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Das Zinsfussproblem
der Lebensversicherungsrechnung

als Interpolationsaufgabe.
Von Ernst Fischer, Basel.

Einleitung.

Die versicherungstechnischen Grundgrössen sind in der Personen-

Versicherung allgemein Punktionen des Rechnungszinsfusses und der

Voraussetzungen, nach denen der Eintritt des versicherten Ereignisses
stattfindet oder ausbleibt. Die numerische Berechnung dieser
Grundgrössen liisst sich rationell gestalten, wenn, dem Vorschlag von
Tetens L) folgend, Systeme geeigneter Hilfsgrössen, sogenannte Kom-

mutationswerte, eingeführt werden. Diese sind immer von beiden

hochnungsVoraussetzungen — Zinsfuss, Annahmen über Eintritt oder
Nichteintritt des versicherten Ereignisses — abhängig; daher bedingt
°me auch nur partielle Änderung in den Rechnungsvoraussetzungen
stets die vollständige Neuberechnung des ganzen Systems der
zugehörigen Kommutationswerte.

Die erhebliche Rechenarbeit der Neuaufstellung der Kommutationswerte

lohnt sich nun nicht, will man bloss einige Einzelwerte
bei geändertem Rechnungszinsfuss und gleichgebliebenen
demographischen Annahmen kennen. Man wird in diesem Pall vielmehr
darnach trachten, die Versicherungswerte zum neuen Zinsfuss
unmittelbar als Funktion der Zinsfussänderung und der zum alten Zinsfuss

berechneten Versicherungswerte und Kommutationszahlen
auszudrücken. Diese Aufgabe pflegt man als Zinsfussproblem zu
bezeichnen. Es hat, teilweise auch mit etwas andern Annahmen über
die als bekannt und veränderlich vorauszusetzenden Grössen und
teilweise auch mit anderer Zielsetzung, in der Literatur reiche Beachtung

*) Johann Nikolaus Tetens (1736—1807), Einführung der diskontierten
Zahlen (Kolumnarmethode) 1785/86, nach Braun [30],
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gefunden. Zusammenfassend unterrichten darüber die sehr schönen

Arbeiten von Christen [1] und Meissner [2J. Während in diesen beiden

Darstellungen die Lösungsvorschläge der verschiedenen Autoren im

wesentlichen in zeitlicher Reihenfolge einzeln und meist ohne weitere

gegenseitige Bezugnahme aufeinander dargelegt sind, hat Frucht [3]

mit Erfolg den bedeutungsvollen Versuch unternommen, Gruppen

verwandter Lösungsmethoden zu bilden, deren Gemeinsamkeit zu

kennzeichnen und Zusammenhänge aufzusuchen, die nicht nur
zwischen einzelnen Lösungen, sondern auch zwischen Gruppen von

Lösungen bestehen. Dieses Vorgehen weiter auszubauen und die von

Frucht gewonnenen Erkenntnisse zu vertiefen und weiter zu klären,

ist das Ziel der vorliegenden Arbeit. Dabei lässt sich ein Zusammenfassen

der wichtigsten Literatur zum Zinsfussproblem nicht ganz
umgehen; um aber eine Wiederholung der Darstellungen von Christen

und Meissner möglichst zu vermeiden, sehen wir überall da, wo es

nicht für unsere spätem Betrachtungen von unbedingtem Wert ist,

grundsätzlich davon ab, den Lösungen ihre Begründung beizugeben.

Dagegen wollen wir die Gelegenheit benützen, die Kenntnis von

einigen, in den genannten Darstellungen von Christen und Meissner
noch nicht gegebenen, neuern und beachtenswerten Beiträgen zum

Zinsfussproblem zu vermitteln.

Die in der Literatur bekannten Lösungen des Zinsfussproblems
beschränken sich grösstenteils auf den Leibrentenbarwert, da sich

alle weitern Versicherungswerte auf ihn zurückführen lassen. Wir
werden uns in unsern Betrachtungen diesem bewährten Vorgehen

anschliessen ; immerhin suchen wir die grundsätzlichen Überlegungen

so allgemein wie möglich durchzuführen. Denn so lässt sich beiläufig

erkennen, einmal wie weit sinngemässes Abändern und Verallgemeinern
der verschiedenen bekannten Lösungsmethoden noch zu neuen, brauchbaren

Verfahren für den Leibrentenbarwert führt, und weiter, ob

sich nicht bestimmte Ergebnisse auch auf die andern versicherungstechnischen

Grundgrössen, wie z. B. auf Prämien, Reserven usw.,

übertragen lassen. Es sei schon hier festgestellt, dass dies in der Tat

möglich ist und die Kenntnis der Ableitungen der Versicherungswerte

nach den Zinsmassen eine erhebliche Rolle spielt.
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Den Lösungen, wie sie von den verschiedenen Autoren gegeben
forden sind, liegen nicht immer die gleichen Voraussetzungen über
die Darstellung der Versicherungswerte und die Bemessung des Zinses

zugrunde. Wir schicken daher zweckmässigerweise unsern
Ausführungen in einem ersten Kapitel eine knapp gehaltene, allgemeine
Darstellung der Berechnung der Versicherungswerte voraus und
schliessen ihr gleich noch eine Zusammenstellung der Ableitungen der

Versicherungswerte nach den Zinsmassen an. Als zweites Kapitel
folgt hierauf eine Besprechung der verschiedenen bekannten Lösungen
des Zinsfussproblems. Im dritten Kapitel endlich wenden wir uns
der eigentlichen Hauptaufgabe zu, nämlich das Zinsfussproblem in
der Auffassung als Interpolationsaufgabe zu behandeln.
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1. Kapitel.

§ 1.

Die Grundlagen zur Berechnung von Versicherungswerten.

a) Die Zinsmasse.

Als effektiven Zinssatz bezeichnet man den Zins, den das Kapital
«1» in der Zeiteinheit — in der Kegel 1 Jahr — trägt; er sei mit i
bezeichnet. In die Rechnungen geht meistens nicht i, sondern eine

wohlbestimmte Funktion von i ein, nämlich der Aufzinsungsfaktor

r (i) r 1 + i,

der Diskontierungsfaktor

»(*)=-
1

r 1 + i
oder die Zinsintensität

ô (i) ô In (1 + i), mit i e'5 — 1,

die dem nominellen Zinssatz für die Zeiteinheit bei kontinuierlicher
Verzinsung gleichwertig ist und bisweilen auch logarithmischer Diskont

genannt wird.
In allen für die Versicherungsrechnung praktisch in Betracht

fallenden Wertebereichen sind die Funktionen r(i), v(î), ô(i) mit i
und auch unter sich eindeutig umkehrbar; folglich kann jede von
ihnen mit gleichem Recht neben oder statt i als unabhängige
Zinsvariable angesehen und verwendet werden. Ihre geschickte Wahl
kann auf die Rechnungen oft einen erheblich vereinfachenden Fdn-

fluss ausüben.

Lediglich der Vollständigkeit halber sei bemerkt, dass die

versicherungstechnischen Rechnungen immer zusammengesetzte
Verzinsung voraussetzen, und dass nur durch eine Abmachung
bestimmt werden kann, wie der Zins für einen Zeitraum zu bemessen
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'st,, der kein ganzzahliges Vielfaches der Zeiteinheit darstellt. Als
solche ist mathematisch die vernünftigste, die Aufzinsungsformel

Kt K0rl K0(l+i)l K0es<

mit K0 Kapital im Zeitpunkt t 0, K, Kapital im Zeitpunkt
' t nicht nur für positive oder negative ganze, sondern für jeden
reellen (für theoretische Zwecke gegebenenfalls auch komplexen) Wert t

gelten zu lassen.

b) Diskontinuierliche und kontinuierliche Betrachtungsweise.

Die mathematische Darstellung versicherungswirtschaftlicher
Vorgänge ist immer nach zwei Betrachtungsweisen möglich. Sie
unterscheiden sich grundsätzlich schon in der Festsetzung, die die

Veränderungen in den beteiligten Personengesamtheiten mit den
Zahlungen von Leistung und Gegenleistung verknüpft.

Die diskontimiierliche Methode geht von den rechnungsmässigen
Bestandesänderungen aus, die jeweils nach Ablauf eines festen

endlichen Intervalls, allgemein —- Jahr (wo m eine beliebige natürliche
m

Zahl ist), eingetreten sind. Damit diese Annahme eine vollständig
exakte Rechnung aufzubauen gestattet, ist über die Zahlungen

festzulegen, dass sie nicht in kürzern als je — -jährigen Abständen er-
m

folgen. Die Versicherungswerte sind dann durch Summenbildungen
zu erhalten oder setzen sich aus solchen zusammen.

Im allgemeinen wird das statistische Beobachtungsmaterial auf
einjährige Wahrscheinlichkeiten ausgewertet, und ihr Veranschau-
Uchungsmittel, die Ausscheideordnungen, schreiten nach einjährigen
Intervallen fort. Aus diesen praktisch vorliegenden Rechnungsgrundlagen

lassen sich daher die Versicherungswerte nur bei Voraussetzung

jährlicher Zahlungsweise mathematisch vollständig exakt
geben. Will man die Rechnung auf unterjähriger (meist vierteljährlicher

oder monatlicher) Zahlungsweise aufbauen, so reichen für die

praktischen Bedürfnisse die Näherungen vollständig aus, die sich
durch geeignete Annahmen über den Verlauf der Belastung und
Entlastung im jährlichen Intervall und durch Anwendung besonderer
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Verfahren aus den Werten der jährlichen Zahlungsweise gewinnen
lassen. Ohne es immer zu wiederholen, verstehen wir unter
diskontinuierlicher Bechnungsweise für unsere Aufgabe grundsätzlich immer
Zahlung in jährlichen Abständen auf Grund der in jährlichen
Intervallen erfolgten Änderungen in den Personengesamtheiten.

Als Zinsmasse haben in der Literatur alle drei, v, i und d Eingang
gefunden und weisen gleichermassen Vorzüge und Nachteile auf.

Wir werden, wo es im folgenden nötig und wünschenswert ist, stets

alle Masse diskutieren und auf die Unterschiede hinweisen, die bei

Verwendung verschiedener dieser Masszahlen erwachsen.

Ahnlich wie bei der Anwendung der Mathematik auf Fragen der

Naturwissenschaften ist es auch in der Versicherungsrechnung methodisch

oft von Vorteil, Vorgänge im Infinitesimalen zu betrachten und

in unendlich kleinen Abständen erfolgende Zahlungen bei kontinuierlich

sich ändernden Personengesamtheiten anzunehmen. Die Ordnungen
setzt man dann mit Vorteil gerade als analytische Funktionen voraus.
Doch will das nicht etwa heissen, dass diese Ordnungen durch einen

geschlossenen mathematischen Ausdruck, ein «Ausscheidegesetz»

explizit dargestellt sein müssen; mit den Methoden der numerischen
Differentiation und Integration lassen sich, wenn nötig, die durch die

kontinuierliche Methode dargestellten Versicherungswerte genügend

genau aus den einjährigen Wahrscheinlichkeiten und den aus ihnen

hervorgehenden diskontinuierlich gerechneten Werten direkt
berechnen. Der Wert des Ansatzes liegt im Methodischen; die an Stelle

der Summen der diskontinuierlichen Bechnungsweise tretenden
Integrale lassen sich meist einfacher und übersichtlicher umformen. Die

Verzinsungsdauer ist dann auch eine stetige Veränderliche; bestes

Zinsmass ist die Zinsintensität und wird in der Literatur dann auch

allein verwendet.

c) Die Kommutationszahlen.

Durch die Einführung der Kommutationszahlen wird die numerische

Berechnung der Versicherungswerte wesentlich erleichtert und

die äussere Übersichtlichkeit der versicherungsmathematischen
Formeln stark erhöht, dieses allerdings nur auf Kosten einer Verwischung
ihres innern Gehalts. Mit Biicksicht auf die nicht einheitlich gehandhabte

Bezeichnungsweise durch Poukkci, Christen, Meissner, Manisch
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u. a. soll nachfolgend das von uns verwendete System festgesetzt
werden.

Ausgehend von der diskontierten Zahl der Lebenden
Dx vx lx ühx lx wird definiert

diskontinuierliche kontinuierliche

Betrachtungsweise

A-l)
r + <

/ 0

co-x
U 5,i0) A7x 2^+i

/=0

co-x co-x

s« s,= 2 5«
0

S») i)
0

&? Nx=7Dt+lät
0

oo oo

Äl1' SX jsf+tdt ßx.vtdt

Die «höhern Summen» der diskontierten Zahlen lassen sich auch
durch die Zahlen Dx selber darstellen ; es gilt2)

(1)

(2)

<*-2CrK-2cr Z).
x + t

«ir)= / ~r Dx+t dt
tr

r\I x-H

d) Ausscheidegesetze.

Zur Entlastung der spätem Darlegungen sollen an dieser Stelle
noch einige allgemeine Bemerkungen folgen über die Ersetzung der

') Es mutet vielleicht etwas sonderbar an, dass wir bei der diskontinuierlichen
hechnungsweise mit einer endlichen Zahl als oberer Summationsgrenze rechnen,
"n Integral der kontinuierlichen Rechnungsweise dagegen ~ als Grenze einsetzen.
^*ir tun dies aus rein opportunistischen Gründen: während im ersten Fall es

Praktisch wertlos ist, die Untersuchungen durch Einführung unendlicher Reihen
zu erschweren, sind im zweiten Fall die uneigentlichen Integrale oft besser zu
'landhaben; dabei liisst sich ja jedes endliche Integral als uneigentliches schreiben.

2) Hinsichtlich des Beweises vgl. für die erste der beiden Formeln Poulcka [4]
Und Hantsch [5], für die zweite Berger [31] und Meissner [2].
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allgemeinen Ausscheideordnungen durch ein formelmässiges Aus-

scheide«gesetz», d. h. durch einen geschlossenen analytischen Ausdruck,
der für alle in Betracht fallenden Werte des Altersarguments x oder

des Zeitarguments t den funktionellen Zusammenhang zwischen diesem

und der zugehörigen Bestandesgrösse herstellt. Die Kennzeichnung
einer Ordnung durch eine wenigstens näherungsweise zutreffende

Gesetzmässigkeit befriedigt nicht nur theoretische Interessen, indem
erst in diesem Fall die Veränderlichkeit einer Personengesamtheit

vollständig und elegant mathematisiert erscheint, sondern kommt
auch bestimmten praktischen Bedürfnissen entgegen. Sie liefert

nämlich Anhaltspunkte für eine geeignete Ausgleichung der aus der

Statistik hervorgegangenen rohen Werte. Im weitern bietet die
Annahme eines Ausscheidegesetzes gerade der Behandlung des

Zinsfussproblems neue Möglichkeiten — Lösungen BlascMe-Gram —, und

endlich eröffnet sich die Aussicht, einen Versicherungswert ohne
Zuhilfenahme von Kommutationsgrössen direkt als Funktion der ihn
kennzeichnenden Grössen (Alter, Dauer, Aufschubzeit usw.), des

Bechnungszinssatzes und der Parameter des Ausscheidegesetzes
darstellen zu können. Für die numerische Rechnung kann sich die Fiktion
allerdings nicht so überzeugend auswirken, wie man vielleicht zuerst

erwarten mag, denn nur für die einfachsten Ausscheidegesetze lassen

sich die einen Versicherungswert darstellenden endlichen (je nachdem
auch unendlichen) Reihen und Integrale durch eine Summenfunktion
ersetzen beziehungsweise mittels der elementaren und bekanntesten
einfachen transzendenten Funktionen in geschlossener Form
integrieren.

Als Beispiele derartiger Ausscheidegesetze wollen wir drei
anführen :

1. Das aus der einfachsten Annahme über die Sterbeintensität,
nämlich dass sie konstant sei, entspringende Gesetz

lx=k-sx

(0 < s < 1), das von Dormoy [83] der Aufstellung der Gesetze von

Gompertz und Makeham natürlich nur als einführendes Beispiel
vorausgeschickt wurde und nun gewöhnlich wenig glücklich seinen

Namen trägt.
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2. Das Gesetz von Gomperts-Makeham

s und g sei erinnert, dass c > 1 ist, während s und g < 1 sind.

3. Das Gesetz von Achard

Wo cd das Schlussalter der Tafel bedeutet (lm 0, > 0) und

w-—x als Lebensergänzung bezeichnet wird. Es ist die Verallgemeinerung

der alten Hypothese von Moivre, die in ihm als Spezialfall m 1

enthalten ist, und von Achard [7] gelegentlich einer eleganten Lösung
des Zinsfussproblems am Barwert der kontinuierlichen, lebenslänglichen

Leibrente in die Literatur eingeführt worden.

Die Darstellung der Leibrentenbarwerte als direkte Funktion des

Eintrittsalters x, der Dauer n, des Zinsmasses und der Parameter
des Ausscheidegesetzes führt zu den folgenden Ergebnissen:

1. Gleichgültig, um welche Art von Leibrente es sich handelt,
ist bei Zugrundelegung des Ausscheidegesetzes von Dormoy der
Bentenbarwert unabhängig vom Alter und gleich dem Barwert der

^sprechenden Zeitrente, berechnet mit der Zinsintensität Ö* d + p,
d. h. mit dem Diskontierungsfaktor v* vs, wo s und damit /«

— Ins — konstant die Parameter des Ausscheiclegesetzes bedeuten.

2. Folgt die Ausscheideordnung dem Gesetz von Makeham, so

müssen wir uns auf die Darstellung kontinuierlich gerechneter Leib-
rentenbarwerte beschränken. Der Barwert der lebenslänglichen Bente

lx lXo(œ-xr,

oo

0

lässt sich dann durch die Formel

(8)



geben *) ; dabei sind X und h mit den Ausgangsgrössen durch die
Ausdrücke

1 x7 j
(5 — Ins

X — c Ing, h —
Inc

verknüpft, und Q(X,h) bedeutet die unvollständige /"-Funktion
oo

Q (X, h) j uh'1 e~" du. Dank der verdienstvollen Berechnung und

Tabellierung der Funktion e} X'h Q (X, h) für die in der versicherungstechnischen

Praxis gebräuchlichen Werte durch Thalmann [34] ist

(3) nicht nur theoretisch interessant, sondern lässt auch praktisch
mit wenig Mühe einen gesuchten Rentenbanvert berechnen.

Auch bei der Achardschen Hypothese müssen wir uns mit der

kontinuierlichen Rechnungsweise bescheiden. Durch einige einfache

Substitutionen 2) lässt sich der Barwert der temporären Rente ax^\

durch das Integral
h

«xTÜ -^n-h fre'dt h Ô (CO X)

h-Sn

darstellen, das in geschlossener Form ausgewertet werden kann. Es

ist nämlich (durch wiederholte partielle Integration) unbestimmt

integriert

Jtm e' dt é 2 (- 1»! Q r
1) Für den Beweis vgl. etwa Friedli [33], wo auch die Originalliteratur genannt

ist. Ersetzt man im Integral für ax die obere Grenze 00 durch den endlichen Wert ns

so ergibt sich leicht als Ausdruck für den Barwert äxn] der temporären Rente

^ ÄF iQ (A"h) ~ Q (*' h)} '

wobei z X c" zu setzen ist. Für diesen Wert (ix~n\ kann man dann auch

a^ ^ï^{p{-z>}l)-p{-x'h)}
schreiben, wo

P(X,h) r(h)—Q(X,h) f «'•-! tr" du ist.
0

2) Man vgl. hierzu etwa Christen [1].
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Boraus

aXH\ ôh'

m

ll

1 VI
~ôh

ut

2<c h'n~"

1— —
CO — X

J

folgt. Setzt man die Dauer n der Rente der Lebensergänzung co — x
gleich, so erhält man den Barwert der lebenslänglichen Rente ax;
dabei ist, wie auch schon aus der Integraldarstellung hervorgeht,

bemerkenswert, dass dieser Barwert das Produkt von — -mit einer
Funktion F{h) ist, die nur von h (co — x) ô abhängt,

/«!

« 0

§ 2.

Die Ableitungen der Versicherungswerte
nach den Zinsmassen.

a) Rentenbarwerte.

YYrir geben zunächst die Derivierten (Ableitungen) des Barwerts
ax der diskontinuierlich lebenslänglich nachschiissig zahlbaron Leibrente

« 1 » an ; eine besondere Herleitung erübrigt sich, da die Lonne In
X|ch aus einem später zu behandelnden allgemeinern Fall durch
Spezialisieren ohne weiteres ergeben1).

B Es sei noch daran erinnert, dass schon James Meikle [8] die Ableitung des
'hskontinuierlichen Rentenbarwerts nach v benützte; die Ableitung nach i dürfte
?,Uerst bei van Dorsten [9] stehen, einen ausgeführten, bei Hantsch [5] wieder
abgedruckten Beweis hat aber erst Poukka [4] gegeben. Die Ableitung nach 5 bat
'kiY/er [G] in die Literatur eingeführt. Für den kontinuierlichen Rentenbarwert
hat ebenfalls lierger [31] und Meissner [2] die Ableitung aufgestellt. Endlich sei
loch vermerkt, dass Wyss [10] durch einen interessanten Umformungsprozeas
°bne Differentiationen die Taylorreihen von ax und äx nach /) hergeleitet bat.

15
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(5)

cVax

dvr

d'ax
clir

clr ax

dôr

1 S{r)
r i

t'r
'

Dx

S{r)

(- l)rwrr!
D.

Oi-X

2>.x-\-t

(-1)' D.

Aus der bekannten Beziehung ax ax + 1 folgert man sofort, dass (5)

auch die Ableitungen des Barwerts der lebenslänglich vorschüssig

zahlbaren Leibrente «1» darstellt.

Wir gehen jetzt zum Barwert der um n Jahro aufgeschobenen
te ül

Ks wird
Rente über und bestimmen zunächst die Derivierte von H| ax nach v-

ly TT H X j ÙJ ~~XC

U » (f<r cl 1 1 \n" 17 x Î " '*' x ^ "" •(1 +:1)"
x (=«+1 1 (=?i-l-l

^ i 0)~X / -! U Ü)~X

x t-n-1 l x ' x t=n-hl v 7

j 1 cu-ai-n-L
1

,i-_ V it + n+ MD
^

»' ï) L I r / *+"+l+i"
c (=-0 x

Für die weitere Umformung müssen wir getrennte Wege einschlagen,

je nachdem r<n oder r>n ist. Im ersten Fall müssen wir auf die

Formel

zurückgreifen, die gerade unter der Annahme r < n gilt1). Wir
erhalten damit zunächst

') Die Formel (6) liisst sich am einfachsten in der folgenden Weise gewinnen-
Wir multiplizieren die beiden Reihen.
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d\\az 1 1

dvr

<ü-x-n-1

7'!î;2 : y 2
* n 0 X C/ 1-1(=0

t + Q

x-l-n+l + i

Etir r > n 1 hingegen wird unmittelbar

(jj-x-n-1
H /1 + w +12 D.x + ii-H + l

t + n -f- 1
D.«+B+1+I

UJX I

2 f -f r Z>x+r+l

unserer Beziehung (1) ergibt sich dann sofort

(7 a)
d'n\ax_

(llf

1 1 V-r! I\
1 S{r)

_ri _ X+L
w'

'
D.

:c 0 x v-/
r<n

r> n.

Ebenfalls unter Benützung von (6) wird die Derivierte nach i
oo oo

d £ <_ (—+) „,£ »)

und
v —0 v 0

d _ ,0-M=2] d,
<-=2 c yi) «•

/t 0 fi~ 0

gliedweise aus und vergleichen die Koeffizienten der so erhaltenen Reihe

oo a

fl-O Q— 0

""t denjenigen der direkten Entwicklung
OO oo

(i—w)-*+r-i-2= 2 (—i)" (—,t + ^ r+i-i-ayua
<7 0 O 0

^nsere Formel ist dann gerade der Atisdruck der Gleichheit der Koeffizienten zur
Potenz ur.
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(TB £a.\_(_,rr!^V('+«-»-«ISsti,' h\ '~e D,

während die Derivierte nach ô am einfachsten durch Anwendung der

Leibnizschen Regel auf die Grundbeziehung

„ -
^+" ynn — ^x+nr~'h'ri

n | x ^
ax + n ^ x+n

gewonnen wird,
(D~x-n-\

y iQj)
jr r / \ Z_| "*+»+(

dôr D*

Setzen wir w 0, so ersehen wir leicht, dass die drei Formeln (7 a,

b, c), wie es sein muss, in die entsprechenden Werte (5) übergehen.
Hinsichtlich der Derivierten vorschüssig zahlbarer, aufgeschobener

Heilten zeigt die bekannte Beziehung (l, a.x n.t | ax, dass die

Deri vierten einer um n Jahre aufgeschobenen, vorschüssig
zahlbaren Rente gleich den Derivierten der um (n — t) Jahre
aufgeschobenen, nachschüssig zahlbaren Rento sind.

Die Derivierten der Barwerte temporärer Renten von der Dauer n

schliesslich ergeben sich einfach als Differenz der entsprechenden
Werte (5) für die sofort beginnende und (7) für die um n Jahro
aufgeschobene Rente.

Bei der kontinuierlichen Rechnungsweise dürfen wir uns auf die

Derivierten nach <5 beschränken, wie dies auch bisher in der Literatur
geschehen ist. Es gilt

(8)

(9) £> 0 '

(— l)r2Jr(r~1) ••• (r — QJr1)n
D

o—O ''

\ « u, » -J \ ..r-o °x+«
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Hier müssen wir noch an eine Bemerkung anknüpfen, die Wyss [lOj
und Meissner [2] über den Konvergenzradius der Taylorreihe von ax
gemacht haben. Wie von der Funktionentheorie her allgemein
bekannt ist, kann man den Konvergenzradius der an einer beliebigen
Stelle z0 der komplexen Zahlenebene angesetzten Taylorschen
Entwicklung einer analytischen Funktion f(z) auf zwei Arten bestimmen.
Einmal ist er arithmetisch nach Gauchy-Hadamarä durch die Folge der

oo

Koeffizienten bv der Potenzreihe f(z) ^ by (z — z0)v festgelegt,
v 0

1 v T—r--- Inn sup [/1 br \,
1

,» ^.oo

dann ist er aber auch als Abstand der Stelle z0 von der im gleichen
Blatt der Biemannschen Fläche nächstgelegenen singulären Stelle von
f{z) gegeben. Betrachten wir zunächst den Barwert a'x(i') der
diskontinuierlich nachschiissig zahlbaren Leibrente in Abhängigkeit des

Zinssatzes i', so ist er für alle x mit Ausnahme des höchsten
vorkommenden Tafelalters x w — t eine rational-gebrochene Funktion

von i' mit einer einzigen singulären Stelle, nämlich einem Pol
(co — x — 1) ter Ordnung in i' ——1. Wenden wir jetzt das oben

Gesagte auf die unter Berücksichtigung von (5) zu

~ oM
< «x (o ^ (- 1)v»' ir(i' ~i)v

v=Q x

sich ergobende Taylorentwicklung von a'x an der Stelle zQ i an und
bedenken, dass, solange % reell und nicht negativ ist (was praktisch
allein in Frage kommt), lim S^ oo gilt, so folgt*)

r — > oo

0 Diese Beziehung liisst sich auch direkt beweisen. Aus (1) folgen nämlich
die Ungleichungsketten

o< ('"-'t'-1)"-' - ('"-li't1) n„-.ä.sl" s

s (»-• + '-») o,<»—». ("--î-l") D.
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lim r[/Sjjf) 1.
r—oo

Es wäre aber falsch, diese für die höhern Summen der diskontierten
Zahlen der Lebenden in der diskontinuierlichen Bechnungsweise
gültige Beziehung stillschweigend auch als richtig für die Werte S«'

der kontinuierlichen Bechnungsweise anzunehmen und weiter zu

schliessen, dass die Beihe für a'x ax (3')J)

~ eis)

s=o x

für | <5' — ô | < 1 konvergiere.

Denn gehen wir davon aus, dass der kontinuierliche Bentenbarwert

oo

X J e-»"lf±dt
0

x

ein Laplace-Integral in d' mit der L-Funktion F(t) lx+tjix darstellt,

so wissen wir zunächst, dass dieses Integral in einer Halbebene

${(ö')>ß konvergiert2). Nun ist die L-Funktion F(t) —+' stets
^X

> 0. Für diesen Fall sagt aber ein bekannter Satz aus, dass dann die

Vco— x + r— 1 fco—x + r— 2 ...Vr+l |/ =fs7â

^fco—x + r— 1 fco— x + r—2 Vr + l '

sodass 1 i lim '[/ S).r) i 1 wird.
r-^-oo

*) Die Reihendarstellung ist bei Wyss etwas anders, man erkennt aber sehr

leicht, dass sein Wert In m nichts anderes als — ((5'— $) ist. Meissner geht von
d 0 als Entwicklungszentrum der Reihe aus.

2) Da praktisch lx-\-t nur so gewählt werden kann, dass ß < 0 sein muss,
sei nur für diesen Fall die von Pincherle [136] aufgefundene Bestimmung von ß

genannt ;

i ~
ß lim sup — In lF(t)clt

i
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Stelle ß selber eine singulare Stelle von ax(ô') ist1). Damit ist der
Konvergenzradius R der Potenzreihe für ax(ô') mit dem (reellen)
Mittelpunkt <3 > 0 gleich B ô — ß d + \ß \ und im allgemeinen
flicht Ii 1 2). Aus diesem Ergebnis kann noch rückwärts geschlossen
werden, dass

lim sup ']/&? I ßrr-V oo
' O + | P I

gilt, solange ô > 0 ist und ß ~\= — oo war.

b) Barwerte von Kapitalversicherungen, Prämien, Reserven.

Die Derivierten der Barwerte der lebenslänglichen, der um n Jahre
Aufgeschobenen und der temporären Todesfallversicherung sind den

ßntsprechenden Rentenbarwerten analog, nur sind die durch die

entsprechend gebildeten zu ersetzen. Die Ableitungen der
gemischten Versicherung von der Dauer n gehen aus denen der temporären

Todesfallversicherung durch Hinzufügen der Ableitung der
ErlebensfallVersicherung

(10) di

Ö

"'E _(-! +

d'«E* =r!f»)4, (-1Yn\Ex

hervor.
dvr \r vr di¥

Für die Prämien geht man vom allgemeinen Ansatz P —aus
a

und differenziert zunächst diesen. Doch ersieht man, dass hier wie
Auch noch mehr bei den Reserveformeln die allgemeinen Ausdrücke
für die Ableitungen sehr rasch verwickelt und praktisch kaum mehr
brauchbar werden.

1) Man vergleiche zu diesen Überlegungen auch Doetseh [86], für die letzte
Bemerkung insbesondere Satz 1 [4, 5]. Dieser Satz ist zuerst von Landau [37],
[88] bewiesen worden.

2) Wird beispielsweise als L-Punktion die Überlebensordnung nach Achard

f (cu — x—1)"> tSw—x
lx+1 {

1 0 t i co — x

genommen, so ist äx(<5) eine ganze Funktion, und der Konvergenzradius ihrer
Potenzreihenentwicklung ist oo.
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2. Kapitel.

§ 3.

Die verschiedenen Verfahren zur Lösung des Zinsfussproblems
bei der Leibrente.

a) Der Einteilungsgrundsatz der Zusammenstellung.

Für die von uns angestrebte Einteilung ist nicht massgebend,

auf welchem Wege die verschiedenen Lösungen von den Autoren
hergeleitet wurden, sondern — was für die praktische Anwendung

ungleich wichtiger ist — welche Ausgangswerte bekannt sein müssen.

Frucht [3] gelangt in diesem Zusammenhang zur Unterscheidung von
drei wesentlichen Lösungstypen. Seine Untersuchung beschränkte er

allerdings auf den Barwert der lebenslänglichen Leibrente, und so

musste er von einigen Lösungsmethoden absehen, die besonders an

der temporären Leibrente entwickelt worden sind und deren Gesamtheit

wir sehr einfach in eine vierte Lösungsgruppe zusammenfassen
können. Wir besprechen diese letzte Gruppe an erster Stelle und
schliessen die übrigen Gruppen in der umgekehrten Beihenfolge an,
als wie sie Frucht untersucht hat.

Der gesuchte Versicherungswert und ebenso die auf ihn bezüglichen

Grössen — soweit sie sich geändert haben — wie Zinsfuss, Alter,
Dauer usw. kennzeichnen wir immer durch einen Akzent ('), die als

bekannt vorauszusetzenden Ausgangswerte bleiben stets ohne Akzent.
Sofern mehrere gleichartige Werte als gegeben gelten, sollen sie durch
Indices gekennzeichnet werden. Den natürlichen Logarithmus
bezeichnen wir mit In, unter log verstehen wir ein Logarithmensystem
zu einer beliebigen Basis. Weitere Festsetzungen geben wir unmittelbar

an den für sie in Betracht fallenden Stellen an.

b) I. Gruppe: Verfahren unter Zuhilfenahme von Zeitrentenbarwerten.

Die Methoden, die Zeitrentenbarwerte zu Hilfe zu ziehen, gehen bis

auf eine Ausnahme — Lösung (20) von Steffensen — alle von der

Voraussetzung aus,, der Barwert der Zeitrente als besonderer Hilfs-
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wert liege schon zum neuen Zinsfuss berechnet vor. Sie suchen, den
Barwert der temporären Leibrente durch den Barwert einer Zeitrente
mit geeignet gewählter Dauer darzustellen. Allgemein sind die
Lösungen um so genauer, je kürzer die Dauer n der temporären
Leibrente ist. Lässt man die Dauer n in die Lebensergänzung cd — x
übergehen, so lässt sich auch die lebenslängliche Leibrente erfassen;
doch ist die Genauigkeit der Ergebnisse für diesen Grenzfall nicht
besonders gross.

Mit den geringsten Kenntnissen an Ausgangswerten kommt
Borch [11] aus. Für die jährlich nachschüssig zahlbare temporäre
Leibrente findet er bei kurzen Dauern n den Ausdruck

lx

1 n
mit 0„

d (1 + *)" — 1

(d Diskont) durch ziffernmässiges Nachrechnen gut bestätigt. Die
Formel gilt unverändert auch für die entsprechende vorschüssig zahlbare

temporäre Leibrente. Bei der kontinuierlich zahlbaren Rente
ist 0n durch 0n zu ersetzen mit

1 n
0„ ~r (l+i)H-l

Erhöhte Genauigkeit bei gleichen Annahmen über die als bekannt
vorauszusetzenden Grössen erreicht ebenfalls Borch [11] mit

Ii

2<»
(12) j

• V>{x,n,ï) «4p

Tt I

wo <p (x, n, i') 1 -j- %'1

n

2
1 (=i

B-x+t

bedeutet.
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Für den Fall, class nicht nur der Barwert der Zeitrente zum Zinssatz

i', sondern auch die Barwerte der temporären Leibrente und der

Zeitrente zum Zinssatz i bekannt sind, findet Borch [11] die

Beziehung

(13) < C>°

n

Zu.
t=l

etwas weniger genau, aber rechnerisch erheblich einfacher ist

n

21«
(14) ~ a^|

z-M

t=l

n L * / i «n

Mit Benützung der gleichen Ausgangsgrössen hat schon früher
Weber [12] das folgende Verfahren angegeben. Bedeutet

hT|

v
log a)T| - - log an\ _

logfc lnak] — lna,Ti_ ln]c

log(l+i) — log(l+V) log(l+i) — log(l+i') (5 — ô' ô-

so gilt angenähert

Ô'

(15) ~+ w (i ^fc) i
lx+nJT

La.'BE 4"

Wir haben dabei für k den Ansatz der Originalarbeit, k
verwendet. Christen [1] geht bei ihrer Wiedergabe von a"l

k
i'd

aus. Wie ein genaues Studium der Herleitung von (15) zeigt, ist dies

vollkommen unwesentlich, man kann ebensogut auch von
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*. ia ük _ rA. ^
aïïl «' a"iT| *'«'a

fiusgehen. Wohl sind k, k*, k voneinander verschieden; indem aber
diese Grössen auch in v vorkommen, wird ihr Unterschied im Rahmen
der Genauigkeit von (15) voll kompensiert. Wie rein rechnerische
Nachprüfungen gezeigt haben, darf man ebenso a'x^ und ax^ durch
die Paarungen ct^ und ax-, bzw. und ersetzen.

Stehen die Rarwerte der temporären Leibrente und der Zeitrente
zwei Zinssätzen iQ und iv die nicht unbedingt den neuen Zinssatz

% einschlössen müssen, zur Verfügung, so kann man sich mit Vorteil
des folgenden, von Lenzi [13J entwickelten Verfahrens bedienen:
Durch lineare Interpolation nach der Dauer v bestimmt man aus der
Tafel der Zeitrentenbarwerte zwei Dauern v0 unci vt derart, dass

«,„l (*o) VcU W

| (h) «*ïï| (*t)

lfV Hernach interpoliert man, ebenfalls linear, aus den beiden Dauern
vo und nach dem Zinssatz i eine neue Dauer

i' — in
v v0 + T- (*i — v0).

%L %0

Alsdann wird der gesuchte Leibrentenbarwert ax-j^ (%') zum Zinssatz i'
ttdt befriedigender Genauigkeit durch den Rarwert der
Zeitrente zu diesem Zinssatz und der Dauer v' gegeben,

(l6) ax-^ a-(ï) ~ 0^(1').

Der Wert ist aus der nach ganzzahligem Argument fortschreitenden

Tafel der Zeitrentenbarwerte ebenfalls wieder linear zu
interpolieren. Weil dabei stets — at(i) =vn+L gilt, so kann man,
*enn t die ganze Zahl bedeutet, für die t <( v < t + 1 ist, das Ergebnis
aUch schreiben:

(l6') ®i»l(^') ~ a-ul-{(i') aj-\(ï) + v"+l-(v — t).

^h' verzichten darauf, das zur Anwendung gekommene Interpola-
''ionsverfahren tiefergehend zu analysieren und bemerken nur noch,
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dass es offensichtlich ebensogut mit den Barwerten der vorschüssig

zahlbaren oder kontinuierlichen Benten durchführbar ist.
Es verbleiben uns in dieser ersten Lösungsgruppe noch zwei Ver-

fahren zur Besprechung, die Steffensen [14] für den Barwert der

lebenslänglichen Leibrente im Anschluss au die Aufstellung der

Ungleichung
b b a \-l

j f{t) dt<[ J f (t) (p(t)dt< !f (l) dl
6-À rt a

b

X j <p(t)dt

entwickelt hat. Diese Ungleichung gilt, sobald die im Intervall

a < £ < b definierten und integrier baren Funktionen noch den

Bedingungen 0<Ç9(<)^1 und /(f2)</(<i), t2>tl, genügen. Setzen

wir nun in (17) f(t) ~v'1 und cp{t) tpx, so ergibt die obere

Abschätzung
~ fx

(18) äx / vltpxdt< I'vl dt
b ô

Wenn wir ex e® als kontinuierlich gerechnete vollständige mittlere

Lebenserwartung bezeichnen und uns auf kontinuierlich gerechnete

Rentenbarwerte beziehen, heisst dies: Der Wert einer Leibrente i^
kleiner als der Wert der während der (kontinuierlich gerechneten)
vollständigen mittleren Lebenserwartung zahlbaren Zeitrente.

Setzen wir in (17), mit h =i' — i, f(t) (1 -|- hv)~' «A'''-1')'.
oo

(p(t) vl tpx, so wird X jvl tpx dt ax und

cc» oo ax

ax f (1 +i'Ytpxdt= j"{1 +h v)~'vl tpzdt<J(l +hv)~' dt

0 0 0

ax

(19) ax^Je-^dt=
0
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lri Worten, wenn wir uns wiederum auf kontinuierlich gerechnete
Eentenbarwerte beziehen: •

Der Wert einer Leibrente zur Zinsintensität ô' ist kleiner als der
Wert der Zeitrente zur Zinsintensität ô* ô' — <5 und dem zur Zins-
^tensität ô berechneten Leibrentenbarwert ax(ô) als Dauer. Von diesen
beiden mathematisch exakten Beziehungen ist (19) die allgemeinere,
(18) ist in ihr als Sonderfall Ô 0 enthalten. Durch geeignete
Interpretation der Summation zu einer nicht ganzzahligen Summations-
grenze kann (17) auch in eine diskontinuierliche Passung gebracht
Verden. Aus dieser lässt sich dann folgern, dass (18) und (19) ebenfalls
gelten, wenn für die Barwerte die entsprechenden Werte nachschüssig
Zahlbarer Leibrenten (an die Stelle von ex tritt dann die abgekürzte

mittlere Lebenserwartung ex °ex —^ eingesetzt werden. Wir haben

der kontinuierlichen Darstellung nur deshalb den Vorzug gegeben,
Weil die Formulierung etwas einfacher ist. Der Wert von (18) und
(19) für das Zinsfussproblem hegt darin, dass die beiden Ungleichungen,
aE Gleichungen, aufgefasst eine erste grobe Annäherung eines gesuchten
beibrentenbarwerts geben. Wollen wir diese ersten Annäherungen
verbessern, so können wir in der folgenden Weise vorgehen, wobei wir
Nieder zur diskontinuierlichen Darstellung zurückkehren.

Setzen wir den gesuchten Leibrentenbarwert a'x(i') dem Barwert
1 (1 _|_ ty-n

an\(h) einer Zeitrente zum Zinssatz h \i' — i I

h 1 1

gleich, a'x(V) =an| (h), so wird deren Dauer

_ log (1 — ha'x)
_

In (1 — ha'x)

log (1 /r) In (1-\- h)

Entwickeln wir diesen Wert in eine Potenzreihe in h, wobei zu
beachten ist, dass a'x seinerseits durch die Potenzreihe in h

_ y, ds ax h"
a*~ Zj die ~ol

e o

dargestellt wird, und brechen die Beihe nach der ersten Potenz von h

ab, so erhalten wir für a'x die Näherung



— 228 —

mm ' n\ l-(l + *r(20) ax ~ (h)

wobei

n — ax — h a
and

a

ist.

Setzen wir i 0, so geht aus (20) als Sonderfall

1-Vm
(21)

i oM|(t')== ^' 1

't

mit
TO «x — i' ex

und

1
(°~X

6 1
6>_a:

^
e« J- 2'1>+'-T (e' + 1} ~ T 211'+' + 0,125 ~~Ï (^)S

23 *=1 33 *=l u

hervor. Mit dieser Formel werden im allgemeinen weniger gute
Ergebnisse erreicht als mit (20); sie wäre dann anzuwenden, wenn nicht
schon ein System von Kommutationswerten zu einem Zinssatz i > 0

vorliegt.

c) II. Gruppe: Verfahren, die sich auf das Bestehen eines formelmässige'1

Ausscheidegesetzes gründen.

Die Methoden, die wir in dieser Gruppe anzuführen haben,

weisen gegenüber allen andern einen erheblichen Vorteil auf: &%6

çjeben mathematisch vollständig exakte Lösungen. Dafür haftet ihnen

allerdings auch ein nicht zu übersehender Nachteil an: die Ausscheideordnung

muss der dem Verfahren zugrunde liegenden, formelmässig

gegebenen Gesetzmässigkeit gehorchen. Ferner kommt dazu, dass

die Kenntnis der Kentenbarwerte und der Kommutationszahlen zum

alten Zinssatz im allgemeinen nicht ausreicht; vielmehr ist eine m

grösserm Umfang tabellierte Zusammenstellung von Hilfszahlen, eine

sogenannte «Standardtafel» nötig.

vS.X-\-1

D.
ax(ax+1)

vS.x-h l

D.
-(- 0,125 -- I flL-f-
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Sehen wir das Wesentliche am Zinsfussproblem vor allem darin,
das System der Kommutationswerte nicht neu berechnen zu müssen,
s° können wir die bereits früher (§ 1, Abschnitt c) gegebenen direkten
Darstellungen der Leibrentenbarwerte aus den Parametern des Aus-
scheidegesetzes, dem Zinsmass, der Altersvariablen und gegebenenfalls

der Dauer als Lösung der vorgegebenen Aufgabe ansehen. Von
den Lösungen im engern Sinne ist die Lösung bei Bestehen einer
Makehamschen Überlebensordnung praktisch am bedeutungsvollsten.

Sie geht aus dem Satz von Blaschke-Gram l) hervor : Ist für die
Lt°mpertz-Makehamsche Ausscheideordnung mit den Konstanten c, s, g
das vollständige Leibrentensystem, d. h. die ziveidimensionale Gesamtheit
der Leibrentenbarwerte ax (ß) für alle möglichen Alter und Verzinsungen
bekannt, so sind damit auch die Leibrentenbarwerte ax, (ô') für jede
andere Gompertz-Makehamsche Ausscheideordnung mit den Konstanten
c

> s', g' und für jedes Alter x' soiuie jede Verzinsung bekannt. Und
zWar führen sich solche Leibrentenbarwerte ax, (ô') in der folgenden
Weise auf die Werte ax (<3) des vollständigen Leibrentensystems zurück :

Es ist,

(22) ax, (A) ---- ä (ô),
m

VVenn x w x' -|- n

s
(3'

ö r
m

gesetzt wird mit
log c'

m
log c

1 1

lo§ l°g y — lo8 lo8 yn
log c

log c log s
r log s — log s log s

log c m

') Hinsichtlich der Arbeit von Gram [IG], die umfassender ist und die Er-
8ebnisse von Blaschice [15] einschliesst, vgl. auch Jörqensen [35], S. 200—205 und
,,fdel X, S. 394—403.
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Das Zinsfussproblem ist bei Bestehen einer Gompertz-Makehamschen
Ausscheicleordnung damit praktisch vollständig exakt gelöst, wenn

zu einer beliebigen Konstantenwahl c, g, s für alle Alter und, in
genügend enger Abstufung, für alle gebräuchlichen Zinssätze eine Tafel

der Rentenbarwerte ax (ô) ein für allemal berechnet ist. Eine solche

Standardtafel hat auch Blaschke [15 ] seiner Arbeit beigegeben.
Suchen wir bei Vorliegen einer Makehamschen Ausscheideordnung

in Ermangelung der Standardtafel nach «tafeleigenen» Lösungen,
d. h. solchen, die nur die Kenntnis der alten Ausscheideordnung nötig

machen, so müssen wir uns mit Näherungen zufrieden geben.
Eine erste, auf temporäre Renten bezügliche Lösung, die sehr

einfach ist, aber nur gröbere Näherungen ergibt, stammt von Christen

[l]; es ist

(23) a'x,~. x, n
- \ ii
a^r

mit
log k

loge

<Y — In s à' — ô
lmû k t=hT, -1 +ä'
Eine andere Lösung für die lebenslängliche Leibrente hat Crosato [17]

gegeben. Diese Lösung beruht auf der Differenzengleichung der

unvollständigen r- Funktion Q(X, h),

Q {À, h + l)—hQ (X, h) e~x X",

aus der unter Berücksichtigung von (3) die Differenzengleichungen in

ax (<3)

X In c ax(ô — In e) + (<5 — In s) ax(ô) 1

(24) oder X In c • ax (ô) + (d + In e — In s) dx (ô -f In c) 1

hervorgehen. Damit kann man aber zu einem gegebenen Rentenbar-

wert von der Zinsintensität ô die Barwerte zum gleichen Alter und zu

denjenigen Zinsintensitäten genau berechnen, die um ganze Vielfache

von In c von der Intensität des Ausgangsbarwerts abstehen. Man könnte
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nun denken, in der Folge der solcherinassen hervorgegangenen Renten-
barwerte sei für einen beliebigen gesuchten Wert ein schon genügend
genauer Näherungswert enthalten. Dies ist jedoch nicht der Fall,
denn, wie aus allen gebräuchlichen Tafeln hervorgeht, ändert die
Makehamsche Konstante c ihren Wert nur sehr wenig von Tafel zu
Tafel und kann rund c ~ 1,096, also In c ~ 0,09 gesetzt werden.
Das bedeutet aber, dass die Intensitäten und damit auch die
Zinssätze der aus (24) hervorgehenden Folge von Rentenbarwerten um
rund 9 % voneinander abstehen. Es bleibt daher nur übrig, den
Barwert der Rente zur Zinsintensität ô' ô + (<5' — ô) nach einer
grundsätzlich beliebigen Methode aus den genau vorgegebenen Werten
zu den Argumenten <5 p, -f- In c (i 0, ±1, ±2, zu
interpolieren.

Für das Gesetz von Dormoy steckt die Lösung des Zinsfuss-
Problems bei der Leibrente schon in einer früher gemachten
Feststellung; danach handelt es sich auch bei ihr um die Darstellung eines

gesuchten Leibrentenbarwerts mittels einer Standardtafel, derart,
dass diese einfach gleich der Tafel der Zeitrenten für alle Dauern und
Zinssätze ist. Ein Leibrentenbarwert aus der Ausscheideordnung mit
der Konstanten s und zum Zinssatz i' ist dann gleich dem in Art und
Dauer entsprechenden Standardwert zum Zinssatz

Ganz andersartig ist die Lösung, die sich aus dem Bestehen eines

Achardschen Ausscheidegesetzes ergibt [7], wenn wir uns auf den
Barwert der lebenslänglich kontinuierlich zahlbaren Leibrente
beschränken. In diesem Fall ist nämlich, wie wir schon früher bemerkt

haben, a das Produkt von mit einer Funktion F(h), die allein von
o

h ô (co—x) abhängt. Betrachten wir daher von den Rentenbarwerten

zur Zinsintensität ô' denjenigen, a'x, für den das Alter x' zum
gleichen /t-Wert h ô'(m—x') führt, wie er aus den Werten x und ô

von dx hervorgeht, h — ô (co—x), so besteht zwischen den Werten
à' a'x, und ô ax Gleichheit. Damit ist aber unsere Aufgabe gelöst :

Der gesuchte Rentenbarwert a'x, zum Alter x' und der Zinsintensität ö'
lässt sich durch den Rentenbarwert ~ax zum Alter x und zur Intensität ô als

16
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(25)

darstellen, wenn für x

x — x' -f- co I 1

gewählt wird. Die Festlegung des Alters x können wir noch etwas
anders formulieren. Wie man leicht nachrechnet, hat unter Voraussetzung

einer Achardschen Ausscheideordnung die vollständige mittlere

_o - (o— x
Lebenserwartung e ~ e den Wert e Unser neues Alter %

m+1
muss daher aus dem gegebenen Alter so hervorgehen, dass

ô' _
e* Te"

gilt.
Diese beiden Formeln haben eine bemerkenswerte Eigenschaft.

Der Parameter m des Ausscheidegesetzes — in der zweiten auch noch

das Schlussalter eo der Tafel — tritt in ihnen nämlich nicht auf. Daher
kann (25) auch Verwendung finden, wenn die Ausscheideordnung gar
nicht nach einem Achardschen Gesetz folgt; doch ist in diesem Fall
der Ausdruck nur eine Näherungslösung. Versuchsweise Berechnungen
anhand der Tafel SM 1921—30 haben allerdings gezeigt, dass für
diese Tafel die durch (25) gewonnenen Werte nicht genügend gute

Näherungen geben.

d) Gemeinsame Merkmale der Verfahren der beiden ersten Gruppen;

Unterschiede gegenüber denjenigen der beiden noch folgenden Gruppen.

Suchen wir für alle bisher besprochenen Lösungen des

Zinsfussproblems eine gemeinsame Kennzeichnung, so können wir einmal
feststellen, dass sie besonders auf den Leibrentenbarwert zugeschnitten
sind und alle mit Ausnahme der Achardschen Lösung fremde
Versicherungswerte heranziehen. In der ersten Gruppe sind es Barwerte

von Zeitrenten, in der zweiten Gruppe Leibrentenbanverte, wobei diese

Hilfswerte mit verändertem Alter oder anderer Dauer auftreten. Dazu

kommt, dass die veränderten Argumente keine ganzen Zahlen mehr
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sind, die zugehörigen Barwerte also in keiner Tabelle stehen; die zu
verwondenden Barwerte sind vielmehr durch Interpolation der
gegebenen Tabellenwerte nach dem veränderlichen Alter oder nach der
veränderlichen Dauer zu gewinnen, wozu meistens die einfache lineare
Interpolation ausreicht. Dies wird bei den Lösungen der beiden
nächsten Gruppen völlig anders. Hier wird nur die Kenntnis ein- und
desselben Versicherungswertes bei gleichem Alter, gleicher Dauer usw.
verlangt, der Barwert jedoch für verschiedene Werte des Zinsfusses
benötigt (III. Gruppe), oder es werden noch Kommutationswerte
zugezogen, die aber alle ein ganzzahliges Altersargument aufweisen,
also direkt der Tafel entnommen werden können (IV. Gruppe).

e) III. Gruppe: Verfahren, welche die Kenntnis des gleichen

Versicherungswerts zu mehreren, verschiedenen Zinssätzen verlangen.

Ungeachtet der grossen Allgemeingültigkeit des Ansatzes kann
das Interpolieren mittels mehrerer einfacher Interpolationsstellen —
hierum handelt es sich nämlich bei dieser Gruppe — dem Zinsfuss-
problem praktisch nur für die einfachsten Versicherungswerte nützlich
sein. Donn nur für sio darf man erwarten, sie seien für mehrere
Zinssätze, die meist zwischen i — 0,03 und i 0,06 liegen, bekannt, kür
die nachschiissige, lebenslänglich zahlbare Leibrente kann ausserdem
der Barwert zum Zinssatz i 0 als bekannt vorausgesetzt werdon,
denn dieser Sonderwert ist nichts anderes als die abgekürzte mittlere
Lebenserwartung

J J
(Ü-X-l

% (0) et ex — -
1 i-i

Wo ex die in den Sterblichkeitstafeln meistens aufgeführte vollständige
mittlere Lebenserwartung,

OJ-T
1

°>~X
1 1 /*

°e'=
2 ~e' TJ K"di

t- 1
Q

bezeichnen soll. Da das Argument dieses Sonderwerts aber verhältnismässig

weit von den übrigen, praktisch vorkommenden Worten
absteht, ist immer wohl zu überlegen, ob man seine Kenntnis
berücksichtigen will. Schon Christen [1 ] hat hierauf bei dor Besprochung des
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von Fontaine [18] vorgeschlagenen Verfahrens aufmerksam gemacht,
welches im übrigen einfach auf Interpolationen mittels ganzer rationaler

Punktionen hinausläuft.
Sind die Punktionswerte f(i), i =iv i2,..,, im, für m verschiedene

äquidistante Stellen vom Abstand h bekannt, so führt die Bildung der

aufeinanderfolgenden Differenzen

zu m âm=Ki + h)-m

A'-' f(i + h) - zr1 /(*) 2 (- !)" + (r-Q)h)
0=0

schliesslich zu einem einzigen Wert der Differenzenfolge (m—l)-ter
Ordnung Am~l f(i). Indem wir diese Polge als konstant annehmen,

was damit gleichbedeutend ist, dass wir die Punktion f(x) durch ein

Polynom (m—l)-ten Grades approximieren, können wir mittels der

Gregory-Newtonschen Interpolationsformel

r

(26) f(x) f(xo + th) ~ 2 J A* Kxo)
£—0

oder, wenn das Argument des gesuchten Punktionswerts gerade der

Argumentfolge i — + kh, k 1, 2, angehört, durch Ergänzen
des Differenzenschemas den gesuchten Wert näherungsweise
angeben. Ist nun /(0) auch noch bekannt, so können wir aus der

Interpolationsformel (26), die wir dann zweckmässiger in der Porm

/(0) /(V ~ tfl h) J (- 1)" + ~1)a° f(iu)
a=0 '

schreiben, rückwärts den Wert der w-ten Differenz zlm f(in) für
dasjenige Argument ia bestimmen, für das die sämtlichen Differenzen

niedrigerer Ordnung schon bekannt sind. Dann braucht aber erst die

Polge der m-ten Differenzen als konstant angenommen werden.

Auf weitere Interpolationsverfahren und -formein einzugehen is*

hier nicht der Ort, da sich im nächsten Kapitel dazu noch genügend
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Gelegenheit bieten wird; wir erinnern lediglich daran, dass Hantsch [5]

'm ersten Teil seiner Untersuchung eine systematische und ziemlich

vollständige Zusammenstellung der einfachsten einschlägigen

Interpolationsfunktionen gibt. Das reichhaltig beigegebene Zahlenmaterial

leistet dabei einen schönen Beitrag an eine der Hauptfragen, die sich

beim Interpolieren stellt, nämlich: welches ist unter den verschiedenen

möglichen Interpolationsformeln die ökonomischste? In bezug auf

die Interpolation des Barwerts der lebenslänglichen Leibrente finden

wir, dass die ganzrationalen Funktionen sich sehr wenig eignen, und

können deutlich erkennen, wieviel besser die Resultate bei gleicher

Kenntnis an Ausgangswerten ausfallen, wenn mit rational gebrochenen

«nd einfachen Exponentialfunktionen interpoliert wird.

î) IV. Gruppe: Verfahren, welche neben dem Rentenbarwert zu einem

andern Zinsfuss noch die entsprechenden Kommutationswerte

verwenden.

Die ursprüngliche Herleitung der Formeln durch die Autoren ist

ganz verschieden. Steffensen [14] kommt zum Ausdruck

(27) ax ~ ax —
hv Sx+1

D_

durch Entwicklung der früher angegebenen Näherung (20) mittels eines

^eitrentenbarwertes in eine Potenzreihe und Abbrechen beim ersten

Glied. Auf Birger Meidells [19] Formel

&E+1

(28) a'x <— 1 + hv) N*+i

Wollen wir später in einem andern Zusammenhang eingehen.

Den meisten übrigen Formeln liegt ein sehr allgemeines Prinzip

zugrunde, nämlich die Entwicklung des Rentenbarwerts in eine

Kotenzreihe

r-0 ' r=0

Wo h i' — i
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gesetzt ist und die Kommutationszahlen zum Zinssatz i berechnet

sind. Abbrechen nach dem zweiten Glied führt, wie man sofort sieht,

zur Formel (27) von Steffensen. Berücksichtigen wir noch ein weiteres

Glied, so erhalten wir eine Näherung, die zuerst von van Dorsten [9]

angegeben wurde,
.<? Q(2)

(80) ax -hv ^L+FV^-L.
Die Überlegungen, die Palmqvist [20] zu seiner Formel

(31) o>°-(i+-5§sr
geführt haben, stellen wir vorläufig zurück und wenden uns eingehender
dem Verfahren zu, das Pouhka [4] zur «Verbesserung der Konvergenz»
der Beihe (29) entwickelt hat. Der Grundgedanke des Poukkaschen

Verfahrens kann in freier, hinsichtlich des Sinnes seiner spätem
Auswertung aber, wie uns scheint, treffender Weise dahin ausgelegt

werden, dass die Potenzreihe

00 Q(«) & 00

(29') «; f(h) 2 (- 1)° h- V be hP

-.=0 * s=o

als Darstellungsform von a'x ax(i') ax(i + h) durch die

allgemeinere Beihe
oo

(32) a't F{f(h)) 2 eg [y>(Ä)F

e-o

ersetzt wird, die nach den Potenzen einer nur durch die Bedingung

(33 a) f(h) 0 y'(fc) * 0

eingeschränkten analytischen Funktion von h,

(33 h) z ip{h)

fortschreitet. Die Ermittlung der Koeffizienten (g 0,1,2, • •)

von (32) ist sehr einfach: man entwickelt die Umkehrfunktion
h h(z) in ihre Potenzreihe nach z
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(34) h h(z) z 2 d„ z'-

t>=i

,o—L

die wegen der getroffenen Voraussetzungen über z ip(h) kein von z
freies Glied besitzt, gewinnt durch wiederholtes Multiplizieren dieser
Reihe (34) mit sich selber oder durch direkfe Entwicklung der
Funktionen (h(z))2, (h(z))3, deren Potenzreihen in z, setzt diese in die

a'x ~ y f(h) ursprünglich gegebene Eeihe (29) ein, ordnet nach
Rotenzen von z und hat die gesuchte Beihendarstellung (32) bereits
vor sich. Für die ersten der Koeffizienten c„ erhält man hierbei

— "o

c2 =b1d2 + b2 dl

ct b1 d1

^3 ~ d2 -f- 2 b2 dj d2 -j- b2 d^.

Allgemein erkennt man, dass für jedes r > 0 der Koeffizient cr eine
lineare Form der r ersten Koeffizienten bv b2, br der Potenzreihe
(29) ist,

(35) cr ^Vsrb,>
S= 1

1, 2,

Die Koeffizienten y3r sind ihrerseits die Koeffizienten derr-ten Potenzen
in den Entwicklungen von (h(z))s. Insbesonders ist

Vir d,
1 (drh(z)

rl\ dzr
r 1,2,... ;

3=0

für die «Endkoeffizienten» yrr lässt sich aus der wiederholten Multiplikation

der Reihe von h(z) mit sich selber sofort

ablesen.

Nun ist

Yrr d[
/ dh(z)\
V äz A-o

dt (dh(z)\
\ d' /.-o

1

d z(h)

dh /h=0

d f(h)\
~~dh~)

4 0 ;

h=0
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aus der alleinigen Voraussetzung, dass z — y>(h) in der Umgebung von
h 0 eindeutig umkehrbar sei, folgt dann aber, dass das Grössen-

system (35) eindeutig nach den Grössen bs aufgelöst werden kann,

S

(36) (« 1.2,...).
r=l

Dieses Ergebnis ist eigentlich selbstverständlich. Gehen wir nämlich
oo

von der Darstellung von a'x als Funktion von z, a'x F(z) =2 cs
e=°

aus, setzen hierin z z(h) und ordnen nach Potenzen von h, so müssen
oo

wir wieder die Potenzreihe a'x 2 ba h" erhalten. Für die Koeffi-
<7—0

zienten bs ergibt sich dann in der Tat eine Darstellung in der Art von

(36). Zwischen den Grössensystemen ba und cQ besteht somit eine

strenge, gegenseitig reziproke Verknüpfung. Wir merken uns für
später noch die Bedeutung der Grössen ru :

1 (d*z(h)\ _1 /d°f(h)\
" «I V dh> si \ )J

Nach diesen Darlegungen wissen wir jetzt folgendes. Man kann
immer die Werte von gerade soviel aufeinanderfolgenden Koeffizienten
cr der Reihe (32) angeben, als man sukzessive Koeffizienten bs in der

ursprünglich vorgelegten Potenzreihe (29) berechnet hat. Zweck und

Ziel des Reihenansatzes (32) werden damit klar. Wir müssen durch

geeignete Wahl der Funktion z ip(h) zu erreichen trachten, dass

— wenigstens für die für uns in Betracht fallenden kleinen Absolutwerte

von h — die gegebene Funktion f(h) sich durch die Reihe (32)
besser approximieren lässt als mittels der Reihe (29). Diese allgemeine
Redewendung ist dabei zwar verschiedenartiger Auslegungen fähig1) >

D Wir können z. B. davon ausgehen, dass die Reihen (29) und (82) immer
beide nach derselben Stelle abgebrochen werden, und dann verlangen, dass in den

Beträgen das Restglied von (32) nie das Restglied (29) übertreffe,

| Rr | | 2 °e ^ I — I I I ^ |
> r 0, 1, 2,

e=r+i e=r+l

oder wir gehen von einem vorgegebenen Genauigkeitsgrad g > 0 aus, mit dem
die Reihensumme angenähert werden soll, und verlangen, dass hierbei die Reihe
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doch gleichgültig, in welcher Weise immer wir genau zu fassen suchen,
^as uns mit ihr nur unbestimmt vorschwebt, erkennen wir, dass unser
Erlangen weit über dasjenige hinausgeht, das in den bekannten
Konvergenzkriterien seine Erledigung findet. J)iese dienen nämlich
lrr,rner nur dem Nachweis einer sogenannten infinitären Eigenschaft,
d- h. einer solchen, bei der eine Änderung an endlich vielen Reihen-
Niedern nichts ausmacht — z. B. dass eine Reihe überhaupt kon-
Wrgiert *) —, und zu welcher die Güte der Annäherung der Reihen-
S|Unme durch eine Teilsumme der Reihe in schroffem Gegensatz steht.
Wenn wir über eine Eigenschaft dieser letzten Art eine allgemeine
Feststellung machen wollen, müssen wir uns daher bewusst sein, dass
dies nur auf Kosten der den genannten Kriterien eigenen Strenge und
Fnbedingtheit möglich ist. Eine solche Aussage kann immer nur
Ausdruck einer Erwartung, eines Versprechens sein, und einzig von dieser

Auffassung her dürfen wir an die Feststellung herantreten, die
K. Lindelöf [41] hinsichtlich unserer Zielsetzung ausgesprochen hat:

Konvergiert die Potenzreihe (29) in einem Kreise vom Radius R,
s° ivird sich dann f(h) besser durch die Reihe (32) approximieren lassen,
l°enn die «Abbildungsfunktion» z—f(h) bzw. h=h(z) ein grösseres
Gebiet T der h-Ebene als | h | < R auf den Kreis |^| < R', mit R' < R,
der komplexen z-Ebene abbildet. Wie weit dieses bessere Approximieren

schon für die einfachsten Teilsummen zutrifft, bleibt allerdings
°ffen, man wird erwarten dürfen, dass es um so eher der Fall sein wird,
Jß stärker in den Koeffizienten der Potenzreihe eine Gesetzmässigkeit

erkennen ist. Eine Feststellung lässt sich jedoch noch auf Grund
emes Satzes von Ostrowski2) machen. Der Potenztypus der Kon-
Vfii'genz bleibt bei jeder Lindelöfschen Transformation erhalten. Man
kann daher insbesonders den Idealfall eines konvergenten Verfahrens,
die quadratische Konvergenz — durch Ausführen eines jeden weitern
Schrittes wird der verbleibende (kleine) Fehler im wesentlichen
Quadriert —• nicht erreichen.

dl2) an einer frühem oder höchstens an der gleichen Stelle abgebrochen werden
kann wie die Reihe (29). Die gegenseitigen Beziehungen dieser beiden oder ühn-
lcher Definitionen abzuklären, ist natürlich hier nicht der Ort.

') Es sei vermerkt, dass in der Literatur auch das «bessere oder rasohere

Konjugieren» einer Reihe als infinitäre Eigenschaft definiert wird (man vgl. etwa
«Mopp [40], § 37). Wir haben daher mit voller Absicht von einer Verwendung
'lieses Begriffs für unsere Belange Abstand genommen und von «besserm Approximieren»

gesprochen.
2) [42], Satz 1 (S. 329).



Poukka [4] setzt die Reihe (32) mit der Funktion

h
(37) 2 f(h)

a-f/î
CK

a za z sry vih — a 2^ ~ % 2^ a ^
Q \

a ...Ii U
an, clie die Halbebene 9l(Ä) > — —auf den Einheitskreis hr < 1 ab-

A 1 '

bildet, und bricht sie analog van Dorsten nach dem dritten Glied ab.

Indem er nun den willkürlichen Parameter a nicht einfach beliebig

wählt, sondern ihn als Funktion der Koeffizienten bn der zu ersetzenden

Potenzreihe (29) so bestimmt, dass der Koeffizient

c2 d2 + b2 d\ — bj a -f- b2 a2 a (b1 + b2 a)

der Reihe (32) verschwindet,
b2

a — -r-'&i

erreicht er durch diesen kleinen Kunstgriff, dass trotzdem nur zw&

Summanden stehen bleiben (nicht aber, dass die Kenntnis von b2

umgangen werden kann, denn diese Grösse geht eben in a ein!):

h
f(h) ^ c0 + cx y>(h) =b0 + b1a.

a + h

bth
(38) =&o + &i +

1 + - !—T"Ä •

a fe1

Durch die früher angegebenen Werte (5) und (7 b) erhalten wir für

die Barwerte a' und alr
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und

(4°) a^a^-
^x+ l ^i+n+l n^x+n+l

— V h
D„

S&) _ S&) n s n(n-{-1)
°i+l "x+n+L " °z+n+l o xvx+n+l

— axn\ axn I"

^z+l ^x+n+1 '^^x+n+l

'^x+1 ~ ^x+n+i ^^x+ii+1
v ^

Nz+l Nx+n+l

-vh

c'(2) o(2) —nS —n(n.^rP^N
°x+l °i+»+l nox+n+l g x+n+1

v h
8X + 1 ^x+n+l n^x+n+1

Diese beiden Formeln geben genauere Werte als die Formel von
ua« Dorsten, leiden aber immer noch daran, dass sie die Kenntnis der
Summen S® benötigen, die in der versicherungstechnischen Praxis
sonst nicht gebraucht werden und daher üblicherweise auch nicht
berechnet vorliegen. Hier hat nun Poukka, und zwar ohne
irgendwelchen Zusammenhang zu den vorigen Entwicklungen, die sehr
Wertvolle Feststellung gemacht, dass für die gebräuchlichen Zinssätze)
und Alter das Verhältnis

(41 a) k —- •

* Sx
"

Nx

smh nicht viel mit dem Zinssatz und dem Alter x verändert und als
Konstante betrachtet werden darf, die für die Tafel des Text Book zu

k 0,84

uls bestem Mittelwert anzusetzen ist. Damit geht (39) in die Formel

Sx+l vh
(42) a' ~ « — a —^ï±L

l + 0,84-^±i-t>A

Uber, die trotz der vorgenommenen Vereinfachung noch bessero

Näherungen liefert als die Formel (29) von van Dorsten. Da wir auf
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die beiden Formeln (39) und (42) noch verschiedentlich
zurückkommen werden, wollen wir (39) als erste und (42) als zweite Poukka-

sche Formel fürderhin bezeichnen.

Für den Barwert der temporären Leibrente a'^ können wir das

Verhältnis

Q(2)__£(2) _nS _
71 (W + l) jy

* x+n x+n 2
" *+n Sx—Sx+n-nNs+»

(4U) 9-S n N N—Nx +n ^ x+n ^x ^ x+n

in erster Annäherung ebenfalls konstant zu 0,84 annehmen, worauf

schon Poukka hingewiesen hat. Hantsch [4] hat im zweiten Teil seiner

schon früher genannten Arbeit die Darstellung dieses Verhältnisses

kx n durch die Komponenten, Zinssatz und Überlebensordnung, untersucht

und auf der Grundlage der Reichssterbetafel 1933, Frauen,

gefunden, dass für Rentenschlussalter unter s x + n 70 recht gut

(43) /+„ kx<n(i) ~ k„(i) + ~ kji) + 2Q'*+"

gilt. Hierbei geht kn(i) seinerseits aus der Näherungsformel

kji) (®) + w i • c

hervor, wo c nur Funktion des Zinssatzes ist und als solche sogar

konstant c — 0,06 betrachtet werden darf, während

2 n-f-2
K@) ~ —"v ' 3 71 + 1

ist. Damit kann (40) ersetzt werden durch

^x+l ^x+n+1 ^ ^x+n+1 Ty ft
N —N

,aa\ ' s-h» XYs+n-l-l
(44) «xïïj ~ «x«l — +«| g ZTS

1 I lr 1+1 *+"+! niV«+n+l i1 + kx+liH jf—Y v
x+1 -* s+n+1

2 ti+2 i n n n _
lx+l lx+n+1

mit J^Ï + 0'Kni + —Ö7
'«+ 1
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Anhand einer grössern Zahl von Beispielen über alle Alter und Dauern
konnten wir feststellen, dass innerhalb der schon genannten Ab-
Srenzung die Werte (43) auch bei der Tafel SM 1921—30 [47] das
Verhältnis (41 b) recht befriedigend wiedergeben; ebenfalls gibt (44)
otwas bessere Annäherungen, wenn „ in der angegebenen Weise
individuell abgestuft und nicht einfach konstant 0,84 genommen wird,
Mierdings ohne ganz die Güte von (40) zu erreichen.

Im Anschluss an die Herleitung seiner Formeln hat Poukka noch
e'nen neuen Weg zur Gewinnung der Formel von Palmqvist (31)
entwickelt. Folgt das angewandte Verfahren auch in weitem Masse
demjenigen, das zu den beiden Poukkaschen Formeln (39) und (42) führt,
80 weist es daneben doch auch ganz andere, neuartige Momente auf,
•lie veranlassen und rechtfertigen, von ihm als von einem besondern,

Reiten Poukkaschen Verfahren zu sprechen im Gegensatz zum ersten,
Hü Vorausgegangenen eingehend dargelegten.

Der grundsätzliche Unterschied im Vorgehen liegt nicht oder
Wenigstens nicht allein in der zu verwendenden Abbildungsfunktion

z y>(h) 1 — (1 + a h)'1* a + 0, ß 4 0

(1 — z)~j— 1 1 1+ßh H 1 ^ +
a tß 2 a/?2

die nach Poukka einen Bereich, der den zwischen den Punkten

h 1—2T
1 und h oo liegenden Teil der reellen Achse enthält,

a
auf den Einheitskreis | z | < 1 abbildet. Dass in ihr im Gegensatz zum
Ausdruck (37) mit nur einem willkürlichen Parameter a deren zwei,
a und ß, auftreten, fällt nämlich erst dann wesentlich ins Gewicht,
Wenn wir nicht durch Abbrechen der Reihe (32) nach dem vierten
Glied und Nullsetzen der zwei letzten Koeffizienten c2 und c3 das erste
Voukkasche Verfahren sinngemäss erweitern, sondern daran
festhalten, (32) schon beim zweiten Glied abzubrechen. Die Bedingung,
die neben die alte,
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noch zu treten hat, damit

(46) f(h) ^c0 + c1z c0 + c1 y>(h) b0 + b1 dx y>(h)

vollständig bestimmt ist, finden wir in der im obigen Ausdruck schon

benützten Aufspaltungsmöglichkeit von z ip(h) 1 z* in zwei

Summanden; wir verlangen, dass der «von h unabhängige», besser

gesagt, der von (1 + « h) unabhängige Teil in (46) verschwinde,

(45 6) 6o + 61^-=0
a p

Doch ist nicht zu verkennen, dass mit dieser Festlegung eigentlich
der Verzicht auf die Darstellung von fQi) durch Potenzen der

Abbildungsfunktion z — f(h) ausgesprochen wird. Die verbleibende

Formel

f{h) ~
b-~-

(1 + a Kfß
OL P

erinnert weit mehr an eine Entwicklung von f(h) nach Potenzen einer

nicht gleichzeitig mit h verschwindenden Funktion z* f*(h) ^
— — (1+a h)~ß. Wir verzichten darauf, diese Deutung weiter zu
verfolgen, da sie kaum zu fruchtbaren und praktisch wertvollen
Erkenntnissen führt.

Mit den Lösungen

hi n
b2 bx b0 fe2

__i—2 — — 2
b0 bj b0 \ b\

bi 1

bo a
0

b0 b2

der beiden Bedingungen (45 a) und (45 b) erhalten wir dann

1

bn bo
2 —E-A — 1(47) /(Ä)^ 1--^ 2-Afl-l Ä

bi /0 b0b2

y,
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Woraus für den Spezialfall der Leibrentenbarwerte ax und und
kx und lt als den früher ((41 a) und (41 b)) erklärten Verhältnissen

von Kommutationszahlen

h v S~
(48) a't~ajl + ~ "SrM

Nx+l

2&,+i-l

„ /1 i
kv ^x+1 ^x+n+l n^x+n-H\ flj. _1^9) a-^ax^ l H - Mx+i>n 1

I 1 lyx+l ï+n+l
2 K+l,n 4

folgt. Aus dem Poukkasehen konstanten Verhältnis kx^k 0,84

folgt aber weiter — — 1,47 ~ 1,5, und (49) geht in (31)
Jt rC 1 U,Oo

fiber, während mit

—1 oi, 1-
4

I oio«; i
k+r~^t-»+i 3 w+4

-, * — u fc—
« « n

1 —- -—p 0,12t 71% -T- •

K+l,n + ' 3 n+1 ^ 10 lx+l 8 n+1

k]'"+1,B »+6 •

f- 0,12 ni 'ic+l ^x+n+l

8(n+l) 101'x+l

« ~ °,^i (i+^ s"'
\ "Wm iVx+l ^x-hfi-hl /

die Modifikation der Formel von Palmqvist für den Barwert der
temporären Leibrente im Sinne der Ergebnisse von Hantsch ist.
Numerische Nachprüfungen haben gezeigt, dass (50) im allgemeinen
wiederum leicht bessere Annäherungen ergibt, als wenn in (49)
kx+i,n konstant zu 1,5 gesetzt wird.

Christen [1], [20] hat aus dem ersten Poukkasehen Verfahren
mittels der Abbildungsfunktion
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die Annäherung
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2 1 — e'l3h

h — In (1 —z)
ß

(52) a„ ~ a„ —
(Sx+Ù2 Siaii-2«Ä'

1—e" -S.x+l

hergeleitet und daran eine Methode zur näherungsweisen Berechnung

der höhern Summen der diskontierten Zahlen der Lebenden

angeschlossen. Sind noch die Zahlen Sx tabelliert, so kann man mit

ihrer Verwendung

*\m+l 2

(53)
x m+1 \ m+2

(a>—x)k 2 / eo—x h—1
x (m+1) (m+2)... (m+fe—2) Ira-ffc—2

setzen, gültig für /c (> 2 ; m ist dabei als Mittelwert der für verschiedene

t annähernd gleichen Werte

log Srp-H — lo§ Sx0
m, (x0, t)

log (<o — x0 — t) — log (cu — x0)

zu bestimmen (x0 ist ein Anfangsalter, etwa x0 20). Stehen die

Zahlen Sx jedoch nicht zur Verfügung, so kann man die Beziehungen

(53) so anpassen, dass man Sx durch Nx und je S]® durch das

nächstniedrigere S£~11 ersetzt. (52) geht mit dem Ansatz (53) in

S.
ck ~ CK

aj-hl

(54) ,'co—x—1 1

2 DJ —— + —
m + 1 2

1-e
-2hv

co—x—1 1

m-fl 2
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über. Die Ausdehnung der Formeln auf den Barwert der temporären
Rente übergehen wir, da sie keine Schwierigkeiten bereitet.
Selbstverständlich hätten wir in (52) auch von der Poukkasehen Beziehung
'c 0,84 Gebrauch machen und damit

— 1,68 vh
Sx+l

(55) a'x-^ax-~ ax-0,60 \1—e Nx+l

erhalten können. In der Genauigkeit entsprechen diese Formeln
ungefähr den Poukkasehen und werden bei grössern Unterschieden
im Zinssatz diesen überlegen; nachteilig wirkt sich aus, dass die
Ausrechnung nicht mit der Rechenmaschine allein bewerkstelligt werden
kann, vielmehr noch die Benützung einer Logarithmentafel nötig wird-

Schliesslich sei noch die Formel von Berger [6], [81] genannt,

s*+i
y—a)

N
(56) " " 1+1

sfU+sfU1+ {ô,_ô)
" ^3+1

die in vollkommener Nachbildung der Herleitung der Poukkasehen
Formel aus der Taylorentwicklung von a'x nach der Zinsintensität

W-X

yi FD.
&ax(d' — d)e V/ fai

X+'

e=o
dô<-> Q\ p! Dx

folgt und mittels der Näherung*)

')-* 1

hv (i'—i)v [(e15' — 1) — (e,s—-1)]d (e,s'—ei) v (eO'-<5) — i)e^v
1 ô'-ô 1 f„ Bi

B.
+

1

+ ^f(ô'-ô)*+ }

Wo B0—1,B1 2' C"e Bernoullisohen Zahlen bedeuten. Abbrechen

der Reihe in der Klammer nach dem 2. Glied ergibt die angegebene Näherungsformel.

17
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I 1 1
Csj

hv ô — <5 2

leicht in die erste Poukkasche Formel (39) übergeführt werden kann.

§ 4.

Die Problemstellung unserer weitem Untersuchungen.

Wir gehen jetzt daran, die weitere Zielsetzung unserer Arbeit zu

umschreiben. Schon in der Einleitung haben wir kurz bemerkt, dass

Frucht [3] nicht dabei stehen geblieben ist, bloss eine Ordnung in die

grosse Mannigfaltigkeit der Lösungsvorschläge zum Zinsfussproblein
zu bringen; vielmehr hat er anhand verschiedener Beispiele darauf

hingewiesen, dass ein enger Zusammenhang zwischen den in unserer

dritten und vierten Gruppe zusammengefassten Lösungen besteht:
Durch Elimination der Kommutationszahlen geht jede Formel der

vierten Lösungsgruppe in eine solche der dritten über, und
umgekehrt kann durch einen geeigneten Grenzübergang — nämlich durch
Zusammenrücken der Interpolationsstellen in eine einzige, mehrfach
zählende — aus jeder Formel der dritten Lösungsgruppe eine solche

gewonnen werden, die Kommutationszahlen enthält. Doch hat er

darauf verzichtet, die Folgerungen aus diesen Erkenntnissen endgültig
zu ziehen und unter Verwendung des Begriffes der oskulierenden

Interpolation seine Betrachtungen in einer Formulierung so

abzurunden, dass dem Bestehen der aufgedeckten Beziehungen jede
Besonderheit genommen und der Zusammenhang der beiden

Formelgruppen in seiner vollen Allgemeinheit klar aufgedeckt ist: Zivischen
den Formeln der dritten und vierten Lösungsgruppe besteht überhaupt
kein tieferer Unterschied, sie sind alle Interpolationsformeln mit dem

Zinsmass als einziger Veränderlicher. Nur handelt es sich in dem einen

Fall um Interpolationen mit nur einfach zählenden Interpolationsstellen,
im andern um rein osktdierende Interpolationen, d. h. um Interpolationen

mit einer einzigen, mehrfach zählenden Interpolationsstelle.
Diese Feststellung ist kein «Satz», der im üblichen Sinne

«allgemein zu beweisen» wäre. Dass die Formeln der beiden Lösungsgruppen

ineinander übergeführt werden können, ist eigentlich ein

trivialer Sachverhalt und mit der ausgesprochenen Bemerkung über
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Elimination der Kommutationszahlen und Zusammenrücken von
Interpolationsstellen vollständig erledigt; der Rost aber drückt
einfach eine bestimmte Auffassung des gegebenen Sachverhalts aus.
Unsere Aufgabe kann es daher nur sein, diese Auffassung durch
Beispiele eingehend klarzustellen und vertraut zu machen, durch sie die
Verfahren, die Poukka und Palmqvist zur Herleitung ihrer Formeln
entwickelt haben, von einer neuen Seite aus zu beleuchten und
überhaupt genauere Einsicht in das Übergehen der Lösungen ineinander
zu gewinnen.

Wenn wir hie und da auch etwas mehr, als es vielleicht nötig
erscheinen mag, Bekanntes wiederholen und ausführlich darlegen, so

scheint es uns doch das geeignetste Vorgehen, die verschiedenen
Möglichkeiten von Interpolationsansätzen systematisch zu durchgehen
und je an den passenden Stellen die Anwendungen auf das Zinsfussproblem

einzuflechten.

3. Kapitel.

§ 5.

Das Zinsfussproblem bei der Leibrente
als Interpolationsaufgabe.

a) Der Begriff des Interpolierens; Interpolation mit einfachen
Interpolationsstellen.

Interpolieren kann man bezeichnen als Ersetzen einer Funktion
y /(as) durch eine leicht und rasch zu berechnende andere, y q>(x),

deren Werte innerhalb gewisser Grenzen mit den entsprechenden der

ursprünglich gegebenen Funktion angenähert übereinstimmen und
beim praktischen Rechnen an Stelle von diesen zur Verwendung
kommen. Voraussetzung zur Angabe einer solchen Näherungsfunktion
ist immer, dass die genauen numerischen Werte von y — f(x) (und
gegebenenfalls auch einiger ihrer sukzessiven Ableitungen)x) für
gewisse Argumentstellen schon bekannt sind, sei es, dass f(x)
überhaupt nur durch eine Folge diskreter Wertepaare {xQ, yg) q —0, 1,
2, r, gogeben wird, oder dass ein genaues mathematisches Funk-

l) Ohne es jeweilen besonders zu erwähnen, nehmen wir unsere Funktionen
stets als analytische an.
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tionsgesetz vorliegt und die benötigten numerischen Werte aus ihm

direkt berechnet worden sind1). Diese Kenntnisse müssen dazu

dienen, gerade soviel unabhängige Bedingungen aufzustellen, als q>($)

verfügbare Parameter besitzt oder enthalten darf, und zwar besteht
das naheliegende, für tiefergehende theoretische Untersuchungen
jedoch nicht immer unbedingt zu empfehlende Prinzip in der Forderung,

dass die Werte (Funktionsioerte und Werte der Ableitungen)
Bezug auf (p{x), die den bekannten Werten in Bezug atif f(x) entsprechen)

mit diesen vollständig exakt übereinstimmen sollen.

Der Wahl des Typus der Interpolationsformel, d. h. der Funktion

y ~ (p(x), ist durch diese Festlegung aber in keiner Weise ein Weg

gewiesen. Nach völlig freiem Ermessen können wir, wenn vom Fall,
dass f(x) eine periodische Funktion sei, abgesehen wird, unter
rationalen ganzen oder gebrochenen Funktionen und einfachen Ausdrücken
in Exponential- und Logarithmusfunktionen diejenige auswählen,

für die wir bei aller Wahrung einer einfachen Berechnung die möglichst
beste Anpassung an den Verlauf von /(x) vermuten. Dieso Wahlfreiheit

wird man sich vor allem dann angelegen sein lassen, wenn, wie

das beim Zinsfussproblem auch der Fall ist, nur wenige Interpolationsstellen

Verwendung finden sollen oder können. Bei einer grössern
Zahl von Interpolationsstellen kommt dagegen praktisch nur noch die

Interpolation durch den einfachsten Funktionstypus, die
ganzrationale Funktion niedersten Grades in Frage.

Ohne in eine weitergehende Erörterung von Interpolationsformeln

einzutreten, die keinen direkten Bezug zum Zinsfussproblem
haben oder für dieses Problem praktisch bedeutungslos sind, seien

noch zwei Bemerkungen gemacht. Einmal sei daran erinnert, dass die

bekannte Formel von Waring-Lagrange

N v v(x)

tp(x) (x — x0) (X — Xx) (x—xr),

') Im ersten Fall ist dann das Interpolieren das überhaupt einzige Mittel,
Auskunft über die Funktion an andern als den gegebenen Stellen zu erhalten-
Im zweiten dagegen hat es den Zweck, weitere Funktionswerte bequemer als unter
Anwendimg der genauen Funktionsvorschrift zu vermitteln, doch um den Preis,
dass nur mehr oder weniger gute Näherungswerte erhalten werden.
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und die allgemeine Formel von Newton

(58) (p[x) ^ (x — x0) (X — Xj) (x — xs) /(:Xq, Xj, Xç)

«0 — ^1

/(a;0, xv xe_t) /(^i » ^2» • • • xe)

einfach die allgemeine Durchbildung dieser Interpolationsart für den

einfachsten Interpolationsfall sind, dass nämlich die Funktionswerte
i/o f{x0), yl /(xf), yr f(xr) zu den r + 1 Argumentstellen
«0, xv xr als genau bekannt angenommen werden. Die Bedeutung
der Formeln (57) und (58) liegt darin, dass durch sie <p(x) schon
explizit vorliegt und seine r -f- 1 willkürlichen Konstanten nicht erst
mehr oder weniger mühsam mit Plilfe des Systems der r -j- 1

Bedingungsgleichungen

gewonnen werden müssen. Doch tritt, wie erwähnt, beim Zinsfussproblem

dieser Nutzen wenig hervor, indem bei der geringen Zahl von
Interpolationsstellen das Einsetzen in die Formeln (57) und (58) und
Umformen dieser Ausdrücke kaum einfacher ist als das direkte,
individuelle Ermitteln der gesuchten Konstanten aus dem System (59),
"wie es für allgemeinere Interpolationsfunktionen ohnehin der Fall
sein muss. Damit ist auch schon der Nutzen der nach Gregory-Neivton,
Gauss, Stirling, Everett, Bessel benannten und anderer ähnlicher
Formeln für das Zinsfussproblem entschieden, indem diese alle bloss

Spezialfälle der Formel (58) für äquidistante Argumente sind und je
nach der Lage der Berechnungsstelle zu den Interpolationsstellen
ihren besondern Vorteil besitzen.

Ferner sei noch die Interpolationsformel von Thiele [43], [44]
hervorgehoben. Die genannte Formel verwendet ähnliche Bildungen
wie die in (58) gegebenen Steigungen f(x0, xlt xe), nämlich
sogenannte reziproke Differenzen, hat die Gestalt einer im allgemeinen
nicht abbrechenden Kettenbruchentwicklung und spielt die gleiche

(59) <P(xo) i/o. <p(xd y 1. • • • <P(Xr) Vr
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Rolle für Annäherungen durch rationale Punktionen wie die allgemeine
Formel von Newton für Näherungen durch Polynome. Wenn die zu

interpolierende Funktion f(x) nicht selber ein Polynom ist, so
vermittelt sie meistens bessere Werte als die entsprechenden Abschnitte

von (58). Lässt man alle Interpolationsstellen in eine einzige
zusammenfallen, so geht die Thielesche Interpolationsformel in einen

Kettenbruch über, dessen Koeffizienten Aggregate der Ableitungen
der zu interpolierenden Funktion sind. Man nennt diese Ausdrücke

reziproke Ableitungen, der Kettenbruch selber wird in der Literatur
als Thielescher Kettenbruch bezeichnet; die schon früher gefundene
Formel (38) ist nichts anderes als der zweite Näherungsbruch von
Thiele.

b) Oskulierendes Interpolieren.

Die Ausweitung des Interpolationsansatzes auf den Fall, dass

neben Funktionswerten auch noch Werte sukzessiver Ableitungen
bekannt sind, ist nach dem gegebenen Prinzip klar: liegen an der

Stelle xk — ohne Einschränkung der Allgemeinheit brauchen wir nur
eine einzige Stelle zu betrachten — neben f(xk) yk auch noch die

Werte y'k f'(xk), y"k f"(xk), y\~^ (xk) der m — 1

ersten sukzessiven Ableitungen von f(x) vor, so bestehen an dieser

Stelle für die Interpolationsfunktion y — cp(x) die Bedingungsgleichungen

(60) <p{xk) yk, <p'(xk) =tj'k, çp'""1' (xk) y[m-V.

Da diese m Bedingungen an der einen Stelle xk an Zahl gerade
denjenigen von m verschiedenen Interpolationsstellen entsprechen, bei

denen je der Wert der Funktion allein bekannt ist, liegt es nahe, in xk

das Zusammenfallen von m einfachen Interpolationsstellen zu sehen-

In der Tat geht auch aus den, den m verschiedenen Stellen xk, xk+v
xk+m_l zugehörenden Bedingungsgleichungen

(59 a) <p(xk) yk, cp(xk+l) yk+l, <p(xk+m_,) yk+m_y

beim Zusammenrücken aller dieser Stellen in die einzige xk nicht
allein die Beziehung <p(xk) yk hervor, sondern es lässt sich dazu

noch an den m.—1 voneinander unabhängigen Gleichungen von

Differenzenquotienten (dividierten Differenzen)
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9»(®*) — ?»(«*+1)
— (p(xlc, xA+l)

Vk—Vk+i /(®*+1)

A:-f 1

V(xk>xk-1-1» ®ft+2) — /(®ft> ®A+1> ®A+2)

'A + l A ^A+l

/(®*>®A + l)

®ft + l» • • •> Xk+m-1) — f(xk> xk+1» • • • ' ®A+m-l)

je der Grenzübergang durchführen, was unter wiederholter Anwendung
des Rolleschen Satzes gerade die restlichen m—1 Beziehungen von (60)

erbringt. Ergänzend zu den frühern Feststellungen können wir dann
noch sagen, dass die Zahl der Interpolationsstellen, jede ihrer Mehrfachheit

entsprechend gezählt, gerade der Zahl der verfügbaren Parameter
der Interpolationsfimhtion entsprechen muss.

Während die überwiegend gebrauchte Interpolation mit
einfachen Interpolationsstellen — wir wollen bei ihr künftig als von der

einfachen Interpolation sprechen — geometrisch darauf hinausläuft,
in einem x, y-Koordinatensystem eine Kurve y <p(x) zu legen, die
durch die r + 1, dem Bild der Funktion y =f(x) ebenfalls angehörenden
Punkte xß, yß, q =0, 1, r, geht und somit die Kurve y f(x) im
allgemeinen in diesen Punkten schneidet, lassen die Bedingungen in
der Art von (60) die Kurve y <p{x) nicht beliebig durch den Punkt
xk, yk gehen und f(x) schneiden, sondern nur so, dass sie die Kurve
y f(x) (m—l)-fach berührt oder oskuliert. Daher pflegt man die

Interpolation mit mehrfachen Interpolationsstellen gesamthaft als

oskidierende zu bezeichnen. Doch geht diesem Begriff noch mehr als

dem der einfachen Interpolationen eine Eindeutigkeit der
Fragestellung ab. Nicht nur, dass in der Wahl des Typus der Funktion
y q>(x) wieder volle Freiheit besteht, sondern es kommt nun auch

noch die Auswahl in bezug auf die Zahl der voneinander verschieden
bleibenden Interpolationsstellen und die Ordnung des Oskulierens an
den einzelnen Stellen dazu, die, wenn y <p(x) eine grössere Zahl von

verfügbaren Parametern enthält, recht erheblich wird1).
Die obige Bemerkung über das Zusammenrücken von

Interpolationsstellen in eine einzige weist einen Weg, wie für oskulierende

1) Rechnet man die einfache Interpolation mit, so gibt es für eine einzige
bestimmt gewählte Interpolationsfunktion y <p(x) gerade soviel Ansätze, als
die Zahl der verfügbaren Parameter von <p{x) in kleinere Summanden, mit
Wiederholung, zerfällt werden kann.
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Interpolationen ausser aus dem System von Bedingungsgleichungen
(59) und (60) die Formel zur Interpolationsfunktion y <p(x) g6'

funden werden kann: ist nämlich für die einfache oder eine weniger'

weit reichende oskulierende Interpolation mittels der Funktion

y — tp(x) die Formel schon bekannt, so folgt allein durch geeignetes

Zusammenrücken der Interpolationsstellen die gesuchte Formel. Wie

weit allerdings diese Methode einfacher ist als die ursprünglich
genannte, hängt ganz vom Einzelfall ab und kann nur für jeden
gesondert beurteilt werden.

Frucht [3] hat an einem schönen Beispiel von diesem Vorgehen

Gebrauch gemacht ; es sei auch hier dargelegt, um so mehr, als es auf

eine ebenfalls recht nützliche, bisher aber wenig beachtete

Interpolationsformel führt1). In origineller Weise geht der Autor von einer

besondern arithmetischen Eigenschaft aus, welche die gewählte, eine

gleichseitige Hyperbel mit achsenparallelen Asymptoten darstellende

ao ~h ai x
Interpolationsfunktion y <p(x) besitzt. Fassen wir sie

1 a2 x
nämlich als Transformation auf, welche dio Argumentwerte x in ihre

zugehörigen Funktionswerte y überführt und die Eigenschaft besitzt,
das Doppelverhältnis von vier Grössen invariant zu lassen, so können
wir die Formel für die einfache Interpolation sofort angeben (yv y2, Vs

bedeuten dabei die gegebenen Funktionswerte zu don Stellen xv x2,
y\ der nachher als gegeben zu betrachtende Wert von /'(x) an der

Stelle x2):

V — ?/i th — Vi x — xl
_

x3 — xx

y 2/2 2/3 2/2 X X2 x3 X2

und

(6i)
2/ — 2/1 x — xi (2/3 — yd (x3 — x2)

2/ — 2/2 X — X2 (X3 — ®l) (?/3 — 2/2)

Geht dann x3 —* x2, so folgt daraus

y — 2/i x — xi 2/3 — ?/i
_

J-

y — 2/2 x — x2 x3 — a-'j y2

[3], Formel [19]. Hantsch [5], S. 16—17, wendet die Formel zwar auch a",
aber nur im Sonderfall, dass der eine Rentenbarwert an der Stelle i 0 beniit2'
wird, womit die Bedeutung der Formel gerade nicht deutlich hervortritt.
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und, nach einfacher Umformung,

(ß2) y tJl — -

oder

2/i — Vi

(x — x2) (x1 — x2) y2

x — x1 2/1 — 2/2

W)
1

X — x1
_

2/1 — 2/2

(x — x2)(xl—x2) 2/2

Aus diesen beiden gleichberechtigt nebeneinander bestehenden
allgemeinen Formeln gehen dann für den Barwert der lebenslänglichen
Leibrente

(«s» —
-, (h h) (i h) 2&x+t 1
1 n • v-

oder
(»' — tj) 2DX ax (tx) ax (i.2/

(68') ^0,W+ „̂ ^ ajy

hervor, wobei der links von den Kommutationswerten angebrachte
Iudex «2» darauf hinweisen soll, dass diose zum Zinssatz i =i2 zu
uehmen sind.

Lassen wir weiter —> i2 gehen und schreiben statt i2 wieder i,
s° ergibt sich die erste Poukkasche Formel

^X+ l J
^X + l 1.

(39) / Dx Nx+1
lx ~ ax "K(2j a" 0(2)'

..7. 11 « + 1

"x+l "«+1

die demnach nichts anderes ist als die Interpolationsformel mittels
der an der Stelle i vollständig oskulierenden gleichseitigen Hyperbel
uüt achsenparallelen Asymptoten, was übrigens Poulcka schon selber
aUi Schluss seiner Arbeit angemerkt hat.
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Lösen wir dagegen (61) nach y auf und ordnen durch eine

elementare Umformung diese Auflösung so, class sie in den Indices 1 und 2

symmetrisch wird und damit den Index 3 besonders hervorkehrt,

(61') V Vs —
(I/3-I/1) (1/3-1/2) (a-s3) (x2~Xl)

(X—X3) {(#3— 3q) (1/3-1/2) — (^3—^ (1/3—2/1)} — (^3—^2) (®3—®l) (2/2—1/1)

so erhalten wir die Formel für die einfache Interpolation in einer Form,
wie sie Palmqvist [22] gegeben hat1). Allerdings hat er sich auf den

besondern Fall beschränkt, dass die Argumente äquidistant seien;

soll dabei x3 das mittlere unter ihnen bedeuten, so liegt es nahe x3 $>

aq x— e, x3 x + e zu setzen, wobei dann clas bisher durch #

bezeichnete Argument des gesuchten Funktionswerts seinerseits am

besten durch die Bezeichnung x + h ersetzt wird. Der Weg selber,

der ihn zur angegebenen Formel geführt hat, ist cler vorangegangenen

Betrachtung gerade entgegengesetzt; Ausgangspunkt ist die nach

dem ersten Powfcfcaschen Verfahren hergeleitete Formel (38), aus der

die Ableitungen f'(x) und f"(x) eliminiert werden.
Schliesslich hat Franckx [23] mittels der cler Nomographic eigenen

Methoden den organischen Zusammenhang unserer drei Formeln (38),

(62) und (61')2) nochmals dargestellt. Wir haben schon ciarauf
hingewiesen, class die cler ersten Poukkaschen Formel (39) zugrunde

liegende Formel (38) einfach der zweite Näherungsbruch des Thieleschen

Kettenbruchs ist; gleichermassen stellt (61') die nach dem

zweiten Glied abgebrochene Interpolationsformel von Thiele dar.

c) Die rein oskulierende Interpolation.

Wie unter den verschiedenen Möglichkeiten oskulierenden Inter-
polierens schon cler Spezialfall cler einfachen Interpolation besonders

hervorgetreten ist, so trifft dies auch für das andere Extrem zu, dass

alle Interpolationsstellen in eine einzige, x0, zusammenfallen. I11

diesem Fall, welchen wir als den der rein oskulierenden Interpolation
bezeichnen wollen, sind dann die Koeffizienten cler Interpolationsformel

y (p(x) Stellenfunktionen zum Argument x0, d. h. sie setz©11

sich aus den Werten y0=f(x0), 2/5 /'(®o)> 2/5 t('](®o) clel"

') [22], Formel (5).
a) [23], Formeln (4), (6) und (3).
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gegebenen Funktion y f(x) und ihrer Ableitungen an der Stelle x0
zusammen.

Da damit einerseits der Stelle x0 eine überragende Sonderstellung
zufällt, andererseits eine Funktion y /(x) an der Stelle x 0 im
allgemeinen merklieb einfacher als an einer andern Stelle zu
untersuchen ist, wird es zu einem erheblichen Vorteil gereichen, y (x)
uud damit auch die gewählte Interpolationsfunktion y <p(x) nicht
uiehr weiter im x, y-Koordinatensystem zu betrachten, sondern in
dem aus ihm durch die Schiebung h x — x0, y y hervorgehenden
k, «/-System als Funktionen y =f(h) =f(x — x0) und y q>(h)

<p(x—x0); y=f(x) und y cp(x) lassen sich dann übrigens auch
uoch in der Form y =f(x0 + h) und y — <p(x0 + h) schreiben. Damit
gehen die r + 1 Bedingungen

(64) cp{x0) y0, cp'{x0) y'0, <p{r»(x0) y$

für die Festlegung der Konstanten von y <p(x) gerade in solche an
der Stelle h 0 über,

(64') ^(0) y0, y'(0) «/ô, • • •, ?w(0) ytf

allerdings dann zunächst die Koeffizienten von y — cpQi) bestimmend.
Dass hierbei für eine bestimmt gegebene Interpolationskurve (oder
anders gesagt, für ein bestimmt gedachtes Interpolationsgesetz)
•p (x) <p(x0 -f h) und y (h) (p (x—x0) vom genau gleichen allgemeinen
analytischen Ansatz sind und sich nur durch die Verschiedenheit der
Koeffizienten voneinander unterscheiden, ist eine eigentlich trivale
Kolgerung aus dem zur Anwendung gelangten Transformationstypus1).

Zur Verdeutlichung dieses Sachverhalts wollen wir noch ein
konkretes Beispiel geben, welches zugleich mit einer Formel bekannt
macht, die für das Zinsfussproblem von erheblichem Wert ist.

x) Dieser Sachverhalt soll auch in der Bezeichnungsweise ihren Ausdruck
finden, indem für beide Variable x und h das gleiche Funktionssymbol (p benützt
Wird. Dass im einen Fall die Konstanten b0, bv br, im andern die Konstanten
K> bv ,br vorliegen, ist dadurch ausgedrückt, dass im letztern das Funktions-
aymbol <p beibehalten, doch quer überstrichen ist. Um die Darstellung aber nicht
unnötig zu überlasten, und wo keine Verwechslungen möglich sind, lassen wir dieses
Unterscheidungszeichen überhaupt weg oder benützen das ungestrichene Symbol
lrn h, //-System und den Querstrich für das x, y-System. Im übrigen sollen in den
Interpolationsformeln die verfügbaren Parameter mit griechischen Buchstaben
bezeichnet werden, sind sie durch die gegebenen Ausgangsbedingungen bestimmt
gedacht, so soll dies durch Verwendung lateinischer Buchstaben angedeutet sein.
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Wollen wir beispielsweise für die Interpolationsfunktion

filx
(G5) y cp(x) ß0e 1+hx

die zu ihr identische Funktion <p (h) bekommen, so haben wir einfach ®

durch x0 -)- h zu ersetzen und erhalten nach einigen elementaren
Umformungen

£ h
Xp)-

fio *0 j ßl

(65') y <p(h) <p(x0 + h) cp{x) ß0e 1+/,2X° • g i+/?a*o

Setzen wir dann als neue Konstante

ßoxo
ßi ßz

7o ß*el+h*\ Yl „
' \ y2

(1 + /W 1 + ß2x

an, so hat y <p (h) in der Tat die gleiche Gestalt wie y <p (h) :

V\h

(65") y TpQÏ) =y0 • e1+'*.

Gehen wir mit dieser Interpolationsfunktion (65") weiter zur

rein oskulierenden Interpolation über, d. h. nehmen yn / (a"o)>

I/o f (xo)> y'o — f" (xo) als gegeben an, so besteht für die Bestimmung

ihrer Konstanten c0, cv c2 das Gleichungssystem

(p (0) c0 y0

'P (0) CqCj y0

<P (0) coci( 2c2 Cj) i/0,
welches

f 1 / ' "
Vo „ _

1 / I/o 2/o
co — Z/o > ci — > 2 0

I
/

Z/o 2 \ i/0 y0

zur Lösung hat.

Indem wir noch für y0 den Barwert der lebenslänglichen Leibrente
zum Zinssatz i, für y'0 und yl deren bekannte Derivierte (5)
einsetzen, folgt mit h %' — i
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SaH-l
h

N,£-|-l

/ s(2> s

(66) ax^ax.e
1 h"X^i ~

Auf diese Formel, allerdings in einer etwas andern Gestalt, ist
zuerst Hantsch im Zuge seiner schon genannten systematischen
Unterteilung gestossen ; sie ist ein Beispiel dafür, wie eine funktionelle
Zuordnung oft analytisch verschiedenartig formuliert werden kann.
(65") können wir nämlich auch in der Form

«O +Ctift

(65"') y(A)=c1+°»*

darstellen, indem wir die neuen Konstanten

«o lnYo> «i Vi + V^nVo> «2 72

einführen; mit

In cl
1 Sx+l

a2 v 1

2 Nt+1

JS*ii 1 <SVm
<xt — v f- In a.

N*+i " \<Vt 2 K+1

lst dann (155'") die allerdings auch schon etwas vereinfachte Form,
die Hantsch (66) gegeben hat. Sie weist gegenüber der unsrigen den
"Vorteil auf, dass mit der Ermittlung des Potenzwerts gerade das
fertige Ergebnis vorliegt und die Multiplikation mit ax in Wegfall
kommt, dafür verlangt die Berechnung ihrer Konstanten mehr Arbeit.
Verwenden wir wieder die Poukkasche Beziehung k 0,84, so
erhalten wir aus (66)

Sz + 1
vh

1Vb

/"ß7\ /
1 + 0,34 — i'h

(" ') ax=ax-c "'H

euie Formel, die ebenfalls schon Frucht [3] angegeben hat. Die beiden
Formeln (GG) und (67) leiden wie schon die Formeln von Christen (52)

*) [5], Seite 26.



— 260 —

und (54) daran, dass sie den Gebrauch einer Logarithmentafel nötig

machen; bemerkenswert ist, dass sie auch bei grössern Zinssatzspannen

noch recht gute Annäherungen ergeben und hierin die

entsprechenden Poukkaschen Formeln übertreffen.

d) Die beiden Poukkaschen Verfahren und ihr Zusammenhang mit der

rein oskulierenden Interpolation.

Wollen wir die allgemeine Formel für die rein oskulierende

Interpolation von der Stelle h 0 aus mittels des Polynoms r-ten Grades

(68) y (p (h) ß0 + ßi h + + ßr hr

bestimmen, so werden die Bedingungsgleichungen (64') besonders

einfach, nämlich

ç,te)(0) ei be 2/<f> e 0,1, ...,r,
und die aus ihnen eindeutig hervorgehende Lösung

î/o'
ßä ^ \ e 0,l,...,r

gibt nichts anderes als die ersten r -f-1 Entwicklungskoeffizienten der

Taylorreihe von f(x) — f(x0 + h) =f(h) an der Stelle x x0 bzw. h 0,

oo

(69) f(x) f{x0 + h) f(h)
£=•0

Es gilt somit der Satz: Die Fomel für die rein oskulierende

Interpolation von f(x) =f(x0-{-h) f(h) von der Stelle h 0 aus mittels des

Polynoms r-ten Grades (68) ist durch die r-te Teilsumme der an der

Stelle x — x0 bzw. h 0 angesetzten Taylorsehen Enhvicklung (69) von

f(x)=f(x0-\-h) =f (h) gegeben, und umgekehrt bedeutet Abbrechen dieser

Taylorreihe (69) nach der r-ten Potenz von h nichts anderes als rein
oskulierendes Interpolieren von f{x) =/(as0-f-/t) =f{h) von der Stelle

h 0 aus mittels des eindeutig bestimmten Polynoms r-ten Grades (68)-

Diese bekannte, elementare Tatsache, aus der auch sofort die

Deutung der Formeln (27) und (80) von Steffensen und van Dorsten

als Interpolationsformeln hervorgeht, legt die Vermutung nahe, dass
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auch zwischen clen beiden Poukkaschen Verfahren und dem rein
oskulierenden Interpolieren ein enger Zusammenhang bestehe, denn
es ist bei diesen Verfahren ebenfalls ein wesentlicher Zug, die ihnen
zugrunde liegende Reihe (32) an geeigneter Stelle abzubrechen. Dieses

vermutete Verhalten lässt sich in der Tat vollständig bestätigen,
doch wird sich erweisen, dass der gesuchte Zusammenhang in einer
andern Richtung liegt, als man auf Clrund des vorangegangenen Satzes

und der schon im zweiten Kapitel gewonnenen und in den Formeln
(35) und (36) zusammengefassten Erkenntnisse über die Beziehungen
der Koeffizienten bs und cr der beiden Reihen (29) und (32) vielleicht
zunächst zu vermeinen glaubt.

Wir haben nämlich früher die Verknüpfung der Koeffizientensysteme

bs und cr vom Standpunkt aus betrachtet, dass die eine der
beiden Koeffizientenfolgen gegeben, die andere gesucht sei. Dabei

waren die beiden Folgen durch eine analytische Funktion z ip{h)

verknüpft, die mit einer geringfügigen Einschränkung zwar beliebig
wählbar, doch fest vorgegeben sein sollte, d. h. in welcher weder im

analytischen Ansatz noch in den in ihm enthaltenen Parametern
willkürliche Verfügungen mehr möglich oder nötig waren. Diese Annahme
über Gegebenes und Gesuchtes müssen wir aufgeben, wenn wir nun
an die Untersuchung der beiden Powfc/raschen Verfahren gehen. Wir
setzen wohl unverändert die Kenntnis der ersten r+1 Koeffizienten bs

der Potenzreihe (29) als Ausgangspunkt voraus. Neu kommt dagegen
hinzu, dass wir auch über die Werte der Koeffizienten cr, und zwar
m sehr einschneidender Weise. Vorschriften machen, wofür wir darauf
verzichten, die Funktion z — ip(h) fest vorzugeben. Vielmehr schält
sich gerade als Aufgabe heraus, die in einem fest vorgegebenen
analytischen Ansatz von z ip(h) noch verfügbar gelassenen Parameter
so zu bestimmen, dass sie mit den vorgegebenen Bedingungen über
die Werte cr im Einklang stehen. Dabei erkennen wir unmittelbar,
dass z= rp(h) wenigstens soviel verfügbare Parameter enthalten muss,
als Vorschriften über die Koeffizienten cr bestehen, aber auch nicht
deren mehr enthalten darf, wenn kein Parameter mehr willkürlich
wählbar sein soll.

Wenden wir uns jetzt vorerst allein dem ersten Poukkaschen
Verfahren zu, so haben wir es mit der folgenden Vorschrift zu tun: wir
setzen die «Abbildungsfunktion» z y>(h) mit r—1 verfügbaren
Parametern tc2, tz3, 7ir an und verlangen, dass diese Parameter die
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r — 1 Koeffizienten ca, c3, ...,cr der Keihe (32) zum Verschwinden

bringen sollen,

cr — 0.

Es ist offensichtlich, was wir damit bezwecken: trotz Abbrechen der

Eeihe (32) erst nach der r-ten Potenz von z xp(h) bleibt als Näherung
für /(/«) doch nur der zweigliedrige Ausdruck

(70) / (h) ~ W{h) c0 -f cx xp (h, tt2, nr)

stehen. Von den r + 1 unbestimmten Parametern c0 n0, ct 7tv

tc2, nz, ..nr von (70) wird der erste explizit durch die gegebenen
Koeffizienten bs der Eeihe (29) dargestellt;

(71 a) n0=b0 xj0,

der zweite drückt sich ebenfalls explizit durch die bs und die
verbleibenden Parameter n2, 7t3, nr aus,

(71 b) =bld1 b1. yn (n2, 7ta, nr),

während nach Poukkas Vorbild die restlichen Parameter 7t 2,7t3, ...,7tr
implizit durch das System der r—1 Gleichungen mit r—1 Unbekannten

c2 0 — Yi2 (tz2, 7t,.) • -f- y22 • • • » 7tr) • b2

C3 0 Yi3 (^2. ,7tr)-b1 + y23 (?*2> • • •, nr) b2 +
+ y3a(^2. ,7tr)bs

cr 0 ylr (7t2, 7tr) h] + y2r (ji2, 7tr) • b2 -f +
+ yrr {n2, ...,7tr)b,

festgelegt sind. Die Beifügung der Werte ti2, ti3, 7tr zu den
Koeffizienten yrs — die Bildung dieser Koeffizienten yr3 haben wir im
Anschluss an Formel (35) angegeben — soll dabei daran erinnern, welches

die Unbekannten im System (71 c) sind. Mit wenig Mühe lässt sich

aber jetzt weiter zeigen, dass das aus (71 a), (71 b), (71 c) zusammengesetzte

System (71) von r + 1 Gleichungen mit r -|- 1 Unbekannten
mit dem folgenden äquivalent ist, d. h. die gleichen Lösungen po<

Pi> P2> ,pr besitzt:
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K Uo

fcj (n2, • • •, ftr)

^2) ^2 ^12 (^2' * * • ' ^f) ' "b.

bg T^g (jT2> 7ïr) • JÏJ

br i-),. (jt2) • • • > nri ' •

Denn, p*0 b0, p*, p*2, p*r sei eine Lösung von (71), bedeutet,
dass die gegebene Koeffizientenfolge b0, bv ...,br vermittels f(h,
fi, p\, p*r) in die Folge c0 b0, c1 p*v c2 c3 cr — 0

übergeführt wird. Nun ist aber diese Beziehung umkehrbar eindeutig
und findet nach (36) gerade ihren Ausdruck im System (72), wenn wir
in ihm für die Parameter tzq, jiv nr die Folge p*0, p*v p*r

einsetzen. Damit ist aber schon gezeigt, dass pl, p[, p* (72)
befriedigt, also Lösung dieses Gleichungssystems ist; entsprechend
zeigt man, dass auch umgekehrt jede Lösung von (72) Lösung von
(71) sein muss.

Dieses Gleichungssystem (72) können wir noch etwas umformen,
"wenn wir uns einerseits der früher gegebenen Beziehung

1 fd'V(h)
s: dhs

erinnern und andererseits beachten, dass für die durch (70) definierte
Funktion lFQi) lF(0) c0 n0 b0, W(h) n2, n2, 7tr)

gilt. Wir erhalten

(72 'a)
W (0) — c0 — b0 — y0

W (0) n1 tp' (0) bj Vo

(72'b)

¥>"(0) =tziW"(0) =2!b3 2/o

¥""(0) ^'"(0) 3 lb3 y'0"

¥*r>(0) «lV,W(0) r! br y[r)

IS



— 264 —

und erkennen, dass wir nichts anderes als die Bedingungsgleichungen
(64') für y W(h) als Interpolationsfunktion vor uns haben, womit
der einfache Satz gilt:

Das Bestimmen eines Näherungsioerts

I

m /(ä) ~ îfo H—r^vT VW
V (0)

einer Funktion f{h) durch das erste Poukkasche Verfahren mittels der

(r— \)-parametrigen «Abbildungsfunktion» ip(h) ist nichts anderes als

das rein oskulierende Interpolieren von f (h) von der Stelle h 0 aus

mittels der (r + 1 )-parametrigen Interpolationsfunktion.

(78) 9>W=yo + yiVW-

Die etwas merkwürdig erscheinende Gestalt von cp (h) hat dabei zur

Folge, dass y0 und y1 immer durch die gegebenen Werte yn und jjo

und die Parameter von ip(h) angegeben werden können und <p (h)

praktisch als Funktion
/

(73') vW=l/« + l/~rH^)
V (0)

allein mit den Parametern von rp(h) aufgefasst werden kann, zu deren

Bestimmung dann nur das Teilsystem (72' b) zu verwenden ist.

Vergleichen wir (72' b) mit (71 c) und bedenken, dass für jede

Funktion, sei sie einfach oder verwickelter, es ungefähr den gleichen
Arbeitsaufwand braucht, sie bzw. ihre Umkehrfunktion in die

zugehörige Potenzreihe zu entwickeln oder die beiden Funktionen direkt

zu differenzieren, so kommen wir nicht um die Feststellung herum»

dass das erste Poukkasche Verfahren einfach die Lösung einer ge'

gebenen Interpolationsaufgabe auf einem mehr oder weniger komph'
zierten Umweg bedeutet. Eine positiv zu wertende Tatsache bleibt

am Verfahren und den daran geknüpften Betrachtungen allerdings
bestehen; durch Anwendung des Lindelöfschen Kriteriums lässt sich'

jedoch auch nur unter den früher gemachten Vorbehalten, beurteile11'

ob durch die Interpolation mittels <p(h) ein besseres Ergebnis erwartet

werden darf als bei Abbrechen der Potenzreihe (29).
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Nehmen wir, um die Ansätze (73') und (72' b) an einem
Beispiel zu belegen, die von Christen verwendete «Abbildungsfunktion»
2 ip(h) 1 — e'ßh, d. h. setzen

<PQl) 2/o + f(h) Vo + (1 - e~n,
f (0) P

go wird

<p" (0) —y'0ß ijl, ß — yJ und <p(h) y0—Arll
yo »o \

was unter Berücksichtigung von (5) in der Tat zu (52) führt.

Mit der in das erste Poukkasche Verfahren gewonnenen Einsicht
Jst es leicht, auch das zioeite vollständig zu durchschauen. Um eine

Möglichst weitgehende Anlehnung an das erste Verfahren zu erlangen,
fassen wir seine ebenfalls sinngemäss verallgemeinerte Vorschrift so,
dass wir wie bei diesem das Verschwinden der r—1 Koeffizienten
c2, c3, cr und Abbrechen der Beihe (32) nach der r-ten Potenz von
2 f(h) verlangen, abweichend von ihm aber ip (h) mit einem
willkürlichen Parameter mehr, also insgesamt deren r, n%, n3, nr+l
ansetzen. Zur Aufstellung einer hierdurch notwendig gewordenen
zusätzlichen Bedingung zu den schon genannten Bedingungen gehen
wir vom Ergebnis (70) des ersten Verfahrens aus. Lässt sich nämlich
y(h) in der Gestalt

ip (h) K -j- x (h)

schreiben, wo K eine feste, von den r willkürlichen Parametern n2,
• • •, nr+1 unabhängige Konstante ist und wegen ip (0) 0 x (0) —K
sein muss, so wird (70)

y>(h) c0 + c1ip(h,7i2, ...,nr+i) =c0 + c1K + ctx (h, Jt2,.. .,nr+l).

diesem durch die gegebene Aufteilung von ip (h) dreigliedrig
gewordenen Ausdruck verlockt es nun, den von h oder, genauer gesagt,
den von x (h) freien Teil zum Verschwinden zu bringen,

c„ + Cj K 0,

so dass dann nur der eingliedrige Ausdruck
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(74) y>(h) — c^Qi,^, ...,7Tr+l)

stehen bleibt. Setzen wir, um zu betonen, class c0 und auch
verfügbare Parameter sind, wieder wie früher nn c„, nL cv so dient

uns dann zur Bestimmung der r + 2 Parameter n0,7tvnz,
das System von r + 2 Gleichungen

n0 b0 y0

nQ + K tt1 0

7zl b1y11 {n2, ?rr+1)

c2 0 y12 (jt2, 7Tr+t) -bL + y22 {n2, nr+l) b2

(75) c3 0 y]3 (7r2, .,nr+l) + y23 (n2, .,nr+l) b2 +

+ 733(^2. •,nr+l) b3

cr 0 ylr {n2, nr+l) b1 + y2r (n2, nr+l) b2 +

+ •• +y„ fca, ••>nr+ù • br-

Durch die genau gleiche Beweisführung, wie wir sie zum Nachweis

der Äquivalenz der Systeme (71) und (72) verwendeten, ergibt sich

aber, class (75) zu

(76)

^0 — bo — Vo

7l0 -\- K 7Ti =0
bi 1

11 (^2, • • 7Tr +1) ' 71-y

b2 ^12 (^2> • • • * ^r-|-l) ' ^1

br (yt2i TTjr + V 71,

äquivalent ist, welches System seinerseits wegen
ipW (h) x^ (h) (s 1,2,...) und x (0) — K als System der r + 1

Gleichungen mit den r + 1 Unbekannten nv n2, 7ir+l



(76')

I/o

y'o

vi

x(0,7l2, 7T, + 1) n1=<p (0)

x' (0, n2, nr+1) • Jix — tp' (0)

x" (0, n2, nr+1) n1 q>" (0)

y{or) x{,) (0, n2, jir+1) TTj <p(r) (0)

geschrieben werden kann. Dieses ist aber wiederum nichts anderes
als das System der Bedingungsgleichungen (64') für <p (h) ti1 x (h)
als Interpolationsfunktion. Damit gilt der dem vorangegangenen Satz
über das erste Poukkasche Verfahren analoge Satz:

Das Bestimmen des Näherungswerts

(74') /(Ä)(V,__|.«(Ä)

einer Funktion f (h) durch das zweite Poukkasche Verfahren mittels der

r-parametrigen « Abbildungsfunktion» y>(h) =K -\-x(h) — nur bei dieser

Zcrlegungsmöglichkeit von ip(h) ist das Verfahren durchführbar — ist
nichts anderes als das rein oskulierende Interpolieren von f(h) von der
Stelle h 0 aus mittels der (r l)-parametrigen Interpolationsfunktion

(77) rp (h) =y1 x (h).

Wie bei der dem ersten Poukkaschen Verfahren zugeordneten
Interpolationsfunktion y0 und yx explizit durch die bekannten Ausgangs-
Werte und die andern Parameter ausgedrückt werden können, ist
dies auch bei (77) mit yt der Fall, so dass (77) als Punktion

(770 r(h)

aufgefasst werden kann, die allein die r Parameter von x(h) enthält,
zu deren Bestimmung dann vom System (76') die erste Gleichung
wegfällt.

Als Beispiel zu diesem Satz wollen wir eine «Abbildungsfunktion»
ip(h) — wie man an (77') sofort erkennt, ist als Umkehrung von q>{h)

x(h) nur bis auf einen willkürlichen Parameter bestimmt — zu der
von Hantseh erwähnten Interpolationsfunktion
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(65"') y=<p(h) yae1^

angeben. Weil die Exponentialfunktion für h 0 eins wird, lautet
sie am einfachsten

nh L+±./lL-3\
ip (h) 1 — el+Y*h 1 — e

3 l "o "o /

e) Eine weitere Ausdehnung des Interpolationsansatzes; die Formeln

von Palmqvist und Birger Meidell als Interpolationsformeln.

Wir nehmen eine letzte Ausweitung des Interpolationsansatzes
in dem Sinne vor, dass wir nicht mehr die vorgelegte Funktion y / (®)>

sondern eine fest vorgegebene Funktion Y y> (y) von ihr — diese

ist dann eine mittelbar gegebene Funktion von x, Y ip (/ (»•)) :

F(x), — mittels dor Funktion Y <P(x) interpolieren. Dabei stellen
sich gleich zwei Fragen:

1. Kann diese Interpolation von Y ~W{y) W{f(x)) mittels
Y 0(x) immer auch als Interpolation von y=f(x) mittels
einer Funktion y — <p (x) gedeutet werden, und welcher Zusammenhang

besteht dann zwischen <P (a:) und <p (x)
2. Bietet diese Ausdehnung des Interpolationsansatzes

überhaupt Interpolationsmöglichkeiten, die in anderer Fassung nicht auch

schon aus den Ansätzen der direkten Interpolation hervorgehen, und

wenn ja, in welchem Falle?
Die erste Frage findet ihre vollständige Beantwortung im folgenden

Satze, in dem y — tp'1 (Y) die Umkehrfunktion von Y —fill)
bedeuten soll: Wird statt der vorgelegten Funktion y — f (x) eine wohl-

bestimmte Funktion Y W(y) lF (f(x)) von ihr interpoliert, und zwar
mittels der Interpolationsfunktion Y <P (x), so ist die Interpolation
identisch mit derjenigen von y f (x) mittels der Funktion

V <P (®) XP~X (0 (®)) •

Hinsichtlich der zweiten Frage erkennen wir unmittelbar, dass

dann neue Interpolationsansätze entstehen, wenn ip'1 (Y) sich nicht
als geschlossener Ausdruck der geläufigen algebraischen und
transzendenten Funktionen darstellen lässt. Im andern Fall wird einfach

ein schon bekannter Interpolationsvorgang in einer andern Forniu*



— 269 —

Herang geboten. Dies kann oft von praktischem Nutzen sein; soll
z. B. y f (x) durch eine Interpolationsfunktion cp (x) e'"(x)

dargestellt werden, so wird man geläufiger Y in / (x) oder Y — log / (x)

mittels Y 0 (x) interpolieren. Als Beispiel hierzu sei erwähnt, dass

Frucht gerade von dieser Seite her zur Formel (67) gelangt ist, die wir
auf dem Wege über die Formel (66) von Hantsch erhalten haben.

Betrachten wir die rein oskulierende Interpolation, so gehen die

früher genannten Bedingungsgieichungen (64) in die folgenden über

0 (x0) Y0, 0' (x0) Y'0, 0{r) (®0) Yo}>

Wo Yo' Jxf (v (/(4U„

aus den gogebenen Werten y0 —f(x0) y'0 f'(x0), - — frHxo)
and den Worten der Ableitungen von rp (y) nach y an der Stelle

H ij0 zu berechnen ist.

Wir benützen hier die günstige Gelegenheit, auch noch dio Wirkung
zu untersuchen, die das Ändern des Arguments einer Funktion auf
deren Interpolieren ausübt. Fs gilt der Satz: Wird die vorgelegte

Funktion y-f(x) als Funktion y=F(X) eines neuen Arguments
X ip(x) aufgefasst, und bedeutet x y>"1 (X) die Umkehrfunktion
von X ip(x), so ist das interpolieren von y — /(x) mittels der Funktion
V ~ (p (x) identisch mit dem Interpolieren von y — F (X) mittels

y 0 (X) — <p (yf1 (X))

Betrachten wir wiederum besonders die rein oskulierende

Interpolation, so ist zwar hinsichtlich der Bestimmungsgleichungen (64)

kaum eine Bomerkung nötig, hingegen lohnt es sich, auf eine wohl

zu beachtende Besonderheit hinzuweisen. Sobald wir, von den Stellen

r x„, X X0 tp(x0) aus interpolierend, diese zum Ursprung
der Koordinatensysteme machen und die vorgelegte Punktion
V =2_f (x) F (X) als Funktion y f (x0 + h) f (h) F (X0 + H)

^ F (H) der Differenzen h — iv — x0, II X — X0 betrachten,
besteht zwischen h und H nicht die Beziehung H ip(h), sondern

die folgende

II ip (x0 + h) — ip (x0), h — ip~l (X0 -(- II) ip
1

(X0),

die in allgemeiner Weise nicht weiter vereinfacht werden kann.



— 270 —

Wollen wir dann beim Zinsfussproblem in einer Formel die Differenz

h %' — i der Zinssätze durch die Differenz ô' — ô der

entsprechenden Zinsintensitäten oder die Differenz v' — v der

entsprechenden Abzinsungsfaktoren ersetzen, so besteht daher die

Verknüpfung der genannten Argumente in den leicht zu errechnenden

Transforma tionen

(78)

v'—v v'—V ÎIV2

v2 + v (v'—v) vv' l-\-hv

e('5'-<5) 1

\ (1 + i) (e('"-'s)_1) d'— d In (1 + v h)

Als erstes Beispiel zu den vorangegangenen Überlegungen deuten

wir die beiden von Birger Meideil [19] gegebenen Formeln

(79)
\ ex

wo ex wieder die abgekürzte mittlere Lebensdauer bedeutet, und

Sx-\-1

(28) a'x -vj ax (1 -f- h v) Nx+ i

als Interpolationsformeln. Meidell hat sie aus gewissen Ungleichungen
von Jensen [45] hergeleitet. Diese lauten

wobei das obere oder untere Ungleichheitszeichen gilt, je nachdem die

über dem Intervall, dem die beliebigen reellen Werte xn (q — 1, 2,

r) entnommen sind, stetige Funktion <p (x) durchwegs konvex
oder konkav ist; bn (q 1, 2, ...,r) sind beliebige positive Werte.
Wenn q> (x) dagegen die lineare ganze Funktion ist, und nur in dieser»

Falle, besteht zwischen den beiden Seiten von (80) Gleichheit. Weicht



— 271 —

nun das Bilcl von cp (x) innerhalb des zu betrachtenden Intervalls
nicht stark von der Geraden ab, so darf (80) noch näherungsweise als

Gleichung aufgefasst werden. Wählen wir als eine solche passende
Ô'

Funktion cp (x) xl '"F, setzen 1 -|- s —, x v-, womit <p(x0) v's

wird, und b so folgt (79), während (28) sich aus dem Ansatz

K ^ „Px, x =.q, cp (x) (1 + h v)~x e~(<5'-'5>x, q> (xn)
V

v-

ergibt. Durch Zurückgehen auf die genaue Beziehung (80) können wir
in wertvoller Weise mathematisch exakt bestimmen, ob die durch (79)
und (28) gegebenen Näherungswerte zu gross oder zu klein ausfallen.
Wie man leicht nachrechnet, gibt (79) zu grosse oder zu kleine Nähe-

rungswerte, je nachdem ô^-ô' ist; (28) dagegen gibt immer zu kleine

Näherungen.

Durch Logarithmieren der beiden Gleichungen (79) und (28)

zu einer beliebigen Basis b erhalten wir zunächst

(79') I°iL"* " "log e' log «, — ex
~

~ô' Ô

und

2§) log a'x log ax — ~x~l 1

log (1 +hv) =- log ax— ~ x
log,, c • In (1 +hv).

I I C I I

Bedenken wir nun, dass ex der Bentenbarwert zum Argument <5 0

ist, ferner

'Vi 1
n

dlogfl,- 7, logie ———
Dx ax d ô

und nach (78) In (1 + h v) ô' — ô wird, so erkennen wir, class die
beiden Formeln (79) und (28) von Birger Meideil sich auf ein und
dieselbe Interpolation beziehen, nämlich die lineare Interpolation des

Logarithmus des LeAbrcntenbarwertes ax mit ô' als Argument. Nur
liegen im ersten Falle zwei verschiedene Interpolatwnsstellen, nämlich
b ----- 0 und ô vor, während im zweiten von der Stelle ô aus rein oskulierend

interpoliert wird.
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Als Hauptanwendung der Interpolation einer Funktion Y fiy)
der gegebenen Funktion y — / (h) untersuchen wir das Verfahren,
das Palmqvist [20] zur Herleitung seiner bekannten Formel

gegeben hat, auf seinen Interpolationscharakter hin. In einer schon

von Palmqvist selber bemerkten Verallgemeinerung besteht das

Vorgehen im folgenden: Man setzt die vorgelegte Funktion y f (h)

von der ihr Wert und die Werte ihrer r ersten sukzessiven Ableitungen
an der Stelle h 0, y0 / (0), y'0 /' (0), y<'> (0)

oder, mit andern Worten, die ersten r -f- 1 Koeffizienten b0, bv br

der Potenzreihe (29) numerisch gegeben sein sollen, einer Funktion

y ip (Y)1) gleich, wodurch dann Y implizit als Funktion von h,

Y Y (Ii) definiert wird, und entwickelt diese Funktion ihrerseits
in die Taylorsche Reihe an der Stelle h 0

Durch Abbrechen dieser Reihe nach der r-ten Potenz von h — wie

leicht zu überlegen ist, können wir die numerischen Werte der
Koeffizienten P„ gerade bis zu dieser Potenz angeben — erhalten wir für
Y (h) einen Näherungswert Y2 (/«), der, in y~ip(Y) eingesetzt,
seinerseits einen Näherungswert y% y> (Y2) für y — f (h) liefert.

Veranlassung zu dieser zunächst etwas merkwürdig und umständlich

erscheinenden Vorschrift hat Palmqvist die Formel (20) von Stef-

fensen, a'x — a^ (h), gegeben. Diese läuft nämlich darauf hinaus,
zuerst die Dauer n der Zeitrente a^ (h) als Funktion von h und i
zu berechnen, und die hierbei gefundene Näherung für n, n ^ ax — h

ist nichts anderes als die nach der ersten Potenz von h abgebrochene

Entwicklung von n nach Potenzen von h. Das weitere Ziel, das Palmqvist

mit dem dargelegten Ansatz verfolgt, besteht darin, Y=lP(y)
geeignet so zu wählen, dass die Annäherung für y — / (h)

(31)

(81)
>=o

=f(B0 + B1h+ +Br/F)
') Um mit der von uns bisher benutzten Bezeiohnungsweise im Einklang z11

bleiben, müssen wir auf die Originalbezeichnung von Palmqinst verzichten und «Y»

statt Heines «y» setzen.
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besser wird als die durch die r-te Teilsumme der Potenzreihe (29)
dargestellte yt ~ b0 -f b1 h + br V. Dies zu erreichen, ist für
die praktisch wohl einzig in Frage kommenden Fälle r 1 und r 2

nicht schwer; ist y f (x) im Intervall (0, h) eine monotone Funktion,
so genügt es im ersten Fall, dass ip' (Y) im Intervall der zugehörenden
Y-Werte nicht verschwindet, während im zweiten Fall noch
dazukommt, dass yi" (Y) stets das entgegengesetzte Vorzeichen von
V'(Y) hat.

Fragen wir jetzt nach dem Sinn der Reihe (81), so erkennen wir,
dass sie einfach die Tavlorsche Entwicklung der Umkehrfunktion
Y y (y) V

1 (y) von V f (^0 und ihre Koeffizienten
Be das -yfache der Ableitungen von Y W(y) W (/ (ft)) nach
h sind. Erinnern wir uns des früher ausgesprochenen Satzes über das

Abbrechen einer Potenzreihe, so können wir daher sagen:
Das vorgängig dargelegte Pabnqvistsche Verfahren zur Erlangung

eines Näherungswerts dar Funktion y — f (h) ist identisch mit der rein
oskulierenden Interpolation der Ftmktion Y W(y) W (/ (h)) von
der Stelle h 0 aus mittels des Polynoms r-ten Grades Y 0 (h), ivobei
die gegebene Funktion Y xF(y) die Umkehrfunktion von y y>(Y) ist.

Nach dem zu Beginn dieses Abschnittes gegebenen Satz können
wir das Verfahren auch so deuten, dass die vorgelegte Funktion y — f (h)
von der Stelle h — 0 aus rein oskulierend mittels der Funktion y — cp (h)

rp (0 (h)) interpoliert ivird.
Palmqvist wählt als einfachsten Ansatz einer solchen Funktion

1

y ~ Yh* '

Wo k* eine beliebige Konstante + 0 ist. Das Abbrechen von (81)
nach der ersten Potenz von h bedeutet dann, dass die Interpolationsfunktion

von Y W(y) die lineare ganze, Y y0 + y1 h ist, somit
wird y — f (h) von h 0 aus rein oskulierend interpoliert durch

y cp(h) (yQ + hf y0 (1 + y, h)k*,

und die Gleichungen (64') zur Bestimmung der Konstanten y0, yt
lauten

Mo <p (0) y0> y'o <p' (0) y0 Vifc*-
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Zur Interpolation des Barwertes der lebenslänglichen Leibrente ergibt
sich daher

(82) a'x ax(1- S*"hv'k
\ * Vi

Rein ziffernmässig durchgeführte Prüfungen haben Palmqvisl erwiesen,
dass diese Formel die besten Ergebnisse liefert, wenn 7c* ^—1,5
gewählt wird. Auf den von Poukka bemerkten engen Zusammenhang
zwischen seiner Konstanten k ~ 0,84 und 7c* haben wir schon früher
hingewiesen. Esscher [24] und später unabhängig von ihm und mit
der Präzisierung, dass 7c* nur in bezug auf das Zinsmass konstant sein

muss, Güttinger [25] haben ihn in höchst einfacher Weise formulieren
können. Formel (82) ist die Lösung der durch das Poukkasche
Verhältnis kx (41) gegebenen Differentialgleichung 2. Ordnung

d2 a'r d a'x d2 a,r
CK

'Vi Vi di2 cli
_

x di2

Vi 'Vi 2VA
'

°* 2//c?0*A

zu den Anfangsbedingungen

< «,(*) o«

di \ di

da'x V __
8*+l

di di I).

Aus der mit dieser Differentialgleichung identischen

| d2 ax (dax\2\rvv~hr)j 7/_vv\ =afc-i

folgt nämlich

VA
di d 1 d In {(2 7c—l)f'+yi}

— J/yy ß — — :

a'x di x
(27c — l)i'+y1 cli —(2 7c — 1)

_
l

In a'x In { y, -f (27c — 1) i'} + y0

Vi (ï—i) V
a'x Vo {Pi + (2&—!) »'} 2A_1 y0114-
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f) Die natürlichen Näherungen (Böhmer).

Meissner [2] hat als Abschluss seiner Zusammenstellung der
wichtigsten Arbeiten über das Zinsfussproblem die von Böhmer [46]
definierten n-ten «natürlichen Näherungen» einer analytischen Abhängigkeit

0 (x, y) — 0 zur Lösung des Problems herangezogen. Doch haben
sich keine neuen Formeln ergeben. Die erste dieser Näherungen ist
einfach die Formel für die oskulierende Interpolation mittels der
Geraden und ergibt im besondern Fall des Leibrentenbarwerts ax
die Formel (27) von Sieffernen; die zweite Näherung ist mit der
Interpolationsformel (38) identisch, die für a'x als zu interpolierender
Punktion die erste Formel von Poukka (39) ergibt. Die weitern
Näherungen aber kommen für das Zinsfussproblem schon deshalb praktisch

nicht in Frage, weil sie die Kenntnis der dritten Ableitungen der
Rentenbarwerte und somit der Grössen S® verlangen. Es sei nur
noch vermerkt, dass es funktionentheoretisch-geometrische Gesichtspunkte

waren, die Böhmer zur Einführung dieser Näherungen und
ihrer Bezeichnung als «natürliche» veranlasst haben. Eine Deutung
des Begriffes «natürlich» in dem Sinne, dass mit den natürlichen
Näherungen besonders gute Näherungen zu erzielen seien, wäre daher
verfohlt.

g) Die zweite Formel von Poukka als Interpolationsformel ; eine Formel

von Güttinger.

Nachdem wir von verschiedenen Standpunkten aus die erste

Poukkasche Formel (39) als Interpolationsformel haben interpretieren
können, liegt es nahe, zu fragen, ob auch eine Interpolationsvorschrift
besteht, aus der für den Fall rein oskulierender Interpolation unmittelbar

die zweite Poukkasche Formel

^t+l 7h v
N

m O'i ' iva;+l
(42) ax^ax — cix—

1 + k x+l h v
Nx+i

hervorgeht, in welcher k als eine fest vorgegebene Konstante aufzufassen

ist. Eine solche kann in der Tat konstruiert werden; doch

dürfen wir bei dem starken Eingriff, den wir durch das Konstantsetzen
des Verhältnisses kx (41) in der ersten Poukkaschen Formel vor-
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genommen haben, nicht darüber erstaunt sein, von bisher nicht
verwendeten und etwas künstlich gebildeten Vorstellungen Gebrauch

machen zu müssen. Wir können (42) deuten als Formel der rein osku-

lierenden Interpolation mittels einer der mannigfachen Interpolationsfunktionen

y v(h)=y0+ ?lh
1 + y2h

die die «normalen» Bedingungen

(S3) (p (0) y0, <p (ftj) y1 oder auch

(84) q> (0) y0, <p' (0) y'0

erfüllen, und deren Koeffizienten y0, yv y2 der zusätzlichen
«Grenzbedingung»

(85) lim Yn{hl) ' n{hl) k
Al>0 Yi (hi)

genügen. Gehen wir von den Voraussetzungen (84) aus, so ist in

Y0Y2
(85) die Limesbeziehung nicht nötig, es hat =fc selber zu gelten;

Yi
beim Ausgehen von (83) wäre dagegen diese letztere Bedingung zu

streng. Dies ersehen wir an einer Interpolationsformel, die Güttinger
[26] gegeben hat. Sind die Bentenbarwerte ax (ij und ax (i2) zu den

beiden Zinssätzen und i2 bekannt, und wird zur Abkürzung

i'—i, Ù—i'i A *—r B, A+B 1,
i2—11 %2 i i

aJS2) ax(h) D

gesetzt, so kann die für den Barwert a'x ax (i1) zum Zinssatz i'
durch lineare Interpolation gewonnene erste Annäherung

L Bax (ij 4- A ax {i2) ax (ix) + AD

in einfacher Weise durch das Korrekturglied

D2 D2 D2
0,84 AB — 0,84 A (1 —A) — 0,84 A — 0,84 A2 —L L L
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verbessert und a'x durch

£)2
(86) a'x ~ L — 0,84.4 (1—A) • —

Li

dargestellt werden. Ordnen wir (86), von dieser gedrängten, für den
praktischen Gebrauch aber sehr nützlichen Gestalt abgehend, nach
Potenzen von A,

al(i) + 2 ax(i) AD-j-A2D2 — (0,84.4 — 0,84 A2) D2
d —

ax(h) + ÄD

i) I ax (tj
UD 1 (l + k)D2

1 + —wy
A

aAh)
und ersetzen

AD _ (i'-ij durch C-». C 5#^«» (i'_y,
2 n

so können wir (86) oder

o.(h) + (2--^r) C (%'- ij + (»'- O
(86') < - a'^ _1 H yrr (i' — h)

o«(h)

deuten als Interpolation mittels einer der Funktionen

-/i\ ro+ri^+y»^
?(*) ri ï 'l+y3 h

deren Koeffizienten aus den beiden «normalen» Bedingungen

9>(°) ax(h) vQi) ç>(i2 — ii) «W

der «normalen Zusatzbedingung»



— 278 —

K 117
â"

1 + h
yoYî

und der zusätzlichen «Grenzbedingung»

r nlim ;—— ;——— 2
7o (U> ^2) ' Ys^i' h)

hervorgehen.

Auf ein Weiterverfolgen der gegebenen oder ähnlicher Beziehungen
können wir ruhig verzichten, da dies doch eher auf eine Spielerei
hinauslaufen würde. Wir haben das erste Beispiel nur angeführt,
um den tiefgehenden Unterschied zu zeigen, der zwischen den beiden

Poukkaschen Formeln besteht. Mit dem zweiten Beispiel aber wollten
wir nicht versäumen, auf die sehr nützliche Formel (86) von Güttinger
hinzuweisen. Dass sie unmittelbar auch auf die Barwerte temporärer
Leihrenten und Zeitrenten übertragen werden darf, dürfte aus den

dargelegten Überlegungen hinlänglich hervorgehen. Es lässt sich dies

aber auch aus der Herleitung von (86) nach Güitinger ablesen, wenn

man bedenkt, dass innerhalb der dort nötigen Vernachlässigungen
das Verhältnis kx n (43) ruhig auch konstant 0,84 angenommen werden
darf.

§ 6.

Der «metodo dei quozienti» von Fracht und Vellat.

Als Abschluss unserer Untersuchungen wollen wir noch eine
ausführlichere Betrachtung einem Interpolationsansatz widmen, den die

beiden italienischen Aktuare Frucht und Vellat [27] unter der
Bezeichnung «metodo dei quozienti» in die versicherungsmathematische
Literatur eingeführt haben. Wir hätten zwar die Elemente auch schon

an früherer Stelle passend einflechten können, haben es aber

vorgezogen, den ganzen Fragenkreis im Zusammenhang zur Sprache zu

bringen.
Als Ausgangspunkt setzen wir voraus, es seien von der Funktion

y f(x) die drei Funktionswerte

/ (a:_i), S/o / (xo) > Vi / (xi)

bekannt, die zu den um h äquidistanten Argumenten
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(87 a) X-l — X0 ^ ' x0> Xl= xo + ^

gehören und — dor Grund dieser Einschränkung wird sich später
leicht einsehen lassen — alle gleichzeitig positiv oder negativ sind.
Wollen wir das Verfahren zunächst allein dazu anwenden, die Werte
der vorgelegten Funktion y — f (x) in den äquidistanten Argumentstellen

(87 b) x2 x0 + 2 h, x3 x0 + 3 h, xr x0 + r h

zu interpolieren, so liegt es nahe, die Annahme zu treffen, dass die
Quotienten von je zwei aufeinanderfolgenden interpolierten Worten

(88 a) q2
cp(x2)

4a
<p(x3)

<p(xi) ' <p(xJ

eine arithmetische Folge erster Ordnung

(89a) q2=q0 + 1d, q3 q0 + 3d,

mit dem Anfangsglied q0 und der Differenz d,

Vo Vi

V iXr)

<P (xr-l)

(lr <Zo + rd

(89 b) 3o
V-i

Qi
Vo

d qx
2/o y-1

bilden sollen. In einfachster Weise ergeben sich dann die gesuchten
Werte zu

r r
(90a) / (xr) ^ <p (xr) <p (x0 -j- r/t) Jf Z/o?e TT Z/o (% + Qd) •

e=i 5=i

Für die praktische Anwendung wird man mit Vorteil statt von y0
vom ebonfalls noch vorgegebenen Wert yx ausgehen, man erspart
sich eine Multiplikation und erhält

f(x2) m q2 yx (qx + d)yx

f(x3) -m. q2q3 yx (qx + d) (q2 + 2d) yx
(90 a')

r-1

/(*r)~ïï 2/x Ca i + ed)
p=I

r > 2

19
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Dehnen wir die Definition der Quotienten (88 a) auch auf negative
Indizes aus,

/OQM „
<P(X-1)

- _ VM 9»(®_r + i)
(880) 5-1 — 5-2 n > • • •> 5-r + l — /„ s '

9 (X-2) 9 iX-3) 9 (X-r)

und setzen die Folge (98 a) nach rückwärts fort (r > 0)

(89b) 5-i 5o — d» 5-2 5o — 2d, 5_r f, =q0 — (r — l)d,

so erhalten wir als Ergänzung zu (94 a) für die Interpolation von /(#)
in den Argumenten

(87 c) x_2 x0 — 2 h, x_3 xg — 8 h, x_r x0 — rh

(90 b) /(«_,) «p(x_r) <p(a:0 — rh)

Vo Vo_ 2Ai

TT 5-? TT (5o — 5 <9 TT (5o - 5
Q=0 £=0 £=1

Hinsichtlich der Frage, innerhalb welchon Bereiches die Formeln
(90 a) und 90 b) überhaupt sinnvoll sind, bemerken wir vorläufig

nur, dass zwei Fälle zu unterscheiden sind. Ist d -positiv, so ist die

Interpolation von f(x) für jedes Argument mit positivem Index,

x2, x3, möglich; für ein Argument mit negativem Index —

r > 0, jedoch nur so lange, als 5_r.(1 q0—(r— 1) d noch positiv
bleibt, d. h.

(91, A

ist. Bei negativen d dagegen sind die Verhältnisse gerade entgegengesetzt:

unbeschränkte Interpolationsmöglichkeit von x0 aus
rückwärts, für ein xr x0 + rh mit r > 0 jetzt aber nur so weit, a's

qr q0 -(- r d positiv bleibt, d. h.

<92) '<=** fi[
ist.
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Lässt sich das Argument des gesuchten Funktionswerts nicht in
die durch die Ausgangswerte festgelegte Folge äquidistanter
Argumente einordnen, so versagt die gegebene einfache Darstellung der
interpolierten Funktionswerte, und wir haben explizit auf die der
verwendeten Interpolationsvorschrift zugrunde liegende Interpolationsfunktion

y — <p (x) zurückzugehen. Diese muss offenbar der
Differenzengleichung

(98) v(x + _ 2 + o
q> (x -f- 2 h q> (x -f h) <p (x)

genügen, die aus dem einfachem, die benützte Vorschrift deutlicher
wiedergebenden Differenzenausdruck

(94)
+ 2ft)

_ f(x + h)
^

cp(x -f- h) q>(x)

durch Elimination der von den Anfangsbedingungen

<p (aj.j) =cp(x0 — h) y_v <p (x0) y0, (p (aq) <p (x0 + h) yx

abhängenden Konstanten d hervorgeht, und von der dann (94) das
erste Integral bedeutet.

Wie sich unter Zurückgehen auf die Definitionsgleichung

(95) r(* + l)— */(*) =0

der Eulerschen /"-Funktion leicht nachprüfen lässt, hat diese

Differenzgleichung (93)

(96) <p{x) y0 • yih • / + y2J (x)

zur allgemeinen Lösung; wegen des Eulerschen Ergänzungssatzes

/(*)./( i_«) _A-
sin nz
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können wir diese Punktion auch in der Gestalt

(96') <y* (x)
Yo

• Y i

r + vl

Q*h(x)

schreiben. Dabei bedeuten üh(x) bzw. ü*h(x) vollkommen
willkürliche periodische Funktionen von der Periode h, während y0, yv Y2

bzw. y*0, y*v y*2 Konstante sind, die durch die Anfangsbedingungen
bestimmt werden. Sie ergeben sich in unserm Falle als

» Vi îlo 7
Yi — Yi «

3/o y~i

_ Vi xo
_ h xo * Uo

i
xo ?o

| 7-
y0d h d h y_td h d Ä

Va Vo
Yo

Ä"(Ä) '!r(î
«-Ad-aPA-H:

und führen zu den Darstellungen

(97)
X~Xq

<p{x) — y0d a

X — Xn 11,r[^^+ 1

h y<)à.

r\-Jl7
JJo "

- Qh (x)

y0d h

p j x xo h

<7i

ß»(«)
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rI:"«-
(97') <p*(x) yQ(—d) h~

?/o

y-id
x xo Z/o

h y_td

- Q*h (x)

r
y0 (— $ *

3o

cZ

x — xn iid
ß;* (x) »

wobei für oin unci dieselbe Interpolationsfunktion y tp(x) 99* (a:)

zwischen den zugehörigen willkürlichen Funktionen ßA(a:) und ßA(a;)
die Beziehung

®h(x)

Üh{X)

r\~- x xo do] r( x x0 ql~ + ~ijr\~k~ + ~i

r{l)r{-7
j^o_

d '>

(-d) *

• di
sin — n

d

sin
x Xnv 3i

Ä cZ

3-^0

1) A

<Zo

sin — n
d

x x0 q0
sin I — H —

X~Z0

1) A

besteht.
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Mir die Wahl von Qh (x) bzw. Ü'h(x) ist es wieder nötig«

zwischen den Fällen d > 0 und cl < 0 zu unterscheiden ; der

Ausartung der beiden Fälle in d — 0 eine Bemerkung zu widmen, wird

sich später eine geeignetere Gelegenheit bieten. Ist d > 0, so wählen

wir üh(x) =1 und verwenden (97):

p x X°
_|_ p x~- X°

I
q1

x-*q \ h i/„ d / m*. \ h d
(p(x) y0d ä - r y0d h

p(jl\ r(li
I/o d / \ d

für d< 0, womit dann —d> 0 ist, gehen wir hingegen von (97')

aus und setzen ü*h(x) 1:

'9)
_ Vo rt q°

x-xo \ y_^ d j \ d
'(x) y0\d\ h — — — y01d| » —-

p/xp — x y0 \ x0 x
^

Jfo,
h y_t | d | / \ h

Durch Verwendung der Grundgleichung (95) der /"-Funktion
lässt sich leicht bestätigen, dass für Argumente x, die um Vielfache

von h von x0 abstehen, jede der beiden Formeln (98) und (99) mit dein

Ansatz (90 ajb) identisch ist. Was aber die durch (91) und (92)
gegebenen Schranken für die Anwendbarkeit des «metodo dei quozienti»
anbetrifft, so finden sie ihr Gegenstück und ihre tiefere Begründung
darin, dass die /-Funktion, die im Endlichen nie null wird, nur für
z > 0 einen zusammenhängenden, stetigen Kurvenzwoig besitzt,
während sie in z 0 und allen negativ-ganzzahligen Argumentstellen

unstetig wird. Hierdurch bleiben (98) und (99) als Inter-

polationsfunktionen nur vernünftig, solange —- > 0 bzw.
h d

x —• x0 q0
-{- -7—r > 0 sind, was wir auch in der Gestalt

h
' d

X — Xn Q,
(91') — > _ Ai

n d

wenn d > 0, und



fjß rjß

Wenn d < 0 ist, schreiben können. Bedenken wir nun, dass i) -h
angibt, um welches Vielfache von h x von x0 absteht, so erkennen wir
ln diesen beiden Beziehungen (91') und (92') nichts anderes als (91)
und (92) wieder, nur mit dem Unterschied, dass jetzt ii im Gegensatz
zu r als stetige Veränderliche betrachtet wird.

Fragen wir uns nach der Ursache der Asymmetrie in der Anwendbarkeit

der Formeln (90 a/b) oder (98) und (99), so müssen wir sie
darin erkennen, dass die Bildung der Quotienten q? schon asymmetrisch

ist: stets wird der Funktionswert höhern Arguments zu
demjenigen des um h niedrigem Arguments ins Verhältnis gesetzt. Wir
können daher die bisherigen Entwicklungen zutreffend als den «metodo
dei quozienti» mit «aufsteigender» Quotientenbildung präzisieren, und
es ist dann naheliegend, ihm einen solchen mit «absteigend» gebildeten
Quotienten entgegenzusetzen zu versuchen. Wir haben in diesem Fall

3a
9 {xè ' %

9{xè
(p (x3)

9 («V-i)

~cp (xr)

3-i
9 {x-è

9 (x-i)
' 3-a

9 (X-3)

9 (x-ù
3-r+l

9 (X-r)

9 iX-r+1)

zu definieren, entsprechend (89 b)

1k ~ Ii-1 ~7 ~ ~ _
Do V-1ii — — > 3o — > d — qi 3o —

ih Uo yi yo

festzusetzen und zu verlangen, dass diese Quotienten wiederum eine

arithmetische Folge erster Ordnung bilden:

32 3o + 2d, 33 3o + 33, 3f 3o + rd.
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Damit werden wir zu den interpolierten Funktionswerten

/ (®r) 00 <P (Xr) <P (xo + r h) — — -t—7"
IT?? TT(5o + e3) TT (9i + erf)

(100) c=i P=I P=I

r-l r-l r-l ^
f (x-r)<p (x-r) q>(x0—rh) 2/0 TT <Z? 2/0 ÏÏ (io — ed) y-iir^o"0

P=0 p=l p=l

geführt mit den formelentsprechenden Anwendungsbereichen, wie sie

für (90 a/b) festgestellt worden sind. Indem aber aus

3_üi_ü±=üi(A_J*L\ _!tL
Kl 9« Kl \K-i Ko/ Ki Ml

hervorgeht, dass d das entgegengesetzte Vorzeichen wie d hat, haben

wir durch diese «absteigende» Bildung von Quotienten erreicht, dass

der auf ihnen aufgebaute Metodo dei quozienti gerade da unbeschränktes

Interpolieren grundsätzlich zulässt, wo der auf «aufsteigend» ge'

bildeten Quotienten fussende eine Beschränkung vorsieht, wofür dann

umgekehrt der erstere in der Anwendung beschränkt bleibt, wenn der

letztere unbeschränkte Gültigkeit des Ansatzes vorsieht.
Dieses Ergebnis bestätigt sich auch bei der allgemeinen Behandlung

der dem Ansatz (100) zugrunde liegenden Interpolationsfunktion.
Da die Überlegungen den früher durchgeführten Überlegungen
vollkommen analog verlaufen, können wir uns kurz fassen und nur die

Hauptergebnisse anführen. Jetzt von der Differenzgleichung

<P{X + 2 ft)
_ » <p(x+fy (p(x)

_ o
<p (x + 3 Ii) <p {x + 2 h) <p (x + h)

mit dem ersten Integral

(p (x + h) <p (x)

cp (x 2h) <p (x -f- h)

ausgehend, ist die Interpolationsfunktion q> (x) von der allgemeinen
Gestalt
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(101)

und

<p(x)=yoY\ " r[ — y +r2) • oh(x)

(101') y (x)
YoYi h

r\j+„
Üh (%) ;

die Konstanten ergeben sich zu

Vi ~Y i
0±
Vo

]k
Vi

— d

Y'i
V-

Uod h
%

_ _
?/o xo (Zi

T; 72 ~ Vid T ~ T

Yo

X0

?/o(—d)"»"

r )/

<h
y°dh

1st d >0, so gehen wir jetzt von (101') aus und wählen £?Â(rr) 1:

5x '

r\ä
(102) 9 (a:) ?/0

— a;n <7,

d » r[—- +4
V h d

für (l < 0 dagegen wird unter Berücksichtigung von Qh (x) 1 aus
(101)

r(xo —x h
(103) <p(x)=yQ ^ J~-
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Für (102) ergibt sich als Anwendungsbereich

(104)

für (103)

(105)
x — xn

<

>

%

iL
d

iL
d

welche beiden Bedingungen (91') und (92') formal wieder vollkommen
entsprechen. Indem aber

iL
d

iL
d

iL
d

iL
d

gilt, spiegelt sich in der daraus hervorgehenden inhaltlichen
Verschiedenheit von (104) und (105) gegenüber (91') und (92') nochmals
die Inversion der Anwendungsbereiche der einander entsprechenden
Interpolationsfunktion <p (x) und <p (x), <p* (x) und tp* (x) wieder.
Für diese Paare einander entsprechender Funktionen gelten schliesslich

noch die Verhältnisse

o(x)

'p(x)

*(x)

*(x)

d2

d2

Vi

ILi
Vi

rlJ + ~

r <h

ld

<lo

x — X«

r %

\ « h

d2 lh_

y-i

X-Xq

T".

(2^ h

y-J

r'vT\d\

x0

r iL
|ä[

- Xq

h

p { QL jl. 1
y\X^ ^ T- h

r\-j3i x0

Gehen wir dazu über, die dem «metodo dei quozienti» sinngemäss

entsprechende Formel für die rein oskulierende Interpolation zu
bestimmen, so genügt es, den Grenzübergang h—y 0 an einer einzigen
der gegebenen vier Interpolationsformeln, etwa an (98) zu vollziehen.
Hierbei müssen wir beachten, dass mit h—y0 auch die «Konstante»
d d (h) nach null strebt, und zwar mindestens wie h2, was unmittelbar

aus der für sie noch möglichen Darstellung
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d (h)
Vi ijo Vi y-1 — vi y-t (y-i — 2y<> + yi) — (2/0 — 2/1)2

y0 y-t y0y-t yov-t

y-tW^-Vfi*))'
?/o y-t

Ji2 • ip (x_t, h)
y~t%

hervorgeht., indem nach einem elementaren und bekannten Satz über
den Zusammenhang zwischen Differenzen- und Differentialquotienten

lim [ !U>0 Ä->0l

^2/(®-i) Af(x.
h

wird, sobald nur /" (x) für x x0 existiert und stetig ist. Auf Grund
dieser Erkenntnis und unter Verwendung der Stirlingschen Formel

r (li) uu'Y / 2~n C!'{u),

0
/il (M)

12 m
O<0<1,

9 (xo)
formen wir zunächst in der folgenden Weise um:

!h

-(??*+JLk\ / x — x0 ?/, \ „/*-«•> 1
vi \

[t) e ^ * y°
\~~Jt

" V°d ' C * 1,0

e-Äf-üi-) (»" G)
• /<£>
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1 + J/izlMT u + h (v-Ovfr-uQy?-. L-y
i/o /V ViV-i J \

i + 1. fi + h

IhV-i / J V 2/1?/-! /

e'"{,[2 (A(*"*o) + ,^-ft))} ''{fcs /(x^A)}

(jf (a:)
Von den drei letzten dieser sechs Faktoren von erkennen wir

?/o

unmittelbar, dass sie für h — > 0 nach 1 streben; zur Ermittlung der

Limites der drei andern Faktoren empfiehlt es sich, zuerst die Grenzwerte

für h —y 0 ihrer Logarithmen zu bestimmen. Diese ergeben

sich zu

lim Infi + IlzM? _ um ^ln(1 +^a->o V !Jo / ft—> o \ ?7o

lim "°V AP= {x __ Xo) lim V (_ 1)M ïl (!!±ZJ!ï
h-yo h Q\ Vo / 6 V h'!Jo

Um
!h ~~ V° ^ ^ Xo)

h-y o\ h Ho J Vo

(x — x0) w (x h) \^~ 1 / (x—x„)w(X-i,ty\
lim Inl l+h± 0 HK '' h (x — a;0) hm-In 1 + h± I

A->0 \ ?/!?/-! / A->0« \ yxy.y '

(«-,„) lim y
J. -v na-> o ^ h q \ yx y^i

I.m y <-ir T(———

_ <* - ,„)* lim _ (I_^ j£W_(M)T
A-> 0 Vi y-i IJo \ !Jo /
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*-*o
7i 1 + h

(.x — x0) y (x_i. fe)

?A ;'/-i

\ _ i'i _ i
\ »('('-I.») i ^

: lim
*-> o

x — xn 1 y/j ?/„,

h +
/i21/) (a;,,!, h) ^ (_ i)p-i i / Ä

(a; _ a'o) v (a:-1 'V'
c=i

Vi y-

«,» f lim -1(x-Xa),lEEI
^ \ ' h-y0 VlH-l

Ja; a;0)2 ff (x0) /f (xn) \2j
2 I I/o \ 2/o / J

'

Damit wird aber, wenn in gewohnter Weise i/0 und y"0 die als

vorgegeben zu betrachtenden Werte y'0 — f (x0) und y"0 /" (a;0) der

ersten und zweiten Ableitung von / (x) an der Stelle x — x0 bedeuten,

lim v(®)=//oel««'»^ + ?"-^(S-é)a)l.
A->- 0

Der «metoclo dei quozienti» geht für rein oskulierendes Interpolieren in
dasjenige mittels der Exponentialfunktion

(10G) y <p(x) y0 c(n(®-»o) + rs(a«to)a)= yg(^h^ + hx*)

über.

Dieses Ergebnis befremdet zunächst etwas, denn für jede
(endliche) Spanne h genügt die angegebene Exponentialfunktion der

Differenzengleichung

(107) ç>(a; + 8Â) / q>(x + 2h)

(p (x + 2 h) I ep (x -f 2 h) — (p (x + h) I (p {x + h)

I q>(x + h) I <p (x)

oder

(107') y (x -I- 3 h) cp (x + h) <p(x+ 2 h) <p (x)

[<p {x + 2 h) J2 [(p(x + h) I2
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mit dem ersten Integral

und nicht der Gleichung (98). Der scheinbare Widerspruch klärt sich

aber leicht auf: die beiden Differenzengleichungen 3. Ordnung gehen

mit h->-0 in ein- und dieselbe Differentialgleichung 3. Ordnung

geschrieben werden kann und offensichtlich (106) zum Integral
besitzt. Mittels der bekannten Beziehungen cp (x -(- h) (p (x) + A cp (x),
<p (x + 2 h) cp (x) + 2 A <p (x) -(- A3 cp (x), (p {x + 3 h) tp (x) +
-|~ SA (p (x) -\- SA2(p{x) -\-A3(p{x) können wir nämlich durch eine
elementare Umformung, die wir der Kürze halber auslassen wollen, (93)

und (107) in die Gestalt

(93"a/107"u)
VW — • A (p(x) + 2(4 cp(x))3 — R

^ 0

überführen, wobei für (97) K zu K1 — [<p{x + 2 h) çc (m -)- h) <p(:r)]

und Ii zu

(93" b) Ej A3 <p(x) A <p(x) — 1[A2<p(x)Y<p(x) + \A <p(x)Y A2 <p(x)

(108)

über, die auch in der Gestalt

d3 In <p (x)

dx3

anzusetzen ist, während für (111") K — K2
[<p(x + 2 h) • tp(x + h)]2

<p(x)

und
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(107" b)

R R2 A3 <p(x) [A <p(x)]3 — [A2 <p(x)]3 <p{x) +
3 {A2<p(x) [A <p(x)~]3—-2 [A2 çf(ic)]2 A <p{%) + A3cp{x) [A <p{x)~\2 (p{x)\

§ {A3 q>(x) • Acp(x) • [ç?(aî)]3 — A2(p{x) [A <p(x)]2(p{x)—

— [A2(p{x)]2[cp{x)}2 + [A 9?(.z)]4}

bedeutet. Dividieren wir dann die Differenzengleichungen (93"a/107"a)
durch h3 und lassen anschliessend h —> 0 streben, so geht der

ausgeschriebene Teil in der Tat in das K (ç?(a:))3-fache von (108)

über, während in beiden Fällen die Reste R verschwinden.

Analog dem «metodo dei quozienti» von Frucht und Vellat,
dessen Interpolationsvorschrift die Differenzengleichung (93) ist,
können wir auch von der Differenzengleichung (107) aus eine

«Quotientenmethode» entwickeln, die in gewissem Sinn diese Bezeichnung
mit noch grösserm Recht verdient und gestattet, für Argumente xr,
die einer Argumentenfolge (87 a/b) angehören, die Funktionswerte

y f(xr) aus den drei gegebenen Werten y_x — f(x_{), y0 f(xQ),

yx f(xj) mittels der Funktion (106) cp{x) y0 enx + nxi ohne
Zuhilfenahme einer Logarithmentafel zu interpolieren. Unter
Verwendung der Bezeichnungsweise (88) — man ersieht leicht, dass die

Differenzengleichung (107) sowohl die «aufsteigende» wie die
«absteigende» Quotientenbildung kennzeichnet, und dass es daher
ausreicht, allein die erstere zu betrachten — lautet hiernach unsere
Vorschrift (107)

7r _ _ #2 _ %_ _ _ 7-r + l _
2r-1 " '

<h 7-1
'

3-r

wo q durch

ii Vl! y° Vl V~1

3o Voj y{ I/o

gegeben ist. Multiplizieren wir alle diese Doppelquotienten q, so

erhalten wir
7r 7o 3, giSM.

multiplizieren wir hierauf alle Einzelquotienten qa (q 0,1, r
bzw. q 0, — 1, — 2, ...', — r + 1), so folgen die Endformeln
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(109)

JL w(x) r (r—I) r(r+l)
TH ^ 5Ï31 + 2+-+(-l) q[q~^ <&q—
e=l i/o

TT _ % f/0 îl
'I. 2-fl ^ „1 + 2+...+ (r-l) r(r-l) r(r-l-l)"

e=i 9>(®-r) S
q 2 q 2

r r(r-l) r (r + j-^

f (u) ~ ixr) <p(x0 + r/i) I/o IT 1» I/o 5Î Q~'2~ I/o 5l) <z""2"

e=i

r(r-l) r (r + 1)

Vo y0q 2 y»'i 2

/ (x-r) ~ (®-,) ?> (^o — rh) —

TT Î, 91

e=t

Die Anwendungsmöglichkeit dieser Formel ist grundsätzlich
unbegrenzt, es bestätigt sich hierin noch einmal, dass die Bildung einer

Folge «absteigender» Quotienten q' überflüssig ist.
Veranlassung zur Ansetzung der üifferenzengleichungen 3.

Ordnung (93) und (107) zur Definition von Interpolationsfunktionen hat
der Umstand gegeben, dass — wenigstens für die praktisch vorkommenden

Spannen — die einfachere Differenzengleichung 2. Ordnung

(HO)
<p(x+2h) _

q> {x + h)
o

(p (x + Ii) q> (x)

mit dem ersten Integral

an)
q>(x)

auch nicht annähernd von f(x) erfüllt wird, während dann durch die

getroffenen Erweiterungen in den Voraussetzungen über <p(x) dieses

die Funktion f(x) befriedigend anzunähern vermag. Anstatt nun die

Differenzengleichung (110), die sich als ausgearteter Sonderfall ä 0

bzw. 5 1 der Gleichungen (93) und (107) erweist, in den

durchgeführten Weisen zu erweitern, können wir auch die zu interpolierende
Funktion so zu ändern und in eine Funktion y — F(x) überzuführen
suchen, dass die aus den vorgegebenen Werten y_y — f(x_i), y / (x0),
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111 — f(xi) hervorgehenden Werte Y_, — F (x_t), Y0 —F(x0), Yj
F(x1) von y =F(x) (110) befriedigen, wodurch dann eine

Interpolation von y =F(x) mittels der Lösungsfunktion von (110) statthaft

erscheint. Am einfachsten ist es, f(x) durch eine additive
Konstante c zu «korrigieren», also

F(x) f(x) — c

aus dem Ansatz (110) heraus zu interpolieren; dabei muss c wegen der

Bedingung

Xl _ Zl 2h "~c _ y»~c o
Ko Y-1 Vo —c y~i 0

zu

Vi y-i— yl
2/1 — 2 2/o + 2/-t

gewählt werden l). Indem wir die willkürliche periodische Funktion
üh(x) in der allgemeinen Lösung der Differenzengleichung (114)

vorweg gleich 1 setzen, hat dann, wie man selber leicht nachprüft,
(114) die Funktion

Y <p(x) O.Q* äQ^o) e"- + ** eh + ra (*-*„)

zur Lösung, dabei ist Q die im ersten Integral (111) von (110) enthaltene
Konstante und ergibt sich aus unseren Anfangswerten Y_, y_t — c,

Ko Uo — c> Yl yl — c zu

n _ 2/l i/o
V — '

2/o 2/-i

während a offensichtlich zu a y0 angesetzt werden muss. Zu /(x)
selber wieder zurückkehrend, können wir sagen, dass der dargelegte

') Dass der Nenner in c um ein Erhebliches von 0 abweicht, ist
selbstverständlich. Denn wäre dies nicht der Fall, so würde schon die aus der Differenzen-
Gleichung A2f(x)=0 hervorgehende Parabel 2. Grades als Interpolationsfunktion

taugen und die ganze vorliegende Bemühung sich erübrigen.

20
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Ansatz einfach die Interpolation von. y — f(x) mittels der Inter-
polationsfunktion

(112) y <p (x) y0 + +
y0 + «~yi +

bedeutet. Praktisch wirkt sich das Verfahren, das auch schon von
Frucht und Vellat [27] entwickelt und als «metodo dei quozienti raggua-
gliati)> (Methode der ausgeglichenen Quotienten) bezeichnet worden ist,
so aus: Sei zunächst xr wieder ein Argument der Folge (87), wo r
eine beliebige ganze Zahl bedeuten kann, so erhält man

(118 a)

F{xt) F(x0 + rh) ~<p(x0 + rh) Y0 Q' Y.t Qr+i Y, Q"1,

wo Y0 y0— c, Y_! y_t — c, Yx y1 — c ist, und daraus weiter

(1136) f(xr) =F(x0 + rh) + c~<p(x0 + rh) + c (y0—c)Qr + c

(y~i—c) Qr+1 +c (vi—c) Q"1 +c •

Wie bei unserer « Quotientenmethode» können wir also auch im
vorliegenden Fall im Prinzip ohne Verwendung einer Logarithmentafel
die Werte zu den um ganzzahlige Vielfache von h abstehenden
Argumenten interpolieren. Für ein beliebiges x x0 + & h bleibt formal
die Formel die gleiche,

(113') / (a;) / (a:0 + ê h) F (x0 + # h) + c ~ <p (x0 + ê h) + c

Y0Q* + G (yo — c)Q° + 0.

Qû ist aber jetzt entweder aus ganzzahligen Potenzwerten von Q

geeignet zu interpolieren oder logarithmisch zu berechnen.

Dass, wie Frucht [8] festgestellt hat, beim Übergang zur rein
oskulierenden Interpolation die Formel von Christen (52),
herauskommt, ist nicht erstaunlich, denn (112) ist ja gerade die Interpolationsfunktion,

die dieser Formel zugrunde liegt.
Wie aus den der Originalarbeit [27] beigegebenen Zahlenbeispielen

deutlich hervorgeht, gibt für die Interpolation der Leibrentenbarwerte
der «metodo dei quozienti» bessere Näherungen, als wie sie aus den

gleichen Ausgangsgrössen mittels der gewöhnlichen parabolischen
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Interpolation hervorgehen. Die Autoren des «metodo» haben daher
auch einen analytischen Beweis für diese Feststellung versucht, der
noch von Mazzoni [28] in einigen Punkten ergänzt worden ist. Doch
hat schon Broggi [80] darauf aufmerksam gemacht, dass die gezogenen
Schlüsse nicht stichhaltig sind und das angeführte Verhalten sehr
einfach durch die Feststellung plausibel wird, dass die dem «metodo»

zugrunde liegende Interpolationsfunktion ein ähnlicheres Verhalten
zur gegebenen Funktion zeigt als die Parabel zweiten Grades. Mit
diesem Hinweis wollen wir uns ebenfalls begnügen und darauf
verzichten, nach einem einwandfreien analytischen Beweis zu suchen.

Ein solcher würde doch immer sich auf Feststellungen stützen müssen,
die nur durch erhebliche numerische Rechnungen zu gewinnen wären,
und der dabei zu erbringende Arbeitsaufwand würde in keinem
Verhältnis zum erzielten Ergebnis stehen. Numerische Nachprüfungen
zeigen im übrigen noch, dass die Güte der Annäherungen, die aus den

verschiedenen Quotientenbildungen hervorgehen, für alle von der

gleichen Grössenordnung ist. Es lag uns mit unserer Untersuchung
auch gar nicht daran, die von Frucht und Vellat gemachten Ansätze

so zu erweitern und zu ergänzen, dass bessere Ergebnisse zu erreichen
wären. Wir wollten vielmehr nur zeigen, wie die bei einem genauem
Hinsehen sich aufwerfenden Fragen nach dem möglichen Anwendungsbereich

der Ansätze zu beantworten und zu begründen sind und in
welcher Weise eine Abänderung und Erweiterung der Ansätze möglich

ist.
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Zusammenfassung und Schlusswort.

Wir blicken zurück und fassen die hauptsächlichen Ergebnisse
der zwei getrennte Teile umfassenden Untersuchung zusammen.
Nach einer kurzen Darstellung der Grundlagen zur Berechnung von
Versicherungswerten und der Derivierten der Versicherungswerte
nach den Zinsmassen gaben wir eine gedrängte Zusammenstellung det

nichtigsten Lösungsvorschläge zum Zinsfussproblem bei der Leibrente.

Wohl bestehen schon derartige Zusammenfassungen, und der
Grundgedanke des zur Anwendung gekommenen, äusserst wertvollen
Ordnungsprinzips ist keine vollständige Neuschöpfung. Wir sind uns dieser
beiden Tatsachen bewusst, glauben aber doch, die Ausfüllung einer
Lücke vollzogen zu haben, die sich vor allem dem in der Praxis stehenden

Aktuar nützlich zeigen wird. Er findet hier die Beziehungen von
allem für ihre Anwendung unnötigen Beiwerk der oft nur zufälligen
Herleitung entkleidet und kann dank der befolgten Anordnung ohne

grosses Suchen entscheiden, welche der Formeln ihm bei seiner Kenntnis
an Ausgangswerten grundsätzlich zur Verfügung stehen, oder
umgekehrt, welche Werte bekannt sein müssen, damit eine bestimmte
Formel verwendbar wird. Als Ausdruck für die Güte der mit den
einzelnen Formeln zu erreichenden Darstellung soll eine im Anhang
gegebene Übersicht durchgerechneter Zahlenbeispiele dienen.

Im zweiten und Plauptteil unserer Arbeit, der im dritten Kapitel
seine Darstellung gefunden hat, wandten wir die Theorie der

Interpolation mit einer Veränderlichen allgemein auf den Leibrentenbarwert
als Funktion des Zinsmasses an und deuteten die Lösungen des

Zinsfussproblems, welche Kommutationszahlen enthalten und in der

vorangegangenen Zusammenstellung als vierte Lösungsgruppe bezeichnet
worden sind, als Interpolationsformeln. Im besondern richteten wir
unser Augenmerk auf die Verfahren, die Poukka (zwei Verfahren)
und Palmqvist zur Herleitung geeigneter Lösungen des

Zinsfussproblems entwickelt haben. Wir konnten von ihnen zeigen, und zwar
in weitgehender sinngemässer Verallgemeinerung, dass sie stets durch

rein oskulierende Interpolationen ersetzbar sind, 'welche im allgemeinen
einfacher und natürlicher zur gesuchten Näherungsformel führen als
die genannten Verfahren. Damit haben wir die erste von uns auf-
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geworfene Frage vollständig erledigt: die von Poukka und Palmqvist
entwickelten Verfahren können nicht als besondere Qu,eilen neuer

Näherungen angesehen werden. Als zweite Frage gaben wir vor, zu
entscheiden, ob und wie die für die Leibrentenbarwerte gefundenen
Näherungswerte auch unmittelbar auf andere Versicherungswerte
ausgedehnt werden können. Sie beantwortet sich sehr leicht: die

Ausdehnungsmöglichkeit ist für die Lösungen der dritten und vierten Gruppe
unserer Zusammenstellung ohne weiteres gegeben; an Stelle der

Leibrentenbarwerte und ihrer Derivierten sind die dem bezüglichen
Versicherungswert entsprechenden Werte einzusetzen; eine systematische
Zusammenstellung der Derivierten der Versicherungswerte schickten
wir schon in § 2 unserer Arbeit voraus.

Eine letzte Frage lässt sich noch stellen und ist einer kurzen
Erwähnung wert. Die Darstellung einer Ausscheideordnung durch ein

Ausscheidegesetz kann als Interpolation der Werte der Ordnung mittels
der das Gesetz bestimmenden Funktion aufgefasst werden. Kann daher
das Lösen des Zinsfussproblems unter der Annahme, die Ordnung
gehorche einem bestimmten Ausscheidegesetz, auch als Interpolieren
gedeutet werden, und in welcher Weise hat die Deutung zu erfolgen?
Wir verzichten darauf, auch noch dieser Frage in der vorliegenden
Arbeit nachzugehen.
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Änhang.

Die im folgenden zur Darstellung gelangenden Zahlentabellen
bilden eine Ergänzung zu der in unserer Arbeit — vornehmlich in
deren § 3 — gegebenen Zusammenstellung von Näherungsformeln
zum Zinsfussproblem im Hinblick auf deren praktische Anwendung.
Sie wollen einzig und allein ein Urteil darüber ermöglichen, welche

Grössenordnung die in den einzelnen Näherungsformeln steckenden

Fehler — absolut und relativ in °/00 des vorgelegten Rentenbarwerts —
besitzen. Hierbei sei noch im besondern auf folgende Punkte aufmerksam

gemacht.

1. Im Gegensatz zu Meissner [2] und Hantsch [5], deren
Zahlenmaterial den Barwert der lebenslänglichen Leibrente betrifft und
auf welches nachdrücklich hingewiesen sei, geben wir hier Zahlenwerte
für die in der Praxis der privaten Lebensversicherung viel häufiger
vorkommenden temporären Leibrenten, und zwar nehmen wir die
Barwerte aXi der vorschüssig zahlbaren temporären Leibrenten
zum festen Schlussalter s x •+• n 60 und den Beginnaltern
x 20, 30, 40, 50 (Dauern n — 40, 30, 20, 10). Diese Werteauswahl
reicht vollkommen aus, sie lässt die Grössenordnung der einschlägigen
Fehler auch für andere Alterszusammenstellungen genügend gut
beurteilen.

2. Wir legen unsern Berechnungen die schweizerische
Volkssterbetafel SM 1921—1930 [47] und einen Ausgangszinsfuss von Sy2 %
zugrunde; wo Rentenbarwerte zu noch andern Zinssätzen benötigt
werden, ziehen wir diejenigen der 4- und 4% %igen Verzinsung heran.
Da die von Hantsch und Meissner und den Originalverfassern der
einschlägigen Formeln auf Grund anderer Sterbetafeln erhaltenen Werte
den unsrigen im wesentlichen entsprechen, darf vermutet werden, dass

mit Ausnahme der Formeln, die ganz besondere Bedingungen an die

Ausscheideordnung stellen, die Änderung der Sterbetafel sich auf die

Grössenordnung der Fehler der Näherungsformeln nicht auswirken
wird. Indem wir dann die Rentenbarwerte zu 3 % und 2% %
Verzinsung berechnen, gehen unsere Rechnungen in der Richtung, welche

der jüngst vergangenen und noch gegenwärtigen Wirtschaftslage
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(sinkende Zinssätze) entspricht. Da die Eentenbarwerte aber für
kleine Zinssätze sich am stärksten ändern, sind unsere Fehlerwerte
als eher ungünstig zu bewerten und können daher auch gut als obere

Fehlerschranken aufgefasst werden.

3. Der heutigen Tendenz folgend, die Rentenbarwerte mit 4

Dezimalstellen anzugeben, haben auch wir (neuberechnete) Rentenbarwerte

mit 4 Dezimalstellen verwendet, was bei der Beurteilung der
Fehlergrössen bei Verwendung anderstelliger Rentenbarwerte gebührend zu
beachten ist.

4. Unter dem positiv oder negativ zu nehmenden absoluten Fehler
verstehen wir die Abweichung des Näherungswerts vom richtigen
Wert, d. h. mit andern Worten die Korrektur, die am Näherungswert
anzubringen ist, damit sich der richtige Wert ergibt.

5. Wir berücksichtigen die folgenden Formeln: (14) (Borch),
(15) (Weber), (16) (Lenzi; in unserm Fall liegt Extrapolation vor),
(27) (Steffensen), (80) (van Dorsten), (40) (Poukka I), (42) (Poukka II,
kx n

konstant 0,84) (44) (Poukka mit den Werten (43) für
kx n von Hantsch), (81) (Palmqvist), (50) (Palmqvist mit
abgestuften Werten (43) für kx n1)), (67) (Frucht), (68) (Frucht; il =0,04,
i2 0,035), (100) (Metodo dei quozienti, «absteigend» gebildete
Quotienten).

*) Hierbei war zu beachten, dass beim vorschüssigen Rentenbarwert die im
Nenner von (40) zu verwendenden Hilfswerte nicht mehr kx +1, n waren, sondern als

Nx — Nx+n jkx+Ln-i • Tf tt— anzusetzen sind.
Nx+l—Nx+n



Übergang zu i' 0,025

X
(14) (Borch) (15) (Weber) (16) (Lenzi) (27) (Steffensen)

abs. F. rel. F. (°/00) abs. F. rel. F. (%0) abs. F. rel. F. (%0) abs. F. rel. F. (<y00)

20
30
40
50

+ 0,0170
+ 0,0074
+ 0,0022
+ 0,0002

0,72
0,38
0,15
0,02

— 0,0482
— 0,0294
— 0,0146
— 0,0042

2,04
1,50
1,00
0,50

— 0,0208
— 0,0129
— 0,0027
— 0,0004

0,88
0,66
0,18
0,05

4- 0,3472
+ 0,1834
4- 0,0687
4- 0,0111

14,71
9.32
4,69
1.33

X
(30) (van Dorsten) (40) (Poukka I) (42) (Poukka II) (43) (Poukka, verbessert

nach Hantsch)

abs. F. rel. F. (%0) abs. F. rel. F. (%0) abs. F. rel. F. (%0) abs. F. rel. F. (»/od)

20
30
40
50

+ 0,0310
+ 0,0131
4- 0,0038
+ 0.0003

1,31
0,67
0,26
0,04

— 0,0101
— 0,0034
— 0,0005
— 0,0001

0,43
0,17
0,03
0,01

— 0,0202
— 0,0117
— 0,0032
+ 0,0003

0,86
0,59
0,22
0,04

— 0,0107
— 0,0041
— 0,0006
— 0,0001

0,45
0.21
0,04
0,01

X
(31) (Palmqvist) (50) (Palmqvist, ver¬

bessert nach Hantsch) (67) (Frucht) (63) (Frucht)

abs. F. rel. F. (o/00) abs. F. rel. F. (%„) abs. F. rel. F. (%„) abs. F. rel. F. ("/a,)

20
30
40
50

— 0,0135
— 0,0087
— 0,0022
+ 0,0004

0,57
0,44
0,16
0,05

— 0,0072
— 0,0026
— 0,0003
— 0,0001

0,31
0,13
0,02
0,01

— 0,0142
— 0,0093
— 0,0026
+ 0,0003

0,60
0,47
0,18
0,04

— 0,0135
— 0,0040
— 0.0007
— 0,0003

0,57
0,20
0,05
0,04

X

(100)
(metodo dei quozienti) Genaue Werte

i

abs. F. rel. F. (%„)

20
30
4°

\ 50

+ 0,0121 0,51
+ 0,0034 0,17
4- 0,0007 0,05
— 0,0005 \ 0,06

23,6120
19,6867
14,6363

8,3614



Ubergang zu i' 0,03

X
(14) (Borch) (15) (Weber) (16) (Lenzi) (27) (Steffensen)

abs. P. rel. F. (%„) abs. F. rel. F. P/o,) abs. F. rel. F. P/oo) abs. F. rel. F. (%,,)

20
30
40
50

4- 0,0096
+ 0,0041
+ 0,0014
+ 0,0001

0,44
0,22
0,10
0,01

— 0,0213
— 0,0135
— 0,0068
— 0,0021

0,97
0,73
0,48
0,26

— 0,0057
— 0,0033
— 0,0007
— 0,0002

0,26
0,15
0,05
0,02

+ 0,0826
+ 0,0444
+ 0,0169
+ 0,0026

3,76
2,39
1,20
0,32

X
(30) (van Dorsten) (40) (Poukka I) (42) (Poukka II) (43) (Poukka, verbessert

nach Hantsch)

abs. P. rel. F. (%0) abs. F. rel. F. p/0,) abs. F. rel. F. p/oo) abs. F. rel. F. p/M)

20
30
40
50

4- 0,0035
+ 0,0016
+ 0,0007
— 0,0001

0,16
0,09
0,05
0,01

— 0,0012
— 0,0004
+ 0,0002
— 0,0001

0,05
0,02
0,01
0,01

— 0,0036
— 0,0023
— 0,0004

0.0000

0,16
0,12
0,03
0

— 0,0014
— 0,0006
+ 0,0002
— 0,0001

0,06
0,03
0,01
0,01

X
(31) (Palmqvist) (50) (Palmqvist, ver¬

bessert nach Hantsch) (67) (Frucht) (63) (Frucht)

abs. F. rel. F. P/oo) abs. F. rel. F. P/oo) abs. F. rel. F. p/oo) abs. F. rel. F. p/,,,,)

20
30
40
50

— 0,0026
— 0,0018
— 0,0002
+ 0,0000

0,12
0,10
0,01
0

— 0,0012
— 0,0004
+ 0,0002
— 0,0001

0,05
0,02
0,01
0,01

— 0,0029
— 0,0020
— 0,0004

0,0000

0,13
0,11
0,03
0

— 0,0022
— 0,0005
+ 0,0001

0,0000

0,10
0,03
0,01
0

(100)
(metodo dei quozienti)

abs. F. rel. F. P/M)

20
30
40
50

- 0,0027
-f 0,0006
+ 0,0003
— 0,0003

0,12
0,03
0,03
0,04

21,9410
18,5848
14,0645

8,1951
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