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Verteilungsfunktionen und ihre
Auszeichnung durch Funktionalgleichungen
Von B. Haller, Bern

Fast alle Wissenschaften bedienen sich in neuerer Zeit mehr und
mehr statistischer Methoden in ihren Forschungsarbeiten. FEnt-
sprechend dieser wachsenden Bedeutung werden diese Methoden
sténdig ausgebaut und weiterentwickelt und haben heute einen be-
merkenswerten Stand erreicht. FEine der hidufigsten Aufgaben besteht
nun darin, die durch die statistischen Erhebungen erhaltenen Daten
fiir die Untersuchung in geeigneter Form darzustellen. Dies ist in
vielen Féllen die mathematische Funktion. Die betrichtliche Zahl
verwendbarer Funktionen und die grosse bestehende Ireiheit bei
deren Auswahl sind aber nicht immer von Vorteil, da oft gebriduchliche
und einfache Funktionen dort verwendet werden, wo eine andere
viel zweckmissiger wire. Fine Aufsuchung der geeignetsten Funktion
1st aber dadurch erschwert, dass das Wissensgut in der Literatur
stark zerstreut und oft nicht leicht auffindbar ist. Die vorliegende
Arbeit stellt eine Zusammenfassung dieses Stoffes dar im Hinblick
auf dag Problem, fiir gewisse Funktionalgleichungen, welche in vielen
statistischen Problemen von grundlegender Bedeutung sind, explizite
Losungen finden zu konnen.

I. Verteilungsfunktionen

1. Definition der Verteilungsfunktion

Eine Funktion F(z) wird als Verteilungsfunktion bezeichnet, wenn
sie die folgenden Bedingungen erfiillt:
a) F(z) ist im Intervall — oo <<z <C oo definiert;

b) F(z) ist monoton nicht abnehmend, und es gilt
F(— o) =lim F(x) = 0 und

F (o) = lim F(z) = 1.

r—» oo
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F(x) besitzt also nur Unstetigkeiten erster Art, d. h. Spriinge. Man
betrachtet zwel Verteilungsfunktionen, die sich nur durch die Funk-
tionswerte in den Unstetigkeitsstellen unterscheiden, nicht als ver-
schieden und normiert deshalb die Verteilungsfunktionen durch die
Bedingung

[F(x + 0) = lim F(z + ¢)
F(x) = ! (F(z + 0) + F(z — 0)) ik

i

lF(a: —0) = lim P(z — &)
e~r0,e=>0

Die aufgefithrten Grenzwerte existieren als Folge der Monotonie
(einseitige Stetigkeit). Vgl. Carathéodory 1, S.1501).

Die Menge der Sprungstellen einer Verteilungsfunktion wird ihr
Punktspektrum P genannt, wihrend die Menge der Stellen, in deren
Umgebung die Verteilungsfunktion nicht konstant ist, ithr Gesamt-
spektrum S heigst:

zC P: Flz +0)+F(z—0)
zCS: Flz4+e+F(x—e¢ (e>0).

Das Gesamtspektrum einer Verteilungsfunktion enthélt stets
mindestens einen Punkt und ist abgeschlossen, wihrend das Punkt-
spektrum einer solchen Funktion eine nicht notwendig abgeschlossene,
hochstens abzihlbare Teilmenge des Gesamtspektrums darstellt, die
auch leer sein kann (Wintner 2).

2. Arten von Verteilungsfunktionen

Man unterscheidet folgende Arten von Verteilungsfunktionen:

a) Totalstetige Verteilungsfunktionen:
Fiir diese Funktionen existiert zu F(z) eine im Lebesgueschen
Smn (Lévy 6, S.31) integrierbare Dichtefunktion f(z) derart, dass

€T

Fz) = [ {(y) dy.

—o0

Die Dichtefunktion erfiillt mit Riicksicht auf die der Verteilungs-
funktion auferlegten Bedingungen folgende Vorschriften:

1) Die fett gedruckten Zahlen verweisen auf das Literaturverzeichnis.
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1. f(x) ist definiert in — oo << x << oo.
3. f(z) ist in jedem endlichen Intervall im Lebesgueschen Sinn
mtegrierbar.

4 [fa)des = 1.

Da Dichtefunktionen, welche sich nur in den Punkten eciner
Menge vom Masse Null unterscheiden, zur gleichen Verteilungsfunktion
F(z) tiihren, betrachten wir derartige Dichtefunktionen nicht als ver-
schieden und werden im folgenden von der Dichtefunktion einer Ver-
teilungsfunktion sprechen.

Verteilungen, welche durch totalstetige Verteilungsfunktionen
dargestellt werden, heissen auch geometrische Verteilungen.

b) Reinunstetige Verteilungsfunktionen:

Hine reinunstetige Verteilungsfunktion besitzt nur endlich oder
abzidhlbar viele Wachstumsstellen; sie kann daher héhere Werte nur
durch Spriinge annehmen. Falls wir die Grosse des Sprunges an der
Stelle z, mit f;, bezeichnen und die ¢unechte Verteilungsfunktion»
E(z) durch

0 z<
E(x)zé z=10
1 z> 0

definieren, so koénnen wir in diesem I'alle If(x) darstellen als

Fa) = S fi-E(x — ).

Neben Treppenfunktionen sind in diesem TFall auch stetswachsende
Funktionen enthalten, deren Sprungstellen tiberall dicht liegen.

¢) Reinsingulidre Verteilungsfunktionen:

Fine dritte Art von Verteilungsfunktionen, die nicht auf die
beiden ersten zuriickfithrbar ist, wird dargestellt durch eine stetige
Verteilungsfunktion, deren Wachstumsstellen jedoch eine Menge vom
Masse Null bilden, ohne aber nur abzihlbar oder in endlicher Anzahl
vorhanden zu sein. Diese reinsinguliren Verteilungsfunktionen stellen
die Inversen der oben erwihnten stetswachsenden Funktionen mit
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tberall dicht liegenden Sprungstellen dar; fir die normalerweise zur
Verwendung gelangenden Verteilungsfunktionen fallen sie jedoch
ausser Betracht. Wir werden uns mit ihnen in dieser Arbeit nicht
niaher befassen.

Die drei Arten von Verteilungsfunktionen koénnen in einfacher
Weise dadurch veranschaulicht werden, dass man sie durch ver-
schiedenartige Verteilungen einer Masse der Grosse 1 darstellt:

a) Der totalstetigen Verteilungsfunktion entspricht dann die
kontinuierliche Verteilung dieser Masse mit der Dichte f(z) auf die
ganze Achse.

b) Der reinunstetigen Verteilungstunktion entspricht dagegen die
Zuordnung von Teilmassen endlicher Grésse zu diskreten, in endlicher
oder abzihlbarer Zahl vorhandenen Punkten der Achse.

¢) Reinsingulire Verteilungsfunktionen sind dann darzustellen
als kontinuierliche Verteilung der Gesamtmasse auf die Punkte einer
nicht abzihlbaren Nullmenge. Kein Punkt erhélt dann eine Masse
von endlicher Grosse, die Dichte der Verteilung ist jedoch tberall
unendlich gross.

Neben den erwihnten drei reinen Typen sind — nach entspre-
chender Normierung — natiirlich auch beliebige Kombinationen der-
selben als Verteilungsfunktionen moglich. Derartige allgemeine Vertei-
lungsfunktionen lassen sich stets in eindeutiger Weise in drei noch zu
normierende Teilfunktionen der oben beschriebenen Art zerlegen
(Cramér 2, S.17).

3. Zusammenhang mit der Wahrscheinlichkeitstheorie

X stelle eine unabhingige und zufillige Variable dar, deren
Wahrscheinlichkeitsverteilung durch die Verteilungstunktion F(x) ge-
geben sei. Dann stellt F(x) die Wahrscheinlichkeit datir dar, dass
die Variable X kleiner als 2 ausfalle, vermehrt um die halbe Wahi-
scheinlichkeit dafiir, dass X = 2z wird. Talls wir es speziell mit einer
reinen Verteilungsfunktion der oben beschriebenen Arten zu tun haben,
konnen wir weiter folgendes aussagen:

a) Falls F'(z) totalstetig ist, stellt die Dichtefunktion f(z) die
Wahrscheinlichkeitsdichte daftir dar, dass X = z wird. Die Wahr-
scheinlichkeit, dass X grosser als @, jedoch kleiner als b ausfillt,
kann ausgedriickt werden durch
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Wa< X< b) = fb #(z) da.

b) Im Falle einer reinunstetigen Verteilungsfunktion kann die
zuféllige Variable nur gewisse diskret verteilte Werte z; annehmen.
Bezeichnet man mit f, die Wahrscheinlichkeit, mit der der Wert z,
angenommen wird, so kann F(z) dargestellt werden als

F@) =S it

wobei sich die Summe iiber die links von z liegenden Abszissenwerte
erstreckt und das Glied —2" nur dann auftritt, falls z auf einen dieser

ausgezeichneten Abszissenpunkte fillt.

¢) Ist die Verteilungsfunktion reinsinguldr, so kann die zufillige
Variable wiederum nur gewisse diskret verteilte Werte annehmen.
Um jedoch F(z) mittels der zugehorigen Wahrscheinlichkeiten (die
nirgends eine endliche Grosse aufweisen) darstellen zu kénnen, erweist
es sich als zweckmiissig, den Stieltjesschen Integralbegriff zu ver-
wenden.

4. Das Stieltjessche Integral

Dieser Integralbegriff wird uns nicht nur erlauben, reiasinguldre
Verteilungsfunktionen als unendliche Summe der Einzelwahrschein-
lichkeiten der links eines bestimmten Punktes liegenden Abszissenwerte
darzustellen, sondern wir werden uns seiner hauptsichlich deswegen
bedienen, weil er uns gestatten wird, mit beliebigen Verteilungs-
funktionen Integraloperationen durchzufithren, unbekiimmert darum,
um was fiir Arten von Funktionen es sich dabei handelt. Da wir uns
die allgemeine Verteilungsfunktion aus Teilfunktionen der drei mog-
lichen Arten zusammengesetzt vorstellen miissen, bildet die Einfiithrung
dieses Integrals eine arosse Vereinfachung in der Behandlung derartiger
Funktionen.

Definition: Zwei Funktionen F(z) und G(z) selen im Intervall
(a, b) von beschrinkter Schwankung, dann existiert der als Stieltjes-
sches Integral bezeichnete Grenzwert

n—1 b

lim MG (&) [F(w,) —F(z)] = [G(2) dF (x),
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falls F(z) und G(z) im Intervall (o, b) keine gemeinsamen Unstetigkeits-
stellen besitzen (Schmidt 1, S.123). Dabei stellen die x; Teilpunkte

der Abszisse dar, welche die Beziehung a = 1z, <C Tl =L i 5 Py D
erfiillen, wihrend fir &, die Bedingung z,,, = &, = x; Cfﬂt »Xusgeldem
ist noch die Feinheitsbedingung d,— 0 (n — 00), wo T, — &;5d,

(v =20,1, ...n —1) gilt, zu beachten.

Nachstehend sollen die Grundeigenschaften des Stieltjesschen
Integrals kurz zusammengestellt werden ). Fir weiteres Studium
verweisen wir auf Perron (1).

o) [[Gy(x) + Gyla)] dF(z) = [ Gy (cc) JF(:L‘) + [ Gyx) dF (2)
[[G@) +CldF(z) = [G(a)dP () + C(F(b) —F(a))
[G (@) d[F,(z) + Fy(2)] = [ G(x) dF ( v) + [ G (z) dTy(2)
[G@)d[F(@) +C] = [G(z)dF ()

b) JG(L) 4[C-F(2)] = [ G (@) CdF (@) = C- [ (x)dF(z)
¢) jG z) dF (z) + fG z)dF (z f@ VA F ()

d) [ G(@)dF (@) =GW)[FO) —Fl@)] o<y<b

| [G(z)dF(x)|< [ | (@) | dP(x) =< [ MdF(x) = M[I'(b) —F(a)],
|Gz | <1

’::J___z

7l

b b
¢) j G(z)dF (z) = G (x) ' (x) |, — [ T'(2) dG ()
f) lim [G,(2)dF(x) = [G(2)dF (z), falls in (a, b) gleichmiissig
e (7, (x) — G (x)
q) fG Y @B @) = hm [G(a,) dF (z)

Da sich jede beliebige Verteilungsfunktion stets in eindeutiger
Veise in drei Teilfunktionen der in § 2 erwiithnten Arten zerlegen lisst,
kann das Stieltjessche Integral einer Funktion von beschrinkter
Schwankung G(x) mit der Verteilungsfunktion F(x) als Belegung ent-
sprechend zerlegt werden:

[G)dF (z) = ¢ [G () f(@)da + ey D G(x)f; + e [ G (x) dFy(x);

]

61+ ¢y oy =1, ¢=0

1) Wo nicht anders angegeben, ist als untere und obere Girenze der Integrale
« pzw. b zu setzen.
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5. Beziehungen zwischen Verteilungsfunktionen

a) Fine Verteilungstunktion F(z) heisst konjugiert zu einer andern
F(z), falls die Relation gilt:

Flz) =1 —F(— z).

b) Eine Verteilungsfunktion F(z) heisst symmetrisch, falls sie mit
ihrer Konjagierten identisch ist; es gilt dann also

F(z) + F(—a) =1.

¢) Eine Verteilungsfunktion F,(x) heisst im engern Sinn dhnlich
zu emer andern Verteilungsfunktion F(z), falls sie sich von dieser
nur durch die Prizision unterscheidet, d. h. falls

T\ .
F () :F<> ist.
a
Bei totalstetigen Verteilungsfunktionen gilt fiir die Dichte-

funktion entsprechend
\

he =1 (2).

Alle zu einer bestimmten Verteilungsfunktion im engern Sinne
ahnlichen Verteilungsfunktionen heissen zum gleichen T'yp gehoérig.

d) Eine Verteilungsfunktion F,(z) heisst im weslern Sinn dhnlich
zu einer andern Verteilungsfunktion F(z), falls sie neben einer Mass-
stabinderung auch durch eine Nullpunktverschiebung aus F(x) her-

vorgeht:
1 / m_b
Fi ::F(\ "
1 ( ;U—“b)
f1 (%) —g]t A

Alle Verteilungsfunktionen, die zu einer bestimmten Verteilungs-
funktion im weitern Sinne #hnlich sind, heissen zur gleichen Klasse
gehorig.
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6. Zusammensetzung von Verteilungsfunktionen

Die Linearkombination von Verteilungsfunktionen mit positiven
Koeffizienten liefert bei entsprechender Normierung wieder eine Ver-
teilungsfunktion, nédmlich

ZCZFI(:I})
216

Die wichtigste Art der Zusammensetzung von Verteilungs-
funktionen stellt die Faltung dar, die durch

= H (&)

[Gle—y) dF(y) = H(x)
definiert ist. Diese Operation, welche in abgekiirzter Form als
G(x) * F(x) = H(x)

dargestellt wird, liefert uns die Verteilungsfunktion der Summe X+47Y
zweier willkiirlicher und unabhiéngiger Variablen, deren eine (X) nach
der Verteilungsfunktion F'(z) und deren andere (Y) nach G(x) verlduft
(Wintner 7). Sie besitzt folgende Eigenschaften:

a) Die Resultatfunktion der Faltung zweier Verteilungsfunktionen
ist wieder eine Verteilungsfunktion, falls an den gemeinsamen Sprung-
stellen von F(z) und G(z) die Definition durch die bereits erwéhnte
Normierung ergénzt wird.

b) Die Faltung ist kommutativ und assoziativ:
G+*F =F=*(
Gx(F*E)=(G+F)*FE =G=*F =% H.

¢) Die Faltung symmetrischer Verteilungsfunktionen ergibt wieder
symmetrische Verteilungsfunktionen (Wintner 7).

d) Die Faltung der zu zwei Verteilungsfunktionen F und G kon-
jugierten Verteilungsfunktionen liefert die konjugierte Verteilungs-
funktion zur Faltung der urspriinglichen Funktionen (Wintner 7):

FsG = Fx*G).
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¢) Das Punkt- und Gesamtspektrum der Resultatfunktion ent-
steht durch vektorielle Addition der entsprechenden Spektra der ge-
gegebenen Verteilungsfunktionen (Wintner 2).

f) Die Momente M, der Resultatfunktion berechnen sich aus den
Momenten M und M der urspriinglichen Funktionen nach der Formel

M, =M + MY, M, =a'aF(z),

wobei die Potenzen M'* und M"* durch M bzw. M’ zu ersetzen sind
(Lévy 2, S.183).

Wihrend sich also die Mittelwerte M, bei der Faltung einfach
addieren, setzen sich die Streuungen

s= [ (¢ — M)?dF (g)

nach der Formel
82 — 8,2 _[_ 8”2

zusammen. Be1 der Faltung kann also die Streuung nie abnehmen.

g) Wenn nur eine der beiden urspriinglichen Verteilungsfunktionen
stetig bzw. totalstetig ist, so gilt dies auch fiir die Resultatfunktion
(Lévy 2, 8.189), wobei hochstens der Nullpunkt eine Ausnahme
machen kann (Raikov 2).

h) Talls fiir eine totalstetige Teilfunktion einer Faltung der
Absolutwert der ersten (2., 8., ... n-ten) Ableitung nirgends grosser
als eine bestimmte Zahl k ist, so gilt dasselbe fiir die Resultatfunktion
(Lévy 2, 8.189).

7. Folgen von Verteilungsfunktionen

Man nennt eine Folge von Verteilungsfunktionen konvergent,
falls eine Verteilungsfunktion derart existiert, dass in jedem Abszissen-
punkt z gilt:

Hm F (5) = F(g).

n—» co

Folgende Aussagen sind in diesem Zusammenhang von Interesse:

_ 1
@) Jede Verteilungsfunktion der Form F(jxz), F (0) = 3 strebt
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fiir 4 — oo gegen die unechte Verteilungsfunktion E(z) (vgl. I 2b)
und fiir 1 —0 entweder gegen die Funktion D(z) = F(0) oder, falls
F(z) im Nullpunkt unstetig ist, gegen

L E(+0) z >0
D@ =1p—0y z<o.

Die Funktion D(z) stellt jedoch keine Verteilungsfunktion mehr
dar. Wir haben damit gerade ein Beispiel dafiir erhalten, dass eine
konvergente Folge von Verteilungsfunktionen als Grenzfunktion even-
tuell keine Verteilungsfunktion haben kann.

b) Aus F,(z) — F(z) und F,(z)— G (x) folgt F(z)=G(z).

¢) Sind alle Verteilungsfunktionen der Folge symmetrisch, so
ist bei Konvergenz auch die Grenzfunktion symmetrisch.

d) Fine Verteilungsfunktion F(z) strebt dann und nur dann
gegen die Klasse der Verteilungsfunktion G(z), falls a, >0 und b,
als Funktionen von n derart auffindbar sind, dass in jedem Stetigkeits-
punkt von G(z) gilt (Lévy 2, 8. 202):

lim Fla,z +b,) =G(x).
e¢) Eine Verteilungsfunktion F(z) strebt dann und nur dann
gegen den Typ einer Verteilungsfunktion G(x), falls a, > 0 als Funktion

von n derart angebbar ist, dass in jedem Stetigkeitspunkt von G(%)
gilt (Lévy 2, S.202):

lim Fl(a,z) =G ().

N—=» O

8. Bemerkung iiber mehrdimensionale Verteilungsfunktionen

Héufig treten in der Praxis auch Verteilungsfunktionen von
mehreren Variablen auf, so speziell bei Korrelationsproblemen. Zur
Untersuchung werden diese Funktionen vorteilhaft in einem n-dimen-
sionalen Raum dargestellt. In der vorliegenden Arbeit soll jedoch
aut diese allgemeineren Fragen nicht eingetreten werden, wir ver-
weisen deshalb den Leser auf die Arbeit von Jessen und Wintner (1)
und deren sehr reichhaltiges Titeraturverzeichnis.
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II. Die charakteristischen Funktionen

Bevor wir an die Formulierung der zu untersuchenden Probleme
gehen, sollen noch die charakteristischen Funktionen behandelt
werden, welche sich spiter als ein sehr geeignetes Mittel erweisen
werden, um auftretende Funktionalgleichungen und Integralbezie-
hungen in wesentlich einfacherer Form darstellen zu konnen. Der
Begrift dieser Funktion findet sich unter anderer Bezeichnung bereits
bei Laplace und Cauchy; nach Poincaré beschiftigte sich dann erst-
mals Lévy (1925) in eingehender Weise mit ihnen und fithrte auch
eine neue Schreibweise ein, welche die Aufstellung einer einfachen
Umkehrformel gestattete.

1. Definition der charakteristischen Funktion

Es sei F(t) eine Verteilungsfunktion und z reell, dann wird die
charakteristische Funktion ¢(2) von F(f) durch das Integral

o0

@ (2) = [ et dF (1)

- 00

dargestellt. Da

e@|<T] e'fztw(t)g_fwdﬁ(t) =,

konvergiert das Integral fiir alle z absolut.

Die charakteristische Funktion ist nichts anderes als die in
Stieltjesscher CGrestalt geschriebene Fourier-Transformierte der Funk-
tion F(z). Der Faktor 1 = V: 1 im Exponent wurde von Lévy (2,
S.161) eingefiihrt, er vereinfacht die Konvergenzverhiltnisse und
erleichtert die Umkehrung.

Da die Grésse oo

W(y) = [ y(x)dF(z)

—CcQ

als Erwartungswert von y bezeichnet wird, stellt die charakteristische
¥ - t
Funktion den Erwartungswert von e’ dar.

2. Eigenschaften der charakteristischen Funktionen

a) Die charakteristische Funktion einer Verteilungsfunktion ist
stetig, da das Integral in jedem abgeschlossenen Intervall gleich-

missig konvergiert.
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b) Fir z =0 nimmt jede charakteristische Funktion den Wert.
1 an:
@ (0) =1.

¢) Die «normierte» Linearkombination und das Produkt zweier
charakteristischer Funktionen sind wieder charakteristische Funk-
tionen (Bochner 3).

d) Fir die konjugiert komplexe Funktion besteht die Relation:

¢ (2) = p(—2).

¢) Die charakteristische Funktion einer symmetrischen Vertei-
lungsfunktion ist reell.

f) Die charakteristischen Funktionen stehen mit den Momenten
der Verteilungsfunktionen in enger Beziehung. HEs gilt ndmlich, falls
M, < oo, o
@® (2) { eo =1 [ 2P 6" AF (x) ’2:0 =1"M,.

Damit ¢@(z2) als Funktion der komplexen Verdnderlichen z bei
z =0 reguldr ist, miissen notwendig alle Momente M, (p =0, 1,
2, ...) existieren. In diesem Falle gilt fir die charakteristische
Funktion die Potenzreihenentwicklung
22 M, &M,

=M M, — — + ...
@ (2) o + M, 5 Y t

g) Falls eine Folge von charakteristischen Funktionen ¢,(2) in
jedem endlichen Intervall gleichmissig gegen die Grenzfunktion
®(2) = lim ¢,(2) konvergiert, gehort diese ebenfalls zur Menge der

n—co

charakteristischen Funktionen (Bochner 8).

3. Die Umkehrformel fiir charakteristische Funktionen

Nach Lévy (2, S. 1661f.) kann aus jeder charakteristischen Funk-
tion die urspriingliche Verteilungsfunktion eindeutig aus folgender
Formel zurtickerhalten werden:

F(z) = F(0) +

27

= 1 — e—fizx
Hleﬁ___¢@@.
Z
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Dabei bedeutet HW [ g(2) de

den Cauchy-Hauptwert des Integrals, d. h.

T
lim [ g(z)de
T o0 =T
und es ist die Konstante F'(0) durch die Bedingung F(— o) =0
zu bestimmen.

Die Eindeutigkeit der Umkehrformel gestattet uns, eine Ver-
teillungsfunktion durch blosse Angabe ihrer charakteristischen Funk-
tion @(2) zu definieren. Dies hat dazu beigetragen, die Bedeutung
dieser Funktionen zu heben. Wir werden allerdings im nichsten
Abschnitt sehen, dass nicht zu jeder beliebig gewidhlten Funktion
@(z) eine zugehorige Verteilungsfunktion existiert, selbst wenn sogar
die oben erwihnten Eigenschaften alle vorhanden sind.

Fallg die charakteristische Funktion die Bedingung

oo

loigo(z)]dz< )

erfiillt, folgt aus der obigen Umkehrformel, dass die zugehorige Ver-
tellungsfunktion F(z) eine stetige und beschriinkte Ableitung besitzt,
die wie folgt dargestellt werden kann (Wintner 7):

F'(z) = f(x) z-Q—I—Her o (2) d.

Ist anderseits F(z) unstetig, so ist der Sprung im Punkte z erhilt-
lich aus der Formel (Cramér 2, 8. 24)

Flea+0)—F(z—0) =lim —— [ e™gp

T —» o0

Dieser Grenzwert existiert fiir jedes reelle z, er verschwindet an
den Stetighkeitsstellen der Verteilungsfunktion.

Zahlreiche weitere Eigenschaften der Verteilungsfunktionen sind
in &hnlicher Weise aus dem Verhalten der entsprechenden charak-
teristischen Funktionen erkennbar, wobei speziell das asymptotische
Verhalten von @ (2) interessante Beziehungen ergibt (vgl. z. B. Dugué 1).
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4. Das Darstellungsproblem

Wie schon erwihnt, geniigen die unter Abschnitt 2 aufgefithrten
Figenschaften nicht, um eine charakteristische IFunktion als solche
zu charakterisieren. Selbst wenn das Umkehrungsintegral konvergiert,
sind wir nur sicher, eine reelle Funktion mit der totalen Variation 1
zu erhalten, ohne jedoch auch voraussagen zu kénnen, ob diese monoton
verlauft (Lévy 6, S.89). Hier tritt eine zurzeit noch nicht ber-
wundene Schwierigkeit auf, indem entweder nur fiir bestimmte Klassen
von Funktionen die Zugehorigkeit zu den charakteristischen IFunk-
tionen bekannt ist oder aber die hinreichenden und notwendigen
Kriterien in der praktischen Anwendung nicht einfacher sind als die
Ausfithrung der Umkehrung und der Untersuchung des Verlaufs der
Funktion.

Folgende Klassen von Funktionen bestehen sicher aus charak-
teristischen Funktionen:

a) Alle Funktionen der Gestalt ¢ (2) = ¢ " mit 0 < a < 2. Fir
a > 2 sind diese Funktionen sicher keine charakteristischen Funk-
tionen mehr (Bochner 1, S.76).

b) Alle geraden Funktionen ¢ (z), welche fiir 2 > 0 die Bedingungen
@'(2) << 0 und ¢'(2) > 0 erfiillen (Pdlya 2).

¢) Alle Funktionen, welche mit Hilfe einer willkiirlich wéhlbaren,
nicht abnehmenden Funktion G(z) darstellbar sind als (Bochner 3)

<Al (@)
p(2) = exp <_ J +>

d) Alle Funktionen, die darstellbar sind als

oo

g@) = [g(z+1t) gk —1dt,

—co

wobel ¢(f) und ¢(f) zueinander konjugiert komplexe Funktionen der
reellen Variablen ¢ darstellen (Mathias 1).

Folgende von Bochner und Khintchine stammenden Bedingungen
sind notwendig und hinreichend dafiir, dass eine Funktion charak-
teristische Funktion einer Verteilungsfunktion ist (Lévy 6, S.39):
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a) Fs sei F'(0) =1 und der Ausdruck

(]

-
-
3

M @(e; —2;) u;u; >0 und reell,

(N7
/

[
IR
I\
A

1

wie auch die ganze Zahl n, die reellen Zahlen 2z, und die komplexen
Zohlen w; mit ihren Konjugierten u, gewihlt werden (Bochner 2).

b) @(z) sei Grenzfunktion einer in jedem endlichen Intervall
cleichmiissig konvergenten Folge von Funktionen der Form

I _
4,0 ==+ [ oale+ 5.0 d
mit N = [|g,() [? d,

wobei ¢(f) und g¢(f) zueinander konjugiert komplexe Funktionen der
reellen Variablen ¢ darstellen (Khintchine 5).

5. Abbildungseigenschaften der charakteristischen Funktionen

Wie schon erwihnt, zeichnen sich die charakteristischen Funk-
tionen dadurch aus, dass in ihrem Funktionenbereiche gewisse kom-
plizierte Beziehungen der Verteilungsfunktionen in wesentlich ein-
facherer Giestalt abgebildet werden. Wir erwihnen in der Folge kurz
emige dieser Abbildungen.

a) Die lineare Substitution. )

.. T—"r ) ;
Der Uberfithrung von F'(z) in F' (T) entspricht bei den cha-

rakteristischen Funktionen der Ubergang von ¢ (2) zu " ¢ (a2), wie sich
leicht durch Ausrechnung ergibt. Die charakteristischen Funktionen
von Verteilungsfunktionen desselben Typs unterscheiden sich also
lediglich durch die Priizision, wihrend fiir Verteilungsfunktionen der-
selben Klasse exponentielle Zusatzfaktoren auftreten.

b) Die Faltuny.

Hier zeigt sich besonders eindriicklich, wie die von uns gewihlte
Transformation cewisse transzendente Beziehungen als algebraische
Zusammenhé’mge abzubilden vermag. Durch Umbildung des auf-
tretenden Doppelintegrals zeigt man nimlich, dass die charakteristische
Funktion der Faltung zweier Verteilungsfunktionen
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Herer Bt Fy(z) * Fy(z) = Fy()

P1(2) - 2 (2) = @3(2)

der entsprechenden charakteristischen Funktionen entspricht.

Da der Faltungsprozess im Hinblick auf die wahrscheinlichkeits-
theoretische Bedeutung einen erheblichen Teil der Theorie der Ver-
teilungsfunktionen beherrscht, ist mit diesem «Faltungssatz» eine
Relation von grundlegender Bedeutung gewonnen.

¢) Konvergente Folgen von Vertelungsfunktionen.

In bezug auf deren Grenzgesetze gilt folgender Satz:

Eine Folge von Verteilungsfunktionen F,(x) konvergiert dann und
nur dann gegen eine Grenz-Verteilungsfunktion F(x), falls fiir ein
beliebiges positives a die charakteristischen Funktionen g¢,(z) gleich-
mégsig in ‘z ‘! < a konvergieren. Ist dies der Fall, dann ist die Grenz-
funktion der charakteristischen Funktionen die charakteristische Funk-
tion von F(z), und die Konvergenz der charakteristischen Funktionen
erfolgt gleichmiissig in jedem endlichen Intervall (Cramér 2, S.29).

Dieser Satz wird falsch, wenn auf die Bedingung der gleich-
missigen Konvergenz in der Umgebung von Null verzichtet wird.
So besitzt z. B. die Folge der Funktionen

(pn(z) ="

fiir n— oo eine Grenzfunktion, jedoch stellt diese nicht mehr die
charakteristische Funktion einer Verteilungsfunktion dar. Fur die
Verteilungsfunktionen gilt

1
lim F (x) = 5

N—> co

Diese Grenzfunktion ist selbst keine Verteilungsfunktion mehr!

Anderseits geniigt die Voraussetzung, dass die Grenzfunktion der
Folge der charakteristischen Funktionen selber eine charakteristische
Funktion sei und dass diese Folge fir jedes z konvergiere, damit der
Satz wieder richtig wird. Ferner geniigt auch die Bedingung, dass
fir ein beliebiges positives a die Folge ¢,(2) in  z|< a gegen eine
Grenzfunktion konvergiert, welche im Punkte z —0 stetig ist. Unser
obiges Beispiel erfillt diese Bedingung nicht, da dort die Grenzfunktion
m z = 0 eine Unstetigkeit besitzt.
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Il. Ubersicht iiber die bekannten Verteilungsfunktionen

Nachfolgend sind die in der Literatur auftretenden Verteilungs-
funktionen!) mit ihren charakteristischen Funktionen in Tabellenform
zusammengestellt. In einem zweiten Abschnitt folgen zu diesen
Funktionen Bemerkungen tber die bisherigen Anwendungen und
Hinweise auf die Literatur. Die Verteilungsfunktionen wurden in
dieser Zusammenstellung unter Verzicht auf eine Hinteilung nach der
analytischen Gestalt in der ersten Spalte durchlaufend numeriert,
wobel in der Anordnung die reinunstetigen Verteilungsfunktionen vor-
weggenommen wurden. Die totalstetigen Verteilungsfunktionen bilden
den Hauptteil und beginnen mit den Funktionen algebraischer Gestalt.

Um die Darstellung moglichst zu vereinfachen, wurde in der
zweiten Spalte nicht die Verteilungsfunktion £'(z), sondern deren
Héaufigkeitsfunktion f(z) aufgefihrt. Diese 1st bei reinunstetigen Ver-
teilungsfunktionen definiert als Hoéhe der Spriinge in den Unstetig-
keitsstellen der Verteilungsfunktion und nimmt nur dort von Null
verschiedene Werte an, wihrend sie fiir die totalstetigen Verteilungs-
funktionen mit der Dichtefunktion tibereinstimmt. Da fast iiberall
die Prizision als 1 angenommen wurde, kann diese bei den meisten
Funktionen als weiterer Parameter eingefithrt werden, indem ¢(2)

durch cp(i) und bei totalstetigen Funktionen f(z) durch a-f (ax)
a.

ersetzt wird (0 << a<C o). In gewissen Fillen, wo explizite Dar-
stellungen der Verteilungsfunktionen moglich sind, wurden sie im
zweiten Abschnitt unter den zusitzlichen Bemerkungen aufgefiihrt.

In der dritten Spalte ist als Definitionsgebiet die Menge der
Werte der Variablen bezeichnet, fiir welche bel reinunstetigen Ver-
teilungsfunktionen Spriinge, bei totalstetigen Verteilungsfunktionen
nicht verschwindende Funktionswerte angenommen werden. Die fiir
die Parameter giiltigen Bedingungen wurden in der vierten Spalte
angegeben. In der fiinften Spalte ist die Normierungskonstante an-
gefithrt, die zu der in der ersten Spalte angeschriebenen Formel als
Faktor hinzutreten muss, damit die «normierte» Hiufigkeitsfunktion
dargestellt wird. Die sechste Spalte enthilt die charakteristische
Funktion. Bei einigen Verteilungsfunktionen konnten diese nicht
explizit angegeben werden. Die Angaben der siebenten Spalte be-
ziehen sich auf die Ausfithrungen des sechsten Kapitels tiber die

Attraktionsgebiete.

1) Vollstandigkeit wurde angestrebt bis 1941.
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1. Tabellarische Zusammenstellung

der Verteilungsfunkticnen

Nr. Haufigkeitsfunktion f(x) Definitionsgebiet Parameter
a) a=20
1 1 a b) a0
2 ! 0
2 +a 0%
l(l—f— ) 0
— g,
3 2 n=12,...
1 1\" 0<e, <1
—~(1——-£n) o
2 2
0<p<1
4 <n)pan_x 0,1,...n ptqg=1
x
/ n > 0 ganz
aZ
5 s 0,1,2, ... a >0
@
B ol g5 e 0<p<l
6 ( > i 0,1,2, ... p+q=1
z
n > (0 ganz
d > —1
h z }L>O
7 F=d e “_d__h_ 0,1,2, ... L
x (1+ d>;1‘+$ ‘d‘ ganz
P>0,9=>0
8 (P>( 4 > 0,1....n P ganz, () ganz
z/\n—zx
AR n> 0 ganz
Z (Y S ) 0
: h >
10, ! !
9 Vp v Ut wv Byl 0,1,2, ... n> 0 ganz

v ——{—2’02—%— e Fnon==x

Normierungskonstante Charakteristische Funktion Attraktions-
gebiet: o
1 caiz 9
1 cos az 9
1 i iz
i 5“_}_8»1—{#(1—_6,‘1)6 J 2
1 (p 61'2 il q)n 9
(),_a (3a(9iz“1 ) 2
q Y
‘i . WO 2
! (1——pe”)
P
! 1t da—e ] s z
()
S—— M F(en,-Q, Pont 15¢9) 2
(PHQ P+Q
Q n > < 7
zhu(e”iz-l )
oty e 4 9
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Nr. Haufigkeitsfunktion f(x) Definitionsgebiet Parameter
0,1,2, ...
10 I, (a) —1,—2 .. a >0
1
11 . a<<x<<b
b—a
1
12 T —a<<x<<a a>0
20
2—a \
13 ax - —5 0<a<1 al < 2
14 1 —|a] —i<e<l —
15 l*iwia -l<zr<1 a>0
16 1+ z° —1 <<z <0 a >0
17 (1—}96[)“ —1<z<l a >0
P . a >0
18 (] __I Z | ) : —l<z <1 n >0 ganz
19 (1— a2)° —l<z<l w1
&) =t a+0
N-n-2 N =0 ganz
20 22 (1—g2) 2 0<z<1 n > 1 ganz
N=n-|1

Normierungskonstante Charakteristische Funktion ;\ttraktions-
gebiet: o
e—a Ca(cos:—I) 2
»ibz _ ,la
1 € ¢ 2
1(b—a)z
1 Enas 9
az
5 1 ' :
1 € a—«iz(l 3) . 2
22 2/ 2
1 e (1 —cos 2) 2
a-+1 9
2a
a-+1 2
ad 9
2
/
al’ kl - n
a,
—_— : . 2
2r <*>r<”:_ 7 1>
a @
i 3
F (a - —> J (
____H2 2“+'zl>“]’ (a e é) g . )
/ol @+ 1) 2) 3
or (ﬁi)
2
_ - 2
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Nr. Hiaufigkeitsfunktion f(z) Definitionsgebiet Parameter
a n-a n>0
21 a*(1— ) 0<z<l O<a<n
x\v \ vh
29 (1 -1'-_> (1——- ..... ) —a<e<h v >0
a
1
23 e —1<z<<0 0<a<1
(14 =)
24 (itf> —a<x<b | <1
b—a o
1 a>1
95 vy b <<z <o b>0
o6 (x— 1) y _ a>b-+1
27 ! <
28 ! <z <
— —oco L g <o —
T+ o
29 ! >0
¢ s — 00 oo ¢
1+ 22¢ LT
12
30 —— — o0 o0 -
1+ o2 =T=
'p—wz)w - ~|  p>0,¢>0
31 <\q+z2, —-l/p<ﬁc<l/p m=0, q>p

— 119 —
Normierungskonstante Charakteristische Funktion Attra‘ktions-
gebiet: «
I'(n+ 2) 9
Fla+ 10T (—e+1)
a™ b - T (va + vb -+ 2) g
(a -+ b)" T+ (g + 1) I (vb -+ 1)
1—a 9
B0 .
(@ + b)-vx
- o-1 1<a<3
(ah‘l)bal 2 a>3
I'(a) .
Ia—b—1)T (b+1)
1 i
- e‘iel 1
JT
- iz]
% el14|z]) 9
I (a
__U_l__ )
V;F <a — _)
2,
— - 2] ]_ . 9
3
I'i—+k
5+Y
— 2

' 1+ k)F(k,}é, b+ Z,_£>
q
m

= ———
p+q
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Nr. Héufigkeitsfunktion f(z) Definitionsgebiet Parameter
82 e a<<x<b
33 e’ 0 <z <eo —
34 gt g 0<z<oo a>0
/ €T Rl 0,>0
el > A I 4
35 (1 ! a> ¢ 6L x <o 2 =0
P SO 4>0,0>0,b>0
e—/.ou a-1 >7 O o - s 6=V, U
% H(/ I'(bv + a) =T a>0,n-=1,2,...
< A>0,a>—1
O—rT v-1 - ]
o € %“;!Avx 0 <@<ee n=1,2,...
38 e’m -— oo < &L <o —
39 ¢ (1 + |al) o0 < <oo —
40 e — o0 < I <0 a>0
41 g o L <L oo —

— 121 —
Normierungskonstante Charakteristische Funktion Attra:ktions-
gebiet: o
1 ea(iz—l) o eb(’iz—l)
e 2
et—e? (1 —idz)(e*—e™)
1 ! 2
1—1z
1 ( 1\ 5
T (a) 1—iz
(av)av+1 e-av C~mz ;
al (av 1) "1 vz >‘”’“
=3
by n
1+¢
A® A >a = ( A—az > 5
, CY A—1z 14+¢i
1+,
% r (v - &)
1 =0 2
—71“ N n :
S4L8ra 34,74 +a
v=1 Jvte = Zv+a
1 1 .
2 14+ 2
1 < 1 >2
- Iy
4 1+ 22 “
__“_T 9
or (1)
@
1 W
= e s 2
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Nr. Hiaufigkeitsfunktion f(x) Definitionsgebiet Parameter
42 a2 e* 0<e <o a>0
43 g —ee < T <o —
e
44 — 0<ae <o a0
XL
1 _lgzz
45 " e 2 0<a <oo T
z-a) (b-m)
—R2lg® —— - ——oo<a<m<b<°°
46 e (b-z) (m-a) 4 < b
B h>0
_E
e T
a>0
4:7 mll—%*l O\W < oo b:>0
1B 1 -M‘% a>0
3 —e ¢
- 0<a <oo b0
1 _t
49 V—g e 0 <z <oo —
T
1 % 0
50 i v
l/w:s e 0<z oo b>0
1
Py e s+0 a>0
51 x® e . o ’
e—a-arctga:
52 —oc < X <{oo a:tO,b>0

1+ 2)°

Normierungskonstante Charakteristische Funktion Attra'kti.on&
gebiet: o
2
PN 2
o+
r
(=)
1 'l —az) 2
2 a<<0
1 a0<a<?2
2 a>2
1
e 2
/2
2
. 2 iTE, (2] —bie) "
I (a) I (a)
2
_1 e(—1+¢)1/2 1
Jon ?
a ’ PR
. emvb e2a(1/b—]/b—zz 2
[~
aP
- 2
|s|T'(p)
2
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Nr. Haufigkeitsfunktion f () Definitionsgebiet Parameter
53 ! <
o . — o0 < oo J—
1 =
o4 e — oo <@ Tos —
(62 +e 2>
1
55 e — o0 L oo a>0
e+
1
56 T 0 <z <<oo —
&P <e“” — 1)
lgx
57 - <o <oo 1<a
wﬂ,
1 b>1
58 b<x <oo
gz a>1
59 —a;algx O<e<l a> -1
1 ,
60 e—/m__»]a(a;) 0<x <o A>1,a>0
; &
a1
61 ey 2 Ia—1(2V5U) 0<x<Coo ).>0, a>0
n-1

— 125 —
Normierungskonstante Charakteristische Punktion Attqutions-
gebiet: «
2 1 1442\ 2
(1) 2
T 7T | 2
1 117 (1 + 32) |2 9
y 2
o)
21" (2a) 2
I (o) T ()P 2
15 .
i
(a—1)? a-l1<a<3
2 >3
. 1 a1 1<<a<<3
mL@’ (bl_a) 2 a>=3
(@ + 1) 9
a— AT
a(d+)r—1) ( l—f_ — - ) 2
A—iz (A —a?—1
(1_ 1 4 2 a
20 7 ()(/ /—z,) ( >
e A —iz 2
1
) SN 2
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Nr. Haufigkeitsfunktion f () Definitionsgebiet Parameter
-z a—l "
63 ne x *I 4 (z) 0 < <<oo A>1 a>0
2
oL o |
64 |z|"* K (= — oo <& oo A<l a>0
65 ot M, (@) 0<z <o a>0 b=0
' 1
>b A>-
a > 9
66 Z ca a>0
v!
»=0
= Vs aav ()—v 70 .
67 0,1,2,. a>0
p!
v=0
had emmv (,—v n
68 Z p 0 <<a <oc n=0,1,2,
=0
n O < p < 1
69 TN v, v o =1
i e A p+q
v=0 n > 0 ganz
70

(s. Seite 135)

Normierungskonstante

Charakteristische Funktion

Attraktions-
gebiet: a
[ 1 — < 1—2 >“
S Yal@ 1— (2 —ie) 2
12
(,12—1 3 S
e <2,1+1\b < 4221 > A=y
T 2a) 22—1) d—p—1)\ | 2
1
At
1 olola)1)
1 a( eiz_] 1) 2
nl >erto (1 —azyt
o v=0 0
2 e ety
v=0 v=0
1 (o) +q)
I




Nr.

Nr.

Nr.

Nr.

Nr.
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2. Zusatzbemerkungen zu den einzelnen Verteilungsfunktionen

1.

b

o

oL

a) a = 0. Verteilungsfunktion von Dirac oder «unechte Ver-
teilungsfunktion». Einheitselement in der Faltungsalgebra, da
fiir beliebige Verteilungsfunktionen G stets F'* (G =G gilt.
Expl. Darstellung vgl. Kap. I, Abschnitt 2b.

b) a +£0. Lineare Transformation der unechten Verteilungs-

‘x
funktion, fiir die wegen F (w) =F(z —a (¢ —1)) Typ und
c,
Klagse zusammenfallen und als «unechte Klasse» bezeichnet
werden (Khintchine 6, Wintner 1).

Verteilungsfunktion von Bernoulli.

Unendliche Faltungspotenzen dieser Funktion von der Form
F(a,z) * F(agz) * -+ #F(a,x) * --- stellen unter gewissen
Bedingungen totalstetige oder reinsingulire Verteilungs-
funktionen («Unendliche Bernoulli-Faltungen») dar. Fi

1 n
a, :<§> entsteht speziell die Verteilungsfunktion Nr. 12

(Wintner 8, 4, 5, 7, Erdos 1, 2, Kawata 1, Kershner 1).

Unendliche Faltungspotenzen dieser Funktion von der Form
F(x, &) * F(z,e) * -+ % F(z,¢,)* - heissen «unendliche
Poigson-Faltungen» und stellen unter gewissen Bedingungen
totalstetige oder reinsingulire Verteilungsfunktionen dar
(Hartman & Kershner 1, 2, Wintner 6).

Binomiale Verteilungsfunktion von Bernoulli.

Verteilungsfunktion der Wahrscheinlichkeit fir das Kin-
treffen von 2 Freignissen bei n gleichméglichen Féllen (von
Mises 2, 8. 129) Verallgemeinerungen fiir den Fall der «Mehr-
wertigkeit» und fiir «inhomogene Serien» bei Baumberger (1,2).

Verteilungsfunktion der «seltenen Ereignisse» von Poisson.

Diese Funktion geht durch einen Grenzibergang aus Nr.4

1
hervor, falls dort n tiber alle Grenzen wichst und p wie -y

gegen Null geht. Dementsprechend wird sie dort angewendet,
wo Hreignisse mit sehr kleiner Wahrscheinlichkeit auftreten
(Kinderselbstmorde, Atomzerfall usw.) (von Mises 2, S. 148,



Nr. 6.

Nr.

=

Nr. 8.

Nr. 9.

129 —

Khintchine 1, S.17, Riebesell 1, S.23, Lévy 6, S.85 ff).
Auch diese Funktion wurde fiir «Mehrwertigkeit» und «in-
homogene Serien» verallgemeinert (Baumberger 1, 2).

Verteilungsfunktion von Pascal.

Verteilungsfunktion der Wahrscheinlichkeit fir das Eintreffen
von n Ereignissen bei beliebig vielen (n + z — 1) gleichmog-
lichen Féllen (Risser & Traynard 1, S. 823, Guldberg 1, Baum-

berger 1).

Verteilungsfunktion von Eggenberger-Polya fur seltene Freig-
nisse. Liefert fiir d = 0 als Spezialfall die Funktion Nr.5
und fiir speziell gewdhlte A und d die Funktionen Nrn. 4 und 6
(Bggenberger 1, Baumberger 1, Liiders 1, Guldberg 2, Riebe-
sell 1, 8. 37).

Hypergeometrische Verteilungsfunktion.

Verteilungsfunktion fiir das Eintreffen von z Kreignissen in
n Versuchen mit der speziellen Wahrscheinlichkeitsansteckung

1
j = —-———hei P+ () Moglichkeiten. (n Ziehungen aus
(P +@Q) - (

einer Urne mit P weissen und () schwarzen Kugeln ohne
Ziuriicklegen der gezogenen Kugeln). Verschwindet die Wahr-
scheinlichkeitsansteckung, d. h. wird § = 0, so geht die Funk-
tion iiber in Nr. 4 (Fischer 1, Dieulefait 1, 2, Risser & Traynard
1, S.327, Guldberg 1). Die Verallgemeinerung fiir beliebige
Wahrscheinlichkeitsansteckungen ergibt die Verteilungsfunk-
tion von Kggenberger-Polya fir gewdéhnliche Ereignisse
(Baumberger 1). |

Verteilungsfunktion von Pollaczek-Geiringer.

Verteilungsfunktion fir das Hintreten von z seltenen Ereig-
nissen einzeln oder in Paaren, Tripeln usw. bis héchstens
n-Tupeln. Wie aus der Formel ersichtlich ist, handelt es sich
um die Faltung der Verteilungsfunktionen fir das Kintreten
der einzelnen n-Tupel. Anwendungsmoglichkeiten: Mehrlings-
geburten, Unfille mit mehreren Toten, Blutkorperchenauszih-
lung (Klumpenbildung), Hagelversicherung. Bei Zulassung
von n-Tupeln beliebig hoher Ordnung und spezieller Wahl der

9



Nr. 10.

Nr. 11.

Nr. 12.

Nr.

Nr.
Nr.
Nr. :
Nr.

. 18.
5 L
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h, geht diese Funktion in Nr.7 iiber (Pollaczek-(Geiringer 1,
Liiders 1, Baumberger 1, Riebesell 1, S. 87).

Grenzverteillungsfunktion der Summe von n Zufallsvariablen,

-

die den Wert 0 mit der Wahrscheinlichkeit (1 —2) und die
n

a
Werte + 1 und — 1 mit der Wahrscheinlichkeit U annehmen,
0

falls » unbeschrinkt wéachst (vgl hierzu Nr. 66) (Lévy 1,
Jahnke-Emde 1, S. 284).
I,(a) =17-J,(ia) wobei © =]/—1 und J,(a) = Besselsche
TFunktion.
Verteilungsfunktion fir Gleichverteilungen.
Berechnung der Faltungspotenzen durch Tricomi (1).
Gléattungsfunktion (Spezialfall von Nr. 11).
Eine beliebige Verteilungsfunktion ¢(z) wird bei Faltung mit
dieser Funktion «geglittet» (o = 1):

1 &
g(@) *f@) = - | yle—n)dy.

-1

Faltungspotenzen und Grenzverhalten werden angegeben von
Risser (1), Pélya (1), Maurer (1), Brun (1) und Sommerfeld (1).

. Lineare Verteilungsfunktion, bei Interpolationsproblemen auf-
tretend (Galvam 1).

. Dreieck-Verteilungsfunktion von Irwin (Dodd 2).
. Parabolische Verteilungsfunktion (Dodd 1).
. Pearsonsche Verteilungsfunktion Typ IX (Elderton 1).

. Verteilungsfunktion des arithmetischen Mittels aus grosstem

und kleinstem Wert von Stichproben aus einer Nr.12 mit
a =1 entsprechenden Verteilung (Dodd 1).

Glockentérmige Verteilungsfunktion (Hartman & Wintner 1).

Verteilungsfunktion von Pearson Typ II.

, 1
Wird a = angenommen, erhédlt man die elliptische Ver-

teilungsfunktion (Elderton 1, Dodd 1).
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Tritt auf als Verteilungsfunktion gewisser Korrelations-
koeffizienten (Géarding 1).

Verteilungsfunktion eines speziellen Korrelationskoeffizienten
(Garding 1).

Nr. 21. Verteilungsfunktion des Problems von Bayes. Stellt im dis-

kontinuierlichen Falle die Wahrscheinlichkeit dafiir dar, dass,
falls sich bei » Ziehungen aus einer Urne a schwarze Kugeln
ergeben, die Wahrscheinlichkeit fiir das Ziehen einer schwarzen
Kugel gerade z 1st (von Mises 1, 2, S. 153).

Nrn. 22 bis 24. Verteilungsfunktionen wvon Pearson, Typ I, VIII

Nr.

Nr.
Nr.

Nr.
Nr.

Nr.
Nr.

25

26.
27.

28.
29,

30.
31.

und XII (Elderton 1).

. Verteilungsfunktion von Pearson Typ XI, hyperbolische Ver-
teilungsfunktion (Elderton 1, Castellano 1, Khintchine 2).

Verteilungsfunktion von Pearson Typ VI (Elderton 1).

Verteilungsfunktion von Cauchy.
Die explizite Darstellung der Verteilungsfunktion lautet

1 1
F(x) =— arctg = +—.
g 2

(Lévy 2, S. 179 ff., 6, S.202, Dugué 4, Dodd 1).
Baten (1), Dodd (1).

Verteilungsfunktion von Pearson Typ VII und ?-Verteilung
von «Student» (Elderton 1, Miinzner 1).

Baten (1).

Verallgemeinerte Pearson-Verteilungsfunktion von Hansmann,
abgeleitet aus der Differentialgleichung

dy 2ma

ydz — —pq+(q—p)a® +at

Aus verschiedenen Differentialgleichungen dieser Form kénnen
20 verschiedene symmetrische Typen derartiger Verteilungs-
funktionen abgeleitet werden, von denen hier nur der Haupttyp
IT als Beispiel aufgefithrt steht (Hansmann 1).



Castellano (1).
Verteilungsfunktion von Pearson Typ X (Elderton 1).

Verteilungsfunktion von Pearson Typ LII in spezieller Gestalt.
Tritt auf als Verteilungsfunktion der Summe von Quadraten

- normalverteilter Variabler (Baten 1) und gewisser Momente

. 36.
. 37.
. 38.

. 99,
. 40.
41,

42.

zweiter Ordnung (Garding 1). Enthédlt die y2-Verteilung von
Pearson als Spezialfall (Anderson 1, S. 99, Pearson 1). An-
wendungen in der Bevolkerungstheorie (Wicksell 1, Brown 1,
Hadwiger 3, Hadwiger & Ruchti 1) und der Sachversicherung
(Riebesell 2). Vgl. auch Lévy (8, 10) und Hadwiger (4, 5).

. Verteilungsfunktion von Pearson Typ III in der normalen

Gestalt (Elderton 1).

Hadwiger (8).

Liechti (1)

Grenzfunktion fir Summen von Variablen, welche mit syste-
matischen Fehlern behaftet sind (abgeniitzte Geldmiinzen,
Liange des Lebens usw.) (Eyraud 1). Vgl auch Baten (1),
Mayr (1), McKay (1), Wintner (7).

Entsteht aus Nr. 88 durch Faltung mit sich selbst (Baten 1).
Dodd (1, 2), Miinzner (2).

Verteilungsfunktion des Gauss-Laplaceschen Fehlergesetzes
oder normale Verteilungsfunktion (von Mises 2, S. 42 ff., Khint-
chine 1, 8. 1, Cramér 2, S. 49 ff., Lévy 2, 8. 175 ff. u. a. m.).

Grenzfunktion fir Potenzen einer grossen Zahl von Vertei-
lungsfunktionen (vgl. Kap. VI, Abschnitt 2a).

Seminormale Verteilungsfunktion. Verteilungsfunktion des
quadratischen Mittels normalverteilter Variabler. Die Ver-
teilungsfunktion ist darstellbar durch die unvollstindige
Gammafunktion, fir ¢ =1 wird speziell

Fiir ganze a kann die charakteristische Funktion angegeben
werden:



(Surico 1, Castellano 1, Steffensen 1, Tricomi 2).

Nrn. 43 und 44. Grenzfunktionen fiir die Verteilung des Maximal-

Nr.
Nr.

Nr.
Nr.

Nr. §

45,

46.
47.

48.
49.

. 50.
. 51.
. D2,
r. 3.

wertes einer Stichprobe. Anwendung bei Impfproblemen in
der Medizin, Lottos usw. (Fisher & Tippet 1, Gumbel 1, 2,
von Mises 8, von Schelling 1).

Verteilungsfunktion von Galton. Anwendung in Problemen
der Astronomie (d’Addario 1, Pretorius 1, Yuan 1).

Della Riccia (1).

Verteilungsfunktion von Pearson Typ V (Hlderton 1). I, (2)
vgl. Nr. 62.

Harmonische Verteilungsfunktion (Dugué 3).
Quellenfunktion der Wéirmeleitung (Jahnke-Emde 1, S. 48,
Lévy 8, 9).

Hadwiger (1, 2, 4, 5), Hadwiger & Ruchti (2).

d’Addario (1).

Verteilungsfunktion von Pearson Typ IV (Elderton 1).
Transformierte Gudermannsche Hyperbelamplitude Wmp .

Die Verteilungsfunktion besitzt die explizite Darstellung

2 1
F(s) = = aretg () = + g
A

A

(Baten 1, 2, Dodd 1, Jahnke-Emde 1, S.58, Mathias 1,
Wintner 7).

. Verteilungsfunktion von Verhulst oder logistische Verteilungs-

funktion. Die explizite Darstellung lautet hier

Anwendung in der Bevélkerungstheorie (Hess 1, Lotka 1,
Vianelli 1, Zwinggi 1) und Sachversicherung (Riebesell 1,
S. 27). Vgl. auch Dodd (1), Mathias (1).
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Nr.

Nr. !

Nr.

Nr.

Nrn.
63u. 64.

Nr. 65.

62.

. L;(a) —_—‘J
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. Enthélt Nrn. 53 und 54 als Spezialfdlle (Mathias1, Wintner 7).

Plancksche Strahlungsfunktion (Jahnke-Emde 1, S. 44).

. Khintchine (2).

43

-~ dx

I , @ > 0 (Integrallogarithmus) (Khintchine 2).
0g x

. Riebesell (1, S.78).

. I, (x) =1"dJ, (1z), wobel 1 = ]/1—:“1— und J,(z) = Besselsche

Funktion (Hadwiger 5).

. Hadwiger (5). Fur a = 0 stellt die Funktion die Verteilung

von Sachschiden der Grosse x dar und kann aus Nr. 66 als
Spezialisierung hergeleitet werden (Riebesell 2).

Verteilungsfunktion gewisser statistischer Koeffizienten von
Stichproben aus Gesamtheiten, welche normal, und solchen,
welche gemiss Typ III von Pearson verteilt sind.

Ky(e) =5 =", I,(2) vel. Nr. 60.

(Pearson, Jetfery & Hlderton 1, Pearson, Stouffer & David 1).

Verteilungsfunktion der Mittelwerte von Stichproben aus einer
gemiss Nr. 38 verteilten Gesamtheit. Diese Funktionen sind
geeignet zur Darstellung gegebener Verteilungen in schwieri-
geren Iéllen, besonders dann, wenn keine der Pearsonschen
Funktionen eine befriedigende Anpassung ergibt (McKay 1).
Sie enthalten die Funktionen Nrn. 33, 38 und 62 als Speazial-
fille. Kuznecov (1) setzt z = 9® zur Darstellung der Ver-
teilung der Lénge eines zufélligen Vektors (Vgl. auch Had-
wiger 4, 5).

Es bedeutet M, , (z) die Whittakersche Funktion

T 7

Y 1
M, o (B) =5 i ZlFl(Wb+—2—~k, 2m 4+ x; %),

wo Fy(a, v; z) die konfluente hypergeometrische Reihe



Nr. 66.

Nr.
Nr.

Nr.

Nr.

67.
68.

69.

70.
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a z a(e+1) 22
Fila,re) —1 422 po@rz
s =1+ o+ e

darstellt. Infolge der Identitit

o

My, (2) = 4" I'(m + 1) |z I, (2>

geht diese Verteilungsfunktion fiir b = 0 in Nr. 63 iiber, falls
dort 4 =24und z = -g gesetzt wird (Hadwiger 5).

Verallgemeinerung der Verteilungsfunktion von Poisson (Nr. 5).
Grenzverteilung der Summe von n dem Zufall unterworfenen
und voneinander unabhéngigen Variablen, welche den Wert 0

/

mit der Wahrscheinlichkeit (1 ~ﬁ) wnd s whrigen Werle

\ "/
gemdss der Haufigkeitsfunktion f(z)--- annehmen. Dabei
bedeutet "

¥ () = f(x) * f(z) % * ()

eine Faltungspotenz von » Faktoren und f*°(z) die Vertei-
lungsfunktion Nr.1 far a = 0. Setzt man gspeziell fur f(z)

‘die Funktionen Nrn.1, 2(a¢ = 1), 5 und 33 ein, so erhalten

wir nacheinander als Resultat die Funktionen Nrn. 5, 10, 67
und 61 (@ = 0). (Bavli 1, de Finetti 1, Khintchine 1, S. 21).

Spezialfall von Nr. 66.

Spezialfail von Nr. 66 (Hadwiger 6).
Geht in Nr. 67 iber, falls Variable und Parameter vertauscht
werden.

Verteilungsfunktion der Summe von n dem Zufall unterwor-
fenen und voneinander unabhingigen Variablen, die den Wert
0 mit der Wahrscheinlichkeit ¢ =1 —p und die wbrigen
Werte gemiss der Hiufigkeitstunktion p-f(x) annehmen.

Verallgemeinerung, welche die Funktionen Nrn. 66 bis 69 um-
fasst. Dabei bedeutet w,(a) eine willkiirliche arithmetische,
f(x) eine beliebige Haufigkeitstunktion.
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IV. Funktionalgleichungen

1. Auswahl gewisser Funktionalgleichungen

Infolge der in Kapitel T erwéhnten Eigenschaft der Faltung, die
Verteilungsfunktion von Summen willkiirlicher und unabhéngiger
Variablen darzustellen, wihlen wir als Grundlage unserer Untersu-
chungen Funktionalgleichungen, in welchen diese Verknuipfungs-
operation auftritt und die als Funktionalgleichungen vom Faltungs-
typus bezeichnet werden. Derartige Funktionalgleichungen treten
bei Problemen auf, die sich mit der Weiterentwicklung von stati-
stischen oder biologischen Gesamtheiten sowie mit der Darstellung
gewisser physikalischer Bewegungsvorgénge (Diffusionsprozesse usw.)
befagsen (Hadwiger 1, 2, 5, Khintchine 1, S.9 und 29, Kohler 1,
Pélya 2, Riebesell ). Dabei konnen sich diese Funktionalgleichungen
je nmach Art der Verteilungsfunktionen oder Zahl der auftretenden
Parameter unterscheiden, wie im folgenden erliutert werden wird.

2. Unterscheidung der Funktionalgleichungen nach Integrations-
intervall und Art der Verteilungsfunktionen

Je nachdem die auftretenden Verteilungsfunktionen nur fir posi-
tive £ von Null verschiedene Werte besitzen oder nicht, lautet unsere
Funktionalgleichung

fF(% — ) dG(y) = F(x) zG(m) = H(x) oder

0

JF@—9)a6ly) =P *6() = H ).

Die erste Funktionalgleichung tritt uns z. B. entgegen bei Aus-
scheidewahrscheinlichkeiten als Funktionen des Alters, wihrend die
zweite Art u. a. beil Problemen der Fehlertheorie auftritt. Da wir
Verteilungsfunktionen, die durch das praktische Problem nur fir
positive z definiert sind, stets durch

Fzy=0 x< 0

ergénzen, 1st fiir uns die obige Unterscheidung nicht wesentlich. Wir
geben deshalb in der Folge die Grenzen derartiger Integrale nicht
mehr an.
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Handelt es sich bei den Verteilungsfunktionen um totalstetige
oder reinunstetige Funktionen, so wird die Funktionalgleichung fiir
die entsprechende Hiufigkeitsfunktion (d. h. fir f(z) bzw.f,) zu
[Ha—v)gly)dy =f(x) *g(z) = h(z) Dbaw.
Zf;;k'f/k =fi*g9;, = h;.
k

Diese Unterscheidung entspricht der Auseinanderhaltung von stetigen

und unstetigen Prozessen (z. B. Lageverdnderungen eines Teilchens
bzw. Zerfall eines Atoms).

3. Unterscheidung nach auftretenden Parametern

Wir wihlen fir unsere Untersuchungen aus den Funktional-
gleichungen vom Faltungstypus diejenigen aus, welche bei der Faltung
gewisse Parameter in bestimmter Weise verknipfen. Fiar beliebige
ganze n und m gelte z. B.

Derartige Funktionalgleichungen werden uns als Losungen Funktionen
liefern, welche gestatten, die iterierten Kerne

k(@) = [ g (3 — 1) by (y) dy

der Neumannschen Reihe fiir den lésenden Kern
Kz, t) =Dk, ()
»=1

Volterrascher Integralgleichungen in geschlossener Form darzustellen.
Sie treten ferner auf bei Betrachtung der weiter oben angedeuteten
Entwicklung von Gesamtheiten, wenn die Austretenden der Gesamt-
heit G, in die Gesamtheit G, ., iibertreten.

@) Funktionalgleichungen mit einem Parameter:

Wir setzen nun voraus, dass die auftretenden Verteilungsfunk-
tionen F,(x) alle zu ein und derselben Parameterklasse gehoren, was
wir durch die Schreibweise

P (zr) =F(z, mq) R )
mit Fy(z) =F(z,q)
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ausdriicken wollen. Dadurch geht unsere Funktionalgleichung tber
in die Gleichung

[F(z —y, mq) dF (y, nq) = F(x, mq + ng). (2)

Falls fiir die Verteilungsfunktion stetige Abhéngigkeit vom Parameter
gefordert wird, konnen wir diese Gleichung wie folgt schreiben

F(z —y,a)dF (y,b) =F(z,a +b), 3)
Y

da zu beliebig vorgegebenen positiven Grossen a und b stets zwel
ganze Zahlen m und » sowie ein positives ¢ derart gefunden werden
kénnen, dass

la—mgl<e und |b—ng<e

wird, wobei & beliebig klein sein kann.

Diese beiden Funktionalgleichungen entsprechen der Forderung,
dass ein gewisses universelles Gesetz existieren miisse, welches alle
im entsprechenden Problemkreis auftretenden Funktionen darzustellen
gestatte (Hadwiger 1).

Falls wir festlegen, dass der Parameter speziell die Prézision dar-
stellen soll, d. h. dass gelte

so erhalten wir eine besondere Form unserer Funktionalgleichung,
welche in der leicht verallgemeinerten Gestalt

re(= ) ar(Y) —p () "

/ ¥

¢ = ¢(a, b)

bereits eingehend untersucht worden ist (Lévy 2, S. 254, Wintner 7).

b) Funktionalgleichungen mit mehreren Parametern:

Neben den einparametrigen Verteilungsfunktionen koénnen In
Problemen natiirlich auch solche mit mehreren Parametern auftreten.
Praktisch von Bedeutung sind noch diejenigen Funktionalgleichungen,
in welchen deren zwei verkniiptt werden, also im allgemeinen Falle
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[Pz —y,a,1)dF(y,b,s) =F(x,a,r) =F(zb,s) (5)
= F(z,¢, 1)
wobel ¢ = ¢(a, b) und t=1(7;8).
Wiederum haben die Spezialfille
F(z,a,7) *F(z,b,s) =F(z,a+b,r+s und (6

P () -2 (5 &

besondere Bedeutung. Zudem kann auch hier die Abhéngigkeit der
Verteilungsfunktion von einem oder beiden Parametern unstetig sein.

4. Allgemeinere Funktionalgleichungen

Ohne nédher darauf eintreten zu wollen, soll doch erwihnt werden,
dass die Funktionalgleichungen (8) und (6) homogene Spezialfille von
allgemeineren (Gleichungen darstellen. Dabei bedeutet der Ausdruck
homogen in diesem Zusammenhang, dass es sich um Funktionen
handelt, welche nur von der Differenz (z — y) zweier unabhéingiger
Variablen und eventuell auch nur von der Differenz zweier unab-
héngiger Parameter abhingen. Solche allgemeinere Funktional-
gleichungen treten in der Theorie der stetigen stochastischen Prozesse
auf (z. B. in Diffusionsproblemen) und gestatten, die Durchfithrung
von Grenzitbergéingen zu vermeiden, da mit ihrer Hilfe das Problem
bereits in der dem Grenzfall entsprechenden Form ausgedriickt
werden kann.

So lautet z. B. die Gleichung von Smoluchowsky

[ F (%, y,a)d,F(y,2b) =F(z,2a+b),

welche ihrerseits einen besonderen, in bezug auf die Parameter homo-
genen Fall der Gleichung von Chapman-Kolmogoroff verkorpert:

[F(z,y,a,b)dF(y 2b,06 =F(zzac).

Die Verteilungstunktion F(z, y, a, b) stellt dabei z B. in Diffusions-
problemen die Wahrscheinlichkeit dafiir dar, dass ein sich linear be-
wegendes Teilchen, welches sich zur Zeit a in z befindet, zur Zeit b
m Intervall (—oo, y) anzutreffen sei.
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Zum Schluss sei noch erwiahnt, dass die Losung dieser Funk-
tionalgleichungen von Kolmogoroff (1, 8) durch Zurtckfithrung aut
partielle Differentialgleichungen von parabolischem Typus durch-
gefithrt wurde, wihrend Hostinsky in einer Reihe von Arbeiten eine
Losungsmethode mittels «Integralen von infinitesimalen Funktional-
transformationen» beschreibt (1, 2, 3, 4).

5. Transformation der Funktionalgleichungen

Da die von uns ausgewahlten Funktionalgleichungen alle zum
Faltungstypus gehoren, bietet uns deren Transformation mit Hilfe der
charakteristischen Funktionen gemdss Abschnitt 5 des zweiten Ka-
pitels keine besonderen Schwierigkeiten mehr. Unsere erste HFunk-
tionalgleichung (1) des vorausgehenden Abschnittes 3 geht tber in
die Gleichung

P (2)* Pu(2) = Q10 (2), (8)

[

wahrend den spezielleren Formen (2), (3) und (4) die Beziehungen

¢ (2, mq) - @ (2, nq) = @(2,mq + ng), )
(2, 0) @ b) =@z, a + b) und (10)
p(az)- (be) = @(c2) (11)

entsprechen. Ganz analog gehen die Funktionalgleichungen mit zwei
Parametern (5), (6) und (7) tber in

@z, a,r) -(p'(z, b, &¥ == pl& 6, 1),
¢z a,1)-@lz,b,s) =@z a+br+38) und

tiz

@ (a2) - €87 @ (bz) = €% g (c2).

eris

Auf die Losungen dieser transformierten Funktionalgleichungen
werden wir nun im nichsten Kapitel naher eintreten.
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V. Die Losungen der Funktionalgleichungen

1. Einparametrige Losungen

Wir behandeln die Félle mit unstetiger Abhéngigkeit gesondert
von deunjenigen, bei welchen die Verteilungsfunktion stetig vom auf-
tretenden Parameter abhingt.

a) Unstetige Abhingigkeit:

Unter den Losungen dieser Art unterscheiden wir solche, die nur
tiir bestimmte (z. B. ganzzahlige) Werte des Parameters definiert sind,
und andere, totalunstetige Losungen. Die Existenz der letzteren ist
von Hamel (1, S. 459 f.) mittels des Wohlordnungssatzes der Mengeu-
lehre bewiesen worden; infolge der iiberall dichtliegenden Unstetig-
keiten liefern diese jedoch keine praktisch brauchbaren Verteilungs-
funktionen. Wir werden uns in dieser Arbeit auf die zuerst erwihnte
Art von Losungen beschrinken.

Falls die Verteilungsfunktion fiir den Parameterwert g als definiert
vorausgesetzt wird, wird unsere Funktionalgleichung (9) in loga-
rithmierter Form zu

, ¥ (2, mq) + (2, nq) = w(z, mq + ng),
wobei

vz, q) =loge(z,q) und m,n >0, ganz.

Diese schon von Cauchy untersuchte Funktionalgleichung hat in
unserem Falle als einzige Losung (Kamke 1, S.134)

Y (2, mq) =m-p(z, q),
80 dasgg
m

@ (2, mq) = [@ (2 q)]

wird (m =1, 2, 8, ...).

Die Funktion ¢(z, q) kann nun aber nicht etwa beliebig gewihlt
werden, sondern muss zur Menge der charakteristischen Funktionen
gehoren. Fiir diese Zugehorigkeit sind nun aber zurzeit hinreichende
Bedingungen noch nicht gefunden worden, welche in der praktischen
Anwendung einfacher wiren als die Durchfithrung der Umkehrung
mit anschliessender Untersuchung des Funktionsverlaufs (Lévy 8,
S.391.). Wir miissen uns deshalb darauf beschrinken, aus der Menge
der bereits bekannten Verteilungsfunktionen diejenigen heraus-
zusuchen, deren charakteristische Funktion die vorstehende Gestalt



— 142 —

aufweist. Beim Durchgehen der Liste im dritten Kapitel sehen wir,
dass derartige Funktionen existieren. So sind die Verteilungsfunk-
tionen Nrn. 4, 6, 7, 62 und 69 nur fir ganzzahlige m definiert und
besitzen charakteristische Funktionen der angegebenen Form.

b) Stetige Abhangigkeit:
Bei stetiger Abhéngigkeit der Verteilungsfunktion vom Parameter
hat die Funktionalgleichung (10)

¢z a) (e b) =@z a4 b)
ebenfalls nach Cauchy die einzige Liésung

@ (Z, a) _ ea(Gl(Z)-i—@'Gg(z))’ a > 0
wo (11(2) und Gy(2) jedes reelle Funktionenpaar bedeuten, welches
@ (2, a) zu einer charakteristischen Funktion macht (Doetsch 1, S. 319).
Aus den bereits genannten Grinden miissen wir uns wiederum darauf
beschrianken, fiir bekannte Verteilungsfunktionen die Erfillung der
Funktionalgleichung testzustellen. Dies ist der Fall fur Nrn. 5, 10, 34,
50, 60, 63, 64, 66 und 67 der im dritten Kapitel aufgefithrten Funk-
tionen, zu welchen noch von den im nichsten Abschnitt zu behan-
delnden stabilen Verteilungsfunktionen Nr. 27 als spezieller Fall hin-
zukommt.

¢) Die stabilen Verteilungsfunktionen:
Wir betrachten nun noch den Fall der Funktionalgleichung (4),
welche in der transformierten Form (11) lautet

v (a2) p (b2) = @ (c2) ¢ = o(a,b).

Die Losungen dieser Funktionalgleichung zeichnen sich dadurch aus,
dass die Faltung zweier Funktionen desselben Typs wiederum zum
selben Typ gehort. Diese Verteilungstunktionen sind von Lévy (6,
S. 94 ff. und 198 ff., 2, 8. 254 f.) eingehend untersucht und als stabile
Verteilungsfunktionen bezeichnet worden. Is kann gezeigh werden,
dass ihre charakteristischen Funktionen die Gestalt

Rr) >0
0< o < 2

—7 {zi(l.

p(e) =¢

besitzen, wobei der aus unsern Formeln im allgemeinen ausgeschlossene
triviale Fall « = 0 der ¢unechten Verteilungsfunktion» Nr. 1 entspricht.
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Die im Exponent auftretende Konstante r kann nach Lévy in
folgender Gestalt ausgedriickt werden:

AT

g
1+18—tg— at1
1‘:{ +15[z§g2 .
ll & =1
wobel iﬁ|<1.

Emn bestimmter Typ von stabilen Verteilungsfunktionen wird also
in dieser Darstellung durch zwei Parameter charakterisiert, welche
folgende Bedeutung besitzen:

I. Der charakteristische Exponent o misst die Verinderung der
Prézision bei der Faltung, da aus der Funktionalgleichung sofort die
Beziehung folgt

¢ == [U/'a’” +b*

Fir << 1 nimmt also die Priizision bei der Faltung ab, so dass
derartige Gesetze z. B. fir die Fehlertheorie unbrauchbar sind. TFir
o« >2 und «<< 0 ist ¢(2) keine charakteristische Funktion mehr.

II. Der Symmetriekoeffizient f misst die Starke der Asymmetrie
der Verteilungsfunktion des betreffenden Typs. Symmetrische Ver-
teilungsfunktionen haben g = 0. Fir | >1 ist die Monotonie der
Verteilungsfunktion nicht mehr gesichert.

Mittels dieser beiden Parameter werden die Typen von Verteilungs-
funktionen durch die Schreibweise L, bezeichnet.

In bezug auf die Faltung bilden die Verteilungsfunktionen ein
und desselben Typs L,; und auch alle Typen L., L., ... mit
gleichem charakteristischen Exponenten « eine Gruppe. Allerdings
kénnen die Paare (x, ) nicht beliebig gewdhlt werden; denn . B.
existiert zu « = 1 oder « = 2 nur dann eine Verteilungsfunktion,
wenn gleichzeitig f = 0 ist.

Mitsamt der unechten Verteilungsfunktion sind bis heute nur
folgende vier stabile Typen explizit in geschlossener Form darstellbar:

1. Der Typ L, der unechten Verteilungsfunktion (Nr. 1) 1). Einziger
Typ mit der Streuung s = 0.

') Fiir § = 0 beschrinkt man sich in der Bezeichnung Lqg auf die Angabe
des charakteristischen Exponenten g.
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2. Der Typ L, des Gauss-Laplaceschen Fehlergesetzes (Nr.41).
Einziger Typ mit endlicher Streuung: 0 < s << 0.

3. Der Typ L  der Quellenfunktion der Warmeleitung (Nr. 49).

4. Der Typ L; der Verteilungsfunktion von Cauchy (Nr.27). Da
tur diese Funktion die Grésse f -tg( OC;-) eine beliebige Kon-
stante darstellt, die durch Verschiebung der Verteilungsfunktion
zum Verschwinden gebracht werden kann, enthélt dieser Typ
alle symmetrischen und asymmetrischen Verteilungstunktionen
der entsprechenden Klasse.

Im nichsten Abschnitt sollen noch Verteilungsfunktionen be-
trachtet werden, welche die Funktionalgleichung nicht fiir alle be-
liebigen Prizisionen a und b, sondern nur fiir eine gewisse Auswahl
von Paaren (a, b) erfiillen.

d) Die gemistabilen Verteilungsfunktionen:

Diese Typen von Verteilungsfunktionen sind dadurch aus-
gezeichnet, dass die Funktionalgleichung nur dann erfillt ist, wenn
die Préizisionen in einem bestimmten Verhéltnis zueinander stehen.
Sie enthalten die stabilen Typen als Spezialfall, da letztere einer
einschrinkenderen Bedingung unterworfen sind. Pélya hat schon 1923
(2) gezeigt, dass derartige Verteilungsfunktionen existieren, spéter hat
Lévy (8, S.204) deren allgemeine Gestalt festgestellt, wobei er die
Definition derart erweiterte, dass er das Frfiilltsein der Funktional-
gleichung
w(gz) =q* y(2) g0
fitr die Logarithmen der charakteristischen Funktionen fiir bestimmte
Werte von ¢ verlangte. Dabei ist zu beachten, dass mit g die Funk-
tionalgleichung auch firr ¢" (n =2, 8, ...) erfiillt ist. (Falls das
Ertilltsein fiir beliebige Werte von ¢ vorgeschrieben wirde, erhielte
man nur stabile Verteilungsfunktionen als Liosungen). Der urspriing-
liche Fall kann aus dieser Fassung zuriickerhalten werden, falls ge-
setzt wird

n

i, = qm, b e q mund ¢ = qm e qﬂ.

Die auf diese Weise erhaltenen Lésungen erfiilllen dann die unserem
Problem zugrunde liegende Gleichung (11) fiir die Verhéltnisse
@rh =qg™".
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Die von Lévy gefundene allgemeine Gestalt der charalkteristischen
Irunktionen semistabiler Verteilungsfunktionen lautet

“[Po(logiz§)+i-zr P, (log |2 }

i 13 i |

| ;

wobel Py(x) und P’ (x) F'unktionen der Periode log ¢ darstellen und
zudem die Bedingung

e L

p(2) = exp

Py(@)| < Pya)-tg
[t i | 0 JQ

erfillen, damit das Vorhandensein einer charakteristischen Funktion
gesichert ist.

Ausser den schon erwihnten stabilen Verteilungsfunktionen,
welche hier als Spezialfille enthalten sind, ist noch keine geschlossene
Darstellung einer derartigen Funktion bekannt. Pélya hat jedoch
gezeigt, dass das Gauss-Laplacesche Gesetz (Nr. 41) auch im Bereiche
der semistabilen Verteilungsfunktionen die einzige Losung mit end-
licher, von Null verschiedener Streuung darstellt.

2. Zweiparametrige Losungen

a) Die Losungen der Funktionalgleichung (6):

Entsprechend unserem Vorgehen im vorigen Abschnitt unter-
scheiden wir vorerst wieder die Verteilungsfunktionen nach der Arf
der Abhingigkeit von den auftretenden Parametern. Wir lassen
wiederum die totalunstetigen Lésungen unberiicksichtigt und erhalten
in allen Fillen als einzig mégliche Lésungen Verteilungsfunktionen
mit charakteristischen Funktionen der Form

() =[2O[FEA],

wobel nun je nachdem keiner, einer oder auch beide Parameter dis-
kontinuierlich sein kénnen.

Derartige Liosungen kénnen nun ohne weiteres dadurch gebildet
werden, dass man die charakteristischen Funktionen bekannter Ver-
tetlungsfunktionen als @(2) und ¥(2) einsetzt. Beispiele fiir Funktionen
dieser Art stellen die im dritten Kapitel aufgefithrten Verteilungs-
funktionen Nrn. 86 und 61 dar, welche als Zusammensetzungen spezieller

10



Formen der Funktionen Nrn. 1, 34 und 66 auftreten. Abgesehen von
solechen Bildungen existieren aber auch Loésungen, bei welchen die
Teilfunktionen keine selbstdndigen Verteilungsfunktionen sind. Kin
Beispiel hiefiir stellt die Funktion Nr. 65 dar, bei welcher der zweite
Teil der charakteristischen Funktion fiir sich allein keine charak-
terigtische Funktion verkorpert, da dessen Absolutbetrag im Gegensatz
7z Abschnitt 1 des zweiten Kapitels nicht beschrinkt ist.

b) Die quasistabilen Verteilungstfunktionen:

Wir treten nun noch niéher auf die Loésungen der Funktional-
gleichung (7) ein, welche als quasistabile Verteilungsfunktionen be-
zeichnet werden (Lévy 6, S.208). Diese zeichnen sich dadurch aus,
dass bei der Faltung zweier Verteilungsfunktionen derselben Klasse
wieder eine Funktion dieser gleichen Klasse entsteht. Im (egensatz
zu den stabilen Funktionen gehért jedoch bei der Faltung zweier
Funktionen desselben Typs die Resultatfunktion nicht mehr dem
oleichen, sondern einem linear transformierten Typ an. Is wird

also z. B. | |
(2] (5)-rl =)

\
und fuar die charakteristischen Funktionen

-z

@(az)- @ (bz) = e p(c2).
Fine Lineartransformation der verwendeten Verteilungstunktion
F(x—0v) =G (x)
d. h. e’ p(2) = y(2)
liefert uns nun aber die Faltung
y (@) y (b2) = % p(ad) - o (b2)

= p(o2) =y (2),
so dass also

wird.
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Quasistabile Typen sind also durch Lineartransformation in
stabile Typen iiberfithrbar, wobei einzig der Fall « = 1 eine Ausnahme
bildet. Dementsprechend lautet die allgemeine Gestalt ihrer charak-
teristischen Funktionen

. la . 2 o’
exp mzm‘zl (1 + 1 f—1g ) atl

pl2) = - - Y
]e.xp mz_k(glzl+’iﬁzlog|z) o =1

}ﬁi<1 0<a<? k >0, konst.

Greschlossene Darstellungen von Verteilungsfunktionen dieser Typen
sind bis jetzt nur fir die den vier oben erwihnten stabilen Typen
entsprechenden Funktionen bekannt. Man erhilt deren Form durch
Ersetzen von z durch (z —v), wihrend bei den charakteristischen
Funktionen das Glied ¢ hinzutritt.

Wie bei den stabilen Verteilungsfunktionen kann auch hier der
Fall eintreten, dass die Funktionalgleichung statt fir alle, nur fir
gewisse Verhiltnisse der Prézisionen erfullt ist. Derartige Verteilungs-
funktionen nennt man quasisemistabil. Sie enthalten die quasi-
stabilen Funktionen als Spezialfille. Lévy hat auch fir diese Funk-
tionen die Definition entsprechend den Ausfithrungen in Abschnitt 1d
dieses Kapitels erweitert und fiir die charakteristischen Funktionen
folgende Ausdriicke gefunden (4)

e

P, (log M))} .

: z
Jexp Mz — 2

“(Pl (log |2]) + 1

2

?(2)

o == 1

P, (log | z|) + iz Py (log|z])

Z

ot
exp ‘mz og'z\ 5
P,z +logq) = P,(x); Pi(z) >0; |U, < Polgl

% =1, 2}

dazu noch fiir o £ 1: |P2 (a:)\ < Pi(z).

3. Losungen mit mehreren Parametern

Wie im TFalle zweier Parameter lassen sich durch Kombination
bekannter Verteilungsfunktionen auch n Parameter enthaltende
Losungen mit charakteristischen Funktionen der Form

10*
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P (o by g, o h) = (D) [ By [, ()]

i

bilden; ferner kénnen auch Liosungen existieren, fiir die die einzelnen
@,(2) keine charakteristischen Funktionen sind. Als Beispiel fir die
erste Art ist zu erwihnen die Verteillungsfunktion von Pollaczek-
Geiringer fiir seltene Ereignisse (Nr. 9).

4, Spezielle Klassen von Verteilungsfunktionen

Infolge ihres innern Zusammenhanges fasst man alle durch die
Funktionalgleichungen (4) und (7) ausgezeichneten Verteilungsfunk-
tionen passend zusammen. So bilden die Verteilungsfunktionen eines
stabilen Typs zusammen mit den Verteilungsfunktionen der zuge-
horigen quasistabilen Typen eine invariante Klasse von Verteilungs-
funktionen (Khintchine 6). Diese invarianten Klassen umfassen dann
also die Gesamtheit derjenigen Verteilungsfunktionen, deren Faltung
mit einer im weiteren Sinne dhnlichen Funktion wieder zur selben
Klasse gehort. In gleicher Weise werden die Funktionen semistabiler
und entsprechender quasisemistabiler Typen zu seminvarianten Klassen
zusammengefasst, fiir welche die zugrunde liegende Funktionalgleichung
nur fir bestimmte Préizisionen erfallt ist. Die folgende Zusammen-
stellung zeigh, wie die erwihnten Typen und Klassen untereinander
zusammenhéngen :

Seminvariante Klasse

Semistabile Typen Quasisemistabile Typen
Stabiler Typ Quasistabile Typen

-

Invariante Klasse

8. Unbeschriankt teilbare Verteilungsfunktionen

Kine noch umfassendere Gattung von Verteilungsfunktionen
stellen die unbeschréinkt teilbaren Verteilungsfunktionen dar, welche
u. a. alle semmvarianten Klassen sowie die in Abschnitt 15 dieses
Kapitels aufgefithrten Verteilungsfunktionen als Sonderfille ent-
halten. Sie sind wie folgt definiert (Khintchine 3):

Eme Verteilungsfunktion F(z) heisst unbeschriinkt teilbar, falls
zu Jedem beliebigen ganzzahligen n eine Verteilungsfunktion F,(x)
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existiert, deren Faltungspotenz F,"(z) mit der gegebenen Verteilungs-
funktion F(x) identisch ist.

Diese Verteilungsfunktionen sind bereits von Lévy u. a. Autoren
eingehend untersucht worden, wobei auch die allgemeine Gestalt dieser
Funktionen festgestellt wurde. Demnach besitzen die charakteristi-
schen Funktionen der unbeschrénkt teilbaren Verteilungstunktionen
die folgende, abgekiwrzt geschriebene Gestalt (Lévy 6, S.180)

' 2 2 30 / 1 3 ‘
@ (2) = exp [m*iz e -+ ( J =+ j > (Gm B ) dn(%)J,
9 . 1 1+ u?

e ve] 0

wobel n(u) eine in den Intervallen (—oo, 0) und (0, o) nicht ab-
nehmende, fiir # = + oo endliche Funktion bedeutet, die zudem
in jedem endlichen Intervall (@, b) die Bedingung

f u dn (u) < o

a

erfillll und m sowie r reelle Konstanten darstellen (r = 0).

Setzt man speziell n(u) = s+ E(x — 1), wo L(z) die unechte Ver-
teilungsfunktion (Nr.1) bedeutet, geht diese Formel iber in

ra® . siz
p(z) = g%, §&TE . 63(213"1) e 2,
Daraus geht deutlich hervor, dass die unbeschrénkt teilbaren Ver-
tellungsfunktionen Faltungsprodukte von linear transformierten un-
echten Verteilungsfunktionen (Nr. 1), Gauss-Laplaceschen Verteilungs-
funktionen (Nr. 41) und gewissen «Integralprodukten» der Poissonschen
Verteilungsfunktion (Nr.5) darstellen.

Lévy hat nun gezeigt, dass diese Zerlegung einer unbeschrénkt
teilbaren Verteilungsfunktion in die soeben erwéhnten drei Arten von
Funktionen sogar eindeutig ist, solange nur unbeschrinkt teilbare
Verteilungsfunktionen als Teilgesetze zugelassen werden. Sobald die
Teilgesetze jedoch beliebige Verteilungsfunktionen sein kénnen, exi-
stieren zahlreiche andere Zerlegungen, iiber welche bereits eine aus-
gedehnte Literatur vorhanden ist, in der diese Zerlegungsprobleme
als «Arithmetik der unbeschrinkt teilbaren Verteilungsfunktionen»

zusammengefasst werden (vgl. z. B. Dugué 2, Kawata 2, Lévy 5, 7,
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6, S. 186 ff., Slutsky 1). Da hier auf diese mannigfachen Sétze nicht
eingegangen werden kann, beschrinken wir uns auf die Angabe zweier
Satze fur die Gauss-Laplacesche und die Poissonsche Verteilungs-
funktion. Danach existiert ndmlich fiir diese beiden Funktionen auch
bei Zulassung beliebiger, nicht unbeschrinkt teilbarer Verteilungs-
funktionen als Teiler nur je eine moégliche Zerlegung, und zwar in
Funktionen, welche zur selben Klasse wie die gegebene Verteilungs-
funktion gehoren (Theoreme von Cramér 1 und Raikov 1).

VI. Das asymptotische Verhalten der Potenzen von Ver-
teilungsfunktionen

Nachdem fiir eine empirisch gegebene Verteilung die geeignete
Verteilungstunktion festgestellt worden 1ist, bleibt als eine Haupt-
aufgabe festzustellen, nach was fiur einer Verteillungsfunktion im
Grenzfall die Summe von n voneinander unabhingigen Variablen
verliuft, wenn von diesen jede der gefundenen Verteilungsfunktion
unterworfen ist und » iber alle Grenzen wichst. Da der Summen-
bildung der Variablen die fortgesetzte Faltung der zugrunde liegenden
Verteilungsfunktion entspricht, besteht also die Aufgabe darin, das
asymptotische Verhalten dieser Potenzen von Verteilungsfunktionen
zu untersuchen.

Damit dies aber geschehen kann, wird im allgemeinen eine lineare
Transformation der Variablen eingefithrt werden miissen, da sonst,
wie man am Beispiel der stabilen Verteilungsfunktionen leicht fest-
stellen kann, als Grenzfunktion die in Abschnitt 7 des ersten Kapitels
erwihnte Funktion D(z) entsteht. Je nachdem diese Transformation
nun homogen ist oder nicht, erhilt man dann also eine Grenzfunktion
einer Folge von Verteilungstunktionen, welche alle zum gleichen Typ
oder aber zur gleichen Klasse gehéren.

Anderseits kénnen jedoch auch Folgen von Verteilungsfunktionen
betrachtet werden, deren jede einer andern Klasse K, angehort. Falls
in diesern Falle eine Grenzfunktion existiert und zur Klasse K gehort,
spricht man von Konvergenz der Klassen K, gegen die Klasse /.
Néheren Aufschluss iiber diese Klassenkonvergenz im Zusammenhang
mit der Theorie der Potenzen von Verteilungsfunktionen geben
Doeblin (1, 2) und Khintchine (4).
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1. Definition des Attraktionsgebietes

Die Typen und Klassen, deren Verteilungsfunktionen bei fort-
gesetzter Faltung auf dieselbe Grenzfunktion fithren, werden nun
durch den Begriff der Attraktionsgebiete zusammengefasst (Lévy 2.
S. 233 und 252 ff.). Diese werden wie folgt definiert (Gnedenko 1):

Eine Verteilungsfunktion F(z) gehort zum Attraktionsgebiet der
Verteillungsfunktion (+(z), falls zwei Folgen von Konstanten a, und
b, angegeben werden konnen derart, dass die Faltungspotenz
I (a,x +b,) fur tber alle Grenzen wachsendes n gegen G(x) als
Grenzfunktion strebt.

Falls zu einer Vertellungsfunktion eine derartigce Grenzfunktion
(/(x) existiert, gehort sie nach Lévy im homogenen Falle (b, = 0)
emem stabilen Typ, 1m allgemeinen Fall nach Khintehine (6) einer
mvarianten Klasse an. Je nach der verwendeten linearen Trans-
formation entsteht nun aber als Grenzfunktion eine andere Vertei-
lungsfunktion des betreffenden Typs oder der betreffenden Klasse.
Wir werden deshalb in der Folge auch vom Attraktionsgebiet eines
Typs oder einer Klasse sprechen. In unserer Zusammenstellung in
Kapitel III haben wir zu jeder Verteilungsfunktion den charak-
teristischen Exponenten « des Attraktionsgebietes in der letzten Spalte
angegeben. Da jeder stabile Typ ein Attraktionsgebiet besitzt, das
mindestens aus den Verteilungsfunktionen dieses Typs besteht, kann
die Gesamtheit aller Attraktionsgebiete durch Aufsuchen der Gesamt-
heit der stabilen Typen bzw. invarianten Klassen gefunden werden.
Diese Aufgabe ist gelost dank der Feststellung der allgemeinen Gestalt
dieser Funktionen durch Lévy.

Die Funktionen eines bestimmten Attraktionsgebietes zeichnen
sich aus durch die folgende Kigenschaft ihrer Momente:

M, — [|apdF (z) -{:w bza
. < p<a
wobei fir 0 < «< 2 die Zahl « den charakteristischen Exponenten
der Grenzfunktionen darstellt, wihrend fiir o = 2 die Grenzfunktionen
durch den Typ L, des Gauss-Laplaceschen Fehlergesetzes (Nr.41)
gebildet werden. Ifir « = 0 existiert als Grenzfunktion keine Ver-
teilungsfunktion, sondern nur die in Abschnitt 7 des ersten Kapitels
erwihnte Funktion D(x) (Lévy 2, S.277).
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Aus dieser Higenschaft geht hervor, dass die Zugehorigkeit zu
einem bestimmten Attraktionsgebiet durch die grossen Werte der
unabhéngigen Variablen entschieden wird. Ks ldsst sich zeigen, dass
Abanderung der Werte der Verteilungsfunktion inerhalb bestimmter
Grenzen der unabhingigen Variablen das Attraktionsgebiet unver-
andert lasst, wogegen bei Abinderung der Werte ausserhalb dieser
Grenzen die Verteilungsfunktion eventuell das Attraktionsgebiet
wechselt (Feldheim 1, 8. 14).

2. Unterscheidung der Attraktionsgebiete

a) Das Attraktionsgebiet der (rauss-Laplaceschen Verteilungs-
funktion:

Wie die zahlreichen Grenzwertsitze der Wahrscheinlichkeits-
rechnung zeigen, wird seit langem versucht, geeignete Bedingungen
fir die Zugehorigkeit einer Verteilungsfunktion zu diesem Attraktions-
gebiet aufzufinden. Die urspriinglich allein vorhandenen hinreichenden
Bedingungen wurden in den Sétzen von Ljapounoff und Lindeberg
durch notwendige und hinreichende Bedingungen ersetzt (vgl. z. B.
Feller 1, Lévy 1), wihrend spéter fast gleichzeitig Khintchine (2),
Lévy (8) und Feller (1) in etwas weiteremm Umfang anwendbare Kri-
terien aufstellten. Im weitern sei auf die Literatur zu den einzelnen
Verteilungsfunktionen in Kapitel III verwiesen, die sehr oft Unter-
suchungen itber das Grenzverhalten enthélt.

Wie aus Abschnitt 1 hervorgeht, gehéren zum Attraktionsgebiet
des Typs L, oder auch der Gauss-Laplaceschen Verteilungsfunktion
einmal alle Verteilungsfunktionen mit endlicher Streunung. Daneben
gehdren aber auch noch einige Funktionen mit unendlicher Streuung
dazu, wie z. B. aus der notwendigen und hinreichenden Bedingung
von Khintchine (2)

321 —F(z) + F(—2)]

lin - = 0

-

fur die Zugehorigkeit einer Verteilungsfunktion zu diesem Attraktions-
gebiet hervorgeht. Derartige Verteilungsfunktionen sind z. B. Nr. 25
fir @ =38, Nr. 30, Nr.44 fiir ¢ =2, Nr.57 fir a = 3 und Nr. 58
fiie o= 8.
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b) Die aussergewohnlichen Verteilungsfunktionen:

Da das Attraktionsgebiet der Gauss-Laplaceschen Verteilungs-
funktion alle andern an Bedeutung und Umfang betrichtlich tber-
ragt, werden diese iibrigen Attraktionsgebiete unter der Bezeichnung
aussergewohnliche Verteilungsfunktionen (Lévy 2, S. 252: Lois excep-
tionnelles) zusammengefasst. Hierunter fallen die Attraktionsgebiete
aller stabilen Typen L., mit 0< o< 2 bzw. aller entsprechenden
mvarianten Klagsen. Sdmtliche dieger Verteilungsfunktionen besitzen
eine unendlich grosse Streuung. Von den im dritten Kapitel auf-
gefithrten Funktionen gehoren — eventuell nur fiir gewisse Parameter
—— zu den aussergewohnlichen Verteilungsfunktionen Nrn. 25, 27, 44,
49, 57 und 58.

3. Ausnahmefalle

Es gibt aber auch Verteilungsfunktionen, fiir welche bei unendlich
oft wiederholter Faltung mit sich selbst eine Grenzfunktion nicht
eindeutig angegeben werden kann. Als Beispiel hiezu mégen uns die
Verteilungsfunktionen dienen, welche semistabilen Typen angehoren.
Fir diese werden wegen der Beziehung

q*p(2) = v(g2) p(2) = log ¢(2)
alle Potenzen mit den speziell gewahlten FExponenten
| n =q*"* h ganz

L ;
identisch, falls als lineare Transformation a, = n« eingefithrt wird.
Es wird in der Tat

= exp

—C|Z

“| Py (log|2]) -‘gﬂi—F% B, (longDJ}

wenn man beriicksichtigh, dass geméss der Definition auf Seite 145
Po(x) und P,(z) Funktionen der Periode log q darstellen. Wihlt man
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jetzt den Kxponenten n beliebig, so kann in gleicher Weise gezeigt

werden, dass nun alle Potenzen der Ordnung n-q®* mit beliebigem

ganzen h identisch werden. Wir erhalten also fur die Faltungspotenz
*n /1

F (nam) unendlich viele Grenzfunktionen, da diese nur vom nicht-

, ogn
ganzen Teil der Grosse — — abhéingt.
log ¢*
Trotz diesem Verhalten spricht man auch von Attraktions-

gebieten von semistabilen Vertellungsfunktionen, da z. B. Verteilungs-
funktionen mit charakteristischen Funktionen der Form

x(2) = ()t lim w (z) = 0
z—»= 0
fir die Exponentenfolge n = ¢** (h =1, 2, 8, ...) gegen die semi-

stabile Verteilungsfunktion mit der charakteristischen Funktion ¢(z)
streben (Lévy 2, S. 273).

Weitere Beispiele fir das Auftreten von nichtstabilen Grenz-
funktionen erhélt man, falls nicht mehr nur Verteilungsfunktionen
desselben Typs oder derselben Klasse miteinander gefaltet werden.
Werden z. B. m Verteilungsfunktionen des stabilen Typs L, und n
Funktionen des stabilen Typs I, ; miteinander gefaltet (Lévy 2, 5. 269),
so entsteht eine Verteilungsfunktion mit der charakteristischen Funk-
tion

@ mTalz fnrg 2%

p(e) =

Wachsen nun m und = tber alle Grenzen und fithren wir als Trans-
1 ' ,
formation a, =m= ein, so erhalten wir nur dann zu einem stabilen

Typ gehorende Grenzfunktionen, falls m und n von derselben Ordnung
unendlich werden. Wihrend in diesem Falle fir o; << o,

wy (7) = eA™

als Grenzfunktion entsteht, konnen durch passende Wahl des Ver-
hiltnisses von m zu n beliebig viele andere, nichtstabile Grenzfunk-
tionen hervorgebracht werden. So wird fiir n%:m® = ¢

1

%1

—rylz] —¢"trgiz|

w(z) =¢



Literaturverzeichnis

R. d' dddario
. Sulla rappresentazione analitica delle curve di frequenza. Atti Tst. naz. Assi-
curanz. 8, 95—136 (1936). '
0. Anderson
. Einfithrung in die mathematische Statistik. Wien 1935.

W. D. Baten

. Frequency laws for the sum of n variables which are subject each to given
frequency laws. Metron 40, Nr. 3, 75—91 (1932).

. The probability law for the sum of » independent variables, each subject

1 [ T
aw (=) sech [ - |. Bull. Amer. Math. Soc. 40, 284—290 (1934),
to the law ( 5 h))sech ( . h)) Bull. Amer. Math. Soc. 40, 284—290 (1934)

A. Bawumberger
. Uber Verteilungsfunktionen in der Kollektivmasslehre. Diss. phil. II. Bern
1938.
. Beitrag zum Problem von Bernoulli. Arch. math. Wirtsch.- u. Sozialforschg. 5,
103—116 (1939).

G. M. Bavli
. Eine Verallgemeinerung des Poissonschen Grenzwertsatzes. C. R. Acad. Sci.
URSS 2, 508—510 u. dtsch. Zusammenfassung 511 (1935) (Russisch).

S. Bochner .
. Vorlesungen iitber Fouriersche Integrale. Leipzig 1932.
. Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse.
Math. Ann. 108, 378—410 (1933).
. Stable laws of probability and completely monotone functions. Duke math.
J.3, 726—728 (1937).

A. W. Brown
- A note on the use of a Pearson type III function in renewal theory. Ann. math.
Statist. 11, 448—453 (1940).

V. Brun

- Gauss’ Verteilungsgesetz. Norsk mat. Tidskr. 14, 81—92 (1932) (Norwegisch).

C. Carathéodory
- Vorlesungen iiber reelle Funktionen. Leipzig u. Berlin 1918.

1. Castellano

. S_ulle relazioni tra curve di frequenza e curve di concentrazione e sui rapporti
di concentrazione corrispondenti a determinate distribuzioni. Metron 10,

3—60 (1933).

| H. Cramér

. Uber eine Iigenschaft der normalen Verteilungsfunktion. Math. Z. 44,

405—414 (1936).



— 166 —

2. Random variables and prebability distributions (Cambridge Tracts in Math.

and Math. Phys., No. 36). Cambridge 1937.

A. Della Riccies

. Courbes de fréquence et courbes de distribution. Une généralisation de la
loi de (auss. Ann. Soc. Sci. Bruxelles A 84, 133—139 (1934).

C. E. Dieulefait .
. Bestimmung der Momente der gewohnlichen hypergeometrischen Wahrschein-
lichkeiten und Bestimumung der Momente fiir den Fall der Ansteckung. An. Soc.
Ci. Argent. 127, 108—117 (1939) (Spanisch).
. Sui momenti delle distribuzioni ipergeometriche. Giorn. Ist. Ital. Attuari 10,
221—224 (1939).

E. L. Dodd
. Functions of measurements under general laws of error. Skand. Aktuarietid-
skrift 5, 133—158 (1922).
. Clagsification of sizes or measures by frequency functions. J.amer. statist.
Assoc., N.s. 26, Suppl.-H., 227-—234 (1931).

W. Doeblin
. Premiers éléments d'une étude systématique de l'ensemble de puissances
d’une loi de probabilité. C.R. Acad. Sci., Paris 206, 306—308 (1938).
. Etude de l'ensemble de puissances d'une loi de probabilité. C. R. Acad. Sei.,
Paris 206, 718—720 (1938).

G. Doetsch
. Theorie und Anwendung der Laplace-Transformation. Berlin 1937.

D. Dugué
. Sur quelques propriétés analytiques des fonctions caractéristiques. C. R.
Acad. Sci., Paris 208, 1778—1780 (1939).
. Sur quelques exemples de factorisation de variables aléatoires. C.R. Acad.
Sei., Paris 242, 838—840 (1941).
. Sur un nouveau type de courbe de fréquence. C.R. Acad. Sci., Paris 213,
634—635 (1941).
. Sur certaines composantes des lois de Cauchy. C.R. Acad. Sci., Paris 243,
T18—T719 (1941).

I'. Eggenberger
. Die  Wahrscheinlichkeitsansteckung. — Mitt. Vereinig. schweiz. Vers.-Math. 19,
31—143 (1924).

W. P. Elderton
. Frequency curves and correlation. London 1927, S. 36—123. (Vgl. dazu auch
Riebesell 1, S.27—35).

P. Erdés

. On a family of symmetric Bernoulli convolutions. Amer. J. Math. 64, 974—976
(1939).

. On the smoothness properties of a family of Bernoulli convolutions. Amer. J.
Math. 62, 180—186 (1940).



15T —

H. Eyraud

. Sur quelques lois d’erreurs analogues aux erreurs systématicques. (', R. Acad.
Sci., Paris 199, 763—764 (1934).

E. Feldhewm
. Btude de la stabilité des lois de probabilité. Diss. Paris 1937.

W. Feller
. Uber den zentralen Grenzwertsats der Wahrscheinlichkeitsrechnung. Math.
7. 40, 521—559 (1935).

B. de IMinetty

. Le funzioni caratteristiche di legge istantanea dotate di wvalori eccezionali.
Atti Accad. naz. Lincei, VI.s. 14, 259—265 (1931).

0. Faischer

. Une remarque sur l'article de M. A. Guldberg: «On discontinuous frequency
functions and statistical series». Aktudr. Védy 4, 169—174 (1934).

R. A. Fisher and L. H. C. Typpet

. Limiting forms of the frequency distribution of the largest or smallest member
of a sample. Proc. Cambridge Philos. Soc. 24, 180—190 (1928).

L. Galvani
. Contributi alla determinazione degli indici di variabilith per aleuni tipi di
distribuzione. Metron 9, 3—45 (1931).

L. Garding
. The distribution of the first and second order moments, the partial correlation

coefficients and the multiple correlation coefficient in samples from a normal
multivariate population. Skand. Aktuarietidskr. 24, 185—202 (1941).

B. Gnedenko
. On the domains of attraction of stable laws. C. R. Acad. Sci. URSS, N. s. 24,
640—642 (1939).

A. Guldberg
- On discontinuous frequency-functions and statistical series. Skand. Aktuarie-
tidskr. 14, 167—187 (1931). :
. BEine Anwendung der Differenzengleichungen in der theoretischen Statistik.
Aktuédr. Vedy 5, 116—128 (1935).

E. J. Gumbel
- La plus grande valeur. Aktuér. Védy 5, 83—89 u. 138—160 (1935).
- Lies valeurs extrémes des distributions statistiques. Ann. Inst. H. Poincaré b,
115—158 (1935).
H. Hadunger
- Natiiliche Ausscheidefunktionen fiir Gesamtheiten und die Losung der Fr-
neuerungsgleichung. Mitt. Vereinig. schweiz. Vers.-Math. 40, 31-—39 (1940).
- Eine analytische Reproduktionsfunktion fiir biologische (esamtheiten.
Skand. Aktuarietidskrift 23, 101—113 (1940).



— 188 —

. Fine TFormel der mathematischen Bevolkerungstheorie. Mitt. Vereinig.
schweiz. Vers.-Math. 41, 67—73 (1941).

. Wahl einer Niherungsfunktion fiir Verteilungen auf Grund einer Munktional-
gleichung. Bl Vers.-Math. 5, 345—352 (1942).

. Bin transzendentes Additionstheorem und die Neumannsche Reihe. Mitt.
Vereinig. schweiz. Vers.-Math. 42, 57—66 (1942).

. Uber die TFunktionalgleichung der Poissonschen Verteilungsfunktion (un-
verstfentlichtes Manuskript).

H. Hadwiger und W. Ruchti

. Uber eine spezielle Klasse analytischer Geburtenfunktionen. Metron 43,
Nr. 4, 17—26 (1939).

. Darstellung der Fruchtbarkeit durch eine biologische Reproduktionsformel.
Arch. math. Wirtsch.- u. Sozialforschg. 7, 30—34 (1941).

G. Hamel

. Hine Basis aller Zahlen und die unstetigen Liosungen der I'unktionalgleichung:
f(z + y) = f(z) + f(y). Math. Annalen 60, 459—462 (1905).

G. H. Hansmann
. On certain non-normal symmetrical frequency distributions. Biometrika 26,
129—195 (1934).
P. Hartman and R. Kershner
. The structure of monotone functions. Amer. J. Math. 59, 809—822 (1937).

. On the Fourier-Stieltjes transform of a singular function. Amer. J. Math. 60,
459—462 (1938).

P. Hartman and 4. Wintner
. On the spherical approach to the normal distribution law. Amer. J. Math. 62,
T59—779 (1940).

H. Hess

. Anwendungen der logistischen Funktion in der mathematischen Bevolkerungs-
theorie. Diss. phil. II. Bern 1938.

B. Hostinskyy

. Sur l'intégration des transformations fonectionnelles linéaires. Atti Accad. naz.
Lincei, Rend. VI.s. 13, 921—923 (1931).

- Sur I'intégration des transformations fonctionnelles linéaires. IT. Atti Accad.
naz. Lincei, Rend. VL. s. 14, 326—331 (1931).

. Sur I'intégration des transformations fonctionnelles linéaires. Atti Accad. naz.
Lincei, Rend. VI s. 16, 25—27 (1932).

- Sur une équation fonctionnelle de la théorie des probabilités. Publ. Fac. Sci.
Univ. Masaryk Nr. 156, 1—36 (1932).

E. Jahnke und F. Emde
. Funktionentafeln. Leipzig und Berlin 1933.

B. Jessen and A.Wintner

. Distribution functions and the Riemann zeta function. Trans. Amer. Math.
Soc. 38, 48—88 (1935).



— 159 —

E. Kamke

. Mengenlehre. Samml. Goschen Nr. 999, Berlin und Leipzig 1928.

T. Kawata

. On symmetric Bernoulli convolutions. Amer. J. Math. 62, 792—794 (1940).
. On the division of a probability law. Proc. Imp. Acad. Jap. 16, 249-—254 (1940).

R. Kershner

. On singular Fourier-Stieltjes transforms. Amer. J. Math. 58, 450

452 (1936).

A. Khantchine

. Asymptotische Gesetze der Wahrscheinlichkeitsrechnung. (Erg. d. Math. u.
threr Grenzgeb. Bd. 2, H. 4). Berlin 1933.

. Sul dominio di attrazione della legge di (Gauss. Giorn. Ist. Ital. Attuari 6,
378—393 (1935).

. Zur Theorie der wunbeschrinkt teilbaren Verteilungsgesetre. Rec.math.
Moscou, N.s. 2, 79—117 (1937).

. Uber Klassenkonvergenz von Verteilungsgesetzen. Mitt. Forsch.-Inst. Math.
u. Mech. Univ. Tomsk 4, 258—261 (1937).

. Zur Kennzeichnung der charakteristischen Iunktionen. DBull. Univ. tat
Moscou, Sér. Int., Sect. A: Math. et Mécan. 1, Fasc. 5, 1-—3 (1937).

. Invariante Klassen von Verteilungsgesetzen. Bull. Univ. itat Moscou, Sér.
Int., Sect. A: Math. et Mécan. 4, Fasc. 5, 4—5 (1937).

K. Kohler

. Jihrliche Ausfallsmenge eines Bestandes von Holzmasten. Arch. math.
Wirtsch.- u. Sozialforschg. 2, 34—37 (1936).

A. Kolmogoroff

. Uber die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math.
Ann. 104, 415—458 (1931).

. Zur Theorie der stetigen zufilligen Prozesse. Math. Ann. 108, 149—160 (1933).

E. Kuznecov

. La loi de probabilité d'un vecteur aléatoire. C. R. Acad. Sci. URSS 2, 187—190
u. franz. Text 190—193 (1935) (Russisch).

P. Lévy

- Théorie des erreurs. La loi de Gauss et les lois exceptionnelles. Bull. math.
Soc. France 52, 49—85 (1924).

- Caleul des probabilités. Paris 1925.

- Propriétés asymptotiques des sommes de variables aléatoires indépendantes
ou enchainées. J. Math. pures appl., IX. s. 14, 347—402 (1935).

. Lois quasi stables et quasi semistables dans la théorie des probabilités. C. R.
Soc. Math. France année 1935, 37—38 (1936).

- L’arithmétique des lois de probabilité. C.R.Acad. Sci., Paris 204, 80—82 (1937).
- Théorie de I'addition des variables aléatoires. Paris 1937.



— 160 —

7. Sur les exponentielles de polynomes et sur arithimétique des produits de lois
de Poisson. Ann. Iicole norm., III. s. 54, 231—292 (1937).

8. Sur les propriétés de quelques lois indéfinunent divisibles. C. R. Acad. Sci..
Paris 207, 1368—1370 (1938).

9. Sur un probléme de M. Mareinkiewicz. C. R. Acad. Sci., Paris 208, 318—321
(1939).

10. Sur une loi de probabilité analogue a celle de Poisson et sur un sousgroupe

important du groupe des lois indétiniment divisibles. Bull. Sei. math., II. s.

63, 247268 (1939).

H. Inechti

. Beitrag zum Lirneuerungsproblem. Diss. phil. II. Bern 1942,

4. J. Lothka
. The structure of a growing population. Human Biology 3, No. 4 (1931).

R. Liiders
. Die Statistik der seltenen Iireignisse. Biometrika 26, 108—128 (1934).

M. Muathaas
., Uber positive Fourier-Integrale. Math, 7. 16, 103—125 (1923).

L. Mawrer
. Uber die Mittelwerte der IFunctionen einer reellen Variabeln. Math. Annalen
47, 263—280 (1896).
K. Mayr
. Wahrscheinlichkeitsfunktionen und ihre Anwendungen. Mh. Math. Phys. 30,
17—43 (1920).
4. T. McKay
. A Bessel function distribution. Biometrika 24, 39—44 (1932).

B. von Mises
. Fundamentalsiitze der Wahrscheinlichkeitsrechnung. Math. Z. 4, 1-—97 (1919}
. Vorlesungen aus dem Gebiete der angewandten Mathematik. Bd.1. Waht-
scheinlichkeitsrechnung und ihre Anwendung in der Statistik und theore-
tischen Physik. Leipzig und Wien 1931.
. La distribution de la plus grande de n valeurs. Revue math. Union Inter-
balkan. 1, 141—160 (1936).

H. Miinzner

. Das Fehlergesetz des mittleren Fehlers und seine Anwendung. Bl Vers.-
Mat-h. 2, 237—241 (1932).
. Uber die Bewertung der Potenzmomente. Mh. Math. Phys. 41, 375—383 (1934).

K. Peayson

. Eixperimental discussion of the (z2, P) test for goodness of fit. Biometrika
24, 351—381 (1932).



— 161 —

K. Pearson, G. 3. Jeffery and E. M. Elderton

. On the distribution of the first product moment-coetficient, in samples drawn
from an indefinitely large normal population. Biometrika 24, 164—193 (1929).

K. Pearson, S. 4. Stouffer and F'. N. David

. Further applications in statistics of the T',(x) Bessel function. Biometrika
24, 293—350 (1932).

0. Perron
. Die Lehre von den Kettenbriichen. Leipzig und Berlin 1929.

H. Pollaczek-Gewrimger

. Uber die Poissonsche Verteilung und die Entwicklung willkiirlicher Verfel
lungen. Z. angew. Math. Mech. 8 292—309 (1928).

G. Pélya
. Berechnung eines bestimmten Integrals. Math. Annalen 74, 204—212 (1913).
. Herleitung des Gaussschen Fehlergesetzes aus einer Funktionalgleichung.
Math. Z. 18, 96—108 (1923).

S. J. Pretorius

. Skew Bi-variate Frequency Surfaces, examined in the light of numerical
illustrations. Biometrika 22, 109—223 (1930).

D. Ratkov

. On the decomposition of Poisson laws. C.R. Acad. Sci. URSS, N.s. 14,
9—11 (1937).

- On the composition of analytic distribution functions. C. R. Acad. Sci. URSS,
N.s. 23, 511—514 (1939).

P. Riebesell

. Einfithrung in die Sachversicherungsmathematik. (Veroffentl. Dtsch. Ver. Vers.-
Wissensch., H. 56.) Berlin 1936.

. Die mathematlschen Grundlagen der Sachv ercﬂcherung Ber. 12. internat.
Kongr. Vers.-Math. Luzern 1940 4, 27—36 (1941).

R. Risser

. De la dispersion afférente & n erreurs dans le cas oll chacune des erreurs com-
posantes est régie par une loi simple. C. R. Acad. Sci., Paris 195, 435-—437
(1932).

R. Risser et C. Traynard
- Les principes de la statistique mathématique. Paris 1933.

H. von Schelling

, Trfefferwahrscheinlichkeit und Variabilitat. Ein Versuch zur Deutung der
Wirksamkeit von Antigenen. Naturwiss. 30, 306-—312 (1942).

R. Schmadt

. ‘(Uber divergente Folgen und lineare Mittelbildungen. Math. 7. 22, 89—152
1925),



— 162 —

E. Stutsky

. Sur les fonctions aléatoires presque périodiques et sur la décomposition des
fonctions aléatoires stationnaires en composantes (In: S. Bernstein, E. Slutsky
et H. Steinhaus: Les fonctions aléatoires). Actualités scient. et industr.
Nr. 738, Paris 1938, S. 33—55.

A. Sommerfeld

. Hine besondere anschauliche Ableitung des (Gaussischen Fehlergesetzes.
Boltzmann-Festschrift S. 848—859, Leipzig 1904.

J. F'. Steffensen
. On the semi-normal distribution. Skand. Aktuarietidskr. 20, 60—74 (1937).

L. A. Surico

. Su una formula approssimata per il calcolo della probabilita di un dato scarto
nello schema di Bernoulli, in casi di dissimmetria. Giorn. Ist. Ital. Attuari 3.
376—390 (1932).

E. Tricomr
. Uber die Summe mehrerer zufilliger Veriinderlichen mit konstanten Vertei-
lungsgesetzen. Jber. Dtsch. Math.-Vereinig. 42, 174—179 (1932).
. Sulla media dei valori assoluti di errori seguenti la legge di Gauss. Giorn.
Ist. Ttal. Attuari 7, 280—290 (1936).

S. Vaanells

. Altersautbau und Wachstum der Bevolkerung. Arch. math. Wirtsch.- u.
Sozialforschg. 3, 215—234 (1937).

S. W. Wicksell
. Nuptiality, fertility and reproductivity. Skand. Aktuarietidskrift 14, 125—157
(1931).

A. Wintner
. On the stable distribution laws. Amer. J. Math. 55, 335—339 (1933).
. On the addition of independent distributions. Amer. J. Math. 56, 8—16 (1934).
. On analytic convolutions of Bernoulli distributions. Amer. J. Math. 56,
659—663 (1934).
. On symmetric Bernoulli convolutions. Bull. Amer. Math. Soc. 44, 137—138
(1935). '
. Gaussian distributions and convergent infinite convolutions. Amer. J. Math.
57, 821—826 (1935). '
. On convergent Poisson convolutions. Amer. J. Math. 57, 827—S838 (1935).
. On a class of Fourier transforms. Amer. J. Math. 58, 45—90 (1936).

P. Yuan

- On the logarithmic frequency distribution and the semi-logarithmic corre-
lation surface. Ann.math. Statist. 4, 30—T74 (1933).

E. Zwinggu

. Beitriige zu einer Theorie des Bevilkerungswachstums. Mitt. Vereinig. schweiz
Vers.-Math. 24, 95—166 (1929).



— 163 —

Inhaltsverzeichnis

L. Verteilungsfunktionen:

1.

T o= GO O

(o

Definition der Verteilungsfunktion

Arten von Verteilungsfunktionen . .
Zusammenhang mit der Wahrscheinlic hl\mtstheoue :
Das St1eltjessche Integral .

Beziehungen zwischen Verte\lhmgsﬂmktumm .
Zusammensetzung von Verteilungsfunktionen.

. Folgen von Verteilungsfunktionen. ;
A Bemerkung tiber mehrdimensionale V e1tmluno%tunl\tlon(‘n ;

11. Die charakteristischen Iunktionen:

U!)—P«W[\'}i—l

. Definition der charakteristischen Funlktion.

. Kigenschaften der charakteristischen Funktionen .

. Die Umkehrformel fiir charakteristische Funktionen

. Das Darstellungsproblem.

Abbildungseigenschaften der (hnakterlsmschen luuktionen

I1I. Ubersicht itber die bekannten Verteilungsfunktionen .

1. Tabellarische Zusammenstellung der Verteilungsfunktionen
2.

Zusatzbemerkungen zu den einzelnen Verteilungsfunktionen .

IV. Funktionalgleichungen :

1.
2.

Auswahl gewisser Funktionalgleichungen.
Unterscheidung der Funktionalgleichungen nach Int ewrahonsmtprvall
und Art der VbrtelIungsfunkhonen .

3. Unterscheidung nach auftretenden P(uampteln
4.
5. Transformation der Funktionalgleichungen .

Allgemeinere Funktionalgleichungen .

V. Die Lésungen der Funktionalgleichungen:

1.

o

o e

Emparametrige Lisungen

Zweiparametrige Liésungen . .
Lésungen mit mehreren Parametern .
Spezielle Klassen von Verteilungsfunktionen .
Unbeschrinkt teilbare Verteilungsfunktionen .

VI Das asymptotische Verhalten der Potenzen von Verteilungsfunktionen

1.

Definition des Attraktionsgebietes.

2. Unterscheidung der Attraktionsgebiete

Ausnahmefille

Literaturverzeichnis

Seite

97

98
100
101
108
104
105
106

107
107
108
110
111
113
114
128

136

136
137
139
140

141
145
147
148
148

= e e
R S
L= O

—_
S
92






	Verteilungsfunktionen und ihre Auszeichnung durch Funktionalgleichungen

