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Über partielle Bestandsänderungen und eine
Klasse neuer Integrationsprozesse

Von Henryk Schärf, z. Zt. in Zürich

Die vorliegende Arbeit besteht aus zwei Teilen.
Im ersten wird mit Hilfe bisher unbekannter Integrationsprozesse

eine Theorie aufgebaut, die die Karwpsche Theorie der unabhängigen
Wahrscheinlichkeiten — unter Vermeidung von Differenzierbarkeits-
voraussetzungen — präzisiert und auf offene Gesamtheiten erstreckt.—
Als grundlegend erweist sich dabei statt des Begriffes der unabhängigen
Wahrscheinlichkeit der neue der «partiellen Bestandsänderung».

Im zweiten Teile werden die eingeführten Integrationsprozesse
üisoweit studiert, als dies für die Begründung des ersten Teiles

notwendig ist. Ausserdem wird gezeigt, dass die verwendete Beweis-
üiethodo sich im Spezialfälle des bereits von Loewy (3) behandelten

Verallgemeinerten Produktintegrals besonders einfach gestaltet und
rasch ein allgemeineres Ergebnis liefert als das von Loewy durch
ziemlich langwierige Betrachtungen gefundene.

Teil I

Verallgemeinerung der Theorie der unabhängigen
Wahrscheinlichkeiten

1. Den Gegenstand der nachfolgenden Betrachtungen bilden
Agierte allgemeine Elementengesamtheiten, d. h. sowohl geschlossene

Gesamtheiten, die sich mit der Zeit nur vermindern können, wie auch

°ffene, die neben allfälligen Austritten auch Eintritte aufweisen.

Liegen n einander abschliessende Aus- und Eintrittsgründe vor
uüd ist f{i] (t) die Zahl der in der Zeit von a bis t aus dem i-ten Grunde

^getretenen Elemente (bei Austrittsgrund) bzw. die mit dem Minus-
Richen versehene Zahl der in dieser Zeit eingetretenen Elemente (bei

Gintrittsgrund), so gilt für die Elementenzahl zur Zeit t, L (f), die

^'gemeine Formel:
16



— 234 —

L (Q L (a)-£/«>(*). a;
1 1

Sinngemäss sind dabei die Funktionen /(l) (<) monoton, also die

Funktion L (<) von beschränkter Schwankung; überdies sei L (t) > 0

für a < t < b.

Es können verschiedene statistische Masszahlen eingeführt werden,

die den Einfluss des i-ten Grundes auf die Änderung der Gesamtheit

im Zeitintervall J < a, ß > besonders hervorheben und die mit

p(') (J) bezeichnet seien. Üblicherweise werden sie nur für Austritts-
gründe und einjährige Zeitintervalle berechnet, wobei folgende Formeltypen,

in denen A f (a) / (ß) — / (a) gesetzt wurde, häufig sind:

(2a)

p(l>(J)

£(<*)-
JI»

oder

1
/!/%)

L (<*)

oder endlich

A /'''(a)

J ib

(2b)

(2e)

y, bedeutet dabei die Summation über g6'

i1 '

wisso ausgewählte, von i verschiedene Indizes.

Beispiele für diese Formeltypen werden im nächsten Paragraph011

gegeben.
Alle haben die gemeinsame Gestalt

V{i)(J) Vi
1 (i) (»)

yrr'> ^/(a)> ^/(«)
L(a)

(2)

wobei Pi (y; zv.., eine Funktion ist, die für genügend kleiü6

zl(l l,..,n) und \y\ < Maximum von - - - (a <t <b) stetig0

L(tj
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erste Ableitungen bezüglich der zt besitzt und folgende Bedingungen
erfüllt:

dp,- 1 0 für l + i
1; — {y,0, ...,0)

dzt \ — y für l %.

Diese Eigenschaften sollen die Definition der Aussage bilden,
dass «die Masszahl p(l) (J) den i-tenÄnderungsgrund besonders hervorhebt»

1).

Häufig wird bei geschlossenen Gesamtheiten die Formel (2a) als

Näherungswert für die Karupsche unabhängige Wahrscheinlichkeit
des Nichtausscheidens aus dem i-ten Grunde während eines einjährigen
Zeitintervalls J verwendet.

Diese wird nämlich für ein Zeitintervall < a,b > folgender-
Qiassen umschrieben: es ist die Wahrscheinlichkeit tt'1' <a, &>, dass
ein im Zeitpunkt a der Gesamtheit angehörendes Element ihr noch
üb Zeitpunkt b angehört, wenn auf diese Gesamtheit in jedem Augenblick

zwischen a und b der i-te Austrittsgrund mit seiner ursprünglichen
Wahrscheinlichkeitsverteilung wirken würde, während die aus anderen
Gründen ausgeschiedenen Elemente sofort durch ebensoviele neue
ersetzt würden. — Aus der Annahme, dass dann die in der einjährigen
Zeitperiode J aus dem i-ten Grunde ausgeschiedenen A f1'(a) Elemente
einer Durchschnittszahl von

L(a)-i-2 ZI/"'(«)
* i\ i

') Sie bewirken, dass fiü stetige /(»)({) und ß-> a die Differenz zwischen

" I' iß)
P(«/) /J >p(i)(,J) und 71 (./) —— unendlich klein zweiter Ordnung bezüglich

t l ^(a)
tler zj/(»)(a) wird.

Ks ist dann niindich
n

mit I (y,ZL, - II pi(y;z\, zn),
1 1

n

mit <p (y; zi, zn) 1 — y 2 2*

i=l

^C1 / (j/; 0, 0) (p {y, 0, •, 0) L, (</; 0, 0) "^7" (f; o> - •, 0)

y für i= 1, n.

P(J)=/
t

!(*)'
ei

A/ (a),
(")

A /(a)

^(J) cp
L(a)

"•>

A /(a),
(»)

A / (a)
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während dieser Periode unter Ausscheiderisiko gestandenen Elemente

entstammten, ergibt sich näherungsweise als ursprüngliche
Ausscheidewahrscheinlichkeit aus dem f-ten Grunde

A /'*' (a)

1 i\i
und als entsprechende Verbleibswahrscheinlichkeit der Ausdruck (2a). —

b

Daraus folgt für tW <a, b> der Näherungswert FI pw (<s, s -f-1 >)>

falls a und b ganzzahlig sind. 3""

Noch plausibler erscheint obiges Näherungsverfahren für eine

Einteilung D des Intervalls < a, b > in kürzere als einjährige
Teilintervalle Is <ts,ts + l> mit a t0 <<L < ,<tr b, das zum

Näherungswert

PÜ>= nv[i\is)
s 0

für 7i<a, b> führt.

Es möge nun I) eine «normale» Folge von Einteilungen des

Intervalls <a,b> durchlaufen, d.h. eine solche, dass die Länge des

längsten Teilintervalls von D gegen 0 konvergiert. Existiert dann

der Grenzwert von p(Dl), so ist er exakterweiso als Wert der so vage

umschriebenen Grösse n(,)<a, f>> zu definieren.
Damit sind wir aber zu einer Definitionsmöglichkeit gelangt, die

weder des Wahrscheinlichkeitsbegriffes bedarf, noch auf geschlossene

Gesamtheiten beschränkt ist. Indem wir noch die Vorzugsstellung

der Formel (2a) beseitigen, definieren wir:
Existiert für jede den f-ten Änderungsgrund einer allgemeine0

Elementengesamtheit besonders hervorhebende Masszahl p(t) (J) 61110

Grenze des Produktes

PÜ>= nvU(is),
s 0

wenn die Einteilung D des Intervalls < a, b > in die Teilintervall0

Is(s 0, r—1) eine normale Folge durchläuft und ist diese Gre°ze

von der Bestimmungsweise von p(l) (j) unabhängig, so heisse sie dl0



— 237 —

vte partielle Bestandsänderung der Gesamtheit in cler Zeit von a bis
b und werde mit jW <a, b> bezeichnetx).

Während sonst die Existenz der unabhängigen Wahrscheinlichkeiten

nur unter Voraussetzung der Differenzierbarkeit der
Funktionen /(,) (f) mit Hilfe des Intensitätsbegriffes bewiesen wird 2),

ergeben die weiteren Betrachtungen den folgenden

Satz 1: Sind im Intervall <a,b> die Funktionen /(l) (t) stetig
und L (t) > 0, so existiert die i-te partielle Bestandsänderung in der
Zeit von a bis b, tt(i) <a,b>, und es ist

_

n{i)<a,b> e •
L(°

(8)

Karup hat bewiesen, dass die totale VerbleibsWahrscheinlichkeit
in einer geschlossenen Gesamtheit gleich dem Produkt der unabhängigen

Wahrscheinlichkeiten des Nichtausscheidens aus den einzelnen
Gründen ist, wenn die Funktionen der Ausscheideordnung differenzierbar

sind.

Definieren wir die totale Bestandsänderung einer Elementengesamtheit

in der Zeit von a bis b, jc <«, b >, als den Quotienten
deren Elementenzahlen in den Zeitpunkten b und a:

7t <a,b>
L(a) '

so besagt allgemeiner der im Teile II zu beweisende

Satz 2: Ändert sich eine fingierte Elementengesamtheit durch mehrere

einander ausschliessende Aus- und Eintrittsgründe auf stetige Art (d. h.
sind die Funktionen f[i) (t) stetig), so gleicht in jeder Zeitspanne die totale

Bestandsänderung dem Produkt sämtlicher partiellen Bestandsänderungen.

l) Für diesen Begriff, cler denjenigen der Karupschen unabhängigen
Wahrscheinlichkeit des Nichtausscheidens aus dem i-ten Grunde präzisiert und
verallgemeinert, ist übrigens eine ähnlicho Umschreibung wie für den letzteren möglich:

Es ist der Quotient der Elementenzahlen in den Zeitpunkten t b und

a, der sich ergeben würde, wenn in jedem Augenblick zwischen a und b nur
der f-te Änderungsgrund mit seiner ursprünglichen Wahrscheinlichkeitsverteilung
auf die Elementengesamtheit einwirken würde, während alle anderen Änderungs-
grtinde als eliminiert gedacht werden (etwa mittels Kompensation der Aus- bzw.
Eintritte durch ebensoviele gleichzeitige Ein- bzw. Austritte).

a) Mit Ausnahme der im Teile II, § 2, angeführten Untersuchungen von
h°ewy, die die vorliegende Arbeit angeregt haben.
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2. Die Formeltypen (2a)—(2c) mögen durch einige Beispiele
illustriert werden, in denen J jeweils eine einjährige Zeitperiode sei:

Ist die Elementengesamtheit eine geschlossene Gruppe
gleichaltriger Aktiver, so wirken nur die Austrittsgründe «Tod» und
«Invalidität», und die Formeln (2a) bzw. (2h) geben entsprechend die

«korrigierte» (unabhängige) bzw. «experimentelle» (abhängige) Wahrscheinlichkeit

des Nichtausscheidens aus einem dieser Gründe an x).

Ist aber die Elementengesamtheit eine offene Gruppe
gleichaltriger Aktiver und sind /t (<), /2 (t), /3 (t) entsprechend die Zahlen
der bis zum Zeitpunkt t durch Tod, Invalidität und freiwillig
Ausgeschiedenen, (t) die mit dem Minuszeichen versehene der bis dahin

Eingetretenen, so werden im Zeitpunkt a die «gewöhnlichen»
Wahrscheinlichkeiten des Nichtausscheidens durch Tod bzw. Invalidität
berechnet aus Formeln des Typus (2c)2) als

bzw. 1

j [Z /,(«) + -1 /,(«)] h («) — l [Z j+ Z /,(<*)]

hingegen die «unabhängigen» Wahrscheinlichkeiten wieder aus Formeln
des Typus (2a) als

1
Af^a.)

L(«)—^^/2(a) + 2l/3(«) + Zl/4(«)]

bzw. 1
Zl/a(a)

L(«) — \\A /i(a) + A /»(«) + A /4(a)]

3. Für Austrittsgründe findet man ferner zahlreiche Beispiel®

von Masszahlen des Typus (2a) bei Friedli (2). Mit ihnen als Verbleibs*

Wahrscheinlichkeiten konstruiert er abnehmende Ordnungen, durch

deren Produkt er dann, dem Karupschen Multiplikationssatz ent*

sprechend, geschlossene Gesamtheiten darstellt.
Unser Satz 2 regt die Ausdehnung dieses Verfahrens auf offeD0

Gesamtheiten an. — Die den einzelnen Änderungsgründen entspr®'

0 Vgl. Marchand (4).
2) Vgl. Bohren (1), Seite 107.
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chenden Ordnungen wären mit Masszahlen des Typus (2a) als totalen
Bestandsänderungen zu konstruieren. Für Austrittsgründe würden
sich wieder abnehmende Ordnungen ergeben, hingegen für Eintrittsgründe

zunehmende. Das Produkt aller dieser Ordnungen würde die

Entwicklung der offenen Gesamtheit illustrieren.
So wirken z. B. auf die Bevölkerung eines Gebietes neben den

Austrittsgründen «Tod» und «Auswanderung» die Eintrittsgründe
«Geburt» und «Einwanderung». Ihnen würden entsprechen: zwei
abnehmende Ordnungen, die das isolierte Wirken von Tod bzw.
Auswanderung illustrieren, und zwei zunehmende, die je den Einfluss
von Geburt und Einwanderung veranschaulichen. Ihr Produkt würde
die gesamte Bevölkerungsbewegung darstellen.

Andere Anwendungsbeispiele für das vorgeschlagene Verfahren
liefern: Aktivengesamtheiten Gleichaltriger, die sich durch Tod und
Invalidität vermindern, durch Beaktivierung vermehren; Ledigen-
gesamtheiten Gleichaltriger, die sich durch Tod und Heirat vermindern,
durch Verwitwung vermehren usw.

Teil II
Multiplikative und additive Integrationsprozesse

1. Der Grcnzprozess, den wir zwecks Definition der partiellen
Bestandsänderungen betrachtet haben, kann verallgemeinert werden.

Es sei 0 (j/p ym; zx • z„) eine im (m + n)-dimensionalen
Euklidischen Baum definierte reelle Punktfunktion. — Sind im Intervall

<a,b> die reellen Funktionen /„ (x)(xt=l, m) und gx (x) (A

1, n) definiert, so möge der obeingeführten Einteilung D das

Produkt

nD{tHMh\ n 0[fi(ta), ••./„(t.Ms'iW.
3 0

Zllgeordnet werden.
Existiert der Grenzwert von 77„ {/„; gx}, wenn D eine normale

Pinteilungsfolge durchläuft, so ist dies ein neuartiger Integralausdruck,

l
b

der mit P0 {/„(<); dgx{t)} bezeichnet werde1).
a

l) In obiger Definition könnte statt. <«, b> auch ein mehrdimensionales Inter-
vftll gewählt werden, wobei an Stelle der Punktfunktionen <)x (x) additive Intervall-
k'nktionen zu treten hätten.
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Insbesondere ist also

»W<a,fc> Ppij^;<i/W(<)}, (4)

wenn die in der Definition der partiellen Bestandsänderung auftretende

Masszahl p(l) (J) die Gestalt (2) hat. Die weiteren Spezialisierungen

(2a) bzw. (2b) der Formel (2) liefern entsprechend

7r(,) <a, b> P

bzw. ji'1' <a, b> P j 1

df](t)

l>,\.

L(t)

(4 ff)

(4b)

2. Bisher sind nur zwei Spezialfälle des definierten Integral'
ausdrucks bekannt: das auf Volterra zurückgehende und in der Theorie

der linearen Differentialgleichungen verwendete «ProduktintegraD
b

P {1 + f(t)dt} J) und das von Loewy (3) betrachtete «verallgemeinerte
a b

Produktintegral» P {1 + f(t)dg(l)}.
a

Durch letzteres ist insbesondere die totale Bestandsänderung einer

allgemeinen Elementengesafhtheit darstellbar. Es ist nämlich

n < a, b > m
L(a) —I HQ

also 7i <a,b> P 1 +
dL(t)

L(t)
(0

Das auf ziemlich langem und kompliziertem Wege gewonnen6

Loewysche Ergebnis 2) besagt:

B Vgl. Schlesinger (5) und (6).
B L. c., Seite 208—218.



Sind im Intervall < a, b > die Funktionen / (t) und g (t) stetig,
b

g (t) überdies monoton, so existiert P{1 + f{t)dg(t)}, und es ist
a

b

b f Hl)dg(t)

P{l + f(t)dg(t)} ea (6)
a

Dies genügt aber für die Bestimmung der totalen Bestandsänderung

einer allgemeinen Elementengesamtheit noch nicht, da in der
Formel (5) L (t) nicht notwendig monoton sein muss. Wir geben
hingegen im nächsten Paragraphen einen einfachen Beweis für den

allgemeineren

Satz 3: Ist die Funktion f (t) im Intervall <.a,b> beschränkt,
die Funktion g (t) dort stetig und von beschränkter Schwankung, so ist

b

die Existenz des verallgemeinerten Produktintegrals P {1 -)- f(t)dg(t)}
b "

mit derjenigen des Biemann-Stieltjesschen Integrals (' f(t)dg(t) äquivalent,
und es gilt die Gleichheit a

b

b \'ftt)dg(l)

P{t + f(t)dg(t)) ea (6)
a

Nachdem in Formel (5) L (t) von beschränkter Schwankung ist,
liefert dieser Satz bei Stetigkeit von L (t) die Relation

b

,• dL(t)
J "£(()

7t < a, b > ea

Daraus und der Formel (1) folgt aber:

V f c tU—i'A
Zj J b(f) » J W)

7t<a,b> e l=la =nea
i=i

Gelingt es daher, für stetige f[i) (t) die Formel (8),

(• dpht)
J L(t)

nw<a,6> e°
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abzuleiten, so wird damit die Behauptung des Satzes 2:

ft

n < ci, b > II 7r(,) <a,b>
bewiesen sein.

Hat die Masszahl p(,) (J) die Form (2b), so ergibt sich dies aus

der Darstellung (4b) von <a,b> durch ein Produktintegral und

der Beziehung (6). Diesen Spezialfall hat Loewy (3) für eine geschlossene

Gesamtheit betrachtet. Der allgemeine Fall soll im Paragraphen 6

erledigt werden.

3. Zwecks Beweises des Satzes 3 führen wir folgende Hilfsfunktion
ein:

In (1 + yz)

V (V, *)
• y für z £ 0, yz > — 1,

z

0 für 2 0.

Dann gilt In (1 + yz) yz + z y> (y, z). (7)

Laut Mittelwertsatz existiert aber eine solche Zahl 0</><l, dass

yz
In (1 + yz) - -

1 + t)yz

ist, also folgt aus (7):

t>(y,z) — f>y'2
1 -j- t>yz

Bleibt | y | unterhalb der oberen Grenze M von |/(<)| in <a,b>>

so ist daher für M • | z | < -

\<l>(y,z)\ < M? -—W——- < 2 M2 • | ^ |,
J. — M • \Z\

also existiert zu jedem vorgegebenen e>0 ein solches <5>0, dass

für | z | < d und \ y\<M die Ungleichung gilt:

I f (y>z) I < £ • ^
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Ist nun nD[f,g] 77 {1 + f(t,)-Ag(t,)},
8=0

SO folgt aus In 1JD [/, g] V In {1 + f{ts) • A g(t,)}
8 =0

unci (7) die Gleichheit

1» nn [/> g] S / (*.) • ^ ii (0 + y,D (9)
8=0

^ 21A9(U)-v[Ht.),Ag{t,)]. (10)
s 0

Bei genügend feiner Einteilung D ist dabei angesichts der Stetigkeit

von g (t): | A g (ts) | < <5 für s — 0, 1, r—1, also zufolge (8):

\v[f(Q,Ag(ts)]\<e.

r-1
Daher ist | ^D| < e \A g(ts) | < e • V,

8=0

tyobei V die Totalvariation von g (t) in <a,b> bezeichnet.

Angesichts der Beliebigkeit von e konvergiert y\D gegen 0, wenn
D eine normale Einteilungsfolgo durchläuft. Die Identität (9) zeigt

b

daher, dass die Existenz von dg(t) mit derjenigen des Grenz-
ft

Wertes von lnIID[f,g] äquivalent ist und beide Zahlen gleich sind,
^as den Satz 3 beweist, nachdem IJD [f,g] el"uDu'a] ist.

4. Es ist zweckmässig, neben dem definierten multiplikativen
Integrationsprozess den entsprechenden additiven zu betrachten, der
avis ihm mittels Ersetzung der Produkte 77^ {/„; </A} durch die Summen

{/*; (Jx) S 0[A(*.)• (*.)>•A(ii ('.)» («.)]
s 0

eütsteht und dessen Grenzwert mit

)'${L(t);dg,(t)}
i °
Zeichnet werde.
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Die Formulierung eines Konvergenzkriteriums für beide Prozesse

wird durch folgende Vereinbarungen erleichtert:
Wir schreiben abkürzend \yx; z,], [yx; 0}, [yx\ für (ylt ym',

zi> • •. zn), (Vv 0, 0), (yv ijJ und bezeichnen die

Menge aller Punkte {yx; 2A ], für die

| yx | < Mx und | z}| < <3 (x 1, m; X 1, ri)

ist, mit U {Mx; d}. Alsdann sagen wir, dass die Funktion 0 [yy \ Z;.}

in TJ j Mx; <5} das gleichmässige Differential

2 \y«) •*.

hat, wenn für alle [yx; zx} eü [Mx; ö] eine Darstellung der Form

^{y^h) 0{2/*;°} + 2 Iy*} •*, + v>{y*'>h]
1

mit einer Funktion y {yx;Z)} möglich ist, die folgende Eigenschaft A

besitzt:
Zu jedem e>0 existiert ein solches ö(e), dass 0<d(e)<d

und für alle {yx',z>) aus U {Mx; d(e)} die Ungleichung gilt

<13)

A 1

Offenbar muss dann

^ {2/J =-^{f/U°} (13^

für | yx | < Mx (x — 1, ...,m) sein1). — Existieren umgekehrt in U{MX',^}
00

die Ableitungen -— {yx; zh und sind sie dort überdies stetig, so nau

dort die Funktion 0 das gleichmässige Differential

»K-
I — 1 1

*) Dies folgt aus (11), wenn man 0 für X 4 l setzt und, nach beiderseitig6'

Division mit 2,, z, gegen 0 gehen liisst.
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Laut Mittelwertsatz ist dort nämlich

® °} E ~ {y»> ff**} •*, (14)
i=i ozt

mit 0 < /> /> (yx; zA} <1. — Setzen wir

d<£ b&
-d- «} •*, (15)

so hat diese Funktion wegen der in U j Mx ; d} vorausgesetzten gleich-
60

massigen Stetigkeit von die Eigenschaft A, und die Formeln (14)
dz,

und (15) liefern die Darstellung (11).

5. Das angekündigte Konvergenzkriterium enthält der

Satz 4: Die Funktion 0 \yx;zl] habe für ein genügend kleines d

ein gleichmässiges Differential in U [Mx; d}. Ist \fx(t) j <MX und die

Funktion <y; (t) stetig und von beschränkter Schwankung für a<^t^b
{x 1, m; % — 1, ..n), so ist die Existenz von

J'# {/*(<)DÜflkfO} Oder von P0 {fx(l)'> dg>.(t)}

äquivalent mit derjenigen von

v /->v'S r d 0^ '—{/„(*); °M</,(<),

le nachdem, ob:

(«) 0 \yx; 0} 0, oder

()0
([) {//„; °1 - 1 und "7" \!JD°} beschränkt für | yx | < Mx ist

d

{x 1, m; l — 1, n).
Es ist dann

^ Falle (a):
&

b r 60
J"0{/«(<); da>.(*)} / 77' (16)
ix 4 1
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im Falle (ß):

„ E
P<?>{fAtY,dg,M e-la '

(17)
a

Beweis: im Falle (a) folgt dann aus (11) und (13):

S»[/.;sd-XlZI-4T1'"<yi01",®'<'') + s:> (18)

(=1 s —0 1

mit En E V \ f* (0' A Ox (*,)} •

s~0

Bei einer genügend feinen Einteilung D wird nun | A gx (ts) < Ö (e)

für alle X und s, also zufolge (12):

H

| W{f, (0' A g>. (Qj I < e • E M (h (Q |. demnach
A 1

I En I <£ • E F hk] <

k i

wobei V [gx] die totale Variation der Funktion gx(t) in <a,
bezeichnet.

Durchläuft D eine normale Folge, so konvergiert daher Ed ge8eI1

0, und aus Formel (18) folgt die Behauptung des Satzes 4.

Im Falle (ß) setzen wir <p\yx\z}\ ln@ {yK; zx}.
Nachdem cp{yx; 0} 0 ist, genügt es zu beweisen, dass che

Funktion cp [yx',zß\ in U {Mx; <5} ein gleichmässiges Differential hat,

um laut Vorangegangenem schliessen zu können, dass bei einer nor*

malen Einteilungsfolge

E ArJx(Q}
s =0

b b
m r d

m r 00
gegen ~~~{L (0; °} dg, J — {/„ {t); 0} dg, (t)

a
1 ~ *

a

konvergiert, also TID{fit\g^ gegen den Ausdruck (17).
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Dies ist nun folgendermassen erreichbar:

Zunächst folgt aus (11):

<P {y*~> z>.} ln (1 + «) mit
n

« 2} 0, {y*} •*. + v {2/*; «*} 0 [y„\ h} — ®{y»'> °}• (19)

Laut Mittelwertsatz ist aber erstens

1

In (1 + u) •u
1 +

und zweitens, wenn i)-u —v gesetzt wird,

mit 0 < {} < 1

1
1

1+® (1 +/>!«) 2

Daher gilt die Formel

<p{y*'> zi\

mit 0 < < 1

(1 + <9 • uf

ßiit O<#<1,O<0 #'#1<1. Setzen wir darin abkürzend

"(1 + ß uf ~ X

lud für u seinen Wert aus (19). Es ergibt sich

(20)

v[yx-,el} {1—&) 2 &.{yK}-*.+ v{y*i*a}
< 1

y, 0M'zt + x{y*>ei)

mit x{yK;h} v {y»> z>) -xl0{y,'^}-0{y,' °}3 -

zeigen ist, dass die Funktion %{yx\zk} die Eigenschaft A hat.
Wehdem dies für die Funktion f{yx-,zx} zutrifft und

\x {yH; zx} | < | f {y»-> **} I + I ®H®{y*> M-0{&.; °} I
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ist, während 0 [yx; zk) — 0 {yx; 0} =u wegen der gleichmässigen

Stetigkeit von 0 [yx; zk) in U [Mx; <5} für genügend kleine zk |

beliebig klein wird, genügt es zu beweisen, dass dann

n

|®|<V at | zt | (21)
i l

mit geeigneten Konstanten at> 0 (l 1, n) gilt. — Wählt man

aber | <ö(e) (X 1, ,n) so klein, dass \ u\ < —wird,und bezeichnet
2

die obere Grenze von | 0( [yx] | für | yx | < Mx {x 1, m) mit bt,

so folgt aus (20)

\u\
< 4 \u\

(i—M)'
und aus (19) und (12)

| «| < 2 (fc. + e)' ] *. I

6 1

also für a, — 4 (b(+e) die Ungleichung (21), w.z.b.w.

6. Die Beweise der Sätze 3 und 4 übertragen sich ungeändert
auf den in der Pussnote S. 239 erwähnten mehrdimensionalen Fall»

die Voraussetzungen des Satzes 4 könnten überdies noch abgeschwächt

werden J).

Für den hier bezweckten Existenzbeweis der partiellen Bostands-

änderung

reicht aber die gegebene Formulierung des Satzes 4 aus. In diesen3

Spezialfall ist nämlich m 1, und die Funktion p{ \y; zk) bat voraus-

setzungsgemäss stetige erste Ableitungen bezüglich der Variablen h

in U IM; <3}, wenn M die obere Grenze von für ^e*
1 1

L(t)
zeichnet und <5 genügend klein ist; daher bat sie dort das gleich'

mässige Differential

B Wie an anderer Stelle gezeigt worden soll.
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Nachdem dort ferner die Funktionen fl (t)
L(t)

(A=l,.. ,,n) stetig und letztere dazu monoton sind, endlich p; {y, 0} =1
dp

ist und die Ableitungen —- beschränkt sind, trifft der Fall (ß) des

Satzes 4 zu.

Dies beweist aber die Existenz von n[l) <a,b>, wobei Formel (17)
in die behauptete Delation (3) übergeht.

Literaturzitatß

1- Bohren, A.: Über den Stand der Theorie der Invalidenversicherung. Assekuranzjahrbuch,

1913.

2. Friedli, WIntensitätsfunktion und Zivilstand. Mitteilungen der Vereinigung
schweizerischer Versicherungsmathematiker, 1926.

8- Loewy, A.: Der Stieltjessche Integralbegriff und seine Verwertung in der Ver-
sichorungsmathematik. Blätter für Versicherungsmathematik, 1932.

Marchand, F.: Probabilit.es expörimentales, probability eorrigües et probability

inddpendantes. Mitteilungen der Vereinigung schweizerischer
Versicherungsmathematiker, 1937.

5' Schlesinger, L.: Vorlesungen über lineare Differentialgleichungen, 1908.

6- Schlesinger, L.: Bericht über die Entwicklung der Theorie der linearen
Differentialgleichungen seit 1865. Jahresbericht der Deutschen Math. Ver., 1909.

17




	Über partielle Bestandsänderungen und eine Klasse neuer Integrationsprozesse

