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Beitrag zur Theorie
der Häufigkeitsfunktionen

Von //. Kreis, Winterthur

Im ersten Teil dieser Arbeit werden die binomialen Verteilungen
als Beispiele von symmetrischen und asymmetrischen unstetigen
Funktionen behandelt. Neu ist dabei die Benutzung eines Operators,
durch den die formelmässige Ableitung von Mittelwerten und Summen
von Potenzen Ann Abweichungen wesentlich erleichtert wird. Daran
anschliessend wird im zweiten Teil eine Methode zur Bildung von
symmetrischen und asymmetrischen stetigen Verteilungsfunktionen
entwickelt. Die Methode gestattet, auf ungezwungene Art das Gauß-
sehe Fehlergesetz und die Brunssche Verteilungsfunktion durch Grenz-

prozess zu begründen.
Zur Veranschaulichung der Entstehung einer binomialen Ver-

teilung wollen wir uns s 6 Urnen denken. Diese enthalten je a 3

weisse und cro 2 schwarze, somit V a (1 + ü) 5 Kugeln. Aus
jeder dieser s Urnen wird je eine der JV Kugeln herausgegriffen, so
dass eine Zusammenstellung von teils weissen, teils schwarzen Kugeln
zum Vorschein kommt. Im ganzen können N* 5® oder 15 625

Ziehungen unterschieden werden, die sich je nach der Anzahl weisser
und schwarzer Kugeln in 7 Klassen unterbringen lassen.

Ordnungs- Anzahl der Kugeln Häufigkeit
zahl weisse schwarze absolut relativ

0 6 0 729 0,046 656
1 5 1 2 916 0,186 624
2 4 2 4 860 0,311 040
3 3 3 4 320 0,276 480

4 2 4 2 160 0,138 240
5 1 5 576 0,036 864
6 0 6 64 0,004 096

Total 15 625 1,000 000
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Die absoluten wie auch die relativen Häufigkeitszahlen dieses

Urnenspieles liefern zwei asymmetrische, unstetige Yerteilungs-
funktionen von der Form

p(s) Ca»^, (1)

wo definitionsgemäss r eine beliebige rationale Zahl, (7 ein an sich

unwesentlicher konstanter Faktor, a und s ganzzahlig sind. Das

veränderliche Argument cc der Funktion (1) ist die Ordnungszahl der

betreffenden Klasse; a: tritt hier zugleich als Exponent von r und als

Index des Binomialkoeffizienten ^^ auf und kann infolgedessen nur

einen der Werte 0; 1; 2 usw. bis s annehmen. Die Summenfunktion
der Verteilung (1) wird durch die Gleichung definiert

+ (2)

Diese Summe stellt den Umfang der Reihe (1) dar. Über die un-
wesentliche konstante Zahl (7 lässt sich so verfügen, dass entweder

gleich IV® oder 1 oder gleich irgendeinem anderen zweckmässigen Wert
wird. Im folgenden setzen wir (7a® 1, so dass der Umfang der Reihe

So(s) (1 + t>)' (3)

und die Verteilungsfunktion selbst

9>(®) (*)

sein werden.

Wir denken uns nun sämtliche V® Kugelzusammenstellungen nach

den s + 1 Klassen geordnet und zählen die vorkommenden schwarzen

Kugeln. Die Klasse (F) enthält <y(a;) • ai, die ganze Tafel jS^ Sç?(a;) • #

schwarze Kugeln. Eine Zusammenstellung enthält infolgedessen im
Durchschnitt schwarze Kugeln. Im obigen Beispiel ist

(l + 21,43347; ^Q • (^) • œ 51,44033

und : Sq 2,4, d. h. die mittlere Anzahl schwarzer Kugeln, die

in den 15 625 verschiedenen Ziehungen auftreten, ist gleich 2, 4.

Zur übersichtlichen Darstellung der Summen der höheren Potenzen
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2 9? (a)-a* (5)

wollen wir den Operator zl folgendermassen definieren

d/
Zl/(r) u —

av

zl*/(«) ^7(«))- (6)
Es folgt hieraus

zl<7-/(v) <7-Zl/(ü)

^(/(®) + 0(»)) ^/(») +
zl a: • ©*

zlV a:® •©*

zlV œ*-tf. (7)

Aus (7) ergibt sich umgekehrt

9>(œ) œ* Q «*as* zl* Q »* zlV(z) (8)

und es kann also (5), wie folgt, geschrieben werden

S»=2^9>(*) ^(l + B)'- (9)
Es ist somit z. B.

Si J(1 + »)' «(1+ ©)-*•«.

Sg JSi s(s — l)(l + ©)-V + «(l+ »)-*©.

Um eine allgemeine Beziehung zwischen den Summen $3 usw.
zu erhalten bilden wir

(s — zl) (1 + »)* s (1 + »)' — s (1 + »)*-* s (1 + »)*-*
oder

*(1 + ©)* — kl (1 + »)• s(l + ©)*-i
also

«(! + »)* — -Si «(l + ®)^ (10)
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Multipliziert man (10) beidseitig mit s — 1—/], so findet man

s(s-l)(l+®)'-(2«-l)Si + Sa s(«-l)(l+»)'"*; (11)

ferner, wenn man mit s — 2 — ZI multipliziert

«(« —l)(s —2)(1 +®)' — (Bs« —6s+2)Sj+ (8s —8)Sg —Sg

s(s —l)(s —2)(l+c)'-8. (12)

Aus (10) lässt sich die Summe aus (11) Sg und aus (12) S3 er-
mittein.

Will man für die allgemeine Summe 5^ einen formelmässigen
Ausdruck, so geht man von dem symbolischen Produkt aus

(s —fc+1 —J)(s —fc —zl)...(s —J)(l + ®)'

s(s — 1) (s — fc+l)(l+ »)*"*.

In der Entwicklung des Produktes linker Hand ersetzt man nach (9)

Ausdrücke von der Form ZI' (1 -f- ®)® durch £, und erhält eine Gleichung

von der Gestalt

/?>(1 + ®)'-/?>Si+ /<*>$,+ ••• + (-W^ /W(l + «)•"*, (13)

in welcher — /1 ; /ä - - - ; (—1)''/^ Polynome in s bedeuten, die als

Koeffizienten des nach f entwickelten Produktes

(s — 1 — f) (s — fe — tf) (s — 1) (14)

auftreten. Ist insbesondere fc s +1, so hat das Produkt (14) die

Form
(0 —f)(l—<)(2 —*) (s — *)•

Das absolute Glied /„ verschwindet und die Gleichung (13) geht in
die /widamenfofe Gfefcteng über

-A'+«Si + ^+«Sg- + +(_l)«+iS,^ 0. (15)

Da allgemein nach Gleichung (9)

Zl Sj. S^+i

ist, so gilt zwischen s + 1 aufeinander folgenden Potenzensummen
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Nil ^i+2'" ^+3>' •••Sj+s+i die Beziehung

-/nn+I+-...+(-1)'+^,+.+, o, (i6)

die für jedes beliebige ganzzahlige Z gültig ist.

Im Falle s= 6 lautet die Gleichung (16) in symbolischer Schreibart

— 21 (1—d) (2 — 21) (8 — 21) (4 — 21) (5 — 21) (6 — 21)S, =0, (17)

wobei unter ZPiS) die Summe zu verstehen ist.

Die Glieder der Gleichungen (13), (15) und (16) lassen sich homogen
machen, wenn die Mittelwerte o-£ der Potenzensumme folgender-
massen definiert werden

'S» o'o ~ So

für Ä 1; 2; 3;
also ist

CTq 1

o* S*:S„ S*:(l+»)'. (18)

Die Gleichungen (13) und (16) lauten nun

/(No - /Ni + /N* -•••+(- 1)*/N* /?> (1 + ")"* (19)

-NNîî + /NMÎ2 -••+(- 1)'+Mî.'îî ». (20)
/

Während wir bis hieher die Summen S), der Momente fc-ten
Grades der Elemente a; der Zahlentafel in bezug auf das Anfangs-
bzw. niedrigste Argument o ermittelt haben, so wollen wir im Folgenden
die Momente ç? (a;) (a: — I)'' in bezug auf eine andere irgendwie definierte
Vergleichszahl £ berechnen. In unserem Urnenspiel könnten beispiels-
weise für £ folgende Werte in Betracht fallen:

£ 6, als Endglied der Ordnungszahlenreihe ;

£ 2, als Ordnungszahl mit der grössten Häufigkeit 4 860 bzw.

0,311 040;

£ 3, als Ordnungszahl in der Mitte;

£ 2, 4, als Mittelwert aller a;-Argumente.
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Für die Berechnung dieser neuen Momentensummen lassen sich mit
Hilfe des Operators zl allgemeine Formeln aufstellen, in welchen die schon

berechneten Grössen Sj. bzw. Oj. als Hilfszahlen Verwendung finden.

Auf Grund der Definitionsgleichung (6) für zl findet man

(Zl — I) F® «F* — £ i)® (a;—£) F*

(Zl — £)« F® (zl — £) (zl — £) (œ — £)* ®»

und allgemein
(d —f)V (œ —£)V. (21)

Infolgedessen kann man schreiben

(Zl - £)* (1 + »)' 2 (zl - £)* Q 2 (*) «*(®- *)* •

Bezeichnen wir den Mittelwert aller Momente fc-ten Grades der Ver-

teilungstafel mit setzt man also

A** S9>(®)(® — f)*: (22)

so gilt die /wndamenfofe GZeic/mngr

(1 +»)V* (zJ —f)*(l +®)'- (28)

Linker Hand ist (1 + ®)* ein gewöhnlicher Faktor, mit welchem der

Mittelwert multipliziert wird; rechter Hand hingegen bedeutet

(1 -|- F)® die Funktion von auf welche die Operation (zl — £)* aus-

zuführen ist.

Für fc 0; 1; 2 und 3 lautet insbesondere Gleichung (21)

k 0 (l+ü)V° (zl — £)»(1+®)*
oder ^ 1

oder nach Gleichung (18) //„ 1

fc l (l+„)»^ (z|_£)(l+„)«
oder (l+»)*^ Si — £(1+F)'
oder nach Gleichung (18) ^ cr^ — £

fc=2 (l+t>)'/4=(zl —f)»(l+e)'
Sg —2fSi + ?(l+®)'

oder nach Gleichung (18) °2 — 2 £ + £2
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fc 3 (1 + ®)' erg (d — I)» (1 + u)»

S3-3|S2 + 3|2 S^_|8 (1 + ^).

oder nach Gleichung (18) ^ <jg — 3 £ of + 3 £^ 04 — |®.

Schreibt man symbolisch

tà)* «Ê,

so lässt sich die letzte Gleichung symbolisch auch schreiben

Es leuchtet unmittelbar ein, dass man, symbolisch verstanden,
allgemein schreiben kann

In der Fundamentalgleichung (23) können wir die Grösse £ als

veränderliche Abszisse und den zugehörigen Mittelwert ^ als Ordinate
des laufenden Punktes auf einer Kurve G^ betrachten. Die Gleichung
von C,

(1+®)V* (J-£)*(1+®)» (23)

erlaubt uns, ihre Tangenten leicht zu bestimmen, indem wir sie nach
£ differenzieren. Es ist nämlich

(i+®)' =- *^ ^ '
d£

welche Gleichung wir nach Gleichung (23) vereinfachen können in

e / \ fc-1
0/";c / A-i \ ^24)
d£ V

Die Gleichungen der Kurven Gjj Gg und ^3 lauten nach Gleichungen
(23) und (24) wie folgt:

Gi : 04 £,

jVi ^dl
Gj ist somit eine fallende Gerade mit der Richtungszahl —1, welche
die Z-Achse im Punkte £ 04 schneidet.

16
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Cg: ^2 of — + £j>

<5£ \^2,/

Cg ist eine gleichseitige Hyperbel, deren imaginäre Achse mit der

X-Achse zusammenfällt. Die Scheitel der Kurve oder das Minimum

von of findet man, indem man gleich Null setzt. Das gibt /^= 0
(5 ^und dementsprechend | o^.

Dieser Schnittpunkt (o^; 0) ist übrigens der Mittelpunkt der Hyperbel,
durch welchen die zweite Asymptote geht.

^ _ AM*
<51 \ ^3 y

Der Differentialquotient von /tg nach f ist immer negativ, d. h. die Kurve
Dg fällt ununterbrochen von -f-oo bis —°o. Sie schneidet die X-Achse

nur einmal, und zwar orthogonal, denn für ^3 0 wird —-— ^.01
Diesem Schnittpunkt ,«3 0 entsprechend hat die Kurve O4

ihre tiefste Stelle über und ihre höchste Stelle unter der X-Achse.

Allgemein erkennt man leicht, dass sämtliche Kurven geraden
Grades Dg; C4; C^; Cgj. nur zwei reelle Asymptoten haben, welche

mit den Asymptoten der gleichseitigen Hyperbel Dg zusammenfallen.

Sämtliche Kurven ungeraden Grades Cg; Cg; C?; C^+i haben

nur eine reelle Asymptote, welche mit der Geraden + I
zusammenfällt.

Die Schnittpunkte dieser einteiligen, fallenden Kurven C^; Cg;

C5 usw. mit der X-Achse liefern die tiefsten (höchsten) Stellen über

(unter) der X-Achse der Kurven Cg; C^; Cg usw. Sie bestimmen die

Minima der Mittelwerte ,itf; usw. Näheres über diese Kurven-
scharen findet sich in anderer Darstellung bei Lipps [7].

Im Anhang gebe ich für die Verteilungsfunktion des eingangs be-

sprochenen Urnenschemas ^ ^ die vollständigen Gleichungen

der 6 ersten C-Kurven samt deren graphischer Darstellung an.
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Zur Beurteilung der Struktur einer Zahlenreihe 99(2:), d. h. zur
Kennzeichnung der Verteilung oder Streuung ihrer Ordnungszahlen a;

über den ganzen in Betracht kommenden Zahlenbereich sind diese
Mittelwerte //,. charakteristisch. Je mehr solche Mittelwerte vorliegen,
desto besser lässt sich die Streuung charakterisieren und messen. Bei
allen Untersuchungen über solche Mittelwerte und Streuungsmass-
zahlen von statistischen oder sonstigen Zahlenreihen stösst man aber
unvermeidlich immer wieder auf die Mittelwerte n'' der Potenzen
der Ordnungszahlen in bezug auf ein an sich willkürliches ursprüng-
liches Zählsystem. Diese Grundzahlen sind von funda-
mentaler Bedeutung. Namentlich mit Bücksicht auf die stetigen Ver-
teilungsfunktionen, deren Einführung sich geradezu aufdrängt, muss
die Bolle dieser Grundzahlen hervorgehoben werden.

In der zweiten Begründung seines Eehlergesetzes betrachtet
Gcrass [6] die 3 Integrale

+W +oo +oo

J 99 (te) cZa: ; £99 (2;) da;; J 2^99(2;) da;,
-W -00 -00

in denen mit 2; der Dehler, mit 99(2:) seine relative Häufigkeit be-
zeichnet ist. Das erste Integral gibt die Wahrscheinlichkeit, dass

irgendein Fehler zwischen den Grenzen —m und + w liegt; es wird,
wenn die Grenzen — 00 und c« werden, welches auch die Funk-
tion 99(2:) auch sei, den Wert 1 annehmen müssen. Das zweite Integral
stellt das Mittel aller möglichen Fehler oder den mittleren Wert der
Grösse 2; dar und ist immer gleich Null, sobald zwei gleiche, aber mit
verschiedenen Vorzeichen versehene Fehler dieselbe Häufigkeit haben;
ein von Null abweichender Wert würde anzeigen, dass die Beobach-

tungsreihe noch einen konstanten Fehler enthält. Das dritte Integral
oder der mittlere Wert des Quadrates aF erscheint am geeignetsten,
die Unsicherheit von Beobachtungen allgemein zu definieren und zu
messen, so dass von zwei Beobachtungsreihen, die sich hinsichtlich
der Häufigkeit der Fehler unterscheiden, diejenige für die genauere
zu halten ist, für welche das Integral den kleineren Wert erhält. Vgl.
Bawsc/mze/er, Ausgleichungsrechnung [6].

Indem wir uns nun an die Eigenschaften der binomialen Ver-
teilungen anlehnen, wollen wir unter einer stetigen Häufigkeits-
funktion jede reelle, positive Funktion 99(F) mit folgenden Eigen-
schaffen verstehen:
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1. sie soll für alle Werte von x zwischen —und + oo stetig
und endlich sein;

-(- oo

2. das Integral ç?(cc) ûïx, wo fc eine beliebige, vorgegebene
— oo

ganze Zahl bedeutet, soll endlich sein.

Diese Bedingungen genügen noch nicht, um die unbekannte Dunk-

tion 9>(x) vollständig zu definieren. Aus den gestellten Borderungen

folgt aber, dass notwendigerweise

lim a;* 9?(o;) —0

sein muss, wenn x —± oo wird, und dass, wenn das Integral

-)- oo

Sj. J x^ 93 (x) da;
— oo

endlich ist, die Integrale S„; ebenfalls endlich sein werden.

Diesen Borderungen genügen aber unzählige Bunktionen, von denen

wir im Bolgenden nur ein Paar Beispiele geben wollen.

Wir fangen an mit rationalen Bunktionen von der Borm

^»(s)
93 (x)

fem (®)

Als Nenner Qgm (x) nehmen wir ein reelles Polynom in x vom Grade

2m, das keine reellen Nullstellen hat und immer positiv ist. Wegen

der Beschaffenheit der Nullstellen kommt als Nenner ein Polynom

ungeraden Grades nicht in Betracht. Als Zähler P„(x) nehmen wir

ein reelles Polynom von x, das niemals negativ werden darf. Die Be-

dingung für das endliche Integral Sj. kann bekanntlich nur dann erfüllt

werden, wenn im Integranden x* P„ : Qgm der Grad 2m des Nenners

den Grad n + fc des Zählers um mehr als 1, also um mindestens 2

übertrifft.
Eine einfache rationale Punktion dieser Art ist beispielsweise

(7
93 (x)

x* + l
Durch Partialbruchzerlegung lassen sich die Integrale S<> $2

in geschlossener Borm bestimmen, während wegen der identischen

Gleichung 9? (-j- x) 93 (—x), Null ist. Man findet
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'dz 1/2, l + xl/2 + ad I/2 I/2
«f+T=TTWrflT^ + T 'S W2 +1) + V^ tg (« Ka -1)

und
'

2?da; I/2, 1 —xl/2 + ^ }/2 1/2

V+T "T'"TTiyf+^ + T "°'e + T° '* -i) '

Somit

'S'o

'?2

+00

/* 0 öt 2; TT C

«*+ 1

Cad da; arC

ad + 1 |/ 2

Um eine normierte Verteilung zu erhalten, wählen wir den Wert
der Konstanten (7 so, dass S„ 1 wird, also

(7
TT

Die Häufigkeitsfunktion heisst dann

<*>

Die Punktion (25) ist die reziproke Funktion der Parabelfunktion
vierten Grades

Das Bild der Häufigkeitsfunktion (25) ist die reziproke Kurve
dieser Parabel, nämlich das bekannte Profil einer Glocke. Die maximale
Ordinate für a; 0 ist gleich <p (0) |/2 : ^ 0>45 • Die Abszissen
der beiden reellen Wendepunkte genügen der Gleichung

ad 0,6,

also a; ± 0,88 und j/ 0,28.
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Die Integrale S^; S4; sind sämtlich unendlich gross.

Hingegen führt im allgemeinen die Parabelfunktion

(1 + « a:)2 + (6 a; + c a^)2,

die nicht mehr gerade ist, zu einer asymmetrischen stetigen Häufig-
keitsfunktion

C
a?(a?) — (26)

(1 + aa;)s + (&x + ca^)2

Die Integrale $4 und S 2 sind endlich; S3; S4 usw. unendlich.
S4 ist aber nicht unbedingt gleich Null.

Sollen nun die Integrale Sj, bis zu einem unbeschränkt hohen

Index fc endlich sein, so hat man an Stelle von Polynomen trans-
zendente Funktionen zu Hilfe zu nehmen. Am nächsten kommen die

Funktionen in Betracht, die kettenlinienartige Bilder liefern; bei-

spielsweise

/,M /DDLtxFL j, (27)

a® n

/*(*) +g j e^, (28)

in welchen n eine natürliche Zahl, a und & reelle Konstanten bedeuten

sollen. Die Funktionen
<7 C

934(0;) und 932(F)
/i(») /a(®)

besitzen offenbar die von uns geforderten Eigenschaften von stetigen

Häufigkeitsfunktionen, gleichgültig welche Werte n erteilt wird.

Ausserdem sind für beliebig hohe Werte von fc die Integrale

-f- 00 -f-00

J a^9?i(a;) da: und J o^ 933(0;) (2a:

endlich.

Die Häufigkeitsfunktion 934(03) ist symmetrisch in bezug auf das

Argument a; 0, d. h. es ist für jedes a: identisch

9>i(+®) 9?i(— »)•
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Die zweite Häufigkeitsfunktion 993(2:) ist im allgemeinen asym-
metrisch: es gibt keinen festen Wert c derart, dass identisch

993(0 + 2:) 993(0 — 2;)
ware.

Da die Reihenentwicklungen der Exponentialfunktionen in +
beständig konvergieren, können wir schreiben

wo R eine endliche Grösse bedeutet, so dass

/ „2^.2 ü\" «+=
lim /++ lim 1 + — + —J e 2

n-+oo n-^-00 \ •4't' /
und

lim 99j («) G ß 2 (29)
71—^-00

Wir erhalten in diesem Falle das Gaw/ische Häufigkeitsgesetz als
Grenze der Verteilungsfunktion 99+2:).

Auf analoge Art erhalten wir im Falle der Funktionen ^(2;) und
993(2:)

a2a:2

lim /g(2;) e~2~

1 71—00und
a2a;2

lim 993 (a:) G e 2 + (30)
n->-oo

Bezüglich dieser Grenzfunktion (30) lese man im Lehrbuch von Gm&er

[5] die Ableitung der Normalform der Bnmsschen 0-Beihe nach.
Die dargelegte Methode zur Bildung von stetigen Häufigkeits-

funktionen lässt sich nach Belieben auf Verbindungen von rationalen
und transzendenten Hilfsfunktionen ausdehnen.

Das Problem, eine vorliegende statistische Zahlenreihe an eine

stetige Frequenzfunktion anzupassen, ist seiner Natur nach vieldeutig
und kann nur mit mehr oder weniger Willkür gelöst werden. Es
kommt in erster Linie darauf an, welche Funktion 99(2;) als ideale
Normalform betrachtet werden darf, und wie viele charakteristische
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Mittelwerte oy; Ugl Grundreihe mit den entsprechenden
Mittelwerten der idealen stetigen Verteilung übereinstimmen sollen.

Sollen die beiden Reihen in den Werten von oy 0 und oy über-
einstimmen, so genügt meistens eine symmetrische Verteilungs-
funktion mit einem wesentlichen Parameter, z. B. die Gaw/lsche

Häufigkeitsfunktion

[/rc

Ist aber die Anpassung ungenügend, sei es, dass die höheren

Mittel erg; oy; der beiden Reihen zu stark auseinandergehen, oder
sei es, dass die Grundreihe eine ausgesprochene Asymmetrie aufweist,
so muss zu einer schmiegsameren idealen Verteilungsfunktion Zuflucht

genommen werden.
Die mathematische Erforschung von statistischem Zahlenmaterial

erfasst stets aufs neue weitere Wissensgebiete und stellt immer weiter-

gehende Anforderungen an die Mathematik; sie legt den Mathe-

matikern die Aufgabe auf, dafür zu sorgen, dass den Statistikern eine

ausreichende Auswahl von brauchbaren und anpassungsfähigen idealen

Häufigkeitsfunktionen, von Standardverteilungen, zur Verfügung ge-
stellt werden können.

Es seien mir zum Schluss noch zwei Bemerkungen methodologi-
scher Natur erlaubt: die erste betrifft den Übergang von den Sigma-

zu den Integralsummen, während sich die zweite mit der Begründung
und Ableitung des Gaii/lschen Fehlergesetzes befasst, wie man sie

in den meisten Lehrbüchern findet. / \

In dieser Abhandlung war zuerst von einer Funktion 97 (cc) I jü
die Rede, die nur für ganzzahlige Werte von a; existiert. Es empfiehlt
sich daher, ihre Definition so zu erweitern, dass die Funktion an jeder
Stelle des betrachteten Zahlenbereiches einen Sinn erhält. Wir er-

klären deshalb, für jedes ganzzahlige x und jedes < — soll
2

9?(a;±/i) -v*

sein. Das Bild der so erweiterten Funktion ist im Intervalle von

1.1.a: — — bis a; + — eine Strecke von der Länge 1 im Abstände 9? (Ü
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von der X-Achse. Das Bild der Funktion in ihrem ganzen Verlauf
ist nicht mehr ein System von Punkten, sondern eine Treppenlinie.
Wir fassen nun den algebraischen Ausdruck 93 (a:) • (a;— !)* nicht mehr
als das Moment der Häufigkeitszahl 93(0:), sondern als das Fdäc/ten-

moment des Rechteckes 99 (m) -1 in bezug auf die bestimmte Gerade
a; I auf. Der Schwerpunkt dieser Rechtecksfläche hat die Ent-
fernung a;— £ von der fraglichen Bezugsachse. Im Sinne dieser er-
weiterten Definition würde die Gleichung (22) bzw. (23) besagen

Gesamtfläche mal Mittelwert //(! gleich Summe der
Flächenmomente fc-ten Grades der Elementarrechtecke.

Im Falle einer stetigen Funktion 99 (a;) ist die Höhe des Elementar-
rechteckes 99 (a;), seine Breite da; und die Entfernung des Schwerpunktes
von der Bezugsachse, a; — f. Der Satz über die Flächenmomente
lautet sinngemäss in allgemeiner Form:

-f-00 +00

/ 99(m) da; / (a; — !)*ç>(a:) da;.
—00 —00

Insbesondere ist für | 0 analog Gleichung (18) :

-f-00 -f-00

J 99 (a;) d a; aP'
99 (a;) d a;.

—00 —00

Die zahlenmässige Erfassung von Dingen, sei es durch Zählung
oder Messung, ist die Voraussetzung einer jeden Verteilungstafel oder

Häufigkeitsfunktion. Ob es sich dabei um Gegenstände oder Er-
scheinungen mit Wahrscheinlichkeitscharakter handelt oder nicht,
ist an sich unwesentlich. Wie gezeigt wurde, konnte tatsächlich das

Gemische Frequenzgesetz ohne irgendwelche hypothetischen Annahmen
über die mehr oder weniger grosse Wahrscheinlichkeit von Fehlern
dieser oder jener Art abgeleitet werden. Aus dieser Untersuchung
scheint mir also klar hervorzugehen, dass Fragen über Häufigkeits-
funktionen ohne Verquickung mit dem Wahrscheinlichkeitsbegriff
gelöst werden können, und zwar, wie es im Kern des Problems liegt,
rein /ormaZ-mafAematiscft.
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Graphische Darstellung der Mittelwerte ^

Häufigkeitsfunktion (Urnenschema): 99(«)
2 y
3/

Mittelwerte er,, nach Formel (19):

6 — 04 3,6;

30 — 11 04 + of 10,8;

120 — 74 04 + 15 o* — er® 25,92;

360 — 342 a,, + 119 o| — 18 of + or* 46,656;

720 — 1044 o-i + 580 0® — 155 of + 20 er* — cr* 55,9872;

720 — 1764 ai + 1624 er* — 735 ojj _|_ 175 ^ — 21 u® + er® 38,59232.

04 2,4; oij 7,2 ; 0« 24,48; tr* 91,296; o« 365,9328;

Ug 1 554,98112. 04 2,68; 04 2,90; 04 3,09;

Ug 3,26; Ug 3,40.

Mittelwerte ^ nach Formel (23) :

Ci- 7h. + f 2,4;

C^: ^ —+ 4,8f —7,2 =0;
Ü3• /4 + I® — 7,2 + 21,6 1 — 24,48 0;

CV ^ + 9,6 I» — 43,2 _g 97,921 _ 91,296 0;

Ug: ^ __ 12 |4 4. 72 |3 _ 244,8 + 456,48 | — 365,9328 0;

Ug: t«® — f« + 14,4|» — 108 f* + 489,6 |« — 1369,44 f* +
+ 2195,5968 | — 1554,98112 0.
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Die 6 ersten ^-Kurven der binomialen Häufigkeitsfunktion

1 0 | 1 1=2 1 3 1 4 | 5 | 6
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