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B. Wissenschaftliche Mitteilungen

Über die Laplace-Transformation
und ihre Anwendungen

Von Vkafter Saver, Zürich

Wenn man die verschiedenen Darstellungen der Geschichte der
exakten Wissenschaften durchblättert, konstatiert man mit Leichtig-
keit die völlige Übereinstimmung der Geschichtsschreiber darin, dass

mit der Entdeckung der Differential- und Integralrechnung oder —
ich möchte allgemeiner sagen — der Analysis, das eigentliche Zeitalter
der modernen Wissenschaft angebrochen ist. Die Geschichtsschreiber
stimmen darin überein, dass damit eine neue Form des Wissenschaft-
liehen Denkens geschaffen wurde. Worin besteht denn im wesent-
liehen diese neue Art der Wissenschaft, verglichen mit den Methoden
des Mittelalters und der Griechen Durch die Einführung des Differen-
tialquotienten und der damit im Zusammenhang stehenden unend-
lieh kleinen Grössen und den Integralen, die ja Summen mit sehr
vielen sehr kleinen Summanden darstellen, ist es gelungen, den ewigen
Prozess des Werdens und Vergehens in der Natur mathematisch zu
beschreiben. Die Darstellung irgendeines physikalischen, chemischen
oder biologischen Vorganges durch eine Differentialgleichung und
ihre Integration bedeutet ja gar nichts anderes, als dass vom Vorgange
eine Art Momentaufnahme gemacht wurde. Die Differentialgleichung
liefert uns das mathematische Bild dieser Momentaufnahme; sie zeigt
die Beziehungen zwischen den den Vorgang beherrschenden Grössen

und Punktionen. Diese Integration der Differentialgleichung be-
deutet den Schluss in die Zukunft, sie liefert Aussagen über das zu-
künftige Werden, das sich aus der Anfangssituation entwickelt. Die
Differentialgleichung eines Vorganges formuliert in möglichst kon-
zentrierter Form ein Determinationsprinzip, und ihre Integration be-
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schreibt ausführlich die Konsequenzen, die sich aus diesem Détermina-

tionsprinzip ergeben.

Beispiele für diese Behauptung lassen sich heute beliebig viele
geben. Sehr instruktiv sind in dieser Beziehung immer noch die Vor-

gänge in der Astronomie und der Mechanik, die ja auch Newton zu
seinen fundamentalen Entdeckungen geführt haben. Wenn beispiels-
weise ein neuer Planet entdeckt wird, so genügen wenige Messungen
über seine Lage, um aus dieser Anfangskonfiguration seine zukünftige
Bahn für ewig rechnen zu können. Denn die Differentialgleichung der

Bahnen der Planeten ist bekannt und kann integriert werden. Sie

sehen hier in besonders anschaulicher Weise, wie aus einer momentanen
Situation in die Zukunft hinaus integriert wird.

Es ist Ihnen allen bekannt, dass es sehr häufig möglich ist, für
Vorgänge wohl ihre Differential- oder Integralgleichung aufzustellen,
dass aber ihre Lösung, ihre Integration, nicht gelingt. Damit können
aber gerade jene Schlüsse, die uns interessieren, nämlich das Ver-
halten gewisser Punktionen in der Zukunft, nicht gezogen werden. Es

ist deshalb wohl verständlich, dass die Mathematiker, Physiker, In-
genieure usw. seit der Entdeckung der Analysis grosse Anstrengungen
unternahmen, möglichst viele Differential- und Integralgleichungen
zu lösen. Tatsächlich bildet das Gebiet dieser Art Funktional-
beziehungen heute einen wesentlichen und grossen Teil der gesamten

Analysis.

Bei der Lösung von Differentialgleichungen hat man sich zum
Teil von algebraischen Gesichtspunkten leiten lassen. Bekanntlich
ist die Algebra älter — es gehörte stets zu den fundamentalen Aufgaben
der Algebra, Gleichungen zu lösen. Bei gewissen Klassen von Diffe-
rentialgleiehungen (ich denke hier vor allem an die linearen) ergaben
sich bemerkenswerte Analogien zwischen der Lösung von Differential-
gleichungen und gewöhnlichen Gleichungen. Deshalb ist es wohl ver-
ständlich, dass man versuchte, die Lösung von Differential- und

Integralgleichungen zu algebraisieren, d. h. auf die Lösung gewöhn-
licher algebraischer Gleichungen zurückzuführen.

In den letzten 40 Jahren sind in dieser Plinsicht bemerkenswerte
Fortschritte erreicht worden dank enger Zusammenarbeit zwischen

Mathematikern und Technikern. Vor allem hat sich eine schon von
Laplace angewendete Transformation als überaus kräftig zur Lösung
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gewöhnlicher und partieller Differentialgleichungen sowie von Inte-
gralgleichungen erwiesen. Wenn Sie die letzten 20 Jahrgänge unserer
Mitteilungen durchgehen, werden Sie feststellen, dass eine Reihe von
Arbeiten dem .Erwewenmg'sjjro&Zem gewidmet sind. Bekanntlich hat
der von uns allen verehrte und unvergessene Prof. Moser in Bern in
der Jubiläumssitzung des Jahres 1925 in einem schönen Vortrag darauf
hingewiesen, dass die ganze Frage der Erneuerung letzten Endes auf
die Lösung und Diskussion gewisser Volterrascher Integralgleichungen
hinausläuft. Mehrere Arbeiten der letzten Jahrgänge unserer Mit-
teilungen befassen sich mit der Lösung solcher Integralgleichungen —
ich nenne als Verfasser die Herren Hadwiger, Féraud, Tarjan und
Zwinggi. Die ersten drei Autoren benutzen u. a. die Laplace-Trans-
formation. Daraus ersehen Sie zunächst, dass diese Ihrem engeren
Arbeitsgebiete ebenfalls nahe liegt. Die neueren funktionentheo-
retischen Untersuchungen der letzten Jahre haben aber ganz all-
gemein gezeigt, dass die Laplace-Transformation ein sehr mächtiges
Instrument überhaupt in der Analysis darstellt. Ich erinnere bei-

spielsweise an ihre Anwendung in der analytischen Zahlentheorie,
im Gebiet der ganzen Funktionen usw. Aus allen diesen Gründen
hat mich der Vorstand unserer Vereinigung damit beauftragt, Ihnen
in einer Vorlesung das Wesen der Laplace-Transformation auseinander-
zusetzen.

Unsere Tagungen haben sich ja in den letzten Jahren mehr mit
der Diskussion von — ich möchte beinahe sagen — Tagesfragen, wenn
auch sehr wichtigen, befasst. Darob wollen wir aber das Hauptziel
unserer Vereinigung, die Pflege unserer wichtigsten Invarianten —
nämlich die Erkenntnisse der Mathematik — nicht vergessen.

Bei solchen mathematischen Vorträgen kommt es ja immer
wieder vor, dass man diese oder jene Einzelheit in der Eile nicht ver-
versteht. Das halte ich keineswegs für tragisch. Solche Vorträge
sollten Sie vor allem ermuntern, sich in der eigenen Studierstube noch
viel intensiver mit dem im Vortrag behandelten Gegenstand zu be-

fassen und die entsprechende Literatur zu studieren. Als Standard-
Lehrbuch nenne ich Ihnen

Doetec/i: Theorie und Anwendungen der Laplace-Transformation, Ver-

lag Springer, Berlin 1937.
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I.

Definitionen und Sätze

Die folgenden Definitionen und Sätze wollen das Wesentliche

möglichst einfach und anschaulich beschreiben. Deshalb verzichten
wir mit Absicht auf möglichste Allgemeinheit.

De/mih'on: F(Z) sei eine für i > 0 definierte reelle stetige Funktion.
Unter ihrer Laplaceschen Transformierten verstehen wir das folgende

Integral

L[F(0] /(*) />L(Z)df
0

s sei im folgenden im allgemeinen eine reelle Zahl.

Selbstverständlich braucht dieses Integral lange nicht für alle Funk-
tionen definiert zu sein. Wenn jedoch das Integral einen endlichen
Wert besitzt, dann bezeichnen wir F(Z) als die O&je/rf/imiW-io« oder

Ont/maZ/wifction und /(s) die BeswlZaZ- oder B-dd/rtn/cbon. L(Z) ist in
diesem Fall eine sogenannte L-Funktion, d. h. eine Funktion, auf

welche die L-Transformation tatsächlich angewendet werden kann.

Dem Objektraum wird der Bildraum zugeordnet. Es wäre natür-
lieh wichtig, die Funktionen F(f) funktionentheoretisch so beschreiben

zu können, dass man auf Grund möglichst einfacher Kriterien ent-
scheiden könnte, ob es sich um eine L-Funktion handle oder nicht.
Diese Frage ist nicht einfach zu behandeln und vorläufig auch noch

nicht endgültig abgeklärt. Beispielsweise lässt sich auf alle be-

schränkten Funktionen die L-Transformation anwenden.

Bmpùde: L(l) / e • 1 - tZi
-s

— (definiert für s > 0)
S

f=0

/71e~*'fdZ (n positive ganze Zahl)
0

L(e"') I e '' e"' dZ

0

gf(a-s)

a — s

1

(s > a).
s — a
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Für die Anwendungen ist es wertvoll, eine möglichst grosse Tabelle
solcher Laplace-Integrale zu besitzen. Solche Tabellen befinden sich
in den entsprechenden Lehrbüchern.

Em-Eroö!ew%/ce'if der A&Wefomp: Es ist klar, dass infolge der
vorigen Definition der Funktion E(f) eindeutig eine bestimmte Funk-
tion /(s) entspricht. Kann man auch das Umgekehrte behaupten?
Entspricht der Bildfunktion /(s) eindeutig eine ganz bestimmte
Originalfunktion Mittelst des Ecmrierscliew iwiegroii/ieorem.s kann man
beweisen, dass dies der Fall ist, solange wir uns lediglich mit stetigen
Funktionen befassen, was ja bei den Anwendungen für die Technik
in der Regel der Fall ist. Aus diesen Gründen kann man die vorige
Funktionentabelle wie ein einfaches Wörterbuch benutzen. In jeder
Horizontalen stehen genau zwei Funktionen, Original und Bild, die

ein-eindeutig zusammengehören.

Die Umkehrungsformel lautet:

oo

/(s) J E(f) df /($) konvergiere für s > a absolut.
0

Dann gilt die Umkehrformel

£+ too

FYf) — I e'®/(s) s a; + D/.
2 jri J

a:—ioo

Eigenschaften der L-Transformation

1. Hddifio?issot?:

L [«1 i^(t) + Fg(t) + + a„K„(f)] % L[Ei(f)] + + o„ L [F„(t)]

«i, «g, a„ bedeuten Konstante. Der Beweis ergibt sich aus funda-

mentalen Eigenschaften des Integralbegriffes. Dieser Satz kann nicht
ohne weiteres auf unendliche Summen übertragen werden.

2. Dümp/ww/ssate:
oo

L (.F(f) J eft /(sT a).
0

Die Dämpfung der im Originalraum mit e~®' multiplizierten Funktion
•F(t) wirkt sich im Bildraum lediglich durch eine Translation aus.
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3. Di/Zerewi-iai-ioTCSsate:

L(F"(t)) s L(F(t)) -F(o) s/(s) -B(o).

Beweis: Gemäss partieller Integration erfolgt:

oo oo oo

/ F'(f) e-" di B(t) e-*< | + s / (F(f) e"*' df.
0 0 0

oo

Da / e~*'F(f) d< nach Voraussetzung existieren soll, wird limF(f) e~®'

o f-^-oo
als 0 angenommen.

Die obige Formel ist für die Anwendungen der Laplaceschen
Transformation im Gebiete der Differentialgleichungen sehr wichtig.
Denn sie zeigt, dass die Differentiation im Originalraum sich im Bild-
räum lediglich in der Multiplikation der Bildfunktionen mit der

Variablen s auswirkt. Die transzendente Operation des Differenzierens
ist durch die algebraische Operation des Multiplizierens abgelöst
worden und dieser Umstand ermöglicht die Algebraisierung der

Differentialgleichungen. Vorerst wollen wir aber die vorige Formel
auf Ableitungen höherer Ordnung verallgemeinern.

Man erhält:

L(F"(f)) s L[F'(Z)j — F» s2 L[B(f)] - sF» — F»
Bevor wir in der Zusammenstellung der Sätze weitergehen, wollen

wir schon an dieser Stelle zeigen, wie man lineare, inhomogene Diffe-
rentialgleichungen mit konstanten Koeffizienten durch Anwendung
der Laplaceschen Operation algebraisiert und damit löst. Das

Lösungsschema entspricht dem Vorgehen in der darstellenden Geo-

metrie: man transformiert das Problem in den Bildraum, löst das

transformierte Problem und transformiert zurück.

BeispieZ: Man löse die Differentialgleichung:

F"'rt) — 2B'(f) + F\t) sin (3 t)

unter den Anfangsbedingungen F(o) F'(o) 0.
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Lösung : L [F"(f) — 2 F'(f) + F(f)] L [sin (3 f)]

L[F"(f)] - 2 L[F'(f)] + L[F(f)]
s j y

*» L[F(t)] 2s L [F(*)] + L[F(f)] -JL_

L[F(qi' *
(s* + 9) (s« — 2s + 1)

Die Bildfunktion wird gefunden nach der Methode der Partialbruch-
Zerlegung. Wenn unser Wörterbuch vollständig ist, können wir die
Originalfunktion sofort aufschlagen. Man findet:

4 1

5fe—e + cos (3 t) sin (3 t)
3

4. Faifwngssafe: Die wichtigsten Sätze in der ganzen Theorie
sind die sogenannten Faltungssätze, von denen ich Ihnen einen
schildern will.

Unter einem Faltungsintegral versteht man ein Integral von der
Form j

f*i(T)J?a(«-T)dT
6

Es gehorcht dem koTOmwfaffueti Gesete F^ *Fg Fg *Fj.
Der Beweis ergibt sich sofort durch eine Variablen transformation

t — T U.

Es gehorcht auch dem asscmatwen Gesete

(^*^*F,=Fi*(P,*FJ.
Die Reihenfolge der Faktoren spielt bei der Faltung keine Rolle.
Das assoziative Gesetz ist eine Konsequenz des nachstehenden Fattogs-
gesefees;

L(F^F,) L(F,)-L(F,).

Der Faltung im Originalraum entspricht im Bildraum die Multiplika-
tion der beiden Bildfunktionen. Der Beweis dieses Faltungssatzes

F(f)
50
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ergibt sich durch geeignete Umformung des durch L (2^ * Pg) de-

finierten Doppelintegrals.

Mit diesen vier Sätzen ist die Systematik der Eigenschaften der

L-Transformation in keiner Weise erschöpft. Sie dürften aber ge-

nügen, um die folgenden Anwendungen zu verstehen.

II.

Anwendungen der L-Transformation
auf die Integralgleichungen

Direkt präpariert für die Anwendungen der Laplace-Trans-
formation sind die Volterrasehen Integralgleichungen vom sogenannten

Faltungstypus, zu denen auch die von Moser aufgestellte Integral-
gleichung gehört. Ebenso kann die in der Bevölkerungsstatistik
massgebende und z. B. von Lotka und Linder betrachtete Integral-
gleichung leicht auf eine solche Volterrasche Integralgleichung trans-
formiert werden, wie beispielsweise Hadwiger in einer seiner Unter-
suchungen festgestellt hat. Volterrasche Integralgleichungen kommen
immer dann vor, wenn es sich um Erscheinungen mit Nachwirkungen,
z. B. Vererbungserscheinungen, Elastizitätsuntersuchungen usw. han-

delt. Es handelt sich um die Integralgleichung:

*

P(i) G(f) + f — t) P(T) (fr
0

G(f) und Ii(i— r) als der Kern der Integralgleichung sind gegeben.
Gesucht wird die Funktion P(f). Beispielsweise beim Problem der

Erneuerung sei im Zeitpunkt f 0 die Anzahl der gleichaltrigen Per-

sonen mit einem festen Anfangsalter ff ; nach f betrage dieselbe noch

ff-P(f). Abgehende Personen sollen immer sofort ersetzt werden,
mit dem festen Anfangsalter, die Anzahl der im Intervall Pr ein-

tretenden Personen werde mit ff.F(r)dr bezeichnet, wobei man
P(r) die Erneuerungsfunktion nennt. Soll die Zahl der Mitglieder
konstant bleiben, erhält man offenbar die Gleichung I:

I. ff ffP(f) + / ff P(t) P(f—r) dr.
0
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Differenziert man diese Gleichung nach f, so erhält man

P(i) _ P'(<) - /P(t) P'(i ^ r)
0

Dies ist genau eine Integralgleichung von der vorigen Form.
Vielleicht kann man einwenden, dass die Erneuerungsfunktion

-F(r) immerhin nicht direkt gegeben ist. Hingegen kann man beispiels-
weise direkt durch Beobachtung die Anzahl der Neueingetretenen im
Laufe der Zeit f nämlich $(f) geben. Dann erhält man die Integral-
gleichung :

^

fl=BP(f) + / P(< —r)H-^0(r)
0

wie sie von Bichter *) in seiner grundlegenden Arbeit formuliert wurde.

Löstmg (fer Phe_(/raf(/fefc/tMng / / :

*

II. P(f) G(f) + f If(f — t)H(t)(7t.
0

Nehmen wir an, dass auf sämtliche Funktionen G(f), IT(f), F(f) die

L-Transformation angewendet werden darf. Im Falle des Erneuerungs-
problems trifft dies sicher zu, da alle dort vorkommenden Funktionen
beschränkt sind. Man erhält

/0) PO) + fc(s) •/(«)

f/(s) fe(s)
oder /(s) b/(s) + </(s) • ^ ' ?(*)

Die Bildfunktion der gesuchten Funktion P(f) ist demnach be-

kannt. Wenn unser Wörterbuch vollständig ist, kann die Original-
funktion direkt aufgeschlagen werden. Im andern Fall ist die Umkehr-
formel zu benutzen.

Man kann zeigen, dass sich g(s) zurücktransformieren lässt, da

für genügend grosses s gilt fc(s) + 1. Deshalb besitzt F(f) die Darstellung

*

P(f) G'(f) + Q *G G(f) + / Q(f — r) G(r) (fr.

0 P. Pic«er, Untersuchungen zum Erneuerungsproblem. Mathemat. Annalen,
Bd. 118 (1941), S. 145—193.
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Das ist die in der Theorie der Integralgleichungen bekannte Dar-

Stellung mittelst des reziproken Kerns. Zwischen beiden Kernen be-

steht die folgende Beziehung

fc(s)

TCgy - 3»

— fc(s) + g(s) (j(s) fe(s)

6(0 —-^-(0 ~ f 6W
0

Im Falle der Moserschen Erneuerungsgleichung I ergibt die

L-Transformation das folgende Resultat:

L(2) p(s) + /(«)•?(«)

/(«)
1

P(s)
5

l l l.
p(s) sp(s)

Moser hat seine Beziehungen vor allem deshalb formuliert, weil

er sich für die Frage des Be/iarntngsOT-sfmides interessierte. Er nahm

a priori an, dass die Lösung seiner Integralgleichung mit wachsendem f

einem Grenzwert zustrebe. Schon die Definition des Beharrungs-
zustandes ist nicht selbstverständlich, wie ich schon im Jahre 1932

in einer kleinen Arbeit auseinandersetzte. Ebenso muss das asympto-
tische Verhalten der Lösung einer Integralgleichung genauer unter-
sucht werden. Diese Fragen des Beharrungszustandes wurden von
Richter in seiner Habilitationsarbeit, teilweise ebenfalls mit Hilfe
der L-Transformation, besonders sorgfältig untersucht. Für den Fall,
dass die Lösung wirklich einem Grenzwert zustrebt, spricht Richter
in durchaus zutreffender Weise von einer eigentlichen Stabilisierung
des Vorganges. Kann man nun anschauliche Kriterien für die Funk-
tionen K und G geben, damit die Stabilisierung des Vorganges ein-

tritt? Im Falle der Erneuerung sind diese Funktionen die Sterbens-
Wahrscheinlichkeit oder ihre Ableitung und deshalb von einer be-

stimmten Grenze an 0.

Richter hat schon in einer kleineren Arbeit im Jahre 1940 tat-
sächlich bewiesen, dass diese Voraussetzung, verbunden mit recht

allgemeinen Eigenschaften, wie stückweise Differenzierbarkeit für
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das Eintreten der Stabilisierung genügt. Immerhin benötigte er für
seinen Beweis eine sehr genaue Diskussion mit Hilfe der wesentlichsten
Begriffe in der Analysis reeller Funktionen, wie gleichmässige Stetig-
keit, Konvergenz von Funktionsfolgen usw.

Sofern diese Voraussetzung des Verschwindens des Kernes der

Integralgleichung von einer bestimmten Stelle an nicht zutrifft, wird
die Diskussion wesentlich schwieriger, wie schon Hadwiger anhand
eines Gegenbeispieles festgestellt hatte. Richter hat eben in seiner
Habilitationsschrift diesen Fall ganz allgemein untersucht und ist dabei

zu sehr allgemeinen Ergebnissen und auch zu neuen Stabilisierungs-
begriffen gekommen.

Diese knappen Ausführungen haben hoffentlich die Bedeutung
der Laplace-Transformation deutlich gezeigt. Gleichzeitig beweist
die Entwicklung des Erneuerungsproblems sehr schön, dass man
auch in der Versicherungsmathematik auf mathematisch durchaus
interessante und keineswegs leichte Probleme stösst. Theorie und
Praxis können sich auch in unserm Arbeitsgebiet gegenseitig nach
wie vor äusserst nützliche Dienste leisten, wenn auf beiden Seiten

Achtung vor der Arbeit des andern und vor allem der Drang nach
Wahrheit besteht.
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