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Uber links- und rechtsseitige
Stieltjesintegrale und deren Anwendungen.

Von Henryk Schérf, z. Zt. in Ziirich.

Einleitung.

Die vorliegende Arbeit ist hauptsichlich einer Verallgemeinerung
des Riemann-Stieltjesschen Integrals gewidmet, auf die mich ur-
gpriinglich Nachforschungen nach dem natiirlichen mathematischen
Werkzeug der Versicherungsmathematik gefithrt hatten und deren
besondere Einfachheit nachher zu einer eingehenderen funktionen-
theoretischen Behandlung einlud.

Iiir die im Intervall [a, b]?!) definierten endlichen Funktionen
f, ¢ und dessen Einteilung D mit den Teilungspunkten ¢ = ¢, < ¢, < .
<t, =b sei

'r I

211 = S A0 ot — 9] Ap gl = St Ht ) (9t ) —g(t)].

i=0 =0
Konvergiert fir jede «normale» Finteilungsfolge {D,} die Zahlenfolge

- (+)
{4p, [ 9]} baw. {4, [f,9]}, so setzen wir

) (+) (+)
lim A JLf91= [afdg, lim 4, [f,g]= [4fdg.

N=p o0 n—» oo

Dabei heisse {D,} normal, wenn die maximale Liinge ID,|| der Teil-
intervalle von D, fiir n-» o gegen 0 konvergiert.

Die vollkommene Behenschunfr des «linksseitigen» Integrals

- )
/ fdg und des «rechtsseitigens / /d g gelingt dank einigen Existenz-

sitzen (Satz 6 und 7), die iiberdies einen aufschlussreichen Einblick
in die Zusammenhiinge zwischen diesen Integralen und dem Liebesgue-
Stieltjesschen — und damit dem Perron-Stieltjesschen — Integral

1) Iiir die Intervalle a <<t <{b, a <t << b, a <<t < b, a < t << b verwenden
wir im folgenden entsprechend dle Bezelchnungen [, b] [u, b), (a,b). (a,b).
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einerseits, dem Riemann-Stieltjesschen!) anderseits gewihren, wo-
durch sie auch zu neuen Frkenntnissen iiber diese bereits klassischen
Integralbegriffe verhelfen.

Insbesondere wird so die allgemeine Regel der partiellen Inte-
gration fiir das Lebesgue-Stieltjessche Integral gefunden (Satz 9),
von der bisher nur ein Spezialfall bekannt war, und dadurch die
entsprechende ebenfalls unbekannte Regel fiir das Perron-Stieltjessche
Integral. Ferner wird das Verhéltnis des Riemann-Stieltjesschen Inte-
grals zum Lebesgue-Stieltjesschen ginzlich geklirt (Satz 8a). — Kine
andere Konsequenz besteht im Hrzielen eines «massfreien» Hxistenz-
kriteriums fiar das Riemann-Stieltjessche Integral (Satz 8), woraus
neben Verschirfung des Lebesgueschen Kriteriums fiir die Riemann-
sche Integrierbarkeit einer beschrinkten Funktion ein sofortiger Beweis
fiir die Aquivalenz des Cauchyschen und Riemannschen Integral-
begriffes folgt. — Endlich lésst sich eine von H. L. Smith (1) und
J. F. Steffensen (1) eingefithrte Verallgemeinerung des Riemann-
Stieltjesschen Integrals mit Leichtigkeit als arithmetisches Mittel
unserer links- und rechtsseitigen Integrale behandeln.

Iir diese letzteren Integrale werden nach Begriindung der funda-
mentalen Rechenregeln und Exforschung der Struktur der unbestimmten
Integrale einige fiir die Anwendungen erforderliche Sétze iber Inte-
graliterationen in voller Allgemeinheit abgeleitet. — Krgidnzend wird
iiber die Moglichkeit einer Definitionserstreckung auf beliebige Punkt-
mengen und mehrere Dimensionen sowie iiber die gliedweise Inte-
gration von Funktionenfolgen berichtet.

Die erzielten Ergebnisse gelten fiir den besonders wichtigen Fall,
dass die Funktion f beschrinkt, die Funktion g von beschrinkter
Schwankung ist. Thnen musste das Studium einiger — wegen ihrer
Allgemeinheit an und fiir sich nicht uninteressant erscheinender —
Eigenschaften der Funktionen von beschrinkter Schwankung voran-
geschickt werden, von denen folgende erwihnt seien:

Ist eine Funktion von beschrinkter Schwankung in jedem Punkte
eines Intervalls von mindestens einer Seite stetig oder sogar nur halb-
stetig (von oben bzw. von unten), so weist sie diese Figenschatt im
ganzen Intervall «gleichmissigyr auf (Satz 1). Daraus resultiert die

1) Darunter verstehen wir iiberall den Grenzwert des gewdhnlichen Stielt-
jesschen Integrationsprozesses ohne Voraussetzung der Stetigkeit der integrierten
Funktion.
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notwendige und hinreichende Bedingung dafiir, dass die einer normalen
inteilungsfolge des Intervalls T entsprechende Folge von Variationen
einer Funktion von beschrinkter Schwankung immer gegen deren
Totalvariation auf I konvergiert (Satz 2). Anschliessende Unter-
suchungen iiber die Struktur der Funktionen von beschrinkter
Schwankung und itber Nullmengen beziiglich solcher Funktionen gelten
der Vorbereitung der Hauptsiitze der Arbeit.

Dass die eingefithrten Integrale das natiirliche mathematische
Werkzeug der Versicherungsmathematik bilden, wird im Schluss-
abschnitt gezeigt. Mit deren Hilfe werden dort nimlich die Grundlagen
einer der diskontinuierlichen und kontinuierlichen Versicherungs-
mathematik iibergeordneten Theorie aufgebaut, wodurch die Doppel-
spurigkeit zwischen diesen Disziplinen beseitigt wird. Dabel resul-
tieren auch inhaltlich neue Erkenntnisse, inshesondere ither Funktional-
gleichungen der Deckungsriicklagen und den Zusammenhang zwischen
Riicklagenvariationen und Gewinnausdriicken, was erneut die Zweck-
missgigkeit einer allgemeinen Betrachtungsweise sogar bei praktischen

Anwendungsgebieten erweist.
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Abschnitt 1.

Einige Eigenschaften von Funktionen
mit beschrankter Schwankung.

§ 1.
Gleichmaissigkeitseigenschaften.

1. Bekanntlich ist eine in einem abgeschlossenen Intervall stetige
Funktion dortselbst gleichméssig stetig. Man kann sich fragen, ob
eine analoge Gleichmassigkeitseigenschaft nicht schon fiir Funktionen
besteht, die in jedem Punkte eines Intervalls von mindestens einer
Seite stetig oder sogar nur halbstetig sind. Priiziser:

Wird ein abgeschlossenes Intervall der Liinge §, das im Punkte ¢

[+] [l
endet, mit L(¢, ) baw. I(t ) bezeichnet, je nachdem es rechts oder

links von ¢ liegt, so nennen wir die Funktion ¢:

a) rechtsseitig stetig bzw.
10 im Punkt ¢ b) » halbstetig von oben bzw.
c) » » » unten,

wenn zu jedem ¢ >0 ein solches 8(e) > 0 existiert, dass fir alle Punkte
[+]

x des Intervalls T(¢, ) entsprechend die Ungleichungen gelten:

a) |g(x)—gt)|< e,
(1) b) gle) —g(t) < e,

¢) glx)—glt) >—s.

[+] - .

Wird hierin I(£,6) durch I(Z,0) ersetzt, so verwenden wir die Be-
zeichnung «linksseitig» statt «rechtsseitigs;
] a) seitlich stetig bzw.

90 in einem Intervall T { b) »  halbstetig von oben bzw.
]. c) » » » unten,

wenn sie die betreffende Stetigkeitsart in jedem Punkte des Inter-
valls I von mindestens einer Seite aufweist;
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39 in einem Intervall T «gleichmiissig seitlichy stetig baw. halb-
stetig von oben bzw. halbstetig von unten, wenn jeder Zahl ¢ > 0
eine solche Zahl d(e) > 0 und jedem Punks ¢ des Intervalls I ein solches
Vorzeichen p(t) mugeordnet werden kann, dass die der betreffenden
Sfl(‘tvigk(-‘itsu,rt entsprechende Ungleichung (1) fir alle Punkte 2 des
| v (1)) S
Intervalls I(,d(e)) - I exfitllt ist.

Kann nun aus dem Bestehen einer obiger seitlichen Stetigkeits-

o] o]
arten in einem Intervall auf deren Gleichmissigkeit dortselbst ge-
schlossen werden ?

Laut folgendem Beispiel ist diese Frage im alleemeinen zu ver-

te] o te]
nenen :
Die als g(z) =0 fir —1 <2 <0,g(x) = sin fir 0<< o<1
' x
definierte Funlktion ist in I =[—1, 4 1] seitlich stetig. Wie aber
auch ¢ >0 gewithlt wird, so liegen fiir

1 B
b -~ mit S <
2nn 2n (4n—3)w
die Punkte
[ (+) 1 . 1 ) 1

f - e S A ] " ——

) :;) ’ ‘o 1) (. ,|,) ’ ) 3)
(..'N, 3, 7 &.Jn 5 7T (\..:‘)b - 3 7 ‘d-n b o) s

[+] (-]
entsprechend in I(¢,0) - I baw. (¢ 0) - I, wihrend
(+) () Y ) )
gla) = glx) =1, g(§) = g(§) = —1,4() =0
. . . o - u ( '-) (-)
156, so dass bei 0<<e<<1 die Ungleichung (1b) fir 2 = 2z und x = 2,
(+) ()
hingegen die Ungleichung (1¢) tir z = & und @ = & nicht erfillt ist.

Wir beweisen jedoch den
Satz 1: Ist eine Funktion ¢ in der abgeschlossenen Hiille T eines
(nicht notwendig abgeschlossenen) Intervalls I von beschriinkter

Schwankung
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J a) seitlich stetig bzw.
und in T b) »  halbstetig von oben bzw.
] c) » » » unten,

so weist sie in I die betreffende Stetigkeitsart gleichmiissig seitlich auf.

Beim Beweis geniigt es, I als abgeschlossen vorauszusetzen, da
andernfalls die Funktion ¢ auf I-—1 durch ihren Grenzwert aut
stetige Art erginzt werden kann. Fir I = [a,b] folgt aber die Be-
hauptung aus einem nun zu formulierenden allgemeinen Hilfssatz.

Bezeichnen wir hiezu mit «(z) eine beliebige der Funktionen
x,| x| und setzen:

G, () = min {afg(t—0) —g@®)],algt+0) —g@®)]} tiv a<t<b,
G, (@) = afg(a +0) — g(a)], G,(b) = a[g(b—0) — g(b)].

Wird dann mit ', die obere Grenze von G (f) auf I bezeichnet,

falls diese Grenze nicht negativ ist, andernfalls die Zahl 0, so lautet
der angekiindigte

Hulfssatz: Jeder Zahl & >0 entspricht eine solche Zahl d(g) >0

und jedem Punkt ¢ des abgeschlossenen Intervalls I ein solches Vor-
(0]
zeichen w(t), dass fir alle Punkte z des Intervallst) I (¢ d(e)) - 1

die Ungleichung besteht:
(2) afg(z) —gO)] <+t e.

Daraus leiten wir den Satz 1 folgendermassen ab:

Im Falle ) wihlen wir a(z) =||. Dann ist entweder g(t—0) —
— () =0 oder g(t+40)—g(t) =0, also G,(f) =0 auf I und I', = 0;
daher wird die Ungleichung (2) zu (1a), wihrend der Hilfssatz in die den
Fall a betreffende Behauptung des Satzes 1 iibergeht. — Im Ifalle
b) wihlen wir o(z) = 2. Dann ist entweder g(t—0)—g(f) <0 oder
g(t+0) —g(t) <0, also G, (t) <0 aut I, wonach wie oben geschlossen
wird. — Im Falle ¢) ist endlich die Funktion ¢,(z) =—g¢(x) auf I
seitlich — also auch gleichmissig seitlich — halbstetig von oben,
dermmach die Funktion ¢ gleichmiissig seitlich halbstetig von unten.

1) Das nicht auf einen Punkt zusammengeschrumpft ist.
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Bemerkt sei, dass aus der rechtsseitigen Halbstetigkeit bzaw. Stetigkeit einer
Funktion von beschriinkter Schwankung in einem Intervall noch nicht entsprechend
deren gleichmiissige rechtsseitige Halbstetigkeit bzw. Stetigkeit dortselbst folgt:

Die als g(z) = 0 fiir 0 << & << 1, g(x) = 1 fiir 1 < © < 3 definierte Funktion

ist in [0,2] von beschriinkter Schwankung und rechtsseitig stetig. Ist aber & = 3
und § >0, so ist fir 1 —§<<t<<1l und 1< e <t+ § die Ungleichung (1b)
nicht erfiillt.

2. Iis geniigt, den Hilfssatz fiir die Sprungfunktion von ¢

() __{+)
a(x) = > Ag(z;) + > Ag(z,)
=z <<z
zu beweisen, wobel x;, &,, ... die Unstetigkeitspunkte von ¢ auf I
-) (-+)
seien, Ag(z) = g(x) —g(x—0), Ag(x) = g(z +0) —g(z) bedeute.
Einerseits ist nimlich die Funktion y(z) = g(x) — o(x) auf I
gleichmiissig stetig, und es ist offenbar

(2) a[g(@) — 9(®)] < a[o(z) — o) + [ y(2) — »(®)],

anderseits hat aber ¢ mit ¢ die I‘unktionen G, und die Zahlen I’
) ) & L) (+)
auf I gemeinsam (nachdem Ao(t) = A(() o(t) = A g(t) ist). Gilt
der Hilfssatz fir o, so existiert ein soleches 6 >0, dass sowohl
[w(e)]
alo(x)—o(t)| << I, +  fir alle Punkte 2 des Intervalls I(t,0)-1

ist, wie auch |p(z) —y(t)| < ; , woraus angesichts (2') die Un-
gleichung (2) folgt.
__ 1= _(h)
Da nun die Reihe > Ao(x) 4+ D) do(z;) entweder endlich ist

. o 0
oder absolut konvergiert, existiert ein Index m mit > |do(a;)| +
1=>m

‘Aa |< . Es sei d der Minimalabstand der Punkte z,,

l\?il
v

d ;
., ¢, und 0<d< 5 Ist ¢ einer der Punkte z,,..., z, und
pe)

1) Dabei sei X ¢i=0, falls die Folge {ci} aus m Gliedern besteht.
i>m
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w(t) dasjenige Vorzeichen ~, fiir das G,(t) = a[o(t~0) —g(t)] ist, s0
) ) ) ) (~)

liegt sonst keiner dieser Punkte im Intervall I(t,8)-1, also gilt dort
fir x+¢

afo(z) —o(t~0)] < Zldo(x)uzma ]<§

<<m i>~m

Aus der Ungleichung

afo(z) — o(t)] < afo(x) —o(t~0)] + afa(t~0) — o(t) ]<Ga(t)+*;‘

folgt daher wegen G ()< T, + % die Ungleichung (2) fiir die Funk-

tion .

Ist te I keiner der Punkte z, ..., z,, so sei p(f) dasjenige Vor-

zeichen ~, fiir das im Intervall I(¢,4) - I kein r, mit 1=1,...,m
[(8)]
liegt. Fir wel(f,d) - I gilt wieder die Ungleichung (2) wegen

a[o(z) — o(t)] Z‘Aaw)[—!—zwa ,-)1<-;--<I’“—}—e.

i>m i>m

3. Konvergiert fiir jede normale Folge von Einteilungen {D,}
des Intervalls I die Folge {v, } der entsprechenden Variationen der
Funktion ¢ gegen ihre Totalvariation ¥, so heisse g «von gleichmiissig
approximierbarer Totalvariation» auf I. — Jede stetige Funktion
von beschrinkter Schwankung ist bekanntlich von gleichmissig appro-
ximierbarer Totalvariation ). Wir beweisen den allgemeineren

Satz 2: Damit eine Funktion von beschrinkter Schwankung ¢
im abgeschlogsenen Intervall I von gleichmissig approximierbarer
Totalvariation ist, ist es notwendig und hinreichend, dass sie in
jedem inneren Punkte von I seitlich halbstetig sowohl von oben
wie auch von unten ist.

Beweis: Diese Bedingung ist notwendig. — Es sei némlich {D,}
eine normale Folge von Finteilungen des Intervalls I, die dessen inneren
Punkt ¢ nicht als Teilungspunkt haben, [a,, f,] das den Punkt ¢ ent-

1) Vgl. = B. Lebesgue (1), S.52.
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haltende Teilintervall von D,, D, die aus D, durch Hinzufiigung des

Teilungspunktes ¢ entstehende Unterteilung. Aus
lUI),'L ) 'U[),, = ’ l( ) —y OC") l '+' (/ ﬁn) "“ (] "_" (/ n »(I(Otn) l
folgt, wenn ¢ von gleichmiissig approximierbarer Totalvariation auf
[ ist,

,l,‘f‘ (00, —p,) == g(t) — g(t—0) [+ | g(t + 0) —g(t) | — [ g(t + 0) — gt —0)
g(t) liegt daher zwischen ¢(t—0) und g(¢t -+ 0), woraus bei g(t—0)
< ¢(t - 0) die linksseitige Halbstetigkeit von oben und rechtsseitige
von unten der Funktion ¢ in ¢ folgt, wihrend bei g(t —0) > ¢(t 4 0)
das umgekehrte der Iall 1st.

Diese Bedingung ist hinreichend. — Ist sie nimlich erfiillt, so
existieren zufolge Satz 1 bei beliecbigem & >0 solche Zahlen
0'(e) >0,0"(e) >0 und zu jedem inneren Punkt ¢ des Intervally T
solche Vorzeichen o'(t), 9" (t), dass fiir alle Punkte x des Intervalls
[w!(6)] [y(4)]

L(t,d'(e)) - I baw. L[(¢,6"(¢)) - I entsprechend die Ungleichung (10)
bzw. (lc) gilt.

I seien nun {D,} und !4,} normale Finteilungsfolgen des Inter-
valls [, wobel D, dm ,l(‘-l]LlIlghpl,lIlkt&) Zp<< < ...<<azyhat. Ist fir
m > M

| o \ [ 1 |
‘Q &l [r d = min [d'(e), 0" (¢), = (2,— %) 9 (g==4)}s o515 9 2y — 2y-1)} 5

-

so werden wir zeigen, dass fie m > M auch

£ 7 S g — N — 2

(3) vy, =y, —2(N—1)e

gilt. Daraus folgt dann wegen der Beliehigkeit von e: lim infv, > Up,»

mp=oo

weiter wegen der Beliebigkeit von w: lim inf v, > lim sup »

o o m Dy,
my-oco nP-co
und aus  Symmetriegriinden: hm inf v, = lim sup v, , woraus
ny-co n ¥y co
schliesslich die  Gleichheit: lim v, = lim v, = resultiert. «Da eine
n oo mpoco
normale Finteilungsfolge {4,,} mit lim v, =V, existiert, ist dann,

m @ oo

wie behauptet, tir jede normale Einteilungsfolge {D,}: lim v, = 17.
ny»oco
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Aus jeder Intervalleinteilung kénnen Teilungspunkte &, , mib

el
[9(&,0) — (8] - [9(&:10) — 9 )] >0

ohne Anderung der Variation von ¢ gestrichen werden, nachdem

:S‘/(gz o) — 9(&) E + l g(&; 2 — 9(& 1 0) l == } 9(&; 1) — 9(&)) !

ist. — Fiir die aus der Kinteilung D, durch sukzessive Streichung
aller solcher Punkte erhaltene Einteilung D {a = t,< t;, < ... < t, = b}
ist (l@hlﬂl‘ R Ist vy, = | g(b) —g(a) |, so gilt ﬁelbshversté'mc}-
lich die Ungleichung (3). Andernfalls ist 1 <<» << N,{g(t, ) —g(t)]
(gt 0) —olt; . )]<< 0 fir +=0,1,...,7r—2, und zwecks Beweises
von (3) kann ggtl) >__ry(a) angenommen werden, 'dzn L™ und Vn, bet
Anderung des Vorzeichens von g ungeiindert bleiben. Dann ist
() o= [g(t) — 9] — [9(t) — g(t)] + [9(ts) — g(t)] — - - - + [g(®) — g(t,-))-
Wir ordnen nun entsprechend zu: Jedem im Inneren von I gelegenen
: [ (t)] ["(tg 1]
Punkt & bzw. &, den nichsten in I(t,;, 6'(e)) baw. L({ty; ., 0" ()

gelegenen Teilungspunkt 9, baw. &y, von 4, (er existiert wegen

|4, < 6 < min {§'(c),8"(e)}). Angesichts
B | .1 1 1
")'}i ti ! < IAm I[I < 0 < min {2 (tl i tﬂ) ’ é (52"":1): « 4y 2 (tr - tr-l)

bilden die Punkte ¢, ebenso wie die t; eine wachsende I'olge und

. ' T ' ' E . .
bestimmen eine Finteilung 4, des Intervalls I mit v, <o, = (da
A, Unterteilung von A, ist). Uberdies ist

-m
9("(}2,) e g(tzj) =&y, < &, g(thH) — @(Jj 1) = E3j 1 < €.

Aus (4) ergibt sich daher

vy, = [g(%) — 9(a) + &]— [g(&#) — g(¥)) — (&2 + e)]+ ... 4 [g(b) —g(#,.) + & ’.J 5

< ’.‘]("(),1) —g(a) | -+ iig("()z) —g() | +...+ g(b) —g(#,) ‘ +2(e;+ e+ & W)’
=0, 42+ ...+ ) <v, +2(N—1)e, w.zb w



Sprung- und Kontinuititsfunktionen.

Neben der iiblichen Zerlegung einer Funktion von beschrinkter
Schwankung ¢ in deren Sprungfunktion ¢ und eine stetige Funktion 5
sind fiir unsere Zwecke zwei andere Zerlegungsarten erforderlich: in
die «linksseitige Sprungfunktion» o,(z) und die «linksseitige Konti-
nuititsfunktion» ¢,(z) von ¢ in [a,b] und die analogen «rechtsseitigen
Funktionen o¢,(2) und g¢,(x), definiert durch

. 0 ()
(50) o(x) = N Agx,), (1) ox) =D Ag(x,) fir a < x <b,0,(a) = o,(a) == 0,
Q@ a~;<<ax

) g(x) = g.(x) + o,(2), (69) g(2) = g,(@) + 0,().

(Dabei wird die in § 1, Punkt 2, verwendete Bezeichnungsweise bei-
behalten.) — Es ist leicht zu verifizieren, dass o,(z) linksseitig stetig
in (a,b] ist, woraus dasselbe fir g,(z) = p(x) 4 o,(2) folgt, withrend
analog die Funktionen ¢ (x) und ¢,(z) rechtsseitig stetig in [a, b) sind.

Iine Funktion, die in [a,b] ihre eigene links- bzw. rechtsseitige
Sprungfunktion ist, heisse dort schlechthin «links»- bzw. «rechts-
seitige Sprungfunktion». Fine Konstruktionsvorschrift fir derartige
Funktionen lietert

Satz 3: Konvergiert die Reihe EJl(P(-’L';)]’ falls die IFolge {z;} von
Punkten des Infervalls [«,b] unendlich ist, so sind

(7e) p(x) = D p(x,) fir a<<ae<d,pla)=0
(7r) 2(@) =D p(z) fir a<e<b,ya) =0
a=x;<x

entsprechend links- und rechtsseitige Sprungfunktionen in [a,b]

) (+) o
mit den (einzigen) Sprungstellen z; und Ay(z;) = A y(x,) = p(z,).
Beweis: Ist a < ¢, <w, lim ¢, =, so gilt, falls & einer der Punkte z,

ist, oo
I‘U(HI) T ’I,U(t”) —= :\_-_‘] .(P(ilil-) = Z 99(:15;) = (P(.’L') 5 :
Ip<<w{< h<<awj<z

falls & keiner der Punkte z, ist
) bl

p(e) —yt) = > o(x,).

!“\/Ti'\'l'
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. ()
Aus lim > @(x;) =0 folgt im ersteren Falle Ap(x)=gp(x), im
n¥oo [n'i::l'i\/:ﬂ'
-)
zweiten Ayp(x) =0, so dass (7T¢) die Gestalt von (5¢) mit p an Stelle
von ¢, und ¢ annimmt. — Analog ist die die Funktion y betreffende
Behauptung zu beweisen.

2. Aus Satz 3 und den Formeln (5) und (6) folgt insbesondere,
dass ¢, 0,,¢, und g, itberall von derselben Seite wie ¢ stetig sind.

In Verschirfung des bekannten Satzes, dass alle drei Variationen
einet stetigen Funktion von beschriinkter Schwankung ebenfalls stetig
sind 1), erhilt man ferner folgendes

Korollar zum Satz 2: Alle drei Variationen einer Funktion von
beschrinkter Schwankung ¢ sind iiberall von derselben Seite wie ¢
stetig. Daher lisst sich ¢ als Differenz zweier nichtfallender iiberall
von derselben Seite wie ¢ stetiger Funktionen darstellen.

Beweis: Angesichts der Relationen

1

1
®) 97() = 5 (V@) + 9(@) —g(@)], 9" (@) = [V(2) + 9(0) — ()],

pO

wobei ¢"(z), ¢")(z) und V(z) entsprechend die positive, negative und
totale Variation von ¢ in [a, z] bezeichnen (¢ (a) = ¢*(a) = V(a) = 0),
geniigt der Beweis fiir die Funktion V. — Ist nun ¢ in (a, b) seitlich
stetig und im Punkte « < & <b =z B. linksseitig stetig, |D,} eine
normale Folge von Einteilungen des Intervalls [a, &], &, der letate
Teilungspunkt von D, vor &, so folgt aus

Vp, < V(En) + I g(é) —g(En) ’

sowie Satz 2: V(& < V(£—0), und die nichtfallende Funktion V ist
(wegen V(£—0) < V(&) in & linksseitig stetig; analog ist dann der
Beweis bei rechtsseitiger Stetigkeit von ¢ in a < & <b. — Im all-
gemeinen Falle sind daher mit den seitlich stetigen Tunktionen ¢,, o,
itberall deren totale Variationen von derselben Seite wie ¢ stetig, und
da auf jedem Intervall die totale Variation einer Summe hdchstens
der Summe der totalen Variationen der Summanden gleichkommt,
folgt aus (6¢) die Behauptung.

1) Vgl. Lebesgue (1), S.54.
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3. Satz 4: Die Formeln (6¢) bzw. (6r) liefern entsprechend dio
einzigen Zerlegungen einer Funktion von beschriinkter Schwankung
¢ in eine linksseitige Sprungfunktion in [a, b] und eine in (a, b] links-
seitig stetige Funktion bzw. in eine rechtsseitige Sprungfunktion in
[@, b] und eine in [a, b) rechtsseitig stetige Funktion.

Beweis: Aus den Darstellungen (5) und Satz 8 folgt, dass die
Funktionen o, bzw. o, entsprechend links- und rechtsseitige Sprung-
funktionen in [a, b] sind.

Ist in der Zerlegung g(x) = y,(x) + s,(x) auch s, eine linksseitige
Sprungfunktion in [a, b] und yp, linksseitig stetig in («, b], so ist

(%) 9.(x) —v,() = 5,(%) —0,(2)

) )
linksseitig stetig, also 4s,(z) — Ao,(z)=01n (a,b], woraus s () = o ()
in [a,b] und angesichts (9) auch g (z)= 1y, () folgt. — Analog ergibt
sich die symmetrische Behauptung.

Satz 5: Alle drei Variationen einer links- bzw. rechtsseitigen
Sprungfunktion ¢ in [a, b] sind ebensolehe Sprungfunktionen, und
deren Sprungstellen sind in den ihrigen enthalten.

Beweis: Ist z. B. ¢ linksseitige Sprungfunlktion in [a, b], so exi-
stiert fiir die Folge [&,;} deren Sprungstellen in (e, 2] und & >0 ein

( )
Index m mit > ‘Ag(f,-) | <&. — Liegen in keinem der Teilintervalle
i>m
ciner Finteilung 1) von [a, z] zwel der Punkte &, ..., &, so ist
7H -
IA(/ J[—e<vp< 2| gl

I'iir eine normale ]_bmtellungsfolge ID,} von [a, z] ist daher angesichts
der rechtsseitigen Stetigkeit von ¢ in [, b) und Satz 2

) (-)
lim v, = V(z) = 2 | Ag(&) | = > [ Ag(z,)].

ny-oco a<<wpy<u

Aus der Darstellung g(z) = ZA(](’]T g(@) =0 und Formel (8) folgt

A<=

“
@) = 3| Aga) |, @) = 3\ gty |,

(:s‘:x;.rijm axm’;\z
)
. N . i
WOI)E’I x; bzw. x; entsprechend Punkte =z, mit Ag(z,) >0 bzw.

Ag( x;) < 0 sind. Satz 3 liefert alsdann die Behauptung.
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Nullmengen.

1. Das Mass einer Menge E beziiglich einer nichtfallenden Funktion
gseig {1} 1). «Nullmengen» beziiglich einer I‘unktion von beschriinkter
Schwankung ¢ nennen wir Mengen N mit ¢ [N} =¢" {N} =0,
was mib V{ } =0 gleichbedeutend ist.

Wird ¢'(2) =g(—2) fir —b <z < —a gesetst und die links-
seitige Kontinuitétsfunktion bzw. bprungfunktlon von ¢ in [—b,—a]
mit' g, bzaw. o, bezeichnet, so ist leicht zu verifizieren, dass fiir jedes
a<z<b o (—1a)=o0,(2)—0,0b), demnach ¢ (—z)=g,(2)+ 0,0b)
ist. Ferner gilt

Bemerkung 1: Die Menge N* aller der und nur der Punkte z,
fir die —x zu N gehort, ist dann und nur dann eine Nullmenge
beziiglich ¢, wenn die Menge N eine Nullmenge besiiglich g, ist.

Beweis: Ist {I;} eine Folge von die Menge N" vollkommen
iiberdeckenden Intervallen und I, das zu I, beziiglich des Null-
punktes spiegelsymmetrische Intervall, so iiberdeckt die Folge {I}
Vollkommen die Menge N und umgekehrt. Fir alle « und f ist ferner
g, (—a)—g,(— )| =9,(B) — g,() |, also sind fiir spiegelsymmetrische
Einteilungen von beaughch des Nullpunktes spiegelsymmetrischen
Intervallen die entsprechenden Variationen von ¢, und g, einander
gleich, und dasselbe gilt fiir die totalen Variationen, woraus die Be-
merkung folgt.

Bemerkung 2: Fine Nullmenge beziiglich der I'unktionen g, und
g, ist es auch beziiglich der Funktionen ¢ -+ g,.

Auf jedem Intervall ist némlich die totale Variation von gl +gq
nicht grosser aly die Summe derjenigen von ¢, und ¢,.

Bemerkung 3: Das Komplement [¢,b]— M der Menge M simt-
licher in [a, b] gelegener Unstetigkeitspunkte = der IMunktion von
beschriinkter Schwankung ¢ ist eine Nullmenge beziiglich jeder links-

1) Wird G(I) = g(b) — g(«) fix I= [a,b] gesetzt, so bildet bekanntlich
die untere Grenze ¢q {E} solcher Summen X G(Ir), dass {Ix} eine Folge von die
.’1:

Menge E vollkommen iiberdeckenden Intervallen ist, ein iiusseres Mass im Sinne
von Carathéodory. Tir die beziiglich ga{E} messbaren Mengen e ist nun
gle} = gaie}. Insbesondere ist g{[a, b]} = g(b+ 0)—gla—0), gi[a, b)i =
= g(b—0) — g(a —0), g{(a, b]} = g(b -+ 0) — g(c -+ 0), g{(a, b)} = g(b—0) —
— g(a+ 0).
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oder rechtsseitigen Sprungfunktion in [a, b], deren simtliche Un-
stetigkeitspunkte in M enthalten sind. Insbesondere ist [a,b] — M
eine Nullmenge beziiglich o, und o,.

Beweis: Fiir eine nichtfallende linksseitige Sprungfunktion G in
[a, b], deren simtliche Unstetigkeitspunkte &; in M enthalten sind,
ist wegen ihrer rechtsseitigen Stetigkeit, der Relation (50 und

— (/__1)G(a.) =G (a—0):

G{[a,b]} = G(b) — G(a—0) = 2(21 G(E,) .

a<&;<b

Dies ist aber der Wert von G{M}, woraus G'![a,b]— M} =0
folgt. Vermoge des Satzes 5 ergibt sich die Behauptung fiir alle links-
seitigen Sprungfunktionen der Bemerkung 3. Iiir eine rechtsseitige
Sprungfunktion G der Bemerkung 8 ergibt sie sich analog (oder unter
Verwendung der Relation ((z) =[G "(z)]" und der Bemerkung 1).

Abschnitt 2.

Theorie der links- und rechtsseitigen Stieltjesintegrale.

§ 1.
Elementare Rechenregeln.
()0 (+)b

Die Definition der Integrale fﬂ fdg, [.fdg, die in der Einleitung
fir @< b gegeben wurde, ergiinzen wir durch die Festsetzungen:

(7)0 (~)a (~)p

Jufdg =0, [,fdg=— [ fdg fir >,
worin ~ eines der Zeichen 4, — ersetzt. Alsdann gilt fiwr jede o, 8, ¥
aus [a, b}:

.

(~)8 (~)r (ol
fdg+ [pfdg 4 [,fdg=0.

Einfache Zusammenhiinge zwischen den eingefiihrten Integralen

ergeben sich:
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@) Durch folgendes «Spiegelungsprinzip»:
Wird fir —b <t <—a: ) =f(—1), ¢'(t) = g(-—1t) gesetat, 0

y : 0 (e : .
1st die Existenz von [afdg bzw. f fdg entsprechend mit derjenigen
(+)-a

von [, f"dg" baw. j bf dg" dquivalent, und es ist

()b + -)-a

(10) jfd(:—jbfdJ ffdg__f—bfdJ
‘Beweis: Sind D und D" entsprechend spiegelsymmetrische FEintei-

) (+)
lungen der Intervalle [a, b] und [—b, —a], soist 4, [f,g]=—Ap:[f 9 |,
woraus durch Grenziibergang die erste Behauptung folgt, aus dieser
aber vermoge der Relation [f ()] = f(t) die zweite.

b) Durch «partielle Integration»:

Die Existenz von _/)afdg 18t dquivalent mit derjenigen von

(-H)b

[,gdf, und es ist

) T L
(11) Jotdg = tyli— [a9df

Dies folgt durch Grenziibergang aus der Gleichheit

) )
A,[f, 9] = fgla— Aplg. f].

Ferner 1st:

(12) f fl-l:fz d‘)'—_/)fldJJ:/ f2dy,
(13 Toftg, 0 = Jutdg, = [ ol
(~)0
(14) fafdg =0 fiir ¢ = const.,
(~)b
(15) Jadly = g(6) — g(@).

Dabet zieht in (12) und (13) die Existenz der Integrale zur rechten
Seite diejenige des Integrals zur linken nach sich.

Obige Relationen folgen aus analogen fiir die A-Summen be-
stehenden.
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§ 2.
Existenzsitze.

1. Fundamental fiir die weiteren Betrachtungen ist folgender
Satz 6: Ist im Intervall [a, b] die Funktion f beschrinkt, die
Funktion ¢ von beschriinkter Schwankung, so ist es fiir die Fxistenz

)b
von [,fdg notwendig und hinreichend, dass

10 in jedem linksseitigen im Intervall (@, b] gelegenen Unstetig-
keitspunkt @ der I'unktion g die Funktion f eine linksseitige Grenze
f(x—0) hat;

20 die Menge N der linksseitigen im Inneren von [a, b] gelegenen
Unstetigkeitspunkte der Funktion f eine Nullmenge beziiglich der
linksseitigen Kontinuititsfunktion g, von g ist.

Dann existiert das Lebesgue-Stieltjessche Integral f [dg, uber
dem Intervall [a,b), und es ist [a, 8)

(16) fMW_quk\fu~—) g(x;),

a<zi<b
wobei die Summation sich auf alle im Intervall («, b] gelegenen links-
seitigen Unstetigkeitspunkte z, der IF'unktion ¢ erstreckt.

Beweis: Obige Bedingungen sind hinreichend. Es sei nimlich
zuniichst die I'unktion g, nichtfallend und ¢, {N} = 0. Bilden die Ein-
Lulungen D, von [a,b] mit den Teilungspunkten a==¢", ", . . il = b
eine nonn‘LIe Tolge, so sind die streckenweise lxonbt(mten als
L) =) fir W <t< ™, (@=0,1,...,r,—1), definierten
Funktionen, B— messbar in |a, b), also messbar beziglich ¢,. Fuar

t(.',?m < @<t ist lim tlmm = 2 und wenn x = ¢ oder die I'unktion
np= co

fin linksseitig stetig ist, also fiw « aus [, b) —N,
(17) lim f,(x) = f(x).

Die Funktion f ist daher sowohl auf [a,b) — N als Grenzwert
beziiglich g, messbharer Funktionen, wie auch auf N, als einer Null-
menge, und demnach in [a, b) beziiglich ¢, messbar. Da die Wertmenge
von f, fiir jedes n durch die Grenzen derjenigen von f beschriinkt ist,
folgt aus (17) auf Grund eines bekannten Satzes von Lebesgue



— 144 —

lim  [f,dg, = [dy,
oo [a,b)-N [a, b)-N
und wegen

[tdg, = [fdg, =0
N N

sogar

lim _[fndg, it ffdg,.

[a, b) [a, b)

Anderseits ist angesichts g, {[t7, £ )} = g,(t" ) —g, ()

o1 a1 ol
/ fa'd(/ - E f fndgz ::_ E f (tt'l)) (l(], > f(t g ", H:l‘(zn ’5(!“2 l [— [ Dn f g—j
[z, b) 1=0 [t(in)’ ‘(i”-)f-l) i=0 [t i(”)’ t(i”-),t-l)
(—_)i) .
Daher ergibt sich [, fdg, = [ fdg,, was sich vermoge der Korrolars
[a, b)

zum Satz 2 und der Relation (13) auf jede den Bedingungen des Satzes 6
geniigende Funktion g, tibertrigt. Wegen ¢(t) = ¢,(t) 4 o,(t) ist dann
nur noch

()0 ) )
Jufdo, = 3 flw;—0)- dg(,)
a<<w;=0b

zit beweisen. Dies geht aus der Fxistenz der linksseitigen Grenze
von f in den Sprungstellen von o, durch folgende Fallunterscheidung
hervor:

a) Die Funktion ¢, hat in («, b] endlichviele Sprungstellen.

Fir geniigend grosse n liegt dann in einem Teilintervall von D,
hochstens eine dieser Stellen (v =1, ...,m). Zihlen wir sie dem-
jenigen Teilintervall (a!, g%
linde sie liegt, so ist

zu, in dessen Innerem oder rechtem

() m )
Ap,[f0] = §1 (@) - Ao ()

und lim /(oc(;’)) = f(x; —0), also es existiert
np oo
()b m _ )
j fdo, = > f(z;—0) - Ao'( 0= fl@;—0) - dg(x,).

= I a<aj=b
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b) Die I'unktion ¢, hat in (@, b] abzihlbar viele Sprungstellen.
Ist K die obere Grenze von |f| in [a,b] und & >0, so ist dann fiir

0 g 2. ;
einen Index N: K - N[ do,(x;) | < ¢. Sind ferner o!™ und o™ links-

i=N
seitige Sprungfunktionen in [a, b] mit den Sprungstellen z, ..., 2,
)

baw. x,, .\, @y 9, ..., wWobel in z; der Sprung de,(z,) betriigt, so
ist o,(t) = o"(t) + o™(t) fir jedes m und a <t <b. Fiw m >N

st also

) ) ; b ) s (=)
olf o] — nuamu"wAwu‘WM§::FWA¢@0J<A-\|AJ
t=m 4

demnach

(—) () R
n” [f,0 ) ' —e<4 Dy [f,0.] <Au,, |/, U(m)_l -+ &

In der Grenze ist zufolge «)

m ) ) ()
Sz, —0) - Ag(x;) —e < liminf 4, [f,0] < lim sup 4, [f,0,] <
i=1 npco nyoo
3 &
< N flx,—0) - Adg(x,) + ¢,

. - Bl e
was angesichts der Konvergenz von > f(x;—0) - Ag(x,) V) auch fir
i=1
m = gilt, woraus sich wegen der Beliebigkeit von & >0

) ad ) )
lim A, [f,0,] = ) e, —0) - Ag(a) — 3 fa,—0) - Ag(x)
oo i=1 a<x;<b

ergibt, w. z. b. w.
2. Den Notwendigkeitsbeweis stiitzen wir auf 3 Lemmen.

Lemma 1: Ist fir die unendlichen Zahlenfolgen {x,},Jdy,}, {2,}
von einem Index an a < z, << y, <<z, < b und konvergieren alle diese

o« (3
t) Sie folgt aus derjenigen von 3| Ag(x;)| und der Beschriinktheit von f,
i=

10

)| <e,
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Folgen gegen dengelben Punkt des Intervalls [a, b], so ist es fiw die
2 C)e
Existenz von [, fdg notwendig, dass

*) lim U(a’n) o f(ype)l ’ [‘/(Z?L) T q(!]u)' =}
ist. i
Beweis: Es sei {D,} eine solche normale Finteilungsfolge, dass
x, und z, benachbarte Teilungspunkte von D, sind. Die durch Hinzu-
fiigung des Teilungspunktes y, entstehende Unterteilung 4, von D,
durchliuft ebenfalls eine normale Folge, daher ist

) Ee . i
= lim {4y [f,9]—4,,[}9]} = lim {f(z,) - [9(z,) —g(2,)]—

f( ) [‘](?ju) """ f( )_l e /(yn) Lq(zie) - ‘ljn } = ISH [f( ) El /( yn) | ]‘(j(Z”) o (}(yn)J'
)b

Lemma 2: Fiv die Existenz von [ fdg ist es notwendig, dass

10 die Funktion f in jedem in (a, b] gelegenen linksseitigen Un-
stetigkeitspunkt von ¢ eine linksseitige Grenze hat,

20 die Funktion f in jedem in (a, b) gelegenen rechtsseitigen
Unstetigkeitspunkt von ¢ linksseitig stetig ist.

Beweis: Ist x ein linksseitiger Unstetigkeitspunkt von ¢ und

a<x <2 b, so existiert eine solche Punktfolge {Z,‘H, dass

< én 1““ Cn &y ““ g([;n) == ‘{-l T (]("’)

Ny o0 n» oo

ist. Ferner existiert cine solche Teilfolge {#,} von {£,}, dass die Folge

1f(n)} einen Grenzwert B hat. Indlich ist in {5} zu jeder Folge

{@,} mit x, < x, lim x, =« eine solche Teilfolge |y, enthalten, dass
13 s

L < 1, 186, Setzen wir 2z

528 o : |
, ==&, so sind fir die Folgen {2}, {,}, {2,]

(he Voraussetzungen des Lemmas 1 erfiillt. Daher ist es fiur die Fxistenz
(_)'b . . . .
von [,fdg notwendig, dass «) gilf, oder wegen lim [g(z,) — g(¥yn)] ==
ny oo

b= v r‘/(,],’) st fl :rE ():
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0 = lim [f(z,) — f(y,)] = lim f(z,) — B, was angesichts der Be-
H»o0 nyco

liebigkeit der linksseitig gegen z konvergierenden Folge {x,} besagt,
dass f in z die linksseitige Grenze B hat.

Ist @ ein im Intervall (a, b) gelegener rechtsseitiger Unstetigkeits-
punkt von g, so existiert eine rechtsseitig gegen z konvergierende
Punktfolge |z,}, fir die {g(z,)} eine von g(z) verschiedene Grenze
hat. Iiir eine beliebige gegen z linksseitig konvergierende Punkt-

folge {#,} und y,= = sind wieder die Voraussetzungen des Lemmas 1
' )b
erfilllt, daher ist es fiir die Kxistenz von (,fdg notwendig, dass

lim [£(z,) — f(2)]- [9(2,) —g(«)] =0 1st und wegen lim [g(z,) —g(z)] + 0

Ny co ny» co
muss lim f(z,) = f(z), also f in z linksseitig stetig sein.

Le:nma 3: Die Finteilungen D, ==[a =0, ¢, .. ., t(,':z) = b] mogen
eine normale Folge bilden. — Ist die Funktion ¥ in [a, b] nichtfallend
und linksseitig stetig, die Funktion f in jedem rechtsseitigen Unstetig-
keitspunkte von ¥V in (a, b) linksseitig stetig, jedoch die Menge N
der linksseitigen Unstetigkeitspunkte der I'unktion f in (a, b) keine
Nullmenge beziiglich ¥, so liegt in jedem Teilintervall [¢%, ) ) von
D, ein solcher Punkt %, dass

] i,vl

(18)  Lim int )| F(E) — fE) | [V ) — V(E)] > 0 ist.
ny oo i=0

Beweis: Die Menge N, der Punkte = vou (a,b), in denen die links-
seitige Oszillation von f (d.i. die untere Grenze der Oszillationen
von f in sémtlichen Intervallen, deren rechter Iindpunkt z ist) min-
destens « betrigt, ist fir jedes « >0 linksseitig abgeschlossen, d. h.
enthilt alle ihre linksseitigen Hidufungspunkte. — Liegen niimlich
fir jedes ¢ >0 im Inneren des Intervalls [z — ¢, 2] Punkte von N,
so auch ein Intervall, in dem die Oszillation von f nicht kleiner als
« ist; daher ist die Oszillation von f in [2 — ¢, ] nicht kleiner als
« und z ¢ N,. — line linksseitig abgeschlossene Menge ist aber die
Differenz von zwei Borelschen Mengen: ihrer abgeschlossenen Hiille
und einer Teilmenge der hochstens abzihlbaren Menge derjenigen
ihrer rechtsseitigen Hiufungspunkte, die linksseitig von ihr isoliert

oo
sind. Fiir jedes « >0 ist daher N,, also auch N = > N1, eine
Borelsche und demnach beziiglich ¥V messbare Menge. =!
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Ist nun V' {N} >0, so muss angesichts

o0

EOLALE
=1 ?

.

V{N,,| >0 fir ein o > 0 sein und die Finteilung D, Teilintervalle I
mit V' {Ng, - I| L >0 enthalten. Fiir diese nach wachsenden rechten

Endpunkten an@eordneten Teilintervalle [a7 ; bg"] ()=0,...,s,) ist

V (N, - [P, b0 =0l >0, w=T {N,;,} = Z)wg-”}y.
;l:

His sei /'Lg?‘) die untere Grenze der Menge der rechtsseitigen Haufungs-
punkte von N, - [al?, b!"]. Die Menge N, - [a{’, 2] kann ausser A%
nur rechtsseitig isolierte Punkte enthalten, bildet daher als héchstens
abzihlbar eine Nullmenge beziiglich der voraussetzungsgemiss in den
Punkten von N,, stetigen Funktion V. Deshalb ist
wi =V {Ny, - (A, 600} < 7 {(aP, b))} = V() — V(2P 4 0)

7 17
und da ﬁg?") ein rechtsseitiger Haufungspunkt von N, ist, existiert
1
in Ny, - (A%, b") ein Punkt " mit V(b)) — V(nj”)) 3 wl. Ferner

existiert ein Punkt a )< 5("‘) < 7.';“) mit | f f( ”) g >«. — An-
sonsten wire namhch die Oszﬂlamon von f 1 m fay ,n%"], also auch die
hnksseltlge Oszillation von f in 77(”) nicht grosser als 2«, obwohl
777 e N,, ist. Aus
N n n (n (n
V) — V() > V) — Vo) > - uff

7

folgt daher

| f(@™) — f(&) | - [V — V(EP)] > % )
und
Sn 1
Zlfa” &N - [7OP) — VEM] > 5 aw>0.

Setzen wir nun ¥ =10, falls #? mit keinem der Punkte a”
iibereinstimmt, hingegen ¢V = &%), falls ¢ ::ag-”), 0 ist
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Sn 1
= l;: | fal)— F(E) ] - (V) — V(&) > 5 %W >0, w.z b w.
1=
3. Die Bedingungen des Satzes 6 sind notwendig. — Fxistiert

=)0 5 ] ) )
nimlich (', fdg, so hat laut Lemma 2 die Iunktion f in jedem in (a, b]

gelegenen linksseitigen Unstetigkeitspunkt von ¢, also auch von o,
eine linksseitige Grenze. Daraus wurde aber beim Zuldnglichkeits-
b
beweis die lixistens vnn(l:'afdcr{ gefolgert. Gemiigs (18) existiert daher
)b
wegen f, ((‘) — {]( ) — 0‘{(5) auch l"afdg(‘.

Wiire nun N keine Nullmenge beziiglich ¢,, so auch nicht beziiglich
deren totaler Variation in [a, z]: V(). Zufolge Korrolar zum Satz 2
ist aber ¥ mit ¢, linksseitig stetig in [a,b] und f gemiiss Lemma 2
in jedem rechtsseitigen Unstetigkeitspunkt von 7 in (a, b) linksseitig
stetig, es miisste daher die Ungleichung (18) gelten. Sind jedoch 4,
D!, D! Unterteilungen von D,, die entsprechend durch Hinzufiigung
als l‘llunﬂs})llllldjl‘ simtlicher Punkte ¢ =0, ...r ) baw. simt-

licher Punkte ¢ mit nichtpositivem bzw. mit positivem Wert von
-1
D) — FE] - [9,09)) — 0,6 entstoben, s0 muss

) ) ) ) ) rn-1 ’ n y y
i (g [f,9,]— Ay ]} = lin 33[AEE) — @) |- [t — 06| = 0
Ny oo ny oo J

sein. — Ferner ist laut Satz 2 lim [V (b) —wv, | =0 und

ny 0o
’ i Kz, p h n
(b)H’U/I,, = V(b) o V((l’v) 7777 }_jj [ gl(C(lI“)) - (jl(t ’ (Jﬂ t )I 1 _ﬁgr (C )) |] -
1=0
£ — V) — [ — g ]+ D[V — Ve —[g ) — 9G] >

S GRS
1 0

also auch

1l
lim V[t(l")H V() ‘“lJ. t) — 9.8 ] =0.

nypoo i= 0

g, ) — .M ] =0,
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Wegen der Beschriinktheit von f folgt daraus

rp—1

(18") lim 2 |f tn nJ) 1 [V(t!”ll) (C(M) . l (t (n)‘l) . gl(c(irr)) ‘ ] =0,

Tl)-oo 1= =0
was nach Addition zu (18') einen Widerspruch mit (18) liefert.

4. Vermoge des Spiegelungsprinzips und der Bemerkung 1 folgt
aus Satz 6 mit Leichtigkeit 1) der duale
‘Satz 6': Ist in [a,b] die Funktion f beschriinkt und die Funktion ¢

(-+)b
von beschrinkter Schwankung, so ist es fiir die Existenz von |, fdy

notwendig und hinreichend, dass

10 die Funktion f in jedem in [a, b) gelegenen rechtsseitigen
Unstetigkeitspunkt z der Funktion g eine rechtsseitige Grenze f(x - 0)
hat;

20 die Menge der im Inneren von [a, b] gelegenen rechtsseitigen
Unstetigkeitspunkte der Funktion f eine Nullmenge beziiglich der
Funktion ¢, ist

Alsdann existiert [fdg,, und es ist

(a, b]
(-+)b

(-+)
(16') Jofdg = qur + D (@ +0) - dg(z,),
e<z{<<b
wobei die Summation sich anf alle in [a, b) gelegenen rechtsseitigen
Unstetigkeitspunkte 2, der Funktion ¢ erstreckt.

5. Als Frueht des Bewiesenen erhalten wir

Korollar 1 zum Satz 6: Die Funktion g seiin[a, b] von beschriinkter
(~)b
Schwankung. — Aus der Existenz von |, fdg folgt:

(~)b
a) diejenige von [,|f }d_q, falls f in [a, b] beschriinkt ist;
(~)0 1
b) diejenige von |, 7 dg, talls dort iiberdies f + 0 und - beschriinkt

18t.

) Dabel ist die wegen ¢*(z)= gr(— )+ or(b) geltende Gleichheit

ff*dg; = —jfdgr
[~b,—-a)
zu beriicksichtigen.
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Existieren ferner fiir die in [a, b] beschrinkten Funktionen f,

(~)0 (~)b (~)b
und f, die Integrale [,f1dg, [.fadg, so existiert auch [ f,f,dg.
(Darin vertritt ~ das Zeichen -+ bzw. —.)

Beweis: Die Mengen der links- bzw. rechtsseitigen Unstetigkeits-
. 1 Lo
punkte von !f und - bzw. f; - f5 sind in den analogen von f baw.

in der Summe der analogen fir f, und f, enthalten, und in allen Punkten,
in denen die links: bzw. rechtsseitigen Grenzen von f bzw. von f,

und f, existieren, trifft dasselbe fiir |f; und 7 bzw. fir f,-f, zu.
Korollar 2 zum Satz 6: Sind in [a, b] die Funktionen f und g
(b (+)b
von beschriinkter Schwankung, so existiert [,fdg bzw. (,fdg dann
und nur dann, wenn die Funktion ¢ entsprechend in den in (a, b)
gelegenen linksseitigen Unstetigkeitspunkten von f rechtsseitig bzw.
in den rechtsseitigen linksseitig stetig ist.

Beweis: Die Funktion f hat dann iberall eine links- und rechts-
seitige Grenze und hdochstens abzihlbar viele Unstetigkeitspunkte.
Die Menge ihrer links- bzw. rechtsseitigen Unstetigkeitspunkte in
(«,b) ist daher dann und nur dann entsprechend eine Nullmenge
beziiglich g, bzw. ¢g,, wenn es jeder dieser Punkte ist, d.i. wenn die
Funktion ¢, bzw. ¢, und demnach auch g, in jedem dieser Punkte
rechts- bzw. linksseitig stetig ist.

Korollar 3 zum Satz 6: Tst in [a, b] die Funktion f beschriinkt,

die Funktion ¢ von beschrinkter Schwankung und existiert eines
P, Gl . :
der Integrale |[,fdg, [,fdg, so existiert auch das Lebesgue-Stielt-
jessche Integral (fdg, und es bestehen die Zusammenhinge:
[a, ]

19) fdghj fdg— S A () - Ag(s)—f(a) - Agia) — 1) - Ag(H),

a<<a;<<b
(+) +
(19) Jafdg—degTAbAf () - Ag(a) — f(a) - Ag(a) —F(b) - Agd)

Uberdies existiert dann das Perron-Stieltjessche Integral im Sinne

b
von Ward (1) %) [ fdg, und es ist:
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( )b (—)

(197) Vatdg = (PS)! fdg — sz/( ;) - dg(=)),
i })b (-+) (-+)
(19") fafdg = 9 1fdg + $‘ ilf(aa-) - Ag(z;)

Beweis: Das Komplement [a,b]— M der Menge M der in [a,b]
gelegenen Unstetigkeitspunkte z; von ¢ ist laut Bemerkung 3 eine
Nullmenge beziiglich ¢,. Daher e‘clstlelt (fde, =0, also auch

b i1
199 [fdo,— [fdo,= S| [fdo,— fa)- Ag(s),
[a.b] M a<mT=b (3)) a<zi<b
und es ist
[1da,-+ {100, 3\ (@) - Ag(s) —1(a) - Age) — 1) » Agd) = 0.

Die seitenweise Addition letzterer Gleichheit zu (16) lietert die
Relation (19). Analog ergibt sich (19').

Nun existiert bekanntlich?) mit (fdg auch () [ fdg, wobei
[a; 5] a

) (+)
(19) U’S)! fdg = |'fdg — f(a) - Ag(a)—f(b) - Ag(b)

(a, b]

ist, was die Formeln (19) und (19’) entsprechend in (19”) und (19"")
)b (+)d
iiberfiihrt. — Insbesondere stimmt daher (,fdg oder [,fdg mit
b
(#8) [ fdg tiberein, wenn die Funktionen f und g entsprechend keine

gemeinsamen links- oder rechtsseitigen Unstetigkeitspunkte haben.
6. Wie mildern sich die Existenzbedingungen fiir das linksseitige
Integral, wenn das rechtsseitige existiert? Die Antwort enthélt

Satz 7: Ist in [a, b] die Funktion f beschrinkt, die Funktion ¢

von beschrinkter Schwankung und existiert eines der Integrale
()b (+)b
[afdg, fufdg, so ist die Menge sémtlicher Unstetigkeitspunkte

1) Vgl. Saks (1), S.208.
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der Funktion f in [a, b] eine Nullmenge beziiglich der Funktion
y(z) = g(x) — o(2) (¢ = Sprungtunktion von g). — Fiir die Existenz
des zweiten obiger Integrale sind dann die notwendigen Bedingungen
des Lemmas 2 (bzw. die sich durch Vertauschung simtlicher Be-
zeichnungen «rechtsseitig», «linksseitig» ergebenden dualen Bedingun-
gen) auch hinreichend.

Beweis : Iis seien N und N entsprechend die Mengen der links-
und rechtsseitigen Unstetigkeitspunkte von f in (a,b), N¥ und NI
die Mengen der Punkte, in denen die links- bzw. rechtsseitige Oszilla-
tion von f mindestens a betrigt, I'(z) die Totalvariation von y in
[, z]. — Entsteht N9 aus N9 durch Streichung der héchstens
abzihlbaren Menge ihrer sémtlichen rechtsseitig isolierten Punkte
(die eine Nullmenge beziiglich der stetigen Funktion I ist), so ist
r N("' =TI N(f)l — Anderseits ist fir 2 aus N bei jedem ¢>0

in I(:c ¢) ein Punkt von NY enthalten, also auch ein Intervall, in
dem die Oszillation von f xmndestens « betriigt. Daher ist NV' < N
also I'{NW} =I'{NW} < '{ND}.

Analog beweist man I'{N{} < I'{NY}, also I'{NW} = I"'{N")} .

Aus
I'{NY} = lim P{N(' }, M{N} = lim I'{N}}
k»oo kYoo k
folgt dann I'|N¥} = I'{N"},

(I)b
Existiert nun (,fdg, so ist N laut Satz 6’ eine Nullmenge

beziiglich ¢,, liegt daher im Komplement der Menge der Unstetigkeits-
punkte von ¢,, ist also zufolge Bemerkung 3 eine Nullmenge beziiglich
o, und gemiss Bemerkung 2 auch beziiglich y == ¢, —o0,. Dann ist
TN} =T'{N"} =0, woraus sofort die erste Behauptung des
Satzes T folgt. — Ist ferner f in den rechtsseitigen Unstetigkeits-
punkten von g in (a, b) linksseitig stetig (2. Bedingung des Lemmas 2),
so enthilt N keine Unstetigkeitspunkte von g, , bildet also eine Null-
menge beziiglich ¢, und demnach auch beziiglich g, =y + ¢,. Die

Hinzufiigung der ersten Bedingung des Lemmas 2 sichert dann zufolge
()b ()b

Satz 6 die Existenz von [ ,fdg. — Kxistiert fofdy, so liefert das

Spiegelungsprinzip die entsplechenden Existenzbedingungen fiir

(+)d

Jafdy.
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§ 8.
Anwendungen auf andere Integralbegriffe.

1. Interessante Konsequenzen folgen aus den Sitzen 6 und 7

fiir andere Integralbegriffe. So liefert ein «massfreies» Kixistenzkriterium
b
fiir das Riemann-Stieltjessche Integral [fdg der

Satz 8: Ist in [a, b] die Funktion f beschrinkt und die Funktion ¢
b
von beschrinkter Schwankung, so ist es fiir die Iixistena von [qu

notwendig und hinreichend, dass
()b (+)b

10 eines der Integrale (,fdg, [,fdg existiert;

20 die Funktionen f und ¢ keine gemeinsamen Unstetigkeitspunkte
in [a, b] besitzen.

Beweis: die Notwendigkeit obiger Bedingungen ist bekannt. Sind
sie erfillt, so ist zufolge Satz 7 die Menge simtlicher Unstetigkeits-
punkte der Funktion f in [a, b] eine Nullmenge beziiglich y. Uberdies
liegt sie dann im Komplement der Menge der Unstetigkeitspunkte
von ¢, bildet daher gemiss Bemerkung 8 auch eine Nullmenge be-
ziiglich o, und o,, also gemiss Bemerkung 2 beziiglich der Funktion

g =1y + 0, 4+ o,. Letzteres geniigt aber nach einem Satz von Bliss?) (1)
b
fiir die Existenz von [ fdg.
a
» Insbesondere geniigt fiir die Existenz des Riemannschen Integrals

[ f(x)dz bei beschrinktem f sowohl die Konvergenz der Summen

Zf(z,) « (2;,,.,— ;) wie auch diejenige der Summen

Zf(z;y) (@, —z)?). Cauchy hatte urspriinglich das Integral
¥

[ f(z) da gerade als Grenzwert der ersteren Summen definiert — aller-

a

dings nur fir stetige f(x). Die als Spezialfall des Satzes 8 resultierende
vollstindige Aquivalenz dieser C'auchyschen mit der Riemannschen
Integraldefinition ist bereits von Gillespre (1) bewiesen worden.

1) Vgl. auch Carmichael (1).
2) In Verschiéirfung des Lebesgueschen Kriteriums ist es daher angesichts
b

des Satzes 6 fiir die Existenz von [f(x)dz notwendig und hinreichend, dass die

a
Menge der links- oder rechtsseitigen Unstetigkeitspunkte von f in (a, b) das Lebes-
guesche Mass 0 hat.
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b

Ferner wird der Zusammenhang zwischen [ fdg und [ fdg voll-
a [a b)

stindig iibersichtlich durch folg@nde Spezialisierung des Korollars 3

zum Satz 6:
Satz 8a: Ist in [a, b] die Funktion f beschrinkt, die Funktion ¢

von beschrinkter Schwankung und existiert das Riemann-Stielt-

b
jessche Integral (fdg, so existiert auch das Lebesgue-Stieltjessche

a
Integral [ fdg, und es ist
[a, 8]

b )
ll'fdg:[ J{'ﬂfdf — f(a) - Ag(a) —f(b) - Aq( )

2. H. L. Smith (1) und J. . Steffensen (1) haben fiir beschriinkte
Funktionen f, ¢ den Grenzwert der Summen

Z~~[f(w) + H@ipn)] - [9(2000) — ()]

bei einer normalen Ninteilungsfolge des Intervalls [a, b] betrachtet.
1
Das so definierte «mittlere» Stieltjesintegral E(?;dg ist offenbar das
arithmetische Mittel unserer links- und rechtsseitigen, und dessen
Existenz und Rechenregeln folgen aus denjenigen der letzteren,
withrend eine Umkehrung im allgemeinen unrichtig wiire. — Ins-
besondere liefert das Korollar 2 zum Satz 6 folgendes Ergebnis von
Fréchet (1): Sind in [a, b] die Funktionen f und ¢ von beschrinkter
Schwankung und in jedem gemeinsamen Unstetigkeitspunkt «gleich-
1

seitig stetig», so existiert (Ja:;‘dg.

3. Schliesslich sind wir nun imstande, die allgemeine Regel der
partiellen Integration fiir das Lebesgue-Stieltjessche Integral an-
zugeben. Fs besagt nimlich

Satz 9: Fiwr beliebige zwei Funktionen von beschriinkter Schwan-

kung in [a, b], f und g, ist
y (H

(20) [fdg+ fgaf=fglot® + > [Af Ag(z) — Af(m,) - Ag(z))],

[a b] [a, b] a<z;<<b

(wobei sich die Summation iiber séimtliche gemeinsamen Unstetigkeits-
punkte von f und ¢ in [a, b] erstreckt).



)b (H)b
Beweis: Fixistiert | fdy, so existiert auch { gdf, und angesichts

Formel (11) folgt aus (19) und (19') nach leichter Umformung

) ) ) (+)o
I fdg = [d)g(b + 0) — f(a) gla) + fla—0) « Agla) + S Af(x) - Agz;) — | i
[ﬂ b] a~xr;=b
(+) | 8 (+) (+) (110
[ gdf = AfD) - g(b+ 0) 4 g(a) - A f{a) — S Af(@) - Ag(z) -+ | L9df,
[a bi ~x{~b )

was zusammen die ormel (20) ergibt.

Sind f, ¢ awei in [a, b] nichtfallende unktionen, &, die rechts-
seitigen Unstetigkeitspunkte von g in [a, b], so sel (&) = [(&, —0),
sonst aber @(x) = f(z). Da die Funktion ¢ nichtfallend und in den
Punkten &, linksseitig stetig ist, existiert gemiiss Korollar 2 zum

)b
Satz 6 (,pdg, also gilt I'ormel (20) mit ¢ statt f. Nun hat aber ¢
diosolbon links- und rechtsseitigen Grenzen wie f, also ist cinerseits

. - b l
4 Iu o = 191s on und

(-) (- (1)
NUA @) — pl)] - Ag(a) — A[f) —o@)] - Ag(e)} =

a~xi=b
)
. E [bf(wi)—(p(wi)l cAg(z;) = _\_11 4{' f(&) Ag(&),
demnach ‘
- ) (H) ()
fodg+ (gde + > élf( £) - Ag(&)=fg 20 -+ D [Af(x,) - Agla;) — Af(z) - Ag(z))
Iu, b [u b] a<i L\b a~axj=b

anderseits definiert die Funktion ¢ dasselbe Mass wie f, also ist

[gde = [gdf.

Wird iiberdies it il
i )
Ff—p)dg= >\ [dfdg= > Af(&)- AgE)
(a,b] a<<&;=<b (&) a&i<b
beriicksichtigh, so ergibt sich wieder die Formel (20), — Da beido

Seiten von (20) linear in f und ¢ sind und jede Funktion von besehrink-
ter Schwankung die Differenz zweier nichtfallender ist, resultiert die
allgemeine Behauptung des Satzes 9.



— 1587 —

In der Literatur (u. zw. bei Saks (1), S. 102) finde ich nur folgenden Spezial-

fall des Satzes 9:
Haben die Funktionen von beschriinkter Schwankung f und ¢ in [a, b] keine

gemeinsamen Unstetigkeitspunkte oder sind dort beide regulir, so ist
v v s b_l_o
Jtdg + J gdf = fg]a%-
[a, b] [a, 4]

In diesen Iillen ist entsprechend
=) (-) (+) {+) (+) ) (+) )
Af(z) - Ag(z)=A4 f(a;) c Ag(z)=0 baw. Af(x)=A4f(x), Adg(x)=A¢(z),

also verschwindet der Summenausdruck in Formel (20).

Aus Formel (20) und (19) folgt eine Regel der partiellen Inte-
aration firr das Perron-Stieltjessche Integral, ausgedriickt als
Kovollar zum Satz 9: Fir beliebige zwei Funktionen von be-

schriinkter Schwankung in [a, b], f und ¢, ist

b b o @ -) () (+)
(20 s fy + w8 gdf = fgla + Z_ff(mi) cAg(m) — D Af(my) - Ag(zy).
n a a~a a<x;<b

Haben die Funktionen f und ¢ keine «gleichseitigen» Unstetig-
keitspunkte gemeinsam, so vereinfacht sich letztere Iformel durch
Tortfallen der Summenausdriicke.

§ 4.
Die unbestimmten Integrale.

Mit Leichtigkeit kann nun auch die Struktur der unbestimmten
links- und rechtsseitigen Integrale ermittelt werden. Iis gilt nimlich
Satz 10: Ist im Intervall [a, b] die F'unktion f beschrinkt, die
Funktion g von beschriinkter Schwankung, so sind dort die Funk-

tionen
()& (H)w
(@) = {,fdg, (x) = [,fdg ')

von beschrinkter Schwankung, und jede Nullmenge beziiglich ¢ ist
es auch beziiglich I und @. Die links- bzw. rechtsseitigen Kontinuitéts-
: 5 ()0 (+)b
1) Deren lixistenz folgt hier aus derjenigen von [qfdg bzw. fafdg auf Grund
von Satz 6 bzw. 67, konnte aber aus derselben auch direkt ohne Voraussetzung
der beschriinkten Schwankung von ¢ abgeleitet werden.
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funktionen F, F,, sowie Sprungfunktionen S,, S, der Funktion F
in [a,b] bzw. die analogen Bestandteile @ , @,, £, Z, der Funktion @
betragen dabei fir a < x < b:

@l) K@) = []dg, S(w) = D f@,—0) - dg(a)),
[o, ) a<wi<u
()
&) Ble) = [fdy + 8@ S0 =) - dg(s),
@& a<<x)<a
’ _ . ()
217 @,(x) = J ]fdyw (@)= > {(w; +0) - Ag(z),
@, a<c;<ax
L - = (-)
21%)  D(2) = J lde + (@), (@)= D f(w) - dg(z)).

Beweis: Ist V(t;¢) die totale Variation der Funktion ¢ in [a,],
K die obere Grenze von 'f(t)| fir o <t <b, v, die einer Finteilung D
des Intervalls [t "] mit @ <t'<t” < b entsprechende Variation

von ¢, so isb | AD[f g| <K-v, <EK[V({t";9) — V(t';9)]. Durehliutt
D eine noxmale Finteilungsfolge, so resultiert in der Grenze
(21%) ) —B(E) | <K [V 39)— V(E59)].
Daher ist fiir jede Einteilung A{w =ty <t, < ... <t, =f} von
[, Bl mit @ <a<< B <b

m-1

S:‘
2>

i=0

Fity,) — P() | < E[V(B9) — Viesg)],

also auch V(8;F)—V(w; F) <K - [V(B;9)— V(x;¢)], weshalb jede
Nullmenge beziiglich ¢ es auch beziiglich F' ist und fiwv « =a, 8 =1
die beschrinkte Schwankung von I in [a, b] folgt. — Analog ergeben

sich die entsprechenden Behauptungen fiir @. — Aus (21*) und dem
(*)'ﬂ (—)a:

Korollar zum Satz 2 folgt ferner, dass |a fdg, undJ fdg. zusammen

mit ¢, bzw. g, entsprechend linksseitig stetig in (a, b] bzw. 1eehts-
)z

seitig stetig in [, b) sind. Anderseits ist f,fdo, = > f(z,—0) - A g(z;)
a<w;<up
von der Form (7, also dnaesmhts der Konvergem von
> | flai— J( )| <K ?MJﬂ?)I

a<x@ =z a<wi=<zn
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: e .
eine linksseitige Sprungfunktion in [, b], wihrend fir (,fdo, = | fde,
wie bei Formel (19%) die absolut konvergente Darstellung [“®

- (+) ) N

}_])‘(:vl-) + Ag(z,) ableitbar, es also laut Satz 3 eine rechtsseitige

A=<z

Sprungfunktion in [, b] ist.

Angesichts der Zerlegungen

)z -z E (-)z
F(.fb) = ,J afd.(fc + J afdgz G .Ia,fd.(]r + J afdar
und der Gleichheiten

(—) :b' = » (—)'(E . (*)‘1,
(ofdg, = JTdg., Jufdg, = [ fdy + f.[do,
) [, 2) [4,4)

gelten zufolge Satz 4 die Formeln (21). — Analog sind die Formeln

(21") zu beweisen.

§ 5.
Iterierte Integrale.

Einige auch fir die versicherungsmathematischen Anwendungen
benotigte Sitze iiber iterierte Integrale sollen in voller Allgemeinheit
bewiesen werden.

Satz 11: Sind in [a, b] die Funktionen f, und f, beschriinkt, die
Funktion ¢ von beschriinkter Schwankung, so gilt jede der Relationen

(b )z ()b N (b (e (p (=
(22(7’) ‘Jufldt‘ufzdg:Ja,flf:zdf/; (Q'Qb) JafldJahdg:Jafzdt‘ tlfl.dg;
o (1) (H)e (+)0 7 (+)0  (+)a (i)b ()
(22'a) Jaflfl“(zftzd.(]:l‘aflfzd.(]; (22'0) (o id Jofadg = [ fod Vof1dy,
fally die in ihr auftretenden Integrale existieren. Hiezu geniigt fiir
()b
die Relationen (22) bzw. (22') entsprechend die Kxistenz von (', f,dg
()b (-+)b (ho L
und (,fadg bzw. von {,f,dy und [, f.dy.

Beweis: Existieren die Integrale in Formel (22a), so ergibt die
)z (=)0
Anwendung der Formeln (21:) auf I'(z) = |, fodg und {,f,dI" wegen
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‘ frd J f2dy, = J‘flfzd{/ﬁ

(a,b) [a,2) (e, b)
( fld( fsz—Eflﬁ"“O)fz(m —4J) +.Jf1fszf
a<z;<b [e,8)

Darin stellt die rechte Seite einerseits [gemiss (16)] das Integral
)b

[afif2dg dar, anderseits ist sie symmetrisch in f, und f, was ent-
sprechend die Belationen (22a) und (22b) liefert.

Mlt J f, dg und j fodg existiert nun laut Korollar 1 zum Satz 6

auch j fifadg. Ferner bilden die linksseitigen Unstetigkeitspunkte
von f, in (@, b) eine Nullmenge beziiglich g,, also laut Satz 10 auch
beziiglich F. Da die Funktion f, in den linksseitigen Unstetigkeits-

punkten von F'in (@, b] (die unter den analogen von g enthalten sind)
()b 6 (e
eine linksseitige Grenze hat, existiert laut Satz 6 [,f,dF = {, f,d {,f.dy
(16 (e '
und aus Symmetriegrinden auch [, fod [, fydg. — Vermdge des
Spiegelungsprinzips resultieren daraus die entsprechenden Behaup-

tungen fiir die rechtsseitigen Integrale.

Die partielle Integration der inneren Integrale in (22a) bzw. (22'a)
liefert

Korollar 1 zum Satz 11: Unter den Voraussetzungen des Satzes 11
gelten die Formeln

()b ) (1)

(23) i fld fo0) = [ufifedy + [of1d 1a(/d/‘g,
(+)o (-+)b ) (F)o ()=
(28") Vafid(fz9) = Jotifady + Jotid Jogdfs,

falls entsprechend die in den Formeln (22a) bzw. (22a) auftretenden
Integrale existieren.

Mit Leichtigkeit ergibt sich auch
Korollar 2 zum Satz 11: Es seien in [a, b] die Funktion g von

1
beschrinkter Schwankung, die Funktionen f#+0 und? beschrinkt.

)b (+)b
Existiert dann [,fdg bzw. [,fdg, so ist entsprechend fiir a <¢<b
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=)t (-)¢
(24) 0= 9(0) + Jo 7 AT i O = [ofdg
bzw
e ()t
(24’) (](t) = g(a') + _,(a. ? d® mit @(t> = t(afdg'

Beweis: Gemiiss Korollar 1 zum Satz 6 existiert in diesen Fillen

()b (+)0 ‘ 1
|'a;dg bzw. |, 7 dg. Fir f,(t) = )‘-(5 » fa(t) = f(t) gehen daher die
Formeln (22a) bzw. (22'a) nach Exsetzung von b durch ¢ entsprechend
in (24) bzw. (24') tber. — Ferner gilt folgender

Zusatz zum Satz 11: In den Formeln (22) existieren mit den
Integralen zur Linken auch diejenigen zur Rechten, falls f, + 0 und

1 beschrinkt in [a, b] ist.

2 ‘
Beweis: Aus vorigem Korollar folgt dann
=1 . ()¢ SO
9.8 = 9.(a) + Jq . al, mit F(t) = f,fady, g(t) = g(a) + [, 7 ar.
2 2

Also ist laut Satz 10 jede Nullmenge beztiglich F, eine ebensolche
beziiglich ¢,, die Menge der linksseitigen Unstetigkeitspunkte von ¢

in (@, b] in der analogen von I' enthalten, und aus der Ixistenz von
(- ()b
[of1dF und Satz 6 folgt diejenige von |,f,dg, was samt der Existenz
()b )
von [,fydy laut Satz 11 fir die Geltung von (22a) geniigt. Analog
ergeben sich die iitbrigen Behauptungen. — Satz 11 wird schliesslich
erginzt durch
Satz 12: Sind in [a, b] die Funktionen f, und f, beschrinkt, die

(-)b (+)b
Funktion g von beschriinkter Schwankung und existieren (', f,dg, ‘j'a f»dg,

80 Ist
(95 (+)a (16 ()2
(25) Jafldjafzd.q: Vafed | fidyg,

wobei beide letzteren Integrale existieren.
11
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Beweis: Die Menge N, der linksseitigen Unstetigkeitspunkte von
f1in (a, b) ist dann eine Nullmenge beziiglich ¢,, also auch beziiglich

(+)e .
D,(x) = (,fydg,. Uberdies hat f, in den linksseitigen Unstetigkeits-
(+)z
punkten von D(z) = (,f,dg (die unter den analogen von ¢

enthalten sind) eine linksseitige Grenze, so dass laut Satz 6

()b Qb (Ha . S

Joh @@ = [ f,d [ fadg = I, existiert. Analog ergibt sich die Existenz
(H)e ()=

von [,fad (,f1dg = I,. Die Berechnung von I, und I, mittels der

Formeln (21) und (21') liefert nun fir beide Integrale den Wert

(=) ] (+)
[ hhdy+ S hle—0) fue) dga) + S i) fl; +0) Ag(a,).

[a, b] a<<z;<b a<z;<b

§ 6.
Ergianzungen.

1. Es konnen folgende Sétze, in denen ~ das Zeichen -+ bzw, —
ersetzt, bewiesen werden.

Konvergiert im Intervall [a,b] die Folge der beschrinkten
Funktionen f, gleichmissig gegen die Iunktion f und existieren

fir die Funktion von beschriankter Schwankung ¢ die Integrale
(~)b (~)b _
fofudg (n=1,2, ...), so existiert auch (,fdg, und es ist

()b (~)b
(26) lim (,f,dg= [,fdy.

npoc0

Bei gewohnlicher Konvergenz der Funktionenfolge |f,} muss

hingegen fiir die Geltung von (26) ausser der gleichmissigen Be-
(~)0
schriinktheit der f, in [a, b] und der Existenz von (,f,dg noch die-
(~)b ’
jenige von ( fdg vorausgesetzt und verlangt werden, dass in den im
Integrationsintervall gelegenen ~ -geitigen Unstetigkeitspunkten z;
von ¢: lim f(x;,~0) = f(z,~0) ist.

n» oo

2. Die eingefiithrten Integraldefinitionen koénnen folgendermassen
auf Integrationsmengen erstreckt werden.
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Iis sei E eine beschrinkte lineare Punktmenge, die ihre untere
Grenze ¢ und obere b enthilt. Kine Folge {D,} von Einteilungen des
Intervalls [, b] heisse «normal beziiglich der Menge E», wenn fiir jedes

n alle Teilungspunkte von D, zu E gehdren und fiir jedes x e E eine
solche gegen x konvergente Punktfolge {x,} existiert, dass z, ein

Teilungspunkt von D), ist. Der Grenzwert, der sich zufolge lirsetzung
(~)b

in der Definition von (,fdg der normalen Einteilungsfolgen des

Intervalls [a, b] durch beziiglich der Menge E normale ergibf, sei

(~)
mit | fdg bezeichnet.
E

Iis kénnen stets zwei solche Funktionen £, ¢ in [a, b] definiert
werden, dass fiiv te E:f(t) = f(t), g(t) = g(t) ist, aus der Existenz von

(~) (~)b
{fdg diejenige von [ofdy tolgt (die Umkehrung elfoxdert gewisse

E (~)&
Zusatzbedingungen) und fiir jeden Punkt  der Menge EJ fdJ = ‘afdj
gilt. ok

Der Fall, dass @ oder b nicht zu E gehoren, kann auf den bespro-
chenen durch passende Frweiterung der Funktionen f und ¢ zuriick-
gefithrt werden.

8. Die Erstreckung der eingefiithrten Integrale auf mehrere Dimen-
sionen kann am kiirzesten mit Hilfe des Burkillschen Integralbegriffes!)
formuliert werden. Schon j“)fd(/ bzw. (lequ konnten entsprechend
als die Burkillschen Integra.le[ 1) (U) bAW[ lb ](TIJ) der Intervallfunktionen

a, o,
-) (+) ’

Ul) = f(@) - [9(B)—g(«)], UU) = f(B) - [9(F) —9(@)], I = [2, f]

definiert werden.

Ziwecks Definitionserstreckung auf zwei Dimensionen ordnen wir
der im Rechteck R definierten Punktfunktion f und additiven Intervall-
funktion g(I) (wobei I das Intervall « < « < B,y <y < § sei) die

vier Intervallfunktionen .
-, +) (+,) ;
= f(,y) » ), U(I) = f(x,8) - g(I), UL) = f(B, p) - (1) U )—7‘(5 J) -

1) Beaiiglich dieses Begriffes vgl. z. B. Saks (1), S. 165.

g(1)
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zu und setzen

byt <—~(—- (4,9 (+,+) (+,+)
Jitg= [0 squ—w deq—JU, [1dg=[U.

R

Man sieht sofort, dass im #n-dimensionalen Raume fiir eine Punkt-
funktion f und additive Intervallfunktion ¢ analog 2n einseitige
Stieltjesintegrale definiert werden kénnen. — Der Verzicht auf die
Additivitit von g liefert eine weitere Verallgemeinerung des Stielt-
jesschen Integralbegriffes.

Abschnitt ITI.

Versicherungsmathematische Anwendungen.

§ 1.

Einheitliche Darstellung der Grundgrossen der diskontinuierlichen und
kontinuierlichen Versicherungsmathematik.

1. Die Iinfithrung des gewohnlichen Riemann-Stieltjesschen Inte-
grals in die Versicherungsmathematik durch 4. Loewy (1) eriffnete
Aussichten auf die aus arbeitsokonomischen underkenntnistheoretischen
Griinden erwiinschte Beseitigung der traditionellen Doppelspurigkeit
zwischen diskontinuierlichen und kontinuierlichen Methoden der Ver-
sicherungsmathematik [vgl. dazu Brewer (1) und Jacob (1)]. Dieses
Integral existiert jedoch 6fters unter den fiir die diskontinuierliche
Versicherungsmathematik charakteristischen Voraussetzungen nicht,
was es zur allgemeinen Problemlésung ungeeignet macht. Hingegen
soll nun gezeigt werden, dass die hier eingefithrten Integrale den
Aufbau einer iibergeordneten Theorie erméglichen, aus der sich die
kontinuierliche bzw. diskontinuierliche Versicherungsmathematik durch
charakteristische — meistens entsprechend von Differentiation bzw.
Differenzenbildung begleitete — Spezialisierungen ergibt.

2. Der klassische Begriff der Sterbensintensitit u(t) = — (0 fljl(:) ’
der die Differenzierbarkeit der Lebendenzahl (() einer Sterbetafel
zur Zeit ¢ erfordert, wurde von Loewy (2) durch den auch bei blosser
Stetigkeit von [ definierten der «Integralsterbensintensitiit»
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t

M(t) = — f ﬂ ersetzt. Fir differenzierbares [ ist nimlich
l
0

Bei diskontinuierlicher Darstellung ist aber [ eine in den Inter-

vallen [z —1, z) (=1, 2, ...) konstante Funktion, die wie 7 inden

¢
. o n ) a .
Punkten z=1,2, ... unstetig ist, also existiert fT nicht. Des-
0

halb kann das gewohnliche Riemann-Stieltjessche Integral diejenigen
Methoden der kontinuierlichen Versicherungsmathematik, die sich
des Intensititsbegriffes bedienen, auf die diskontinuierliche nicht

iibertragen. Wird jedoch
=)

M(t) = — / —L-Z;

0

gesetzt, so ist bei stetigem [: M(f) = M(t), hingegen im diskonti-
-1

nuierlichen Falle fiir natiirliche ¢ laut Formel (16): M(t) = >\ ¢, mit
; z=0
Gy = a) — o+ 1). Der Sterbensintensitiit dﬂ/i(t—)— = u(t) des konti-
l(x) dt
nuierlichen TFalles entspricht danach im diskontinuierlichen die
Sterbenswahrscheinlichkeit M(t 4 1) — M(t) = ¢, .

Betrachten wir allgemeiner eine fingierte Llementengesamtheit,
die sich durch Aus- und Eintritte aus m einander ausschliessenden
Griinden éndert. Ist f9(#) die Zahl der in der Zeit 0 his ¢ aus dem
iten Grunde ausgetretenen Klemente (bei Austrittsgrund) bzw. die
mit dem Minuszeichen versehene Zahl der eingetretenen Elemente
(bei Lintrittsgrund), so bildet die Elementenzahl zur Zeit ¢

\
m

L(t) = L(0) — 3} 11

eine Funktion von beschrinkter Schwankung in [0, n], die dort iiber-
dies positiv sei. — Wir setzen



)

()¢
(%)
en o= [ iy =S f i
0

Im «diskontinuierlichen Falle» mit

) =fO, Lit) = L firs <t < s+ 1 (s =0,1...,n—1) bzw.
im «kontinuierlichen Falles mit stetig differenzierbarem f9(¢) (0 < t < n)
entsprechen einander:

. ‘ _ (1) ___f09) (i) _
w(z) (S + 1) . M(z)(s) — q(qn) 1) — fs+1 f-s diwd aM (t) =,u(”(t),
| L, dt
d Mt
M(s 4+ 1) — M(s) = ¢, und lt( ) = u(f).
a

8. Auch die finanziellen Voraussetzungen der Versicherungs-
mathematik kénnen mittels der eingefithrten Integrale einheitlich
formuliert werden. Es bezeichne w(f) den auf den Zeitpunkt 0 be-
zogenen Barwert ‘des im Zeitpunkt ¢ zahlbaren Betrages 1. Definieren
wir die «Integralzingintensitity als

(28) Af) =— | —.,

so entsprechen einander im «diskontinuierlichen Falle» mit w(t) = w,
fir s<t<<s-+1% bzw. im «kontinuierlichen Falle» mit stetig
differenzierbarem 10(t) (0 < ¢ < n): die Diskontrate A(s + 1) — A(s) =

aa
= o).

Wy P ;
=d,=1—uv,, (vs = ”'H) und die Zinsintensitit
W,

Die fiir die Versicherungsmathematik charakteristische Ver-

quickung der demographischen und finanziellen Voraussetzungen
fithren wir nun wie folgt durch.

1) qi_“ bezeichnet dabei die dem i-ten Grunde entsprechende «abhingige»
Austrittswahrscheinlichkeit bzw. die analoge mit dem Minuszeichen versehene
Eintrittswahrscheinlichkeit.

2) Bei unterjihriger Verzinsung wire w(t) in passend modifizierten Inter-
vallen als konstant anzunehmen.
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«Totaly von durchschnittlich aut ein Element entfallenden Zah-
lungen nennen wir deren Betrag F'(t) in der Zeit 0 bis ¢, wenn I(0) = 0
und F(¢f) im diskontinuierlichen .Falle in den Intervallen [s, s + 1)
(s=0,1, ...,n—1) konstant, im kontinuierlichen Falle in [0, n] stetig
differenzierbar ist. — Die Elementengesamtheit heisse « Versicherungs-

gesamtheit» bei folgenden
Einnahmen: Anfangszahlungen zur Zeit { =0 im Gesamtbetrage
L(0) - 4, sowie Primienzahlungen mit dem Total P(t);

Ausgaben: Rentenzahlungen mit dem Total E(t), Entschéidi-

(+)ta .
gungen fiir Aus- bzw. Bintritte von [, UWdf") fiir die Zeitperiode
t<t<ty(0 <t <ty,<m)und den tten Grund (v=1, ..., m), sowie
Endzahlungen im Gesamtbetrage L(n) - T'.

Wir definieren entsprechend:
10 den Kapitalwert im Zeitpunkt ¢ der bis dahin erfolgten Kin-
nahmen bzw. Ausgaben als

)t m + t

o EO4 + ( LwdP] baw, J,,__ [[DdeR + 2 U d

20 denjenigen der nachherigen Finnahmen bzw. Ausgaben als

m (+)n

1 1 ]
— D (1) (1)
) J Lde bzw. o0 |[ LwdR—l—%JJ O wdfD 4+ qwn) Lin) T

. 80 die «retrospektive Gesamtriicklage» V"(t) bzw. «prospektive»
V() als Differenz der Kapitalwerte im Zeitpunkt ¢ der bis dahin
erfolgten Finnahmen und Ausgaben bzw. nachher erfolgten Ausgaben
und Kinnahmen, die entsprechenden «Durchschnittsriicklagen» V"(t)
bzw. VP(t) als den damaligen durchschnittlichen Anteil eines Flementes

an der betreffenden Gesamtriicklage. .

w(¢) L(t)
L(0)

fir die Durchschnittsriicklagen (und damit Leibrenten, HEinmal-

primien u. dgl.) die einheitlichen Formeln:

Nachdem 4 = V"(0), T = V¥ (n) ist, gelten bei E(t) =

|
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‘ (+)¢ .
w(t) - , wL SR AL T
& r,<(o> = EQ VN0 = VO + o B —R)— ) [ )’
i=1 0 &
w(t) - (-)n m L U5 )
291) 2 VON = Eny VO — E V) — I (. EAP — R) — % _,,,.-_d/“ j
(@0) 5 V0 = EW YOO = E) V) — | [LEAP—B) Zl” 70

Wird im diskontinwerlichen bzw. kontinuierlichen I'alle
E(s)=E,, P(s +1) — P(s) =, R(s +1) — R(s) = 0,, (s = 0,1, ..., n—1)
bzw.
dP(t) dR(t)

= z(t), —— = o), (0 <1<
= alt), o(t) , n)

gesetzt, so entsprechen einander die Formeln:

-1 m
y ¥ 1 N 5
E! I/(tf) = V{)") +~ —J\O Es(ns 0, Y, *—\: qv(‘ib) lﬂslgl)ﬁ
r S= (e

-1 m

7(p 7 (5 . t) T
E, VP = E, VP — S E,(m, — g, v, Y, U.)
s=! t=1

bzw.

E(@t) V() = VIN(0) + Jf E(z) [n(r) — o(7) — i () UY(7)] dr,

E() VPOt) = E(n) VP(n) — \‘?E(’L’) [7(z) — o(z) — ) ul(z) U (2)] dr.

¢ i=1

§ 2.

Funktionalgleichungen der Durchschnittsriicklagen.
Priamienzerlegung in Spar- und Risikoteil.

1. Diein den letzten Zeiten auf verschiedensten Wegen abgeleiteten
Funktionalgleichungen von Deckungsriicklagen konnen auf eine rein
formale Integralgleichung zuriickgefiithrt und dadurch unter wesent-
licher Beweisvereinfachung verallgemeinert werden.

Es existiere nimlich fiir die Funktionen von beschrinkter Schwan-
kung I+ 0, W das Integral
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(=)t
1
(30) () = f —dEW), (0 <t <n).

0
Mit J‘OE’ dT existiert dann laut Zusatz zu Satz 11 auch

()n

o (I
— d(EW 1'dT,
| 5w = o

f ’

und die Formel (23) liefert fir f,=1,fp=—,9=EW,a=k, b =1
die Volterrasche Integralgleichung zweiter A?t fir W:

()¢ (+) ¢ Yol

(81) EOWO=EEWE + [EdT+ (, E‘Wd_h
die sich fiir It'(t) = E(t) 1) vereinfacht zu:

()¢
(32) B W(t) = B(k) Wk + [E4T.

Fir E(t) = E(t) und bei Wahl der retrospektiven oder prospektiven
Durchschnittsriicklage als W(t) liefern beidemal die Iormeln (29)

(80") T(t) = P(t)— P™(t) wit
m (+)¢ ar
(301!) P(N](t) ( ) + \1 | w U(t) (lf dM(t) 2.

Aus den Formeln (31) und (32) folgt daher

Satz 13: Sowohl die retrospektiven wie auch die prospektiven
Durchschnittsriicklagen einer Versicherungsgesamtheit geniigen fiir
simtliche 0 <t <m, 0 <k <n den Funktionalgleichungen:

(=)n Gn () g

1) In diesem Falle existiert [(E'dT= [, Edf 0—~d(EW) zufolfre Satz 11,

()n
nachdem mit j 0T i d(EW) laut Korollar 2 zum Satz 6 auch f o Bd(EW) existiert.

?) Wird in (32’) l= 0, V(0)= 0 und P(t)=P¥) ) gesetzt, so folgt V(1) =0
daher ist PY)(t) das «natiirliche Primientotal» der Versicherungsgesamtheit.
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() ¢
(32) EW V() = EW) V() + [, Ed(P— D),
BU) B0 V() = B V) + frap— P (EVva

E’

wobet iiber die Munktion /7" beliebig vertiigt werden kann, sofern nur
()n
(o 1" d (P — P™)) existiert.

Fir k=0 bzw. k =n wird (32) entsprechend zu (29r) bzw.
(29p). Zufolge Satz 13 geniigh also die prospektive Durchschnitts-
riicklage auch ohne Voraussetzung des Aquivalenzprinzips der Defi-
nitionsgleichung der retrospektiven und wmgekehrt; eine Tatsache,
die bisher unbekannt sein diirtte.

Die Integralgleichung (31") kann umgeformt werden in

()¢ )
(31') ) V() = Bk V(k) 4 B d(P— PW)
i (e
()t ()7 o
| a4 [y A M) - L j L
o dd

(Laut (22b), (11), (23), (25) und (22a) ist némlich

( I )t ]',II ( ){ ( ) ] s ( L )[ (4) ' ]4:’
(WEVd- -_\,th(,Ed( ) Vd 1ﬂ'w.f_.fuz -
E o E

E /f
(=) =) B
(1)t B B I’ (’i")l
—vla| m— / San\—rna | aw|= 1, V| d@ + t(,lf”dM )+ Ld / B 4]
> 0 A4 0 Lav *

2. Im diskontinuierlichen bzw. kontinuierlichen Falle entsprechen
einander:

10 die Ausdriicke fiir die natiirliche Primie und natiwliche Primien-
intensitit :
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Pt 4 1) — POy — ) — o, + D0, U ¢ ¢=01,...,n—1),
zul
[Z ¢ ' m‘
'("Hxl)(x\J(f,) = :rx(t\)(t) e Q( ) }— N 1)( ) ”(a)(” !);
- IE l

20 die aus Formel (32') fiwv t =k -}- 1 resultierende Rekursions-
formel der Deckungsriicklage

’ .,’ :\r
Vk = T o (] I + nl;—nlgc ))

und die durch Differentiation sich ergebende Thaelesche Dafferential-
gleichung:

(”( e Lu t)+ o f)l -+ (t) ‘“ﬂ(‘v)(t) ;

30 die aus Formel (317) fiir k << ¢ resultierende Summengleichung

-1
\

nv,=EV —I—L_, "{(:rr — "+ V,, '— e —v, (1‘—(1)“

s=k
und die Integralglerchung der Dechkungsriicklage

1 db(r) - ld
I'(z) dr HE—dg) | (.

"WV = 5 Vi) + “"1;,”(;){ [2(7) —aN()] + V(z) |

Bei blosser Voraussetzung der Stetigkeit der auftretenden Grossen
wird (31"") zu

¢ t d I
(31“[) ]’1”(#) V(t) — ]f]f(l.:) V(/l) *l" "' ]f.'” (l(l.)ﬁ_ﬁ P(l\’)) ‘Jﬂ ‘| V’E’ <(];”« ‘-’- (Zﬂ/[ —{'— d /J)-

k ke 4

Spezialfille von (31'"") sind fir einen geschlossenen Bestand
gleichaltriger Personen abgeleitet worden, und zwar fiir die retro-
1) Bei blosser Stetigkeit von w, U% und /(” (t=1,...,m) wird aus (30"):
mtye(e)

PN = RO+ [ ——df“

i=1 0
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spektive Durchschnittsriicklage mit & = 0 und daraus fiir die pro-
spektive unter Voraussetzung des Aquivalenzprinzips mit k = n [vgl.
Jacob (1), Loewy (1), Berger (1)].

Die gemeinsame Form (311 dieser Integralgleichungen und deren
Geltung sowohl fiir retrospektive wie auch prospektive Riicklagen —
und zwar ohne Voraussetzung des Aquivalenzprinzips — wurde nicht
erkannt.

3. Auch die Prémienzerlegung einer allgemeinen Versicherung in
Spar- und Risikoteil kann auf eine den diskontinuierlichen und kon-
tinuierlichen Fall umfassende Art vorgenommen werden, und zwar laut

Satz 14: Das Pramientotal P(f) einer Versicherungsgesamtheit
ist in ein «Sparprimientotal»

“at 1 | | (H)t
(838)  PO(l) = [ - AV) = V(O —V(0)— [y Vd4
L) 0

und in ein «Risikoprimientotaly

()
‘ (+)¢ i 1 .
(33R)  PH(p) = ()+\ [ow(U—V)ya | —aM®

@:1 0o W

zerlegbar, wobei als V(t) die retrospektive oder prospektive Durch-
schnittsriicklage der Versicherungsgesamtheit gewdhlt werden kann.
Dann kann V(f) durch reinen Sparprozess aus V(0) und Betrigen
von der Summe P¥(f) im Zeitintervall <0, ¢> gebildet werden.

Beweis: Wird in (30) E(t) = Egl(g)(i) , W) =V () gesetzt und

1
Formel (28) mit f, = -—, f, =1L, ¢g=wV angewendet, so folgt
1= 12 ) 8

()¢ ()¢
T(t):P(t)—-P‘N’(t):/——d(wV)—}-/ —d (OwT/dL_
0

(-)z

— pW)
P (t)+f0defL
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woraus unter Beriicksichtigung von (80”) und (27) P(f) = PU)(t) +
+ P resultiert. — Die Formeln (28) und (28) liefern iiberdies

Qe (+)t
f —dwV)=V{#)—V(0)— [, VdA.
o W '

Anderseits ist aber gemiss (80) P¥(f) der Wert von T(f) fiir
L) = w(t), W(t) = V(f), und Formel (32) driickt hiebei fiir k=0
die behauptete Kapitalisationshildung von V aus.

Im diskontinuierlichen bzw. kontinuierlichen !) Falle entsprechen
einander die Spar- und Risikoprémien

Pt + 1)— PO =ald =0, - V, ,—V,,

PB4 41)— PE ) =al® =g, + D10, ¢{ (U —V ) (1=0,1.. . ,n—1)
=1

bzw. Spar- und Risikoprimienintensititen

AP _ o= 2Oy
d p(R)(t) m

e =) = o) + Z# (0 [T — V(]

§ 3.
Gewinnermittlung und Riicklagenvariation.

1. Es soll nun bei Ubergang von einer Versicherungsgesamtheit
zu einer zweiten, deren Grossen mit einem Strich bezeichnet seien,
ein Zusammenhang zwischen der Riicklagenvariation und den ent-
sprechenden Gewinnausdriicken abgeleitet werden, der trotz seiner
Linfachheit bisher unbekannt sein dirfte. — Werden die ungestrichenen

1) Bei blosser Voraussetzung der Stetigkeit der auftretenden Grissen wird

aus (33F):
P& t) -+ Zf dfi.

\
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Werte als der Geschéftstithrung zugrunde liegend, hingegen die ge-
strichenen Rechnuncsgrundlagen und Ausgaben als wirklichkeitstreu
betrachtet und dx = a'— x gesetzt, so betriagt der auf den Versiche-
rungsbeginn diskontierte und auf ein Anfangsmitglied bezogene Ge-
winn fiiv die Zeitperiode [0, ¢]:

Q(t) = V(0) + j_‘z,tE'd(Pm Py E) - V() =

(-)¢

=)t
— V'(0) + [ E'‘d(P"—P"™)—E"(1) - V(t)— 8V(0) — |O E'ds P.
()1

1
IFir die «Gewinnfunktiony I'(f) = / ?dG gilt daher wegen V'(0) +

v 0
(=)t
+ o E'd(P"—P"™) =E' (O V' (1):
(=)t ()
(34) JoE'dl=G(t)=E'(t) - 6V (1)) —0V(0)— [, E'd P.

Satz 15: Zwischen der Riicklagenvariation 6 V(1) und Gewinn-
funktion I'(f) besteht der Zusammenhang

=)t

(85) E'(t) - OV(t) = E'(k) - dV (k) + J, ‘AP T
fiir alle 0 <t < n, 0 <k < n, und es ist

()¢
(36) I't) = — o8 R(t) + jﬂu Va4’ — A)—

W'

(- )r (-)r
m | (+)t ()t 1 .
———Z Sow'(U— V)cl/ — M"— [ w(U* V)df -—--dM(”:|.
0 o W
Die Vertauschung der gestrichenen und ungestrichenen Werte
liefert daher die dualen Formeln:
&Y
(35) E(t)- 0V({E) =E(k) - 0V (k) + (LEA(OP+1")

mit;
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(-+)¢
(36') I'(t)=— 8 Ry) + f,, V'd(A —A)—

= w

" _H')‘ . . o 1 N L N Hrl .—
— DU Jow'(U'W—TV")d f ,»-dM’“)—|0w(U“’~—V’)d/ ------ dM .
u 0 _ - Jo W

Beweis: Durch Subtraktion von der Formel (34) derselben fiir
t = k angesetzten folgt (35). — Wird anderseits (31") mit E' = E’
von der fiir die gestrichenen Grossen angesetzten Relation (32') sub-
trahiert, so ergibt sich

()t (+)1 E’
E't) - 3V(@) = E'0) - V() + [ E'dOP— 8 P™) — [LEVd — .

Die Linsetzung in (35) liefert fir k=0

)t =)t (+)t E’
foE'dlMN=— [ E'd6 P™M— (,E T/d—E- .
Zufolge Iormel (24) ist daher
=)t
1 ) E’
(36%) I'ty = wéP“v’—f —d ((EVd—.
0 E" - E

Das letzte Integral wird durch partielle Integrationen zu
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Aber
(+)¢ 1 ()t (4r
(=)
(I—)t 1
Vdf d(Lw) = (OVdA [Owadfv—dLa—
0
(=)
(+)¢ m () 1 _
= {y VEZA—I—S', Ode/——dM(”.
w
Analog ist )

()

(+)¢ NRGAL m ()L 1
{0 E’ Vd( E,) = [ Vad +> Jow’Vdf M,
=1

w

Wird noch fiir P der Wert aus (30”) eingesetzt, so folgt aus (36*)
die Formel (36), w.z. b. w.

Im diskontinuierlichen bzw. kontinuierlichen IFalle wird aus (85) entsprechend

' -1
E; ' aV! = E.’i ' 6Vh:_|- Z E;(ans_l—ys)

mit s=k
(86**) p,=I'Gs+1)—I'(s)=—0dp,—V 4 0v,—

m

— ; [U;(U;(r-t Vit g —v, (U ==V, H)‘]s %
bzw.
E'(ty- V(t)y=E'(k) - 6V (k) + i E'(z) « [07(z) + p(z)] dT mit
dr
By = = sea) + V0[50 —0(w)] -

_ 2: {[U(0)—TV'(2)] - W)~ [U9 () — P (z)] - pl(z)}.

1) Dieser Ausdruck kann laut Schirf (1), Formel 15, umgeformt werden in

; . ’ ov,
Vs :——'698 va s|~1 S_H)'6(1&:)‘}“(1(;)'6(](5_3_1] + "?;H (Vs_]_ns—'gs)'

8
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- I . A
Dabel ist Vs = —r [G(s1)—G(s)] der aut den Beginn des (s+-1)-ten Versicherungs-

8
Jahres diskontierte, auf einen Versicherten entfallende Crewinn dieses Jahres,

_ 1 4t

Wird als V(t) das ausreichende Deckungskapital und als P(t) das Total der
ausreichenden Priimie einer Lebensversicherung genommen, sowie R(t)= - P(t) -
+ N(t) + S(t) gesetat, wobei f§ den Inkassokostensatz, N(t) und S(t) entsprechend
die Totale der Verwaltungskosten und der Rentenzahlungen an Versicherte be-
zeichnen, so werden (36 **) bzw. (36 ***) entsprechend zu den bekannten IKon-
tributionsformeln des diskontinuierlichen bzw. kontinuierlichen Falles.

2. Aus Satz 15 resultiert sofort folgende den diskontinuierlichen
und kontinuierlichen Fall umfassende Verallgemeinerung des Funda-
mentalsatzes der Theorie der Kapitalansammlung von Canielli (1):

- die Gewinnintensitiit im Zeitpunkt 7 .

Die (prospektiven oder retrospektiven) Durchschnittsriicklagen
V(t) einer Versicherungsgesamtheit mit R(t) = 0, UY(t) = 4(t) V(t)
bleiben bei Streichung der Entschidigungszahlungen UY(#) und

. ) ) ( ) _ '
gleichzeitiger Frsetzung der M(t) dureh M'(t) = [(1— A7) g M
ungedndert.
0 I’ = 0 und entsprechend oV (0) = 0 fiir retrospektive baw. ¥ (n) =0

fitr prospektive Durchschnittsriicklagen aus TFormel (35) mit & = 0
bzw. k =mn die Behauptung folgt.

3. Satz 15 liefert insbesondere universelle — den diskontinuier-
lichen und kontinuierlichen I'all umfassende — Formeln fiw die
Variation der laufenden Primien, Kinmalprimien und Deckungs-
kapitalien der tiblichen Versicherungsformen. — Bei diesen bleiben,

falls die «Anfangsprimier 7= P(1)+0 ist, die Riicklagen V(0)
und V(n), der Endpunkt ¢ =n, sowie die den Primienverlauf charak-

3 ) 1 ,
terisierende Funktion C(f) = — - P(t) ungeiindert. Daher tolgt aus
JT
(85), wenn k =0 gesetat wird,

()¢ ()¢
E'(t) oV (t)=da - [(E'dC + [y E'dl

und wenn ¢ = n gesetzt wird
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Dies sind bereits universelle Variationsformeln tiir Versicherungen
mit laufender Primienzahlung. Analog folgen aus (35') die dualen
Formeln:

(-)n
()¢ )¢ EAI
E@)-6V({t)=0nm- [(EdAC + [(Edl",dn = —

1.
i) ’

foEdC

Fiir die Variation der Einmalprimie V(0) einer dem Aquivalenz-
prinzip geniigenden Versicherungsgesamtheit mit P(f) = 0 liefern hin-
gegen die Formeln (35) und (35") bei ungeéinderter Versicherungs-
daver und Endzahlung V' (n) die Ausdriicke:

()n (-
SV(O0) =— [y E'dl=— [(EdI".

Mit den dargestellten Anwendungen, die fiir die Beleuchtung der
Rolle der eingefithrten Integrale in der Versicherungsmathematik
geniigen diirften, miissen wir uns aus Raumgriinden begniigen. —
Jg sel nur noch bemerkt, dass die versicherungsmathematischen
Funktionen héchstens endlich viele Unstetigkeitspunkte aufweisen;
bei Beschriinkung auf solche Funktionen ist eine auch dem praktischen
Versicherungsmathematiker zugéingliche Darstellung der versicherungs-
mathematischen Anwendungen dieser Integrale moglich, die einer
kiinftigen Arbeit vorbehalten bleiben diirfe.



e 100 ==

Literaturverzeichnis.

Berger, A. (1) Uber eine Funktionalgleichung des Deckungskapitals. Assekuranz-
jahrbuch, 1936.

Bliss, G. 4. (1) A necessary and sufficient condition for the existence of a Stieltjes
integral. Proceedings of the National Acad. U.S. A., 1917.

Breuer, S. (1) Die Verwertung des Stieltjesschen Integralbegriffs zur Darstellung
von Renten und Bausparformeln. Versicherungsarchiv, 1931/32, Heft VIII.

Carmichael, R. D. (1) Conditions necessary and sufficient for the existence of a
Stieltjes integral. Proceedings of the National Acad. U. S. A., 1919.

I'véchet, M. (1) Sur quelques définitions possibles de I'intégrale de Stieljes. Duke
Math. Journ., 1936.

Gillespie, D. C. (1) The Cauchy definition of a definite integral. Ann. of Math., 1915.

Jacob, M. (1) Sugli integrali di Stieltjes e sulla loro applicazione nella matematica
attuariale. Giorn. Ist. Ital. Attuari, 1932.

Lebesque, H. (1) Legons sur I'intégration et la recherche des fonctions primitives.
2¢ éd., Paris, 1928.

Loewy, A. (1) Der Stieltjessche Integralbegriff und seine Verwertung in der Ver-
sicherungsmathematik. Bliatter fiir Versicherungsmathematik, 1931.

— (2) Zur Bedeutung des Stieltjesschen Integrals in der Versicherungsmathematik,
Assekuranzjahrbuch, 1935.

Saks, S. (1) Theory of the integral. Warszawa-Lwdéw, 1937,

Schirf, H. (1) Uber einige Variationsprobleme der Versicherungsmathematik.
Mitt. d. Ver. schweiz. Versicherungsmathematiker, 1941.

Swmith, H. L. (1) On the existence of the Stieltjes integral. Transactions of the
Am. Math. Soc., 1925. '

Steffensen, J. I, (1) On Stieltjes Integral and its application to actuarial questions.
Journal of the Institute of Actuaries, 1932.

Ward, A.J. (1) The Perron-Stieltjes Integral. Mathematische Zeitschrift, 1936.






	Über links- und rechtsseitige Stieltjesintegrale und deren Anwendungen

