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Über links- und rechtsseitige
Stieltjesintegrale und deren Anwendungen.

Von //enryft Sc/iär/, z. Zt. in Zürich.

Einleitung.

Die vorliegende Arbeit ist hauptsächlich einer Verallgemeinerung
des Biemann-Stieltjesschen Integrals gewidmet, auf die mich ur-
sprünglich Nachforschungen nach dem natürlichen mathematischen

Werkzeug der Versicherungsmathematik geführt hatten und deren

besondere Einfachheit nachher zu einer eingehenderen funktionen-
theoretischen Behandlung einlud.

Für die im Intervall [«, b] *) definierten endlichen Funktionen
/, p und dessen Einteilung 7) mit den Teilungspunkten a <„ < ^1 < • • •

< b sei

C/'</] ]£/&) bCi+i) —ffCi)]» ^n[/.»] S /(*i+i) Ü/fo-n) — -
i=0 i=0

Konvergiert für jede «normale» Einteilungsfolge {!)„} die Zahlenfolge
(-) (+)

M/J/>Vl} bzw. {^„[/,p]}, «o setzen wir

bra ^[/, ff] _/«/<&, ü"i ^[/, fif] /'/dp.
oo n->- oo

Dabei heisse {D„} normal, wenn die maximale Länge |jl)„|J der Teil-
intervalle von D„ für n->oo gegen 0 konvergiert.

Die vollkommene Beherrschung des «linksseitigen» Integrals
H (+)
/„/dp und des «rechtsseitigen» /'/dp gelingt dank einigen Existenz-
Sätzen (Satz 6 und 7), die überdies einen aufschlussreichen Einblick
in die Zusammenhänge zwischen diesen Integralen und dem tiebesgue-
Stieltjesschen — und damit dem Perron-Stieltjesschen — Integral

1) Für die Intervalle « < « < b, a < f < b, a < « < b, a < < < b verwenden
wir im folgenden entsprechend die Bezeichnungen [a, b], [a, b), («, b]. (a, b).
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einerseits, dem Riemann-Stieltjesschen *) anderseits gewähren, wo-
durch sie auch zu neuen Erkenntnissen über diese bereits klassischen

Integralbegriffe verhelfen.
Insbesondere wird so die allgemeine Regel der partiellen Inte-

gration für das Lebesgue-Stieltjessche Integral gefunden (Satz 9),

von der bisher nur ein Spezialfall bekannt war, und dadurch die

entsprechende ebenfalls unbekannte Regel für das Perron-Stieltjessche
Integral. Ferner wird das Verhältnis des Riemann-Stieltjesschen Inte-
grals zum Lebesgue-Stieltjesschen gänzlich geklärt (Satz 8a). — Eine
andere Konsequenz besteht im Erzielen eines «massfreien» Existenz-
kriteriums für das Riemann-Stieltjessche Integral (Satz 8), woraus
neben Verschärfung des Lebesgueschen Kriteriums für die Riemann-
sehe Integrierbarkeit einer beschränkten Funktion ein sofortiger Beweis

für die Äquivalenz des Cauchyschen und Riemannschen Integral-
begriffes folgt. — Endlich lässt sich eine von FI. L. Smif/t (1) und
J. F. $te//ewsew (1) eingeführte Verallgemeinerung des Riemann-
Stieltjesschen Integrals mit Leichtigkeit als arithmetisches Mittel
unserer links- und rechtsseitigen Integrale behandeln.

Für diese letzteren Integrale werden nach Begründung der funda-
mentalen Rechenregeln und Erforschung der Struktur der unbestimmten

Integrale einige für die Anwendungen erforderliche Sätze über Inte-
graliterationen in voller Allgemeinheit abgeleitet. — Ergänzend wird
über die Möglichkeit einer Definitionserstreckung auf beliebige Punkt-

mengen und mehrere Dimensionen sowie über die gliedweise Inte-
gration von Funktionenfolgen berichtet.

Die erzielten Ergebnisse gelten für den besonders wichtigen Fall,
dass die Funktion / beschränkt, die Funktion g von beschränkter
Schwankung ist. Ihnen musste das Studium einiger — wegen ihrer
Allgemeinheit an und für sich nicht uninteressant erscheinender —
Eigenschaften der Funktionen von beschränkter Schwankung voran-
geschickt werden, von denen folgende erwähnt seien:

Ist eine Funktion von beschränkter Schwankung in jedem Punkte
eines Intervalls von mindestens einer Seite stetig oder sogar nur halb-

stetig (von oben bzw. von unten), so weist sie diese Eigenschaft im

ganzen Intervall «gleichmässig» auf (Satz 1). Daraus resultiert die

i) Darunter verstehen wir überall den Grenzwert des gewöhnlichen Stielt-
jesschen Integrationsprozesses olme Voraussetzung der Stetigkeit der integrierten
Punktion.
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notwendige und hinreichende Bedingung dafür, dass die einer normalen
Einteilungsfolge des Intervalls I entsprechende Folge von Variationen
einer Funktion von beschränkter Schwankung immer gegen deren
Totalvariation auf I konvergiert (Satz 2). Anschliessende Unter-
suchungen über die Struktur der Funktionen von beschränkter
Schwankung und über Nullmengen bezüglich solcher Funktionen gelten
der Vorbereitung der Hauptsätze der Arbeit.

Dass die eingeführten Integrale das natürliche mathematische
Werkzeug der Versicherungsmathematik bilden, wird im Schluss-
abschnitt gezeigt. Mit deren Hilfe werden dort nämlich die Grundlagen
einer der diskontinuierlichen und kontinuierlichen Versicherungs-
mathematik übergeordneten Theorie aufgebaut, wodurch die Doppel-
spurigkeit zwischen diesen Disziplinen beseitigt wird. Dabei resul-
tieren auch inhaltlich neue Erkenntnisse, insbesondere über Funktional-
gleichungen der Deckungsrücklagen und den Zusammenhang zwischen

Rücklagenvariationen und Gewinnausdrücken, was erneut die Zweck-
mässigkeit einer allgemeinen Betrachtungsweise sogar bei praktischen
Anwendungsgebieten erweist.

9
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Abschnitt 1.

Einige Eigenschaften von Funktionen
mit beschränkter Schwankung.

§ 1.

Gleichmässigkeitseigenschaften.

1. Bekanntlich ist eine in einem abgeschlossenen Intervall stetige
Funktion dortselbst gleichmiissig stetig. Man kann sich fragen, ob

eine analoge Gleichmässigkeitseigenschaft nicht schon für Funktionen
besteht, die in jedem Punkte eines Intervalls von mindestens einer
Seite stetig oder sogar nur halbstetig sind. Präziser:

Wird ein abgeschlossenes Intervall der Länge <5, das im Punkte 1

[+] H
endet, mit I (f, d) bzw. 1(1, d) bezeichnet, je nachdem es rechts oder
links von 1 liegt, so nennen wir die Funktion 3:

iaj
rechtsseitig stetig bzw.

» halbstetig von oben bzw.

cj » » » unten,

wenn zu jedem e > 0 ein solches d(e) > 0 existiert, dass für alle Punkte
[+]

a; des Intervalls 1(1,«5) entsprechend die Ungleichungen gelten:

!</(«) — f/(0|< e,
(1) &; </(a;) — 3(f) < e,

Sf(®)—£/(<) > — «•

[+] H
Wird hierin 1(1, d) durch 1(1, d) ersetzt, so verwenden wir die Be-

Zeichnung «linksseitig» statt «rechtsseitig»;

I oj seitlich stetig bzw.

2° in einem Intervall I | öj » halbstetig von oben bzw.
I cj » » » unten,

wenn sie die betreffende Stetigkeitsart in jedem Punkte des Inter-
vails I von mindestens einer Seite aufweist;
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3° in einem Intervall I «gleichmässig seitlich» stetig bzw. halb-
stetig von oben bzw. halbstetig von unten, wenn jeder Zahl e > 0
eine solche Zahl b(e) > 0 und jedem Punkt f des Intervalls I ein solches
Vorzeichen ^(<) zugeordnet werden kann, dass die der betreffenden
Stetigkeitsart entsprechende Ungleichung (1) für alle Punkte x des

b/P)]
Intervalls I(f, b(e)) • I erfüllt ist.

Kann nun aus dem Bestehen einer obiger seitlichen Stetigkeits-
arten in einem Intervall auf deren Gleichmässigkeit dortselbst ge-
schlössen werden

Laut folgendem Beispiel ist diese Frage im allgemeinen zu ver-
neinen:

Die als y(x) =0 für — 1 < x < 0, r/(m) sin - für 0< x < 1

definierte Funktion ist in I [—1, + 1] seitlich stetig. Wie aber
auch b > 0 gewählt wird, so liegen für

1 3
f mit ——— —— < b

2 nor 2w(4w— Ü);TZ

die Punkte

V
1 f) 1 H 1 H 1

—, £ bzw. a: -, £

2 ?» — ?» 2 n — V TT (2 w + • 7ï 2 ?» + ~
2/ \ 2/ \ 2/ V 2

1U H
entsprechend in I (f, b) • I bzw. I (1, b) • I, während

(+) (-) (+) (-)

</(®) i. </(f) </(£) — i, </(0 o

<+) h
ist, so dass bei 0<e<l die Ungleichung (lb) für x x und x x,

(+) H
hingegen die Ungleichung (1 c) für x £ und x £ nicht erfüllt ist.

V\

Wir beweisen jedoch den

5'afe /.• Ist eine Funktion <y in der abgeschlossenen Hülle I eines

(nicht notwendig abgeschlossenen) Intervalls I von beschränkter
Schwankung
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I
aJ seitlich stetig bzw.

» halbstetig von oben bzw.

cj » » » unten,

so weist sie in I die betreffende Stetigkeitsart gleichtnässig seitlich auf.

Beim Beweis genügt es, I als abgeschlossen vorauszusetzen, da

andernfalls die Punktion g auf I — I durch ihren Grenzwert auf

stetige Art ergänzt werden kann. Für I [a, fc] folgt aber die Be-

hauptung aus einem nun zu formulierenden allgemeinen Hilfssatz.

Bezeichnen wir hiezu mit a(&) eine beliebige der Punktionen
a:, | as | und setzen :

G„(<) min {a[g(t — 0) — g(/)],a[g(< + 0) —0(f)]} für a<f<&,
6« («) « [f (« + 0) — 0(a)]- G«(&) « [# — 0) — 0(6)]

Wird dann mit die obere Grenze von G„(<) auf I bezeichnet,
falls diese Grenze nicht negativ ist, andernfalls die Zahl 0, so lautet
der angekündigte

ffii/ssctfe: Jeder Zahl e>() entspricht eine solche Zahl (5(e) >0
und jedem Punkt < des abgeschlossenen Intervalls I ein solches Vor-

MOI
zeichen yi(f), dass für alle Punkte a; des Intervalls'-) I (<,d(e)) • I
die Ungleichung besteht:

(2) a[g(œ) —</(<)] <r„ + e.

Daraus leiten wir den Satz 1 folgendermassen ab:

Im Falle o) wählen wir oc(a:) | as|. Dann ist entweder g(f— 0) —
— (/(<) =0 oder g(< + 0)—g(f) =0, also G„(i)ss0 auf I und =0;
daher wird die Ungleichung (2) zu (1 a), während der Hilfssatz in die den

Fall ff betreffende Behauptung des Satzes 1 übergeht» — Im Falle
wählen wir a(o;) a;. Dann ist entweder g(f—0)—g(<) <0 oder

g(f + 0) —- g(f) < 0, also G„(f) < 0 auf I, wonach wie oben geschlossen

wird. — Im Falle c) ist endlich die Funktion g^(a) — g(aj auf I
seitlich — also auch gleichmässig seitlich —- halbstetig von oben,

demnach die Funktion g gleichmässig seitlich halbstetig von unten.

*) Das nicht auf einen Punkt zusammengeschrumpft ist.



Bemerkt sei, dass ans der rechtsseitigen Halbstetigkeit bzw. Stetigkeit einer
Funktion von beschränkter Schwankung in einem Intervall noch nicht entsprechend
deren gleichmässige rechtsseitige Halbstetigkeit bzw. Stetigkeit dortselbst folgt:

Die als <y(;c) 0 für 0 < :c < 1, 5f(®) 1 für 1 < .c < :1 definierte Funktion

ist in [0,2] von beschränkter Schwankung und rechtsseitig stetig. Ist aber s
z

und d > 0, so ist für 1-KK1 und 1 < « < t + d die Ungleichung (Hj)
nicht erfüllt.

2. Es genügt, den Hilfssatz für die Sprungfunktion von </

tr(x) 2 Zl (/(«;) + 2

zu beweisen, wobei a^, a^, die Unstetigkeitspunkte von </ auf I
(-) (+)

seien, zU/(a:) p(a:)— </(a:— 0), zl </(«) </(« + 0) — </(a:) bedeute.

Einerseits ist nämlich die Funktion y(a:) </(a:) — a(a;) auf I
gleiclimässig stetig, und es ist offenbar

(2') « [</(«) — £/(«)] < « [>(®) — + | y(œ) — y(f) I,

anderseits hat aber ct mit </ die Funktionen G„ und die Zahlen /'
H H (+) (+)

auf I gemeinsam (nachdem zl or(f) zl j(t), Zl cr(<) Zl </(/) ist). Gilt
der Hilfssatz für a, so existiert ein solches d > 0, dass sowohl

£ ['/'(Ol
a [er (,'r) — er (<)] < /'„ -(—für alle Punkte a: des Intervalls I(f, d) • I

• • i i ^ •

ist, wie auch j y(,x) — y(<) < -- woraus angesichts (2') die Un-

gleichung (2) folgt.
(-)

_
(+)

Da nun die Eeihe 2, ^ fffoi) -f- 2 zl g(ah) entweder endlich ist
i i

h
oder absolut konvergiert, existiert ein Index m mit 2 | zl cr(a';) J -f-

j>m

x, «

+ 2 I u(a:,-) j < -- *). Es sei ci der Minimalabstand der Punkte a^,

d
a;„, und 0< d< — Ist < einer der Punkte %, a:,„ und

z

') Dabei sei £ci 0, falls die Folge -Je; }• aus i« Gliedern besteht.
t>m
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?/>(<) dasjenige Vorzeichen ~, für das a[o'(b^0)—<r(<)] ist, so

H
liegt sonst keiner dieser Punkte im Intervall I(f, <5)-I, also gilt dort
für a; 4 f

<*[>(») — ff(<~0)]<2|^ff(®j)| + 2M®(®i)| < J-

Aus der Ungleichung

a[a (a;) — or(<)] < — ff(f~0)] + a[or(f~ 0) — cr(f)] < G„(f) + -
g

folgt daher wegen G„(<)<r„+ - die Ungleichung (2) für die Funk-

tion er.

Ist fe I keiner der Punkte a^, so sei ^(f) dasjenige Vor-
[~]

zeichen für das im Intervall I(f,<5) • I kein mit i 1, m
MOI

liegt. Für a:el(f, <3) • I gilt wieder die Ungleichung (2) wegen

a[ff(a:) — <r(f)] < 2 I 1 + 21 I < o < +« + « •

i>w i>m ^

3. Konvergiert für jede normale Folge von Einteilungen {7J„}
des Intervalls I die Folge {% } der entsprechenden Variationen der

Funktion g gegen ihre Totalvariation F^, so heisse <y «von gleichmässig
approximierbarer Totalvariation» auf I. — Jede stetige Funktion
von beschränkter Schwankung ist bekanntlich von gleichmässig appro-
ximierbarer Totalvariation *). Wir beweisen den allgemeineren

Safe 2: Damit eine Funktion von beschränkter Schwankung g

im abgeschlossenen Intervall I von gleichmässig approximierbarer
Totalvariation ist, ist es notwendig und hinreichend, dass sie in
jedem inneren Punkte von I seitlich halbstetig sowohl von oben

wie auch von unten ist.
Beweis: Diese Bedingung ist notwendig. — Es sei nämlich {Z)„j

eine normale Folge von Einteilungen des Intervalls I, die dessen inneren
Punkt f nicht als Teilungspunkt haben, [a„,/?„] das den Punkt 7 ent-

i) Vgl. z. B. Lebesgue (1), S. 52.
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haltende Teilintervall von D„, D,' die aus Z)„ durch Hinzufügung des

Teilungspunktes < entstehende Unterteilung. Aus

- % 10(f) - </(« I + |-0(&) — r/W | — 10(&) - 0(«o |

folgt, wenn <7 von gleichmässig approximierbarer Totalvariation auf
I ist,

—«rj | r/(0 — 0(f—o) | +10(f + o) — f/(o | — | </(< + 0) — </(t—o) | o,

</W liegt daher zwischen (/(< — 0) und r/(t + 0), woraus bei </(f— 0)
die linksseitige Halbstetigkeit von oben und rechtsseitige

von unten der Funktion </ in f folgt, während bei </(<— 0) > -f- 0)

das umgekehrte der Fall ist.
Diese Bedingung ist hinreichend. — Ist sie nämlich erfüllt, so

existieren zufolge Satz 1 bei beliebigem e > 0 solche Zahlen
<5'(e) >0,<5"(e) >0 und zu jedem inneren Punkt f des Intervalls I
solche Vorzeichen v"(0> class für alle Punkte « des Intervalls
t'v'(0l [>/'"«)]

I(f, <5'(e)) • I bzw. I(f, <3"(e)) • I entsprechend die Ungleichung (16)
bzw. (lc) gilt.

Es seien nun {/!„} und normale Einteilungsfolgen des Inter-
vails I, wobei D„ die Teilungspunkte «p<^< < % hat. Ist für
m > M 111IlZlI)< <5 min }<5'(e), <3"(s),- fo—-2„), ^ Wj — *i)> • • -, g

Wv~

so werden wir zeigen, class für m > M auch

(3) ®,i„ > »/>„ — 2 (JV — 1) e

gilt. Daraus folgt dann wegen der Beliebigkeit von e: lim inf a, >
m^-oo

weiter wegen der Beliebigkeit von w: lim inf ry,^ > lim sup
w>-oo n>-oo

und aus Symmetriegründen: lim inf > lim sup y, woraus
«>-oo m>-oo

schliesslich die Gleichheit: lim lim »resultiert. »Da eine
?l>-oo m>oo

normale Einteilungsfolge {zl„, [ mit lim y F^ existiert, ist dann,
M > oo

wie behauptet, für jede normale Einteilungsfolge : lim F,.
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Aus jeder Intervalleinteilung können Teilungspunkte mit

[ff(&+i) — ff(fi)] • [9(^+2) — 9(^+i)] > 0

ohne Änderung der Variation von 3 gestrichen werden, nachdem

ff(Éi+i) - 9&) + 9(^+2) — 9&+i) I 19&+a) — 9(£a) i

ist. — Für die aus der Einteilung D„ durch sukzessive Streichung
allçr solcher Punkte erhaltene Einteilung D {a f „ < fj < ...<£,.= fe}

ist daher — Ist j 3(9) — 3(a) |, so gilt selbstverständ-
lieh die Ungleichung (3). Andernfalls ist 1 < r < IV, [</(<,-+j)— </(<,)]•

'[.9(^+2) — 9(^i+i)] < ® für ï =0,1, r — 2, und zwecks Beweises

von (3) kann g(<j) >3(0) angenommen werden, da und bei

Änderung des Vorzeichens von 3 ungeändert bleiben. Dann ist

(4) »x, [</(y — </(a)] — QKU — 9Ä)] + t?(*a) — 9(U] — • • ± [#) — '

Wir ordnen nun entsprechend zu : Jedem im Inneren von I gelegenen
['r'('2/)l [v"(<2)+lt]

Punkt <2/ bzw. <2^1 den nächsten in I(fg., d'(e)) bzw. I(<2j+1, <5"(®))

gelegenen Teilungspunkt #2; bzw. #2j+1 ^ m (er existiert wegen
IM m

II < {^'(e), ^"(e)} Angesichts

I#, — f,|<MJ|< <S< min —<o). ^('2 —il). • • •>
g

}

<

bilden die Punkte />; ebenso wie die ^ eine wachsende Folge und
bestimmen eine Einteilung zd'„, des Intervalls I mit <Vi,„
Zl,„ Unterteilung von zl',„ ist). Überdies ist

9(''>2,) — 3(y) «2,- < e» 9(y+i) — 9(^2;+1) «2/+1 < « •

Aus (4) ergibt sich daher

[9(^1) — 9(®) + ®il — [9(^2) — 9(^i) ~~ (®2 + «1)] + • • • + [9(&) 3('<Vi) + D J

19(^1) — 9(«) I + i 9(f2) — 9(^1) + ••• + 3(&) — 9OV1) j + 2 (£1 + «2 + • • + '

«dl + 2(81 + ••+«, 1) < Vi + 2(iV- 1) e, w. z. b. w.
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§ 2.

Sprung- und Kontinuitätsfunktionen.

Neben der üblichen Zerlegung einer Punktion von beschränkter
Schwankung p in deren Sprungfunktion 0 und eine stetige Punktion y
sind für unsere Zwecke zwei andere Zerlegungsarten erforderlich: in
die «linksseitige Sprungfunktion» 0,(2) und die «linksseitige Konti-
nuitätsfunktion» </,(«) von p in [a, 6] und die analogen «rechtsseitigen»
Punktionen 0,(3;) und (/,(«), definiert durch

(-) „ (+)
Wt) 0,(a:) 2 ^ 0(«i) > (50 2 a < « < 6,0,(0) 0» 0,

(^) flf(as) </,(«) + > (6r) gf(.x) Sfr(œ) + <?,(«).

(Dabei wird die in § 1, Punkt 2, verwendete Bezeichnungsweise bei-

behalten,) — Es ist leicht zu verifizieren, dass 0,(0:) linksseitig stetig
in (a, 6] ist, woraus dasselbe für &(a;) =y(a:) + 0,(3;) folgt, während
analog die Punktionen 0,(0:) und </,(a;) rechtsseitig stetig in [o, fr) sind.

Eine Punktion, die in [a, fc] ihre eigene links- bzw. rechtsseitige
Sprungfunktion ist, heisse dort schlechthin «links»- bzw. «rechts-
seitige Sprungfunktion». Eine Konstruktionsvorschrift für derartige
Punktionen liefert

Safe 3: Konvergiert die Beihe 2|ç>(a',)|, falls die Folge {a;,-} von
Punkten des Intervalls [a, 6] unendlich ist, so sind

(7t) y(a;) — 2 für a < a; < 6, y(a) 0

(7r) y (3) 2 für « < « < & ,*(«) 0

entsprechend links- und rechtsseitige Sprungfunktionen in [a, i>]
H (+)

mit den (einzigen) Sprungstellen &, und zl ^(a:,) /I #(a^) ç>(a;-).
Beweis: Ist a < <„<œ, lim f„ œ, so gilt, falls & einer der Punkte a:,-

ist,
v>(®)—v(U 2 2 v(«i) + <?(>),

»

falls a; keiner der Punkte ai; ist,

v(*)—VW 2 ?(®i)
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Aus lim V ç>(a,v) 0 folgt im ersteren Falle /%(&•) <y>(&)> im
n>oo /;j<arj<x

(-)

zweiten =0, so class (7«) die Gestalt von (5t) mit ?y> an Stelle

von er, und çy annimmt. — Analog ist die die Funktion % betreffende

Behauptung zu beweisen.

2. Aus Satz 3 und den Formeln (5) und (6) folgt insbesondere,
class ff,, ff,, çy, und çy, überall von derselben Seite wie çy stetig sind.

In Verschärfung des bekannten Satzes, class alle drei Variationen
einer stetigen Funktion von beschränkter Schwankung ebenfalls stetig
sind i), erhält man ferner folgendes

üforolZar Safe 2: Alle drei Variationen einer Funktion von
beschränkter Schwankung çy sind überall von derselben Seite wie çy

stetig. Daher lässt sich çy als Differenz zweier nichtfallender überall
von derselben Seite wie g stetiger Funktionen darstellen.

Beweis: Angesichts der Relationen

(8) </<">(«) 1 [F(z) + 0(®) — </(«)]. ^ U<(a') + f/(n) — fifW],

wobei «/^'(as), </"'(») und F(;c) entsprechend die positive, negative und

totale Variation von çy in [et, er] bezeichnen («/''"'(ff) ;y'"'(ct) F(a) 0),

genügt der Beweis für die Funktion F. — Ist nun çy in («, h) seitlich

stetig und im Punkte rc<£<6 z.B. linksseitig stetig, {/)„} eine

normale Folge von Einteilungen des Intervalls [a, £], der letzte

Teilungspunkt von /)„ vor f, so folgt aus

"/)„ < P(f») +1 sK£) — i

sowie Satz 2: F(f) < F(£—0), und die nichtfallende Funktion F ist

(wegen F(| — 0) < F(£)) in | linksseitig stetig; analog ist dann der
Beweis bei rechtsseitiger Stetigkeit von çy in « < £ < fr. — Im all-

gemeinen Falle sind daher mit den seitlich stetigen Funktionen çy,, ff,

überall deren totale Variationen von derselben Seite wie çy stetig, und
da auf jedem Intervall die totale Variation einer Summe höchstens

der Summe der totalen Variationen der Summanden gleichkommt,
folgt aus (6t) die Behauptung.

4 Vgl. Lebesgue (1), S. 54.



3. iS'ate Die Formeln (Ci) bzw. (Cr) liefern entsprechend die
einzigen Zerlegungen einer Funktion von beschränkter Schwankung
<7 in eine linksseitige Sprungfunktion in [a, 6] und eine in (a, fr] links-
zeitig stetige Funktion bzw. in eine rechtsseitige Sprungfunktion in
[«, 6] und eine in [a, b) rechtsseitig stetige Funktion.

Beweis: Aus den Darstellungen (5) und Satz 3 folgt, dass die
Funktionen er, bzw. o,. entsprechend links- und rechtsseitige Sprung-
funktionen in [a, 6] sind.

Ist in der Zerlegung </(&') =y,(a;) + «,(£) auch s, eine linksseitige
Sprungfunktion in [«, 6] und y, linksseitig stetig in (a, 6], so ist

(9) gr,(®) — y«(®) *«(®) — *.(®)

(-) (-)

linksseitig stetig, also Zls,(®) — zlff,(&') 0 in («,b], woraus s,(a:) o^(.r)

in [a, b] und angesichts (9) auch </,(o;) y,(a:) folgt.—• Analog ergibt
sich die symmetrische Behauptung.

S'afe 5: Alle drei Variationen einer links- bzw. rechtsseitigen
Sprungfunktion r/ in [a, b] sind ebensolche Sprungfunktionen, und
deren Sprungstellen sind in den ihrigen enthalten.

Beweis: Ist z.B. </ linksseitige Sprungfunktion in [«, b], so exi-
stiert für die Folge [£,•} deren Sprungstellen in (a, ®] und « > 0 ein

H
Index m mit 2 j zlr/(£,) | <e. —• Liegen in keinem der Teilintervalle

einer Einteilung /) von [«,»] zwei der Punkte so ist

k) H
21 I — « < '"o < 21 I

•

(=1 î

Für eine normale Einteilungsfolge |D„} von ("«,«] ist daher angesichts
der rechtsseitigen Stetigkeit von r/ in [a, b) und Satz 2

lim 7(œ) 2 1=2! ^0(®f) •

h>-oo i
(-)

Aus der Darstellung r/(.r) 2 f/(®) — 0 und Formel (8) folgt

.</*'(®) 21 ^»(®î) I ' 2 ^»(®") !> »

î »

wobei »j bzw. .r" entsprechend Punkte mit zh/(ae)>0 bzw.
(-)

Zlp(a;;) < 0 sind. Satz 3 liefert alsdann die Behauptung.



— 140 —

§ ^
Nullmengen.

1. Das Mass einer Menge E bezüglich einer nichtfallenden Funktion
ry sei <y {Ë} *). «Nullmengen» bezüglich einer Funktion von beschränkter
Schwankung </ nennen wir Mengen IV mit p'*'' {W} </'"'{N} =0,
was mit F{iV} =0 gleichbedeutend ist.

Wird (/*(#) (/(— ai) für — b < a; < — a gesetzt und die links-
seitige Kontinuitätsfunktion bzw. Sprungfunktion von </* in [—• 6, — «]
mit' </* bzw. oy bezeichnet, so ist leicht zu verifizieren, dass für jedes
a < a; < 6 er* (— a:) er,(a;) — cr,(&), demnach <y*(— a;) j/,(a;) + er^ö)

ist. Ferner gilt
Bemerfcwne/ I: Die Menge iV* aller der und nur der Punkte a;,

für die — a; zu iV gehört, ist dann und nur dann eine Nullmenge
bezüglich (/*, wenn die Menge IV eine Nullmenge bezüglich <y, ist.

Beweis: Ist {I,*} eine Folge von die Menge JV* vollkommen
überdeckenden Intervallen und 4 das zu I," bezüglich des Null-
punktes spiegelsymmetrische Intervall, so überdeckt die Folge {!,,)
vollkommen die Menge ,;V und umgekehrt. Für alle a und /I ist ferner
j yyj(—a) — <y*(—/?) | | £/,.(/?) — (/,•(<*) |

>
also sind für spiegelsymmetrische

Einteilungen von bezüglich des Nullpunktes spiegelsymmetrischen
Intervallen die entsprechenden Variationen von yy* und (/, einander

gleich, und dasselbe gilt für die totalen Variationen, woraus die Be-

merkung folgt.
Bemerfcwwy 0: Eine Nullmenge bezüglich der Funktionen ^ und

y/2 ist es auch bezüglich der Funktionen <7^ dz y/g.

Auf jedem Intervall ist nämlich die totale Variation von ^ zb y/2

nicht grösser als die Summe derjenigen von ^ und y/g.

Bemer&ww/ 3: Das Komplement [a, è] — M der Menge M samt-
licher in [et, fe] gelegener Unstetigkeitspunkte a; der Funktion von
beschränkter Schwankung 3 ist eine Nullmenge bezüglich jeder links-

i) Wird G(I) y(b)— 9(0 für I=[a, b] gesetzt, so bildet bekanntlich
die untere Grenze ya-JE}- solcher Summen SG(I/{), dass •( i/tJ- eine Folge von die

Menge E vollkommen überdeckenden Intervallen ist, ein äusseres Mass im Sinne

von CoratbeocZory. Für die bezüglich y« -JE}- messbaren Mengen e ist nun
yjej. Insbesondere ist </{[a, b]} y(b + 0) — y(o— 0), y{[a, b)J-=

y(b — 0) — y(o — 0), y j (o, 6] j. y(b + 0) — y(a + 0), y {(a, b) [• y (6 — 0) —
— 9 (o-H 0).
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oder rechtsseitigen Sprungfunktion in [«, 6], deren sämtliche Un-
Stetigkeitspunkte in M enthalten sind. Insbesondere ist [«,/>]—-M
eine Nullmenge bezüglich o, und o,..

Beweis: Für eine nichtfallende linksseitige Sprungfunktion G in
[«, 6], deren sämtliche Unstetigkeit,spunkte £, in M enthalten sind,
ist wegen ihrer rechtsseitigen Stetigkeit, der Relation (5t) und

(-)

— ZlG(a) G (a — 0):

G {[«, J]} G(6) - G(a- 0) S^G(f,).

Dies ist aber der Wert von G{M}, woraus G ![«,&]—M}=0
folgt. Vermöge des Satzes 5 ergibt sich die Behauptung für alle links-
seitigen Sprungfunktionen der Bemerkung 3. Für eine rechtsseitige
Sprungfunktion G der Bemerkung 3 ergibt sie sich analog (oder unter
Verwendung der Relation G(a:) [G*(a:)]* und der Bemerkung 1).

Abschnitt 2.

Theorie der links- und rechtsseitigen Stieltjesintegrale.

§ 1.

Elementare Rechenregeln.

H ft (+)ft
Die Definition der Integrale /„/%, /„/%, die in der Einleitung

für «< i> gegeben wurde, ergänzen wir durch die Festsetzungen:

(-)« (-)« (-)/?

/«/<& 0, /,,/% — /„/% für /9 > a,

worin ^ eines der Zeichen -)-, — ersetzt. Alsdann gilt für jede a, /?, y
aus [a, 6]:

(-)/? (~)r H« *
/«/% + /,/*/ + /y/dg ==o.

Einfache Zusammenhänge zwischen den eingeführten Integralen
ergeben sich:
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<0 Durch folgendes «Spiegelungsprinzip»:

Wird für —6 < f <—a :/*(<)=/(—<), </*(<) —f) gesetzt, so
(-)& (+)6

ist die Existenz von /„/d(/ bzw. /„/dp entsprechend mit derjenigen
(+)-» (-).-»

von bzw. y_&/*d(/* äquivalent, und es ist

(-) 6 (+)-« (f)Ä (-)-»
(10) i-»/ ^ -/-»/*d<A

Beweis : Sind D und D* entsprechend spiegelsymmetrische Eintei-
(-) (+)

„
lungen der Intervalle [a, 6] und [—h, — «], so ist [/,</] •—Rn*[/ »1/ ]>

woraus durch Grenzübergang die erste Behauptung folgt, aus dieser

aber vermöge der Relation [/*(<)]" /(f) die zweite.

Durch «partielle Integration»:

Die Existenz von y „/de/ ist äquivalent mit derjenigen von
(+)6
/„i/d/, und es ist

Hé (+) ft

(11) /«/<%/= /ff]£ —

Dies folgt durch Grenzübergang aus der Gleichheit

-4 d [/> ff] =/</]£ — [ff./]-

Ferner ist:
(~)ft <~)é (~>6

(12) /„(/1 ± /a) dfif yjidi/ ± y„/ad(/,

(~)ft (~)é (~)ft

(18) /«/%! ±ffa) /«/^ffl ± /<Ä>
(~)6

(14) yo/% 0 für (/ const.,

(15) /a% ==#)-!/(«)•

Dabei zieht in (12) und (13) die Existenz der Integrale zur rechten

Seite diejenige des Integrals zur linken nach sich.

Obige Relationen folgen aus analogen für die R-Summen he-

stehenden.
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§ 2.

Existenzsätze.

1. Fundamental für die weiteren Betrachtungen ist folgender
5'afe 6: Ist iin Intervall [«, fr] die Funktion / beschränkt, die

Funktion </ von beschränkter Schwankung, so ist es für die Existenz
<->»

von /„/dp notwendig und hinreichend, dass

1° in jedem linksseitigen im Intervall (a, fr] gelegenen Unstetig-
keitspunkt a; der Funktion </ die Funktion / eine linksseitige Grenze

/(.r — 0) hat;
2° die Menge lY der linksseitigen im Inneren von [a, fr] gelegenen

Unstetigkeitspunkte der Funktion / eine Nullmenge bezüglich der

linksseitigen Kontinuitätsfunktion <y, von </ ist.
Dann existiert das Lebesgue-Stieltjessche Integral y/cfry, über

dem Intervall [a, fr), und es ist

(ltf) /«M</ //% + 2 /(®i — 0) ^ ?(®i) »

[«,6) <ô

wobei die Summation sich auf alle im Intervall (a, fr] gelegenen links-
seitigen Unstetigkeitspunkte an der Funktion <y erstreckt.

Beweis: Obige Bedingungen sind hinreichend. Es sei nämlich
zunächst die Funktion </, nichtfallend und {iY| =0. Bilden die Ein-
teilungen D„ von [a, fr ] mit den Teilungspunkten a fj"', fr

eine normale Folge, so sind die streckenweise konstanten, als

/«(O für 4"' < < < (f 0,1, r„ — 1), definierten
Funktionen, Ii— messbar in [a, fr), also messbar bezüglich (/,. Für
4"V) < «< 4"'w+i ist lim 4"'(x) ® und wenn « =a oder die Funktion

CO

/ in a; linksseitig stetig ist, also für a; aus [a, fr) •— N,

(17) lim/„(®) =/(*).

Die Funktion / ist daher sowohl auf [o, fr) — jV als Grenzwert
bezüglich </, messbarer Funktionen, wie auch auf JV, als einer Null-

menge, und demnach in [et, fr) bezüglich </, messbar. Da die Wertmenge

von /„ für jedes w durch die Grenzen derjenigen von / beschränkt ist,

folgt aus (17) auf Grund eines bekannten Satzes von Lebesgue
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I //,A / /%,
n>-oo [a, ô)-JV [a, 6)-iV

und wegen

/AA //A 0
AT AT

sogar
lim //„A //A-

[a, A) [a, 6)

Anderseits ist angesichts gf, {[^, ä(4"U) —i/« (4"')

'»H »Tri >»-' H I
//„A 2 / /»A=2 / /(4">) A=2 /(4">) sf, I $">, <51J !• ^

[a,A) '=0^(;")_ (W ^ i=0 [(!"),(("! j) »=•>

(-)ft
Daher ergibt sich y „/A — y /dr/,, was sich vermöge der Korrolars

[o, 6)

zum Satz 2 und der Relation (13) auf jede den Bedingungen des Satzes 6

genügende Funktion </, überträgt. Wegen </(i) (/,(<) + u,(<) ist dann

nur noch

/<Ä — 0)-z3(/(a;,)

zu beweisen. Dies geht aus der Existenz der linksseitigen Grenze

von / in den Sprungstellen von n, durch folgende Fallunterscheidung
hervor :

ctj Die Funktion u, hat in (a, hj endlichviele Sprungstellen.
Für genügend grosse n liegt dann in einem Teilintervall von D„

höchstens eine dieser Stellen 1, ,m). Zählen wir sie dem-

jenigen Teilintervall (af>, $">] zu, in dessen Innerem oder rechtem
Ende sie liegt, so ist

(4 m (4

i—1

und lim /(a*"') /(x • — 0), also es existiert
n>oo

H A (-) (-)

y «/A 2/A—o) • AA) 2/A—o) ' AA)-
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Die Funktion er, hat in (a, 5] abzählbar viele Sprungstellen.

Ist If die obere Grenze von |/| in [a, 6J und e >0, so ist dann für
(-)

einen Index If: If • 2 | < Sind ferner <r"'" und p"'" links-
i=iV

seifige Sprungfunktionen in [a, J>] mit den Sprungstellen a^,
(-)

bzw. a;„,+2'• • ' wobei in a:- der Sprung Jcr,^) beträgt, so

ist <r,(f) <r' '"'(<) -)- g'»'(<) für jedes m und n<f<5. Für m >H
ist also

\ [/, orj-[/, or«»»] j | ^ [/, g(«>] j < g If • |
2er, (*,.) | < If • 2 j 2or,(*,)

| < «,
i=m + 1 i=iV

demnach

A, [/, er'']- o < 2^ [/, er,] < 2^ [/, er"'"] + e.

In der Grenze ist zufolge «j

m (-) (-) (-)

2/(«i — 0) • ^< 1 f ^Ifl„[/,er,] < lim sup 4ßJ/,er,] <
i=l «>>oo n>oo

m (-)

< 2/(®i—+ «»
i=l

00 (-)

was angesichts der Konvergenz von 2 /(K— t)) • zle/(a;,) *) auch für
1 1

m ~ gilt, woraus sich wegen der Beliebigkeit von e>0

lim 2/(^—0) • A</0',) 2/(®.—0) • zlejf(a;,)
n>-oo i'=l a<a:i<6

ergibt, w. z. b. w.

2. Den Notwendigkeitsbeweis stützen wir auf 3 Lemmen.

Lemwiei /: Ist für die unendlichen Zahlenfolgen ]x„},*{j/,J, {.?„}

von einem Index an a < < ?/„< 2„ < ft und konvergieren alle diese

oo (-)
i) Sie folgt aus derjenigen von S | Zl{/(®i)| unci der Beschränktheit von /.

i=i
10
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Folgen gegen denselben Punkt des Intervalls [a, b], so ist es für die
(-)&

Existenz von y „/dg notwendig, dass

*) lim [/(&„) - /(*,„)] • —ff(î/J] «

ist.

Beweis: Es sei {D„} eine solche normale Einteilungsfolge, dass

und benachbarte Teilungspunkte von D„ sind. Die durch Hinzu-
fügung des Teilungspunktes entstehende Unterteilung zl,, von D„
durchläuft ebenfalls eine normale Folge, daher ist

H H
0= lim {4pJ/,:g] —4,,„[/,</]} hm • [gfe) — g(a:„)] —

n>oo oo

—/(««) [0(yJ — .9(®JJ--/(y») [s(«J — £/(«/«)]} — 1"» [/(»«)—/(2/J] • [s(«„) —
n>- oo

(-) 4

Lemma 2: Für die Existenz von /„/dg ist es notwendig, dass

1° die Funktion / in jedem in (a, b] gelegenen linksseitigen Un-

Stetigkeitspunkt von g eine linksseitige Grenze hat,

2° die Funktion / in jedem in (a, b) gelegenen rechtsseitigen

Unstetigkeitspunkt von g linksseitig stetig ist.

Beweis: Ist a; ein linksseitiger Unstetigkeitspunkt von g und

«<«<&, so existiert eine solche Punktfolge {£„}, dass

a < £„ < œ, lim £„ «, lim g(f„) dt g(as)
M>-oo oo

ist. Ferner existiert eine solche Teilfolge {»?„} von {£„}, dass die Folge

{/(??»)} einen Grenzwert L hat. Endlich ist in {??„} zu jeder Folge

ja:„} mit ,r„< a;, lim — » eine solche Teilfolge {g„} enthalten, dass
n>-oo

< î/„ ist. Setzen wir £, so sind für die Folgen {a;„}, {?/„}, {2,,}

die Voraussetzungen des Lemmas 1 erfüllt. Daher ist es für die Existenz

von y „/dg notwendig, dass •») gilt, oder wegen lim [g(«„)— g (?/«)]
«> oo

««/(a) —4*0:
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0 lim [/(a:,,) — /(?/„)] lim /(.«„) — B, was angesichts der Be-
«oo n>oo

liebigkeit der linksseitig gegen a; konvergierenden Folge {«„} besagt,
dass / in a: die linksseitige Grenze B hat.

Ist :c ein im Intervall (a, fr) gelegener rechtsseitiger Unstetigkeits-
punkt von p, so existiert eine rechtsseitig gegen a; konvergierende
Punktfolge |«„}, für die {(/(«„)} eine von (/(«) verschiedene Grenze

hat. Für eine beliebige gegen a; linksseitig konvergierende Punkt-
folge ja:,,} und %, £ sind wieder die Voraussetzungen des Lemmas 1

(-)»

erfüllt, daher ist es für die Existenz von j'„/tfr/ notwendig, dass

lim [/(«„)— /(«)] • [fifW — </(«)] 0 ist und wegen lim [p(z„) — gf(x)] 4 0
« > oo «> oo

muss lim /(«„) =/(«), also / in a; linksseitig stetig sein.
n>oo

Lemma 3: Die Einteilungen /)„ [a 4"'> 4"'> • • •> 4",' &] mögen
eine normale Folge bilden. — Ist die Funktion F in [a, fr] nichtfallend
und linksseitig stetig, die Funktion / in jedem rechtsseitigen Unstetig-
keitspunkte von F in (a, fr) linksseitig stetig, jedoch die Menge V
der linksseitigen Unstetigkeitspunkte der Funktion / in («, fr) keine

Nullmenge bezüglich F, so liegt in jedem Teilintervall [4"',4"i i) von
L>„ ein solcher Punkt £(">, dass

CH-1

(18) lim inf V | /(*(»>) _. /(£(">) | [ _ F(^0)] > q ist.
M > oo |'=0

Beweis: Die Menge JV„ der Punkte a: von (a,fr), in denen die links-
seitige Oszillation von / (d. i. die untere Grenze der Oszillationen

von / in sämtlichen Intervallen, deren rechter Endpunkt a: ist) min-
destens a beträgt, ist für jedes a >0 linksseitig abgeschlossen, d.h.
enthält alle ihre linksseitigen Häufungspunkte. — Liegen nämlich
für jedes e > 0 im Inneren des Intervalls [a; — e, af| Punkte von JV„,

so auch ein Intervall, in dem die Oszillation von / nicht kleiner als

a ist ; daher ist die Oszillation von / in [a; — e, a:] nicht kleiner als

a und ;r e xV„. — Eine linksseitig abgeschlossene Menge ist aber die

Differenz von zwei Boreischen Mengen: ihrer abgeschlossenen Hülle
und einer Teilmenge der höchstens abzählbaren Menge derjenigen
ihrer rechtsseitigen Häufungspunkte, die linksseitig von ihr isoliert

oo

sind. Für jedes a>() ist daher iV„, also auch V — y, -V i eine

Boreische und demnach bezüglich F messbare Menge. '
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Ist nun F {JV} >0, so muss angesichts

oo

f{N}<2F{AD]
'! — 1 i

F {A^J >0 für ein a > 0 sein und die Einteilung D„ Teilintervalle I
mit F JiVg,, • 1} > 0 enthalten. Für diese nach wachsenden rechten

Endpunkten angeordneten Teilintervalle [af, &f] (7' 0, s„) ist

SW

F • [«f, ^]} «>f > 0, « F {AV,} 2 •

}=0

Es sei Af die untere Grenze der Menge der rechtsseitigen Häufungs-
punkte von A[,„ • [af, fef ]• Die Menge A"g„ • [af, Af ] kann ausser Af
nur rechtsseitig isolierte Punkte enthalten, bildet daher als höchstens
abzählbar eine Nullmenge bezüglich der voraussetzungsgemäss in den

Punkten von A^ stetigen Punktion F. Deshalb ist

«,f F {Af„ • (4", 4")} < F {(Af, &f)} F(&f — F(4"' + 0)

und da Af ein rechtsseitiger Häufungspunkt von JVg„ ist, existiert

in JVg„ • (Af,6f) ein Punkt 4'' F(i>f)— F(j?f) > — rof. Ferner

existiert ein Punkt af<ff <??f mit |/(af)—— An-
sonsten wäre nämlich die Oszillation von / in [af, ?/f], also auch die

linksseitige Oszillation von / in 77!"', nicht grösser als 2a, obwohl

??f eAf^ ist. Aus

F(&f — F(ff > F(&f - Ffaf > 1 wf

folgt daher

i /(af - I • [F(&f - F(ff)] >
*

a«,f

und
sn J

2 i /(af) — /(ff) • [F(&f - F(ff )] > - <*«> > 0.
7=0 ^

Setzen wir nun ff — ff, falls ff mit keinem der Punkte af
übereinstimmt, hingegen ff ff, falls ff af, so ist
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21/(4"') - /(£<"') I • [n4"ii) - W)]
ï=0

I

21 /«) - /($*) I • I7W- 'W] > o > °- *• *
)=0 ^

3. Die Bedingungen des Satzes 6 sind notwendig. — Existiert
<->»

nämlich (",,/dff, so hat laut Lemma '2 die Funktion / in jedem in (a, 6]

gelegenen linksseitigen Unstetigkeitspunkt von ff, also auch von u,,
eine linksseitige Grenze. Daraus wurde aber beim Zulänglichkeits-

(-)»
beweis die Existenz von ('„/du, gefolgert. Gemäss (13) existiert daher

B_&

wegen ff,(t) ff(0—°i(0 Ja/^9te

Wäre nun ÎV keine Nullmenge bezüglich ff,, so auch nicht bezüglich
deren totaler Variation in [a, ®]: F(;c). Zufolge Korrolar zum Satz 2

ist aber F mit ff, linksseitig stetig in [o, &] und / gemäss Lemma 2

in jedem rechtsseitigen Unstetigkeitspunkt von F in (a, fc) linksseitig
stetig, es müsste daher die Ungleichung (18) gelten. Sind jedoch zl„,

/)(, I)j Unterteilungen von ,D„, die entsprechend durch Hinzufügung
als Teilungspunkte sämtlicher Punkte $"'(» 0, r„_,) bzw. sämt-
lieber Punkte mit nichtpositivem bzw. mit positivem Wert von
[/(4"')— /(£;"')] ' Q/,(41-j)— </<(£;"')] entstehen, so rnuss

(-) (-) 'n-l
(18') hm }^;,[/,ff,]-H„»[/,ff,]} lim 2 |/(4'") - /(tf>) | • 11/,(41-,) - fc(tf>) | 0

?i>-oo «>• OO 1=0

sein. — Ferner ist laut Satz 2 lim[F(&)—FiJ — 0 und
M> oo

„ F(fe) - F(«) - V [ j ff,(£f>)- ff,(<<»>) | + | ff,(<M _ ff, (£(»>) | ]
i=0

v tel ui-i" 2 [F(fV>)- F(4">) -1 ff,(fJ")- ff,(/("»)!] + 2 [P(4"ii)- F(C'/")-1 ff,(4ti)- î*)l] >
1=0 t=0

> 2 [^(4"ii) - - ff,(4îi) - ff.(d"») I] > o,
also auch ' "

rn-1

lim 2 ^[(4"ii)- -1 ff,(4ti) - </.((t' I ] 0.
n^-oo j=0
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Wegen der Beschränktheit von / folgt daraus

>>1-1

(18") lim 2 /(4">) - %t>) | • [W(4tr) - - I 9,(4+1) - f/,(C?') | | 0'
n^-oo i=o

was nach Addition zu (18') einen Widerspruch mit (18) liefert.

4. Vermöge des Spiegelungsprinzips und der Bemerkung 1 folgt
aus Satz 6 mit Leichtigkeit *) der duale

Safe 6': Ist in [«, b] die Funktion / beschränkt und die Funktion g
(+)/>

von beschränkter Schwankung, so ist es für die Existenz von f„/dg
notwendig und hinreichend, dass

1° die Funktion / in jedem in [«, b) gelegenen rechtsseitigen
Unstetigkeitspunkt, a; der Funktion g eine rechtsseitige Grenze /(;s -f- 0)

hat;
2° die Menge der im Inneren von [«, b] gelegenen rechtsseitigen

Unstetigkeitspunkte der Funktion / eine Nullmenge bezüglich der

Funktion g,. ist.

Alsdann existiert f/dg,, und es ist
(«.»]

(16')
'
j'}dg + 2 /(*< + 0) *

>

(«, 6] a<a^<ô

wobei die Summation sich auf alle in [a, b) gelegenen rechtsseitigen

Unstetigkeitspunkte .«, der Funktion g erstreckt.

5. Als Frucht des Bewiesenen erhalten wir

IforoWar 7 mm Safe 6: Die Funktion g sei in [a, b | von beschränkter
(~)6

Schwankung. — Aus der Existenz von j'„/dg folgt:

aj diejenige von / dg, falls / in [«, b] beschränkt ist :

(-)<> 1

'

1

bj diejenige von ('„ - dg, falls dort überdies /1 0 und — beschränkt

ist.

i) Dabei ist die wegen f/*(®)=f/r(—®)+ffr(b) geltende Gleichheit

//* dg? — //dgr

zu berücksichtigen.



— 151 —

Existieren ferner für die in [a, 5] beschränkten Funktionen /j
(-)é {-)»

"
(~)6

und /g die Integrale J'„/id(/, Ja/2%, so existiert auch J„/r/2^f/-
(Darin vertritt ~ das Zeichen +' bzw. —.)

Beweis: Die Mengen der links- bzw. rechtsseitigen Unstetigkeits-

punkte von j / j und bzw. /j /g sind in den analogen von / bzw.

in der Summe der analogen für /* und /a enthalten, und in allen Punkten,
in denen die links- bzw. rechtsseitigen Grenzen von / bzw. von /j
und /a existieren, trifft dasselbe für [/ und -- bzw. für • /g zu.

Iforodar 2 «wra Safe 6: Sind in [a, t] die Funktionen / und </

H 6 (+)»
von beschränkter Schwankung, so existiert |'„/d<7 bzw. J'„/d<jr dann
und nur dann, wenn die Funktion 77 entsprechend in den in (as, 5)

gelegenen linksseitigen Unstetigkeitspunkten von / rechtsseitig bzw.

in den rechtsseitigen linksseitig stetig ist.

Beweis: Die Funktion / hat dann überall eine links- und rechts-
seitige Grenze und höchstens abzählbar viele Unstetigkeitspunkte.
Die Menge ihrer links- bzw. rechtsseitigen Unstetigkeitspunkte in
(a, fc) ist daher dann und nur dann entsprechend eine Nullmenge
bezüglich <7, bzw. <7,, wenn es jeder dieser Punkte ist, d. i. wenn die

Funktion <7, bzw. <7, und demnach auch <7, in jedem dieser Punkte
rechts- bzw. linksseitig stetig ist.

Äoro//«r 3 2wm Safe 6: Ist in [a, 6] die Funktion / beschränkt,
die Funktion (7 von beschränkter Schwankung und existiert eines

(-)» (+)&
der Integrale J'„/d(7, /„/%, so existiert auch das Lebesgue-Stielt-
jessche Integral f/ds/, und es bestehen die Zusammenhänge:

[«,»]

(19) /«./%= J7% — /(»)• ^ </(«)—/(&)
[a, 6] a<a^<6

<+.)é (+) (+) (-) (+)
(19') J„M7= J/% + 2 4/(®i) • 4 »(»,)-/(«) • Zlgf(o)—/(W • ZI#).

Überdies existiert dann das Perron-Stieltjessche Integral im Sinne

von IFard (1) (PS)j'/d<7, und es ist:



(19") J'./dg (PS)|'/dg — 2 • Zlg(a;,.),
a a<x^<6

(+)ft ft (+) (+)
(19'") Ja/^f + S ^/(®i) ' ^f(^i) •

a a<a;i<6

Beweis: Das Komplement [a,6]—M der Menge M der in [a,6]
gelegenen Unstetigkeitspunkte £C,- von g ist laut Bemerkung 3 eine

Nnllmenge bezüglich n,. Daher existiert |'/dor, 0, also auch
[a, ft] - il/

(19*) j7«k J7<fo, S J7«k E A®i) • •^.'/(^i)'
[a,ft] Ai a<xi<ô (.-ri) a<a:i<ft

und es ist

j'/dg, + l'/da, — E /(«.•) * ^»(«,-) — /(«) ' <4</(«) — /(&) * ^#) 0.
(ft) [n, ft] o<l,<6

Die seitenweise Addition letzterer Gleichheit zu (IG) liefert die

Relation (19). Analog ergibt sich (19').
ft

Nun existiert bekanntlich *) mit |'/dg auch (PS)J'/dg, wobei
[a) ft]

'
a"

(19) (PS)J'/dp J*/d</ — /(a) • Zlf/(«) — /(&) • /I#)
a [a, ft]

ist, was die Formeln (19) und (19') entsprechend in (19") und (19'")
H ft (H ft

überführt. — Insbesondere stimmt daher /„/dp oder |'„/dg mit
ft

(PS) j'/dg überein, wenn die Funktionen / und g entsprechend keine
a

gemeinsamen links- oder rechtsseitigen Unstetigkeitspunkte haben.

6. Wie mildern sich die Existenzbedingungen für das linksseitige
Integral, wenn das rechtsseitige existiert? Die Antwort enthält

5'ate 7: Ist in [a, 6] die Funktion / beschränkt, die Funktion g

von beschränkter Schwankung und existiert eines der Integrale
H 6 (+)&

Ja/dg, J',,/dg, so ist die Menge sämtlicher Unstetigkeitspunkte

1) Vgl. Saks (1), S. 208.
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der Funktion / in [a, b] eine Nullmenge bezüglich der Funktion
y(a:) </(a:) — <r(a;) (a Sprungfunktion von <7). — Für die Existenz
des zweiten obiger Integrale sind dann die notwendigen Bedingungen
des Lemmas 2 (bzw. die sich durch Vertauschung sämtlicher Be-

Zeichnungen «rechtsseitig», «linksseitig» ergebenden dualen Bedingun-
gen) auch hinreichend.

Beweis : Es seien iV<'> und entsprechend die Mengen der links-
und rechtsseitigen Unstetigkeitspunkte von / in (a, 5), und IV£">

die Mengen der Punkte, in denen die links- bzw. rechtsseitige Oszilla-

tion von / mindestens a beträgt, V(a;) die Totalvariation von y in
[«, «]. — Entsteht aus durch Streichung der höchstens

abzählbaren Menge ihrer sämtlichen rechtsseitig isolierten Punkte

(die eine Nullmenge bezüglich der stetigen Funktion U ist), so ist
=/*{#£>}. — Anderseits ist für a: aus bei jedem £>0

in I(ac, e) ein Punkt von enthalten, also auch ein Intervall, in
dem die Oszillation von / mindestens a beträgt. Daher ist NM,
also r{iv(;»} r{iv(;)'}<r{NW}.

Analog beweist man < f{jV^}, also

Aus

rjiV')} lim F{iV';»}, r{N<'>} lim r{N<[>}
A'^oo A A^-oo A

folgt dann T jiV">}.

Existiert nun J„/d</, so ist Ar' laut Satz 6' eine Nullmenge
bezüglich </,, liegt daher im Komplement der Menge der Unstetigkeits-
punkte von a,, ist also zufolge Bemerkung 3 eine Nullmenge bezüglich
<7, und gemäss Bemerkung 2 auch bezüglich y </, — <7,. Dann ist

woraus sofort die erste Behauptung des

Satzes 7 folgt. -— Ist ferner / in den rechtsseitigen Unstetigkeits-
punkten von <7 in (a, fc) linksseitig stetig (2. Bedingung des Lemmas 2),
so enthält keine Unstetigkeitspunkte von <7,, bildet also eine Null-
menge bezüglich u, und demnach auch bezüglich <7, y -)- <7,. Die
Hinzufügung der ersten Bedingung des Lemmas 2 sichert dann zufolge

H 6 H 6

Satz 6 die Existenz von J*„/d<7. — Existiert j'^/eky, so liefert das

Spiegelungsprinzip die entsprechenden Existenzbedingungen für
(+)»
j'a/%-



§ 3.

Anwendungen auf andere Integralbegriffe.

1. Interessante Konsequenzen folgen aus den Sätzen 6 und 7

für andere Integralbegriffe. So liefert ein «massfreies » Existenzkriterium

für das Kiemann-Stieltjessche Integral J/dg der
a

S'afe 5: Ist in [a, 6] die Funktion / beschränkt und,die Funktion <7

6

von beschränkter Schwankung, so ist es für die Existenz von f/dg
notwendig und hinreichend, dass "

(-)» (+)<>

1° eines der Integr'ale ('«/%, j'„/% existiert;
2" die Funktionen / und g keine gemeinsamen Unstetigkeitspunkte

in [a, 6] besitzen.
Beweis : die Notwendigkeit obiger Bedingungen ist bekannt. Sind

sie erfüllt, so ist zufolge Satz 7 die Menge sämtlicher Unstetigkeits-
punkte der Funktion / in [a, 6] eine Nullmenge bezüglich y. Überdies

liegt sie dann im Komplement der Menge der Unstetigkeitspunkte
von (/, bildet daher gemäss Bemerkung 8 auch eine Nullmenge be-

züglich er, und er,., also gemäss Bemerkung 2 bezüglich der Funktion
U — y + Letzteres genügt aber nach einem Satz von Bliss*) (1)

6

für die Existenz von J/dg.
a

j Insbesondere genügt für die Existenz des Riemannschen Integrals
|7(a:)da; bei beschränktem / sowohl die Konvergenz der Summen

a

S/(ajj) • (®»+i —œ«) wie auch diejenige der Summen

2/(®i+i) • — £<)*)• üaMCÄj/ hatte ursprünglich das Integral
6

177) da; gerade als Grenzwert der ersteren Summen definiert — aller-
a

dings nur für stetige /(a;). Die als Spezialfall des Satzes 8 resultierende

vollständige Äquivalenz dieser Oauchyschen mit der Riemannschen

Integraldefinition ist bereits von GiiZespie (1) bewiesen worden.

1) Vgl. auch Carmicltael (1).
2) In Verschärfung cles Lebesgueschen Kriteriums ist es daher angesichts

6

des Satzes 6 für die Existenz von ,/7(x)dx notwendig und hinreichend, dass die
a

Menge der links- oder rechtsseitigen Unstetigkeitspunkte von / in (a, b) das Lebes-

guesche Mass 0 hat.
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ft

Ferner wird der Znsammenhang zwischen J/d</ und J/dg voll-
rt [rt, ft]

ständig übersichtlich durch folgende Spezialisierung des Korollars 8

zum Satz C:

SVtfe da: Ist in [a, !>] die Funktion / beschränkt, die Funktion <y

von beschränkter Schwankung und existiert das Riemann-Stielt-
ft

jessche Integral f/dgf, so existiert auch das Lebesgue-Stieltjessche
rt

Integral J/df/, und es ist
[«,»]

(7%= f /% — /(«) • ^d(a) — /(&) •

à [(i, 4]

2. //. L. S'mfdt (1) und J. F. S'fe//e«sew (1) haben für beschränkte
Funktionen /, </ den Grenzwert der Summen

S ^ [/(®<) + /(®i+i)] • [?(®<+i) - ff(®i)j

bei einer normalen Einteilungsfolge des Intervalls [a, 6] betrachtet.
(7)

Das so definierte «mittlere» Stieltjesintegral J /d<y ist offenbar das

arithmetische Mittel unserer links- und rechtsseitigen, und dessen

Existenz und Rechenregeln folgen aus denjenigen der letzteren,
während eine Umkehrung im allgemeinen unrichtig wäre. — Ins-
besondere liefert das Korollar 2 zum Satz 6 folgendes Ergebnis von
Frec/id (1): Sind in [a, B] die Funktionen / und <y von beschränkter

Schwankung und in jedem gemeinsamen Unstetigkeitspunkt «gleich-
(7)

seitig stetig», so existiert j /dry.
3. Schliesslich sind wir nun imstande, die allgemeine Regel der

partiellen Integration für das Lebesgue-Stieltjessche Integral an-
zugeben. Es besagt nämlich

Safe 9: Für beliebige zwei Funktionen von beschränkter Schwan-
kung in [a, 6], / und <y, ist

_ F) H (+)
*

(+)
(20) J /d0 + J'pd/ /p]®+° + 2 M/(«,-) • — /!/(»,) • zl ;/(«,)],

[rt, ft] [rt, ft] rt<X|<ft

(wobei sich die Summation liber sämtliche gemeinsamen Unstetigkeits-
punkte von / und (/ in [a, f>] erstreckt).
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H 4

_

(+)4
Beweis: Existiert ('„/%, so existiert auch und angesichts

Formel (11) folgt aus (19) und (19') nach leichter Umformung

J'/tfy /(%(& + 0) — /(a)f/(a) + /(« —0) • Zlg(a) + 2 ^

j'<yd/ zl/(6) • </(& + 0) + </(«) • zl/(«) — V /|/(^.) • Zlöf(m,) +
[<*> &] «<x;<6

Avas zusammen die Formel (20) ergibt.

Sind /, yy zwei in [a, 5] nichtfallende Funktionen, die rechts-
seitigen Unstetigkeitspunkte von ry in [a, 6], so sei ç>(|;) =/(I; — 0),
sonst aber lyp(a-) /(;<;). Da die Funktion 99 nichtfallend und in den

Punkten linksseitig stetig ist, existiert gemäss Korollar 2 zum
H 6

Satz 6 J'„<pdry, also gilt Formel (20) mit 99 statt /. Nun hat aber <y>

dieselben links- und rechtsseitigen Grenzen wie /, also ist einerseits
und

2 {^ [/(».) —9>0*h)] * ^!/(«;) — ^ [/(«;) — 9»(®i)] ' ^ </(«;)}

2 [/(«i)—= S ^/(£)-d </(£.-)>
a<a:^<6 «<£ *

demnach

J>d<y + J"gdç> + 2^/(fi) * + 2 M/(®i) ' — ' ^ff(®i)J'
[«, ft] [a, ôj

anderseits definiert die Funktion 99 dasselbe Mass wie /, also ist

j'r/^99 J*£/^/ •

Wird überdies

/(/-?)% 2 .MM/ 2
[n,4J s<f j<6 (=;) o<f,'<6

berücksichtigt, so ergibt sich wieder die Formel (20). —- Da beide

Seiten von (20) linear in / und ry sind und jede Funktion von beschränk-

ter Schwankung die Differenz zweier nichtfallender ist, resultiert die

allgemeine Behauptung des Satzes 9.
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In der Literatur (u. zw. bei Saks (1), S. 102) finde icli nur folgenden Spezial-
fall des Satzes 1):

Haben die Funktionen von beschränkter Schwankung / und g in [«, 6] keine

gemeinsamen Unstetigkeitspunkte oder sind dort beide regulär, so ist

f/d<7+ JV/ /!7]a-o°-
[a, 6] [o, 6]

In diesen Fällen ist entsprechend

H (-) (+) (+) H (+) H
H/(a) • zl 3(a) =/1/(a) • .1 !» l'zw. H/(a)=/(a), H 3(a) H 3(a),

also verschwindet der Summenausdruck in Formel ('20).

Aus Formel (20) und (19) folgt eine Regel der partiellen Inte-

gration für das Perron-Stieltjessche Integral, ausgedrückt als

FLorollar sum «Safe 9: Für beliebige zwei Funktionen von be-

schränk ter Schwankung in [a, 5], / und 3, ist

A A <") H <+)

(20') (PsiJ'/df/ + (PS) fr/d/ /3]j + 2 ^/(«,•) • — S ^ /(®,-) • /Ifif(ah).
a rt a<ar./<6

Haben die Funktionen / und 3 keine «gleichseitigen» Unstetig-
keitspunkte gemeinsam, so vereinfacht sich letztere Formel durch
Fortfallen der Summenausdrücke.

§

Die unbestimmten Integrale.

Mit Leichtigkeit kann nun auch die Struktur der unbestimmten
links- und rechtsseitigen Integrale ermittelt werden. Es gilt nämlich

Safe 70; Ist im Intervall [«, 5] die Funktion / beschränkt, die

Funktion 3 von beschränkter Schwankung, so sind dort die Funk-
tionen

/«/%> #(a0 J'a/% *)

von beschränkter Schwankung, und jede Nullmenge bezüglich 3 ist
es auch bezüglich I? und 0. Die links- bzw. rechtsseitigen Kontinuitäts-

HA (+)A
i) Deren Existenz folgt hier aus derjenigen von /o/df/ bzw. /a/d<7 auf Grund

von Satz (i bzw. Ii', könnte aber aus derselben auch direkt ohne Voraussetzung
der beschränkten Schwankung von 3 abgeleitet werden.
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funktionell F, F,, sowie Sprungfunktionen <S',, »S', der Funktion F
in [ti,6] bzw. die analogen Bestandteile 2, der Funktion 0
betragen dabei für a < a; < 6:

(21«) F,(a:) j7<*g„ -S.(œ)
[a, a:)

(21r) F,(œ) J' /eZy + S», S,(«) ^ /(«;)• ^ <K«i) -

[a, s) <!<£{<$

(21V) 0,(a;) j'/dg,, 2U®) S /(®i + Ö) ^ </(«;),
(a, œ] a<«i<a:

(21'«) 0,(3) j'/«Zy + 2r(«)> S.(®) S/(»,-) • Ä(«i)•
(a, œj «<£!<«

Beweis: Ist F(Z;g) die totale Variation der Funktion g in [«,<],
ff die obere Grenze von

'

/(f) | für a < Z < 5, die einer Einteilung /_)

des Intervalls ff, <"] mit a < f < f" < fe entsprechende Variation
(-)

von g, so ist I [/,</] | < K • < K[F(f";g) — F(Z' ;g)]. Durchläuft
D eine normale Einteilungsfolge, so resultiert in der Grenze

(21*) jF(f")--F(f) | < Z [F(Z";g)— F(f ;«/)].

Daher ist für jede Einteilung zl ja Z„ < f, < < f„, /?( von
[a, /?] mit « < a < /i < 6

m-1

v |F(Z^) -F&) | < K[F(/Z;g)- F(a;g)|,

also auch F (/? ; F) — F (a ; F) < F • [F(j8;g) — F(a;g)], weshalb jede
Nullmenge bezüglich g es auch bezüglich F ist und für a a, /? 6

die beschränkte Schwankung von F in [et, 6] folgt. — Analog ergeben
sich die entsprechenden Behauptungen für $. —• Aus ('21*) und dem

(-) i- (-) «

Korollar zum Satz 2 folgt ferner, dass ]'„/%, und J'„/eZg, zusammen
mit g, bzw. g,. entsprechend linksseitig stetig in (et, 5] bzw. rechts-

(-)» (-)

seitig stetig in [et, 6) sind. Anderseits ist j*„ /e7er, 2/(®t — 0) ' ^ g(®,-)

von der Form (7t), also angesichts der Konvergenz von

2 I /(®i—0) • <4 fffo) | < -K * 2 M ff(3i) I
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(-) re

eine linksseitige Sprungfunktion in [a, 5], während für J „/dor,. — j /du,
wie bei Formel (19*) die absolut konvergente Darstellung

(+)

2 /(»;)• Zl (/(«,) ableitbar, es also laut Satz 3 eine rechtsseitige
«<a:.j<a;

Sprungfunktion in [a, 5] ist.

Angesichts der Zerlegungen

^J /g J -jj (—J ^

*\») J'«Ä + J«/<*<h J«/^r + J "a/^^r

und der Gleichheiten

(-)® (-)« (-)»

j'aM/. J /d.'A> J'a/d.7, J'/dy + J'Jdu,
[«, iE) [«.

gelten zufolge Satz 4 die Formeln (21). •— Analog sind die Formeln

(21') zu beweisen.

§ 5.

Iterierte Integrale.

Einige:! auch für die versicherungsmathematischen Anwendungen
benötigte Siitze über iterierte Integrale sollen in voller Allgemeinheit
bewiesen werden.

Aate ü; Sind in [a, 6] die Funktionen und /g beschränkt, die

Funktion </ von beschränkter Schwankung, so gilt jede der Relationen

H 6 (-)! (-)ft (4 ft (-)i H ft (-)»

(22a) J'JidJ'Jadf/ j'Ji/zdt/; (225) j'jidj= J'Jgd J'Jidt/;

+ )ft + )« (+)ft + )ft + )I (i')ft + )x
(22'a) J'a/id Jo/äd*/ j'^/i/gdr/; (22'&) J'„/jd J'„/a% j^d

falls die in ihr auftretenden Integrale existieren. Hiezu genügt für
<->.ft

die Relationen (22) bzw. (22') entsprechend die Existenz von |'„/jd</
H ft (+_)6 + )ft

und Ja/ad«/ bzw. von f^/idg und fa^dt/.

Beweis: Existieren die Integrale in Formel (22a), so ergibt die
(-)x (-)ft

Anwendung der Formeln (21t) auf F(:c) «/2d</ und f„/idF wegen
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J'M JA%« j'AA %4
[a, 6) [a, a) [a, 6)

JV /l ^ JV A % 2 AO"»— 0) A(®i — 0) • <d (/(«.;) + j7l A %« •

a<a;^<6 [«, &)

Darin stellt die rechte Seite einerseits [gemäss (16)] das Integral
H 4

JV/1/2% dar, anderseits ist sie symmetrisch in und /g, was ent-

sprechend die Relationen (22a) und (226) liefert.
(-)» (4,4

Mit J'„A% '-d j'„ /2 A/ existiert nun laut Korollar 1 zum Satz 6

(4,4
auch (VA/a^fL Ferner bilden die linksseitigen Unstetigkeitspunkte
von /y in (a, 6) eine Nullmenge bezüglich c/,, also laut Satz 10 auch

bezüglich Fj. Da die Funktion in den linksseitigen Unstetigkeits-
punkten von F in (a, 6] (die unter den analogen von g enthalten sind)

(46 (46 (-) x

eine linksseitige Grenze hat, existiert laut Satz 6 J'„AdF JVA^ (V/2%
(-)Ä (-)X

und aus Symmetriegründen auch (V/2^ lVA%- —' Vermöge des

Spiegelungsprinzips resultieren daraus die entsprechenden Behaup-
tungen für die rechtsseitigen Integrale.

Die partielle Integration der inneren Integrale in (22 a) bzw. (22' a)

liefert
FToroZZar 7 2«m Safe II: Unter den Voraussetzungen des Satzes 11

gelten die Formeln

(46 (46 (46 (+)*
(23) J'«A<*(AsO j'«AA% + J*«/i^J«£Z^A»

+ )6 + )6 + )4 (-)x
(23') JVA*(AsO Ja A A% + JVA^ jVff^A»

falls entsprechend die in den Formeln (22 a) bzw. (22'a) auftretenden
Integrale existieren.

Mit Leichtigkeit ergibt sich auch

FCoroZZar 2 Safe II: Es seien in [a, 6] die Funktion (/ von

beschränkter Schwankung, die Funktionen / 4= 0 und - beschränkt.

(44 + )4

Existiert dann jV/cü(/ bzw. so ist entsprechend für a < f < 6



0(0 0(a) + Ja y ^ mit F(0 J'a/^0
(-)( l

(24)

bzw.

0(0 0(a) + Ja y ^ mit <5(0 J'«M0-
(+)< 1

_

(+)<

(24')

Beweis: Gemäss Korollar 1 zum Satz 6 existiert in diesen Fällen

Formeln (22 a) bzw. (22'a) nach Ersetzung von fc durch £ entsprechend

in (24) bzw. (24') über. — Ferner gilt folgender

Zwsate Safe II: In den Formeln (22) existieren mit den

Integralen zur Linken auch diejenigen zur Rechten, falls /g + 0 und

— beschränkt in [a, 6] ist.
/ 2

Beweis : Aus vorigem Korollar folgt dann

0,(0 0,(o) + Ja T- ^ mit F(0 Ja/2^0>0(0 0(a) + J« 7- <2F.

Also ist laut Satz 10 jede Nullmenge bezüglich F) eine ebensolche

bezüglich <7,, die Menge der linksseitigen Unstetigkeitspunkte von <7

in (a, fo] in der analogen von F enthalten, und aus der Existenz von

Ja/i^F und Satz 6 folgt diejenige von )'«/id0, was samt der Existenz

von J,j/2^0 laut Satz 11 für die Geltung von (22a) genügt. Analog
ergeben sich die übrigen Behauptungen. — Satz 11 wird schliesslich

ergänzt durch

Safe 12; Sind in [a, fc] die Funktionen 0 und /g beschränkt, die
H6 (+)»

Funktion (/von beschränkter Schwankung und existieren ('„/irfp, l'a/2%'
so ist

H« 1 <:>< 1

(-)» (+)» (+)6 Hl
(25) Ja /l <* Ja /2 % Ja /a ^ Ja /l %

wobei beide letzteren Integrale existieren.

11



Beweis: Die Menge ^ der linksseitigen Unstetigkeitspunkte von
/i in (et, 6) ist dann eine Nullmenge bezüglich also auch bezüglich

(+)s
®<(®) J'a/2%, • Überdies hat in den linksseitigen Unstetigkeits-

(+)»
punkten von <Z>(a;) ('„/ad«/ (die unter den analogen von </

enthalten sind) eine linksseitige Grenze, so dass laut Satz 6

(-)& (-) 6 (+)x
J'a/i<Z j'o/a^l/ — existiert. Analog ergibt sich die Existenz

(+)& Hi
von („/gd j'„/id(/ /g- Die Berechnung von 1^ und Ig mittels der
Formeln (21) und (21') liefert nun für beide Integrale den Wert

J7i/a<*y + S /i(®j —0) /a(®<) ^ r/(®i) + 2 /i(®i) /a(®< + 0) ^ 0(®,O •

(a, 6] «<«*<&

§ 6.

Ergänzungen.

1. Es können folgende Sätze, in denen ~ das Zeichen -f- bzw. —-

ersetzt, bewiesen werden.

Konvergiert im Intervall [et, 6] die Folge der beschränkten
Funktionen /„ gleichmässig gegen die Funktion / und existieren
für die Funktion von beschränkter Schwankung </ hie Integrale
(~)i> (~)Ö

(w l, 2, so existiert auch |'„/dry, und es ist

(~)6 (~)ft

(26) lim j'jdry.
ny°o

Bei gewöhnlicher Konvergenz der Funktionenfolge {/„} inuss

hingegen für die Geltung von (26) ausser der gleichmässigen Be-
(~)6

schränktheit der /„ in [o, b] und der Existenz von !'„/„% noch die-
(-)»

jenige von vorausgesetzt und verlangt werden, dass in den im
Integrationsintervall gelegenen ~ -seitigen Unstetigkeitspunkten
von </: lim /„(a^O) /(Sj~0) ist.

n> oo

2. Die eingeführten Integraldefinitionen können folgendermassen
auf Integrationsmengen erstreckt werden.
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Es sei £ eine beschränkte lineare Punktmenge, die ihre untere
Grenze a und obere 6 enthält. Eine Folge {77,,} von Einteilungen des

Intervalls [a, fr] heisse «normal bezüglich der Menge E», wenn für jedes
n alle Teilungspunkte von 77„ zu £ gehören und für jedes a; e £ eine

solche gegen a; konvergente Punktfolge {as„} existiert, dass a:„ ein

Teilungspunkt von Z)„ ist. Der Grenzwert, der sich zufolge Ersetzung
(-)»

in der Definition von jjj/dg der normalen Einteilungsfolgen des

Intervalls [a, fr] durch bezüglich der Menge £ normale ergibt, sei

(~)
mit j'/dg bezeichnet.

È

Es können stets zwei solche Funktionen /, g in [a, fr] definiert
werden, dass für te £:/(<)= /(f), g(<) <7(0 ist, aus der Existenz von

(7dg diejenige von j^/dg folgt (die Umkehrung erfordert gewisse
E

" '
(~) (-)*

Zusatzbedingungen) und für jeden Punkt a; der Menge £ )'/%= f„/dg
gilt. ^«.«1

"

Der Fall, dass a oder fr nicht zu £ gehören, kann auf den bespro-
dienen durch passende Erweiterung der Funktionen / und g zurück-

geführt werden.

3. Die Erstreckung der eingeführten Integrale auf mehrere Dirnen-
sionen kann am kürzesten mit Hilfe des Bwr/d&c/iew. Integralbegriffes*)

(-)« (+)»
formuliert werden. Schon J*„/dg bzw. |'„/dg könnten entsprechend

.H
"

.<+)
als die Burkillschen Integrale J' 77 bzw. J' (7 der Intervallfunktionen

[a, 6] [a, ft]

tfo /(«) • [</(/?)-</(«)], ü(i) - /(/?) • [g(/0 -g(«)], I [«,/?]

definiert werden.
Zwecks Definitionserstreckung auf zwei Dimensionen ordnen wir

der im Rechteck 7? definierten Punktfunktion / und additiven Intervall-
funktion g(I) (wobei I das Intervall a < a; < /?, y < y < <5 sei) die
vier Intervallfunktionen »

tfjf) /(a,y) • g(7)17(7) /(a,<S) • g(7),' 7/(7) /(/?, y) g(7)' U(7) /(/S,<5) • g(7)

i) Bezüglich dieses Begriffes vgl. z. B. Saks (1), S. 165.
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zu und setzen

(-") (-,-)(-,+) (-,+)( + ,") (+,-)(+,-!-) (>-, U

J7% j'B.
R RR RR RR R

Man sieht sofort, dass ira n-dimensionalen Räume für eine Punkt-
funktion / und additive Intervallfunktion </ analog 2w einseitige
Stieltjesintegrale definiert werden können. —• Der Verzicht auf die

Additivität von </ liefert eine weitere Verallgemeinerung des Stielt-
jesschen Integralbegriffes.

Abschnitt III.
Versicherungsmathematische Anwendungen.

§ 1.

Einheitliche Darstellung der Grundgrössen der diskontinuierlichen und
kontinuierlichen Versicherungsmathematik.

1. Die Einführung des gewöhnlichen Riemann-Stieltjesschen Inte-
grals in die Versicherungsmathematik durch .4. Loewi/ (1) eröffnete
Aussichten auf die aus arbeitsökonomischenunderkenntnistheoretischen
Gründen erwünschte Beseitigung der traditionellen Doppelspurigkeit
zwischen diskontinuierlichen und kontinuierlichen Methoden der Ver-

Sicherungsmathematik [vgl. dazu Brewer (1) und Jacob (1) |. Dieses

Integral existiert jedoch öfters unter clen für die diskontinuierliche
Versicherungsmathematik charakteristischen Voraussetzungen nicht,
was es zur allgemeinen Problemlösung ungeeignet macht. Hingegen
soll nun gezeigt werden, dass die hier eingeführten Integrale den

Aufbau einer übergeordneten Theorie ermöglichen, aus der sich die

kontinuierliche bzw. diskontinuierliche Versicherungsmathematik durch
charakteristische — meistens entsprechend von Differentiation bzw.

Differenzenbildung begleitete — Spezialisierungen ergibt.
1 d/(<)

2. Der klassische Begriff der Sterbensintensität /<(<) — - - ——,
/(£) CH

der die Differenzierbarkeit der Lebendenzahl /(<) einer Sterbetafel

zur Zeit f erfordert, wurde von Loewy (2) durch den auch bei blosser

Stetigkeit von / definierten der «Integralsterbensintensität»
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/» ^
Af(Z) — / ersetzt. Für differenzierbares / ist nämlich

0

dZ ' ^ '

Bei diskontinuierlicher Darstellung ist aber / eine in den Inter-

vallen [«— 1, «) (« 1, 2, konstante Funktion, die wie
y in den

/dZ
Punkten « 1,2,... unstetig ist, also existiert / — nicht. Des-

0

halb kann das gewöhnliche Riemann-Stieltjessche Integral diejenigen
Methoden der kontinuierlichen Versicherungsmathematik, die sich

des Intensitätsbegriffes bedienen, auf die diskontinuierliche nicht
übertragen. Wird jedoch

M(Z) -
(-)<

gesetzt, so ist bei stetigem Z: M(Z)=M(Z), hingegen im diskonti-
/-I

nuierlichen Falle für natürliche Z laut Formel (16): M(Z) V ^ mit
<(«) — /(« + 1) dM(Z)

ei Der Sterbensintensität - -—=/«(<) des konti-
/(as) aZ

nuierlichen Falles entspricht danach im diskontinuierlichen die

Sterbenswahrscheinlichkeit M(Z + 1) — i¥(Z) </,.

Betrachten wir allgemeiner eine fingierte Elementengesamtheit,
die sich durch Aus- und Eintritte aus m einander ausschliessenden
Gründen ändert. Ist /'''(Z) die Zahl der in der Zeit 0 bis Z aus dem
ften Grunde ausgetretenen Elemente (bei Austrittsgrund) bzw. die
mit dem Minuszeichen versehene Zahl der eingetretenen Elemente
(bei Eintrittsgrund), so bildet die Elementenzahl zur Zeit Z

L(Z) L(0)-V /<•>(<)

i-1

eine Funktion von beschränkter Schwankung in [0, w], die dort über-
dies positiv sei. — Wir setzen
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H' (-)<

L
(27) M«>(f) /" 4'-, M(0 V Af^>(<) — /"

JO i JO

Im «diskontinuierlichen Falle» mit
/''HO — /i'O i(0 B, für s < f < s -f 1 (s 0,1 n — 1) bzw.

im «kontinuierlichen Falle» mit stetigdifferenzierbarem /'*'(0 (0 < f < n)
entsprechen einander :

M«>(s + i) _ MW(s) i) und ^>(f),
Lj df

M(s + 1) — M(s) & und /«(<).

3. Auch die finanziellen Voraussetzungen der Versicherungs-
mathematilc können mittels der eingeführten Integrale einheitlich
formuliert werden. Es bezeichne «>(<) den auf den Zeitpunkt 0 be-

zogenen Barwert des im Zeitpunkt f zahlbaren Betrages 1. Definieren
wir die «Integralzinsintensität» als

(28) zl(<)

(-)<

r dw
7o w

so entsprechen einander im «diskontinuierlichen Falle» mit io(f) w,
für s<<<s + l^) bzw. im «kontinuierlichen Falle» mit stetig
differenzierbarem w(f) (0 < f < w) : die Diskontrate zl(.s -f- 1) —• zl (s)

d„ 1 —v., (V —— und die Zinsintensität — <5(f).
V / df

Die für die Versicherungsmathematik charakteristische Ver-

quickung der demographischen und finanziellen Voraussetzungen
führen wir nun wie folgt durch.

') 9s*' bezeichnet dabei die dem i-ten Grunde entsprechende «abhängige»
Austrittswahrscheinlichkeit bzw. die analoge mit dem Minuszeichen versehene

Eintrittswahrscheinlichkeit.
®) Bei unterjähriger Verzinsung wäre w(t) in passend modifizierten Inter-

vallen als konstant anzunehmen.
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«Total» von durchschnittlich auf ein Element entfallenden Zah-
lungen nennen wir deren Betrag F(<) in der Zeit 0 bis t, wenn F(0) 0

und F(f) im diskontinuierlichen Falle in den Intervallen [s, s + 1)

(s 0,1, n—1) konstant, im kontinuierlichen Falle in [0, n] stetig
differenzierbar ist. — Die Elementengesamtheit heisse «Versicherungs-
gesamtheit» bei folgenden

Einnahmen: Anfangszahlungen zur Zeit < 0 im Gesamtbetrage
L(0) • /i, sowie Prämienzahlungen mit dem Total P(f);

Ausgaben: Rentenzahlungen mit dem Total R(<), Entschädi-
(+)<2

gungen für Aus- bzw. Eintritte von J"/ für die Zeitperiode
f, < « < «2 (0 < < <2 < w) und den iten Grund (f 1, m), sowie

Endzahlungen im Gesamtbetrage L(w) • 2'.

Wir definieren entsprechend:

1° den Kapitalwert im Zeitpunkt < der bis dahin erfolgten Ein-
nahmen bzw. Ausgaben als

1 <->< 1

[L(0) R + jo LwidlP] bzw.
(-)' m (+)/
jtiP'iüdP -f- 2 Co

i=lîo(t) ' w(0

2° denjenigen der nachherigen Einnahmen bzw. Ausgaben als

1 H» 1

—• LLiodP bzw. —-
m(<)

•'
«(*)

(-)n m (-h)w

+ V j, ülütod/C + w(»)L(») T
1=1

_
3" die «retrospektive Gesamtrücklage» F^(<) bzw. «prospektive»

F^'(<) als Differenz der Kapitalwerte im Zeitpunkt < der bis dahin
erfolgten Einnahmen und Ausgaben bzw. nachher erfolgten Ausgaben
und Einnahmen, die entsprechenden «Durchschnittsrücklagen» F'''(<)
bzw. F^'(f) als den damaligen durchschnittlichen Anteil eines Elementes

an der betreffenden Gesamtrücklage.
^

Nachdem 4 F<''(0), T F'^(w) ist, gelten bei E(f) —
L(0)

für die Durchschnittsrücklagen (und damit Leibrenten, Einmal-

prämien u.dgl.) die einheitlichen Formeln:
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(+)' -V

(Ol ~ HI vS /•
(29r) ^ • FW(0 £(<) F"»(i) F<"(0) + j*„ Ed(P-B)-g^ # '

+)»

(29p) ||y • F<")(0 £(0 F'">(<) E(n) F»
vN /" F'''w ,,(i)J,-scT* _

Wird im diskontinuierlichen bzw. kontinuierlichen Falle

£(«) £s > -P(s +1) — -P(s) +1) — P(s) &, (s 0,1, ra — 1)

bzw.

dP(<) dE(<)—= ^(f) » —= eW. (0 < < < w)

gesetzt, so entsprechen einander die Formeln:

<-1 «1

£« ^ FW + V £j (jïj gj V g(i) t/W
s=o ;=i

«-1 m

E( F?» E„FW-S E.K- e.-®, V gWüW,)
s=i 1 1

bzw.

/ M

E(i) F<")(() FW(0) + )' E(r) [*(r)- e(r)- V ^W(^) t/W(r)] dt,
0 i=l

« m

£(<) FW(/) £(m) FW(n) — j" £(r) [^(r) — ß(r) — V /«'''(r) dr.
/ 1=1

§ 2.

Funktionalgleichungen der Durchschnittsrücklagen.

Prämienzerlegung in Spar- und Risikoteil.

1. Die in den letzten Zeiten auf verschiedensten Wegen abgeleiteten
Funktionalgleichungen von Deckungsrücklagen können auf eine rein
formale Integralgleichung zurückgeführt und dadurch unter wesent-

lieber Beweisvereinfachung verallgemeinert werden.
Es existiere nämlich für die Funktionen von beschränkter Schwan-

kung B t 0, IF das Integral
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(-)«

(30) T(f) /"^d(MF),(0<f <m).
Jo A

(-)«
Mit l'o_E'JT existiert dann laut Zusatz zu Satz 11 auch

p (-)»j -d(STF) J„B'dT,

Ji"
und die Formel (23) liefert für /j 1, /g — —-, </ MF, a fc, fc f

die Folterrascfee 2wteprak/fefc7m«(/ reifer für fF:

(31) B'(f) TF(<) S'(fc) TF(Zc) + jU'dT + ~,

die sich für £?'(<)= 7?(f)*) vereinfacht zu:

(32) 2?(0 TF(f) M(/r) TF& + yjsd T.

Für ./</'(<) £(<) und bei Wahl der retrospektiven oder prospektiven
Durchschnittsrücklage als TF(f) liefern beidemal die Formeln (29)

(30') T(*) P(0 — P<*»(<) mit

(-b
m (+)< /• 1

(30") P<»>(«) 2?(f) + S J o« ^ ®) •

i=l
* Jo W>

Aus den Formeln (31) und (32) folgt daher

Safe 25: Sowohl die retrospektiven wie auch die prospektiven
Durchschnittsrücklagen einer Versicherungsgesamtheit genügen für
sämtliche 0 < i < n, 0 < fe < n den Funktionalgleichungen :

(-)« (-)» (-)( i »

1) In diesem Falle existiert /„B'dT= /„.Ed/,, — ti(EIF) zufolge Satz 11,

(-)» i (-)*»
nachdem mit /,^<i(ÈW) laut Korollar 2 zum Satz 6 auch Ed(EIF) existiert.

2) Wird in (32') /c 0, F(0) 0 und P(t) P<")({) gesetzt, so folgt F(t) 0;
daher ist das «natürliche Prämientotal» der Versicherungsgesamtheit.
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(82')
(-X

£(0 F(i) E(fc) F(fc) + J, £ d(P-P<*>),

(31') E'(f) F(f) E'(7t) F(fc) + |Vd(P-^') + J'/! £ ^ '

wobei über die Funktion E" beliebig verfügt werden kann, sofern nur
(-)«

J'oE'd(P — P<"») existiert.

Für /f 0 bzw. fc w wird (32') entsprechend zu (29r) bzw.

(29p). Zufolge Satz 13 genügt also die prospektive Durchschnitts-
rücklage auch ohne Voraussetzung des Äquivalenzprinzips der Defi-
nitionsgleichung der retrospektiven und umgekehrt; eine Tatsache,
die bisher unbekannt sein dürfte.

Die Integralgleichung (81') kann umgeformt werden in

(-9
(31") E'(t) F(f) E'(fc) F(fc) + E" d (P- PM) +

HP

+
(-)r

<-D /• E'
d(E' + JoE'dM) + Ld / — dzl

./o £/

'(Laut (226), (11), (23), (25) und (22a) ist nämlich

(+)< (+p (r-)r /E'\ (+)( / p
J'*E F d — J", Fd j o £ d _ J", F d E"- / -=-d£ ]

(") r

A
+ 9
l'fcF d( E" — /* dL^—Ed /" — dir

(+9 (-)' FE"
d(E' + Co E'dM) + Ed / — d/J

./o L

2. Im diskontinuierlichen bzw. kontinuierlichen Falle entsprechen
einander :

1° die Ausdrücke für die natürliche Prämie und natürliche Prämien-
intensität :
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m

p<»)(, +1) _ ^ + 2 (' o,i,...,»-1),
<7

i=l

-pW(z) *<*>(<) e(0 + 2 /'<"(<) ');
dz

2° die aus Formel (32') für < fc -(- 1 resultierende Fefcwmows-
/orwteZ der Dectew^snicZrfat/e

P*+l

r, -*±i-* F,,

(F,, + %.—4*0

und die durch Differentiation sich ergebende T/wc/e,scAe Z)i//erewZiaZ-

gdefc/mw(/:

dF(f)
df

c«(0 + <W] • F(0 + 7i(Z)—;
3" die aus Formel (31") für /r < f resultierende Ämmewr/Zefc/mw^

F; F, F; F, + 2 /?: K- *f> + ^S l

und die /«fef/ra^fcic/mra# der Pßc/tmw/mlc/dar/e

7?'
S + l /-i \—, »,(1—3.)

*(t) F(<) F'(fc) F(/c) + J'F'(t)L(T)-^(T)] + F(r)
1 dF'(r)

F'(r) dr
-/<(r) — <5(r) dr.

Dei blosser Voraussetzung der Stetigkeit der auftretenden Grössen

wird (31") zu
< ' / d F'

(81'") F'(f) F(f) F'(/c) F(/c) + f F"d(.P— PW) + (' FF' —- + dM + dzl
i A V F

Spezialfälle von (31"') sind für einen geschlossenen Bestand

gleichaltriger Personen abgeleitet worden, und zwar für die retro-

*) Bei blosser Stetigkeit von w, CD' und (i 1, ..w) wird aus (30"):
m f tt(i)

pW(o=ß(o+2/-^^''-
»=i 0
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spektive Durchschnittsrücklage mit fc 0 und daraus für die pro-
spektive unter Voraussetzung des Äquivalenzprinzips mit fc ro [vgl.
Jacob (1), Loewy (1), Berger (1)].

Die gemeinsame Form (31"') dieser Integralgleichungen und deren

Geltung sowohl für retrospektive wie auch prospektive Bücklagen —
und zwar ohne Voraussetzung des Äquivalenzprinzips — wurde nicht
erkannt.

3. Auch die Prämienzerlegung einer allgemeinen Versicherung in
Spar- und Risikoteil kann auf eine den diskontinuierlichen und kon-
tinuierlichen Fall umfassende Art vorgenommen werden, und zwar laut

S'afe 74: Das Prämientotal P(f) einer Versicherungsgesamtheit
ist in ein «Sparprämientotal»

(-)<

r l <+)<

(88 S) P'^(t)= y — d(wF) F(0 —F(0) —jToFdzl

und in ein «Risikoprämientotal»

(-)'
m (4)/ / 1

(88 B) P<*>(f) R(f) + S |'oW(D"'— F)d / — dM"»
éi - jo M

zerlegbar, wobei als F(t) die retrospektive oder prospektive Durch-
Schnittsrücklage der Versicherungsgesamtheit gewählt werden kann.
Dann kann F(<) durch reinen Sparprozess aus F(0) und Beträgen
von der Summe P'®'(f) im Zeitintervall <0, f> gebildet werden.

L(<) îa(f)
Beweis: Wird in (30) 2?(f) —— JF(f) F(f) gesetzt und

L(0)

Formel (23) mit /i /2 D, p=wF angewendet, so folgt
Lw

(-)( (-)'

T(f) P(t) — pW(f) /"_Ld(«,7)+/__d (>Fö!L
Jo '(« Jo Dîû

(-)
(+)» /• 1

P«>(0 + J>Fdjf _dL,



— 173 —

woraus unter Berücksichtigung von (30") und (27) P(f) P'®'(f) -)-

+ p(«)(<) resultiert. — Die Formeln (23) und (28) liefern überdies

Anderseits ist aber gemäss (30) P'®'(f) der Wert von T(f) für
£?($) t«(f), JF(<) F(f), und Formel (32) drückt hiebei für fe 0

die behauptete Kapitalisationsbildung von F aus.

Im diskontinuierlichen bzw. kontinuierlichen *) Falle entsprechen
einander die Spar- und Risikoprämien

pW(i + l)_pW(t) *<?>=», • F, + ] — F,,
«t

pW(<+l)--PW(0=^)=^+2^#(^+-F<ei)(<=O,l...,n-l)

1. Es soll nun bei Übergang von einer Yersicherungsgesamtheit
zu einer zweiten, deren Grössen mit einem Strich bezeichnet seien,
ein Zusammenhang zwischen der Rücklagenvariation und den ent-
sprechenden Gewinnausdrücken abgeleitet werden, der trotz seiner
Einfachheit bisher unbekannt sein dürfte. — Werden die ungestrichenen

') Bei blosser Voraussetzung der Stetigkeit der auftretenden Grössen wird
aus (33®):

bzw. Spar- und Risikoprämienintensitäten

»<*>(<) f?(0 + S [^'(0- F(0].

Gewinnermittlung und Rücklagenvariation.

/ J/'*' — F
P<*>(<) R(f) + V / d/h).

7-7 vo Dfei •"
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Werte als der Geschäftsführung zugrunde liegend, hingegen die ge-
strichenen Rechnungsgrundlagen und Ausgaben als wirklichkeitstreu
betrachtet und <3x' a;'—a; gesetzt, so beträgt der auf den Versiehe-

rungsbeginn diskontierte und auf ein Anfangsmitglied bezogene Ge-

winn für die Zeitperiode [0, f] :

ß(f) 7(0) + E'd(P-P'W)- E'(f) • 7(f)

H«) + Jo E'd(P'—P'W) — E'(f) • 7(f) —cS7(0) — J'q E'cZ<3P.

(-)(
' 1

Für die «Gewinnfunktion» P(f) / — <ZG gilt daher wegen 7'(0) +
./ o £

+ J 0 £'d(P' —P'<*>) £'(£) 7'(f) :

(34) j'o£'dP=G(f) E'(f) • <3 F(f) — cS 7(0) — J'j,' £'<7<3 P.

Pafc 75: Zwischen der Rücklagenvariation (3F(<) und Gewinn-
funktion P(f) besteht der Zusammenhang

(35) E'Ct) • 3 F(t) E'(fc) • (3 F(fc) + J » E'd(3 P + P)

für alle 0 < f < n, 0 < & < rt, und es ist

+ )*

(36) P(0 — 3B(f) + JoFd(/l' — J) —

st=l

(~) r H I
(+)< / 1 + )« /• 1

)oto'(ü'"»—F)d / — — |'oW(J7«)— F)d / —
7o 'tü' " 7o iü

Die Vertauschung der gestrichenen und ungestrichenen Werte
liefert daher die dualen Formeln:

<-)<

(35') £(/) • 3 F(f) £(fc) • 3 F(fc) + jf» £d(3P + /")

mit



(+)'
(36') /"(<) _,5B(<)+ CoF'd(4'—id)-

V
i=l

(")r (-)r
+ /• 1 + )' /' 1

0'(U'"'> - -F')d / —-dM'«>— |>(F">— F')d / — dHf'<>
Jo ® ' .'o W

Beweis: Durch Subtraktion von der Formel (34) derselben für
< fc angesetzten folgt (35). — Wird anderseits (81') mit E' £'
von der für die gestrichenen Grössen angesetzten Belation (32') sub-

trahiert, so ergibt sich

(-)( (+)/ £'
£'(() • dF(f) £'(/-) • d F(/,:) + J\ £'d(dP-dP'<»>)-J-,EFd —

Die Einsetzung in (35) liefert für fe 0

(-)( (-)« (+)< £'
J'o £'dP=—J'o E'ddP'*)-jo E Fd —

Zufolge Formel (24) ist daher

(36*)

(-)(

r l <+)' £'
P(0 - d P<*>- j d J'o £ Fd —

Das letzte Integral wird durch partielle Integrationen zu

(-)<

£'
£'F— / 4~d(EF)

H' (-)'
' |; d(£' F) — d(£ F)

'o £'

(+)' / 1 \ (+)' ' / 1 ^

• J o
E Fd(-=-) — J'o £' Fd( —
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Aber

R*
(+x /1 \ <+)' (+>' /1 \ (+x /• i
Jo£Fd^-j X„FdXo£dM -JoFdj -d£

(-)' (-)«
(+)( / 1 (+)( (+)' /• 1

—foF* / — d(Lw) L7dJ—fnwFd / —-dL
Jo -Ew " Jo

(-)'
(+)f m + )/ /• 1

f„FdJ + Y j'„wFd / — dM<«.
i=i y to

o
Analog ist

H*
(+)( / l \ (+)< »> (+)< /• l
j'o E'T'd — =joFrlzr + 2J>'Fd / -dM'«.

\ t / j=t 7o w

Wird noch für P'"' der Wert aus (30") eingesetzt, so folgt aus (36*)
die Formel (36), w. z. b. w.

Im diskontinuierlichen bzw. kontinuierlichen Falle wird aus (35) entsprechend

E;-dF, E^dF,+ 2E;(<K + y,)
mit »=S

(36**) y„ r(s + l)—P(s) —<3ß„ —F,+i • <5®,—

m

-s K(ÜÄ-F.+i)^>-«.(I7^-F.+,)gi'>] 1)

Î=1
bzw.

E'(f) • <3F(t) E'(fc) • dF(fe) + j E'(r) • [d7r(r) +y(r)] dr mit
7c

(36***) y(r) —= — <5 g(r) + F(<) • [d'(i) — <5(r)] —

m

- 2 {[P'«(r)-F'(r)] • — [F**)(T) • F(r)] • /»(T)).
1=1

i) Dieser Ausdruck kann laut Schärf (1), Formel 15, umgeformt werden in

du
y. -ae.-S<[ra-^+i)-«^+^-^Äi] + -r(F.+»-e.

4=1
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Dabei ist y - y [&'(«-(-1)—G(s)] der auf don Beginn des (s+l)-ten Versichorungs-

jahres diskontierte, auf einen Versicherten entfallende Gewinn dieses Jahres,

y(r) — —----- die Gewinnintensität im Zeitpunkt r
£ (T) dr

Wird als F(<) das ausreichende Deckungskapital und als P(<) das Total der
ausreichenden Prämie einer Lebensversicherung genommen, sowie ii(f) • P(t) |.

I A'(t) -|- S(f) gesetzt, wobei den Inkassokostensatz, Af({) und S(i) entsprechend
die Totale der Verwaltungskosten und der Rentenzahlungen an Versicherte be-
zeichnen, so werden (3(1 **) bzw. (36 ***) entsprechend zu den bekannten Kon-
tributionsformeln des diskontinuierlichen bzw. kontinuierlichen Falles.

2. Aus Satz 15 resultiert sofort folgende den diskontinuierlichen
und kontinuierlichen Fall umfassende Verallgemeinerung des Funda-
inentalsatzes der Theorie der Kapitalansammlung von CanteKi (1):

Die (prospektiven oder retrospektiven) Durchschnittsrücklagen
F(<) einer Versicherungsgesamtheit mit K(f) 0, .zf'*)(7) F(<)
bleiben bei Streichung der Entschädigungszahlungen und

(+)'
gleichzeitiger Ersetzung der M'*>(7) durch =J'o(l—vF'')dMh)
ungeändert.

Man verifiziert nämlich, dass hiebei F (7) 0 ist, so dass wegen
d P 0 und entsprechend <5 F(0) 0 für retrospektive bzw. <5F(n) 0

für prospektive Durchschnittsrücklagen aus Formel (35) mit 7c 0

bzw. /c w die Behauptung folgt.

3. Satz 15 liefert insbesondere universelle — den diskontinuier-
liehen und kontinuierlichen Fall umfassende — Formeln für die
Variation der laufenden Prämien, Einmalprämien und Deckung«-
kapitalien der üblichen Versicherungsformen. — Bei diesen bleiben,
falls die «Anfangsprämie» tt P(l) + 0 ist, die Bücklagen F(0)
und F(w), der Endpunkt f «, sowie die den Prämienverlauf charalc-

terisierende Funktion C'(7) — • P(7) ungeändert. Daher folgt aus
TT

(35), wenn 7c 0 gesetzt wird,

£'(<) • öF(0 der • J o + J o £V7F

und wenn 7 gesetzt wird
(-) »

v

(-)«

j'nEDIC
12
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Dies sind bereits universelle Variationsformeln für Versicherungen
mit laufender Prämienzahlung. Analog folgen aus (35') die dualen
Formeln :

(-)»

H' <->« ('„Ed/"
£(i) • r5 F(f) <5rc • | o £ dC + J o £ dP', <5*; -

J'„EdC

Für die Variation der Einmalprämie F(0) einer dem Äquivalenz-
prinzip genügenden Versicherungsgesamtheit mit /-*(<) 0 liefern hin-

gegen die Formeln (35) und (35') bei ungeänderter Versicherungs-
dauer und Endzahlung F(n) die Ausdrücke:

(-)» (-)»
,5 7(0) — J'o £'dr — j'o £ d/A

Mit den dargestellten Anwendungen, die für die Beleuchtung der
Rolle der eingeführten Integrale in der Versicherungsmathematik
genügen dürften, müssen wir uns aus Raumgründen begnügen. —
Es sei nur noch bemerkt, dass die versicherungsmathematischen
Funktionen höchstens endlich viele Unstetigkeitspunkte aufweisen;
bei Beschränkung auf solche Funktionen ist eine auch dem praktischen
Versicherungsmathematiker zugängliche Darstellung der versicherungs-
mathematischen Anwendungen dieser Integrale möglich, die einer

künftigen Arbeit vorbehalten bleiben dürfe.
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