Typus, das die Bedingungen (1)
bis (IV) erfiillt, darstellt, ist das Bestehen ewner Identitil der Form

(21) 2@ )2 = ¢27)
n=0

wobet @ (2), der erzeugende Exponent, ewne analytische Funktion be-
zetchnet, die den nachstehend aufgefithrten ver Bedwngungen gendigt:

1) @) n ‘zl< 1 reguldr;
(1°) g0 =0 (n=1);

(22)
1119 (1) =07%);

(o) ¢'(1) =1%).

#) Zu den Bedingungen (III°) und (IV©) ist noch die folgende
Zusatzbemerkung zu machen: Wenn der Punkt z = 1 eine Singularitét
von @(z) darstellt, was nach dem Satz von Vivanti-Dienes 1) sicher
dann der Fall ist, wenn der Konvergenzradius der Potenzreihe in
(21) 1 ist, so sollen @ (1) und ¢’ (1) die Grenzwerte

e(1) =1lim ¢(z) und ¢ (1) =lim ¢ (2)

z—»1-0 z—»1-0

bezeichnen. Dass sich dieser Fall tatsidchlich einstellen kann, lehrt

das Beispiel
6 x 2 ——1
B }}52

n=1

Zur Illustration des Erzeugungssatzes diene noch die Bemerkung,
dass dem normalen Poissonschen Gesetz (1) als erzeugender Expounent
die Funktion
(28) p(0) =2—1
zugeordnet ist.

') Vgl. E. Landau: Darstellung und Begriindung einiger neuerer Ergebnisse
der Funktionentheorie. Berlin 1916, bes. S. 65.
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Wir beweisen nun den Hrzeugungssatz:

a) Notwendig. s sei ein Verteilungsgesetz @, (z) vom Poisson-
schen Typ vorgegeben. Wir bilden

wlz;2] = D\ D, (x)2".
n=0
[m Hinblick auf (3) ist w[x;2] sicher im Kreise |z < 1 regulir. Durch
Multiplikation der im Finheitskreis absolut konvergenten entsprechen-
den Potenzreihen, gefolgt von der Anwendung des Additionstheorems
(LV), leitet man die Funktionalgleichung

wlz;z] w[y;e] = o[r+y;2]
ab. Nach bekannten Sitzen 1) ist also
w[w;Z] - ew(p(z)_

Die hier auftretende Funktion ¢(z) muss nach der oben gemachten
Feststellung auch in |z <1 regulir sein. Damit ist (1°) verifiziert.

1[a a G
b (0) . [ G _d_e:cm(Z)} — 4 ( )

" n! | dz d"

Nach (21) gilt

Bedenken wir, dass wegen (I) und (5) fiir # >1 offenbar @, (0) >0
seln muss, so ist damit (I10) verifiziert.

Nun gilt weiter nach dem Abelschen Stetigkeitssatz 2)

o =]

2 D, (x) = lim %7 — eorlt) — 1 7
n=0 2m1-0
und ebenso
> im 2 s / (1)
D@, (x) = lim — e = z¢/ (1) €7V = 1.
n=l z=>1-0 dZ

') Siehe Fussnote Seite 242.
*) Vgl. K. Knopp: Theorie und Anwendung der unendlichen Reihen. 3. Aufl.,
Berlin 1931, S. 179.
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Auf diese Weise folgt ¢(1) =0 und ¢'(1)=1, also (I1I°) und (IVo).
Vgl. hierzu auch die Zusatzbemerkung zu diesen beiden Bedingungen.

b) Hinreichend. Is sel ¢(2) eine Iunktion, die den gestellten
Bedingungen (22) geniigt. Die Potenzreihenentwicklung (21) konver-
glert sicher im Kreis | z|< 1. Durch Multiplikation zweier ent-
sprechender Reihen gewinnt man fir die Funktionen @, (x) das
Additionstheorem (IV). Aus der Darstellung

14"

@n (5!7) - 7 E'z?[ [ex(F(Z)]z:{)

folgert man weiter leicht, dass wegen (1I°) auch (I) erfilllt ist. Mit
Rucksicht auf (I) kann nun aus der durch (LII°) und (IV©°) geforderten
Existenz der entsprechenden Grenzwerte iiber die Umkehrung des
Abelschen Stetigkeitssatzes auf Konvergenz und Summe der Reihen
in (II) und (TIT) geschlossen werden, womit auch diese Postulate veri-
fiziert sind.

Wihrend des Beweises des Erzeugungssatzes ergab sich die Be-
ziehung |

(24) %,(0) —

welche eine Relation zwischen der Losung und ihrem erzeugenden
Kxponenten herstellt. Beachten wir, dass fir n >1

(25) D,

n

O)=E(0)=a,

gilt, wobel wir wieder die mit (12) eingefithrten Ableitungswerte in den
Kreis unserer Betrachtungen ziehen.

Der Erzeugungssatz gibt ung nun die Méglichkeit, die notwendigen
und hinreichenden Bedingungen dafiir, dass die mit den Polynomen
(15) gebildeten Funktionen (9) eine Liosung darstellen, zu formulieren.
Diese lauten offenbar

(26) 2 =
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da ja die Identitit
(27) @ (Z) == — -—I— Z anzn

n=1
besteht. Der Bedingung (26) entnimmt man noch, dass Losungen
nur fir
(28) 0<a<1
moglich sind.

Mit (23) haben wir einen erzeugenden Hxponenten ¢(z), der die
Bedingungen (22) erfillt, angegeben. Um auf methodische Weise
moglichst viele neue Krzeugungen zu gewinnen, ist es von Interesse,
Operationen zu kennen, die aus bereits vorliegenden erzeugenden
Exponenten neue ebensolche hervorgehen lassen.

Wie man leicht nachrechnet, sind mit ¢(2) und (2) auch die
nachfolgend angefiihrten Funktionen erzeugende Kxponenten:

1

1. T el (k—=1,2,3,...);

k
2. a@@) 4+ py), «=0; =05 e+t f=1;
8. P[],

Wir mdéchten noch darauf hinweisen, dass die drei angefiihrten
Bildungen der Reihe nach den drei betrachteten Kompositionen der
Losungen entsprechen, nimlich der Intermittierung, der Faltung und
der Entwicklung.

5. Integralrelationen

Zum Abschluss der vorstehend entwickelten Theorie der Ver-
teilungsgesetze vom Poissonschen Typus treten wir noch kurz auf
die Integrale

(29) J,= [ @,()dx

emn. Zunichst soll eine Abschitzung fiir die Integralwerte abgeleitet
werden. Nach der Integralrekursion (18) kann im Hinblick auf (26)
auf die Ungleichung



osh@=a [{Snolar 0z

0

geschlossen werden, aus der sich induktiv die Abschéitzung
N

30 0=BE@=N(1 )0 6=y

y=1 W!

oewinnen lisst. Durch Integration von (9) ergibt sich jetzt

n—1

(31) 0<dJ,<

Durch die Abschitzung (31) wird jedenfalls sichergestellt, dass
die Potenzreihe

i einem Kreis von positivem Radius konvergiert.

Da im Kreis {z} < 1 der Realteil R[2"] <1 austiillt, ergibt sich
auf Grund von (27) fiir den Realteil des erzeugenden lxponenten
@ (z) die Beziehung

Rle()] <0,

wobel noch die Summenrelationen (26) Beriicksichtigung fanden.

Somit kann also im Kreis ’ 2 | =

f emq/{z)dm —
' @ (2)

gesetzt werden. Die Integration von (21) ergibt somit

1 o0
32 o = . 2",
o) @ (2) ;o "

Diese Beziehung gestattet also, die Integrale (29) als Koeffizienten
einer Potenzreihenentwicklung zu gewinnen.



Nach (III°) kann

1—z 1
¢ (2) (@9 () —¢ (1)>
z2—1
geschrieben werden, so dags sich mit (IVo)
i 1—z 1
lim — = = ],

ergibt. Nach einem bekannten Thecrem von Hardy-Lattlewood 1)
kann man hieraus auf das Bestehen der asymptotischen Relation

== ],

a8) b ok it 4,

schliessen. Die Folge der Integrale (29) braucht als solche micht zu
konvergieren. Ist dies jedoch der Fall, so muss nach (88) offenbar

(34) lim J,=1
gelten. N—»-00

Wie man leicht verifiziert, gilﬁ fiir das normale Poissonsche Gesetz (1)
sogar
(35) J,=1 ®=0,1,2...).

Die Tabelle (2) der vier Haupteigenschaften (I) bis (IV) des Poisson-
schen Gesetzes lisst sich also noch durch die Integralbedingung

W [ @ @)dr=1
0

erganzen. — I lisst sich nun leicht nachweisen, dass das Poissonsche
Verteilungsgesetz (1) die einzige Losung der fiinf simultan gestellten
Bedingungen (I) bis (V) darstellt. |

In der Tat ergibt die Verbindung von (35) und (82) fiir den er-
zeugenden Faktor die bereits mit (23) angefithrte Funktion, die nach
der Darstellung (21) das Poissonsche Gesetz erzeugt.

—_—

D) Hardy and Littlewood: The Messenger of Mathematics, Ser. 2, 43 141, 1914.
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Die Postulate (I) bis (V) charakterisieren demnach das Poisson-
sche Verteilungsgesetz in eindeutiger Weise.

6. Eine spezielle Losung

Nachdem durch die in der vorliegenden Abhandlung entwickelten
Theorie der Verteilungsgesetze vom Poissonschen Typus verschiedene
Wege zur Gewinnung von Losungen aufgezeigt wurden, soll nun noch
in diesem letzten Abschnitt eine spezielle Losung entwickelt werden,
die auch ihrer sonstigen analytischen Beziehungen wegen von In-
teresse sein diirfte.

Als Ausgangspunkt wihlen wir die durch die Differentiations-
formel

36 R =¢z— )€ =15% T
36) (@=c*(s)e )

definierten Polynome. Die Formel ist so zu verstehen, dass der rechts
in der Klammer stehende Differentialoperator n-mal nacheinander
angewendet werden soll. Offensichtlich 1st

(37) Byle) = 1;
und fiir n>1 ergibt sich aus (86) mithelos die Differentialrekursion
(38) B, (z) =2 {B,(2) + B, (1)},

welche eine fortlaufende Berechnung der Polynome ermdglicht. So
erhélt man

By(2) =1
Ry(z) = 2

Ry(z) = 22 Lz

By(z) = a® + 822 + o

R,(z) = 2t + 623 + T2® L ¢

R, (z) = o° 4 102 4 252 + 1522 - .



Wir zeigen jetzt, dass

(40) Tala) = —— ¢

ein  Verteilungsgesetz vom Poissonschen Typus darstellt. In der
Tat: Krsetzt man in der Differentiationsformel (36) z durch ze®,
so kann diese in der folgenden Gestalt geschrieben werden:

$0 dass sich

-2 a ze?
z=0

und damit die Darstellung der Polynome durch eine erzeugende
Funktion

B
(41) gx(eZ-n:Z +(7) &

ergibt. Hine einfache Umrechnung liefert jetzt

oo

(42) eale” 1) = Dy (z)2",

n=0

so dass als erzeugender Exponent die Funktion
(43) p(e)=et—1

erkannt wird. Diese geniigt aber den in (22) aufgestellten notwendigen
und hinreichenden Bedingungen fiir die Erzeugung eines Verteilungs-
gesetzes vom Poissonschen Typus.

Den wesentlichen Bestandteil der Funktion (40) bildet das mit
(36) eingetiihrte Polynom, mit dem wir uns noch kurz befassen wollen.

Wenn wir in (36) auf der rechten Seite fiir die Exponentialfunktion
die Potenzreihe einsetzen, o gewinnen wir nach der gliedweisen Aus-

fihrung der Differentiationen die Darstellung
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(44) B,()=e7) —.
»=0 )

Diese erlaubt durch eine einfache Rechnung das Bestehen der Rekur-
sionsformel

45 Bus(@) =23 (1) Bulo

zu bestéitigen. Eine interessante Tatsache ergibt sich, wenn wir zu
der Anschrift von (44) die normale Poissonsche Verteilung (1) heran-
ziehen. So ldsst sich némlich

(46) R, (z) = 2v"9,(z)

schreiben, eine Beziehung, welche darlegt, dass sich die Polynome
R, (z) als m-te Momente der Poissonschen Verteilung deuten lassen.

Indem wir auf die urspriinglich gegebene wahrscheinlichkeits-
theoretische Interpretation zuriickgreifen, erkennen wir, dass der
Polynomwert R, (z) den Erwartungswert der n-ten Potenz der Kr-
eignisanzahl in der Zeitspanne z darstellt. — Besondere Beachtung
verdienen die Erwartungswerte, die sich auf die Zeiteinheit beziehen.
Es handelt sich um die Zahlwerte

(47) An = Ly (1) :

welche von 4, =1 ausgehend auf Grund der Rekursion

() 4= 3 (7) 4

7=0

/

fortlantend berechnet werden kénnen und die in enger Beziehung zu
kombinatorischen Fragen stehen 1).

Wenn wir endlich die Darstellung (44) noch fiir die Anschrift der
hier betrachteten speziellen Verteilung (40) heranziehen, so lisst sich
mit weiterer Verwendung des Zeichens fiir die normale Poissonsche
Verteilung (1) die Entwicklung

Y H. Hadwiger: Gruppierung mit Nebenbedingungen. Mitteilungen der
Vereinigung schweizerischer Versicherungsmathematiker 43 113122, 1943.
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oo

(49) (@) =2 D, () D, (2)

P=00

angeben. Sie zeigt, dass sich unsgere Losung aus der normalen Poisson-
schen Verteilung (1) durch das Kompositionsverfahren (20), das wir
dort als Entwicklung bezeichneten, ergibt.

Endlich folgern wir noch fiir die Integrale unserer speziellen
Losung die Formel

(50) [@de=J,= S &,0)~ [ 0,@dt=1.

18
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