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B. Wissenschattliche Mitteilungen

Uber die Laplace-Transformation
und ihre Anwendungen

Von Walter Saxer, Ziirich

Wenn man die verschiedenen Darstellungen der Geschichte der
exakten Wissenschaften durchbliattert, konstatiert man mit Leichtig-
keit die vollige Ubereinstimmung der Geschichtsschreiber darin, dass
mit der Entdeckung der Differential- und Integralrechnung oder —
ich mochte allgemeiner sagen — der Analysis, das eigentliche Zeitalter
der modernen Wissenschaft angebrochen ist. Die Geschichtsschreiber
stimmen darin iiberein, dass damit eine neue Form des wissenschaft-
lichen Denkens geschaffen wurde. Worin besteht denn im wesent-
lichen diese neue Art der Wissenschaft, verglichen mit den Methoden
des Mittelalters und der Griechen? Durch die Einfithrung des Differen-
tialquotienten und der damit im Zusammenhang stehenden unend-
lich kleinen Grossen und den Integralen, die ja Summen mit sehr
vielen sehr kleinen Summanden darstellen, ist es gelungen, den ewigen
Prozess des Werdens und Vergehens in der Natur mathematisch zu
beschreiben. Die Darstellung irgendeines physikalischen, chemischen
oder biologischen Vorganges durch eine Differentialgleichung und
ithre Integration bedeutet ja gar nichts anderes, als dass vom Vorgange
eine Art Momentaufnahme gemacht wurde. Die Differentialgleichung
liefert uns das mathematische Bild dieser Momentaufnahme ; sie zeigt
die Beziehungen zwischen den den Vorgang beherrschenden Grossen
und Funktionen. Diese Integration der Differentialgleichung be-
deutet den Schluss in die Zukunft, sie liefert Aussagen tber das zu-
kiinftice Werden, das sich aus der Anfangssituation entwickelt. Die
Differentialgleichung eines Vorganges formuliert i méglichst kon-
zentrierter Form ein Determinationsprinzip, und ihre Integration be-



— 20 —

schreibt ausfithrlich die Konsequenzen, die sich aus diesem Determina-
tionsprinzip ergeben.

Beispiele fur diese Behauptung lassen sich heute beliebig viele
geben. Sehr instruktiv sind in dieser Beziehung immer noch die Vor-
ginge in der Astronomie und der Mechanik, die ja auch Newton zu
seinen fundamentalen Entdeckungen gefithrt haben. Wenn beispiels-
weise ein neuer Planet entdeckt wird, so geniigen wenige Messungen
iiber seine Lage, um aus dieser Anfangskonfiguration seine zukiinftige
Bahn fir ewig rechnen zu kénnen. Denn die Differentialgleichung der
Bahnen der Planeten ist bekannt und kann integriert werden. Sie
sehen hier in besonders anschaulicher Weise, wie aus einer momentanen
Situation in die Zukunft hinaus mtegriert wird.

Es ist Ihnen allen bekannt, dass es sehr hiufig moglich ist, fir
Vorginge wohl ihre Differential- oder Integralgleichung aufzustellen,
dass aber ithre Losung, ihre Integration, nicht gelingt. Damit kénnen
aber gerade jene Schliisse, die uns interessieren, némlich das Ver-
halten gewisser Funktionen in der Zukunft, nicht gezogen werden. Is
ist deshalb wohl verstindlich, dass die Mathematiker, Physiker, In-
genieure usw. seit der Entdeckung der Analysis grosse Anstrengungen
unternahmen, moglichst viele Differential- und Integralgleichungen
zu logen. Tatsichlich bildet das Gebiet dieser Art Tunktional-
beziehungen heute einen wesentlichen und grossen Teil der gesamten
Analysis.

Bei der Lésung von Differentialgleichungen hat man sich zum
Teil von algebraischen Gesichtspunkten leiten lassen. Bekanntlich
18t die Algebra dlter — es gehorte stets zu den fundamentalen Aufgaben
der Algebra, Gleichungen zu lésen. Bei gewissen Klassen von Diffe-
rentialgleichungen (ich denke hier vor allem an die linearen) ergaben
sich bemerkenswerte Analogien zwischen der Losung von Differential-
gleichungen und gewohnlichen Gleichungen. Deshalb ist es wohl ver-
standlich, dass man versuchte, die Losung von Differential- und
Integralgleichungen zu algebraisieren, d. h. auf die Losung gewdhn-
licher algebraischer Gleichungen zuriickzufithren.

In den letzten 40 Jahren sind in dieser Hinsicht bemerkenswerte
Fortschritte erreicht worden dank enger Zusammenarbeit zwischen
Mathematikern und Technikern. Vor allem hat sich eine schon von
Laplace angewendete Transformation als iberaus kraftig zur Loésung



gewohnlicher und partieller Differentialgleichungen sowie von Inte-
gralgleichungen erwiesen. Wenn Sie die letzten 20 Jahrgéinge unserer
Mitteilungen durchgehen, werden Sie feststellen, dass eine Reihe von
Arbeiten dem Irneuerungsproblem gewidmet sind. Bekanntlich hat
der von uns allen verehrte und unvergessene Prof. Moser in Bern in
der Jubildumssitzung des Jahres 1925 in einem schonen Vortrag darauf
hingewiesen, dass die ganze Frage der Frneuerung letzten Endes auf
die Liosung und Diskussion gewisser Volterrascher Integralgleichungen
hinauslduft. Mehrere Arbeiten der letzten Jahrginge unserer Mit-
teillungen befassen sich mit der Liosung solcher Integralgleichungen —
ich nenne als Verfasser die Herren Hadwiger, Féraud, Tarjan und
Zwinggi. Die ersten drei Autoren benutzen u. a. die Laplace-Trans-
formation. Daraus ersehen Sie zunichst, dass diese Threm engeren
Arbeitsgebiete ebenfalls nahe liegt. Die neueren funktionentheo-
retischen Untersuchungen der letzten Jahre haben aber ganz all-
gemein gezeigt, dass die Laplace-Transformation ein sehr méchtiges
Instrument uberhaupt in der Analysis darstellt. Ich ermnere bei-
splelsweise an ihre Anwendung in der analytischen Zahlentheorie,
mm Gebiet der ganzen Funktionen usw. Aus allen diesen Grinden
hat mich der Vorstand unserer Vereinigung damit beauftragt, Ihnen
in einer Vorlesung das Wesgen der Laplace-Transformation auseinander-
rusetzen.

Unsere Tagungen haben sich ja in den letzten Jahren mehr mit
der Diskussion von — ich mochte beinahe sagen — Tagesfragen, wenn
auch sehr wichtigen, befasst. Darob wollen wir aber das Hauptziel
unserer Vereinigung, die Pflege unserer wichtigsten Invarianten —
niémlich die Erkenntnisse der Mathematik — nicht vergessen.

Bei solchen mathematischen Vortrdgen kommt es ja immer
wieder vor, dass man diese oder jene Einzelheit in der File nicht ver-
versteht. Das halte ich keineswegs fiir tragisch. Solche Vortrige
sollten Sie vor allem ermuntern, sich in der eigenen Studierstube noch
viel intensiver mit dem im Vortrag behandelten Gegenstand zu be-
fassen und die entsprechende Literatur zu studieren. Als Standard-
Lehrbuch nenne ich Thnen

Doetsch: Theorie und Anwendungen der Laplace-Transformation, Ver-
lag Springer, Berlin 1937.
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Definitionen und Satze

Die folgenden Definitionen und Sétze wollen das Wesentliche
moglichst einfach und anschaulich beschreiben. Deshalb verzichten
wir mit Absicht auf méglichste Allgemeinheit.

Definition: F(t) sei eine fiir t = 0 definierte reelle stetige Funlktion.
Unter ihrer Laplaceschen Transformierten verstehen wir das folgende
Integral

oo

B =f(s) = [ ™ F() at

0

s sei im folgenden im allgemeinen eine reelle Zahl.

Selbstverstdndlich braucht dieses Integral lange nicht fiir alle Funk-
tionen definiert zu sein. Wenn jedoch das Integral einen endlichen
Wert besitzt, dann bezeichnen wir F(t) als die Objektfunktion oder
Originalfunktion und f(s) die Resultat- oder Bildfunktion. F(t) ist in
diesemn Fall eine sogenannte L-Funktion, d. h. eine Funktion, auf
welche die L-Transformation tatséichlich angewendet werden kann.

Dem Objektraum wird der Bildraum zugeordnet. Es wiire natiir-
lich wichtig, die Funktionen F'(t) funktionentheoretisch so beschreiben
zu konnen, dass man auf Grund moéglichst einfacher Kriterien ent-
scheiden konnte, ob es sich um eine L-Funktion handle oder nicht.
- Diese Frage ist nicht einfach zu behandeln und vorldufig auch noch
nicht endgiiltig abgekldrt. Beispielsweise ldsst sich auf alle be-
schrinkten Funktionen die L-Transformation anwenden.
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Fir die Anwendungen ist es wertvoll, eine moglichst grosse Tabelle
solcher Laplace-Integrale zu besitzen. Solche Tabellen befinden sich
in den entsprechenden Lehrbiichern.

Ean-Fandeutighert der Abbildung: Es ist klar, dass infolge der
vorigen Definition der Funktion F(f) eindeutig eine bestimmte Funk-
tion f(s) entspricht. Kann man auch das Umgekehrte behaupten ?
Entspricht der Bildfunktion f(s) eindeutig eine ganz bestimmte
Originalfunktion ? Mittelst des Fourierschen Integraltheorems kann man
beweisen, dass dies der Fall ist, solange wir uns lediglich mit stetigen
Funktionen befassen, was ja bel den Anwendungen fur die Technik
in der Regel der Fall ist. Aus diesen Griinden kann man die vorige
Funktionentabelle wie ein einfaches Waérterbuch benutzen. In jeder
Horizontalen stehen genau zwei Funktionen, Original und Bild, die
ein-eindeutig zusammengehoren.

Die Umkehrungsformel lautet:
= [ e F(f)dt f(s) konvergiere fiir s > o absolut.
0

Dann gilt die Umkehrformel

1 -+ 100
By == _ f ef(s)ds s=z +1y.
27 s

Eigenschaften der L-Transformation
1. Additionssatz:
Lla, Fy(t) + ap Fy(®) + ... + a,E,(O)] = a, LI, ({H)] + - - - + a, L[E,(})]

(y, @y, ... a, bedeuten Konstante. Der Beweis ergibt sich aus funda-
mentalen Eigenschaften des Integralbegriffes. Dieser Satz kann nicht
ohne weiteres auf unendliche Summen tbertragen werden.

2. Diampfungssatz:

L (F(f) e+ fe‘“‘”F()d = {sFa).

Die Dimptung der im Originalraum mit ¢ multiplizierten Funktion
F(t) wirkt sich im Bildraum lediglich durch eme Translation aus.



3. Dnfferentiationssate:
L(F'(t)) = s L(F(t)) — F(0) = sf(s) — F(0) -

Beweis: Geméss partieller Integration erfolgt:

oo

[1"(t) et dt = F(b) e‘“o‘o—i— s foo(F(t) et dt.

0

Da [ ¢! F(t) dt nach Voraussetzung existieren soll, wird lim F(f) ¢™'
0 =¥ co
als 0 angenommen.

Die obige Formel ist fiir die Anwendungen der Laplaceschen
Transformation im Gebiete der Differentialgleichungen sehr wichtig.
Denn sie zeigt, dass die Differentiation im Originalraum sich im Bild-
raum lediglich in der Multiplikation der Bildfunktionen mit der
Variablen s auswirkt. Die transzendente Operation des Differenzierens
ist durch die algebraische Operation des Multiplizierens abgelost
worden und dieser Umstand erméglicht die Algebraisierung der
Differentialgleichungen. Vorerst wollen wir aber die vorige Formel
auf Ableitungen héherer Ordnung verallgemeinern.

Man erhélt:
L(F"(t) =s L[F'({t)] — F'(0) = s L[F(t)] — s (o) — F'(0).

Bevor wir in der Zusammenstellung der Sitze weitergehen, wollen
wir schon an dieser Stelle zeigen, wie man lineare, inhomogene Diffe-
rentialgleichungen mit konstanten Koeffizienten durch Anwendung
der Laplaceschen Operation algebraisiert und damit lést. Das
Losungsschema entspricht dem Vorgehen in der darstellenden Geo-
metrie: man transformiert das Problem in den Bildraum, lost das
transformierte Problem und transformiert zuriick.

Beispiel: Man 16se die Differentialgleichung:
F"() —2F'(t) 4+ F(t) = sin (81)

unter den Anfangshedingungen (o) = F'(0) = 0.
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Lésung: L[F(t) — 2 F'(t) 4 F(t)] = L[sin (3 #)]

L[F'#%)] — 2 L[F'(t)] + LIF({)] = o j)_ 9
s* LIF(®)] —2s L[F(H] + LIF(t)] = 32 i 9

3

LIFo] = (24 9) (2—2 1)

Die Bildfunktion wird gefunden nach der Methode der Partialbruch-
zerlegung. Wenn unser Wérterbuch vollsténdig ist, konnen wir die
Originalfunktion sofort aufschlagen. Man findet:

3 4
F() =——| 5te! —e! 4 cos (81) ——sin (31)] .
=57 80— sin (30

4. Faltungssatz: Die wichtigsten Sétze in der ganzen Theorie
sind die sogenannten Faltungssitze, von denen ich Thnen einen
schildern will.

Unter einem Faltungsintegral versteht man ein Integral von der
Form i
[ Fy(z) Fyt—17)dv = F; * F,

0
Es gehorcht dem kommutativen Gesetz F;*F, =F,*F,.

Der Beweis ergibt sich sofort durch eine Variablentranstormation
t—z=U.
Es gehorcht auch dem assoziativen Gesetz
(B, * By * F, —F, * (Fy * Fy)

Die Reihenfolge der Faktoren spielt bei der Faltung keine Rolle.
Das assoziative Gesetz ist eine Konsequenz des nachstehenden Faltungs-

gesetzes:
L(Fy * Fy) = L(F) - L(Fy) -

Der Faltung im Originalraum entspricht im Bildraum die Multiplika-
tion der beiden Bildfunktionen. Der Beweis dieses Faltungssatzes
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ergibt sich durch geeignete Umformung des durch L (F; * F,) de-
finierten Doppelintegrals.

Mit diesen vier Sdtzen ist die Systematik der Eigenschaften der
L-Transformation in keiner Weise erschopft. Sie diirften aber ge-
niigen, um die folgenden Anwendungen zu verstehen.

11

Anwendungen der L-Transformation
auf die Integralgleichungen

Direkt priapariert fir die Anwendungen der Laplace-Trans-
formation sind die Volterraschen Integralgleichungen vom sogenannten
Faltungstypus, zu denen auch die von Moser aufgestellte Integral-
gleichung gehért. Ebenso kann die in der Bevolkerungsstatistik
massgebende und z. B. von Lotka und Linder betrachtete Integral-
gleichung leicht auf eine solche Volterrasche Integralgleichung trans-
formiert werden, wie beispielsweise Hadwiger in einer seiner Unter-
suchungen festgestellt hat. Volterrasche Integralgleichungen kommen
immer dann vor, wenn es sich um Erscheinungen mit Nachwirkungen,
z. B. Vererbungserscheinungen, Elastizititsuntersuchungen usw. han-
delt. Es handelt sich um die Integralgleichung:

;
F()y =G(t) + [ K(t—7) F(r) d=

0
G(t) und K(t —7) als der Kern der Integralgleichung sind gegeben.
Gesucht wird die Funktion [(f). Beispielsweise beim Problem der
Erneuerung sei im Zeitpunkt ¢t = 0 die Anzahl der gleichaltrigen Per-
sonen mit einem festen Anfangsalter H; nach t betrage dieselbe noch
H-P(t). Abgehende Personen sollen immer sofort ersetzt werden,
mit dem festen Anfangsalter, die Anzahl der im Intervall dr ein-
tretenden Personen werde mit H.F(z)dr bezeichnet, wobel man
F(r) die Erneuerungsfunktion nennt. Soll die Zahl der Mitglieder
konstant bleiben, erhélt man offenbar die Gleichung I:

I. H = HP() +fHF(T) P(t—1)dx.

0
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Differenziert man diese Gleichung nach ¢, so erhilt man
i
F(t) = — P'(t) — [ F(z) P'(t —7) dx.
0

Dies ist genau eine Integralgleichung von der vorigen Form.
Vielleicht kann man einwenden, dass die HErneuerungsfunktion
F(v) immerhin nicht direkt gegeben ist. Hingegen kann man beispiels-
weise direkt durch Beobachtung die Anzahl der Neueingetretenen im
Laufe der Zeit { namlich @(¢) geben. Dann erhilt man die Integral-
gleichung:
H = H P(t) +fPt~w)H dD(7)

wie sie von Richter 1) in seiner grundlegenden Arbeit formuliert wurde.

Lisung der Integralgleichung II:
‘
II. F@)y=G@t) + [ K{t—7) F(z) dv.
0

Nehmen wir an, dass auf simtliche Funktionen G(t), K(t), F(t) die
L-Transformation angewendet werden darf. Im Falle des Erneuerungs-
problems trifft dies sicher zu, da alle dort vorkommenden Funktionen
beschrinkt sind. Man erhilt

f(s) = g(s) + K(s) - f(s)

f
9(s) f(s)

Tk = I+ 96) Ty = 96) +96)-40).

oder f(s) =

Die Bildfunktion der gesuchten Funktion F(f) ist demnach be-
kannt. Wenn unser Woérterbuch vollstdndig ist, kann die Original-
funktion direkt aufgeschlagen werden. Im andern Fall ist die Umkehr-
formel zu benutzen.

Man kann zeigen, dass sich ¢(s) zurticktransformieren lisst, da
fir gentigend grosses s gilt k(s) + 1. Deshalb besitzt F'(t) die Darstellung

F(t) =G(H) +Q * & = G(t +f@t-r () de-

1) H. Richter, Untersuchungen zum Erneuerungsproblem. Mathemat. Annalen,
Bd. 118 (1941), S. 145—198.
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Das 1st die in der Theorie der Integralgleichungen bekannte Dar-
stellung mittelst des reziproken Kerns. Zwischen beiden Kernen be-
steht die folgende Beziehung

k(s)
T k) q(s)

— k(s) + q(s) = q(s) k(s)

o f@(r) K(t—1)dr.

Im Falle der Moserschen Erneuerungsgleichung I ergibt die
L-Transformation das folgende Resultat:

L(I) = p(s) + f(s) - p(s)

6= |5 =2 = 1
B e TR '

S

Moser hat seine Beziehungen vor allem deshalb formuliert, weil
er sich fir die Frage des Beharrungszustandes interessierte. Kr nahm
a priori an, dass die Losung seiner Integralgleichung mit wachsendem ¢
einem Grenzwert zustrebe. Schon die Definition des Beharrungs-
zustandes ist nicht selbstversténdlich, wie ich schon im Jahre 1932
in einer kleinen Arbeit auseinandersetzte. Kbenso muss das asympto-
tische Verhalten der Loésung einer Integralgleichung genauer unter-
sucht werden. Diese Fragen des Beharrungszustandes wurden von
Richter in seiner Habilitationsarbeit, teilweise ebenfalls mit Hilfe
der L-Transformation, besonders sorgfiltic untersucht. Fir den Fall,
dass die Losung wirklich einem Grenzwert zustrebt, spricht Richter
in durchaus zutreffender Weise von einer eigentlichen Stabilisierung
des Vorganges. Kann man nun anschauliche Kriterien fiir die Funk-
tionen K und G geben, damit die Stabilisierung des Vorganges em-
tritt ? Im Falle der Erneuerung sind diese Funktionen die Sterbens-
wahrscheinlichkeit oder ihre Ableitung und deshalb von einer be-
stimmten Grenze t, an 0.

Richter hat schon in einer kleineren Arbeit im Jahre 1940 tat-
sdchlich bewiesen, dass diese Voraussetzung, verbunden mit recht
allgemeinen Higenschaften, wie stiickweise Differenzierbarkeit fir
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das FEintreten der Stabilisierung geniigt. Immerhin benétigte er fiir
seinen Bewels eine sehr genaue Diskussion mit Hilfe der wesentlichsten
Begriffe in der Analysis reeller Funktionen, wie gleichméssige Stetig-
keit, Konvergenz von Funktionsfolgen usw.

Sofern diese Voraussetzung des Verschwindens des Kernes der
Integralgleichung von einer bestimmten Stelle an nicht zutrifft, wird
die Diskussion wesentlich schwieriger, wie schon Hadwiger anhand
eines Gegenbeispieles festgestellt hatte. Richter hat eben in seiner
Habilitationsschrift diesen Fall ganz allgemein untersucht und ist dabei
zu sehr allgemeinen Iirgebnissen und auch zu neuen Stabilisierungs-
begriffen gekommen.

Diese knappen Ausfithrungen haben hoffentlich die Bedeutung
der Laplace-Transformation deutlich gezeigt. Gleichzeitig beweist
die Entwicklung des Erneuerungsproblems sehr schon, dass man
auch in der Versicherungsmathematik auf mathematisch durchaus
interessante und keineswegs leichte Probleme stésst. Theorie und
Praxis kénnen sich auch in unserm Arbeitsgebiet gegenseitig nach
wie vor #dusserst niitzliche Dienste leisten, wenn auf beiden Seiten
Achtung vor der Arbeit des andern und vor allem der Drang nach
Wahrheit besteht.
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