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Beitrag zur Theorie
der Haufigkeitsfunktionen

Von H. Kreis, Winterthur

Im ersten Teil dieser Arbeit werden die binomialen Verteilungen
als Beispiele von symmetrischen und asymmetrischen unstetigen
Funktionen behandelt. Neu ist dabei die Benutzung eines Operators,
durch den die formelmissige Ableitung von Mittelwerten und Summen
von Potenzen von Abweichungen wesentlich erleichtert wird. Daran
anschliessend wird im zweiten Teil eine Methode zur Bildung von
symmetrischen und asymmetrischen stetigen Verteilungsfunktionen
entwickelt. Die Methode gestattet, auf ungezwungene Art das GauB-
sche Fehlergesetz und die Brunssche Verteilungsfunktion durch Grenz-
prozess zu begriinden.

Zur Veranschaulichung der Entstehung einer binomialen Ver-
teilung wollen wir uns s = 6 Urnen denken. Diese enthalten je a =8
weisse und av = 2 schwarze, somit N =a (1 +v) =5 Kugeln. Aus
Jeder dieser s Urnen wird je eine der N Kugeln herausgegriffen, so
dass eine Zusammenstellung von teils weissen, teils schwarzen Kugeln
zum Vorschein kommt. Im ganzen kénnen N° =55 oder 15 625
Ziehungen unterschieden werden, die sich je nach der Anzahl weisser
und schwarzer Kugeln in 7 Klassen unterbringen lassen.

Ordnungs- Anzahl der Kugeln Héufigkeit
zahl weisse schwarze absolut relativ
0 6 0 729 0,046 656
1 5 1 2916 0,186 624
2 4 2 4 860 0,311 040
3 3 3 4 320 0,276 480
4 b 4 2160 0,138 240
5 1 5 576 0,036 864
6 0 6 64 0,004 096

Total 15 625 1,000 000
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Die absoluten wie auch die relativen Hiufigkeitszahlen dieses
Urnenspieles liefern zwei asymmetrische, unstetige Verteilungs-
funktionen von der Form

@ (z) = C’as(i> W, (1)
wo definitionsgemiss v eine beliebige rationale Zahl, ¢ ein an sich
unwesentlicher konstanter Faktor, a und s ganzzahlig sind. Das

verinderliche Argument z der Funktion (1) ist die Ordnungszahl der
betreffenden Klasse; x tritt hier zugleich als Exponent von » und als

Index des Binomialkoeffizienten (Z) auf und kann infolgedessen nur

einen der Werte 0; 1; 2 usw. bis s annehmen. Die Summenfunktion
der Verteilung (1) wird durch die Gleichung definiert

So(@) = 2 ¢(x) = Ca’ (1 + v)*. (2)

Diese Summe S, stellt den Umfang der Reihe (1) dar. Uber die un-
wesentliche konstante Zahl C lasst sich so verfiigen, dass S, entweder
gleich N*® oder 1 oder gleich irgendeinem anderen zweckméssigen Wert
wird. Im folgenden setzen wir Ca® =1, so dass der Umfang der Reihe

So(z) = (1 +v)° (3)

und die Verteilungsfunktion selbst
p(z) = <S>?)9’ (4)

Wir denken ung nun sémtliche N® Kugelzusammenstellungen nach
den s + 1 Klassen geordnet und zihlen die vorkommenden schwarzen
Kugeln. Die Klasse (x) enthilt ¢(z) -z, die ganze Tafel S; = Zg(z) -2
schwarze Kugeln. Eine Zusammenstellung enthilt infolgedessen im
Durchschnitt S, : S, schwarze Kugeln. Im obigen Beispiel ist

2 6 /6 2 z
Sp=(14—-) = s S, = (Z) .z = 51,44088
0 ( +3> 91,43347; S, Z(O) (3) z— 51,4

}md S;:80 =24, d. h. die mittlere Anzahl schwarzer Kugeln, die
in den 15625 verschiedenen Ziehungen auftreten, ist gleich 2, 4.
Zur tbersichtlichen Darstellung der Summen der héheren Potenzen

sein werden.
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S, = 2ip(a)- 2" (5)

wollen wir den Operator 4 folgendermassen definieren

af
Af(w) =0 - o
A2f(v) = A(Af (v))
A4 (w) = A(4f(v)). (6)

Iig folgt hieraus
AC-f(v) = C-4f(v)

A(f () + g@)) = Af(v) + Ag(v)
AV = g o°
A2® = 22 o°

Ao = g -1F. (7)

Aus (7) ergibt sich umgekehrt

@(z) 2 = (i) ot = A (i) = A p(z) (8)
und es kann also (5), wie folgt, geschrieben werden
S, = D\ A p(x) = A*(1 + v)°. (9)

s ist somit z. B.

S;=A1+ v =s1+v) 0.
Sy = A8, = s(s —1) (1L + 0)* 20 4 s(1 +v)"v.

Um eine allgemeine Beziehung zwischen den Summen S,; S,; S5 usw.
zu erhalten bilden wir

(s— A) 1+ ) = s(1+ ) —s(1+0)"" =s(1+0)
oder _
s+ — A1 +0)° =s1+)""
also
8(1+@)3_81:8(1+v)s—1 (10)
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Multipliziert man (10) beidseitig mit s—1—4, so findet man
s(s— 1A+ —@2s—1)S;+ S, =s(s—1)(1+0)2%; (11)
ferner, wenn man mit s—2-—4 multipliziert
s(s—1)(s—2)(1+v)* —(8s2—68s+2)S;, + (8s—8)S, — 83 =
= s(s—1)(s —2) (1 +v)*>. (12)

Aus (10) ldsst sich die Summe S, aus (11) S, und aus (12) S, er-
mitteln.

Will man fir die allgemeine Summe S, einen formelmégsigen
Ausdruck, so geht man von dem symbolischen Produkt aus

(s—k+1—MDs—k—d)...s—A)(A+0)°=
=s(s—1)...(s—k+1)(1+v)**.

In der Entwicklung des Produktes linker Hand ersetzt man nach (9)
Ausdriicke von der Form A* (14 v)* durch S, und erhilt eine Gleichung
von der Gestalt

[P+ 0) — P8+ 08+ ...+ (—DMES, = R+ 0, (19)

in welcher fy;—71;fs--.; (—1)*f, Polynome in s bedeuten, die als
Koeffizienten des nach ¢ entwickelten Produktes

s—k+1—t(s—k—t)...... (s —1) (14)

auftreten. Ist insbesondere & =s-+1, so hat das Produkt (14) die
Form
O—tHaA—HE@—1t)...... (s—1).

Das absolute Glied f, verschwindet und die Gleichung (13) geht in
die fundamentale Gleichung iiber

RIS IS, — L (1S, =0, (15)
Da allgemein nach Gleichung (9)
A8, = 84

1st, so gilt zwischen s+ 1 aufeinander folgenden Potenzensummen
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Sip1s Siyes Spags .84 die Beziehung
_f(ls+1)‘81+1 £ féSH)SHz — (= 1)3+1Sz+s+1 ==l (16)
die fiir jedes beliebige ganzzahlige I giiltig ist.
Im Falle s= 6 lautet die Gleichung (16) in symbolischer Schreibart
—A(A—A)2—A)B—A)(4—A) (5—4) (6—A)S, =0, (17

wobei unter A* S, die Summe S, , zu verstehen ist.

Die Glieder der Gleichungen (18), (15) und (16) lassen sich homogen
machen, wenn die Mittelwerte of der Potenzensumme S, folgender-
massen definiert werden

Spof=S8,, fir k=1;2; 8; ..
also ist
o =18, :8, =25, : (1+40)°. (18)
Die Gleichungen (13) und (16) lauten nun
fPoy— oy + ok — ... + (—DHPok= O +0)*  (19)
— el Al — .+ (— 1l =0 ()

Wihrend wir bis hieher die Summen S, der Momente k-ten
Grades der Elemente z der Zahlentafel in bezug auf das Anfangs-
bzw. niedrigste Argument o ermittelt haben, so wollen wir im Folgenden
die Momente ¢ (1) (z— &)* in bezug auf eine andere irgendwie definierte
Vergleichszahl & berechnen. In unserem Urnenspiel kénnten beispiels-
weise fir £ folgende Werte in Betracht fallen:

& =6, als Endglied der Ordnungszahlenreihe;

& =2, als Ordnungszahl mit der grossten Haufigkeit 4 860 bzw.
0,311 040;

& =3, als Ordnungszahl in der Mitte;
£ =2, 4, als Mittelwert aller z-Argumente.
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Fiir die Berechnung dieser neuen Momentensummen lassen sich mit
Hilfe des Operators A allgemeine Formeln aufstellen, in welchen die schon
berechneten Grossen S, bzw. o, als Hilfszahlen Verwendung finden.

Auf Grund der Definitionsgleichung (6) fir A4 findet man
(A— &) v° = 2®— Ev° = (—&) v°
(A— 820" = (A— &) (A— &) v = (z— 2o

und allgemein
(A — &)F 0" = (xz — E)F°. (21)

Infolgedessen kann man schreiben

(A—F L+ =D (A—2) (;) =Y (i) (o — &)

Bezeichnen wir den Mittelwert aller Momente k-ten Grades der Ver-
teilungstafel mit u¥; setzt man also

pe= 2 p(@) (z—8" Do), (22)
so gilt die fundamentale Gleichung
(1 o) = (4—&F (1L +v)". (23)

Linker Hand ist (1 +v)° ein gewohnlicher Faktor, mit welchem der
Mittelwert uf multipliziert wird; rechter Hand hingegen bedeutet
(14 2)° die Funktion von v, auf welche die Operation (4 — &)* aus-
zufiithren ist.

Fir k=0; 1; 2 und 8 lautet insbesondere Gleichung (21)
E=0 (140 m=(4—E0 (1 +0v)

oder wud=1

oder nach Gleichung (18) u,=1
k=1 (140 p=A—8 1+

oder (140)f s, = 8, — & (1 + v’

oder nach Gleichung (18) u; =0, — &
F=2 (140f i = (4— 8 (1 +0)

=8,—2&8,+ &1 +v)°
oder nach Gleichung (18) p2= o2 —2&0, + &
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k=38 (1-+0v)°0c=(4—E&31+0)°
=83 —38&8,+3&8,—&1 + o)
oder nach Gleichung (18) ui=0}—8&0% + 8£20; — £8.
Schreibt man symbolisch
(Gi)k = O'IE ’
so lasst sich die letzte Gleichung symbolisch auch schreiben
ps = (07— &)°.

Es leuchtet unmittelbar ein, dass man, symbolisch verstanden,
allgemein schreiben kann

Hh= (ot — 8.

In der Fundamentalgleichung (23) konnen wir die Grosse & als
verdnderliche Abszisse und den zugehorigen Mittelwert u, als Ordinate
des laufenden Punktes auf einer Kurve C, betrachten. Die Gleichung
von C,

(L4 gy = (A —&F (1 4y’ (23)

erlaubt uns, ihre Tangenten leicht zu bestimmen, indem wir sie nach
¢ differenzieren. Es ist ndmlich

b}
(L o)k =5 = — k(4 — 7 (L + o),
welche Gleichung wir nach Gleichung (23) vereinfachen konnen in
k-1
61”’)6 — __(Mk—l) . (24)
o0& o,

Die Gleichungen der Kurven C,; O, und C; lauten nach Gleichungen
(23) und (24) wie folgt:

Cy: py =01—§,

0ty
o0&

C, ist somit eine fallende (Gerade mit der Richtungszahl —1, welche
die X-Achse im Punkte & = o, schneidet.

= —1.

16
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Co: ps = o5 — 20y + &,

Ot (ﬂ_>

0& o
C, 18t eine gleichseitige Hyperbel, deren imagindre Achse mit der
X-Achse zusammentéllt. Die Scheitel der Kurve oder das Minimum

von o5 findet man, indem man i gleich Null setzt. Das gibt u;=0
und dementsprechend & = o, .

Dieser Schnittpunkt (o; 0) ist tibrigens der Mittelpunkt der Hyperbel,
durch welchen die zweite Asymptote geht.

Cy: puy =05 —38&0; + 880 — &,

St _ _ (2
d¢ (#3 ) .
Der Differentialquotient von ug nach & ist immer negativ, d. h. die Kurve
O, féllt ununterbrochen von - co bis —oco. Sie schneidet die X-Achse
nur einmal, und zwar orthogonal, denn fiir y, =0 wird %%E =oc.
Diesem Schnittpunkt gy =0 entsprechend hat die Kurve €,
ihre tiefste Stelle iiber und ihre hochste Stelle unter der X-Achse.
Allgemein erkennt man leicht, dass sdmtliche Kurven geraden
Grades Cy; Cy; Cy; ... Cy nur zwei reelle Asymptoten haben, welche
mit den Asymptoten der gleichseitigen Hyperbel C', zusammenfallen.
Sémtliche Kurven ungeraden Grades Cy; Oy; Cy; ... Oy, haben
nur eine reelle Asymptote, welche mit der Geraden C, : g, + £ =0,
zusammenfallt.
Die Schnittpunkte dieser einteiligen, fallenden Kurven Cy; Cy;
U5 usw. mit der X-Achse liefern die tiefsten (hochsten) Stellen tber
(unter) der X-Achse der Kurven C,; C,; Cg usw. Sie bestimmen die
Minima der Mittelwerte u3; wjy; ué usw. Niheres iiber diese Kurven-
scharen findet sich in anderer Darstellung bei Lipps [7].
Im Anhang gebe ich fiir die Verteilungsfunktion des eingangs be-

6\ [2)*
sprochenen Urnenschema,s( >(§> die vollstindigen Gleichungen
i

der 6 ersten C-Kurven samt deren graphischer Darstellung an.
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Zur Beurteilung der Struktur einer Zahlenreihe ¢(x), d.h. zur
Kennzeichnung der Verteilung oder Streuung ihrer Ordnungszahlen z
tiber den ganzen in Betracht kommenden Zahlenbereich sind diese
Mittelwerte p, charakteristisch. Je mehr solche Mittelwerte vorliegen,
desto besser ldsst sich die Streuung charakterisieren und messen. Bei
allen Untersuchungen iiber solche Mittelwerte und Streuungsmass-
zahlen von statistischen oder sonstigen Zahlenreihen stosst man aber
unvermeidlich immer wieder auf die Mittelwerte of der Potenzen
der Ordnungszahlen in bezug auf ein an sich willkiirliches urspriing-
liches Zahlsystem. Diese Grundzahlen X ¢ (z)2* sind von funda-
mentaler Bedeutung. Namentlich mit Riicksicht auf die stetigen Ver-
tellungsfunktionen, deren Einfithrung sich geradezu aufdringt, muss
die Rolle dieser Grundzahlen hervorgehoben werden.

In der zweiten Begriindung seines Fehlergesetzes betrachtet
Gauss [6] die 3 Integrale

+u

+oo +o0
;fqo(m)das; _fx(p(m)dx; Hofoﬁfp(m)dw,

in denen mit z der Fehler, mit ¢(z) seine relative Héufigkeit be-
zeichnet ist. Das erste Integral gibt die Wahrscheinlichkeit, dass
irgendein Fehler zwischen den Grenzen — w und + w liegt; es wird,
wenn die Grenzen — oo und -+ oo werden, welches auch die I'unk-
tion ¢(z) auch sei, den Wert 1 annehmen miissen. Das zweite Integral
stellt das Mittel aller méglichen Fehler oder den mittleren Wert der
Grosse z dar und ist immer gleich Null, sobald zwei gleiche, aber mit
verschiedenen Vorzeichen versehene Fehler dieselbe Haufigkeit haben;
ein von Null abweichender Wert wiirde anzeigen, dass die Beobach-
tungsreihe noch einen konstanten Fehler enthélt. Das dritte Integral
oder der mittlere Wert des Quadrates 22 erscheint am geeignetsten,
die Unsicherheit von Beobachtungen allgemein zu definieren und zu
messen, so dass von zwei Beobachtungsreihen, die sich hinsichtlich
der Hiufigkeit der Fehler unterscheiden, diejenige fiir die genauere
zu halten ist, fiir welche das Integral den kleineren Wert erhdlt. Vgl.
Bauschinger, Ausgleichungsrechnung [6].

Indem wir uns nun an die Eigenschaften der binomialen Ver-
teilungen anlehnen, wollen wir unter einer stetigen Hiufigkeits-
funktion jede reelle, positive Funktion ¢(z) mit folgenden Eigen-
schaften verstehen:
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1. sie soll fiir alle Werte von z zwischen — oo und - o< stetig
und endlich sein; .

2. das Integral [a*g(z)dz, wo k eine beliebige, vorgegebene

ganze Zahl bedeutet, soll endlich sein.

Diese Bedingungen geniigen noch nicht, um die unbekannte Funk-
tion @(z) vollstindig zu definieren. Aus den gestellten Forderungen
folgt aber, dass notwendigerweise

lim 2" ¢ (z) — 0

sein muss, wenn & — T oo wird, und dass, wenn das Integral
+ oo
k
Sk - fﬂ: (P(.Q?) dCC

endlich ist, die Integrale Sy; S,; ... S, ebenfalls endlich sein werden.
Diesen Forderungen geniigen aber unzéhlige Funktionen, von denen
wir im Folgenden nur ein Paar Beispiele geben wollen.

Wir fangen an mit rationalen Funktionen von der Form

Als Nenner @, (z) nehmen wir ein reelles Polynom in z vom Grade
2m, das keine reellen Nullstellen hat und immer positiv ist. Wegen
der Beschaffenheit der Nullstellen kommt als Nenner ein Polynom
ungeraden Grades nicht in Betracht. Als Zahler P, (z) nehmen wir
ein reelles Polynom von z, das niemals negativ werden darf. Die Be-
dingung fiir das endliche Integral S, kann bekanntlich nur dann erfillt
werden, wenn im Integranden «* P, :Q,,, der Grad 2m des Nenners
den Grad n -k des Zihlers um mehr als 1, also um mindestens 2
iibertrifft.

Eine einfache rationale Funktion dieser Art ist beispielsweise
C

e

Durch Partialbruchzerlegung lassen sich die Integrale S, und Sy

in geschlossener Form bestimmen, wihrend S,, wegen der identischen
Gleichung ¢ (4 ) = ¢ (—x), Null ist. Man findet

p(x) =
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dx ]/ 1+z)/2+a |3 5 B
fx4+1 E‘ 1_$l/2+x2+~—~&rctg(:€]/2 +1) ?arctg(:cyg_ﬁl)

und

2dzx l/g 1_x/2+$2 1/2 5 B
f334+1 8 1+$V2+332 _Fjamtg (z)/2 +1) —}——éfarctg(xl/z_,l)

Cdzx 7w C
SOZ 1 = —
zt+1 ]/2

—Cco

+ oo

Cx2dx xC
82: 1 — i)
| ]/2

— o0

Um eine normierte Verteilung zu erhalten, wihlen wir den Wert
der Konstanten C' so, dass S, =1 wird, also

o2
7

Die Haufigkeitsfunktion heisst dann

_ Ve
— T (25)

Die Funktion (25) ist die reziproke Funktion der Parabelfunktion
vierten Grades

@ ()

(2t + 1
y = V2w+)

Das Bild der Haufigkeitsfunktion (25) ist die reziproke Kurve
dieser Parabel, nimlich das bekannte Profil einer Glocke. Die maximale
Ordinate fiir &= 0 ist gleich ¢ (0) =]/2 : w = 0,45. Die Abszissen
der beiden reellen Wendepunkte genugen der Gleichung

=006,

also & = + 0,88 und y = 0,28.
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Die Integrale S,; S,; ... sind sémtlich unendlich gross.

Hingegen fithrt im allgemeinen die Parabelfunktion

= (1 + a2)? + (bs + oa?),

die nicht mehr gerade ist, zu einer asymmetrischen stetigen Héufig-

keitsfunktion
C

1+ ax)* + (bx + ca?)? )

ﬂ@:( (26)
Die Integrale Sy; S; und S, sind endlich; S;; S, usw. unendlich.
S, ist aber nicht unbedingt gleich Null.

Sollen nun die Integrale S, bis zu einem unbeschrinkt hohen
Index %k endlich sein, so hat man an Stelle von Polynomen trans-
zendente Funktionen zu Hilfe zu nehmen. Am néchsten kommen die
Funktionen in Betracht, die kettenlinienartige Bilder liefern; bei-

spielsweise - o
mw:(€“*+ev”>, 1)
2
£, (z) = < evVn e Vn ) e, (28)
2 /

in welchen n eine natiirliche Zahl, & und b reelle Konstanten bedeuten
sollen. Die Funktionen

C
@1 () = #(2) und @, (z) = £ (@)

besitzen offenbar die von uns geforderten Kigenschaften von stetigen
Hiufigkeitsfunktionen, gleichgiiltig welche Werte n erteilt wird.
Ausserdem sind fiir beliebig hohe Werte von k die Integrale

+o0 +oo
[ a* () de und [ o*g,(z) dz
endlich. et et

Die Hiufigkeitsfunktion ¢, (z) ist symmetrisch in bezug auf das
Argument x = 0, d. h. es 18t fiir jedes z identisch

¢1(+2) = @1 (—2).
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Die zweite Haufigkeitsfunktion g, (z) ist im allgemeinen asym-
metrisch: es gibt keinen festen Wert ¢ derart, dass identisch

. @2 (¢4 1) = @y (c— 1)
ware.

Da die Reihenentwicklungen der Exponentialfunktionen in f,
bestéindig konvergieren, kénnen wir schreiben

a2 g2 R\"
fulz) =1+ on <+ pra
wo B eine endliche Grosse bedeutet, so dass

, _ a?z?  R\" e
im i) = i 14+ =
und
a2 12
lim ¢, (z) =C¢ 2 (29)

N—Poc0

Wir erhalten in diesem Falle das Gaufsche Hiufigkeitsgesetz als
Grenze der Verteilungsfunktion ¢, (z).

Auf analoge Art erhalten wir im Falle der Funktionen f,(z) und
P2 ()

a2 a2
lim f,(z) = e 2 €"

NP0

und

lim gy(z)=Ce 2 . (30)
n—poco

Bestiglich dieser Grenzfunktion (80) lese man im Lehrbuch von Czuber
[5] die Ableitung der Normalform der Brumsschen @-Reihe nach.

Die dargelegte Methode zur Bildung von stetigen Haufigkeits-
funktionen lisst sich nach Belieben auf Verbindungen von rationalen
und transzendenten Hilfsfunktionen ausdehnen.

Das Problem, eine vorliegende statistische Zahlenreihe an eine
stetige F'requenzfunktion anzupassen, ist seiner Natur nach vieldeutig
und kann nur mit mehr oder weniger Willkiir gelost werden. s
kommt in erster Linie darauf an, welche Funktion ¢(z) als ideale
Normalform betrachtet werden darf, und wie viele charakteristische
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Mittelwerte oy; ay; 05; ... der Grundreihe mit den entsprechenden
Mittelwerten der idealen stetigen Verteilung tibereinstimmen sollen.
Sollen die beiden Rethen in den Werten von ¢, =0 und o, iber-
einstimmen, so geniigt meistens eine symmetrische Verteilungs-
funktion mit einem wesentlichen Parameter, z. B. die Gaufsche
Héufigkeitsfunktion

Ist aber die Anpassung ungeniigend, sei es, dass die hoheren
Mittel o4; 045 ... der beiden Reihen zu stark auseinandergehen, oder
sei es, dass die Grundreihe eine ausgesprochene Asymmetrie aufweist,
S0 muss zu einer schmiegsameren idealen Verteilungsfunktion Zuflucht
genommen werden.

Die mathematische Erforschung von statistischem Zahlenmaterial
erfasst stets aufs neue weitere Wissensgebiete und stellt immer weiter-
gehende Anforderungen an die Mathematik; sie legt den Mathe-
matikern die Aufgabe auf, dafiir zu sorgen, dass den Statistikern eine
ausreichende Auswahl von brauchbaren und anpassungstihigen idealen
Haufigkeitsfunktionen, von Standardverteilungen, zur Verfiigung ge-
stellt werden konnen.

Es seien mir zum Schluss noch zwei Bemerkungen methodologi-
scher Natur erlaubt: die erste betrifft den Ubergang von den Sigma-
zu den Integralsummen, wihrend sich die zweite mit der Begriindung
und Ableitung des Gaufschen Fehlergesetzes befasst, wie man sie
in den meisten Lehrbiichern findet. <s )

,U.’E

In dieser Abhandlung war zuerst von einer Funktion ¢ (x) = i

die Rede, die nur fiir ganzzahlige Werte von =z existiert. Es empfiehl
sich daher, ihre Definition so zu erweitern, dass die Funktion an jeder
Stelle des betrachteten Zahlenbereiches einen Sinn erhilt. Wir er-

1
kliren deshalb, fir jedes ganzzahlige x und jedes h < 5 soll

p(zdh) = (i) o

sein. Dag Bild der so erweiterten Funktion ist im Intervalle von

1. L
m—~§- bis = -+ o eine Strecke von der Linge 1 im Abstande ¢ (%)
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von der X-Achse. Dag Bild der Funktion in ihrem ganzen Verlauf
ist nicht mehr ein System von Punkten, sondern eine Treppenlinie.
Wir fassen nun den algebraischen Ausdruck ¢ (z) - (z— &)* nicht mehr
als das Moment der Héaufigkeitszahl ¢(z), sondern als das Flichen-
moment des Rechteckes ¢(z)-1 in bezug auf die bestimmte Gerade
¢ =& auf. Der Schwerpunkt dieser Rechtecksfliche hat die Ent-
fernung z—¢& von der fraglichen Bezugsachse. Im Sinne dieser er-
weiterten Definition wiirde die Gleichung (22) bzw. (23) besagen

Gesamtfliche mal Mittelwert uf gleich Summe der
Flachenmomente k-ten Grades der Elementarrechtecke.

Im Falle einer stetigen Funktion ¢(z) ist die Hohe des Elementar-
rechteckes ¢ (z), seine Breite dz und die Entfernung des Schwerpunktes
von der Bezugsachse, £—&. Der Satz iiber die Ilichenmomente
lautet sinngemiss in allgemeiner Form:

—+ oo

i p@)dz = [(o—8Fp(a)ds.

Insbesondere ist fiir & = 0 analog Gleichung (18):
+ o0 .
ok [p(x)de = [ " p(x)dzx.

Die zahlenmiissige Erfassung von Dingen, sei es durch Z&hlung
oder Messung, ist die Voraussetzung einer jeden Verteilungstafel oder
Haufigkeitsfunktion. Ob es sich dabei um Gegenstinde oder Fr-
scheinungen mit Wahrscheinlichkeitscharakter handelt oder nicht,
1st an sich unwesentlich. Wie gezeigt wurde, konnte tatsdchlich das
Gaufische Frequenzgesetz ohne irgendwelche hypothetischen Annahmen
iber die mehr oder weniger grosse Wahrscheinlichkeit von Fehlern
dieser oder jener Art abgeleitet werden. Aus dieser Untersuchung
scheint mir also klar hervorzugehen, dass Fragen iiber Hiufigkeits-
funktionen ohne Verquickung mit dem Wahrscheinlichkeitsbegriff
gelost werden konnen, und zwar, wie es im Kern des Problems liegt,
rein formal-mathematisch.



Graphische Darstellung der Mittelwerte i,

6 2\*
Hiufigkeitsfunktion (Urnenschema): ¢(z) = ( ) (—3—) .
T

Muttelwerte o), nach Formel (19):
6 — oy = 3,6;
30 — 11 ¢ + o3 = 10,8;
120 — 74 ¢, + 15 65 — o} = 25,92;
860 — 842 ¢, + 119 02 — 18 ¢® + o} = 46,656;
720 — 1044 ¢, + 580 of — 155 6% -+ 20 0 — of = 55,9872;

720 — 1764 0, + 1624 2 — 785 ¢ + 175 0 — 21 0} + o = 83,59232.
¥ 2 3 4 5 6

0, = 2,4; 0f =1T,2; o5 = 24,48; o} = 91,296; of = 865,9328;
of —1554,98112. o, — 2,68; o; = 2,90; 0, = 8,09;

o5 = 3,26; o4 = 8,40.

Mattelwerte p, nach Formel (23):
Citopuy + & =24;
ot Uy — &2+ 48E—T92 =0;

Dl B —T728 4 21,6 &—24,48 = 0;

o

D opg— 4+ 9,6 8 — 43,2 &2 | 97,928 — 91,296 — 0;
Dl B 128 T2 85— 0448 2 4 456,48 £ — 965,9328 = 0;

(91

Q@ S 9 S S

o b — £6 - 14,455 — 108 £* 4 489,6 & — 1369,44 £2
1+ 2195,5968 & — 1554,98112 = 0.



— 255 —

Die 6 ersten u,~-Kurven der binomialen Hiufigkeitsfunktion

v v = (2)(6)

+5

+.2

Yy
4
b \\
N\

2.4

E—=1 ¢=9 (=8 §=4 E=5 ¢E=6

v
|
o
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