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Gruppierung mit Nebenbedingungen.
Von H. Hadwigder, Bern.

Unter einer Gruppierung von n individuell unterscheidbaren Ele-
menten wollen wir eine vollstindige Zerlegung (Aufteilung) der ge-
gebenen Elementgesamtheit in einzelne Gruppen verstehen. Durch

(1: 2,8,4,5, 6) = (6) + (4,1, 3) + (21 5)

ist beispielsweise eine symbolische Darstellung einer Gruppierung von
n = 6 KElementen gegeben. Zwei Gruppen einer Gruppierung sollen
nur dann als verschieden gelten, wenn die (ungeordneten) Mengen
der in ihnen enthaltenen Elemente verschieden sind, so dass also
eine eventuelle Anordnung der Elemente innerhalb der Gruppe un-
wesentlich ist. Ahnlich sollen zwei Gruppierungen der niimlichen
Elementgesamtheit nur dann als verschieden bezeichnet werden, wenn
die Mengen ihrer Gruppen ungleich sind, so dass auch hier die Anord-
nung der Gruppen keine Beriicksichtigung findet. Die verschiedenen

Gruppierungen fiir n = 4 sind:

1) 4 @)+ G3) + @)
(1,2) + (3) + (4)
(1,8) + (2) + (4)

(1, 4) +(2) + (3)
(2,8) + (1) + (4)
(2,4) + (1) + (3)

(3, 4) + (1) + (2)
(1,2)  +(3,4)
(1,3 + (24
(1,4) +(2,8)
(2,38,4) + (1)
(1,3,4) + (2) ‘\
(1,2, 4) + (3)
(1,2,8) + (4
1,2,8,4)
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In der vorliegenden Arbeit befassen wir uns mit der Anzahl der
verschiedenen moglichen Gruppierungen, welche noch gewissen Neben-
bedingungen zu geniigen haben. So studieren wir die Anzahl 4},
der Gruppierungen, die genau » Gruppen ergeben, wobei aber die
Anzahl der in den einzelnen Gruppen enthaltenen Elemente nicht
grosser als 4 sein soll. Nach der oben als Beispiel gegebenen Aufstellung
der Gruppierungen fiir den Fall n = 4 wird also

A} y=1, A3, =8, 43 ,=1, 43,=6, 45, =1

4,1

P

sein. Fiir 4 = n entfillt offensichtlich die zusitzliche Nebenbedingung,
und wir schreiben dann fiir die Anzahl der Gruppierungen mit v
Gruppen kirzer A}. So ist beispielsweise

Al =1, A5 =1, A} =6, 42 =1.

Unser Ziel ist, die explizite Losung des durch die obigen Bemer-
kungen nahegelegten allgemeinen Problems so zu entwickeln, dass
gewisse methodische Richtlinien, die uns zur Bearbeitung derartiger
Fragestellungen der Kombinatorik geeignet erscheinen, deutlich zutage
treten. Nebenbei werden einige Beziehungen zu gewissen Formeln
der Analysis zur Geltung gebracht. Die Moglichkeit derartiger enger
Zusammenhiinge beruht auf der Tatsache, dass solche Formeln, wie
sie etwa bei fortgesetzater Ableitung zusammengesetzter Funktionen
(Formel von Faa di Bruno) oder bei Iteration gewisser Differential-
operatoren entstehen, in ihrem Aufbau einem kombinatorischen Prin-
zip unterworfen sind. Die mannigtaltigen Beziehungen, welche zwischen
den vielen Kinzelresultaten der alten und neuen Fachliteratur in
dieser Hinsicht bestehen, sind fast uniibersehbar 1).

1) In den hier folgenden Erliuterungen treten wir kurz aut einige Beriihrungs-
punkte ein, die zwischen der bestehenden Fachliteratur und unserer Studie be-
stehen. — Kombinatorische Interpretationen fiir Entwicklungskoeffizienten in
Tformeln fortgesetzter Derivation, die mit unserm Iragenkreis zusammenhiingen,
wurden beispielsweise von H. S. Wal, On the n-th derivative of f(x); Bull. Amer.
Math. Soc. 44 (1938), 895—398, und in allgemeinerer Form von J.Opatowski,
Combinatoric interpretation of a formula for the m-th derivative of a function;
Bull. Amer. Math. Soc. 45 (1939), 944 gegeben. In der letztgenannten
Arbeit handelt es sich um eine Deutung der Koeffizienten in der Derivations-
formel von Fad di Bruno. Die Zahlen A" treten in anderer Bedeutung bereits in
der klassischen Analysis auf; sie finden sich beispielsweise als Koeffizienten der
Entwicklung des Differentialoperators (zD)» nach den Potenzen Dv (D bedeutet
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Wie cinleitend erwithnt, bezeichne
(1) A (A=<A=n, 1=<v=n)

die Anzahl der Gruppierungen von % Elementen in » Gruppen unter
der Nebenbedingung, dass die Anzahl der in den einzelnen Gruppen
enthaltenen Elemente die Schranke A nicht tbertrifft.

die Ableitung nach z). Vgl. hieriiber die Arbeiten von S. Pincherle, Bulletino
U. M. I, 17 (1936), 72—74, und L. Tescano, Ist. Lombardo, Rend. 11, 67 (1934),
543—551. Line merkwiirdige Interpretation der Zahlen A» gab Scherk, Uber
einen allgemeinen, die Bernoullischen Zahlen und die Coefficienten der Secanten-
reihe zugleich darstellenden Ausdruck, J. f. Math. 4 (1829), 299, wonach Aff die
Summe der (/n—l) Produkte bezeichnet, die durch die Kombinationen der y
Zahlen (1,2,...,») zur (n—w)-ten Klasse mit Wiederholungen gegeben ist.
So ist beispielsweise
Agz 0=1-1-1+4+11.24+1-1.8341-2.241-2.34+1-3-3 -} 2.2.2 4
‘ +2.2.3+ 2.3-83 -} 38.3.8.
Eingehende Studien widmete L. Saalschiitz, Vorlesungen iiber die Ber-
noullischen Zahlen, Berlin 1893, den Zahlen ¢ = A--:{:f,,'fll, die in versehiedenen
Formeln und Reihen auftreten. Frwihnt sei die klassische Formel von Iytelwein
zur Darstellung der Bernowllischen Zahlen. Wir mochten darvauf hinweisen, dass
die in der analogen Darstellungsformel von Laplace auftretenden Koeffizienten,
die eng mit unsern Zahlen verwandt sind, in jingster Zeit eine neue, beachtliche
kombinatorische Interpretation durch L. von Schruthe, Iine neue Einteilung der
Permutationen, Math. Ann. 118 (1941), 246—250, erfahren haben. Is handelt
sich um die Klassifikation der Permutationen nach der Zahl der enthaltenen
Aufstiege. Die bei uns entwickelte explizite Darstellung der Zahlen A” zeigt
eine bemerkenswerte Verwandtschaft mit der Laplaceschen Polynomformel (Théorie
analytique des probabilités, 196) fiir die Verteilungstunktion

O

1 gin E\»
D, () = e / (—_—) cos wtdt,
T ¢

-0
welche bei der kontinuierlichen Behandlung eines Aufteilungsproblems ebentalls
eine wesentliche Rolle spielt. Vgl. hieritber H. Hadwiger, Uber gleichwahrschein-
liche Aufteilungen, Zeitschrift fiir angewandte Math. und Mechanik 22 (1942),
226—232, besonders Formel (4) und (10). Bine Darstellung der Potenz ‘zn durch
“die Binomialpolynome (?) , welche wir im Laufe der Entwicklung streifen, wurde
u. a. auch von J..d. Joseph, Ann.math. Statist. 10 (1939), 293—296, studiert,
wobei auch Bezichungen zu den fiulerschen und Bernoullischen Zahlen festgestellt
worden sind. '
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Ordnet man die oben gekennzeichneten Gruppierungen in der
folgenden Weise, dass man zuniichst diejenigen Gruppierungen auf-
fithrt, in welchen das n-te Element fiir sich eine Gruppe bildet, dann
diejenigen, in welchen das bezeichnete Flement mit genau einem
weitern, dann mit zwei weitern usw. Elementen eine Gruppe bildet,
so fithrt die mit dieser Kinteilung verbundene Abzihlung zur Riick-

lautformel
i1

- " n—” ]. —-1—1
® = (" )i
i:O Pl

Es ist fiir unsere einzuschlagende analytische Methode charakte-
ristisch, die den zu studierenden Zahlen zugeordneten Polynome

(3) T, (@) =247 ,2", Ty,(@)=1 n=1
v=1
zu betrachten. Durch passendes Multiplizieren mit Potenzen von x
kann die Ricklaufformel (2) in eine solche fiir die Polynome (8)
iibergefithrt werden, némlich in
n—1
( ) )Tn—l—i,;’. (CB).

Besondere Beachtung verdient neben dem Fall 4 =n, den wir
spiter ausfithrlicher betrachten, noch der Spezialfall 1 = 2. Nach
der Riicklaufformel (4) berechnet man schrittweise

-1

(4) Ly (@) ==

1=0

Ty 5(2) =1,

T, o(z) = =z,

T, o(2) = 2* + x,

Ty o(x) = a® + 8a?,

Ty qo(2) = xt* -+ 623 - Ba?,

T () = 2® + 102 + 1527,

Tg o(w) = ab + 1525 4 452 + 15 a8,

Wie wir an dieser Stelle bereits vorwegnehmen wollen, steht das
Polynom T, ,(z) in einem engen Zusammenhang mit dem Hermi-
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teschen Polynom H, (z), das in der iiblichsten Weise durch die Diffe-
rentiationsformel

6 s e d
0 Fnm et [padl

definiert wird, und zwar gilt die Darstellung

(7) T-n,2 (a’l) = (V___—m)" Hn (]/_Tg;).
Durch

(8) an:EA:,.‘!: Tn,z(l)”ngl’

v=1

wird die Zahl aller moglichen Gruppierungen von n Elementen in
Einer- und Zweiergruppen geliefert. Wir weisen hier darauf hin, dass
die Zahl @, nach dieser Interpretation beispielsweise die Anzahl der
verschiedenen selbstreziproken Permutationen P von n Elementen
widergibt. Mit Riickblick auf (7) konnen diese Zahlwerte als Funktions-
werte der Hermiteschen Polynome dargestellt werden, und zwar gilt

9) a,= (@)"H,@) [i=}/—1 )
Wir erwidhnen noch die sich aus (4) ergebende Riicklaufformel
(10) U1 = QO+ Ny, T ; 1, ay = 1.

So ergeben sich die Zahlwerte

=2

232
764
2620
9496

[t
S O LIS T W R
()

o
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Ein weiterer entscheidender Schritt bei der Durchfithrung unserer
analytischen Methode besteht darin, fiir die eingefiihrten Polynome
(8) eine erzeugende Funktion zu ermitteln. Die grosse Bedeutung
einer solchen erzeugenden Funktion ist offensichtlich. Als vollstindiger
Reprisentant des zu untersuchenden Zahlenschemas birgt sie alle
seine Gresetze in ihren vielgestaltigen Formen und ist doch eine Finheit.
Einmal gewonnen, wird sie einen geeigneten Ausgangspunkst fiir irgend-
welche Untersuchungen sein, da sie als Funktion allen methodischen
Zugriffen der Analysis zugénglich ist. Wir bilden die erzeugende
Funktion

(11) 2 Tn A

n=0

und es stellt sich nun die Frage, ob sich diese Funktion in elementar
geschlossener Form darstellen lisst. Auf Grund der Riicklaufformel
fir die Koeffizientenpolynome (3) ergibt sich die (partielle) Differential-
gleichung

12 00, i ®, =0
(12) e + + —[— +(it—1) =0,

so dass sich mit Riicksicht auf die Anfangsbedingung

(18) D, (x,0)=1

die erzeugende Funktion

22 g8 s
A i i SRR
(14) (_D}_ (CE, z) — ecc( 2t 3l M)

als Losung ergibt.

Als erstes Beispiel eines sich auf Grund der Kenntnis der erzeu-
genden Funktion (14) ergebenden Resultates erwihnen wir die Iden-
titat (7), welche aus

(15) (o) = (/=) B, (=2) 2,

direkt abgelesen werden kann, einer Identitiit, welche sich durch Ver-
gleich von (14) mit der Erzeugung
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i & w"
8 e T =3 Ho)
n=0 n.

der Hermiteschen Polynome leicht ergibt, wenn man z durch ]/—_-:;

und w durch ]/u—_:c_ %z ersetzt,

Im Folgenden treten wir eingehender auf den Spezialfall A = n
ein. Da die Anzahl der Elemente in einer Gruppe trivialerweise nicht
grosser als n ausfallen kann, ist die Nebenbedingung praktisch auf-
gehoben. Wir setzen dann etwas kirzer

17 Ay =AL,
und iibertragen die Riicklaufformel (2) in
(18 n __ S n—1 n-1-»
) A_,,_Z( . )A,,_l ,
1=0

Fiir die zugeordneten Polynome
(19) T, (@)= D 41a", Ty() = L,n 1
=1

erhalten wir analog die formal beachtliche Rekursion

n

’
/

(20 1,0 =2 )5 (}) 20

i=0

welche zur schrittweisen Berechnung der Polynome herangezogen
werden kann. Es ergibt sich

Ty (x) =1,

Ty (2) = =,

T, (2) = 22 + z,

Ty (z) = 23 + 8 22 + w,

Ty(x) =at+623+T22+ 2,

Ts (x) = & 410 2% + 25 2% + 15 a? 4 2,
Te () = a® + 15 25 + 65 2¢ 4 90 23 4 81 22 + 2.
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Besondere Bedeutung erhalten die Zahlwerte

(21) C,= D Ar=T,1),n=1,

y=1

welehe die Gesamtzahlen der iiberhaupt mdglichen Gruppierungen
von n Elementen darstellen. Nach (18) geniigen sie der Rekursion

E-‘
(22) Criy = (’f)g
=0

KEs ergeben sich die Zahlwerte

n | ¢,

1 1

2 2

3 5

4 15

2 52

6 203

7 877

8 4140

9 21147
10 115975

Die erzeugende Funktion der Polynome (19)

n

(23) D (2, 2) = g T,() =

wird offenbar durch

(24) D (z,2) = ex(ez—-l)

gegeben sein. Hierzu ist zu bemerken, dass die Nebenbedingung natiir-
lich auch wegfillt, wenn wir statt 4 =n formal A = oc setzen. Der
zweite Ansatz liefert die gewiinschte Spezialisierung simultan fir alle
n=20,1,2,8,... und ist offensichtlich notwendig fiir die Speziali-
sierung der erzeugenden Funktion.

Eine kleine durchsichtige Umrechnung bei der geliufigen Dar-
stellung der Entwicklungskoeffizienten der Funktion (24) bei der
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Reihenentwicklung nach Potenzen von z durch die héheren Ablei-
tungen (im Nullpunkt) fithrt auf die Identitdt

(25) ¢ T,(z) = (¢ D)'e" { ZE%]

wodurch ein Zusammenhang der Zahlen (17) mit der Entwicklung
des Differentialoperators D aufgedeckt wird. Die gewonnene Identitis
gestattet iibrigens, zu einer expliziten Darstellung der Zahlen (17)
vorzudringen. Wenn wir nimlich die Exponentialfunktion auf der
rechten Seite in (25) als Potenzreihe anschreiben und dann den Diffe-
rentialoperator gliedweise wirken lassen, so gewinnen wir zunichst

die Darstellung

9

o . & . 2
(26) T_n(w)=€_xl£c—[—2"*2—!+3 ":3—!"'—4. ?—I— e 'n;]..

Wenn wir nun auch hier die Exponentialfunktion als Reihe
einsetzen und die Multiplikation durchfithren, so liefert ein Vergleich
der Koeffizienten gleicher Potenzen auf beiden Seiten die gewiinschte

Darstellung

|;—L
JQ

(27) A= > (— 1) (D(w — )"

Aus (25) leitet man auf naheliegende Weise die Differentialrekursion
ab, welche in Ubertragung auf die Koeffizienten die weitere Riicklaut-
formel

(29) A=Ay + A7,

ergibt, die sich offensichtlich auch kombinatorisch deuten ldsst.

Die in derartigen Fillen geldufige Anwendung des Theorems von
Rolle auf die Differentialrekursion (28) gestattet den Schluss, dass
die Polynome T, (z) genau n verschiedene, reelle (negative) Null-
stellen aufweisen.
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Aus der Tatsache, dass die erzeugende Funktion (24) der Funktio-
nalgleichung

(30) D(z,2)D(y,2) =D (z+y,2)
geniigt, leitet man noch die Giltigkeit des Additionstheorems

n

(1) @ 49) =) (1) Ll 40

1=0

ab. Eine weitere Figenschaft der Zahlen (17) ergibt sich dadurch, dass
wir in (25) auf beiden Seiten die Exponentialfunktion durch ihre
Potenzreihe ersetzen, links ausmultiplizieren und die Koeffizienten
vergleichen. So erhalten wir zuniichst

Sl Af(f) =,

r=0

und da diese Relation fiir alle & richtig ist, muss die Identitiit

32 | S L] o P
(32) ZO”A(v) .

gelten.

Wir kehren zu dem mit (25) Ausdruck gegebenen Zusammenhang
mit dem Differentialoperator (zD) zuriick. Wir konnen das Wesentliche
dieser Formel von der dort in Erscheinung tretenden Kxponential-
funktion loslosen. In der Tat gilt ndmlich

(33) (2Dy = S\ A1o' D,

»=0

oder mit symbolischer Schreibweise
(34) (x DY = T,(z D).

Um dies zu zeigen geniigt es, z. B. induktiv festzustellen, dass
die geschriebene Potenz des Differentialoperators D eine Darstellung
der angegebenen Form mit noch nicht weiter bestimmten Koeffi-
zienten gestattet. Die Gegeniiberstellung mit der speziellen Diffe-
rentiationsformel (25) liefert dann die zu beweisende Identitit (33).
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