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Uber partielle Bestandsdnderungen und eine
Klasse neuer Integrationsprozesse

Von Henryk Scharf, z. Zt.in Ziirich

Die vorliegende Arbeit besteht aus zwei Teilen.

Im ersten wird mit Hilfe bisher unbekannter Integrationsprozesse
oine Theorie aufgebaut, die die Karupsche Theorie der unabhingigen
Wahrscheinlichkeiten — unter Vermeidung von Differenzierbarkeits-
Voraussetzungen — prizisiert und auf offene Gesamtheiten erstreckt.—
Als grundlegend erweist sich dabei statt des Begriffes der unabhingigen
Wahrscheinlichkeit der neue der «partiellen Bestandsiinderungy.
~ Im zweiten Teile werden die eingefithrten Integrationsprozesse
Insoweit studiert, als dies fir die Begriindung des ersten Teiles not-
Wendig ist. Ausserdem wird gezeigt, dass die verwendete Beweis-
Methode sich im Spezialfalle des bereits von Loewy (8) behandelten
Verallgemeinerten Produktintegrals besonders einfach gestaltet und
fasch ecin allgemeineres Tirgebnis liefert als das von Loewy durch
Ziemlich langwierige Betrachtungen gefundene.

Teil T
Verallgemeinerung der Theorie der unabhingigen
Wahrscheinlichkeiten

1. Den Gegenstand der nachfolgenden Betrachtungen bilden
fingjorte allgemeine Flementengesamthesten, d.h. sowohl geschlossene
Ges&mtheiten, die sich mit der Zeit nur vermindern kénnen, wie auch
Offene, die neben allfiilligen Austritten auch Fintritte aufweisen.

Liegen n einander ausschliessende Aus- und Eintrittsgriinde vor
unq jgt, 9 (t) die Zahl der in der Zeit von @ bis { aus dem «-ten Grunde
8usgotretenen Flemente (bei Austrittsgrund) bzw. die mit dem Minus-
%ichen versehene Zahl der in dieser Zeit eingetretenen Iilemente (bei
Eifltrittsgrund), so gilt fir die Elementenzahl zur Zeit ¢, L (f), die
Wllgemeine Formel:

16



n
L(t) = L(a)— > f(1). (1)
i=1

Sinngemiiss sind dabei die Funktionen f*)(t) monoton, also die
Funktion L (f) von beschriinkter Schwankung; iiberdies sei I (£)>0
fir a <t <b.

Es konnen verschiedene statistische Masszahlen eingefithrt werden,
die den Einfluss des 7-ten Grundes auf die Anderung der Gresamtheit
im Zeitintervall J = <«, #> besonders hervorheben und die mit
p" (J) bezeichnet seien. Ublicherweise werden sie nur fiir Austritts-
griinde und einjihrige Zeitintervalle berechnet, wobei folgende Formel-
typen, in denen A f(x) = f (f) — f(«) gesetzt wurde, hiufig sind:

419 (o)

1— i (2a)
L@ —5 3 419
it
oder
(4)
L (@)
P () = | oder endlich .
] s i] f (0‘) L (2 0)
o) =g 3 46
(2’ bedeutet dabei die Summation tiber 8¢
T
wisse ausgewiihlte, von ¢ verschiedene Indize&'o)

Beispiele fiir diese Formeltypen werden im niichsten Paragraphe?
gegeben.
Alle haben die gemeinsame Gestalt

(0 7 1 y (l)‘ y (n)
pY (J) = p, T f), ..y Af () |,

(2)

wobei p, (y;2,..,2,) eine Funktion ist, die fiir geniigend Klein®

) “n,

1 ;
z(l=1,..,n) und |y| < Maximum von A0 (@ <t <b) stetig?
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erste Ableitungen beziiglich der z, besitzt und folgende Bedingungen

erfiillt:

0 0 fir 144
pi(y; 0, ..., 0) = 1; pwo L0) = |
% — Y fur [ =1.

Diese Figenschaften sollen die Definition der Aussage bilden,
dass «die Masszahl p¥ (J) den 4-ten Anderungsgrund besonders hervor-
hebt» 1),

Hiufig wird bei geschlogsenen Gesamtheiten die Formel (2¢) als
Niherungswert fir die Karupsche unabhingige Wahrscheinlichkeit
des Nichtausscheidens aus dem s-ten Grunde wihrend eines einjihrigen
Zeitintervalls J verwendet.

Diese wird niimlich fir ein Zeitintervall < a, b > folgender-
magsen umschrieben: es ist die Wahrscheinlichkeit #'Y <a, b>, dass
e im Zeitpunkt ¢ der Gesamtheit angehérendes Tilement ihr noch
im Zeitpunkt b angehort, wenn auf diese Gesamtheit in jedem Augen-
blick zwischen @ und b der i-te Austrittsgrund mit seiner urspriinglichen
Wahrscheinlichkeitsverteilung wirken wiirde, withrend die aus anderen
Griinden ausgeschiedenen Illemente sofort durch ebensoviele neue
ersotzt witrden. — Aus der Annahme, dass dann die in der einjihrigen
Zeitperiode J aus dem 3-ten Grunde ausgeschiedenen 4 f () lemente
einer Durchschnittszahl von

1o
Lia)—5 ), 4/7()

i
—

) Sie bewirken, dass tiir stetige f(3)(¢) und ﬁ -» o die Differenz zwischen
) = H O (J) und 7 (J) = ?—E%) unendlich klein zweiter Ordnung beziiglich
der A/(‘i) (0(,) wird. |

I5s ist dann nimlich

n
mit f (321, ..o ) = I pi(y; 21, ..., ),
1=1

()
()H4ﬁ7‘”& LA
mit @(y;at, .. m)=1—y- Dz

i=1
of
Sz

L(x)

' (n)
Wﬂtmtiﬂﬂﬁ%wwﬂﬂw

(l{,O,...,O) 6(p( 0 ,O)Z

Wd f(yi0,...,0)= @@ 0, ..., 00=1, oF

S oo
—~ytire=1,...,n
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withrend dieser Periode unter Ausscheiderisiko gestandenen Flemente
entstammten, ergibt sich niherungsweise als urspriingliche Ausscheide-
wahrscheinlichkeit aus dem ¢-ten Grunde

A1 ()

und als entsprechende Verbleibswahrscheinlichkeit der Ausdruck (2a). —

b
Daraus folgt fiir ' <@, b> der Nitherungswert I7 p®¥ (<s, s +1>)s
falls @ und b ganzzahlig sind. s=a

Noch plausibler erscheint obiges Niherungsverfahren fiir eine
Einteilung D des Intervalls <a, b> in Liirzere als einjihrige Teil-
intervalle I, = <¢,t,,,> mit o =14, <t <...<t,=1b, das zul
Néherungswert

r-1
o = 191
§=0

fiir 7Y <@, b> fiihrt.

Es moége nun D eine «normale» Folge von Winteilungen des
Intervalls < a, b> durchlaufen, d. h. eine solche, dass die Linge des
lingsten Teilintervalls von D gegen 0 konvergiert. Iixistiert dan
der Grenzwert von piil, so ist er exakterweise als Wert der so vage
umschriebenen Grosse z!?) < a, b> zu definieren. .

Damit sind wir aber zu einer Definitionsméglichkeit gelangt, die
weder des Wahrscheinlichkeitsbegriffes bedarf, noch auf geschlossen®
Gresamtheiten beschriinkt ist. Indem wir noch die Vorzugsstellung
der Formel (2a) beseitigen, definieren wir:

Existiert fir jede den 4-ten Anderungsgrund einer allgemeine®
Tlementengesamtheit besonders hervorhebende Masszahl pt (J) ein®

Grenze des Produktes
{

P = 11991,

§=0

wenn die Kinteilung D des Intervalls <a,b> in die '_[‘eilinte-l'V-"-L“e
I,(s=0,...,r—1) eine normale Folge durchliuft und ist diese Gref“fz
von der Bestimmungsweise von p'* (J) unabhiingig, so heisse sie d
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1-te partielle Bestandsinderung der Gesamtheit in der Zeit von a bis
b und werde mit 7' <a, b> bezeichnet ).

Wihrend sonst die Existenz der unabhingigen Wahrscheinlich-
keiten nur unter Voraussetzung der Differenzierbarkeit der Funk-
tionen fV (f) mit Hilfe des Intensitiitshegriffes bewiesen wird 2), er-
geben die weiteren Betrachtungen den folgenden

Satz 1: Sind 9m Intervall <<a,b> die Funktionen f9 () stetig
und L () >0, so existiert die v-te partielle Bestandsinderung in der
Zeit von a bis b, " <a, b>, und es st

i <a,b>=¢ 0 : (3)

Karup hat bewiesen, dass die totale Verbleibswahrscheinlichkeit
In einer geschlossenen Gesamtheit gleich dem Produkt der unabhin-
gigen Wahrscheinlichkeiten des Nichtausscheidens aus den einzelnen
Griinden ist, wenn die Funktionen der Ausscheideordnung differen-
zierbar sind.

Definieren wir die tofale Bestandsdinderung einer FElementen-
gesamtheit in der Zeit von a bis b, m <a, b>, als den Quotienten
deren Elementenzahlen in den Zeitpunkten b und a:

L (b)
T<a,b>= —IT(E;)_ ,
80 besagt allgemeiner der im Teile II zu beweisende

Satz 2: Andert sich eine fingierte Elementengesamtheit durch mehrere
einander ausschliessende Aus- und Eintrittsgriinde auf stetige Art (d. h.
Sind die Funktionen f (¢) stetig), so gleicht in jeder Zeitspanne die totale

B estandsinderung dem Produkt simtlicher partiellen Bestandsinderungen.
————

1) IMiir diesen Begriff, der denjenigen der Karupschen unabhingigen Wahr-
Scheinlichkeit des Nichtausscheidens aus dem i-ten Grunde priizisiert und verall-
8emeinert, ist iibrigens eine ihnliche Umschreibung wie tiir den letzteren moglich:

Bs ist der Quotient der Illementenzahlen in den Zeitpunkten t= b und

= @, der sich ergeben wiirde, wenn in jedem Augenblick zwischen @ und b nur
or 4-to Anderungsgrund mit seiner urspriinglichen Wahrscheinlichkeitsverteilung
Wt die Jjlementengesamtheit einwirken wiirde, withrend alle anderen Anderungs-
8riinde aly eliminiert gedacht werden (etwa mittels Kompensation der Aus- bzw.
Intritte durch ebensoviele gleichzeitige Ein- bzw. Austritte).

?) Mit Ausnahme der im Teile II, § 2, angefiihrten Untersuchungen von

Loewy’ die die vorliegende Arbeit angeregt haben.
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2. Die Formeltypen (2a)—(2¢) mogen durch einige Beispiele
illustriert werden, in denen J jeweils eine einjihrige Zeitperiode sei:

Ist die Elementengesamtheit eine geschlossene Gruppe gleich-
altriger Aktiver, so wirken nur die Austrittsgrinde «Tod» und «Inva-
liditdat», und die Formeln (2a) bzw. (2b) geben entsprechend die «kor-
rigierte» (unabhiingige) bzw. «experimentelle» (abhiingige) Wahrschein-
lichkeit des Nichtausscheidens aus einem dieser Griinde an ).

Ist aber die Elementengesamtheit eine offene Gruppe gleich-
altriger Aktiver und sind f, (¢), f, (¢), f, (f) entsprechend die Zahlen
der bis zum Zeitpunkt ¢ durch Tod, Invaliditit und freiwillig Aus-
goschiedenen, f, (t) die mit dem Minuszeichen versehene der bis dahin
Eingetretenen, so werden im Zeitpunkt « die «gewcéhnlicheny Wahr-
scheinlichkeiten des Nichtausscheidens durch Tod bzw. Invaliditit
berechnet aus Formeln des Typus (2¢) 2) als

A fy(a)

Ao bzw.1 — ’
o) — 5 [ o) + A1) L) — 3 [A 1) + A1,

j

hingegen die «unabhiingigen» Wahrscheinlichkeiten wieder aus Formeln
des Typus (2a) als

1— Af(a)
L) — o [ + Af) + A4
bzw. 1— 4h() _—

L) — 3 [AR(o) + 4 fu(@) + 4]

8. Fiir Austrittsgrinde findet man ferner zahlreicho Beispiel®
von Masszahlen des Typus (2a) bei I'riedls (2). Mit ihnen als Verbleibs"
wahrscheinlichkeiten konstruiert er abnehmende Ordnungen, dureh
deren Produkt er dann, dem Karupschen Multiplikationssatz ent”
sprechend, geschlossene Gesamtheiten darstellt.

Unser Satz 2 regt die Ausdehnung dieses Verfahrens auf offen?
Gesamtheiten an. — Die den einzelnen Anderungsgriinden entspre”

) Vgl. Marchand (4).
2) Vgl. Bohren (1), Seite 107.
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chenden Ordnungen wiiren mit Masszahlen des Typus (2a) als totalen
Bestandsinderungen zu konstruieren. Fiir Austrittsgriinde wiirden
sich wieder abnehmende Ordnungen ergeben, hingegen fiir Fintritts-
griinde zunehmende. Das Produkt aller dieser Ordnungen wiirde die
Entwicklung der offenen Gesamtheit illustrieren.

So wirken z. B. auf die Bevilkerung eines Gebietes neben den
Austrittsgriinden «Tod» und «Auswanderung» die Eintrittsgriinde
¢Geburt» und «Kinwanderung». Ihnen wiirden entsprechen: zwei
abnehmende Ordnungen, die das isolierte Wirken von Tod bzw.
Auswanderung illustrieren, und zwei zunehmende, die je den Einfluss
von Geburt und Einwanderung veranschaulichen. Thr Produkt wiirde
die gesamte Bevolkerungsbewegung darstellen.

Andere Anwendungsbeispiele fiir das vorgeschlagene Verfahren
liefern: Aktivengesamtheiten (Hleichaltriger, die sich durch Tod und
Invaliditiit vermindern, durch Reaktivierung vermehren; Ledigen-
gesamtheiten Gleichaltriger, die sich durch Tod und Heirat vermindern,
durch Verwitwung vermehren usw.

Teil II
Multiplikative und additive Integrationsprozesse

1. Der Gronzprozess, den wir zwecks Definition der partiellen
Bestandsiinderungen botrachtet haben, kann verallgemeinert werden.
Bs s0i @ (1Y, - s Yus 21 - - - 2,) €1ne im (m -+ n)-dimensionalen Iiu-
klidischen Raum definierte reelle Punktfunktion. — Sind im Intervall
<a,b> die reellen I'unktionen f, (z) (xs=1, ..., m) und g, (2) (A =

=1, ...,n) definiert, so moge der obeingefithrten Finteilung D das
Proqukt
r-1
HI) {fx; q}.} - H (D [fl(ts)’ v '!fm(ts); A gl(ts)’ LR A gn(ts)]
83=0

fugeordnet werden. .
Existiert der Grenzwert von ITp,{f.;¢,}, wenn D eine normale
Einteilungsfolge durchliuft, so ist dies ein neuartiger Integralausdruck,

b
der mit P {f.(t); dg,(t)} bezeichnet werde 1).

\\

1) In obiger Definition kénnte statt <Za, b > auch ein mehrdimensionales Inter-
Vall gewiihlt werden, wobei an Stelle der Punktfunktionen g, (x) additive Intervall-
Wktionen zu treten hitten.
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Insbesondere ist also

. b 1
(4) — _ . 7 4) 4
7V <a,b> fp_, {L(t)’df (t)], (4)

wenn die in der Definition der partiellen Bestandsiinderung auftretende
Magszahl p'¥ (J) die Gestalt (2) hat. Die weiteren Spezialisierungen
(2a) bzw. (2b) der Formel (2) liefern entsprechend

_ b 149 (¢
aP<a,b>=P{1l— (f (® (4a)
¢ t)—aZ a0)
ilz
‘ Z af'(t
bzw. n‘”<a,b>:f[1_ i(t())}' (40)

9. Bisher sind nur zwei Spezialfille des definierten Integral-
ausdrucks bekannt: das auf Volterra zuriickgehende und in der Theor1®
der linearen Differentialgleichungen verwendete «Produktintegral?

P {1+ f(tydt} V) und das von Loewy (3) betrachtete «verallgemeinerte

Produktmtegral» P 1) dg@®)}.

Durch letzteres ist insbesondere die totale Bestandsinderung eine¥
allgemeinen Elementengesattheit darstellbar. Es ist nimlich

L) [, AL
n<a,b>_m—“sl=];)l1 " L(ts) },
also n<a,b>=I—b’{ f—dL(g))] (5)

Das auf ziemlich langem und kompliziertem Wege gewonneb®
Loewysche Ergebnis %) besagt:

1) Vgl. Schlesinger (5) und (6).
%) L. c., Seite 208—213.
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Sind im Intervall <<a, b> die Funktionen f (t) und ¢ (t) stetig,
b
g (t) tberdies monoton, so existiert P {1 + f(t)dg(t)} , und es ist

a

b
b NIOE0)
P14 f()dg(t)} = ¢ . (6)
a
Dies geniigt aber fiir die Bestimmung der totalen Bestandsinde-
rung einer allgemeinen Klementengesamtheit noch nicht, da in der
Formel (5) L (t) nicht notwendig monoton sein muss. Wir geben
hingegen im niichsten Paragraphen einen einfachen Beweis fiir den
allgemeineren

Satz 3: Ist die Funktion f () wm Intervall <<a, b> beschrinkt,

die Funktion ¢ (t) dort stetig und von beschrinkter Schwankung, so st
b

die Kaistenz des verallgemeinerten Produktintegrals P {14 f(t)dg(t)}
b a

mat derjenigen des Riemann-Stieltjesschen Integrals | f(t)dg(t) dquivalent,

und es gilt die Gleichheut ¢
b

b [tnag
P{1+f(tdg()} = ¢ : (6)

Nachdem in Formel (5) L (f) von beschrinkter Schwankung ist,
liefert dieser Satz bei Stetigkeit von L (f) die Relation

b
s dL(8)
| AT}

RN AT))
n<a b>=¢

Daraus und der Formel (1) folgt aber:

REIIY < af
PN B T R R 7
n<a,b>=¢ "¢ =[e"

t=1

Gelingt es daher, fiir stetige f1 () die Formel (8),

b‘ '
'-IJ‘ df(t)(t)
\ L(t)
al<a,b>=e* )
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abzuleiten, so wird damit die Behauptung des Satzes 2:

n<a,b>=II 2" <a,b>
i=1
bewiesen sein.

Hat die Masszahl p' (J) die Form (2b), so ergibt sich dies aus
der Darstellung (4b) von #!” < a, b> durch ein Produktintegral und
der Beziehung (6). Diesen Spezialfall hat Loewy (3) fiir eine geschlossene
Gesamtheit betrachtet. Der allgemeine Fall soll im Paragraphen 6 er-

ledigt werden.

8. Zwecks Beweises des Satzes 3 fithren wir folgende Hilfsfunktion

ein:
In(1-
v (4,2) = ¢
0 fir z=0.
Dann gilt In (14 y2) =yz+ 29 (y,2). (7)

Laut Mittelwertsatz existiert aber eine solche Zahl 0 < <1, dass

Yz
In(l+ yz) = im:h‘}_g_/;

ist, also folgt aus (7):

2
Y2)=—9yr« ——-.
p(Y,2) oy

Bleibt |y | unterhalb der oberen Grenze M von |f (t)’ in <a,b>

1
so ist daher fiir M-|z|<~2.

S
|y (y,2)| < TR <AM?-|z

b

also existiert zu jedem vorgegebenen ¢> 0 ein solches 9> 0, das
fir |2| <6 und |y| <M die Ungleichung gilt:

v (y,2)|<e. )
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'1

Ist nun I, [f, 9] = H {1 + [t - Ag(t)},

4,_.

s0 folgt aus InII,[f, 9] :_, In {1+ f(t,)-Ay(t,)

I!

und (7) die Gleichheit

[0l = 36 Ag(t) + X )
mi, Moo =D Agt) vl gw]. 0

Bei geniigend feiner Kinteilung D ist dabei angesichts der Stetig-
keit von g (f): |4 ¢ (t,)]| <6 fiix s =0, 1, ...,7—1, also zufolge (8):

’1/) [f(ts)! A .(](ts)] | <ég.

Daher ist | Dp|< L]Aq( J]<eV,
=0
Wobei V' die Totalvariation von ¢ (f) in <a, b> bezeichnet.
Angesichts der Beliebigkeit von & konvergiert >, gegen 0, wenn
D ¢ine normale Einteilungsfolge durchléuft. Die Identitit (9) zeigt
b

daher, dass die Existenz von {f(t) dg(t) mit derjenigen des Grenz-

Wertes von In I, [f,g] dquivalent ist und beide Zahlen gleich sind,
Wag den Satz 8 beweist, nachdem I7,[f, g] = e'"'pth 9 jst,

4, Bs ist zweckmiissig, neben dem definierten multiplikativen
Integratlonsproaess den entsprechenden additiven zu betrachten, der
8us ihm mittels FErsetzung der Produkte I7,, {f,; g;} durch die Summen

Solfei ) = S B0 - Fl6)s A0 (8, s A5, )

®tsteht und dessen Grenzwert mit

b

I {t.0); dg, (B}

a

beZeichnet werde.
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Die Formulierung eines Konvergenzkriteriums fiir beide Prozesse
wird durch folgende Vereinbarungen erleichtert:

Wir schreiben abkirzend {y,; 2}, {y,; 0}, {5} fir (¥, ...\ Y
2 oo 2)s (Yoo ooy Y3 0y o, 0), (94, .-, ,,) und bezeichnen die
Menge aller Punkte {y,; 2], fiir die

g, | <M, und |z|<é (x=1,...,m;di=1,...,n)

ist, mit U {M,; 6}. Alsdann sagen wir, dass die Funktion @ {y,; 2}
in U{M,; d} das gleichmdssige Differential

2 Py

7] t
=]

hat, wenn fiir alle |y,;2,} eU {M,; d} eine Darstellung der Form
O(y;a) =Pl 00+ X @ ()2 +wiysa) (1
=1

mit einer Funktion y {y,; 2} moglich ist, die folgende Iigenschaft 4
besitzt :

Zu jedem &> 0 existiert ein solches d(e), dass 0 <d(e) <O ist
und fir alle {y,;2,} aus U {M,; d(s)} die Ungleichung gilt

v (g 4 <e- 2 [a]. (12)
Offenbar muss dann

oD
D, {y,,r=a—z“{y,,;0} (13)

fir | y,| <M, (x=1, ..., m) seinl). — Existieren umgekehrt in U {M,,; 0}

. _ 0P : ; ; ; b
die Ableitungen ve {y,;2,} und sind sie dort iiberdies stetig, so b#

dort die Funktion @ das gleichméssige Differential

n
0P
—_— {%3 O} &
=1 bz‘
1) Dies folgt aus (11), wenn man 2, = O fiir A = I setzt und, nach l)eiderSQitiger
Division mit 2z, 2. gegen 0 gehen lisst.
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Laut Mittelwertsatz 1st dort nimlich

Jﬁ
'c>

D |
()_— y}cs ?()“2}.} .ZL

Ply,; 2} — Py, 0} = (14)

lE

mit 0 < == |y,;2,) <l. — Setzen wir

Yy {yx;z)»]l' - Z.‘

=1 -

0D oD
o {'U»f}zu_”*lesO} ,  (15)

%0 hat diese Funktion wegen der in U {M,; 6} vorausgesetzten gleich-

oD - ,
migsigen Stetigkelt von —— die Ligenschaft 4, und die Formeln (14)

und (15) liefern die Darstellung (11).

5. Das angekiindigte Konvergenzkriterium enthéilt der

Satz 4: Die Funktion @ [y,; 2} habe fiir evn geniigend kleines o
e gleichmdssiges Differential in U {M,; 6}. Ist |f,(t) ’ <M, und die
Funltion ¢, (t) stetig und von beschrimkter Schwankung fir a <t<b
(e =1,...,m;d=1,..., n), so st die Kaistenz von

b b
F@{f.(0):dg, (0} oder von P @ {f,(§); dg, ()

(]

dquavalent mit derjenigen von

L f f’ff 0} dg, (),

je nachdem, ob:
) @ ly,;0)=0, oder

YD . _
(8) D ly,; 0 =1 und oz ly,; O} beschrimkt fiir |y, | < M, tst

(B=Tly couy W3 l= 1y cui;0)x
Fs 1st dann
m Falle (a):

[0 {10 dg, () = L f LO: 0 dg (), (16)

a
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wm Falle (f):

b Z ‘a{p{x }d”(”
P& {f,(1); dg, ()} = ¢~'° : (17)

a

Beweis: im Falle («) folgt dann aus (11) und (13):

D[fx,Jl]—ZZ‘—Z———lf (4); 0b-Ag ¢y + S (18)

=1 g=

r-1

mit Do =2, wif () At} -

§=0
Bei einer geniigend feinen Einteilung D wird nun | 4 g, (¢,) | <0 (¢)

fiir alle 4 und s, also zufolge (12):

’ p{f.(t); Ay, (t,)) ’ <& ; | Ag, (1) I " demnach
=1

| 2] <

<D

%. [(]A] )

wobel V [¢;] die totale Variation der Funktion g, () in <a,b>
bezeichnet.

Durchliuft D eine normale Folge, so konvergiert daher >, gege?
0, und aus Formel (18) folgt die Behauptung des Satzes 4.

Im Falle (8) setzen wir ¢ {y,;2,} =In® {y,; 2}

Nachdem ¢ { Jx,O}—() 1ist, geniigt es zu beweisen, dass die
Funktion ¢ {y,; 2} in U {M,; é} ein gleichmiissiges Differential hat,
um laut Vorangegangenem schliessen zu konnen, dass bei einer nor
malen FEinteilungsfolge

r-1

s=0

gegen Z/ 27 (1,0 0} da, (1) if——— t); 0} dg. ()

konvergiert, also ITj, {f.; g,} gegen den Ausdruck (17).
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Dies 18t nun folgendermassen erreichbar:

Zunichst folgt aus (11):
ey, 2} =In (1 + w) mit

w=2 Py} 2+ piysal =0y 5} —@|y; 0. (19)

—

Laut Mittelwertsatz ist aber erstens

1
In (14 u)=- mit 0<y<l1

— -u
1+ Hu
und zweitens, wenn ) -u = v gesetzt wird,

1 1 v
1+ (1+ $0)°

mitr O<’I9‘l<1.

Daher gilt die Formel

X% »
1+ O - u)?

‘P{%EZA} = [1—

mit 0 <9 <1,0 <O =y9-9, <l. Setzen wir darin abkiirzend

DU
(14 6 -

=g (20)

und fiir % seinen Wert aus (19). Iis ergibt sich
n

oly;z)=0—a) | S {n) -2 +vly:al| =

e=1
Ll
= Z (bz {yx} .Zt kl— y4 {yx; z/l}
e=1

Mt gy g = (v al — e [P{ys a) — P {y.; 0]

Zu zeigen ist, dass die Funktion x{y,; 2} die Eigenschaft 4 hat.
Nachdem dies fiir die Funktion 9 {y,;2,} zutrifft und

% (s )| < |y o)+ ||| Dy o) — P {y,; 0}
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ist, wihrend @ {y,; 2,} — D {y,; 0} =u wegen der gleichmiissigen

Stetigkeit von @ {y,; z,} in U {M,; 6} fir geniigend kleine |z, | be-
liebig klein wird, geniigt es zu beweisen, dass dann

(@1)

L

7'"
|m)<}_‘ia‘ z
=

mit geeigneten Konstanten a, >0 (/ =1, ..., n) gilt. — Wiihlt man
1

aber ,24} <d(e)(A=1, ...,n)so klein, dass ]uj wird, und bezeichnet

9’
die obere Grenze von [@t {y}| fiw |y,| <M, (=1, ..., m) mit b,
so folgt aus (20)
vl
<

* il — |}

und aus (19) und (12)

n

|u| < Z(b + &) -

also fir a, == 4 (b,+¢) die Ungleichung (21), w.z.b.w.

6. Die Beweise der Sitze 3 und 4 iibertragen sich ungeiinder
auf den in der Fussnote S. 239 erwiihnten mehrdimensionalen Fall;
die Voraussetzungen des Satzes 4 kénnten iiberdies noch abgeschwiich
werden 1),

Fiir den hier bezweckten Existenzbeweis der partiellen Bestands-
inderung

)<, b> = Ppl[f}() f”(t)}

reicht aber die gegebene Formulierung des Satzes 4 aus. In diese™
Spezialfall ist nimlich m =1, und die Funktion p, {y; z,} hat vorau¥”
setzungsgemiss stetigo erste Ableitungen beztiglich der Variablen %

1
in U {M; d}, wenn M dic obere Grenze von I:(E filr q < t< b be

zeichnet und 8 geniigend klein ist; daher hat sie dort das gleich'
mégsige Differential

1) Wie an anderer Stelle gezeigt werden soll.
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n

Z%{y;ﬂ}-ztz—y-zi.

e=1 L

1 .
Nachdem dort ferner die Funktionen f, (t) = A0, g, (&) = f* (8)

(A=1,...,n) stetig und letztere dazu monoton sind, endlich p, {y9,0]=1

: on.
18t und die Ableitungen 0% beschrinkt sind, trifft der Fall (B) des

Satzes 4 zu. v,

Dies beweist aber die Existenz von z') < @, b>>, wobei Formel (17)
in die behauptete Relation (8) iibergeht.
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