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Verteilungsfunktionen und ihre
Äuszeichnung durch Funktionalgleichungen

Von B. HaZ/er, Bern

Past alle Wissenschaften bedienen sich in neuerer Zeit mehr und
mehr statistischer Methoden in ihren Forschungsarbeiten. Ent-
sprechend dieser wachsenden Bedeutung werden diese Methoden
ständig ausgebaut und weiterentwickelt und haben heute einen be-
merkenswerten Stand erreicht. Eine der häufigsten Aufgaben besteht
nun darin, die durch die statistischen Erhebungen erhaltenen Daten
für die Untersuchung in geeigneter Form darzustellen. Dies ist in
vielen Fällen die mathematische Funktion. Die beträchtliche Zahl
verwendbarer Funktionen und die grosse bestehende Freiheit bei
deren Auswahl sind aber nicht immer von Vorteil, da oft gebräuchliche
und einfache Funktionen dort verwendet werden, wo eine andere
viel zweckmässiger wäre. Eine Aufsuchung der geeignetsten Funktion
ist aber dadurch erschwert, dass das Wissensgut in der Literatur
stark zerstreut und oft nicht leicht auffindbar ist. Die vorliegende
Arbeit stellt eine Zusammenfassung dieses Stoffes dar im Hinblick
auf das Problem, für gewisse Funktionalgleichungen, welche in vielen
statistischen Problemen von grundlegender Bedeutung sind, explizite
Lösungen finden zu können.

I. Verteilungsfunktionen

1. Definition der Verteilungsfunktion

Eine Funktion F(r) wird als Verteilungsfunktion bezeichnet, wenn
sie die folgenden Bedingungen erfüllt:

aj F(F) ist im Intervall — oo < a; < oo definiert;

b) F(af) ist monoton nicht abnehmend, und es gilt

F (— oo) lim F(a;) 0 und
£->- -oo

F (co) limF(a;) 1.

X-*- oo

7
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F(a;) besitzt also nur Unstetigkeiten erster Art, d. Ii. Sprünge. Man

betrachtet zwei Verteilungsfunktionen, die sich nur durch die Funk-
tionswerte in den Unstetigkeitsstellen unterscheiden, nicht als ver-
schieden und normiert deshalb die Verteilungsfunktionen durch die

Bedingung
[ F(x + 0) lim F(a; + e)

1
-r,, !-«-o,f>o/t?/ i n\ i 7?//» n\\ ;F(P) — (F(x + 0) + P(a; — 0))

F(a; — 0) lim F(a; — e)
£ —0, £ > 0

Die aufgeführten Grenzwerte existieren als Folge der Monotonie

(einseitige Stetigkeit). Vgl. C'arathéodory 1, S. 150 *).

Die Menge der Sprungstellen einer Verteilungsfunktion wird ihr
Punktspektrum P genannt, während die Menge der Stellen, in deren

Umgebung die Verteilungsfunktion nicht konstant ist, ihr Gesamt-

spektrum 5' heisst:

icP: F(a; + 0) *— 0)

£C C 5' : P(.r -)- t) f F(i — e) (e > 0).

Das Gesamtspektrum einer Verteilungsfunktion enthält stets

mindestens einen Punkt und ist abgeschlossen, während das Punkt-

spektrum einer solchen Funktion eine nicht notwendig abgeschlossene,
höchstens abzählbare Teilmenge des Gesamtspektrums darstellt, die

auch leer sein kann (Wintner 2).

2. Arten von Verteilungsfunktionen

Man unterscheidet folgende Arten von Verteilungsfunktionen:

oj Totalstetige Verteilungsfunktionen:
Für diese Funktionen existiert zu F(;r) eine im Lebesgueschen

Sinn (Lévy 6, S. 31) integrierbare Dichtefunktion /(sc) derart, dass

•?'(») //(«/)
— CO

Die Dichtefunktion erfüllt mit Bücksicht auf die der Verteilungs-
funktion auferlegten Bedingungen folgende Vorschriften:

*) Die fett gedruckten Zahlen verweisen auf das Literaturverzeichnis.
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1. /(s) ist definiert in —oo < a; < oo.

2. /(a;) j> 0.

3. /(a;) ist in jedem endlichen Intervall im Lebesgueschen Sinn
integrierbar.
oo

4. | /(a;) da; 1.
— oo

Da Dichtefunktionen, welche sich nur in den Punkten einer
Menge vom Masse Null unterscheiden, zur gleichen Verteilungsfunktion
-F(a;) führen, betrachten wir derartige Dichtefunktionen nicht als ver-
schieden und werden im folgenden von der Dichtefunktion einer Ver-
teilungsfunktion sprechen.

Verteilungen, welche durch totalstetige Verteilungsfunktionen
dargestellt werden, heissen auch geometrische Verteilungen.

Beinunstetige Verteilungsfunktionen:
Eine reinunstetige Verteilungsfunktion besitzt nur endlich oder

abzählbar viele Wachstumsstellen; sie kann daher höhere Werte nur
durch Sprünge annehmen. Balis wir die Grösse des Sprunges an der
Stelle ae mit / bezeichnen und die «unechte Verteilungsfunktion»
d?(a:) durch

0 œ < 0

E(®) | œ 0

1 a; > 0

definieren, so können wir in diesem Balle N(a;) darstellen als

*"(«) — ®<)-

Neben Treppenfunktionen sind in diesem Ball auch stetswachsende

Funktionen enthalten, deren Sprungstellen überall dicht liegen.

cj Beinsinguläre Verteilungsfunktionen:

Eine dritte Art von Verteilungsfunktionen, die nicht auf die

beiden ersten zurückführbar ist, wird dargestellt durch eine stetige

Verteilungsfunktion, deren Wachstumsstellen jedoch eine Menge vom
Masse Null bilden, ohne aber nur abzählbar oder in endlicher Anzahl
vorhanden zu sein. Diese reinsingulären Verteilungsfunktionen stellen
die Inversen der oben erwähnten stetswachsenden Funktionen mit
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überall dicht liegenden Sprungstellen dar ; für die normalerweise zur
Verwendung gelangenden Verteilungsfunktionen fallen sie jedoch

ausser Betracht. Wir werden uns mit ihnen in dieser Arbeit nicht
näher befassen.

Die drei Arten von Verteilungsfunktionen können in einfacher

Weise dadurch veranschaulicht werden, dass man sie durch ver-
schiedenartige Verteilungen einer Masse der Grösse 1 darstellt:

o) Der totalstetigen Verteilungsfunktion entspricht dann die

kontinuierliche Verteilung dieser Masse mit der Dichte /(a;) auf die

ganze Achse.

&j Der reinunstetigen Verteilungsfunktion entspricht dagegen die

Zuordnung von Teilmassen endlicher Grösse zu diskreten, in endlicher

oder abzählbarer Zahl vorhandenen Punkten der Achse.

cj Beinsinguläre Verteilungsfunktionen sind dann darzustellen

als kontinuierliche Verteilung der Gesamtmasse auf die Punkte einer

nicht abzählbaren Nullmenge. Kein Punkt erhält dann eine Masse

von endlicher Grösse, die Dichte der Verteilung ist jedoch überall

unendlich gross.
Neben den erwähnten drei reinen Typen sind — nach entspre-

chender Normierung — natürlich auch beliebige Kombinationen der-

selben als Verteilungsfunktionen möglich. Derartige allgemeine Vertei-

lungsfunktionen lassen sich stets in eindeutiger Weise in drei noch zu

normierende Teilfunktionen der oben beschriebenen Art zerlegen

(Cramér 2, S. 17).

3. Zusammenhang mit der Wahrscheinlichkeitstheorie

Z stelle eine unabhängige und zufällige Variable dar, deren

Wahrscheinlichkeitsverteilung durch die Verteilungsfunktion K(,r) ge-

geben sei. Dann stellt F(r) die Wahrscheinlichkeit dafür dar, dass

die Variable Z kleiner als as ausfalle, vermehrt um die halbe Wahr-
scheinlichkeit dafür, dass Z ,r wird. Falls wir es speziell mit einer

reinen Verteilungsfunktion der oben beschriebenen Arten zu tun haben,

können wir weiter folgendes aussagen:
oj Falls .F(as) totalstetig ist, stellt die Dichtefunktion /(as) die

Wahrscheinlichkeitsdichte dafür dar, dass Z r wird. Die Wahr-

scheinlichkeit, dass Z grösser als a, jedoch kleiner als fr ausfällt,
kann ausgedrückt werden durch
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5

IF (a < X < b) J /(a;) da:.
a

bj Im Falle einer reinunstetigen Verteilungsfunktion kann die
zufällige Variable nur gewisse diskret verteilte Werte a;,- annehmen.
Bezeichnet man mit /• die Wahrscheinlichkeit, mit der der Wert a;.

angenommen wird, so kann F(x) dargestellt werden als

wobei sich die Summe über die links von a; liegenden Abszissenwerte

erstreckt und das Glied — nur dann auftritt, falls a: auf einen dieser
2

ausgezeichneten Abszissenpunkte fällt.

cj Ist die Verteilungsfunktion reinsingulär, so kann die zufällige
Variable wiederum nur gewisse diskret verteilte Werte annehmen.
Um jedoch F(.r) mittels der zugehörigen Wahrscheinlichkeiten (die
nirgends eine endliche Grösse aufweisen) darstellen zu können, erweist
es sich als zweckmässig, den Stieltjesschen Integralbegriff zu ver-
wenden.

4. Das Stieltjessche Integral

Dieser Integralbegriff wird uns nicht nur erlauben, reinsinguläre
Verteilungsfunktionen als unendliche Summe der Einzelwahrschein-
lichkeiten der links eines bestimmten Punktes liegenden Abszissenwerte
darzustellen, sondern wir werden uns seiner hauptsächlich deswegen
bedienen, weil er uns gestatten wird, mit beliebigen Verteilungs-
funktionen Integraloperationen durchzuführen, unbekümmert darum,
um was für Arten von Funktionen es sich dabei handelt. Da wir uns
die allgemeine Verteilungsfunktion aus Teilfunktionen der drei mög-
liehen Arten zusammengesetzt vorstellen müssen, bildet die Einführung
dieses Integrals eine grosse Vereinfachung in der Behandlung derartiger
Funktionen.

Definition: Zwei Funktionen F(F) und G(a;) seien im Intervall
(a, b) von beschränkter Schwankung, dann existiert der als Stieltjes-
sches Integral bezeichnete Grenzwert

lim §G(0 [F(»<+i) / G(«) ^(®)>
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falls .F(®) und G(®) im Intervall («, 6) keine gemeinsamen Unstetigkeits-
stellen besitzen (Schmidt 1, S. 123). Dabei stellen die X; Teilpunkte
der Abszisse dar, welche die Beziehung a ar„ < x^ < < x„ &

erfüllen, während für die Bedingung gilt. Ausserdem

ist noch die Feinheitsbedingung d„—«- 0 (n—»-oo), wo x,^ — $,-;Sd„
(i 0,1, .n — 1) gilt, zu beachten.

Nachstehend sollen die Grundeigenschaften des Stieltjesschen
Integrals kurz zusammengestellt werden *). Für weiteres Studium
verweisen wir auf Perron (1).

| [G'i(x) + Go(x)] dF(x) j Gi(x) dF(x) + G»(x) dF(x)

/ [G(x) + G] dF(x) J'G(x) dF(x) + G (F (h) -F»)
f G (x) d [Fi (x) + Fg (a:)] J'G (a) dF^ (a;) + / G (x) d F, (x)

J'G (x) d [F (x) + G] / G (x) d F (a:)

i; / G (,c) d [G • F (x)] / G (x) GdF (x) C • /G (x) dF (x)

cj j'G(x)dF(x) + f G(x)dF(x) j G(x)dF(x)
a ö a

d; J G (x) dF (x) G (j/) [F (b) — F (a)] a <[ j/ <
j / G(x) dF(x) j S / I G(x) I dF(x) <; J' MdF(x) M [F(b) —F(a)],

6 6 ^
cj G (x) dF (x) G (x) F (x) ![' — J F (x) dG (x)

a
'

a

/j lim J G„(x)dF(x) | G(x)dF(x), falls in (a, &) gleichmässig
' '

G„ (x) —<- G (x)
oo

[G(x)dF(x) lim (G(x)dF(x)
a w—>- oo a

Da sich jede beliebige Verteilungsfunktion stets in eindeutiger
Weise in drei Teilfunktionen der in § 2 erwähnten Arten zerlegen lässt,
kann das Stieltjessche Integral einer Funktion von beschränkter
Schwankung G(x) mit der Verteilungsfunktion F(x) als Belegung ent-

sprechend zerlegt werden:

[ G (x) dF (x) Ci J G (x) / (x) dx + 2 ^ (F) /» + G f ^ (•-') '
'

Cj + Co + Cg 1 C;[V0.

D Wo nicht anders angegeben, ist als untere und obere Grenze der Integrale
« bzw. & zu setzen.
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5. Beziehungen zwischen Verteilungsfunktionen

aj Eine Verteilungsfunktion E(.r) heisst fcorayitgierf zu einer andern
E(a;), falls die Relation gilt:

5^ Eine Verteilungsfunktion F(a:) heisst sî/mmefn'scA, falls sie mit
ihrer Konjugierten identisch ist; es gilt dann also

F(a;) + E(— a) =1.

cj Eine Verteilungsfunktion E\(a;) heisst im ew/erw S»n äTmZicÄ

zu einer andern Verteilungsfunktion E(a;), falls sie sich von dieser
nur durch die Präzision unterscheidet, d. h. falls

Bei totalstetigen Verteilungsfunktionen gilt für die Dichte-
funktion entsprechend

Alle zu einer bestimmten Verteilungsfunktion im engern Sinne
ähnlichen Verteilungsfunktionen heissen zum gleichen Tî/p gehörig.

Eine Verteilungsfunktion E\(a;) heisst im weitem Sinn ö/infic/i
zu einer andern Verteilungsfunktion F(a), falls sie neben einer Mass-

Stabänderung auch durch eine Nullpunktverschiebung aus -F(a) her-

vorgeht :

F(œ) 1 — i?(— a).

Alle Verteilungsfunktionen, die zu einer bestimmten Verteilungs-
funktion im weitern Sinne ähnlich sind, heissen zur gleichen Ifiasse

gehörig.
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6. Zusammensetzung von Verteilungsfunktionen

Die Lmearfcom&TOafïoîî von Verteilungsfunktionen mit positiven
Koeffizienten liefert bei entsprechender Normierung wieder eine Ver-

teilungsfunktion, nämlich

Die wichtigste Art der Zusammensetzung von Verteilungs-
funktionen stellt die Fcdfww/ dar, die durch

oo

/G(œ — 'i/)dF(y) =H(«)
— oo

definiert ist. Diese Operation, welche in abgekürzter Form als

G(œ) *F(Y) F»
dargestellt wird, liefert uns die Verteilungsfunktion der Summe Z+ Y
zweier willkürlicher und unabhängiger Variablen, deren eine (Z) nach

der Verteilungsfunktion F(a;) und deren andere (Y) nach G(a;) verläuft

(Wintner 7). Sie besitzt folgende Eigenschaften:

oj Die Resultatfunktion der Faltung zweier Verteilungsfunktionen
ist wieder eine Verteilungsfunktion, falls an den gemeinsamen Sprung-
stellen von F(Y) und G(œ) die Definition durch die bereits erwähnte

Normierung ergänzt wird.

Die Faltung ist kommutativ und assoziativ:

G * F F * G

G * (F * F) =(G*F)*F=G*F*F.
ej Die Faltung symmetrischer Verteilungsfunktionen ergibt wieder

symmetrische Verteilungsfunktionen (Wintner 7).

Die Faltung der zu zwei Verteilungsfunktionen F und G kon-

jugierten Verteilungsfunktionen liefert die konjugierte Verteilungs-
funktion zur Faltung der ursprünglichen Funktionen (Wintner 7):

F * G (F * G').
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e) Das Punkt- und Gesamtspektrum der ßesultatfunktion ent-
steht durch vektorielle Addition der entsprechenden Spektra der ge-
gegebenen Verteilungsfunktionen (Wintner 2).

/j Die Momente M- der ßesultatfunktion berechnen sich aus den
Momenten Ml und M" der ursprünglichen Punktionen nach der Formel

oo

M. : (M' + M'y, M. / FJF(œ),
— oo

wobei die Potenzen M'* und M"' durch M- bzw. M" zu ersetzen sind
(Lévy 2, S. 188).

Während sich also die Mittelwerte Mj bei der Faltung einfach
addieren, setzen sich die Streuungen

oo

s / (œ — Mi)»dF(œ)
— oo

nach der Formel
s* s'^ + s"®

zusammen. Bei der Faltung kann also die Streuung nie abnehmen.

y) Wenn nur eine der beiden ursprünglichen Verteilungsfunktionen
stetig bzw. totalstetig ist, so gilt dies auch für die ßesultatfunktion
(Lévy 2, S. 189), wobei höchstens der Nullpunkt eine Ausnahme
machen kann (Baikov 2).

Falls für eine totalstetige Teilfunktion einer Faltung der
Absolutwert der ersten (2., 8., n-ten) Ableitung nirgends grösser
als eine bestimmte Zahl fc ist, so gilt dasselbe für die ßesultatfunktion
(Lévy 2, S. 189).

7. Folgen von Verteilungsfunktionen

Man nennt eine Folge von Verteilungsfunktionen konvergent,
falls eine Verteilungsfunktion derart existiert, dass in jedem Abszissen-

punkt a; gilt:
lim F„(®) F(z).

W—>- oo

Folgende Aussagen sind in diesem Zusammenhang von Interesse:

y Jede Verteilungsfunktion der Form F(ja:), F (0) —, strebt
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für j—»oo gegen die unechte Verteilungsfunktion £?(x) (vgl. I 2 fr)

und für 7—»0 entweder gegen die Funktion D(F) F(0) oder, falls

F(a;) im Nullpunkt unstetig ist, gegen

D (a;)
f F (+0) a; > 0

[ F (—0) a; < 0.

Die Funktion F(af) stellt jedoch keine Verteilungsfunktion mehr

dar. Wir haben damit gerade ein Beispiel dafür erhalten, dass eine

konvergente Folge von Verteilungsfunktionen als Grenzfunktion even-

tuell keine Verteilungsfunktion haben kann.

frj Aus F„(a:) —» F(a;) und F„(œ) —G(a;) folgt F(œ)=G(»).

cj Sind alle Verteilungsfunktionen der Folge symmetrisch, so

ist bei Konvergenz auch die Grenzfunktion symmetrisch.

dj Eine Verteilungsfunktion F(af) strebt dann und nur dann

gegen die Klasse der Verteilungsfunktion G(a;), falls a„ > 0 und fr„

als Funktionen von n derart auffindbar sind, dass in jedem Stetigkeits-

punkt von G(a:) gilt (Lévy 2, S. 202) :

lim F (o„ a: + fr„) G (a;).
n->- 00

e) Eine Verteilungsfunktion F(œ) strebt dann und nur dann

gegen den Typ einer Verteilungsfunktion G (&), falls a„ > 0 als Funktion

von n derart angebbar ist, dass in jedem Stetigkeitspunkt von G(a)

gilt (Lévy 2, S. 202) :

lim F (a„ a;) G (a;).

8. Bemerkung über mehrdimensionale Verteilungsfunktionen

Häufig treten in der Praxis auch Verteilungsfunktionen von

mehreren Variablen auf, so speziell bei Korrelationsproblemen. Zur

Untersuchung werden diese Funktionen vorteilhaft in einem w-dimen-

sionalen Baum dargestellt. In der vorliegenden Arbeit soll jedoch

auf diese allgemeineren Fragen nicht eingetreten werden, wir ver-

weisen deshalb den Leser auf die Arbeit von Jessen und Wintner (1)

und deren sehr reichhaltiges Literaturverzeichnis.
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II. Die charakteristischen Funktionen

Bevor wir an die Formulierung der zu untersuchenden Probleme
gehen, sollen noch die charakteristischen Funktionen behandelt
werden, welche sich später als ein sehr geeignetes Mittel erweisen
werden, um auftretende Funktionalgleichungen und Integralbezie-
hungen in wesentlich einfacherer Form darstellen zu können. Der
Begriff dieser Funktion findet sich unter anderer Bezeichnung bereits
bei Laplace und Cauchy; nach Poincaré beschäftigte sich dann erst-
mais Lévy (1925) in eingehender Weise mit ihnen und führte auch
eine neue Schreibweise ein, welche die Aufstellung einer einfachen
Umkehrformel gestattete.

1. Definition der charakteristischen Funktion

Es sei E(f) eine Verteilungsfunktion und 2 reell, dann wird die

charakteristische Funktion 99(2) von F(t) durch das Integral

00

99 (2) f e'%IF(f)
— 00

dargestellt. Da
00 00

J9>(3)|< j|e"'[d.F(f)<; J'dF(t) =1,
— 00 —00

konvergiert das Integral für alle 2 absolut.
Die charakteristische Funktion ist nichts anderes als die in

Stieltjesscher Gestalt geschriebene Fourier-Transformierte der Funk-
tion jF(F). Der Faktor i ]/— 1 im Exponent wurde von Lévy (2,
S. 161) eingeführt, er vereinfacht die Konvergenzverhältnisse und
erleichtert die Umkehrung.

Da die Grösse 00

11%) /?y(.r)dE»
— 00

als Erwartungswert von y bezeichnet wird, stellt die charakteristische
Funktion den Erwartungswert von e"' dar.

2. Eigenschaften der charakteristischen Funktionen

oj Die charakteristische Funktion einer Verteilungsfunktion ist
stetig, da das Integral in jedem abgeschlossenen Intervall gleich-

massig konvergiert.
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fej Für 0=0 nimmt jede charakteristische Funktion den Wert
1 an:

9,(0) =1.

cj Die «normierte» Linearkombination und das Produkt zweier
charakteristischer Funktionen sind wieder charakteristische Funk-
tionen (Bochner 3).

tï) Für die konjugiert komplexe Funktion besteht die Relation:

9?0) 9»(—*)•

ej Die charakteristische Funktion einer symmetrischen Vertei-

lungsfunktion ist reell.

/_) Die charakteristischen Funktionen stehen mit den Momenten
der Verteilungsfunktionen in enger Beziehung. Es gilt nämlich, falls

Mp< oo,

g?® (0) 12=0 ^ / dF(a;) j .=0
— 00

Damit 99(0) als Funktion der komplexen Veränderlichen 0 bei

0 0 regulär ist, müssen notwendig alle Momente (p 0, 1,

2, existieren. In diesem Falle gilt für die charakteristische
Funktion die Potenzreihenentwicklung

*2

9? (0) Mp + 0ÎM-
z'Mj 0VM3

* 2 3!

g) Falls eine Folge von charakteristischen Funktionen Ç9J0) in

jedem endlichen Intervall gleichmässig gegen die Grenzfunktion
99(0) lim 99J0) konvergiert, gehört diese ebenfalls zur Menge der

W—>- 00

charakteristischen Funktionen (Bochner 3).

3. Die Umkehrformel für charakteristische Funktionen

Nach Lévy (2, S. 166ff.) kann aus jeder charakteristischen Funk-
tion die ursprüngliche Verteilungsfunktion eindeutig aus folgender
Formel zurückerhalten werden:

00

F (œ) F (0) ~! H W [ 99 (0)
2 TT r J 0

— 00
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Dabei bedeutet Y
iîTD J <7(2)

— oo

den Cauchy-Hauptwert des Integrals, d. h.

T

lim J p(a) <i?,
T-^oo -r

und es ist die Konstante F(0) durch die Bedingung F(—oo) =0
zu bestimmen.

Die Eindeutigkeit der Umkehrformel gestattet uns, eine Yer-
teilungsfunktion durch blosse Angabe ihrer charakteristischen Dunk-
tion 99(2) zu definieren. Dies hat dazu beigetragen, die Bedeutung
dieser Funktionen zu heben. Wir werden allerdings im nächsten
Abschnitt sehen, dass nicht zu jeder beliebig gewählten Funktion
9>(y) eine zugehörige Verteilungsfunktion existiert, selbst wenn sogar
die oben erwähnten Eigenschaften alle vorhanden sind.

Falls die charakteristische Funktion die Bedingung

00

j j 99 (2) j (i? < 00
— 00

erfüllt, folgt aus der obigen Umkehrformel, dass die zugehörige Ver-
teilungsfunktion F(a:) eine stetige und beschränkte Ableitung besitzt,
die wie folgt dargestellt werden kann (Wintner 7) :

~j 00

F' (®) / (®) H IF / e"<" (2) tfe.
2 TT -00

Ist anderseits F(a;) unstetig, so ist der Sprung im Punkte a; erhält-
lieh aus der Formel (Cramér 2, S. 24)

1 /
.F (a + 0) — F (a; — 0) lim —— e 99(g) <fe.

^ I

Dieser Grenzwert existiert für jedes reelle a;, er verschwindet an
den Stetigkeitsstellen der Verteilungsfunktion.

Zahlreiche weitere Eigenschaften der Verteilungsfunktionen sind
in ähnlicher Weise aus dem Verhalten der entsprechenden charak-
teristischen Funktionen erkennbar, wobei speziell das asymptotische
Verhalten von 95 (g) interessante Beziehungen ergibt (vgl. z. B. Dugué 1).
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4. Das Darstellungsproblem

Wie schon erwähnt, genügen die unter Abschnitt 2 aufgeführten
Eigenschaften nicht, um eine charakteristische Funktion als solche

zu charakterisieren. Selbst wenn das Umkehrungsintegral konvergiert,
sind wir nur sicher, eine reelle Funktion mit der totalen Variation 1

zu erhalten, ohne jedoch auch voraussagen zu können, ob diese monoton
verläuft (Lévy 6, S. 39). Hier tritt eine zurzeit noch nicht über-

wundene Schwierigkeit auf, indem entweder nur für bestimmte Klassen

von Funktionen die Zugehörigkeit zu den charakteristischen Funk-
tionen bekannt ist oder aber die hinreichenden und notwendigen
Kriterien in der praktischen Anwendung nicht einfacher sind als die

Ausführung der Umkehrung und der Untersuchung des Verlaufs der

Funktion.

Folgende Klassen von Funktionen bestehen sicher aus charak-
teristischen Funktionen :

o) Alle Funktionen der Gestalt 99(2) mit 0< a< 2. Für

a > 2 sind diese Funktionen sicher keine charakteristischen Funk-
tionen mehr (Boclmer 1, S. 76).

&j Alle geraden Funktionen 99 (2), welche für 2 > 0 die Bedingungen
99'(2) < 0 und 99" (2) > 0 erfüllen (Pölya 2).

c) Alle Funktionen, welche mit Hilfe einer willkürlich wählbaren,
nicht abnehmenden Funktion G'(r) darstellbar sind als (Bochner 3)

wobei <7(1) und c/(f) zueinander konjugiert komplexe Funktionen der

reellen Variablen i darstellen (Mathias 1).

Folgende von Bochner und Khintchine stammenden Bedingungen
sind notwendig und hinreichend dafür, dass eine Funktion charak-

teristische Funktion einer Verteilungsfunktion ist (Lévy 6, S. 39):

d) Alle Funktionen, die darstellbar sind als

99(2) / £/ (2 +f)</(2 — f)df,
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oj Es sei F(0) 1 und der Ausdruck

2 W W' > 0 reell,
1=1 J=1

wie auch die ganze Zahl n, die reellen Zahlen ^ und die komplexen
Zahlen «,• mit ihren Konjugierten «. gewählt werden (Bochner 2).

çr-fh) sei Grenzfunktion einer in jedem endlichen Intervall
gleichmässig konvergenten Folge von Funktionen der Form

1 ^
A,0) Kh ' /^ ^ &»(*) ^

— CO

CO

mit N
— oo

wobei (/(/) und p(i) zueinander konjugiert komplexe Funktionen der
reellen Variablen f darstellen (Khintchine 5).

5. Abbildungseigensehaften der charakteristischen Funktionen

Wie schon erwähnt, zeichnen sich die charakteristischen Funk-
tionen dadurch aus, dass in ihrem Funktionenbereiche gewisse kom-
plizierte Beziehungen der Verteilungsfunktionen in wesentlich ein-
facherer Gestalt abgebildet werden. Wir erwähnen in der Folge kurz
einige dieser Abbildungen.

cgi Die Z/meare Sw&stifwfiorc.
/ a;—r\

Der Uberführung von F (a) in Fl I entspricht bei den cha-

rakteristischen Funktionen der Übergang von ç? (c) zu e"*ç>(a2), wie sich
leicht durch Ausrechnung ergibt. Die charakteristischen Funktionen
von Verteilungsfunktionen desselben Typs unterscheiden sich also

lediglich durch die Präzision, während für Verteilungsfunktionen der-
selben Klasse exponentielle Zusatzfaktoren auftreten.

Die FaZto«/.
Hier zeigt sich besonders eindrücklich, wie die von uns gewählte

Transformation gewisse transzendente Beziehungen als algebraische
Zusammenhänge abzubilden vermag. Durch Umbildung des auf-
tretenden Doppelintegrals zeigt man nämlich, dass die charakteristische
Funktion der Faltung zweier Verteilungsfunktionen
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dem Produkt F\(cr) *1^*) -W
9?i(^)-9?2^) <??3(X>

der entsprechenden charakteristischen Punktionen entspricht.
Da der Faltungsprozess im Hinblick auf die wahrscheinliehkeits-

theoretische Bedeutung einen erheblichen Teil der Theorie der Ver-

teilungsfunktionen beherrscht, ist mit diesem «Faltungssatz» eine

Belation von grundlegender Bedeutung gewonnen.

cj ivon-yen/ente ihVpen uon Fertet/rrngs/rm/rfionen.

In bezug auf deren Grenzgesetze gilt folgender Satz:
Eine Folge von Verteilungsfunktionen konvergiert dann und

nur dann gegen eine Grenz-Verteilungsfunktion F(a:), falls für ein

beliebiges positives a die charakteristischen Funktionen 9^(2) gleich-

massig in | 2 j < a konvergieren. Ist dies der Fall, dann ist die Grenz-

funktion der charakteristischen Funktionen die charakteristische Funk-

tion von -F(af), und die Konvergenz der charakteristischen Funktionen

erfolgt gleichmässig in jedem endlichen Intervall (Cramér 2, S. 29).

Dieser Satz wird falsch, wenn auf die Bedingung der gleich-

massigen Konvergenz in der Umgebung von Null verzichtet wird.
So besitzt z. B. die Folge der Funktionen

für co eine Grenzfunktion, jedoch stellt diese nicht mehr die

charakteristische Funktion einer Verteilungsfunktion dar. Für die

Verteilungsfunktionen gilt

Diese Grenzfunktion ist selbst keine Verteilungsfunktion mehr!
Anderseits genügt die Voraussetzung, class die Grenzfunktion der

Folge der charakteristischen Funktionen selber eine charakteristische
Funktion sei und class diese Folge für jedes 0 konvergiere, damit der

Satz wieder richtig wird. Ferner genügt auch die Bedingung, class

für ein beliebiges positives a die Folge <p„(T) in i 21 < a gegen eine

Grenzfunktion konvergiert, welche im Punkte 2=0 stetig ist. Unser

obiges Beispiel erfüllt diese Bedingung nicht, da dort die Grenzfunktion
in 2 0 eine Unstetigkeit besitzt.

99J2) e

lim F„(a;)
1

2
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III. Übersicht über die bekannten Verteilungsfunktionen
Nachfolgend sind die in der Literatur auftretenden Verteilungs-

funktionen *) mit ihren charakteristischen Punktionen in Tabellenform
zusammengestellt. In einem zweiten Abschnitt folgen zu diesen

Funktionen Bemerkungen über die bisherigen Anwendungen und
Hinweise auf die Literatur. Die Verteilungsfunktionen wurden in
dieser Zusammenstellung unter Verzicht auf eine Einteilung nach der

analytischen Gestalt in der ersten Spalte durchlaufend numeriert,
wobei in der Anordnung die reinunstetigen Verteilungsfunktionen vor-
weggenommen wurden. Die totalstetigen Verteilungsfunktionen bilden
den Haupt teil und beginnen mit den Punktionen algebraischer Gestalt.

Um die Darstellung möglichst zu vereinfachen, wurde in der
zweiten Spalte nicht die Verteilungsfunktion P(^)> sondern deren

Häufigkeitsfunktion /(V) aufgeführt. Diese ist bei reinunstetigen Ver-

teilungsfunktionen definiert als Höhe der Sprünge in den Unstetig-
keitsstellen der Verteilungsfunktion und nimmt nur dort von Null
verschiedene Werte an, während sie für die totalstetigen Verteilungs-
funktionen mit der Dichtefunktion übereinstimmt. Da fast überall
die Präzision als 1 angenommen wurde, kann diese bei den meisten

Punktionen als weiterer Parameter eingeführt werden, indem 99(2)

ersetzt wird (0<a<°°). In gewissen Fällen, wo explizite Dar-

Stellungen der Verteilungsfunktionen möglich sind, wurden sie im
zweiten Abschnitt unter den zusätzlichen Bemerkungen aufgeführt.

In der dritten Spalte ist als Definitionsgebiet die Menge der

Werte der Variablen bezeichnet, für welche bei reinunstetigen Ver-

teilungsfunktionen Sprünge, bei totalstetigen Verteilungsfunktionen
nicht verschwindende Funktionswerte angenommen werden. Die für
die Parameter gültigen Bedingungen wurden in der vierten Spalte

angegeben. In der fünften Spalte ist die Normierungskonstante an-

geführt, die zu der in der ersten Spalte angeschriebenen Formel als

Faktor hinzutreten muss, damit die «normierte» Häufigkeitsfunktion
dargestellt wird. Die sechste Spalte enthält die charakteristische

Funktion. Bei einigen Verteilungsfunktionen konnten diese nicht

explizit angegeben werden. Die Angaben der siebenten Spalte be-

ziehen sich auf die Ausführungen des sechsten Kapitels über die

Attraktionsgebiete.

L Vollständigkeit wurde angestrebt bis 1941.

totalstetigen Funktionen / (3) durch a • / (a.r)

8
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1. Tabellarische Zusammenstellung

Nr. Häufigkeitsfunktion /(s) Definitionsgebiet Parameter

a
2

1

2

1

2

(1 + ®n)

(1-eJ

p*g" *

an

TO + £C 1\ _
P

£C /

(1 + d) " +x

I
")( «

® / \ TO £C

®„!

±a

0, 1, TO

0,1,2,

0,1,2,

0,1,2,

0,1. TO

0,1,2,
% + 2«2 + + TO«J! 3

a) a 0

b) a + 0

a 4 0

to 1,2,
0 < £,, < 1

0 <p <1
P + S 1

to > 0 ganz

a >0

0 < p < 1

p + g 1

to > 0 ganz

d>—1
Ji>0

Ä

- ganz

p>0, ç>0
P ganz, Q ganz

to > 0 ganz

/t > 0

to > 0 ganz

— 115 -
der Verteilungsfunktionen

Normierungskonstante Charakteristische Punktion

-Ä1-Ä2 -Ä„

COS «2

1
l |

1

c~"

3"

1

/P\
1 /

/ P + Ç \ /p + e\
\ " / V /

11 + S« + (1 ®«) ]

(pe" + g)"

c

3

1 —pe'

[H-d(l—Op

-P(-to,-Ç,P-to+ l;e*)

e i
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Nr. Häufigkeitsfunktion / (:r) 1 )efinitionsgebiet Parameter

10 4 (o)
0,1, 2,

— 1,-2,
a > 0

11
1

6 — a
a < x < 7>

12
1

2 a
— a < x < a a > 0

13
2 — a

ax +
2

o A H A/\ 1—>• a < 2

14 1 — x -:<*<>

15 1 —|«|" — 1 < « < 1 a > 0

16 (1 + x)" — 1 < x -10 a > 0

17 (i-Mr 1
• X 1 a >0

18
M-l

(1 — a: j") " i X' <1
a > 0

rc >0 ganz

19 (1 — a*)"

A'-n-2

—- ,1< X < 1
a > — 1

a + 0

TV >0 ganz
20 as"~® (1 — œ®) a 0 < x < 1 n > 1 ganz

JV > « + 1
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Normierungskonstante Charakteristische Funktion

1

1

a +1
2a

a + 1

a + 1

2

ar(l
2r, iW——+ i

r a

|/jr-T(a + 1)

—1

r p /n — 1

^a(C08 2-1)

i (5 — a) 2

sin as

as

C"—1
a —121'i- ai

2^ V

' 2/ £

2

-r(i- COS 2)

,»+W.+î)is±2.
»+T2 2
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Nr. Häufigkeitsfunktion /(») Definitionsgebiet Parameter Normierungskonstante Charakteristische Punktion Attraktions-
gebiet: a

21 x® (1 — a:) 0 < x < 1
W > 0

0 < o < n
r (n + 2)

r(a+l)f(n—a+1)
2

22 — a < x < & x > 0 o • -T (xa + xb -f- 2)
2

(a + + l) T(xb + 1)

23
1

(1 + a:)"
— 1 < x < 0 0 < a < 1 1 — a 2

24
./ a + x y
\ 6— x /

— a <x <6 » < 1
sin xjt

(a + &) *

2

25
1

x®
5 < x <<x.

a > 1

6>0 (a — 1) 6»"'
a-1 1 < a < 3

2 o>3

26
(x-1)»

1 < X <oo
a > fr -f-1 /» 2
&> —1 f(a—&—1) r(6+ 1)

27
1

1 -j~ ^ oo < X <» —
1

g-1*1 1

28
1

(1 + xy
OO < X < cxj —

2

JZ
e-i'i ii + YD 2

29
1

oo <X<oo a > 0 r (a)
2

(1 + x*)®

30
x^

(1 +
OO < X <00 —

2

7C

e-w (l — Y|) 2

31

WÎ

/ p X^ \ P+9
— ]/p <x < |/p p>0, g>0

2
\ g + x^ / m > 0, (j> > p l/^'r(i + 7c)F(fc,i,fe + -,-^V 2 2 g/

P+9
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Nr. Häufigkeitsfunktion /(») Definitionsgebiet Parameter

32 g-» a <x < &

33 g-i 0 <X <oo —

34 0 < CE < I» a > 0

35
/ xV®Az) ' — a < x < oo

o

o
A
A

36 y, «\ «•«="

Z^Wr(b® + a)
0< a; <oo

A>0, c>0, fc>0
a>0, n l,2,...

37 e""x®
D=l.

0 < X < co
A > 0, a > — 1

n 1,2,

38 grM — oo<X<oo —

39 <r'*l (1 + |x|) co <4 X <®c> —

40 —1*7

e ' ' co < x <oo a> 0

41 g-a? CO << X <C —
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Normierungskonstante Charakteristische Funktion Attraktions-
gebiet: oc

e~® —

1»
(0®)"®+' e"®®

a jT (a® 4- 1)

A®

1

V 4 +®)
Zj » ^„+„

1

2

1

4

2r

a

"C-)\ a /

1

TA
/ 71

(1 - iz) (r® - F"')

1

1 — 13

1

1 —

-y

au + 1

1 + c
1

A 13

2X

A —13
______

r (® -f- a)

1 (A 13)

2^. r (® + a)

—i A®+®

1

1 ~i~ 3

1 \*
1 -j- 3

e «
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Nr. Häufigkeitsfunktion / a: Definitionsgebiet Parameter

42 0 <x <00 « > 0

48 —x < 30

44
e

3-a+l
0<X <3C a 4 0

45
J

-e 2

£
0 < x <00 —

46
(z-a) (6-m)

-ft'ig*
£ (fr-z)(m-a) a <x < 5

—oö<a<m<6<°o
/i > 0

47

&

e *

x"+* 0 <x <00
a > 0

6 >0

48
1 -a»——

-e *
£

0 < x < 00
0

0
A
A

Ö

fö

49
1 _±

/J 2»

y*»
0 <x <30 —

50
1 -te-?:

0 < x <C 00
a > 0

fc>0

51

1

-2.-1 -ar»
X® e

^-a • arc/g £

0 < x <70
•s ± 0, a > 0

p > 0

52
(l + «V — =C < X <C OO a t 0, & > 0
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Normierungskonstante Charakteristische Punktion Attraktions-
gebiet : a

r a 4-1

]/2:

5"

T (a)

1

j/2 7E
'

p2ay?

s I r (p)

r(i —12)

/»

p(-l-M)]/ 2

p2a(l/6-V 6-i2)

2 a<0
a 0 < a < 2

2 « >2

%
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Nr. Häufigkeitsfunktion /(a;) Definitionsgebiet Parameter

53
1

— oo < x < oo —

54
1

/ z 2

(e*" + e~ ®

— oo < at < oo —

55 l
(gl _|_ g-^2«

oo <at <oo a > 0

56
1

x^ (e® — l)
0 <X<oo —

57
Zgx

x®
1 <C # 1 < a

58
1

at® Zg x
6<at <oo

b> 1

a > 1

59 — at® Zg x 0<at<l a > —-1

60 i„(œ)
£

0 <at <oo A > 1, a > 0

61
a-1

^x~i^(2]/x) 0 < X < oo A > 0, a > 0

62
îi—1

2

—- OO < X < oo « 1, 2,
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Normierungskonstante Charakteristische Funktion Attraktions-
gebiet : a

2

TT

a u

2T(2a)

15

TT*

(a-i)®

l

(a + 1)'

+ l/'F-i)"

A®e~zr

l
~1

r 1 + tA

|r(i + p

r
r(a)P

A -is + ]/(A — wj® — l'

AA—
g \ 1 /.-ig J

A - Ï2

|/1 +

a-1
2 a >3

a-1 1 < a < 3

2 a >3
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Nr. Häufigkeitsfunktion /(x) Definitionsgebiet Parameter

63 i (®)
«"T

0 < X < oo A > 1 a > 0

64 co < £C <C c>C' A < 1 a > 0

65 g-;.x ^a-l jjf 0 < X <00 a > 0 5 > 0

1

a > b A > —

66
e~® a®

*Z d!
'"<*>

•u=0

a > 0

67
>Y e~" a® e~® »"

J »! ®!
D=0

0,1,2, a > 0

68 ^ e~® a;® C~® »"

»! w
v—0

0 < X < OC. w 0,1, 2,

69
" / \2(j<rp"/>)

u=0 ^ '

0 < p < 1

p + g 1

tc > 0 ganz

70 (s. Seite 135)
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Normierungskonstante Charakteristische Funktion Attraktions-
gebiet: oc

|1 —A® j" / 1 — A* y 2
2"~ 2 J/ar-T (a) \ 1 — (A — «Y /

Y* iy
\ 4/ ^ 2 A+1 y / 4a — 1 y/ ^-2 \
r(2a) \2 A — 1 / \4(A—ia)® — 1 / \ 1 t* 1

V
2

1 £>«(»(z)~l)

1 2

n

OO

2e-®»"(l
v=0

2CO

Vf's"
V=0

00

v 0

1 (P 9? (2) + 3)"

1 V (a). p® (2)
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2. Zusatzbemerkungen zu den einzelnen Verteilungsfunktionen

Nr. 1. a) a 0. Verteilungsfunktion von Dirac oder «unechte Ver-

teilungsfunktion». Einheitselement in der Paltungsalgebra, da

für beliebige Verteilungsfunktionen G stets F * G G gilt.
Expl. Darstellung vgl. Kap. I, Abschnitt 26.

6J a t 0. Lineare Transformation der unechten Verteilungs-

funktion, für die wegen F F (a; — a (c — 1)) Typ und

Klasse zusammenfallen und als «unechte Klasse» bezeichnet

werden (Khintchine 6, Wintner 1).

Nr. '2. Verteilungsfunktion von Bernoulli.

Unendliche Faltungspotenzen dieser Funktion von der Form

F(%a;) *F(aga;) * • • • *F(a„a;) * • • • stellen unter gewissen

Bedingungen totalstetige oder reinsinguläre Verteilungs-
funktionen («Unendliche Bernoulli-Faltungen») dar. Für

(Wintner 3, 4, 5, 7, Erdös 1, 2, Kawata 1, Ivershner 1).

Nr. 3. Unendliche Faltungspotenzen dieser Funktion von der Form

F(.r, £j) * F(.r, eg) * • • • *F(ag s„) * • • • heissen «unendliche

Poisson-Faltungen» und stellen unter gewissen Bedingungen
totalstetige oder reinsinguläre Verteilungsfunktionen dar

(Hartman & Ivershner 1, 2, Wintner 6).

Nr. 4. Binomiale Verteilungsfunktion von Bernoulli.

Verteilungsfunktion der Wahrscheinlichkeit für das Ein-
treffen von a; Ereignissen bei n gleichmöglichen Fällen (von
Mises 2, S. 129) Verallgemeinerungen für den Fall der «Mehr-

Wertigkeit» und für «inhomogene Serien» beiBaumberger (1,2).

Nr. -5. Verteilungsfunktion der «seltenen Ereignisse» von Poisson.

Diese Funktion geht durch einen Grenzübergang aus Nr. 4

1

hervor, falls dort n über alle Grenzen wächst und p wie —

gegen Null geht. Dementsprechend wird sie dort angewendet,

wo Ereignisse mit sehr kleiner Wahrscheinlichkeit auftreten

(Kinderselbstmorde, Atomzerfall usw.) (von Mises 2, S. 148,

speziell die Verteilungsfunktion Nr. 12
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Khintchine 1, S. 17, Riebesell 1, S. 23, Lévy 6, S. 85 ff).
Auch diese Funktion wurde für «Mehrwertigkeit» und «in-
homogene Serien» verallgemeinert (Baumberger 1, 2).

jSTr. 6. Verteilungsfunktion von Pascal.

Verteilungsfunktion der Wahrscheinlichkeit für das Eintreffen
von n Ereignissen bei beliebig vielen (w + a; — 1) gleichmög-
liehen Fällen (Bisser & Traynard 1, S. 323, Gfuldberg 1, Baum-
berger 1).

Nr. 7. Verteilungsfunktion von Eggenberger-Pölya für seltene Ereig-
nisse. Liefert für d 0 als Spezialfall die Funktion Nr. 5

und für speziell gewählte /t und d die Funktionen Nrn. 4 und 6

(Eggenberger 1, Baumberger 1, Lüders 1, Guldberg 2, Biebe-
sell 1, S. 37).

Nr. 8. Hypergeometrische Verteilungsfunktion.

Verteilungsfunktion für das Eintreffen von Ereignissen in
n Versuchen mit der speziellen Wahrscheinlichkeitsansteckung

1

y —
^ ^

bei P + (J) Möglichkeiten, (n Ziehungen aus

einer Urne mit P weissen und Q schwarzen Kugeln ohne

Zurücklegen der gezogenen Kugeln). Verschwindet die Wahr-
scheinlichkeitsansteckung, d. h. wird y 0, so geht die Funk-
tion über in Nr. 4 (Fischer 1, Dieulefait 1, 2, Risser & Traynard
1, S. 327, Guldberg 1). Die Verallgemeinerung für beliebige
Wahrscheinlichkeitsansteckungen ergibt die Verteilungsfunk-
tion von Eggenberger-Pölya für gewöhnliche Ereignisse
(Baumberger 1).

Nr. 9. Verteilungsfunktion von Pollaczek-Geiringer.

Verteilungsfunktion für das Eintreten von a; seltenen Ereig-
nissen einzeln oder in Paaren, Tripeln usw. bis höchstens

n-Tupeln. Wie aus der Formel ersichtlich ist, handelt es sich

um die Faltung der Verteilungsfunktionen für das Eintreten
der einzelnen n-Tupel. Anwendungsmöglichkeiten: Mehrlings-
geburten, Unfälle mit mehreren Toten, Blutkörperchenauszäh-
lung (Klumpenbildung), Hagelversicherung. Bei Zulassung

von n-Tupeln beliebig hoher Ordnung und spezieller Wahl der

9
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geht diese Funktion in Nr. 7 über (Pollaczek-Geiringer 1,

Lüders 1, Baumberger 1, Biebesell 1, S. 37).

Nr. 10. Grenzverteilungsfunktion der Summe von n Zufallsvariablen,

die den Wert 0 mit der Wahrscheinlichkeit und die

Werte + 1 und — 1 mit der Wahrscheinlichkeit - annehmen,
2w

falls n unbeschränkt wächst (vgl. hierzu Nr. 66) (Lévy 1,

Jahnke-Emde 1, S. 284).

Jj, (a) V® • J,, (m) wobei i |/— 1 und J,, (a) Besseische

Funktion.

Nr. 11. Verteilungsfunktion für Gleichverteilungen.
Berechnung der Faltungspotenzen durch Tricomi (1).

Nr. 12. Glättungsfunktion (Spezialfall von Nr. 11).

Eine beliebige Verteilungsfunktion g(a;) wird bei Faltung mit
dieser Funktion «geglättet» (o 1):

Faltungspotenzen und Grenzverhalten werden angegeben von
Risser (1), Pôlya (1), Maurer (1), Brun (1) und Sommerfeld (1).

Nr. 13. Lineare Verteilungsfunktion, bei Interpolationsproblemen auf-

tretend (Galvani 1).

Nr. 14. Dreieck-Verteilungsfunktion von Irwin (Dodd 2).

Nr. 15. Parabolische Verteilungsfunktion (Dodd 1).

Nr. 16. Pearsonsche Verteilungsfunktion Typ IX (Elderton 1).

Nr. 17. Verteilungsfunktion des arithmetischen Mittels aus grösstem
und kleinstem Wert von Stichproben aus einer Nr. 12 mit
a 1 entsprechenden Verteilung (Dodd 1).

Nr. 18. Glockenförmige Verteilungsfunktion (Hartman & Wintner 1).

Nr. 19. Verteilungsfunktion von Pearson Typ II.

Wird a - angenommen, erhält man die elliptische Ver-
2

teilungsfunktion (Elderton 1, Dodd 1).

1

-1
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Tritt auf als Verteilungsfunktion gewisser Korrelations-
koeffizienten (Gàrding 1).

Nr. 20. Verteilungsfunktion eines speziellen Korrelationskoeffizienten
(Gärding 1).

Nr. 21. Verteilungsfunktion des Problems von Bayes. Stellt im dis-
kontinuierlichen Falle die Wahrscheinlichkeit dafür dar, dass,
falls sich bei n Ziehungen aus einer Urne a schwarze Kugeln
ergeben, die Wahrscheinlichkeit für das Ziehen einer schwarzen

Kugel gerade œ ist (von Mises 1, 2, S. 153).

Nrn. 22 bis 24. Verteilungsfunktionen von Pearson, Typ I, VIII
und XII (Elderton 1).

Nr. 25. Verteilungsfunktion von Pearson Typ XI, hyperbolische Ver-
teilungsfunktion (Elderton 1, Castellano 1, Khintchine 2).

Nr. 26. Verteilungsfunktion von Pearson Typ VI (Elderton 1).

Nr. 27. Verteilungsfunktion von Cauchy.
Die explizite Darstellung der Verteilungsfunktion lautet

1 1

F (a;) - arctg a; -|—.
TT 2

(Lévy 2, S. 179 ff., 6, S. 202, Dugué 4, Dodd 1).

Nr. 28. Baten (1), Dodd (1).

Nr. 29. Verteilungsfunktion von Pearson Typ VII und <-Verteilung
von «Student» (Elderton 1, Münzner 1).

Nr. 30. Baten (1).

Nr. 31. Verallgemeinerte Pearson-Verteilungsfunktion von Hansmann,
abgeleitet aus der Differentialgleichung

rZ?y 2 ma;

— pg + (g — p) ad + ad

Aus verschiedenen Differentialgleichungen dieser Form können
20 verschiedene symmetrische Typen derartiger Verteilungs-
funktionen abgeleitet werden, von denen hier nur der Haupttyp
II als Beispiel aufgeführt steht (Hansmann 1).
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Nr. 32. Castellano (1).

Nr. 33. Verteilungsfunktion von Pearson Typ X (Elderton 1).

Nr. 34. Verteilungsfunktion von Pearson Typ III in spezieller Gestalt.
Tritt auf als Verteilungsfunktion der Summe von Quadraten
normalverteilter Variabler (Baten 1) und gewisser Momente
zweiter Ordnung (Garding 1). Enthält die ^-Verteilung von
Pearson als Spezialfall (Anderson 1, S. 99, Pearson 1). An-
Wendungen in der Bevölkerungstheorie (Wicksell 1, Brown 1,

Hadwiger 3, Hadwiger & Buchti 1) und der Sachversicherung
(Biebesell 2). Vgl. auch Lévy (8, 10) und Hadwiger (4, 5).

Nr. 35. Verteilungsfunktion von Pearson Typ III in der normalen
Gestalt (Elderton 1).

Nr. 36. Hadwiger (5).

Nr. 37. Liechti (1)

Nr. 38. Grenzfunktion für Summen von Variablen, welche mit syste-
matischen Fehlern behaftet- sind (abgenützte Geldmünzen,

Länge des Lebens usw.) (Eyraud 1). Vgl. auch Baten (1),

Mayr (1), McKay (1), Wintner (7).

Nr. 39. Entsteht aus Nr. 38 durch Faltung mit sich selbst (Baten 1).

Nr. 40. Dodd (1, 2), Münzner (2).

Nr. 41. Verteilungsfunktion des Gauss-Laplaceschen Fehlergesetzes
oder normale Verteilungsfunktion (von Mises 2, S. 42 ff., Khint-
chine 1, S. 1, Cramér 2, S. 49 ff., Lévy 2, S. 175 ff. u. a. m.).
Grenzfunktion für Potenzen einer grossen Zahl von Vertei-
lungsfunktionen (vgl. Kap. VI, Abschnitt 2 a).

Nr. 42. Seminormale Verteilungsfunktion. Verteilungsfunktion des

quadratischen Mittels normalverteilter Variabler. Die Ver-

teilungsfunktion ist darstellbar durch die unvollständige
Gammafunktion, für a 1 wird speziell

Für ganze a kann die charakteristische Funktion angegeben
werden :
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e 4

9? (s)

(Surico 1, Castellano 1, Steffensen 1, Tricomi 2).

Nrn. 43 und 44. Grenzfunktionen für die Verteilung des Maximal-
wertes einer Stichprobe. Anwendung bei Impfproblemen in
der Medizin, Lottos usw. (Fisher & Tippet 1, Gurnbel 1, 2,

von Mises 3, von Schelling 1).

Nr. 45. Verteilungsfunktion von Galton. Anwendung in Problemen
der Astronomie (d'Addario 1, Pretorius 1, Yuan 1).

Nr. 46. Deila Riecia (1).

Nr. 47. Verteilungsfunktion von Pearson Typ V (Elderton 1).

vgl. Nr. 62.

Nr. 48. Harmonische Verteilungsfunktion (Dugué 3).

Nr. 49. Quellenfunktion der Wärmeleitung (Jahnke-Emde 1, S. 48,

Lévy 8, 9).

Nr. 50. Hadwiger (1, 2, 4, 5), Hadwiger & Ruchti (2).

Nr. 51. d'Addario (1).

Nr. 52. Verteilungsfunktion von Pearson Typ IV (Elderton 1).

Nr. 53. Transformierte Gudermannsche Hyperbelamplitude 2Imp
Die Verteilungsfunktion besitzt die explizite Darstellung

(Baten 1, 2, Dodd 1, Jahnke-Emde 1, S. 58, Mathias 1,

Wintner 7).

Nr. 54. Verteilungsfunktion von Verhulst oder logistische Verteilungs-
funktion. Die explizite Darstellung lautet hier

Anwendung in der Bevölkerungstheorie (Hess 1, Lotka 1,

Vianelli 1, Zwinggi 1) und Sachversicherung (Riebeseil 1,
S. 27). Vgl. auch Dodd (1), Mathias (1).

F»



— 134 —

Nr. 55. Enthält Nrn. 53 und 54 als Spezialfälle (Mathias 1, Wintner 7).

Nr. 56. Plancksche Strahlungsfunktion (Jahnke-Emde 1, S. 44).

Nr. 57. Khintchine (2).

Ac
Nr. 58. L,-(a) a > 0 (Integrallogarithmus) (Khintchine 2).

J log a;
0

Nr. 59. Eiebesell (1, S. 78).

Nr. 60. (2) V® J), (Lr), wobei i ]/ — 1 und J„(a;) Besseische

Funktion (Hadwiger 5).

Nr. 61. Hadwiger (5). Für a 0 stellt die Funktion die Verteilung
von Sachschäden der Grösse « dar und kann aus Nr. 66 als

Spezialisierung hergeleitet werden (Eiebesell 2).

Nr. 62. Verteilungsfunktion gewisser statistischer Koeffizienten von
Stichproben aus Gesamtheiten, welche normal, und solchen,

welche gemäss Typ III von Pearson verteilt sind.

Ä» /„(*) vgl. Nr. 60.
2 sin a

(Pearson, Jeffery & Elderton 1, Pearson, Stouffer & David 1).

Nrn. Verteilungsfunktion der Mittelwerte von Stichproben aus einer
63u. 64. gemäss Nr. 38 verteilten Gesamtheit. Diese Funktionen sind

geeignet zur Darstellung gegebener Verteilungen in schwieri-

geren Fällen, besonders dann, wenn keine der Pearsonschen
Funktionen eine befriedigende Anpassung ergibt (McKay 1).
Sie enthalten die Funktionen Nrn. 33, 38 und 62 als Spezial-
fälle. Kuznecov (1) setzt 2 zur Darstellung der Ver-

teilung der Länge eines zufälligen Vektors (Vgl. auch Had-

wiger 4, 5).

Nr. 65. Es bedeutet -Mj. ^(2) die Whittakersche Funktion

(®)
'

s e s +- —fc, 2m + 2; j
wo i-Fj(a, r; 2) die konfluente hypergeometrische Eeihe
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darstellt. Infolge der Identität

Mo,m(s) 4T(m + 1) j/a;

geht diese Verteilungsfunktion für & 0 in Nr. 63 über, falls

Nr. 66. Verallgemeinerung der Verteilungsfunktion von Poisson (Nr. 5).

Grenzverteilung der Summe von ra dem Zufall unterworfenen
und voneinander unabhängigen Variablen, welche den Wert 0

mit der Wahrscheinlichkeit und die übrigen Werte

gemäss der Häufigkeitsfunktion /(«)— annehmen. Dabei
bedeutet ''

eine Faltungspotenz von Faktoren und /*®(x) die Vertei-
lungsfunktion Nr. 1 für a 0. Setzt man speziell für /(a;)
die Funktionen Nrn. 1, 2 (a 1), 5 und 33 ein, so erhalten
wir nacheinander als Resultat die Funktionen Nrn. 5, 10, 67

und 61 (a 0). (Bavli 1, de Finetti 1, Khintehine 1, S. 21).

Nr. 67. Spezialfall von Nr. 66.

Nr. 68. Spezialfall von Nr. 66 (Hadwiger 6).
Geht in Nr. 67 über, falls Variable und Parameter vertauscht
werden.

Nr. 69. Verteilungsfunktion der Summe von w dem Zufall unterwor-
fenen und voneinander unabhängigen Variablen, die den Wert
0 mit der Wahrscheinlichkeit g 1 — p und die übrigen
Werte gemäss der Häufigkeitsfunktion p*/(®) annehmen.

Nr. 70. Verallgemeinerung, welche die Funktionen Nrn. 66 bis 69 um-
fasst. Dabei bedeutet wg,(a) eine willkürliche arithmetische,
/(rc) eine beliebige Häufigkeitsfunktion.

dort A 2 A und r: - gesetzt wird (Hadwiger 5).
2

/*®(a;) /(#) */(«)*•• • * /(«)
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IV. Funktionalgleichungen

1. Auswahl gewisser Funktionalgleichungen

Infolge der in Kapitel I erwähnten Eigenschaft der Faltung, die

Verteilungsfunktion von Summen willkürlicher und unabhängiger
Variablen darzustellen, wählen wir als Grundlage unserer Untersu-

chungen Funktionalgleichungen, in welchen diese Verknüpfungs-
operation auftritt und die als Funktionalgleichungen vom Faltungs-
typus bezeichnet werden. Derartige Funktionalgleichungen treten
bei Problemen auf, die sich mit der Weiterentwicklung von stati-
stischen oder biologischen Gesamtheiten sowie mit der Darstellung
gewisser physikalischer Bewegungsvorgänge (Diffusionsprozesse usw.)
befassen (Hadwiger 1, 2, 5, Khintchine 1, S. 9 und 29, Kohler 1,

Pôlya 2, Riebesell 2). Dabei können sich diese Funktionalgleichungen
je nach Art der Verteilungsfunktionen oder Zahl der auftretenden
Parameter unterscheiden, wie im folgenden erläutert werden wird.

2. Unterscheidung der Funktionalgleichungen nach Integrations-
intervall und Art der Verteilungsfunktionen

Je nachdem die auftretenden Verteilungsfunktionen nur für posi-
tive a; von Null verschiedene Werte besitzen oder nicht, lautet unsere

Funktionalgleichung

j F (a; — y) dG (?/) V (a;) * G (a;) £f (F) oder
0

'
0

OO CO

/.F (s — ?y)dG(?/) F(»)*G(œ) =H(a;).
— OO —OO

Die erste Funktionalgleichung tritt uns z. B. entgegen bei Aus-
Scheidewahrscheinlichkeiten als Funktionen des Alters, während die
zweite Art u. a. bei Problemen der Fehlertheorie auftritt. Da wir
Verteilungsfunktionen, die durch das praktische Problem nur für
positive a; definiert sind, stets durch

F (re) 0 a: < 0

ergänzen, ist für uns die obige Unterscheidung nicht wesentlich. Wir
geben deshalb in der Folge die Grenzen derartiger Integrale nicht
mehr an.
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Handelt es sich bei den Verteilungsfunktionen um totalstetige
oder reinunstetige Funktionen, so wird die Funktionalgleichung für
die entsprechende Häufigkeitsfunktion (d. h. für /(cc) bzw. /,) zu

J / (a: — y) <y(y) dy =/(a;)* c/(a:) /i (cc) bzw.

S /»-* ' <7* /i * ök ^ •

ft

Diese Unterscheidung entspricht der Auseinanderhaltung von stetigen
und unstetigen Prozessen (z. B. Lageveränderungen eines Teilchens
bzw. Zerfall eines Atoms).

3. Unterscheidung nach auftretenden Parametern

Wir wählen für unsere Untersuchungen aus den Funktional-
gleichungen vom Faltungstypus diejenigen aus, welche bei der Faltung
gewisse Parameter in bestimmter Weise verknüpfen. Für beliebige
ganze n und m gelte z. B.

/ (» — 1/) (?/) 2* (®) * -F« (®) M +« (®) ' (1)

Derartige Funktionalgleichungen werden uns als Lösungen Funktionen
liefern, welche gestatten, die iterierten Kerne

Ml) / ~ 2/) (?/) ^y

der Neumannschen Reihe für den lösenden Kern

CO

Ff (ag 0=2 (®)
j'=l

Volterrascher Integralgleichungen in geschlossener Form darzustellen.
Sie treten ferner auf bei Betrachtung der weiter oben angedeuteten
Entwicklung von Gesamtheiten, wenn die Austretenden der Gesamt-
heit in die Gesamtheit G„+i übertreten.

<g) Funktionalgleichungen mit einem Parameter:

Wir setzen nun voraus, dass die auftretenden Verteilungsfunk-
tionen F„(a:) alle zu ein und derselben Parameterklasse gehören, was
wir durch die Schreibweise

^ 1, 2.

mit PO (a:) F (a;, g)
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ausdrücken wollen. Dadurch geht unsere Funktionalgleichung über

in die Gleichung

J F (,-r — ?/, mg) FF (t/, wg) F (a:, mg -g ?ig). ('2)

Falls für die Verteilungsfunktion stetige Abhängigkeit vom Parameter

gefordert wird, können wir diese Gleichung wie folgt schreiben

[ F (a; — ;g, a) cüF (?/,&) F (#, a + i>), (3)

da zu beliebig vorgegebenen positiven Grössen o und 5 stets zwei

ganze Zahlen m und « sowie ein positives g derart gefunden werden

können, dass
I a — mg | < e und i ü> — ng j < a

wird, wobei £ beliebig klein sein kann.

Diese beiden Funktionalgleichungen entsprechen der Forderung,
dass ein gewisses universelles Gesetz existieren müsse, welches alle

im entsprechenden Problemkreis auftretenden Funktionen darzustellen

gestatte (Hadwiger 1).

Falls wir festlegen, dass der Parameter speziell die Präzision dar-

stellen soll, d. h. dass gelte

F(ag a) F^~j,

so erhalten wir eine besondere Form unserer Funktionalgleichung,
welche in der leicht verallgemeinerten Gestalt

c c (a, fe)

bereits eingehend untersucht worden ist (Lévy 2, S. 254, Wintner 7).

Funktionalgleichungen mit mehreren Parametern:
Neben den einparametrigen Verteilungsfunktionen können in

Problemen natürlich auch solche mit mehreren Parametern auftreten.
Praktisch von Bedeutung sind noch diejenigen Funktionalgleichungen,
in welchen deren zwei verknüpft werden, also im allgemeinen Falle
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/ F (a; — î/, a, r) FF(î/, 5, s) F (a, a, r) * F (a, 6, s) (5)

.F (a, c, <)

wobei « c(a, fc) und f f (r, .s).

Wiederum haben die Spezialfälle

F (a:, a, r) * F (a, 5, s) F(a, a + F r + s) und (6)

^ /a; — r\ /a - - s\ /'a: — < \F - - - * F —— F —-— (7)
« / \ 6 7 V c

besondere Bedeutung. Zudem kann auch hier die Abhängigkeit der

Verteilungsfunktion von einem oder beiden Parametern unstetig sein.

4. Allgemeinere Funktionalgleichungen

Ohne näher darauf eintreten zu wollen, soll doch erwähnt werden,
dass die Funktionalgleichungen (3) und (6) homogene Spezialfälle von
allgemeineren Gleichungen darstellen. Dabei bedeutet der Ausdruck
homogen in diesem Zusammenhang, dass es sich um Funktionen
handelt, welche nur von der Differenz (a — «/) zweier unabhängiger
Variablen und eventuell auch nur von der Differenz zweier unab-
hängiger Parameter abhängen. Solche allgemeinere Funktional-
gleichungen treten in der Theorie der stetigen stochastischen Prozesse
auf (z. B. in Diffusionsproblemen) und gestatten, die Durchführung
von Grenzübergängen zu vermeiden, da mit ihrer Hilfe das Problem
bereits in der dem Grenzfall entsprechenden Form ausgedrückt
werden kann.

So lautet z. B. die Gleichung von Smoluchowsky

j F (a-, y, a) cf^F (?/, 2, fc) F (a, 2, a + fc),

welche ihrerseits einen besonderen, in bezug auf die Parameter homo-
genen Fall der Gleichung von Chapman-Kolmogoroff verkörpert:

/ F (a, y, u, 6) d„F(j/, 2, fc, c) F(a, ,2, a, c).

Die Verteilungsfunktion F(a, 1/, a, 6) stellt dabei z. B. in Diffusions-
Problemen die Wahrscheinlichkeit dafür dar, dass ein sich linear be-

wegendes Teilchen, welches sich zur Zeit a in a befindet, zur Zeit b

im Intervall (—00, y) anzutreffen sei.
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Zum Schluss sei noch erwähnt, class die Lösung dieser Punk-
tionalgleichungen von Kolmogoroff (1, 2) durch Zurückführung auf

partielle Differentialgleichungen von parabolischem Typus durch-

geführt wurde, während Hostinsky in einer Reihe von Arbeiten eine

Lösungsmethode mittels «Integralen von infinitesimalen Funktional-
transformationen» beschreibt (1, 2, 3, 4).

5. Transformation der Funktionalgleichungen

Da die von uns ausgewählten Funktionalgleichungen alle zum

Faltungstypus gehören, bietet uns deren Transformation mit Hilfe der

charakteristischen Funktionen gemäss Abschnitt 5 des zweiten Ka-

pitels keine besonderen Schwierigkeiten mehr. Unsere erste Funk-

tionalgleichung (1) des vorausgehenden Abschnittes 3 geht über in
die Gleichung

•ÇhCê) 9>m +»(*)> (8)

während den spezielleren Formen (2), (3) und (4) die Beziehungen

99 (s, mg) • Ç3 (s, ng) 93 (2, »ig + rag), (9)

9? (2, a) • 93(2, 6) 93(2, a + 6) und (10)

9? (as) • 93 (6s) 99 (es) (11)

entsprechen. Ganz analog gehen die Funktionalgleichungen mit zwei

Parametern (5), (6) und (7) über in

99 (s-, a, r) • 99 (2, 6, s) 9?' (2, c, f),

99 (2, a, r) • 99 (2, 6, s) 99 (2, a + 6, r + s) und

e"' 99 (as) • e"' 99 (62) 99 (es).

Auf die Lösungen dieser transformierten Funktionalgleichungen
werden wir nun im nächsten Kapitel näher eintreten.
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V. Die Lösungen der Funktionalgleichungen

1. Einparametrige Lösungen

Wir behandeln die Fälle mit unstetiger Abhängigkeit gesondert
von denjenigen, bei welchen die Verteilungsfunktion stetig vom auf-
tretenden Parameter abhängt.

«J Unstetige Abhängigkeit:
Unter den Lösungen dieser Art unterscheiden wir solche, die nur

für bestimmte (z. B. ganzzahlige) Werte des Parameters definiert sind,
und andere, totalunstetige Lösungen. Die Existenz der letzteren ist
von Hamel (1, S. 459 ff.) mittels des Wohlordnungssatzes der Mengen-
lehre bewiesen worden; infolge der überall dichtliegenden Unstetig-
keiten liefern diese jedoch keine praktisch brauchbaren Verteilungs-
funktionen. Wir werden uns in dieser Arbeit auf die zuerst erwähnte
Art von Lösungen beschränken.

Falls die Verteilungsfunktion für den Parameterwert g als definiert
vorausgesetzt wird, wird unsere Funktionalgleichung (9) in loga-
rithmierter Form zu

(^, mg) + (2, reg) ?/> (2, mg + reg),
wobei

y (2, g) log (2, g) und m, re > 0, ganz.

Diese schon von Cauchy untersuchte Funktionalgleichung hat in
unserem Falle als einzige Lösung (Kamke 1, S. 134)

y (2, mg) m •-99(2, g),
so dass

99(2, mg) [99(2, g)i'"

wird (m 1, 2, 3,

Die Funktion 95(2, g) kann nun aber nicht etwa beliebig gewählt
werden, sondern muss zur Menge der charakteristischen Funktionen
gehören. Für diese Zugehörigkeit sind nun aber zurzeit hinreichende
Bedingungen noch nicht gefunden worden, welche in der praktischen
Anwendung einfacher wären als die Durchführung der Umkehrung
mit anschliessender Untersuchung des Funktionsverlaufs (Lévy 6,
S. 39 f.). Wir müssen uns deshalb darauf beschränken, aus der Menge
der bereits bekannten Verteilungsfunktionen diejenigen heraus-

zusuchen, deren charakteristische Funktion die vorstehende Gestalt
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aufweist. Beim Durchgehen der Liste im dritten Kapitel sehen wir,
dass derartige Punktionen existieren. So sind die Verteilungsfunk-
tionen Nrn. 4, 6, 7, 62 und 69 nur für ganzzahlige m definiert und
besitzen charakteristische Funktionen der angegebenen Form.

5) Stetige Abhängigkeit:
Bei stetiger Abhängigkeit der Verteilungsfunktion vom Parameter

hat die Funktionalgleichung (10)

wo Gi(P) und (*2(2) jedes reelle Funktionenpaar bedeuten, welches

99(2, a) zu einer charakteristischen Funktion macht (Doetsch 1, S. 819).
Aus den bereits genannten Gründen müssen wir uns wiederum darauf
beschränken, für bekannte Verteilungsfunktionen die Erfüllung der

Funktionalgleichung festzustellen. Dies ist der Fall für Nrn. 5, 10, 34,

50, 60, 63, 64, 66 und 67 der im dritten Kapitel aufgeführten Funk-
tionen, zu welchen noch von den im nächsten Abschnitt zu behau-
delnden stabilen Verteilungsfunktionen Nr. 27 als spezieller Fall hin-
zukommt.

cj Die stabilen Verteilungsfunktionen:
Wir betrachten nun noch den Fall der Funktionalgleichung (4),

welche in der transformierten Form (11) lautet

Die Lösungen dieser Funktionalgleichung zeichnen sich dadurch aus,
dass die Faltung zweier Funktionen desselben Typs wiederum zum
selben Typ gehört. Diese Verteilungsfunktionen sind von Lévy (6,

S. 94 ff. und 198 ff., 2, S. 254 ff.) eingehend untersucht und als stabile

Verteilungsfunktionen bezeichnet worden. Es kann gezeigt werden,
dass ihre charakteristischen Funktionen die Gestalt

99 (2, a) • 9? (2, 5) =99 (2, a + 6)

ebenfalls nach Cauchy die einzige Lösung

99(2, a) a > 0

99 (ö2) 99 (52) 99 (C2) c c (a, &).

99(2) =e"WI«
SR(r) >0
0< a <2

besitzen, wobei der aus unsern Formeln im allgemeinen ausgeschlossene
triviale Fall a 0 der «unechten Verteilungsfunktion» Nr. 1 entspricht.
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Die im Exponent auftretende Konstante r kann nach Lévy in
folgender Gestalt ausgedrückt, werden:

a GCTT

1 + 1/3 T-f <3 « -f 1

r 1^1 2

1 a 1

wobei j /3 j < 1.

Ein bestimmter Typ von stabilen Verteilungsfunktionen wird also
in dieser Darstellung durch zwei Parameter charakterisiert, welche
folgende Bedeutung besitzen:

I. Der charakteristische Exponent a misst die Veränderung der
Präzision bei der Faltung, da aus der Funktionalgleichung sofort die
Beziehung folgt

c j/a" + 6«

Für a < 1 nimmt also die Präzision bei der Faltung ab, so dass

derartige Gesetze z. B. für die Fehlertheorie unbrauchbar sind. Für
oc > 2 und a < 0 ist 93(2) keine charakteristische Funktion mehr.

II. Der Symmetriekoeffizient j8 misst die Stärke der Asymmetrie
der Verteilungsfunktion des betreffenden Typs. Symmetrische Ver-
teilungsfunktionen haben /3 0. Für I

/? j >1 ist die Monotonie der
Verteilungsfunktion nicht mehr gesichert.

Mittels dieser beiden Parameter werden die Typen von Verteilungs-
funktionen durch die Schreibweise L^ bezeichnet.

In bezug auf die Faltung bilden die Verteilungsfunktionen ein
und desselben Typs und auch alle Typen L„^, mit
gleichem charakteristischen Exponenten a eine Gruppe. Allerdings
können die Paare (a, /?) nicht beliebig gewählt werden; denn z. B.
existiert zu a 1 oder a 2 nur dann eine Verteilungsfunktion,
wenn gleichzeitig /} 0 ist.

Mitsamt der unechten Verteilungsfunktion sind bis heute nur
folgende vier stabile Typen explizit in geschlossener Form darstellbar :

1. Der Typ Lg der unechten Verteilungsfunktion (Nr. 1) *). Einziger
Typ mit der Streuung s 0.

') Für ß 0 beschränkt man sich in der Bezeichnung auf die Angabe
des charakteristischen Exponenten a-
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2. Der Typ Lg des Gauss-Laplaceschen Fehlergesetzes (Nr. 41).

Einziger Typ mit endlicher Streuung: 0 < .s < co

8. Der Typ Lj_ der Quellenfunktion der Wärmeleitung (Nr. 49).^ 2 '

4. Der Typ der Verteilungsfunktion von Cauchy (Nr. 27). Da

/
für diese Funktion die Grösse tg^ j eine beliebige Kon-

stante darstellt, die durch Verschiebung der Verteilungsfunktion
zum Verschwinden gebracht werden kann, enthält dieser Typ
alle symmetrischen und asymmetrischen Verteilungsfunktionen
der entsprechenden Klasse.

Im nächsten Abschnitt sollen noch Verteilungsfunktionen be-

trachtet werden, welche die Funktionalgleichung nicht für alle be-

liebigen Präzisionen a und 6, sondern nur für eine gewisse Auswahl

von Paaren («, 5) erfüllen.

hj Die semistabilen Verteilungsfunktionen:
Diese Typen von Verteilungsfunktionen sind dadurch aus-

gezeichnet, dass die Funktionalgleichung nur dann erfüllt ist, wenn
die Präzisionen in einem bestimmten Verhältnis zueinander stehen.

Sie enthalten die stabilen Typen als Spezialfall, da letztere einer

einschränkenderen Bedingung unterworfen sind. Pölya hat schon 1923

(2) gezeigt, dass derartige Verteilungsfunktionen existieren, später hat
Lévv (6, S. 204) deren allgemeine Gestalt festgestellt, wobei er die

Definition derart erweiterte, dass er das Erfülltsein der Funktional-
gleichung

(gy) g" • y (2) a > 0

für die Logarithmen der charakteristischen Funktionen für bestimmte
Werte von g verlangte. Dabei ist zu beachten, dass mit g die Funk-

tionalgleichung auch für g" (n 2, 3, erfüllt ist. (Falls das

Erfülltsein für beliebige Werte von g vorgeschrieben würde, erhielte

man nur stabile Verteilungsfunktionen als Lösungen). Der ursprüng-
liehe Fall kann aus dieser Fassung zurückerhalten werden, falls ge-

setzt wird
a g, 6 g" und c g'" + g".

Die auf diese Weise erhaltenen Lösungen erfüllen dann die unserem
Problem zugrunde liegende Gleichung (11) für die Verhältnisse
ffl ; 6 g»W
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Die von Lévy gefundene allgemeine Gestalt der charakteristischen
Funktionen semistabiler Verteilungsfunktionen lautet

9? (2) exp — c 1 0 -Po (log Pi(logU

wobei P„(r) und Pj(a;) Funktionen der Periode log 5 darstellen und
zudem die Bedingung

1 ajT
Pi(P) < PofaWtf-^-

erfüllen, damit das Vorhandensein einer charakteristischen Funktion
gesichert ist.

Ausser den schon erwähnten stabilen Verteilungsfunktionen,
welche hier als Spezialfälle enthalten sind, ist noch keine geschlossene

Darstellung einer derartigen Funktion bekannt. Pölya hat jedoch
gezeigt, dass das Gauss-Laplacesche Gesetz (Nr. 41) auch im Bereiche
der semistabilen Verteilungsfunktionen die einzige Lösung mit end-

lieber, von Null verschiedener Streuung darstellt.

2. Zweiparametrige Lösungen

oj Die Lösungen der Funktionalgleichung (6):

Entsprechend unserem Vorgehen im vorigen Abschnitt unter-
scheiden wir vorerst wieder die Verteilungsfunktionen nach der Art
der Abhängigkeit von den auftretenden Parametern. Wir lassen

wiederum die totalunstetigen Lösungen unberücksichtigt und erhalten
in allen Fällen als einzig mögliche Lösungen Verteilungsfunktionen
mit charakteristischen Funktionen der Form

9>(*,a,r) =[$(*)]" p*(*)]'»

wobei nun je nachdem keiner, einer oder auch beide Parameter dis-
kontinuierlich sein können.

Derartige Lösungen können nun ohne weiteres dadurch gebildet
werden, dass man die charakteristischen Funktionen bekannter Ver-
teilungsfunktionen als 0(2) und ®F(k) einsetzt. Beispiele für Funktionen
dieser Art stellen die im dritten Kapitel aufgeführten Verteilungs-
funktionen Nrn. 36 und 61 dar, welche als Zusammensetzungen spezieller

10
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Formen der Funktionen Nrn. 1, 34 und 66 auftreten. Abgesehen von
solchen Bildungen existieren aber auch Lösungen, bei welchen die

Teilfunktionen keine selbständigen Verteilungsfunktionen sind. Ein
Beispiel hiefür stellt die Funktion Nr. 65 dar, bei welcher der zweite

Teil der charakteristischen Funktion für sich allein keine charak-
teristische Funktion verkörpert, da dessen Absolutbetrag im Gegensatz

zu Abschnitt 1 des zweiten Kapitels nicht beschränkt ist.

lg) Die quasistabilen Verteilungsfunktionen:
Wir treten nun noch näher auf die Lösungen der Funktional-

gieichung (7) ein, welche als quasistabile Verteilungsfunktionen be-

zeichnet werden (Lévy 6, S. 208). Diese zeichnen sich dadurch aus,
dass bei der Faltung zweier Verteilungsfunktionen derselben Klasse

wieder eine Funktion dieser gleichen Klasse entsteht. Im Gegensatz

zu den stabilen Funktionen gehört jedoch bei der Faltung zweier

Funktionen desselben Typs die Resultatfunktion nicht mehr dem

gleichen, sondern einem linear transformierten Typ an. Es wird
also z. B.

/ £ \ / 3; \ / :c + u \- * w - =F - ---
a / ®W/ \ c /

und für die charakteristischen Funktionen

99 («,:) • 99 (fo) -- - W* 99 (eej.

Eine Lineartransformation der verwendeten Verteilungsfunktion

F(,:c ü) G(;r)

d.h. W>0) y (2)

liefert uns nun aber die Faltung

y (av) • y (he) («,:j <y (L~)

so dass also

wird.

e">(c2) y (ce),
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Quasistabile Typen sind also durch Lineartransformation in
stabile Typen überführbar, wobei einzig der Fall a 1 eine Ausnahme
bildet. Dementsprechend lautet die allgemeine Gestalt ihrer charak-
teristischen Funktionen

99 (2)

exp

exp

w#

w#

1 + D
2 0C7T \

R" a 4= 1

< 1

fc — I ,s| + r/32 log J 2 m

0 < a < 2 k > 0, konst.

Geschlossene Darstellungen von Verteilungsfunktionen dieser Typen
sind bis jetzt nur für die den vier oben erwähnten stabilen Typen
entsprechenden Funktionen bekannt. Man erhält deren Form durch
Ersetzen von 2; durch (a; — r), während bei den charakteristischen
Funktionen das Glied V" hinzutritt.

Wie bei den stabilen Verteilungsfunktionen kann auch hier der

Fall eintreten, dass die Funktionalgleichung statt für alle, nur für
gewisse Verhältnisse der Präzisionen erfüllt ist. Derartige Verteilungs-
funktionell nennt man quasisemistabil. Sie enthalten die quasi-
stabilen Funktionen als Spezialfälle. Lévy hat auch für diese Funk-
tionen die Definition entsprechend den Ausführungen in Abschnitt ld
dieses Kapitels erweitert und für die charakteristischen Funktionen
folgende Ausdrücke gefunden (4)

exp

exp

ms Pl(l0g|2|) + l-r-rPa a ± 1

OT2 log I 2 I
I 2 I Pi (log I 2 j) + 12 Pg (log j 2 [)

P„ (z + log q) P„ (x) ; Pi (z) > 0 ; j o | < Pj (z) ;

n 1, 2;

dazu noch für a + 1: [ P2 (£c) | < Pi(^)-

3. Lösungen mit mehreren Parametern

Wie im Falle zweier Parameter lassen sich durch Kombination
bekannter Verteilungsfunktionen auch n Parameter enthaltende
Lösungen mit charakteristischen Funktionen der Form

10*
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9>(z, /ij.. /«g, 70 ;0i(0)l*> [Ö>2(«)> • [0„(*)f»

bilden; ferner können auch Lösungen existieren, für die die einzelnen

0„(k) keine charakteristischen Funktionen sind. Als Beispiel für die

erste Art ist zu erwähnen die Verteilungsfunktion von Pollaczek-
Geiringer für seltene Ereignisse (Nr. 9).

4. Spezielle Klassen von Verteilungsfunktionen

Infolge ihres innern Zusammenhanges fasst man alle durch die

Funktionalgleichungen (4) und (7) ausgezeichneten Verteilungsfunk-
tionen passend zusammen. So bilden die Verteilungsfunktionen eines

stabilen Typs zusammen mit den Verteilungsfunktionen der zuge-
hörigen quasistabilen Typen eine itiuariawfe LC/asse von Verteilungs-
funktionen (Khintchine 6). Diese invarianten Klassen umfassen dann
also die Gesamtheit derjenigen Verteilungsfunktionen, deren Faltung
mit einer im weiteren Sinne ähnlichen Funktion wieder zur selben

Klasse gehört. In gleicher Weise werden die Funktionen semistabiler
und entsprechender quasisemistabiler Typen zu sem-mrananten Jt/asse«

zusammengefaßt, für welche die zugrunde liegende Funktionalgleichung
nur für bestimmte Präzisionen erfüllt ist. Die folgende Zusammen-

Stellung zeigt, wie die erwähnten Typen und Klassen untereinander

zusammenhängen :

Seminvariante Klasse

Semistabile Typen Quasisemistabile Typen

Stabiler Typ Quasistabile Typen

Invariante Klasse

5. Unbeschränkt teilbare Verteilungsfunktionen

Eine noch umfassendere Gattung von Verteilungsfunktionen
stellen die unbeschränkt teilbaren Verteilungsfunktionen dar, welche

u.a. alle seminvarianten Klassen sowie die in Abschnitt lb dieses

Kapitels aufgeführten Verteilungsfunktionen als Sonderfälle ent-
halten. Sie sind wie folgt definiert (Khintchine 3):

Eine Verteilungsfunktion F(x) heisst unbeschränkt teilbar, falls
zu jedem beliebigen ganzzahligen n eine Verteilungsfunktion F„(®)
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existiert, deren Faltungspotenz mit der gegebenen Verteilungs-
funktion F(a:) identisch ist.

Diese Verteilungsfunktionen sind bereits von Lévy u. a. Autoren
eingehend untersucht worden, wobei auch die allgemeine Gestalt dieser
Funktionen festgestellt wurde. Demnach besitzen die charakteristi-
sehen Funktionen der unbeschränkt teilbaren Verteilungsfunktionen
die folgende, abgekürzt geschriebene Gestalt (Lévy 6, S. 180)

exp
/ f f \ / •

• • ' " i
1 -f V

wobei «(?(.) eine in den Intervallen (—oo, 0) und (0, oo) nicht ab-

nehmende, für ± oo endliche Funktion bedeutet, die zudem
in jedem endlichen Intervall (a, 6) die Bedingung

&

| öbi (w) < oo
a

erfüllt und m sowie r reelle Konstanten darstellen (r > 0).

Setzt man speziell n(-u) s (a; — 1), wo E(,r) die unechte Ver-
teilungsfunktion (Nr. 1) bedeutet, geht diese Formel über in

<p(F) c""N K"ä"-e' 2
'

Daraus geht deutlich hervor, dass die unbeschränkt teilbaren Ver-
teilungsfunktionen Faltungsprodukte von linear transformierten un-
echten Verteilungsfunktionen (Nr. 1), Gauss-Laplaceschen Verteilungs-
funktionell (Nr. 41) und gewissen «Integralprodukten» der Poissonschen

Verteilungsfunktion (Nr. 5) darstellen.

Lévy hat nun gezeigt, dass diese Zerlegung einer unbeschränkt
teilbaren Verteilungsfunktion in die soeben erwähnten drei Arten von
Funktionen sogar eindeutig ist, solange nur unbeschränkt teilbare
Verteilungsfunktionen als Teilgesetze zugelassen werden. Sobald die

Teilgesetze jedoch beliebige Verteilungsfunktionen sein können, exi-
stieren zahlreiche andere Zerlegungen, über welche bereits eine aus-
gedehnte Literatur vorhanden ist, in der diese Zerlegungsprobleme
als «Arithmetik der unbeschränkt teilbaren Verteilungsfunktionen»
zusammengefasst werden (vgl. z. B. Dugué 2, Kawata 2, Lévy 5, 7,
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6, S. 186 ff., Slutsky 1). Da hier auf diese mannigfachen Sätze nicht
eingegangen werden kann, beschränken wir uns auf die Angabe zweier
Sätze für die Gauss-Laplacesche und die Poissonsche Yerteilungs-
funktion. Danach existiert nämlich für diese beiden Punktionen auch
bei Zulassung beliebiger, nicht unbeschränkt teilbarer Yerteilungs-
funktionell als Teiler nur je eine mögliche Zerlegung, und zwar in
Punktionen, welche zur selben Klasse wie die gegebene Verteilungs-
funktion gehören (Theoreme von Cramér 1 und Kaikov 1).

VI. Das asymptotische Verhalten der Potenzen von Ver-
teilungsfunktionen

Nachdem für eine empirisch gegebene Verteilung die geeignete

Verteilungsfunktion festgestellt worden ist, bleibt als eine Haupt-
aufgäbe festzustellen, nach was für einer Verteilungsfunktion im
Grenzfall die Summe von n voneinander unabhängigen Variablen

verläuft, wenn von diesen jede der gefundenen Verteilungsfunktion
unterworfen ist und n über alle Grenzen wächst. Da der Summen-

bildung der Variablen die fortgesetzte Paltung der zugrunde liegenden

Verteilungsfunktion entspricht, besteht also die Aufgabe darin, das

asymptotische Verhalten dieser Potenzen von Verteilungsfunktionen
zu untersuchen.

Damit dies aber geschehen kann, wird im allgemeinen eine lineare

Transformation der Variablen eingeführt werden müssen, da sonst,

wie man am Beispiel der stabilen Verteilungsfunktionen leicht fest-

stellen kann, als Grenzfunktion die in Abschnitt 7 des ersten Kapitels
erwähnte Funktion D(P) entsteht. Je nachdem diese Transformation

nun homogen ist oder nicht, erhält man dann also eine Grenzfunktion
einer Folge von Verteilungsfunktionen, welche alle zum gleichen Typ
oder aber zur gleichen Klasse gehören.

Anderseits können jedoch auch Folgen von Verteilungsfunktionen
betrachtet werden, deren jede einer andern Klasse angehört. Falls
in diesem Falle eine Grenzfunktion existiert und zur Klasse IT gehört,
spricht man von Konvergenz der Klassen gegen die Klasse Ii.
Näheren Aufschluss über diese Klassenkonvergenz im Zusammenhang
mit der Theorie der Potenzen von Verteilungsfunktionen geben
Doeblin (1, 2) und Khintchine (4).



1. Definition des Attraktionsgebietes

Die Typen und Klassen, deren Verteilungsfunktionen bei fort-
gesetzter Faltung auf dieselbe Grenzfunktion führen, werden nun
durch den Begriff der Attraktionsgebiete zusammengefasst (Lévy 2.

S. 238 und '252 ff.). Diese werden wie folgt definiert (Gnedenko 1) :

Eine Verteilungsfunktion E(,i;) gehört zum Attraktionsgebiet der
Verteilungsfunktion G(a;), falls zwei Folgen von Konstanten und

angegeben werden können derart, dass die Faltungspotenz
F*"(fl,y: + 5J für über alle Grenzen wachsendes » gegen G'(ai) als

Grenzfunktion strebt.
Falls zu einer Verteilungsfunktion eine derartige Grenzfunktion

G'(») existiert, gehört sie nach Lévy im homogenen Falle (&„ 0)

einem stabilen Typ, im allgemeinen Fall nach Khintchine (6) einer
invarianten Klasse an. Je nach der verwendeten linearen Trans-
formation entsteht nun aber als Grenzfunktion eine andere Vertei-
lungsfunktion des betreffenden Typs oder der betreffenden Klasse.
Wir werden deshalb in der Folge auch vom Attraktionsgebiet eines

Typs oder einer Klasse sprechen. In unserer Zusammenstellung in
Kapitel III haben wir zu jeder Verteilungsfunktion den charak-
teristischen Exponenten a des Attraktionsgebietes in der letzten Spalte
angegeben. Da jeder stabile Typ ein Attraktionsgebiet besitzt, das

mindestens aus den Verteilungsfunktionen dieses Typs besteht, kann
die Gesamtheit aller Attraktionsgebiete durch Aufsuchen der Gesamt-
heit der stabilen Typen bzw. invarianten Klassen gefunden werden.
Diese Aufgabe ist gelöst dank der Feststellung der allgemeinen Gestalt
dieser Funktionen durch Lévy.

Die Funktionen eines bestimmten Attraktionsgebietes zeichnen
sich aus durch die folgende Eigenschaft ihrer Momente:

M Ha to (s) (=°°
p _(J '

^ ' |< co p< a

wobei für 0 < a < 2 die Zahl a den charakteristischen Exponenten
der Grenzfunktionen darstellt, während für a > 2 die Grenzfunktionen
durch den Typ Lg des Gauss-Laplaceschen Fehlergesetzes (Nr. 41)
gebildet werden. Für x 0 existiert als Grenzfunktion keine Ver-
teilungsfunktion, sondern nur die in Abschnitt 7 des ersten Kapitels
erwähnte Funktion D(x) (Lévy 2, S. 277).
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Ans dieser Eigenschaft geht hervor, dass die Zugehörigkeit zu
einem bestimmten Attraktionsgebiet durch die grossen Werte der

unabhängigen Variablen entschieden wird. Es lässt sich zeigen, dass

Abänderung der Werte der Verteilungsfunktion innerhalb bestimmter
Grenzen der unabhängigen Variablen das Attraktionsgebiet unver-
ändert lässt, wogegen bei Abänderung der Werte ausserhalb dieser

Grenzen die Verteilungsfunktion eventuell das Attraktionsgebiet
wechselt (Feldheim 1, S. 14).

2. Unterscheidung der Attraktionsgebiete

eg) Das Attraktionsgebiet der Gauss-Laplaceschen Verteilung?-
funktion :

Wie die zahlreichen Grenzwertsätze der Wahrscheinlichkeits-
rechnung zeigen, wird seit langem versucht, geeignete Bedingungen
für die Zugehörigkeit einer Verteilungsfunktion zu diesem Attraktions-
gebiet aufzufinden. Die ursprünglich allein vorhandenen hinreichenden

Bedingungen wurden in den Sätzen von Ljapounoff und Lindeberg
durch notwendige und hinreichende Bedingungen ersetzt (vgl. z. B.

Feller 1, Lévy 1), während später fast gleichzeitig Khintchine (2),

Lévv (3) und Feller (1) in etwas weiterem Umfang anwendbare Kri-
terien aufstellten. Im weitern sei auf die Literatur zu den einzelnen

Verteilungsfunktionen in Kapitel III verwiesen, die sehr oft Unter-
suchungen über das Grenzverhalten enthält.

Wie aus Abschnitt 1 hervorgeht, gehören zum Attraktionsgebiet
des Typs Lg oder auch der Gauss-Laplaceschen Verteilungsfunktion
einmal alle Verteilungsfunktionen mit endlicher Streuung. Daneben

gehören aber auch noch einige Funktionen mit unendlicher Streuung
dazu, wie z. B. aus der notwendigen und hinreichenden Bedingung
von Khintchine (2)

ar i 1 ----- F (,r i 4- F (— a-) I

lim — -y-- —— 0

/V(7F(j/)
-X

für die Zugehörigkeit einer Verteilungsfunktion zu diesem Attraktions-
gebiet hervorgeht. Derartige Verteilungsfunktionen sind z. B. Nr. '25

für a 3, Nr. 30, Nr. 44 für a 2, Nr. 57 für a 3 und Nr. 58

für a 3.
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f) Die aussergewöhnlichen Verteilungsfunktionen:
Da das Attraktionsgebiet der Gauss-Laplaceschen Verteilungs-

funktion alle andern an Bedeutung und Umfang beträchtlich über-

ragt, werden diese übrigen Attraktionsgebiete unter der Bezeichnung
aussergewöhnliche Verteilungsfunktionen (Lévv 2, S. 252: Lois excep-
tionnelles) zusammengefasst. Hierunter fallen die Attraktionsgebiete
aller stabilen Typen mit 0 < a < 2 bzw. aller entsprechenden
invarianten Klassen. Sämtliche dieser Verteilungsfunktionen besitzen
eine unendlich grosse Streuung. Von den im dritten Kapitel auf-

geführten Funktionen gehören — eventuell nur für gewisse Parameter
— zu den aussergewöhnlichen Verteilungsfunktionen Nrn. 25, 27, 44,

49, 57 und 58.

3. Ausnahmefälle

Es gibt aber auch Verteilungsfunktionen, für welche bei unendlich
oft- wiederholter Faltung mit sich selbst eine Grenzfunktion nicht
eindeutig angegeben werden kann. Als Beispiel hiezu mögen uns die

Verteilungsfunktionen dienen, welche semistabilen Typen angehören.
Für diese werden wegen der Beziehung

f • P (2) V M V (f log ?> (2)

alle Potenzen mit den speziell gewählten Exponenten

g"'** /i ganz

identisch, falls als lineare Transformation a„ n« eingeführt wird.
Es wird in der Tat

^ exp cg

/ 2 \" / 2
99 —T TU "JT

\ n «/ V3

j 0 |« / is \
IT"! ^0 log TT

g /

2 / 2

Ti '( W
I V

^ exp • c 2 Pn H TT Pi'log M
2

wenn man berücksichtigt, dass gemäss der Definition auf Seite 145

Po(V> und Pfa:) Funktionen der Periode log g darstellen. Wählt man
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jetzt den Exponenten « beliebig, so kann in gleicher Weise gezeigt
werden, dass nun alle Potenzen der Ordnung w • g"* mit beliebigem

ganzen /t identisch werden. Wir erhalten also für die Faltungspotenz

F unendlich viele Grenzfunktionen, da diese nur vom nicht-
log n

ganzen Teil der Grösse —- — abhängt.
log g"

Trotz diesem Verhalten spricht man auch von Attraktion*-
gebieten von semistabilen Verteilungsfunktionen, da z. B. Verteilungs-
funktionen mit charakteristischen Funktionen der Form

^(ä)= 99(2)*"'""''®) lim ro (V) =0
£—>- 0

für die Exponentenfolge n g"* (fe 1, 2, 3, gegen die semi-

stabile Verteilungsfunktion mit der charakteristischen Funktion 99(2)

streben (Lévy 2, S. 273).
Weitere Beispiele für das Auftreten von nichtstabilen Grenz-

funktionen erhält man, falls nicht mehr nur Verteilungsfunktionen
desselben Typs oder derselben Klasse miteinander gefaltet werden.
Werden z. B. m Verteilungsfunktionen des stabilen Typs und n
Funktionen des stabilen Typs miteinander gefaltet (Lévy 2, S. 269),

so entsteht eine Verteilungsfunktion mit der charakteristischen Funk-
tion

99(2) "'-»ne "y

Wachsen nun m und n über alle Grenzen und führen wir als Trans-

formation a„ m«i ein, so erhalten wir nur dann zu einem stabilen
Typ gehörende Grenzfunktionen, falls m und ra von derselben Ordnung
unendlich werden. Während in diesem Falle für % <

Cüi(2)

als Grenzfunktion entsteht, können durch passende Wahl des Ver-
hältnisses von m zu w beliebig viele andere, nichtstabile Grenzfunk-
tionen hervorgebracht werden. So wird für V» : c
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