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Das Zinsfussproblem
der Lebensversicherungsrechnung
als Interpolationsaufgabe.

Von Ernst Fischer, Basel.

Einleitung.

Die versicherungstechnischen Grundgrossen sind in der Personen-
versicherung allgemein Funktionen des Rechnungszinsfusses und der
Voraussetzungen, nach denen der Eintritt des versicherten Ereignisses
Stattfindet oder ausbleibt. Die numerische Berechnung dieser Grund-
grossen lisst sich rationell gestalten, wenn, dem Vorschlag von
Tetens 1) folgend, Systeme geeigneter Hilfsgrossen, sogenannte Kom-
Mmutationswerte, eingefithrt werden. Diese sind immer von beiden
Rechnungsvomussetzungen — Zinsfuss, Annahmen {iber Kintritt oder
Nichteintritt des versicherten Ereignisses — abhiingig; daher bedingt
®ine auch nur partielle Anderung in den Rechnungsvoraussetzungen
Stets die vollstiindige Neuberechnung des ganzen Systems der zu-
gehérigon Kommutationswerte.

Die erhebliche Rechenarbeit der Neuaufstellung der Kommuta-
tiongwerte lohnt sich nun nicht, will man bloss einige Finzelwerte
bei geiindertem Rechnungszinsfuss und gleichgebliebenen demo-
8raphischen Annahmen kennen. Man wird in diesem Fall vielmehr
darnach trachten, die Versicherungswerte zum neuen Zinsfuss un-
mittelbar als Funktion der Zinsfussinderung und der zum alten Zins-
fuss berechneten Versicherungswerte und Kommutationszahlen aus- -
Zudriicken. Diese Aufgabe pflegt man als Zinstussproblem zu be-
zeichnen. Fs hat, teilweise auch mit etwas andern Annahmen iiber
die als hekannt und verinderlich vorauszusetzenden Grossen und teil-

Weise auch mit anderer Zielsetzung, in der Literatur reiche Beachtung
\‘-‘——4-—

) Johann Nikolaus Tetens (1736—1807), Einfithrung der diskontierten
Znhlen (Kolumnarmethode) 1785/86, nach Brawun [30].
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gefunden. Zusammenfagsend unterrichten dariiber die sehr schonen
Arbeiten von Christen [1] und Meissner [2]. Wihrend in diesen beiden
Darstellungen die Loésungsvorschlige der verschiedenen Autoren im
wesentlichen in zeitlicher Reihenfolge einzeln und meist ohne weitere
gegenseitige Bezugnahme aufeinander dargelegt sind, hat Frucht [3]
mit Frfolg den bedeutungsvollen Versuch unternommen, Gruppen
verwandter Losungsmethoden zu bilden, deren Gemeinsamkeit z0
kennzeichnen und Zusammenhinge aufzusuchen, die nicht nur
zwischen einzelnen Losungen, sondern auch zwischen Gruppen von
Losungen bestehen. Dieses Vorgehen weiter auszubauen und die von
Frucht gewonnenen Erkenntnisse zu vertiefen und weiter zu kléren,
ist das Ziel der vorliegenden Arbeit. Dabei lisst sich ein Zusammen-
fassen der wichtigsten Literatur zum Zinsfussproblem nicht ganz um-
gehen; um aber eine Wiederholung der Darstellungen von Christen
und Meissner moglichst zu vermeiden, sehen wir {iberall da, wo €8
nicht fiir unsere spitern Betrachtungen von unbedingtem Wert ist,
grundsitzlich davon ab, den Lésungen ihre Begriindung beizugeben.
Dagegen wollen wir die Gelegenheit beniitzen, die Kenntnis von
einigen, in den genannten Darstellungen von Christen und Meissne?
noch nicht gegebenen, neuern und beachtenswerten Beitrigen zum
Zinsfussproblem zu vermitteln.

Die in der Literatur bekannten Ldsungen des Zinsfussproblems
beschrinken sich grosstenteils auf den Leibrentenbarwert, da sich
alle weitern Versicherungswerte auf ihn zuriickfithren lassen. Wir
werden uns in unsern Betrachtungen diesem bewihrten Vorgehen
anschliessen; immerhin suchen wir die grundsétzlichen Uberlegungen
s0 allgemein wie moglich durchzufithren. Denn so lisst sich beildufig
erkennen, einmal wie weit sinngemaésses Abéindern und Verallgemeinern
der verschiedenen bekannten Losungsmethoden noch zu neuen, brauch-
baren Verfahren fiir den Leibrentenbarwert fithrt, und weiter, ob
sich nicht bestimmte Ergebnisse auch auf die andern versicherungs-
technischen Grundgrossen, wie z. B. auf Priimien, Reserven usw.,
itbertragen lassen. Hs sei schon hier festgestellt, dass dies in der Tab
moglich ist und die Kenntnis der Ableitungen der Versicherungs-
werte nach den Zinsmassen eine erhebliche Rolle spielt.
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Den Lésungen, wie sie von den verschiedenen Autoren gegeben
Worden sind, liegen nicht immer die gleichen Voraussetzungen iiber
die Darstellung der Versicherungswerte und die Bemessung des Zinses
Zugrunde. Wir schicken daher zweckméssigerweise unsern Aus-
fiihrungen in einem ersten Kapitel eine knapp gehaltene, allgemeine
D&rstellung der Berechnung der Versicherungswerte voraus und
Schliessen ihr gleich noch eine Zusammenstellung der Ableitungen der
Versicherungswerte nach den Zinsmassen an. Als zweites Kapitel
folgt hierauf eine Besprechung der verschiedenen bekannten Liosungen
des Zinsfussproblems. Im dritten Kapitel endlich wenden wir uns
der eigentlichen Hauptaufgabe zu, nimlich das Zinsfussproblem in
der Auffassung als Interpolationsaufgabe zu behandeln.



1. Kapitel.

§ 1.
Die Grundlagen zur Berechnung von Versicherungswerten.

a) Die Zinsmasse.

Als effektiven Zinssatz bezeichnet man den Zins, den das Kapital
«1» in der Zeiteinheit — in der Regel 1 Jahr — triigt; er sei mib ¢
bezeichnet. In die Rechnungen geht meistens nicht 4, sondern eine
wohlbestimmte Funktion von % ein, ndmlich der Aufzinsungsfaktor

r() =r=1+1,

der Diskontierungsfaktor

oder die Zinsintensitit
0(1) =0 =In(l41), mit 2= g ==

die dem nominellen Zinssatz fiir die Zeiteinheit bei kontinuierlicher
Verzinsung gleichwertig ist und bisweilen auch logarithmischer Diskont
genannt wird.

In allen fiir die Versicherungsrechnung praktisch in Betracht
fallenden Wertebereichen sind die Funktionen (i), » (i), &(:) mit
und auch unter sich eindeutig umkehrbar; folglich kann jede von
ihnen mit gleichem Recht neben oder statt + als unabhiingige Zins-
variable angesehen und verwendet werden. TIhre geschickte Wahl
kann auf die Rechnungen oft einen erheblich vereinfachenden Kin-
fluss ausiiben.

Lediglich der Vollstindigkeit halber sei bemerkt, dass die ver-
sicherungstechnischen Rechnungen immer zusammengesetzte Ver-
zinsung voraussetzen, und dass nur durch eine Abmachung be-
stimmt werden kann, wie der Zins fiir einen Zeitraum zu bemessen
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ist, der kein ganzzahliges Vielfaches der Zeiteinheit darstellt. Als
Solche ist mathematisch die verniinftigste, die Aufzinsungsformel

K, = Kor' = Ky (1 + 1) = K, ¢

mit J{, = Kapital im Zeitpunkt ¢t =0, K, = Kapital im Zeitpunkt
t =t nicht nur fiir positive oder negative ganze, sondern fiir jeden
Teellen (fiir theoretische Zwecke gegebenenfalls auch komplexen) Wert ¢
gelten zu lassen.

b) Diskontinuierliche und kontinuierliche Betrachtungsweise.

Die mathematische Darstellung versicherungswirtschaftlicher Vor-
giinge ist immer nach zwei Betrachtungsweisen moglich. Sie unter-
Scheiden sich grundsiitzlich schon in der Festsetzung, die die Ver-
dnderungen in den beteiligten Personengesamtheiten mit den Zah-
lungen von Leistung und Gegenleistung verkniiptt.

Die diskontinwierliche Methode geht von den rechnungsmiissigen
Bestandesiinderungen aus, die jeweils nach Ablauf eines festen end-

: 1
lichen Intervalls, allgemein — Jahr (wo m eine beliebige natiirliche
m

Zahl ist), eingetreten sind. Damit diese Annahme eine vollstindig
exakte Rechnung aufzubauen gestattet, ist itber die Zahlungen fest-

f o Bt B N T
zulegen, dags sie nicht in kiirzern als je — -jihrigen Abstinden er-
m

folgen. Die Versicherungswerte sind dann durch Summenbildungen
zu erhalten oder setzen sich aus solchen zusammen.

Im allgemeinen wird das statistische Beobachtungsmaterial auf
ewmjihrige Wahrscheinlichkeiten ausgewertet, und ihr Veranschau-
lichungsmittel, die Ausscheideordnungen, schreiten nach einjihrigen
Intervallen fort. Aus diesen praktisch vorliegenden Rechnungsgrund-
lagen lassen sich daher die Versicherungswerte nur bei Voraus-
setzung gjdhrlicher Zahlungsweise mathematisch vollstindig exakt
geben. Will man die Rechnung auf wnterjihriger (meist vierteljihr-
licher oder monatlicher) Zahlungsweise aufbauen, so reichen fiir die
praktischen Bediirfnisse die Ndiherungen vollstindig aus, die sich
durch geeignete Annahmen iiber den Verlauf der Belastung und Ent-
lastung im jihrlichen Intervall und durch Anwendung besonderer
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Verfahren aus den Werten der jdhrlichen Zahlungsweise gewinnel
lassen. Ohne es immer zu wiederholen, verstehen wir unter diskon-
tinuierlicher Rechnungsweise fiir unsere Aufgabe grundséitzlich immer
Zahlung in jéhrlichen Abstinden auf Grund der in jihrlichen Inter-
vallen erfolgten Anderungen in den Personengesamtheiten.

Als Zinsmasse haben in der Literatur alle drei, v, = und § Eingang
gefunden und weisen gleichermassen Vorziige und Nachteile aul.
Wir werden, wo es im folgenden nétig und wiinschenswert ist, stets
alle Masse diskuticren und auf die Unterschiede hinweisen, die bel
Verwendung verschiedener dieser Masszahlen erwachsen.

Ahnlich wie bei der Anwendung der Mathematik auf I'ragen der
Naturwissenschaften ist es auch in der Versicherungsrechnung metho-
disch oft von Vorteil, Vorginge im Infinitesimalen zu betrachten und
in unendlich kleinen Abstiinden erfolgende Zahlungen bei kontinuter-
Lich sich dndernden Personengesamtheiten anzunehmen. Die Ordnungen
setzt man dann mit Vorteil gerade als analytische Funktionen voraus.
Doch will das nicht etwa heissen, dass diese Ordnungen durch einen
geschlossenen mathematischen Ausdruck, ein «Ausscheidegesetz?
explizit dargestellt sein miissen; mit den Methoden der numerischen
Differentiation und Integration lassen sich, wenn notig, die durch die
kontinwierliche Methode dargestellten Versicherungswerte geniigend
genau aus den einjihrigen Wahrscheinlichkeiten und den aus ihnen
hervorgehenden diskontinuierlich gerechneten Werten direkt be-
rechnen. Der Wert des Ansatzes liegt im Methodischen; die an Stelle
der Summen der diskontinuierlichen Rechnungsweise tretenden Inte-
grale lagsen sich meist einfacher und tibersichtlicher umformen. Die
Verzinsungsdauer ist dann auch eine stetige Verinderliche; bestes
Zinsmass ist die Zinsintensitit und wird in der Literatur dann auch
allein verwendet.

¢) Die Kommutationszahlen,

Durch die Einfithrung der Kommutationszahlen wird die nume-
rische Berechnung der Versicherungswerte wesentlich erleichtert und
die dussere Ubersichtlichkeit der versicherungsmathematischen For-
meln stark erhoht, dieses allerdings nur auf Kosten einer Verwischung
ihres innern Gehalts. Mit Riicksicht auf die nicht einheitlich gehand-
habte Bezeichnungsweise durch Poukka, Christen, Meissner, Hantsch



W a. soll nachfolgend das von uns verwendete System festgesetzt

werden.
Ausgehend von der diskontierten Zahl der Lebenden
D =] =e1,  wird definiert

diskontinuierliche kontinulerliche
Betrachtungsweise
w;‘z 3
'(k Cr{h— —-_—' £ : k__
S — Z St S = / k0 dp 1)
(=0 0
. ‘4’%"3 oo
it o - . :
b SL) = N, = Z‘ Da:+i *S(zo) = Nz = _/Ddet
(=0 0
W w—a & .
v(1 t \ y ol o "0 Y v
t=0 t=0

Die «héhern Summen» der diskontierten Zahlen lassen sich auch
durch die Zahlen D, selber darstellen; es gilt 2)

o _ N[t N[t
Q) ‘Si)=2,< r )D:H-t:Z( r )D:HJ
t=0 t=0 /
(t) alr) i D
"‘) bz = ;!— -’u“+ldt'
0

d) Ausscheidegesetze.

Zur Entlastung der spitern Darlegungen sollen an dieser Stelle
Noch einige allgemeine Bemerkungen folgen iiber die rsetzung der

1) s mutet vielleicht etwas sonderbar an, dass wir bei der diskontinuierlichen
Reohnungsweise mit einer endlichen Zahl als oberer Summationsgrenze rechnen,
Im Integral der kontinuierlichen Rechnungsweise dagegen o als Grenze einsetzen.
Wir tun dies aus rein opportunistischen Griinden: wihrend im ersten Fall es
Praktisch wertlos ist, die Untersuchungen durch Einfithrung unendlicher Reihen
Zu erschweren, sind im zweiten Fall die uneigentlichen Integrale oft besser zu
handhaben; dabei liisst sich ja jedes endliche Integral als uneigentliches schreiben.

%) Hinsichtlich des Beweises vgl. fiir die erste der beiden Formeln Poukla (4]
und Hantsch [5], tiir die zweite Berger [81] und Meissner [2]. -
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allgemeinen Ausscheideordnungen durch ein formelmissiges Aus-
scheide«gesetz», d. h. durch einen geschlossenen analytischen Ausdruck,
der fiir alle in Betracht fallenden Werte des Altersarguments z oder
des Zeitarguments ¢ den funktionellen Zusammenhang zwischen diesem
und der zugehérigen Bestandesgrosse herstellt. Die Kennzeichnung
einer Ordnung durch eine wenigstens niherungsweise zutreffende
Gesetzmiissigkeit befriedigt nicht nur theoretische Interessen, indem
erst in diesem Fall die Veréinderlichkeit einer Personengesamtheit
vollstiindig und elegant mathematisiert erscheint, sondern kommb
auch bestimmten praktischen Bediirfnissen entgegen. Sie liefert
nimlich Anhaltspunkte fiir eine geeignete Ausgleichung der aus der
Statistik hervorgegangenen rohen Werte. Im weitern bietet die An-
nahme eines Ausscheidegesetzes gerade der Behandlung des Zinsfuss-
problems neue Moglichkeiten — Lisungen Blaschke-Gram —, und
endlich eréffnet sich die Aussicht, einen Versicherungswert ohne Zu-
hilfenahme von Kommutationsgrossen direkt als Funktion der ihn
kennzeichnenden Grossen (Alter, Dauer, Aufschubzeit usw.), des
Rechnungszingsatzes und der Parameter des Ausscheidegesetzes dar-
stellen zu kénnen. Fiir die numerische Rechnung kann sich die Fiktion
allerdings nicht so iiberzeugend auswirken, wie man vielleicht zuerst
erwarten mag, denn nur fiir die einfachsten Ausscheidegesetze lassen
sich die einen Versicherungswert darstellenden endlichen (je nachdem
auch unendlichen) Reihen und Integrale durch eine Summenfunktion
ersetzen beziehungsweise mittels der elementaren und bekanntesten
einfachen transzendenten Funktionen in geschlossener Form inte-
grieren.

Als Beispiele derartiger Ausscheidegesetze wollen wir drei an-
fithren:

1. Das aus der einfachsten Annahme iiber die Sterbeintensitit,
nimlich dass sie konstant sei, entspringende Gesetz

lL,=Fk-s"

(0 < s < 1), das von Dormoy [38] der Aufstellung der Gesetze von
Gompertz und Makeham natiirlich nur als einfiihrendes Beispiel vor-
ausgeschickt wurde und nun gewohnlich wenig gliicklich seinen

Namen trigt.
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2, Das Gesetz von Gompertz-Makeham

Uber seine Bedeutung fiir die versicherungstechnische Praxis ist
kaum eine Bemerkung nétig; hinsichtlich der positiven Parameter c,
$ und ¢ sei erinnert, dass ¢ > 1 ist, withrend s und g <1 sind.

3. Das Gesetz von Achard

L, =1, (0—x)",

Wo  das Schlussalter der Tafel bedeutet (I, =0, I, > 0) und
w— gz als Lebensergéinzung bezeichnet wird. Es ist die Verallgemeine-
rung der alten Hypothese von Movre, die in ihm als Spezialfall m = 1
enthalten ist, und von Achard [7] gelegentlich einer eleganten Ldsung
des Zinsfussproblems am Barwert der kontinuierlichen, lebensling-
lichen Leibrente in die Literatur eingefiihrt worden.

Die Darstellung der Leibrentenbarwerte als direkte Funktion des
Eintrittsalters z, der Dauer n, des Zinsmasses und der Parameter
des Ausscheidegesetzes fiithrt zu den folgenden Ergebnissen:

1. Gleichgiiltig, um welche Art von Leibrente es sich handelt,
18t bei Zugrundelegung des Ausscheidegesetzes von Dormoy der
Rentenbarwert unabhingig vom Alter und gleich dem Barwert der
entsprechenden Zeitrente, berechnet mit der Zinsintensitiit * = d + ,
d. h. mit dem Diskontierungsfaktor v* = vs, wo s und damit u =
— In s = konstant die Parameter des Ausscheidegesetzes bedeuten.

2. Folgt die Ausscheideordnung dem Gesetz von Makeham, so
Iniisgsen wir uns auf die Darstellung kontinuierlich gerechneter Leib-
Yentenbarwerte beschrinken. Der Barwert der lebenslinglichen Rente

oo

a :fe"” 1“’-ﬂdﬁ
z lx

0
lisst gich dann durch die Formel

(8) - ® onm
o Molme U7
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geben 1); dabei sind A und ~ mit den Ausgangsgréssen durch die Aus-
driicke
0—lIns

A=—¢c"lng, h=—
Inc

verkniipft, und @Q(A,h) bedeutet die unvollstindige I-Funktion
Q(A,h) = I/'u"‘le““ du. Dank der verdienstvollen Berechnung und

Tabellierung der Funktion ¢* 1@ (4,h) fiir die in der versicherungs:
technischen Praxis gebriuchlichen Werte durch Thalmann [34] ist
(3) nicht nur theoretisch interessant, sondern lisst auch praktisch
mit wenig Miihe einen gesuchten Rentenbarwert berechnen.

Auch bei der Achardschen Hypothese miissen wir ung mit der
kontinuierlichen Rechnungsweise bescheiden. Durch einige einfache
Substitutionen 2) lisst sich der Barwert der temporiren Rente @,z

durch das Integral
h

— 1
G = Sy /t’"e‘dt h =6 (w—x)

h-6n

darstellen, das in geschlossener Form ausgewertet werden kann. Iis
ist nimlich (durch wiederholte partielle Integration) unbestimmb

integriert
ftm tdt_e Y 1)::,#[( )tm,cu:

,u—O

1) Fiir den Beweis vgl. etwa Friedli [33], wo auch die Originalliteratur genannt
ist. Ersetzt man im Integral fiir @; die obere Grenze = durch den endlichen Wert 7
so ergibt sich leicht als Ausdruck fiir den Barwert @] der temporiren Rente

ww = s QB —0 @B},

wobel z = A - ¢? zu setzen ist. Fiir diesen Wert @) kann man dann auch

73
] = ),h—elng {P(e,h)— P (4,b)

schreiben, wo

A
PALh)=TH)—Q(Ah) = f wh-1 g di  ist.
0

2) Man vgl. hierzu etwa Christen [1].
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Woraus m A
A D=1 m [mey (B O1) ]
zn] = Sh™ o e !“) l 8:57:

4 n m-u
m 2 N (1 — A_—)
1 m w—2

—_ \ - o m—ie 14 = e X
Shm Z‘ ( 1) M- (:u,)h ‘ ecﬁ-n J

=0

folgt. Setzt man die Dauer n der Rente der Lebenserginzung w—a
gleich, so erhilt man den Barwert der lebenslinglichen Rente @,
dabei ist, wie auch schon aus der Integraldarstellung hervorgeht,

bemerkenswert, dass dieser Barwert das Produkt von - - mit einer
Funktion F'(h) ist, die nur von h = (w— ) d abhiingt,
, "m\)
m L.
1 >‘ﬂ 3 ¢ 3 1
o == . e
) -J( I ehJ
=0
§ 2.

Die Ableitungen der Versicherungswerte
nach den Zinsmassen.

a) Rentenbarwerte.

Wir geben zuniichst die Derivierten (Ableitungen) des Barwerts
@, der diskontinuierlich lebenslinglich nachschiissig zahlbaren Leib-
Yénte «1» an; eine besondere Herleitung eriibrigt sich, da die Formeln
sich aus einem spiiter zu behandelnden allgemeinern Fall durch

Spezialisieren ohne weiteres ergeben 1).
ey

1) Es sei noch daran erinnert, dass schon James Meikle [8] die Ableitung des
diskontinuierlichen Rentenbarwerts nach v beniitzte; die Ableitung nach ¢ diirfte
“Uerst, bei van Dorsten [9] stehen, einen ausgefithrten, bei Hantsch [5] wieder ab-
Redruckten Beweis hat aber erst Poukka [4] gegeben. Die Ableitung nach § hat
Berger (6] in die Literatur eingefiihrt. Fiir den kontinwierlichen Rentenbarwert
hat chentfalls Berger [31] und Meissner [2] die Ableitung aufgestellt, Endlich sei
Noch vermerkt, dass Wyss [10] durch einen interessanten Umformungsprozess
ohne Differentiationen die Taylorreihen von az und @ nach § hergeleitet hat,

15



dta, 1 1%
dv" v D,
T ( pyryryr S
(5) dv D,
th])a:-}-l
d"a, fyr =
gy — D D,

Aus der bekannten Beziehung a, = a, -}- 1 folgert man sofort, dass (5)
aunch die Ableitungen des Barwerts der lebenslinglich vorschiissig
zahlbaren Leibrente «1» darstellt.

Wir gehen jetzt zum Barwert der um n Jahre aufgeschobenen
Rente iiber und bestimmen zunichst die Derivierte von n| G nach v-
fis wird

&, a, d 1R LN
L = vl = 1) (tr o' b
dv do" 1, e be Sty
. 1 7-' , 1 w_;d‘: /t) gl — l 1-' ]L E-:m Jt D
— " ! ! (1_’ R - ‘ '[)_j (7' a1
%ot N/ Tt=nt1
R DS R R A
AR ( r ) e
T 4=0 '

Fiir die weitere Umformung miissen wir getrennte Wege einschlagen,
je nachdem »<<n oder r>n ist. Im ersten I'all miissen wir auf die
Hormel
r ; \ ;
(6) , Z n—o\(t+e\ [(ni+t+1
r—go 0 r

0=0 =

zuritckgreifen, die gerade unter der Annahme r <n gilt t). Wir er
halten damit zunichst

1) Die Formel (6) liisst sich am einfachsten in der folgenden Weise gewinnen-
Wir multiplizieren die beiden Reihen.



— 217 —

&, a, 11 S — o O t+o
— T =yl Z‘ B ) Z Dyt
dv v Dx r—e t=0 ¢

0
<

1es . . .
Fiy r >n + 1 hingegen wird unmittelbar

w-r-n-1 , w-a-n-1
t+n-+41 Y [t+n-F1
Z ( r )Dx-m-H-H - Z ( r Dypnpir =

t=0 t =r-n-1

w—-r-r

_Z(”")

Mittels unserer Bezichung (1) ergibt sich dann sofort

n-—p gle) <
) v,- [) Z(T "O) et TSN
d . a
(Ta) e B
v’ 1,85
— ! L gt 8
oD, -

Ebentalls unter Beniitzung von (6) wird die Derivierte nach 1

o0

T SR . —n—l—) " N m—r+4vY
(I—w)yn+ Z‘ (—1) ) u ( ’ ur
und . =0
—t—1 4o
(1—u) Z‘ _ 1)u ) WLt = Z ( _‘Z,”) e
=0 =0

Bliedweise aus und verglemhﬂn die Koeffizienten der so erhaltenen Reihe

Z Z (nm_(; i?J* Q) (t :’ Q)ua = (I —u)ntr-i2
0

Mit denjenigen der direkten Entwicklung

Lo o g e [—nr—t—2y N7 n-i-t_?'-l-l-l-o‘), "
( u)—n!—rlz_Z( 1) ( d )u _2-‘( it U
o=0 o=0

Unsero Formel ist dann gerade der Ausdruck der Gleichheit der Koeffizienten zur
otenz wr,
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1 A, o ()
(7b) —C‘jl.ai:(*-l)rr!v’Z(T—l—n 0 1) Dottt

r "
l' —i
o= 0 Q D(E

withrend die Derivierte nach d am einfachsten durch Anwendung der
Leibnizschen Regel auf die Grundbeziehung

l
__ mtn g . xtn i
n|be = 5V Agn == I €l gy
& T
gewonnen wird,
w-E—n-1
I D
ar r Tatbntd
(Te) e (1} ? ( T) A
dé" 0, D,
o= 0 -/ 4

Setzen wir n = 0, so ersehen wir leicht, dass die drei Formeln (7 @,
b, ¢), wie es sein muss, in die entsprechenden Werte (5) iibergehen.

Hinsichtlich der Derivierten vorschiissig zahlbarer, aufgeschobe-
ner Renten zeigt die bekannte Beziehung , a, =, «,, dass die
Derivierten einer um = Jahre aufgeschobenen, vorschiissig zahl-
baren Rente gleich den Derivierten der um (n—1) Jahre auf-
geschobenen, nachschiissig zahlbaren Rente sind.

Die Derivierten der Barwerte temporirer Renten von der Dauer #
schliesslich ergeben sich einfach als Differenz der entsprechenden
Werte (5) fiir die sofort beginnende und (7) fiir die um » Jahre auf-
geschobene Rente.

Bei der kontinuierlichen Rechnungsweise diirfen wir uns auf die
Derivierten nach & beschrinken, wie dies auch bisher in der Literatur
geschehen ist. g gilt

&a o s¢)
Gy [ D, at=(—1)r 2z
®) 1 =W g [ FDadt= (1yn s
0
dr’n &93 r 1 § ;T\ -0 wn
'“d_(lsT_ (—1) E‘Z(Q)nrhf-Dx}n+ldt
o) =AU
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Hier miissen wir noch an eine Bemerkung ankniipfen, die Wyss [10)]
und Meissner [2] tiber den Konvergenzradius der Taylorreihe von a,
gemacht haben. Wie von der Funktionentheorie her allgemein be-
kannt ist, kann man den Konvergenzradius der an einer beliebigen
Stelle z, der komplexen Zahlenebene angesetzten Taylorschen Ent-
wicklung einer analytischen Funktion f(2) auf zwei Arten bestimmen.
Einmal ist er arithmetisch nach Cauchy-Hadamard durch die Folge der

Koetfizienten b, der Potenzreihe f(z) :Zb, (—2,)" festgelegt,

7' v —). fave)

dann ist er aber auch als Abstand der Stelle z, von der im gleichen
Blatt der Riemannschen Fliche niichstgelegenen singuliren Stelle von
f(2) gegeben. Betrachten wir zuniichst den Barwert a.(i') der dis-
kontinuierlich nachschiissig zahlbaren Leibrente in Abhiingigkeit des
Zinssatzes 1', so ist er fir alle z mit Ausnahme des hdichsten
vorkommenden Tafelalters £ = w —1 eine rational-gebrochene Funk-
tion von 4" mit einer einzigen singulidren Stelle, nimlich einem Pol
(w—x—1)ter Ordnung in %' = —1. Wenden wir jetzt das oben
Gesagte auf die unter Beriicksichtigung von (5) zu

= -y —1y ”*1 (q, — 1)
)= 2

v=0

sich ergebende Taylorentwicklung von «, an der Stelle z, = % an und
bedenken, dass, solange 4 reell und nicht negativ ist (was praktisch
allein in Frage kommt), lim S = oo gilt, so folgt )

r—>»oco
——

1) Diese Beziehung liisst sich auch direkt beweisen. Aus (1) folgen nimlich
die Ungleichungsketten

O<(a)v~a:+r-—-1)Dw_1__( wa:-l-'r—l) -:césg)é

r» _m_____.l

A

(*== ) Dew—a—1)= (* 23 T @—a—1) Ds



Es wire aber falsch, diese fiir die hohern Summen der diskontierten
Zahlen der Lebenden in der diskontinuierlichen Rechnungsweise
giiltige Beziehung stillschweigend auch als richtig fiir die Werte 54
der kontinuierlichen Rechnungsweise anzunehmen und weiter #U
schliessen, dass die Reihe fiir a, = a, (5)?)

fiir | 0 —9 ’ < 1 konvergiere.
Denn gehen wir davon aus, dass der kontinuierliche Rentenbarwerb

I
am:fe”~xlTHdt

ein Laplace-Integral in ¢’ mit der L-F'unktion F'(f) = lﬂ.;/ L darstellt,
so wissen wir zunichst, dass dieses Integral in einer Halbebene

R(0") > konvergiert %). Nun ist die L-Funktion I'(f) = —le“ stets

T
> 0. TFiir diesen I'all sagt aber ein bekannter Satz aus, dass dann d1©

Vo e r—1 Yo—atr—2F ... YrF 1l V__%Jgﬁ < l/;,-

(w—a—1)!

sHo—e+r—1 Yo—z+r—2 .. Y+t l/( P

a)—a:—” 2)!

godass 1= lim VS(') <1 wird,
Tr->o0

1) Die Reihendarstellung ist bei Wyss etwas anders, man erkennt aber sehr
leicht, dass sein Wert In m nichts anderes als — (§'— §) ist. Meissner geht von
d = 0 als Entwicklungszentrum der Reihe aus.

2) Da praktisch lz4; nur so gewithlt werden kann, dass f#<C 0 sein muss,
sei nur fiir diesen Fall die von Pincherle [36] aufgefundene Bestimmung von
genannt;

fi = lim sup —1—— In | jF(t )dt!
W—» 0o
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Stelle p selber eine singulire Stelle von @,(¢’) ist1). Damit ist der
Konverrrenma,dius R der Potenzreihe fiir a,(6) mit dem (reellen)
\Jlttelpunkt d>0gleich R=06—f=0+ | g * und im allgemeinen
Nicht B = 12). Aus diesem Exgebnis kann noch riickwirts geschlossen

Werden, dass

lim su [/S” = _,L_
reie 5+ 8]

gilt, solange d > 0 ist und B+ — co war.

b) Barwerte von Kapitalversicherungen, Primien, Reserven.

Die Derivierten der Barwerte der lebenslinglichen, der um » Jahre
aufgeschobenen und der temporiren Todesfallversicherung sind den
entsprechenden Rentenbarwerten analog, nur sind die S}, durch die
entsprechend gebildeten R zu ersetzen. Die Ableitungen der ge-
mischten Versicherung von der Dauer n gehen aus denen der tempo-
tiren Todesfallversicherung durch Hinzufiigen der Ableitung der
Exlebensfallversicherung

d b,
= (—1"rlo ( + )nﬂa‘,

(10) e
dr K s )
__uzg L U L UYL )
hervor,
Fiir die Primien geht man vom allgemeinen Ansatz P = —aus

a
und differenziert zuniichst diesen. Doch ersieht man, dass hier wie
auch noch mehr bei den Reserveformeln die allgemeinen Ausdriicke
tiir die Ableitungen sehr rasch verwickelt und praktisch kaum mehr
brauchbar werden.

!) Man vergleiche zu diesen Uberlegungen auch Doetsch [36], fiir die letzte
Bemexkuncr inshesondere Satz 1 [4, 5]. Dieser Satz ist zuerst von Landew (37],

[38] bew1esen worden.

%) Wird beispielsweise als L-Funktion die Uberlebensordnung nach Achard
(W—z—Hhm t2w—=
0 tzw—@o

la:—l-t = I

genommen, so ist @z (§) eine ganze Funktion, und der Konvewenzmqu ihrer
P Otenzrelhenentwmkhmcr ist oo



— 222 —

2. Kapitel.

§ 8.

Die verschiedenen Verfahren zur Lisung des Zinsfussproblems
bei der Leibrente.

a) Der Einteilungsgrundsatz der Zusammenstellung.

Fiir die von uns angestrebte inteilung ist nicht massgebend,
auf welchem Wege die verschiedenen Lidsungen von den Autoren
hergeleitet wurden, sondern — was fiir die praktische Anwendung
ungleich wichtiger ist — welche Ausgangswerte bekannt sein miissen.
Frucht [3] gelangt in diesem Zusammenhang zur Unterscheidung von
dret wesentlichen Liosungstypen. Seine Untersuchung beschrénkte er
allerdings auf den Barwert der lebenslinglichen Leibrente, und s0
musste er von einigen Lisungsmethoden absehen, die besonders an
der temporiren Leibrente entwickelt worden sind und deren Gesamt-
heit wir sehr einfach in eine wierte Losungsgruppe zusammenfassen
konnen. Wir besprechen diese letzte Gruppe an erster Stelle und
schliessen die iibrigen Gruppen in der umgekehrten Reihenfolge an,
als wie sie Frucht untersucht hat.

Der gesuchte Versicherungswert und ebenso die auf ihn beziig-
lichen Grossen — soweit sie sich gedndert haben — wie Zinsfuss, Alter,
Dauer usw. kennzeichnen wir immer durch einen Akzent (‘), die als
bekannt vorauszusetzenden Ausgangswerte bleiben stets ohne Akzent-
Sofern mehrere gleichartige Werte als gegeben gelten, sollen sie durch
Indices gekennzeichnet werden. Den natiirlichen Logarithmus be-
zeichnen wir mit In, unter log verstehen wir ein Logarithmensystem
zu einer beliebigen Basis. Weitere Festsetzungen geben wir unmittel-
bar an den fiir sie in Betracht fallenden Stellen an.

b) I. Gruppe: Verfahren unter Zuhilfenahme von Zeitrentenbarwerten.

Die Methoden, die Zeitrentenbarwerte zu Hilfe zu ziehen, gehen bis
auf eine Ausnahme — Losung (20) von Steffensen — alle von der
Voraussetzung aus,. der Barwert der Zeitrente als besonderer Hilfs-
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wert liege schon zum neuen Zinsfuss berechnet vor. Sie suchen, den
Barwert der temporiren Leibrente durch den Barwert einer Zeitrente
mit geeignet gewihlter Dauer darzustellen. Allgemein sind die
Losungen um so genauer, jo kiirzer die Dauer n der temporiren
Leibrente ist. Lisst man die Dauer # in die Lebensergiinzung w — z
iibergehen, so lisst sich auch die lebenslingliche Leibrente erfassen;
doch ist die Genauigkeit der Frgebnisse fiir diesen Grenafall nicht
besonders gross.

Mit den geringsten Kenntnissen an Ausgangswerten kommt
Boreh [11] aus. Tiir die jihrlich nachschiissig zahlbare temporire
Leibrente findet er bei kurzen Dauern n den Ausdruck

(1) ww%%%

T

1 n

O ST

mit

(d = Diskont) durch ziffernmiissiges Nachrechnen gut bestiitigt. Die
Formel gilt unveriindert auch fiir die entsprechende vorschiissig zahl-
bare temporiive Leibrente. Bei der kontinuierlich zahlbaren Rente
ist 6, durch @, zu ersetzen mit

1 n
6 (49" —1

Erhohte Genauigkeit bei gleichen Annahmen iiber die als bekannt
vorauszusetzenden Grossen erreicht ebenfalls Borch [11] mit

"
Za:-l-t
(12) . ammf\)L . qp(w’n,q;’) . a%.',
| nl,
nﬂ
tlx+t
. 1 s
wo p@mi) =147 | 22 B

bedeutet. t=1
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Piir den I'all, dass nicht nur der Barwert der Zeitrente zum Zins-
satz 4/, sondern auch die Barwerte der temporiren Leibrente und der
Zeitrente zum Zinssatz 1 bekannt sind, findet Boreh [11] die Be-
ziehung -

-
boye o A g

18) a'— o =1 (1 ___> (_ﬁ _ ) (g_ ) ]

( )ai";] Gy nl, i ,i+99(a’:'n'a7') == : o

etwas weniger genau, aber rechnerisch erheblich einfacher ist

n
|
2 lz—F—t
.1
' =1

, = i v @
PR | svA ey
na: U] 2 (lﬂ

Mit Beniitzung der gleichen Ausgangsgréssen hat schon friiher
Weber [12] das folgende Verfahren angegeben. Bedeutot

log a,iﬂ — log an—| logk n a;ﬂ —Ina _{”/I"

/

" log(l i) —log(14+4)  log(l+41)—log(l+i)  6—s 69

v

so gilt angendhert

ey s 4 la:-i-vi.;—l
(15) Bgmee g+ —{1—8 | L———~ )
2 v
2
Wir haben dabei fiir & den Ansatz der Originalarbeit, & = Sl ver-
wendet. Christen [1] geht bei ihrer Wiedergabe von @l
_ am O
=== 7~
A P T

aus. Wie ein genaues Studium der Herleitung von (15) zeigt, ist dies
vollkommen unwesentlich, man kann ebensogut auch von
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! ! . ’
- C
P L. L
i : 13
as v o Vo' o

usgehen. Wohl sind k, k*, k voneinander verschieden; indem aber
diese Girosssen auch in » vorkommen, wird ihr Unterschied im Rahmen
der Gienauiglkeit von (15) voll kompensiert. Wie rein rechnerische
Nachpri ozeig : benso az und 4y durcl
chprifungen gezeigt haben, darf man ebenso a; und a5, durch
die Paarungen 7 und @ baw. a5 und 4, ersetzen. _
Stehen die Barwerte der temporiiren Leibrente und der Zeitrente
20 zwei Zinssitzen 7, und 7,, die nicht unbedingt den neuen Zinssatz
! 2 . . . 3 z *
v elngchliessen miissen, zur Verfiigung, so kann man sich mit Vorteil
des folgenden, von Lenzi [13] entwickelten Verfahrens bedienen:
Durch lineare Interpolation nach der Dauer » bestimmt man aus der
r L, . . .
Patel der Zeitrentenbarwerte zwei Dauern vy und v, derart, dass

a5 (7’0) = Oy (’LO)
@, (4) = ) (1)

8t. Hernach interpoliert man, ebenfalls linear, aus den beiden Dauern
Yo und v, nach dem Zinssatz ¢ eine neue Dauer

Alsdann wird der gesuchte Leibrentenbarwert a,;(¢') zum Zinssatz
Mt befriedigender Genauigkeit durch den Barwert a51(2") der Zeit-
ténto zu diesem Zingsatz und der Dauer »" gegeben,

' . 7
(16) Gy = Gy (1) ~ @y ().

xn Tn

Der Wert a+;(v) ist aus der nach ganzzahligem Argument fortschreiten-
den Tafel der Zeitrentenbarwerte ebenfalls wieder linear zu inter-
Polieren. Weil dabei stets @, (¢') — a, (i) = v"*** gilt, so kann man,
Wenn ¢ die ganze Zahl bedeutet, fiir die t<< v < t -1 ist, das Iirgebnis
auch schreiben: a

16) = aam(i) ~ 4 (1) = an(¥) + o+ (v —1).

Wir verzichten darauf, das zur Anwendung gekommene Interpola-
bionsverfahren tiefergehend zu analysieren und bemerken nur noch,
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dass es offensichtlich ebensogut mit den Barwerten der vorschiissig
zahlbaren oder kontinuierlichen Renten durchfiihrbar ist.

Fs verbleiben uns in dieser ersten Lidsungsgruppe noch zwei Ver-
fahren zur Besprechung, die Steffensen [14| fiix den Barwert der
lebenslinglichen Leibrente im Anschluss an die Aufstellung der Un-
gleichung

a4

b b |
]f(t)dté./f(t)rp(t)dt_f: /f(t)(lt

(17)

b
x:jwmm

entwickelt hat. Diese Ungleichung gilt, sobald die im Intervall
a<t<b definierten und integrierharen I'unktionen noch den be-
dingungen 0 < @ () <1 und f(t,) < f(t,), t, >t;, geniigen. Setzel
wir nun in (17) f(f) =" und @(f) = ,p,, so orgibt die obere Ab-
schiatzung
< o
(18) B = /v‘,pmdtgfv‘dt = &T’wﬁ'
0 0
Wenn wir e, ~ ¢? als kontinuierlich gerechnete vollstindige mittlere
Lebenserwartung beseichnen und uns auf kontinuierlich gerechnet®
Rentenbarwerte beziehen, heisst dies: Der Wert einer Leibrente ish |
kletner als der Wert der wiihrend der (komtinuierlich gerechneten) voll
stindigen mittleren Lebenserwartung zahlbaren Zeitrente.

Setzen wir in (17), mit h =4 — 4, f(f) = (1 | ho)* = "

@ () =t p,, so wird A = [v'p, dt = a, und
0

a, = /(1 + ) pdt = /(1 + ho) "t of tpmdtg__f(l + ho)tdt
0 0 0

az
(19) a,< f WAt = a; (8" —9),
0
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M Worten, wenn wir uns wiederum auf kontinuierlich gerechnete
Rentenbarwerte bezishen: -

Der Wert einer Leibrente zur Zinsintensitit & ist kleiner als der
We’rt der Zeitrente zur Zinsintensitit 0* = 0" — 0 wnd dem zur Zins-
Wiensitiit & berechneten Letbrentenbarwert a,(d) als Dauer. Von diesen
beiden mathematisch exakten Beziehungen ist (19) die allgemeinere,
(18) 18t in ihr als Sonderfall § = 0 enthalten. Durch geeignete Inter-
Pretation der Summation zu einer nicht ganzzahligen Summations-
gtenze kann (17) auch in eine diskontinuierliche Fassung gebracht
Werden. Aus dieser lisst sich dann folgern, dass (18) und (19) ebenfalls
8elten, wenn fiir die Barwerte die entsprechenden Werte nachschiissig
Zahlbarer Leibrenten (an die Stelle von e, tritt dann die abgekiirzte

: . 1 :
Mittlere Lebenserwartung e, = e,— 5 eingesetzt werden. Wir haben

der kontinuierlichen Darstellung nur deshalb den Vorzug gegeben,
Weil die Formulierung etwas einfacher ist. Der Wert von (18) und
(19) fiir das Zinsfugsproblem liegt darin, dass die beiden Ungleichungen,
als Gleichungen, aufgefasst eine erste grobe Annéherung eines gesuchten
Leibrentenbarwerts geben. Wollen wir diese ersten Annéherungen
Verbessern, so konnen wir in der folgenden Weise vorgehen, wobei wir
Wieder zur diskontinuierlichen Darstellung zuriickkehren.

Setzen wir den gesuchten Leibrentenbarwert a,(i') dem Barwert

1— 1 +r"

@5 (h) = ———————— einer Zeitronte zum Zinssatz h = I % —il

h
gleich, a, (') = a, (h), so wird deren Dauer

log (1 —hay) In(1—ha)

log (1 + k) In (1 +h)

Entwickeln wir diesen Wert in eine Potenzreihe in &, wobel zu be-
achten ist, dass a, seinerseits durch die Potenzreihe in /

oo !
Y d°a, h*

!

* dw© p!

0=0

a

d&rgestellt wird, und brechen die Reihe nach der ersten Potenz von A
ab, $0 erhalten wir fiir a. die Niherung
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, 1—(1-+h)™
(20) iy~ azy () = w ,
wobei
n=a,—ha
und

S 1 S 1/ 1%
o« = ”_Di_‘ — 5 (a,+1) = U—D—i + 0,125 — 5 (a.x-}— ;—)

1st.

Setzen wir ¢ = 0, so geht aus (20) als Sonderfall

1 —qy'™
(21) t, ™~ CL}'TE = . ,! (?’r) — “*“‘E,
mit
m=e,— 1 &,

und

1 nﬁ e 1 t.{:xj 1 ..

& :;:-5— ”x-r—t —*?ﬁ (ex -+~ 1) o~ 7_ Z‘ ”:H—t 4 0,125 — - (ew)&
= =l © 4=t 4

hervor. Mit dieser Formel werden im allgemeinen weniger gute Iit-
gobnisse erreicht als mit (20); sie wiite dann anzuwenden, wenn nichb
schon ein System von Kommutationswerten zu einem Zinssatz 1 > 0

vorliegt.

¢) IL. Gruppe: Verfahren, die sich auf das Bestehen eines formelmassigen
Ausscheidegesetzes griinden.

Die Methoden, die wir in dieser Gruppe anzufithren haben;
weisen gegeniiber allen andern einen erheblichen Vorteil auf: St
geben mathematisch vollstindig exakte Lisungen. Dafiir haftet ihnen
allerdings auch ein nicht zu {ibersehender Nachteil an: die Ausscheide-
ordnung muss der dem Verfahren zugrunde liegenden, formelmiissig
gegebenen Gesetzmiissigkeit gehorchen. Ferner kommt dazu, dass
die Kenntnis der Rentenbarwerte und der Kommutationszahlen zum
alten Zinssatz im allgemeinen nicht ausreicht; vielmehr ist eine il
arésserm Umfang tabellierte Zusammenstellung von Hilfszahlen, eine
sogenannte «Standardtafely notig.
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Sehen wir das Wesentliche am Zinsfussproblem vor allem darin,
das System der Kommutationswerte nicht neu berechnen zu miigsen,
%0 kénnen wir die bereits frither (§ 1, Abschnitt ¢) gegebenen direkten
Dﬂl'stellungen der Leibrentenbarwerte aus den Parametern des Aus-
Scheidegesetzes, dem Zinsmass, der Altersvariablen und gegebenen-
falls der Dauer als Liésung der vorgegebenen Aufgabe ansehen. Von
den Lésungen im engern Sinne ist die Losung bei Bestehen einer
Makehamschen Uberle bensordnung praktisch am bedeutungsvollsten.

Sie geht aus dem Satz von Blaschke-Gram ) hervor: Ist fiir die
GOmpertz-Makehamsche Ausscheideordnung mit den Konstanten ¢, s, g
{Zag vollstimdige Leibrentensystem, d. h. die zweidimensionale Gesamthent
der Leibrentenbarwerte a, (8) fir alle moglichen Alter und Verzinsungen
bekannt, so sind damit auch die Leibrentenbarwerte a,, (8') fir jede
ndere Gompertz-Makehamsche Ausscheideordmung mit den Konstanten
¢, s, o und fir jedes Alter ' sowre jede Verzinsung bekannt. Und
“war fiihren sich solche Leibrentenbarwerte a,, (d') in der folgenden
Weise auf die Werte a, (0) des vollstindigen Leibrentensystems zuriick :
s ist,

"~ 1 -
22) G (8) =, (0),
m
Wenn r=mz' +n
(Sf
ey
m

gesetzt wird mit

log ¢’
m=——-

log ¢

1

log log —q-r — log log 7

=
log ¢

log log s’

r o= “(lg_c’_ log s" —log s = 8 —log s .

log ¢ m

——

') Hinsichtlich der Arbeit von Gram [16], die urnfassender ist und die Er-
8ebnisse von Blaschke [15] einschliesst, vgl. auch Jirgensen [35], S. 200—205 und

lafel X, S.394—403.
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Das Zinsfussproblem ist bei Bestehen einer Gompertz-Makehamschen
Ausscheideordnung damit praktisch vollstindig exakt gelost, wenn
zu einer beliebigen Konstantenwahl ¢, ¢, s fiir alle Alter und, in ge-
niigend enger Abstufung, fiir alle gebrduchlichen Zinssitze eine Tafel
der Rentenbarwerte a,(d) ein fiir allomal berechnet ist. Hine solche
Standardtafel hat auch Blaschke [15] seiner Arbeit beigegeben.

Suchen wir bei Vorliegen einer Makehamschen Ausscheideordnung
in Krmangelung der Standardtafel nach «tafeleigenen» ILosungen,
d. h. solehen, die nur die Kenntnis der alten Ausscheideordnung nétig
machen, so miissen wir uns mit Néherungen zufrieden geben.

iine erste, auf temporire Renten beziigliche Liésung, die sehr
einfach ist, aber nur grobere Néherungen ergibt, stammt von Christen
[1]; es ist

Nk

_ -
(23) RN )
n
; . logk
mib G s B s,
log ¢
1 . ¢ —lins 1 8 — 9
une e — =1 — .
0—lIns d—Ins

Iine andere Losung fiir die lebenslingliche Leibrente hat Crosato [17]
gegeben. Diese Losung beruht auf der Differenzengleichung der un-
vollstindigen I'-Funktion @ (4,4),

Q(ALh-+1)—hQ@A k) =e* A,
aus der unter Beriicksichtigung von (3) die Differenzengleichungen in

w, (0)
Alnc - a,(0—Inc) + (0 —Ins) - a,(d) =1

(24) oder Alnc-a,(0) + (0 -+imec—lins)-a, (64 Inc) =1

hervorgehen. Damit kann man aber zu einem gegebenen ERentenbar-
wert von der Zinsintensitit & die Barwerte zum glerchen Alter und 24
denjenigen Zinsintensititen genaw berechnen, die wm ganze Vielfache
von In ¢ von der Intensitiit des Ausgangsbarwerts abstehen. Man konnte
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hun denken, in der Folge der solchermassen hervorgegangenen Renten-
barwerte sei fiir einen beliebigen gesuchten Wert ein schon geniigend
8enauer Niherungswert enthalten. Dies ist jedoch nicht der Fall,
denn, wie aus allen gebriiuchlichen Tafeln hervorgeht, indert die
Makehamsche Konstante ¢ ihren Wert nur sehr wenig von Tafel zu
Tafel und kann rund ¢~ 1,096, also Ine¢c~0,09 gesetzt werden.
Das bedeutet aber, dass die Intensititen und damit auch die Zins-
Sitze der aus (24) hervorgehenden Folge von Rentenbarwerten um
rund 9 9, voneinander abstehen. Es bleibt daher nur iibrig, den
Barwert der Rente zur Zinsintensitit & = & + (6" — 8) nach einer
8rundsitzlich beliebigen Methode aus den genau vorgegebenen Werten
Zu den Argumenten d =pu +Imc, u =0, +1, +£2, ..., zu inter-

bolieren.
Iiir das Gesetz von Dormoy steckt die Liosung des Zinsfuss-

Problems bei der Leibrente schon in einer frither gemachten Fest-
Stellung; danach handelt es sich auch bei ihr um die Darstellung eines
8esuchten Leibrentenbarwerts mittels einer Standardtafel, derart,
dags diese einfach gleich der Tafel der Zeitrenten fiir alle Dauern und
Zinssiitze ist. Lin Leibrentenbarwert aus der Ausscheideordnung mit
der Konstanten s und zum Zinssatz ¢’ ist dann gleich dem in Art und
Dauer entsprechenden Standardwert zum Zinssatz

s

147

—1.

7 =

Ganz andersartig ist die Losung, die sich aus dem Bestehen eines
Achardschen Ausscheidegesetzes ergibt [7], wenn wir uns auf den
Barwert der lebenslinglich kontinuierlich zahlbaren ILeibrente be-
Schrinken. In diesem Tall ist nimlich, wie wir schon frither bemerkt

haben, a, das Produkt von %mit einer Funktion F(h), die allein von

h = d (w—=z) abhiingt. Betrachten wir daher von den Rentenbar-
Werten zur Zinsintensitit ' denjenigen, a,, fiir den das Alter ' zum
gleichen h-Wert h = ¢'(w—a’) fithrt, wie er aus den Werten z und 4
von g, hervorgeht, h = & (w—=x), so besteht zwischen den Werten
' q,, und da, Gleichheit. Damit ist aber unsere Aufgabe gelost:
Dey gesuchte Rentenbarwert a,, zum Alter =’ und der Zinsintensitit &'
lisst sich durch den Rentenbarwert a, zum Alter x und 2ur Intensitit § als
16



(25) a;r = — ax

darstellen, wenn fir
0’ N o'
&= — w(l——
0 d

gewdhlt wird. Die Festlegung des Alters z kénnen wir noch etwas
anders formulieren. Wie man leicht nachrechnet, hat unter Voraus-
setzung einer Achardschen Ausscheideordnung die vollstindige mittlere

Lebenserwartung e, ~ e, den Wert e, = i Unser neues Alter &
m

muss daher aus dem gegebenen Alter so hervorgehen, dass

’

€ = 5 Cu
qgult.

Diese beiden Formeln haben eine bemerkenswerte Higenschaft.
Der Parameter m des Ausscheidegesetzes — in der zweiten auch noch
das Schlussalter w der Tafel — tritt in ihnen néimlich nicht auf. Dahet
kann (25) auch Verwendung finden, wenn die Ausscheideordnung gar
nicht nach einem Achardschen Gesetz folgt; doch ist in diesem Fall
der Ausdruck nur eine Néherungslosung. Versuchsweise Berechnungen
anhand der Tafel SM 1921—80 haben allerdings gezeigt, dass fir
diese Tafel die durch (25) gewonnenen Werte nicht geniigend gute
Néherungen geben.

d) Gemeinsame Merkmale der Verfahren der beiden ersten Gruppens
Unterschiede gegeniiber denjenigen der beiden noch folgenden Gruppen-

Suchen wir fiir alle bisher besprochenen Liésungen des Zinsfuss-
problems eine gemeinsame Kennzeichnung, so kénnen wir einmal fest-
stellen, dass sie besonders auf den Leibrentenbarwert zugeschnitten
sind und alle mit Ausnahme der Achardschen Lésung fremde Ver-
sicherungswerte heranziehen. In der ersten Gruppe sind es Barwerté
von Zeitrenten, in der zweiten Gruppe Leibrentenbarwerte, wobei diese
Hilfswerte mit verdndertem Alter oder anderer Dauer auftreten. Dazt
kommt, dass die verinderten Argumente keine ganzen Zahlen mehr
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sind, die zugehorigen Barwerte also in keiner Tabelle stehen; die zu
verwendenden Barwerte sind vielmehr durch Interpolation der ge-
8ebenen Tabellenwerte nach dem verinderlichen Alter oder nach der
verdnderlichen Dauer zu gewinnen, wozu meistens die einfache lineare
Interpola.tion ausreicht. Dies wird bei den Ldsungen der beiden
Ndchsten Gruppen villig anders. Hier wird nur die Kenntnis ein- und
desselben Versicherungswertes bei gleichem Alter, gleicher Dauer usw.
verlangt, der Barwert jedoch fiir verschiedene Werte des Zinsfusses
bentigt (I1L. Gruppe), oder es werden noch Kommutationswerte
Zugezogen, die aber alle ein ganzzahliges Altersargument aufweisen,
also direkt der Tafel entnommen werden konnen (IV. Gruppe).

e) III. Gruppe: Verfahren, welche die Kenntnis des gleichen
Versicherungswerts zu mehreren, verschiedenen Zinssiitzen verlangen.

Ungeachtet der grossen Allgemeingiiltigkeit des Ansatzes kann
das Interpolieren mittels mehrerer einfacher Interpolationsstellen —
hierum handelt es sich niimlich bei dieser Gruppe — dem Zinsfuss-
Problem praktisch nur fiir die einfachsten Versicherungswerte niitzlich
8ein, Denn nur fiir sie darf man erwarten, sie seien fiir mehrere Zins-
Sitze, die meist zwischen ¢ = 0,08 und ¢ = 0,06 liegen, bekannt. 1'iir
die nachschiissige, lebenslinglich zahlbare Leibrente kann ausserdem
der Barwert zum Zinssatz ¢ = 0 als bekannt vorausgesetzt werden,
denn dieser Sonderwert ist nichts anderes als die abgekiirzte mittlere
Lebenserwartung

o
ok
ju—y

1

a,(0) =e¢, =, — - =— b

Wo ¢, die in den Sterblichkeitstafeln meistens aufgefiihrte vollstindige
Mittlere Liebenserwartung,

o
[} A — 1 *
SRRV R U
— L
- 0

bezeichnen soll. Da das Argument dieses Sonderwerts aber verhiltnis-
Miissig weit von den iibrigen, praktisch vorkommenden Werten ab-
Steht, ist immer wohl zu iiberlegen, ob man seine Kenntuis beriick-
Sichtigon will. Schon Christen [1] hat hierauf bei der Besprechung des
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von Fontaine (18] vorgeschlagenen Verfahrens aufmerksam gemacht,
welches im iibrigen einfach auf Interpolationen mittels ganzer ratio-
naler Funktionen hinausliuft.

Sind die Funktionswerte f(2), © =%, 1,, . .., i, fiir m verschiedene
dquidistante Stellen vom Abstand A bekannt, so fithrt die Bildung der
aufeinanderfolgenden Differenzen

A° f(i) = f(3)
At f() = 4 (1) = f(o + k) —£(3)

--------------------------

A'f(i) = 4™ {540 — A7) = D (— e [+ r— o) B)

0=0

schliesslich zu einem einzigen Wert der Differenzenfolge (m—1)-ter
Ordnung A™! f(1). Indem wir diese Folge als konstant annehmen,
was damit gleichbedeutend ist, dass wir die Funktion f(z) durch ein
Polynom (m—1)-ten Grades approximieren, konnen wir mittels der
Gregory-Newtonschen Interpolationsformel

(2 o) =g+~ Y (£ 2t

o=0

oder, wenn das Argument des gesuchten Funktionswerts gerade der
Argumentfolge ©+ =1, + kh, k = 1,2, ..., angehort, durch Erginzen
des Differenzenschemas den gesuchten Wert niherungsweise an-
geben. Ist nun f(0) auch noch bekannt, so kénnen wir aus der Inter-
polationsformel (26), die wir dann zweckmissiger in der Form

O = f, — 1) = D (=17 (“+ Y 2 fi

/

a=0

schreiben, riickwiirts den Wert der m-ten Ditferenz A™ f(s,) fiir das-
jenige Argument 7, bestimmen, fiir das die sémtlichen Differenzen
niedrigerer Ordnuﬂg schon bekannt sind. Dann braucht aber erst die
Folge der m-ten Differenzen als konstant angenommen werden.

Auf weitere Interpolationsverfahren und -formeln einzugehen ist
hier nicht der Ort, da sich im ndchsten Kapitel dazu noch genﬁgend
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Gelegenheit bieten wird ; wir erinnern lediglich daran, dass Hantsch [5]
im ersten Teil seiner Untersuchung eine systematische und ziemlich
vollstiindige Zusammenstellung der einfachsten einschligigen Inter-
polationsfunktionen gibt. Das reichhaltig beigegebene Zahlenmaterial
leistet dabei einen schénen Beitrag an eine der Hauptfragen, die sich
beim Interpolieren stellt, nimlich: welches ist unter den verschiedenen
maoglichen  Interpolationsformeln die dkonomischste? In  bezug auf
die Interpolation des Barwerts der lebenslinglichen Leibrente finden
wir, dass die ganzrationalen Funktionen sich sehr wenig eignen, und
kénnen deutlich erkennen, wieviel besser die Resultate bei gleicher
Kenntnis an Ausgangswerten ausfallen, wenn mit rational gebrochenen
und einfachen Exponentialfunktionen interpoliert wird.

) IV. Gruppe: Verfahren, welche neben dem Rentenbarwert zu einem
andern Zinsfuss noch die entsprechenden Kommutationswerte
verwenden.

Die urspriingliche Herleitung der Formeln durch die Autoren ist
ganz verschieden. Steffensen [14] kommt zum Ausdruck

hv S, 4
D

(27) @y o~ @, —

durch Entwicklung der frither angegebenen Niherung (20) mittels eines
Zeitrentenbarwertes in eine Potenzreihe und Abbrechen beim ersten

Glied. Auf Birger Meidells [19] Formel

_ Sz+1
(28) a,~a, (1 +hv) Nz

wollen wir spiiter in einem andern Zusammenhang eingehen.

Den meisten iibrigen Formeln liegt ein sehr allgemeines Prinzip
zugrunde, nimlich die Entwicklung des Rentenbarwerts in eine
Potenzreihe
29) o= S0 i 1y S g,

r! -t D,

' r
r=0 d'b r

Wo b= —i



e D35

gesetzt ist und die Kommutationszahlen zum Zinssatz 5 berechnet
gind. Abbrechen nach dem zweiten Glied fiihrt, wie man sofort sieht,
zur Formel (27) von Steffensen. Beriicksichtigen wir noch ein weiteres
Glied, so erhalten wir eine Ndaherung, die zuerst von van Dorsten [9]
angegeben wurde,

' S, S
(80) Q, o~ dy — ho —51—5- + h2o? D:E .

Die Uberlegungen, die Palmquist [20] zu seiner Formel

; S\~ "
(31) Ay o @, (1 + —=0- 5N, )
gefiihrt haben, stellen wir vorliufig zuriick und wenden uns eingehender
dem Verfahren zu, das Poukka [4] zur « Verbesserung der Konvergenz»
der Reihe (29) entwickelt hat. Der Grundgedanke des Poukkaschen
Verfahrens kann in freier, hinsichtlich des Sinnes seiner spitern Aus-
wertung aber, wie uns scheint, treffender Weise dahin ausgelegt
werden, dass die Potenzreihe

. 0.
@) a—f) = Y (—1y -S“‘ Z

n=

als Darstellungsform von a, = a,(3") = a, (4 + h) durch die all-
gemeinere Revhe

o0

(32) ay = Flph) = ) o, [p()]:

e=0

ersetzt wird, die nach den Potenzen einer nur durch die Bedingung
(33 a) p(h) =0, y'(h)+0

eingeschriinkten analytischen Funktion von h,

(83 b) z = p(h)

fortschreitet. Die Krmittlung der Koetfizienten ¢, (¢ =0, 1, 2, o)
von (32) ist sehr einfach: man entwickelt die Umkehrfunktion
h = h(2) in ihre Potenzreihe nach z
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o0

(34) h=hz) =2 ) &7,

o=1

die wegen der getroffenen Voraussetzungen iiber # = w(h) kein von ¢
freies Glied besitat, gewinnt durch wiederholtes Multiplizieren dieser
Reihe (84) mit sich selber oder durch direkfe Entwicklung der Funk-
tionen (R(2))%, (R(2))3, ... deren Potenzreihen in z, setzt diese in die
fiir a, =1y = f(h) urspriinglich gegebene Reihe (29) ein, ordnet nach
Potenzen von z und hat die gesuchte Reihendarstellung (32) bereits
vor sich. Iiir die ersten der Koeffizienten ¢, erhilt man hierbei

Cy = by dy + by dj €3 =bydy + 2byd, dy + by di.

Allgemein erkennt man, dass fiir jedes » > 0 der Koeffizient ¢, eine
lineare Form der r ersten Koeffizienten by, by, ..., b, der Potenzreihe

(29) ist,

(35) Cr:Zysfba'x T:l, 23"'

_Die Koetfizienten y,, sind ihrerseits die Koeffizienten der r-ten Potenzen
In den Entwicklungen von (h(z))®. Insbesonders ist

"h
ylr:drz 1<d (fz)) , r=12...;
az" /,_,

!

fiir die «Endkoeffizienten» v, lisst sich aus der wiederholten Multipli-
kation der Reihe von h(z) mit sich selber sofort

dh(z)\
—_— dr —
e 1 [( dz )Z#OM
Nun ist

dh(z)) 1 1
: ( dz [,y [de(h) d p(h)
dh /o dh /h-o

r

ablesen.
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aus der alleinigen Voraussetzung, dass z = g(h) in der Umgebung von
h = 0 eindeutig umkehrbar sei, folgt dann aber, dass das Grossen-
system (85) eindeutig nach den Grossen b, aufgelost werden kann,

(86) — bs:ZF,,c, (s=1,2...) .

r=1
Dieses Ergebnis ist eigentlich selbstverstindlich. Gehen wir némlich

oo
von der Darstellung von a, als Funktion von z, a,=F(z) =3 ¢,%°
e=0

aus, setzen hierin z = 2z(h) und ordnen nach Potenzen von %, so miissen

wir wieder die Potenzreihe a, = 3 b h* erhalten. Fiir die Koeffi-

0=0

zienten b, ergibt sich dann in der Tat eine Darstellung in der Art von
(86). Zwischen den Grossensystemen b, und ¢, besteht somit eine
strenge, gegenseitig reziproke Verkniipfung. Wir merken uns fir
spiter noch die Bedeutung der Grossen I, :

po_ L@@\ 1 (d“qp(h)
st \aw ), st\ aw J,_,

Nach diesen Darlegungen wissen wir jetzt folgendes. Man kann
immer die Werte von gerade soviel aufeinanderfolgenden Koeffizienten
¢, der Reihe (32) angeben, als man sukzessive Koeffizienten b, in der
urspriinglich vorgelegten Potenzreihe (29) berechnet hat. Zweck und
Ziel des Reihenansatzes (82) werden damit klar. Wir miissen durch
geeignete Wahl der Funktion z = y(h) zu erreichen trachten, dass
— wenigstens fiir die fiir uns in Betracht fallenden kleinen Absolut-
werte von h — die gegebene Funktion f(h) sich durch die Reihe (82)
besser approximieren lisst als mittels der Reihe (29). Diese allgemeine
Redewendung ist dabei zwar verschiedenartiger Auslegungen fihig');

1) Wir konnen z. B. davon ausgehen, dass die Reihen (29) und (32) immer
beide nach derselben Stelle abgebrochen werden, und dann verlangen, dass in den
Betriigen das Restglied von (82) nie das Restglied (29) iibertreffe,

o0 oo
B =1 3 o | SR =| 5 |, r=0.12,...,
Q_ =

oder wir gehen von einem vorgegebenen Genauigkeitsgrad & >0 aus, mit dem
die Reihensumme angeniihert werden soll, und verlangen, dass hierbei die Reih®
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doch gleichgiiltig, in welcher Weise immer wir genau zu fassen suchen,
Was uns mit ihr nur unbesttmmt vorschwebt, erkennen wir, dass unser
_Verlangen woit iiber dasjenige hinausgeht, das in den bekannten
_KOHvergenzkriterien seine Iirledigung findet. Diese dienen nimlich
Mmer nur dem Nachweis einer sogenannten infinitiren Eigenschaft,
4. h. einer solchen, bei der eine Anderung an endlich vielen Reihen-
Bliedern nichts ausmacht — z B. dass eine Reihe diberhaupt kon-
Vergiert 1) —, und zu welcher die Giite der Anniherung der Reihen-
Summe durch eine Teilsumme der Reihe in schroffem Gegensatz steht.
Wenn wir itber eine Eigenschaft dieser letzten Art eine allgemeine
F eststellung machen wollen, miissen wir uns daher bewusst sein, dass
dies nur auf Kosten der den genannten Kriterien eigenen Strenge und
Unbedingtheit moglich ist. Eine solche Aussage kann immer nur Aus-
druck einer Erwartung, eines Versprechens sein, und einzig von dieser
Allffassung her diirfen wir an die Ieststellung herantreten, die
B, Landelif [41] hinsichtlich unserer Zielsetzung ausgesprochen hat:
Konvergiert die Potenzreshe (29) an einem Kreise vom Radws R,
80 wird sich dann f(h) besser durch die Reihe (32) approximieren lassen,
Wenn die « Abbildungsfunktiony z =w(h) bzw. h = h(z) ein grosseres
Gebiet T der h-Fbene als ‘hl < R auf den Krews Iz} < R, mit R" < R,
dey komplexen z-Fbene abbildet. Wie weit dieses bessere Approxi-
ieren schon fiir die einfachsten Teilsummen zutrifft, bleibt allerdings
f’ff@n, man wird erwarten diirfen, dass es umso eher der Fall sein wird,
Je stirker in den Koeffizienten der Potenzreihe eine (tesetzmiissigkeit
“W erkennen ist. Fine Feststellung lisst sich jedoch noch auf Grund
®ines Satzes von Ostrowski %) machen. Der Potenztypus der Kon-
Vérgenz bleibt bei jeder Lindelofschen Transformation erhalten. Man
kann daher insbesonders den Tdealfall eines konvergenten Verfahrens,
die quadratische Konvergenz — durch Ausfiihren eines jeden weitern
Schrittes wird der verbleibende (kleine) Kehler im wesentlichen

Quadriert — nicht erreichen.

(82) an einer friihern oder hiéchstens an der gleichen Stelle abgebrochen werden
ann wie die Reihe (29). Die gegenseitigen Beziehungen dieser beiden oder ihn-
Icher Definitionen abzukliren, ist natiirlich hier nicht der Ort.

1) Bs sei vermerkt, dass in der Literatur auch das «bessere oder raschere I{on-
Vergieren» einer Reihe als infinitire Eigenschaft definiert wird (man vgl. etwa
(_nopi’) (40], § 87). Wir haben daher mit voller Absicht von einer Verwendung
d‘,e*‘es Begriffs fiir unsere Belange Abstand genommen und von «besserm Approxi-
Mieren» gesprochen.

%) [42], Satz 1 (S. 829).
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Poukka [4] setzt die Reihe (32) mit der Funktion

h
3 = wh) =
(37) z = y(h) o
“z oo oo
h = - EQLZIZ“ZZ():QGZ‘

o
2
bildet, und bricht sie analog van Dorsten nach dem dritten Glied ab-
Indem er nun den willkiirlichen Parameter « nicht einfach beliebig
wihlt, sondern ihn als Funktion der Koeffizienten be der zu ersetzenden
Potenzreihe (29) so bestimmt, dass der Koeffizient

an, die die Halbobene R(h) > — —-auf den Einheitskreis |z | < 1 ab-

Co =bydy +byd} =byo +bya? =ab, + bya)

der Reihe (82) verschwindet,
b2
oL =——

1

b

orreicht er durch diesen kleinen Kunstgriff, dass trotzdem nur zwé?
Summanden stehen bleiben (nicht aber, dass die Kenntnis von b, um-
gangen werden kann, denn diese Grosse geht eben in o« ein!):

h
) ~ 0q + ey () = by +bra ——
h b, h
(38) = by + b, __}T:b“L_ﬁlb_
2
1 +? 1 _'E }L 4

Durch die frither angegebenen Werte (5) und (7b) erhalten wir fiir
die Barwerte a, und a,;"

_%ta oh 5 s+l
(39) Uy o Gy — 2:(2) = O G x+(l2)
1+ —=yh 14—tk
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und g
Sait — Sagmer — M Naynyy s
D
’ z
(40) ) ™ Gy — nn41)
2 2
S(x-) 17 Sg;-)rnﬂ —n Sz+n+1 _— 9 NZ+n+1
1+ vh
‘Sz+L - S:c-f—n+1 —n N:L‘-Hl+l
Sx-i—l — Sa:+n+1 =t N?‘F"'f‘ L oh
_a___l PP Nz+1““"N:c+n+l
T Man | Yan | )
1(2 2 n (n+l)
50— 88— S~ 2O N
14 vh

of
‘S’z-H - ‘Sx+n+1 —n Nm—+~n+l

Diese beiden Formeln geben genauere Werte als die Formel von
van Dorsten, leiden aber immer noch daran, dass sie die Kenntnis der
Summen S® bendtigen, die in der versicherungstechnischen Praxis
Sonst nicht gebraucht werden und daher iiblicherweise auch nicht
berechnet vorliegen. Hier hat nun Poukka, und zwar ohne irgend-
Welchen Zusammenhang zu den vorigen Entwicklungen, die sehr
Wertvolle Feststellung gemacht, dass fiir die gebriuchlichen Zinssitzo
und Alter das Verhiltnis

S9 8,

(41 q) k, < iy

Z z

Sich nicht viel mit dem Zinssatz und dem Alter z verindert und als
Konstante betrachtet werden darf, die fiir die Tafel des Text Book zu

k = 0,84

als bestem Mittelwert anzusetzen ist. Damit geht (39) in die Formel

of
‘Sx-!-l

Na;+1

vh

(42) a.~a, —a

& z T

S
140,84 =ty b
Nx+1

Uber, die trotz der vorgenommenen Vereinfachung noch bessere
Naherungen liefert als die ormel (29) von wan Dorsten. Da wir auf
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die beiden Iormeln (39) und (42) noch verschiedentlich guriick-
kommen werden, wollen wir (39) als erste und (42) als zweite Poukka-
sche Formel fiirderhin bezeichnen.

Fiir den Barwert der temporidren Leibrente a;,;—l konnen wir das
Verhéltnis

@ o g @+l
(41b) & S T T . ¥
aal Sx _ Sa:-l-n —n Ncc-}—n ' N:c'” Nw+"

in erster Anniherung ebenfalls konstant zu 0,84 annehmen, worauf
schon Poukka hingewiesen hat. Hantsch [4] hat im zweiten Teil seine*
schon frither genannten Arbeit die Darstellung dieses Verhiiltnisses
km durch die Komponenten, Zinssatz und Uberlebensordnung, unter-
sucht und auf der Grundlage der Reichssterbetafel 1983, Krauen,
gefunden, dass fiir Rentenschlussalter unter s = z + n = 70 recht gub

. . nQ:; . lx la: +n
48 k == k o~ k —_— == ] U ST B e
( ) n N (’b) ﬂ(%) + 20 6n(t’) + 20 lx

gilt. Hierbei geht k(1) seinerseits aus der Naherungsformel
k(1) ~k,(0)+mn-2-c

hervor, wo ¢ nur Funktion des Zinssatzes ist und als solche sogar
konstant = ¢ = 0,06 betrachtet werden darf, wihrend

2 nt2

WO T

ist. Damit kann (40) ersetzt werden durch

\
Sa:+l — ’Sm‘kn-l—l —n N

z+n+1
_ vh
! NI-H! T Nm+n+1
(44) Q) ™ Q) — Qo) S /
241 —Papnpt — A Nppnan
1 "]" k:c-l—l,u v h
Na:-l—l ﬁ Nx+n+1
: 2 n42 1
mit + + 0,06 ng  -EELedwtl

B,y e
.‘I+la n 3 'n:"‘l—]_ 20 Zx+1
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Anhang einer gréssern Zahl von Beispielen iiber alle Alter und Dauern
konnten wir feststellen, dass innerhalb der schon genannten Ab-
srenzung die Werte (48) auch bei der Tafel SM 1921—80 [47] das
Verhiiltnis (41 b) recht befriedigend wiedergeben; ebenfalls gibt (44)
f*tWas bessere Anniiherungen, wenn k,, in der angegebenen Weise
Individuell abgestuft und nicht einfach konstant 0,84 genommen wird,
allerdings ohne ganz die Giite von (40) zu erreichen.

~ Im Anschluss an die Herleitung seiner Formeln hat Poukka noch
®lnen neuen Weg zur Gewinnung der Formel von Palmguist (31) ent-
T'Vickelt. Folgt das angewandte Verfahren auch in weitem Masse dem-
Jenigen, das zu den beiden Poukkaschen Formeln (39) und (42) fiihrt,
80 weist es daneben doch auch ganz andere, neuartige Momente auf,
die veranlassen und rechtfertigen, von ihm als von einem besondern,
“Weiten Poukkaschen Verfahren zu sprechen im Gegensatz zum ersten,
Im Vorausgegangenen eingehend dargelegten.
Der grundsiitzliche Unterschied im Vorgehen liegt nicht oder
Wenigstens nicht allein in der zu verwendenden Abbildungsfunktion

z=19ph) =1—1+ah)™® a0, 40

1
(1—2 " F—1 1 1+
h = = 2y
L « af i gapt T

die nach Poukka einen Bereich, der den zwischen den Punkten

he 1277 . -y i

= R und h = oo liegenden Teil der reellen Achse enthilt,
auf den Kinheitskreis | 2 | < 1 abbildet. Dass in ihr im Gegensatz zum
Ausdruck (837) mit nur einem willkiirlichen Parameter o deren zwei,
% und B, auftreten, fillt nimlich erst dann wesentlich ins Gewicht,
Wenn wir nicht durch Abbrechen der Reihe (32) nach dem vierten
Glied und Nullsetzen der zwei letzten Koeffizienten ¢y und ¢4 das erste
Poukkasche Verfahren sinngemiiss erweitern, sondern daran fest-
h_&lten, (32) schon beim zweiten Glied abzubrechen. Die Bedingung,

die neben die alte,

I+ 1 1 lbla(H—ﬂ)

! c2:b1d2+bzd%"—"b1"m+b :azﬁQ 0

%0 B2 2 2 B2 +b2]

0
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noch zu treten hat, damit
(46) f(h) ¢ + ¢q2 = 6o + ¢y w(h) = by + by dy p(h)

vollstindig bestimmt ist, finden wir in der im obigen Ausdruck schot
beniitzten Aufspaltungsmoglichkeit von z = (k) =1 + 2* in zwel
Summanden; wir verlangen, dass der «von h unabhingige», besser
gesagt, der von (1 + « h) unabhéingige Teil in (46) verschwinde,

1
o f

Doch ist nicht zu verkennen, dass mit dieser Festlogung eigentlich
der Verzicht auf die Darstellung von f(h) durch Potenzen der Ab-
bildungsfunktion z = y(h) ausgesprochen wird. Die verbleibende
Formel

(45 b) Byt by —— =0 .

1) ~— 2 (el

erinnert weit mehr an eine Entwicklung von f(k) nach Potenzen einer
nicht gleichzeitig mit A verschwindenden Funktion z* = yp*(h) =
== — (14« h)?. Wir verzichten darauf, diese Deutung weiter zu ver-
folgen, da sie kaum zu fruchtbaren und praktisch wertvollen Br-
kenntnissen fiihrt.

Mit den Losungen

azf_l__gj)i:m-lj—l— 2 b0 by —1
by b by \ b
ﬂ:__bl — 1

b o bo by
S
bl

der beiden Bedingungen (45 ¢) und (45 b) erhalten wir dann
1

b b b  bob
4 Beobo 11— -2 (222 _ 1 ;] 0%
I N e e LI
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Woraus fiir den Spezialfall der Leibrentenbarwerte a, und a,; und
Wit k und k,, als den frither ((41 a) und (41 b)) erklirten Verhilt-

nlssen von Kemmuta,tlonszahlen
h S o
(48 't (1 DL Ca\ 9k, —1
) a,~va, (14 1 N, z+1
2 km—i—l —1
h S S N !
- —n T —
49) a1+ Y « LB ZEN gyl
l "l 1 Nx—H T N:r+ﬂ+l
2ka:+1,n_1

folgt. Aus dem Poukkaschen konstanten Verhiltnis k, ~k = 0,84

1 1 ‘e
oh—1 = 068 = 1,47 ~ 1,5, und (49) geht in (31)

liber, wiihrend mit

folgt aber weiter

1 4 n+ 1 3 n41
= 2k 0,12 ne M’Lﬁl*—m—-——
k:u+1 . z+1,n n+-1 - v+ 101 3 n+1

. 1
kz+1,n(\J n_,_5 ; I ,
4019 g . T teens
8 (n+1) 1017,
1
’ hv S:c _'Sx n "—nNm n kL
(50) azﬂ oo aa:m (1 -+ 5 . . N +:EV + H) kz+1,n
z+1,n z+1 z+nt1

die Modifikation der Formel von Palmqvist fir den Barwert der
temporiren Leibrente im Sinne der Ergebnisse von Hantsch ist.
Numerische Nachpriifungen haben gezeigt, dass (50) im allgemeinen
Wiederum leicht bessere Annéiherungen ergibt, als wenn in (49)
k:+1,n konstant zu 1,56 gesetzt wird.

Christen [1], [20] hat aus dem ersten Poukkaschen Verfahren
ittels der Abbildungsfunktion
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2 =1—¢Ph
51
o / - In (1—2)

b =——1In(1—=2

p
die Annéiherung
;o S@ - 2vh
R Y T 1

(52) a0 g Ll Sprt

hergeleitet und daran eine Methode zur niherungsweisen Berechnubg
der hohern Summen der diskontierten Zahlen der Lebenden an-
geschlossen. Sind noch die Zahlen S, tabelliert, so kann man mib
ihrer Verwendung

(goog(®% 1
S Sx(wa+1 T 2)
S'(S)NS wWw— T w—:1:+
(53) : " m+1 \ m-42
S¥ s 8 @—a)™ e +f°':,1‘)
S T (m41) (m+2)... (m+k—2) \m4-k—1 2

setzen, giiltig fiir k = 2; m ist dabei als Mittelwert der fiir verschieden®
¢t anndhernd gleichen Werte

log S,, 41— log S,

y 1) =
™ (%, 1) log (w — xy — 1) — log (w — x,)

zu bestimmen (z, ist ein Anfangsalter, etwa z, = 20). Stehen die
Zahlen S, jedoch nicht zur Verfiigung, so kann man die Beziehungen
(53) so anpassen, dass man S, durch N, und je S¥ durch das nichst-
niedrigere S¥—1 ersetzt. (52) geht mit dem Ansatz (58) in

S g (el 1
R = — -(1-~e 2’“’( mil T3

(54) o—z—1 1
ZDm( L
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iiber, Die Ausdehnung der Formeln auf den Barwert der temporiiren
Rente iibergehen wir, da sie keine Schwierigkeiten bereitet. Selbst-
Verstindlich hétten wir in (52) auch von der Poukkaschen Beziehung
k = 0,84 Gebrauch machen und damit

S
— 1,68 vh’”—“)
(55) a,~a, — a, 0,60 \1—e Ny

erhalten konnen. In der Genauigkeit entsprechen diese Formeln
ungefiihr den Poukkaschen und werden bei grossern Unterschieden
Im Zinssatz diesen iiberlegen; nachteilig wirkt sich aus, dass die Aus-
rechnung nicht mit der Rechenmaschine allein bewerkstelligt werden
kann, vielmehr noch die Beniitzung einer Logarithmentafel notig wird.
Schliesslich sei noch die Formel von Berger [6], [81] genannt,

S ,
NI+1 (6 _a)
' z+1
(56) Ay ™Ay — Ay S(z-l-l oL 8(2?_2 ?
14 LT 7202 ()
2’S’:::-{L-l

die in vollkommener Nachbildung der Herleitung der Poukkaschen
Formel aus der Taylorentwicklung von a, nach der Zinsintensitiit

D da, (0 N ) 0D
’ Y a (’"" ? o( '—d)e t=1
a, — (3 ed x —_— _1\
| = al(®) Zdag . Z( i 5
0=0 o=

folgt‘und mittels der Néiherung?)

1) 1 1 . 1 . 1 _ 1
hv — @' —)v [ —1)—(S—1)Jv (e —e)w (-89 —T)ed o
- 1 _— 1 d’_a - ] 13_1_ I 4
T —1 5 —¢ N —1 3 —p {Bo+ T (0'—0d) +
BS ' 2 l
+ 5y =8+ ... [
wo By=1,B,= ——;—, ... die Bernoullischen Zahlen bedeuten. Abbrechen

der Reihe in der Klammer nach dem 2. Glied ergibt die angegebene Niherungs-

formel.
17



leicht in die erste Poukkasche Formel (89) iibergefithrt werden kann.

§ 4.
Die Problemstellung unserer weitern Untersuchungen.

Wir gehen jetzt daran, die weitere Zielsetzung unserer Arbeit zu
umschreiben. Schon in der Einleitung haben wir kurz bemerkt, dass
Frucht [8] nicht dabei stehen geblieben ist, bloss eine Ordnung in die
grosse Mannigfaltigkeit der Loésungsvorschlige zum Zinsfussproblem
zu bringen; vielmehr hat er anhand verschiedener Beispiele darauf
hingewiesen, dass ein enger Zusammenhang zwischen den in unserer
dritten und vierten Gruppe zusammengefassten Liosungen besteht:
Durch Elimination der Kommutationszahlen geht jede Formel der
vierten Losungsgruppe in eine solche der dritten tber, und um-
gekehrt kann durch einen geeigneten Grenziibergang — niimlich durch
Zusammenriicken der Interpolationsstellen in eine einzige, mehrfach
zahlende — aus jeder Formel der dritten Losungsgruppe eine solche
gewonnen werden, die Kommutationszahlen enthilt. Doch hat er
darauf verzichtet, die I'olgerungen aus diesen Erkenntnissen endgiiltig
zu ziehen und unter Verwendung des Begriffes der oskulierenden
Interpolation seine Betrachtungen in einer Formulierung so abzu-
runden, dass dem Bestehen der aufgedeckten Beziehungen jede Be-
sonderheit genommen und der Zusammenhang der beiden Formel-
gruppen in seiner vollen Allgemeinheit klar aufgedeckt ist: Zwischen
den Formeln der dritten und vierten Losungsgruppe besteht iiberhawpt
kewn tieferer Unterschied, sie sind alle Interpolationsformeln mat dem
Zainsmass als evnziger Verdnderlicher. Nur handelt es sich in dem einen
Fall um Interpolationen mat nur ewnfach zihlenden Interpolationsstellen,
wm andern um rein oskulierende Interpolationen, d.h. wm Interpola-
tionen mit einer einzigen, mehrfach zihlenden Interpolationsstelle.

Diese Feststellung ist kein «Satz», der im iiblichen Sinne «all-
gemein zu beweisen» wiire. Dass die Formeln der beiden Lisungs-
gruppen ineinander iibergefithrt werden koénnen, ist eigentlich ein
trivialer Sachverhalt und mit der ausgesprochenen Bemerkung iiber
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Elimination der Kommutationszahlen und Zusammenriicken von
Interpolationsstellen vollstiindig erledigt; der Rest aber driickt ein-
fach eine bestimmte Auffassung des gegebenen Sachverhalts aus.
Unsere Aufgabe kann es daher nur sein, diese Auffassung durch Bei-
spiele eingehend klarzustellen und vertraut zu machen, durch sie die
Vertahren, die Poukke und Palmquist zar Herleitung ihrer Formeln
entwickelt haben, von einer neuen Seite aus zu beleuchten und iiber-
haupt genauere Einsicht in das Ubergehen der Lidsungen ineinander
Zu gewinnen.

Wenn wir hie und da auch etwas mehr, als es vielleicht notig er-
scheinen mag, Bekanntes wiederholen und ausfithrlich darlegen, so
scheint es uns doch das geeignetste Vorgehen, die verschiedenen Mog-
lichkeiten von Interpolationsansiitzen systematisch zu durchgehen
und je an den passenden Stellen die Anwendungen auf das Zinsfuss-
problem einzuflechten.

3. Kapitel.

§ 5.

Das Zinsfussproblem bei der Leibrente
als Interpolationsaufgabe.

a) Der Begriff des Interpolierens; Interpolation mit einfachen
Interpolationsstellen.

Interpolieren kann man bezeichnen als Ersetzen einer Funktion
¥ = f(x) durch eine leicht und rasch zu berechnende andere, y = ¢(z),
deren Werte innerhalb gewisser Grenzen mit den entsprechenden der
urspriinglich gegebenen Ifunktion angenihert iibereinstimmen und
beim praktischen Rechnen an Stelle von diesen zur Verwendung
kommen. Voraussetzung zur Angabe einer solchen Néiherungsfunktion
1st immer, dass die genauen numerischen Werte von y = f(z) (und
gegebenenfalls auch einiger ihrer sukzessiven Ableitungen)l) fiir
gewisse Argumentstellen schon bekannt sind, sei es, dass f(z) iiber-
haupt nur durch eine Folge diskreter Wertepaare (% y,) ¢ =0, 1,
2, ..., r, gegeben wird, oder dass ein genaues mathematisches Funk-

1) Ohne es jeweilen besonders zu erwiihnen, nehmen wir unsere Funktionen
Stets als analytische an.



— 250 —

tionsgesetz vorliegt und die bendtigten numerischen Werte aus ihm
direkt berechnet worden sind!). Diese Kenntnisse miissen dazll
dienen, gerade soviel unabhingige Bedingungen aufzustellen, als ¢(2)
verfiigbare Parameter besitzt oder enthalten darf, und zwar besteht
das naheliegende, fiir tiefergehende theoretische Untersuchungen
jedoch nicht immer unbedingt zu empfehlende Prinzip in der Forde-
rung, dass die Werte (Funktionswerte und Werte der Ableitungen)
Bezug auf @(z), die den bekannten Werten wn Bezug auf f(z) entsprechen
mat diesen wvollstindig exakt iibereinstimmen sollen.

Der Wahl des Typus der Interpolationsformel, d. h. der Funktion
y = @(z), ist durch diese Festlegung aber in keiner Weise ein Weg
gewiesen. Nach vollig freiem Ermessen konnen wir, wenn vom Fall,
dass f(z) eine periodische Funktion sei, abgesehen wird, unter ratio-
nalen ganzen oder gebrochenen Ifunktionen und einfachen Ausdriicken
in Txponential- und Logarithmusfunktionen diejenige auswihlen,
fiir die wir bei aller Wahrung einer einfachen Berechnung die moglichst
beste Anpassung an den Verlauf von f(z) vermuten. Diese Wahlfrei-
heit wird man sich vor allem dann angelegen sein lagsen, wenn, wie
das beim Zinsfussproblem auch der I'all ist, nur wenige Interpolations-
stellen Verwendung finden sollen oder kinnen. Bei einer grossern
Zahl von Interpolationsstellen kommt dagegen praktisch nur noch die
Interpolation durch den einfachsten Ifunktionstypus, die ganz-
rationale Funktion niedersten Grades in I'rage.

Ohne in eine weitergehende Krorterung von Interpolations-
formeln einzutreten, die keinen direkten Bezug zum Zinsfussproblem
haben oder fiir dieses Problem praktisch bedeutungslos sind, seien
noch zwei Bemerkungen gemacht. Kinmal sei daran erinnert, dass die
bekannte Formel von Waring-Lagrange

!

_ ()
(57) = —L':ZO 5 y(x,) - (2—,

p(@) = (@—ap) (@—2y) ... (x—3,),

1) Im ersten Fall ist dann das Interpolieren das itberhaupt einzige Mittel,
Auskunft iiber die Funktion an andern als den gegebenen Stellen zu erhalten-
Im zweiten dagegen hat es den Zweck, weitere Funktionswerte bequemer als unter
Anwendung der genauen Funktionsvorschrift zu vermitteln, doch um den Preis;
dass nur mehr oder weniger gute Niherungswerte erhalten werden.
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und die allgemeine Formel von Newton

r

58)  gx) = Z (& —xp) (@ —25) ... (32— ) [(Xoy Ty -, ),

f(2o, 1) = Noto) — Ry f(Zg, @15 Ty) = i :Ll) : (21, @)
. Ty — Ty
f(éUO, Ly v ey 1130) = f(CEO, Lys o 00y IE;:Z_H/Z(J/D Loy vos :EQ) ,

einfach die allgemeine Durchbildung dieser Interpolationsart fiir den
einfachsten Interpolationsfall sind, dass nimlich die Funktionswerte
Yo = f(zg), yy = f(zy), ..., Yy, = f(x,) zu den r + 1 Argumentstellen
Zg, &y, ..., &, als genau bekannt angenommen werden. Die Bedeutung
der Formeln (57) und (58) liegt darin, dass durch sie ¢(x) schon ex-
blizit vorliegt und seine r 4 1 willkiirlichen Konstanten nicht erst
mehr oder weniger mithsam mit Hilfe des Systems der » + 1 Bedin-
gungsgleichungen

(59) P(z0) = Yo, (1) = Y1, ..., Q&) =,

gewonnen werden miissen. Doch tritt, wie erwihnt, beim Zinsfuss-
problem dieser Nutzen wenig hervor, indem bei der geringen Zahl von
Interpolationsstellen das Finsetzen in die Formeln (57) und (58) und
Umformen dieser Ausdriicke kaum einfacher ist als das direkte, indi-
viduelle Ermitteln der gesuchten Konstanten aus dem System (59),
wie es fiir allgemeinere Interpolationsfunktionen ohnehin der Iall
sein muss. Damit ist auch schon der Nutzen der nach Gregory-Newton,
Gauss, Stirling, Everett, Bessel benannten und anderer #hnlicher
Formeln fiir das Zinstussproblem entschieden, indem diese alle bloss
Spezialfille der Formel (58) fiir #quidistante Argumente sind und je
nach der Lage der Berechnungsstelle zu den Interpolationsstellen
ihren besondern Vorteil besitzen.

Ferner sei noch die Interpolationsformel von Thiele [43], [44]
hervorgehoben. Die genannte Formel verwendet ihnliche Bildungen
Wie die in (58) gegebenen Steigungen f(z,, z;, ..., % ), nimlich so-
genannte rezvproke Differenzen, hat die Gestalt einer im allgemeinen
nicht abbrechenden Kettenbruchentwicklung und spielt die gleiche
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Rolle fiir Annaherungen durch rationale Funktionen wie die allgemein®
Formel von Newton fiir Niherungen durch Polynome. Wenn die 2!
interpolierende Funktion f(x) nicht selber ein Polynom ist, so ver
mittelt sie meistens bessere Werte als die entsprechenden Abschnitte
von (58). Lisst man alle Interpolationsstellen in eine einzige zu-
sammenfallen, so geht die Thielesche Interpolationsformel in einen
Kettenbruch iber, dessen Koeffizienten Aggregate der Ableitungen
der zu interpolierenden Funktion sind. Man nennt diese Ausdriicke
reziproke Ablettungen, der Kettenbruch selber wird in der Literatur
als Thielescher Kettenbruch bezeichnet; die schon frither gefundene
Formel (88) ist nichts anderes als der zweite Néiherungsbruch von
Thaele.

b) Oskulierendes Interpolieren.

Die Ausweitung des Interpolationsansatzes auf den Iall, dass
neben Funktionswerten auch noch Werte sukzessiver Ableitungen
bekannt sind, ist nach dem gegebenen Prinzip klar: liegen an der
Stelle ,, — ohne Einschréinkung der Allgemeinheit brauchen wir nur
eine einzige Stelle zu betrachten — neben f(z,) = 1, auch noch die
Werte y, = f'(m), vy = F'(z), -, "™ = (a) der m—1
ersten sukzessiven Ableitungen von f(z) vor, so bestehen an dieser
Stelle fiir die Interpolationsfunktion y = @(z) die Bedingungs-
gleichungen

(60) ‘P(wk) == By (P’(a:lc) = y,i’ cee, glo(m—l) (%) — ygcm—l) )

Da diese m Bedingungen an der einen Stelle z, an Zahl gerade den-

jenigen von m verschiedenen Interpolationsstellen entsprechen, bei

denen je der Wert der Funktion allein bekannt ist, liegt es nahe, in %

das Zusammenfallen von m einfachen Interpolationsstellen zu sehen-

In der Tat geht auch aus den, den m verschiedenen Stellen x,, ;1
.y @4y moy 2ugehorenden Bedingungsgleichungen

(59a)  @T) = Yi» P(@Thr1) = Yrprr -+ ';D(mk-}—m—t) = Yktm-1

beim Zusammenriicken aller dieser Stellen in die einzige , nicht
allein die Beziehung ¢(z,) = ¥, hervor, sondern es lisst sich dazt
noch an den m—1 voneinander unabhiingigen Gleichungen vob
Differenzenquotienten (dividierten Differenzen)
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P(z) — @(Tiyy) (i, B,y = Yo — Yerr _ F@) —f(@p)
=Py Tyyy) = = ————— =
T — Tppy . Ty = T4 T — Tpyy

= (T4, Tyry)

P(Zys Ty g xk+2) = f(z, Lrt1s 931:+2)

------------------------------------

qj(mk’ CU,H_!, ey .’Bk+ m—l) = f(wk! Lpggs v00 s mk+m—1)

Je der Grenziibergang durchfiihren, was unter wiederholter Anwendung
des Rolleschen Satzes gerade die restlichen m—1 Beziehungen von (60)
erbringt. Erginzend zu den frithern Feststellungen konnen wir dann
noch sagen, dass dic Zahl der Interpolationsstellen, jede 1hrer Mehrfach-
heit entsprechend gezihlt, gerade der Zahl der verfiigbaren Parameter
der Interpolationsfunktion entsprechen muss.

Wihrend die iiberwiegend gebrauchte Interpolation mit ein-
fachen Interpolationsstellen — wir wollen bei ihr kiinftig als von der
evnfachen Interpolation sprechen — geometrisch darauf hinauslauft,
in einem z, y-Koordinatensystem eine Kurve y = ¢(z) zu legen, die
durch die » -+ 1, dem Bild der Funktion y = f(2) ebenfalls angehérenden
Punkte z,, 4,,0 =0, 1, ..., r, geht und somit die Kurve y = f(z) im
allgemeinen in diesen Punkten schneidet, lassen die Bedingungen in
der Art von (60) die Kurve 5 = @(z) nicht beliebig durch den Punkt
z, i, gehen und f(x) schneiden, sondern nur so, dass sie die Kurve
Yy = f(xz) (m—1)-fach berithrt oder oskuliert. Daher pflegt man die
Interpolation mit mehrfachen Interpolationsstellen gesamthaft als
oskulierende zu bezeichnen. Doch geht diesem Begriff noch mehr als
dem der einfachen Interpolationen eine Findeutigkeit der Frage-
stellung ab. Nicht nur, dass in der Wahl des Typus der Funktion
Y = @(x) wieder volle Ireiheit besteht, sondern es kommt nun auch
noch die Auswahl in bezug auf die Zahl der voneinander verschieden
bleibenden Interpolationsstellen und die Ordnung des Oskulierens an
den einzelnen Stellen dazu, die, wenn y = ¢@(z) eine grossere Zahl von
verfiigharen Parametern enthilt, recht erheblich wird ').

Die obige Bemerkung iiber das Zusammenriicken von Inter-
polationsstellen in eine einzige weist einen Weg, wie fiir oskulierende

1) Rechnet man die einfache Interpolation mit, so gibt es fiir eine einzige
bestimmt gewihlte Interpolationsfunktion y = @(z) gerade soviel Ansiitze, als
die Zahl der verfiigbaren Parameter von ¢(z) in kleinere Summanden, mit
Wiederholung, zerfillt werden kann.
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Interpolationen ausser aus dem System von Bedingungsgleichungen
(59) und (60) die Formel zur Interpolationsfunktion y = ¢(x) 8¢
funden werden kann: ist nimlich fiir die einfache oder eine weniger
weit reichende oskulierende Interpolation mittels der Funktion
y = g(z) die Formel schon bekannt, so folgt allein durch geeignetes
Zusammenriicken der Interpolationsstellen die gesuchte Formel. Wie
weit allerdings diese Methode einfacher ist als die urspriinglich ge-
nannte, hingt ganz vom Kinzelfall ab und kann nur fiir jeden ge-
sondert beurteilt werden.

Frucht [8] hat an einem schénen Beispiel von diesem Vorgehen
Gebrauch gemacht; es sei auch hier dargelegt, um so mehr, als es auf
eine ebenfalls recht niitzliche, bisher aber wenig beachtete Inter-
polationsformel fiihrt 1). In origineller Weise geht der Autor von einel
besondern arithmetischen Figenschaft aus, welche die gewiihlte, eine
gleichseitige Hyperbel mit achsenparallelen Asymptoten darstellende
Interpolationsfunktion y = ¢(z) = Tt besitzt. Fassen wir sie

1 4wy
némlich als Transformation auf, welche die Argumentwerte z in ihre
zugehorigen Funktionswerte g iiberfithrt und die Bigenschaft besitals
das Doppelverhéltnis von vier Grossen invariant zu lassen, so konnen
wir die I'ormel fiir die einfache Interpolation sofort angeben (y, 4o, ¥3
bedeuten dabei die gegebenen Funktionswerte zu den Stellen z,, x,, ®3
y, der nachher als gegeben zu betrachtende Wert von f(z) an der

Stelle z,):

Y—=% Y—%h T Ty
Y—Y2 Ys— Y T— Ty T3— Ty
und
(61) Yy—#h = —8H (Y3 — Yo) (B3 — ) )

Y—1Y: T— 2y (T — @) (Yg— Ya)
Geht dann z; — z,, so folgt daraus

Yy—Y =% Ys—y 1

!
Y—Y T— Ty Xy— Ty Y

1) [3], Formel [19). Hantsch [5], S. 16—17, wendet die Formel zwar auch ar:
aber nur im Sonderfall, dass der eine Rentenbarwert an der Stelle 1 = 0 beniitzt
wird, womit die Bedeutung der Formel gerade nicht deutlich hervortritt.



und, nach einfacher Umformung,

Y1 — Y
) J Jl 1 B ('r . $2) (3}1 A w2) . yz
od T—I Yi— Yz
er
Y1 — Y
62’ — _
(627) y ?/2+1 pa— —

Aus diesen beiden gleichberechtigt nebeneinander bestehenden all-
Semeinen Formeln gehen dann fiir den Barwert der lebenslinglichen

Leibrente
a, () — a (i)

6 ey A
( 3) aj,‘ a/x (’L]) 1 _l_ (%1 . ?’2) ('b, . 12) . 25,m+1 1
ode (v — 1) D, a,(iy) — a,(1y)
r
63) 0, ~a, (i) + e (i) — a, (&) -
Tl Y L))
' (1 — ) (' — 2y) (ax () — e (ip) V23S,

hervor, wobei der links von den Kommutationswerten angebrachte
Index «2» darauf hinweisen soll, dass diese zum Zinssatz ¢ = 1, zu

Nehmen sind.
Lassen wir weiter 1, — 1, gehen und schreiben statt ¢, wieder ¢,

80 ergibt sich die erste Powkkasche Formel

S S:c-}-l

“z+1 " h o ’Uh
(39) /! x - L z-+1
g~y — 8(2) = t, 8(2)
1+ =L yh ] 4= S‘“'“ vh
‘Sx+l z+1

die dernach nichts anderes ist als die Interpolationsformel mittels
der an der Stelle ¢ vollstindig oskulierenden gleichseitigen Hyperbel
mit achsenparallelen Asymptoten, was iibrigens Poukka schon selber
am Schluss seiner Arbeit angemerkt hat.
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Losen wir dagegen (61) nach y auf und ordnen durch eine ele-
mentare Umformung diese Auflésung so, dass sie in den Indices 1 und 2
symmetrisch wird und damit den Index 8 besonders hervorkehrt,

(61) y = y3 —
(Y3=Y1) (Ys—Ya) (T-25) (z4—2,)

— i

(z—x5) {(:B3— 1) (Y3—Ya) — (T5—T,) (ys“'yl)} — (2g—xy) (23—q) (yz‘yl)

so erhalten wir die Formel fiir die einfache Interpolation in einer Form,
wie sie Palmqoist [22] gegeben hat1). Allerdings hat er sich auf den
besondern Fall beschrinkt, dass die Argumente #quidistant seien;
soll dabei x5 das mittlere unter ihnen bedeuten, so liegt es nahe 3 = %
T, = x—¢&, Ty = + & zu setzen, wobei dann das bisher durch &
bezeichnete Argument des gesuchten Funktionswerts seinerseits am
besten durch die Bezeichnung z 4 h ersetzt wird. Der Weg selber)
der ihn zur angegebenen Formel gefithrt hat, ist der vorangegangenen
Betrachtung gerade entgegengesetzt; Ausgangspunkt ist die nach
dem ersten Poukkaschen Verfahren hergeleitete Formel (38), aus der
die Ableitungen f'(z) und f”’(z) eliminiert werden.

Schliesslich hat Franckz [28] mittels der der Nomographie eigenen
Methoden den organischen Zusammenhang unserer drei Formeln (38);
(62) und (61') 2) nochmals dargestellt. Wir haben schon darauf hin-
gewiesen, dass die der ersten Poukkaschen Formel (39) zugrunde
liegende Formel (88) einfach der zweite Niherungsbruch des Thiele-
schen Kettenbruchs ist; gleichermassen stellt (61') die nach dem
zweiten Glied abgebrochene Interpolationstormel von Thiele dar.

¢) Die rein oskulierende Interpolation.

Wie unter den verschiedenen Moglichkeiten oskulierenden Inter-
polierens schon der Spezialfall der einfachen Interpolation besonders
hervorgetreten ist, so trifft dies auch fiir das andere Extrem zu, dass
alle Interpolationsstellen in eine einzige, z, zusammenfallen. In
diesem TFall, welchen wir als den der rein oskulierenden Interpolation
bezeichnen wollen, sind dann die Koeffizienten der Interpolations:
formel y = ¢@(z) Stellenfunktionen zum Argument z,, d. h. sie setze?
sich aus den Werten 1, = f(2o), Yo = f(2¢), ..., ¥ = [ (x,) de¥

1) [22], Formel (5).
2) [23], Formeln (4), (6) und (3).
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8egebenen Funktion y = f(z) und ihrer Ableitungen an der Stelle z,
Zusammen. '

Da damit einerseits der Stelle 2, eine iiberragende Sonderstellung
zufillt, andererseits eine Funktion y = f(x) an der Stelle z = 0 im
allgemeinen merklich einfacher als an einer andern Stelle zu unter-
Suchen ist, wird es zu einem erheblichen Vorteil gereichen, y = ¢ (z)
und damit auch die gewshlte Interpolationsfunktion ¥ = ¢ () nicht
lehr weiter im =, y-Koordinatensystem zu betrachten, sondern in
dem aus ihm durch die Schiebung k = z— x,, ¥ = y hervorgehenden
h, y-System als Funktionen y = F(k) = (z— o) und y = g (k) =
=@ (x—uzx); y=f(x) und y = @(z) lassen sich dann iibrigens auch
Noch in der Form y = f(z, + k) und y = @(z, + k) schreiben. Damit
gehen die r -~ 1 Bedingungen

(64) @ (T)) = Yo @' (%) =0 -+, @ (2g) = ¥

fiir die Festlegung der Konstanten von y = @ () gerade in solche an
der Stelle h = 0 iiber,

(64" p0) =y, @O0 =1, ..., ") =y

allerdings dann zunichst die Koeffizienten von y = @ (h) bestimmend.
Dass hierbei fiir eine bestimmt gegebene Interpolationskurve (oder
anders gesagt, fiir ein bestimmt gedachtes Interpolationsgesetz)
¢ (x) = (2, + k) und @ (h) = @ (z—,) vom genau gleichen allgemeinen
nalytischen Ansatz sind und sich nur durch die Verschiedenheit der
Koeftizienten voneinander unterscheiden, ist eine eigentlich trivale
F olgerung aus dem zur Anwendung gelangten Transformationstypus!).
Zur Verdeutlichung dieses Sachverhalts wollen wir noch ein
konkretes Beispiel geben, welches zugleich mit einer Formel bekannt
Macht, die fiir das Zinsfussproblem von erheblichem Wert ist.

1) Dieser Sachverhalt soll auch in der Bezeichnungsweise ihren Ausdruck
finden, indem fiir beide Variable z und h das gleiche I'unktionssymbol @ beniitzt
_‘_Vit'd. Dass im einen Iall die Konstanten by, by, .. . , br, im andern die Konstanten
by, byy ..., by vorliegen, ist dadurch ausgedriickt, dass im letztern das Funktions-
Symbol @ beibehalten, doch quer iiberstrichen ist. Um die Darstellung aber nicht
innétig zu Giberlasten, und wo keine Verwechslungen moglich sind, lassen wir dieses
Unterscheiclungszeichen iiberhaupt weg oder beniitzen das ungestrichene Symbol
m £, y-System und den Querstrich fiwr das «, y-System. Im iibrigen sollen in den
Interpolationsformeln die verfiigharen Parameter mit griechischen Buchstaben
bezeichnet werden, sind sie durch die gegebenen Ausgangsbedingungen bestimmt
8edacht, so soll dies durch Verwendung lateinischer Buchstaben angedeutet sein.
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Wollen wir beispielsweise fiir die Interpolationsfunktion

Mz
(65) y = @(x) = fye 1He

die zu ihr identische Funktion ¢ (k) bekommen, so haben wir einfach @
durch z, 4 h zu ersetzen und erhalten nach einigen elementaren Um-
formungen
Py,
(1+p220)*
oo Fs __p

(65) y=1gph) =@ +h =g@) = peFho.e  1Hhn

Setzen wir dann als neue Konstante

'}} mﬁeliog:xo ’}I :__..._&____,.. y :___._E%._.
’ ’ ’ ' 1+ 52%)2’ ’ 14 By

an, so hat y = ¢ (h) in der Tat die gleiche Gestalt wie y = ¢ (h):

yih

(65") y =k =y - ern.

“Gehen wir mit dieser Interpolationsfunktion (65") weiter zur
rein oskulierenden Interpolation iiber, d.h. nehmen y, = f (%)
Yo = f'(zg), Yo = " (z,) als gegeben an, so besteht fiir die Bestim-
mung ihrer Konstanten ¢, ¢, ¢, das Gleichungssystem

p0) =0 =1
@ (0) = ce, = Yo
¢ (0) = coor (— 205 + ¢)) = Yy,

Yo Ly W
Ch = 5 ¢4 = —, Cp — ~— | —— — —
° % ! Yo ? 2 ( Yo ?/0)

welches

zur Liosung hat.

Indem wir noch fiir y, den Barwert der lebenslinglichen Leibrente
zum Zinssatz 4, fir y, und y, deren bekannte Derivierte (5) ein-
setzen, folgt mit h = +" — ¢
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Sz 41
v h
_ NarH:
" §(2)
$hen ‘Sa:-}—l 1 g1 :
6 ' U\ Spr1 2 Nyiq
(66) a, coa, - e z+1 mefl

Auf diese Formel, allordings in einer etwas andern Gestalt, ist
4uerst Hantsch im Zuge seiner schon genannten systematischen Unter-
Suchung gestossen !); sie ist ein Beispiel dafiir, wie eine funktionelle
Zuordnung oft analytiseh verschiedenartig formuliert werden kann.
(65”) kénnen wir nimlich auch in der Form

ao-}-al h

(65’”) ("’E'(h) — 1+tagh

darstellen, indem wir die neuen Konstanten
ag =My, oy =y + ylny, =7y

einfiihren; mit

oy = Ina Gy = ¥ e ——
0 xr 2 f
‘Sm-r—l 2 N:H—I
v 1(2) J
S 1 S
J-1 ; e 1 E
ty = — ¥ —Lt2 o Ing, v | 22 — — =
N e 2 N
z41 Pgt a1

lS‘t dann (65"') die allerdings auch schon etwas vereinfachte Form,
die Hantsch (66) gegeben hat. Sie weist gegeniiber der unsrigen den
Vorteil auf, dass mit der Ermittlung des Potenzworts gorade das
fertige Hrgebnis vorliegt und die Multiplikation mit a, in Wegfall
kommyt, dafiir verlangt die Berechnung ihrer Konstanten mehr Arbeit.
Verwenden wir wieder die Poulkkasche Beziehung % = 0,84, so er-
halten wir aus (66)
SI-{-].

———vh
Npt1
S, 4

1
37 — vh
8 P 140,34 N v
(67) S y=a,ce st
®Ine Formel, die ebenfalls schon Frucht 3] angegeben hat. Die beiden
Formeln (66) und (67) leiden wie schon die Iormeln von Christen (52)
\\'—\_

1) [5], Seite 26.
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und (54) daran, dass sie den Gebrauch einer Logarithmentafel notig
machen; bemerkenswert ist, dass sie auch bei grossern Zingsatz-
spannen noch recht gute Annitherungen ergeben und hierin die ent-
sprechenden Poukkaschen Formeln iibertreffen.

d) Die beiden Poukkaschen Verfahren und ihr Zusammenhang mit der
rein oskulierenden Interpolation.

Wollen wir die allgemeine Formel fiir die rein oskulierende Inter-
polation von der Stelle h = 0 aus mittels des Polynoms r-ten Grades

(68) y=¢h) =Py +pih+ ... +4,

bestimmen, so werden die Bedingungsgleichungen (64’) besonders
einfach, niémhich

?9(0) = ¢! b, =y 0=0,1,...,7,
und die aus ihnen eindeutig hervorgehende Lésung

(0)
Yo
ﬁezgy =b QEO’]-’--UT

e

gibt nichts anderes als die ersten r 4 1 Entwicklungskoeffizienten der
Taylorreihe von f(z) = f(xo + h) =f(h) an der Stelle = x, baw. h =0,

(69) Fla) = Flao + 1) = F) = D b ke,

Es gilt somit der Satz: Die Formel fiir die rein oskulierende Inter-
polation von f(x) = (o + h) = f (k) von der Stelle h = 0 aus mittels des
Polynoms r-ten Grades (68) ist durch die r-te Teilsumme der an der
Stelle © = xy bzw. h = 0 angeseteten Taylorschen Entwicklung (69) vor
f(z) =F(xg + h) =f(h) gegeben, und umgekehrt bedeutet Abbrechen dieser
Taylorrethe (69) nach der r-ten Potenz von h michts anderes als rewt
oskulierendes Interpolieren von f(x) = f(xg+ h) = f(h) von der Stelle
h = 0 aus mittels des eindeutig bestimmten Polynoms r-ten Grades (68)-

Diese bekannte, elementare Tatsache, aus der auch sofort die
Deutung der Formeln (27) und (30) von Steffensen und van Dorsten
als Interpolationsformeln hervorgeht, legt die Vermutung nahe, dass
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auch zwischen den beiden Poukkaschen Verfahren und dem rein
oskulierenden Interpolieren ein enger Zusammenhang bestehe, denn
es ist bei diesen Verfahren ebenfalls ein wesentlicher Zug, die ihnen
zugrunde liegende Reihe (32) an geeigneter Stelle abzubrechen. Dieses
vermutete Verhalten lisst sich in der Tat vollstindig bestéitigen,
doch wird sich erweisen, dass der gesuchte Zusammenhang in einer
andern Richtung liegt, als man auf Grund des vorangegangenen Satzes
und der schon im zweiten Kapitel gewonnenen und in den Formeln
(85) und (86) zusammengefassten Erkenntnisse iiber die Beziehungen
der Koeffizienten b, und ¢, der beiden Reihen (29) und (32) vielleicht
Zuniichst zu vermeinen glaubt.

Wir haben nimlich frither die Verkniipfung der Koeffizienten-
systeme b, und ¢, vom Standpunkt aus betrachtet, dass die eine der
beiden Koeffizientenfolgen gegeben, die andere gesucht sei. Dabei
waren die beiden I'olgen durch eine analytische Iunktion z = w(h)
verkniipft, die mit einer geringfiigigen LKinschrinkung zwar beliebig
withlbar, doch fest vorgegeben sein sollte, d. h. in welcher weder im
analytischen Ansatz noch in den in ihm enthaltenen Parametern will-
kiirliche Vertfiigungen mehr moglich oder nitig waren. Diese Annahme
ither Gegebenes und Gesuchtes miissen wir aufgeben, wenn wir nun
an die Untersuchung der beiden Poukkaschen Verfahren gehen. Wir
setzen wohl unverindert die Kenntnis der ersten r+1 Koetfizienten b,
der Potenzreihe (29) als Ausgangspunkt voraus. Neu kommt dagegen
hinzu, dass wir auch iiber die Werte der Koetfizienten c,, und zwar
in sehr einschneidender Weise, Vorschriften machen, wofiir wir darauf
verzichten, die I'unktion z = yp(h) fest vorzugeben. Vielmehr schilt
sich gerade als Aufgabe heraus, die in einem fest vorgegebenen ana-
lytischen Ansatz von z = y(h) noch verfiighar gelassenen Parameter
80 zu bestimmen, dass sie mit den vorgegebenen Bedingungen iiber
die Werte ¢, im Binklang stehen. Dabei erkennen wir unmittelbar,
dass z= y(h) wenigstens soviel verfiigbare Parameter enthalten muss,
als Vorschriften {iber die Koeffizienten ¢, bestehen, aber auch nicht
deren mehr enthalten darf, wenn kein Parameter mehr willkiirlich
withlbar sein soll.

Wenden wir uns jetzt vorerst allein dem ersten Poukkaschen Ver-
fahren zu, so haben wir es mit der folgenden Vorschrift zu tun: wir
Setzen die « Abbildungsfunktiony z = (k) mit r—1 verfiigharen Para-
metern m,, 7y, ..., @, an und verlangen, dass diese Parameter die
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r — 1 Koeffizienten c¢,, ¢y, ..., ¢, der Reihe (32) zum Verschwinden
bringen sollen,
6y =C3= ... =¢, =0.

Ils ist offensichtlich, was wir damit bezwecken: trotz Abbrechen der
Reihe (32) erst nach der r-ten Potenz von z = y(h) bleibt als Niherung
fitr f(h) doch nur der zweigliedrige Ausdruck

(70) fh)y > (h) =cy + ¢y p(h, 7y 7y, ..., 7,)

stehen. Von den r 4 1 unbestimmten Parametern ¢, = n,, ¢; = 7
Ty, Ty - .., 7, von (70) wird der erste explizit durch die gegebenen
Koeffizienten b, der Reihe (29) dargestellt;

(71 a) 7y = by = Yy,

der zweite driickt sich ebenfalls explizit durch die b, und die ver-
bleibenden Parameter m,, 75, ..., @, aus,

(71 b) my =bydy =by .y (w7 ..., 7),

wiihrend nach Poukkas Vorbild die restlichen Parameter my, g, ..., 7%
implizit durch das System der »—1 Gleichungen mit »—1 Unbekannten

Cp =0 =9 ..., ) by + Voo (s, ..., ®,) by
cg=0 =y ..,m) b+ Yo (..., ) - by +

b
(Tle) + Va3 (T, + o o, ) bs

-----------------------------------------------------

¢, =0=19p, (®g ..., 7) by 4+ vo, (@, ..., 7w,) b+ ... +
+yrr (”‘2! "'Jnr)b"

festgelegt sind. Die Beifiigung der Werte ,, o, ..., 7, zu den Koeffi-
zienten y,, — die Bildung dieser Koeffizienten y,, haben wir im An-
schluss an Formel (85) angegeben — soll dabei daran erinnern, welches
die Unbekannten im System (71 ¢) sind. Mit wenig Miihe lisst sich
aber jetzt weiter zeigen, dass das aus (71 a), (71 b), (71 ¢) zusammen-
gesetzte System (71) von r + 1 Gleichungen mit » + 1 Unbekannten
mit dem folgenden #quivalent ist, d.h. die gleichen Lisungen po
D1 Py « - +» P, besitzb:



(72)

-----------------------

L b

Denn, py = by, pi> Pos «--» P, s6i eine Liésung von (71), bedeutet,
dass die gegebene Koeffizientenfolge by, by, ..., b, vermittels y(h,
* * * . . *

Py Pgs - -+, p,) 10 die Folge ¢q =by, ¢, =p;, 63 =¢3= ... =¢, =0
tibergefiithrt wird. Nun ist aber diese Beziehung umkehrbar eindeutig
und findet nach (36) gerade ihren Ausdruck im System (72), wenn wir
in ihm fiir die Parameter m,, x,, ..., @, die Folge py, Py, - .-, P,
einsetzen. Damit ist aber schon gezeigt, dass pg, py, - -, p, (72) be-
friedigt, also Losung dieses Gleichungssystems ist; entsprechend
zeigh man, dass auch umgekehrt jede Losung von (72) Losung von
(71) sein muss.

Dieses Gleichungssystem (72) konnen wir noch etwas umformen,
wenn wir uns einerseits der frither gegebenen Beziehung

1 dsfq)(h)
Ly = ET( i )

erinnern und andererseits beachten, dass fiir die durch (70) definierte
Funktion P(h) Y(0) = ¢o =@y = by, P'(h) =7, (h, 70y, 70y, - . -, 7,)
gilt. Wir erhalten

YO0 =¢ =b; =1
(72" a) { 0) 0 o = Yo ’
P0) =y (0) = by = Yo
PO0) = my” (0) = 2!b; =y,
g‘[!l} (0) = 77 wn/ O) - 3! b — yul
(72'b) P P

------------------------------
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und erkennen, dass wir nichts anderes als die Bedingungsgleichunge®
(64') fiir y = W(h) als Interpolationsfunktion vor uns haben, womib
der einfache Satz gilt:

Das Bestimmen eines Ndherungswerts

’

(70') f (1) ~ % AL

Yo
v (0)
einer Funktion f(h) durch das erste Poukkasche Verfahren mittels der
(r — 1)-parametrigen ¢ Abbildungsfunktion» v (k) ist michts anderes als

das rewn oskulierende Interpolieren wvon f(h) von der Stelle h =0 aus
mattels der (r + 1)-parametrigen Interpolationsfunktion.

(73) @(h) = yo +y1wh).

Die etwas merkwiirdig erscheinende Gestalt von ¢ (h) bat dabel a
Folge, dass y, und y, immer durch die gegebenen Werte i, und )
und die Parameter von w(h) angegeben Werden kénnen und ¢ (M)
praktisch als Funktion

(78 w(h) = Yo

!

) w; ("0)  (h)

allein mit den Parametern von w(h) aufgefasst werden kann, zu deren
Bestimmung dann nur das Teilsystem (72’ b) zu verwenden ist.

Vergleichen wir (72'b) mit (71¢) und bedenken, dass fiir jede
Funktion, sei sie einfach oder verwickelter, es ungefihr den gleichen
Arbeitsaufwand braucht, sie bzw. ihre Umkehrfunktion in die zu-
gehorige Potenzreihe zu entwickeln oder die beiden Funktionen direkt
zu differenzieren, so kommen wir nicht um die Feststellung herum,
dass das erste Poukkasche Verfahren einfach die Losung einer g€
gebenen Interpolationsaufgabe auf einem mehr oder weniger kompli-
zierten Umweg bedeutet. Eine positiv zu wertende Tatsache bleib®
am Verfahren und den daran gekniipften Betrachtungen allerdings beé
stehen; durch Anwendung des Lindelofschen Kriteriums lisst sich
jedoch auch nur unter den frither gemachten Vorbehalten, beurteile?s
ob durch die Interpolation mittels @(k) ein besseres Ergebnis erwartet
werden darf als bei Abbrechen der Potenzreihe (29).
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Nehmen wir, um die Ansitze (78’) und (72’'b) an einem Bei-
Spiel zu belegen, die von Christen verwendete «Abbildungsfunktiony

2=1y(h) =1 — ¢ d.h. setzen

Yo Yo ]
Ph) =+ —o () = g + > (L — ),
' (0) B
80 wird
’ [} " yg yélz ﬂrl
4 (O)z_y0ﬂ=y0) ﬂx—“:'undep(h)=y0-——,r 1“8”0 ;
Yo Yo

Was unter Beriicksichtigung von (5) in der Tat zu (52) fiihrt.

Mit der in das erste Poukkasche Verfahren gewonnenen Einsicht
ist es leicht, auch das zweite vollstindig zu durchschauen. Um eine
mdéglichst weitgehende Anlehnung an das erste Verfahren zu erlangen,
fassen wir seine ebenfalls sinngemiiss verallgemeinerte Vorschrift so,
dags wir wie bei diesem das Verschwinden der r — 1 Koeffizienten
€y €3, ..., ¢, und Abbrechen der Reihe (32) nach der r-ten Potenz von
% = y(h) verlangen, abweichend von ihm aber w(h) mit einem will-
kiirlichen Parameter mehr, also insgesamt deren r, my, 7y, ..., W,
ansetzen. Zur Aufstellung einer hierdurch notwendig gewordenen
Zugitzlichen Bedingung zu den schon genannten Bedingungen gehen
Wir vom Ergebnis (70) des ersten Verfahrens aus. Lisst sich nimlich
¥(h) in der Gestalt

p(h) = K + »(h)

Schreiben, wo K eine feste, von den r willkiirlichen Parametern z,,
*++, @, , unabhiingige Konstante ist und wegen 9 (0) =0 % (0) = —K
Sein muss, so wird (70)

Y(h) = ¢ + ¢, 9 (h, 7y, ey ) = 6o+ ¢ K + ey (hy7gy. oy 7, y).

In diesem durch die gegebene Aufteilung von w (h) dreigliedrig ge-
Wordenen Ausdruck verlockt es nun, den von h oder, genauer gesagt,
den von x (k) freien Teil zum Verschwinden zu bringen,

00+01K:0!

80 dags dann nur der eingliedrige Ausdruck
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(74) wh) =cynh, 7y, ...y, )

stehen bleibt. Setzen wir, um zu betonen, dass ¢, und ¢, auch ver-

fiighare Parameter sind, wieder wie frither 7z, = ¢,, 7, = ¢,, so dienb

uns dann zur Bestimmung der » 4+ 2 Parameter sy, 7y, 7y, - . ., Tp i

das System von r + 2 Gleichungen

Tty = by = Yo

7wy + Kmy, =0

my=byyi (T -+ Tppy)

¢y =0 =y (7, - o Tppt) * by T+ Vas (e o Tyy) by

(70) 03 = 0 = ylg (752, ey n?"l‘l) 3 b]. ‘|"' yzs (%2, e vy ﬂir_l_l) = b2 +

+ ¥as (@25 -+ -, :’rr-i-l) by

6, =0 =y, (T ooy Tppy) by + Vo (my ooy wyy) - ba

S TN C T ) B

Durch die genau gleiche Beweisfiithrung, wie wir sie zum Nachweis
der Aquivalenz der Systeme (71) und (72) verwendeten, ergibt sich
aber, dass (75) zu

7y = by = 1o

7o+ Ky =0

(76) by =T (g -+ Rppy) * Ty
_ by =115 (s, oo, 7 y) * 7y

----------------------------

=TI, (g oy Mppy) * T

dquivalent ist, welches System seinerseits wegen
P (h) =#® (h) (s=1,2,...) und %(0) = — K als System der r + 1
Gleichungen mit den r 4+ 1 Unbekannten z, #,, ..., 7, ., :



s P67 ==
Yo = %(0, 7y, ..., 7, ) - 7 = @(0)
Yo=2u"(0, 79, ..., 7,,,) + 7 = ¢ (0)

(76’) yg = %”(O, Ty « v vy nr-}-l) - Wy = q)” (0)

----------------------------------

geschrieben werden kann. Dieses ist aber wiederum nichts anderes
als das System der Bedingungsgleichungen (64") fiir ¢ (k) =n, . % (h)
als Interpolationsfunktion. Damit gilt der dem vorangegangenen Satz
iiber das erste Poukkasche Verfahren analoge Satz:

Das Bestimmen des Niherungswerts

(74') £ () oo — %ﬂ % (h)

evner Funktion f(h) durch das zweite Poukkasche Verfahren mattels der
r-parametrigen « Abbrldungsfunktiony w(h) = K + %(h) — nur bei dieser
Zierlequngsmaglichkeit von vy (h) tst das Verfahren durchfiihrbar — st
nichts anderes als das rewn oskulierende Interpolieren von f(h) von der
Stelle h = 0 aws mittels der (r + 1)-parametrigen Interpolationsfunktion

(77) p(h) =y, - %(h).

Wie bei der dem ersten Poulkaschen Verfahren zugeordneten Inter-
polationsfunktion y, und y, explizit durch die bekannten Ausgangs-
werte und die andern Parameter ausgedriickt werden konnen, ist
dies auch bei (77) mit y, der Fall, so dass (77) als Funktion

; % (H
a7) @) = — —Zg x(h) = — 1y, ;E(—)?-

aufgefasst werden kann, die allein die r Parameter von x (h) enthéilt,
zu deren Bestimmung dann vom System (76') die erste Gleichung
wegfillt.

Als Beispiel zu diesem Satz wollen wir eine « Abbildungsfunktiony
¥ (h) — wie man an (77") sofort erkennt, ist als Umkehrung von ¢ (h)
%(h) nur bis auf einen willkiirlichen Parameter bestimmt zu der
von Hantsch erwihnten Interpolationsfunlktion
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rih

(65") y =) =yyettrt

angeben. Weil die Exponentialfunktion fiir # = 0 eins wird, lautet

sie am einfachsten
_U"l h
Yo

_hnk .;._l_(_ﬁﬁ..]ig‘)
ph) =1—¢'Frh =1—¢ *\w n/.

e) Eine weitere Ausdehnung des Interpolationsansatzes; die Formeln
von Palmqvist und Birger Meidell als Interpolationsformeln.

Wir nehmen eine letzte Ausweitung des Interpolationsansatzes
in dem Sinne vor, dass wir nicht mehr die vorgelegte Funktion y = f (%)
sondern eine fest vorgegebene Funktion Y = 9 (y) von ihr — diese
ist dann eine mittelbar gegebene Funktion von z, Y =y (f (2)) =
— F'(z), — mittels der Funktion Y = & (z) interpolieren. Dabei stellen
sich gleich zwei I'ragen:

1. Kann diese Interpolation von Y = ¥(y) = ¥ (f(x)) mittels
Y = @ (z) immer auch als Interpolation von y = f(z) mittels
einer Funktion y = ¢ (x) gedeutet werden, und welcher Zusammen-
hang besteht dann zwischen @ (2) und ¢ (z)?

2. Bietet diese Ausdehnung des Interpolationsansatzes iiber-
haupt Interpolationsmoglichkeiten, die in anderer Fassung nicht auch
schon aus den Ansiitzen der direkten Interpolation hervorgehen, und
wenn ja, in welchem Ialle?

Die erste I'rage findet ihre vollstindige Beantwortung im folgen-
den Satze, in dem y = 4™ (Y) die Umkehrfunktion von Y = v ()
bedeuten soll: Wird statt der vorgelegten Funktion y = f (x) eine wohl-
bestimmte Funktion Y = ¥ (y) =¥ (f(x)) von ihr interpoliert, und zwor
mattels der Interpolationsfunktion Y = @ (x), so ist die Interpolation
identisch mat derjenigen von y = f (x) mattels der Funktion

y =g (@) =¥ (D (2)) .

Hinsichtlich der zweiten Frage erkennen wir unmittelbar, das
dann neue Interpolationsansitze entstehen, wenn p'(Y) sich nicht
als geschlossener Ausdruck der geliufigen algebraischen und trans-

zendenten Funktionen darstellen lisst. Im andern Fall wird einfach
ein schon bekannter Interpolationsvorgang in einer andern Formu-
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lierung geboten. Dies kann oft von praktischem Nutzen sein; soll
2. B. y = f (z) durch eine Interpolationsfunktion ¢ (z) = e?@  dar-
gestellt werden, so wird man geliutiger Y = In f (2) oder Y = log f ()
mittels ¥ = @ () interpolieven. Als Beispiel hierzu sei erwiihnt, dass
Frycht gerade von dieser Seite her zur Formel (67) gelangt ist, die wir
auf dem Wege iiber die Formel (66) von Hantsch erhalten haben.
Betrachten wir die rein oskulierende Interpolation, so gehen die
friiher genannten Bedingungsgleichungen (64) in die folgenden iiber

D (x)) =Yy D (x)) =Yg, .00, QN () = YV,

I )

aus den gegebenen Werten 1y, = f (o) , 4o =1 (o), - -+ Y = £ (2
und den Werten der Ableitungen von  (y) nach y an der Stelle
Y = y, zu bervechnen ist.

Wir beniitzen hier die giinstige Gelegenheit, auch noch die Wirkung
zu untersuchen, die das Andern des Arguments einer Funktion auf
deren Interpolieren ausiibt. s gilt der Satz: Wird die vorgelegte
Punktion v == f(x) als Funktion y = F(X) eines neuen Arquments
X = w(x) aufgefasst, und bedeutet x = ' (X) die Umkehrfunktion
von X = (), so ist das Interpolieren von y = f (x) mittels der Funktion
Y = @ (x) identisch mit dem Interpolicren von y = I' (X) mattels

y=>oX) =9y X)) .

Betrachten wir wiederum besonders die rein oskulierende Inter-
Polation, so ist zwar hinsichtlich der Bestimmungsgleichungen (64)
kaum eino Bemerkung notig, hingegen lohnt es sich, auf eine wohl
zu beachtende Besonderheit hinzuweisen. Sobald wir, von den Stellen
=1z, X =X,=wp(x,) aus interpolierend, diese zum Ursprung
der Koordinatensysteme machen und die vorgelegte Funktion
Y= f(z) = F (X) als Funktion y = f (zo + h) = f (h) =" (X, + H)
=T (H) der Differenzen h — x— x,, H = X —X, betrachten,
besteht zwischen h und H nicht die Beziehung H = % (h), sondern

die folgende
H=yp(x,+h)—yplzy), b= ' (X + H) — ¥ (X)),

die in allgemeiner Weise nicht weiter vereinfacht werden kann.
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Wollen wir dann beim Zinsfussproblem in einer Formel die Diffe-
renz h =4 —1 der Zinssitze durch die Differenz ¢’ — & der ent-
sprechenden Zinsintensititen oder die Differenz v — v der ent-
sprechenden Abzinsungsfaktoren ersetzen, so besteht daher die Ver-
kniipfung der genannten Argumente in den leicht zu errechnenden
Transformationen

- v'—v B v'—w ) B h v?
L o @—v) v Y U__ﬂhv
(78)
6(‘5l_(5)**“1
| = (14 1) (" —1) §—08=1In(l+vh).
v

Als erstes Beispiel zu den vorangegangenen Uberlegungen deuten
wir die beiden von Burger Meidell [19] gegebenen Formeln

8
(79) a’::: deal ((EE) : )
€

wo e, wieder die abgekiirzte mittlere Lebensdauer bedeutet, und

| _ St
(28) an~ ay (14 ho)~ Nopt

als Interpolationsformeln. Meidell hat sie aus gewissen Ungleichungen
von Jensen [45] hergeleitet. Diese lauten

; e
o (5 ;_;_ji)
, i

wobei das obere oder untere Ungleichheitszeichen gilt, je nachdem die
iiber dem Intervall, dem die beliebigen recllen Werte z, (o =1, 2,
...,7) entnommen sind, stetige Funktion ¢ () durchwégs konvex
oder konkav ist; b, (¢ =1,2,...,7) sind beliebige positive Werte
Wenn ¢ (z) dagegen die lineare ganze Funktion ist, und nur in diesem
Falle, besteht zwischen den beiden Seiten von (80) Gleichheit. Weicht
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nun das Bild von ¢ (z) innerhalb des zu betrachtenden Intervalls
nicht stark von der Geraden ab, so dart (80) noch ndherungsweise als
Gleichung aufgefasst werden. Wihlen wir als eine solche passende

’
L

Funktion ¢ (x) = 2'"*, setzen 1 4 ¢ = % v?, womit @ (z,) = v

wird, und b, = ,p,, so folgt (79), wihrend (28) sich aus dem Ansatz
bi) = 'Ui) n:p.l:? '1:0 = Q’ (p (‘{L‘) = (1 _F h :U)'"w = Gk(dl.—o) x’ (p (‘/E!.’) =k e

ergibt. Durch Zuriickgehen auf die genaue Bezichung (80) kénnen wir
in wertvoller Weise mathematisch exakt bestimmen, ob die durch (79
und (28) gegebenen Nitherungswerte zu gross oder zu klein austallen,
Wie man leicht nachrechnet, gibt (79) zu grosse oder zu kleine Niihe-
rungswerte, je nachdem 0 \2“ 0" ast; (28) dagegen gibt immer zu kleine
Niéherungen.

Durch Logarithmieren der beiden Gleichungen (79) und (28)
zu einer beliebigen Basis b erhalten wir zunéichst

log a, —log e,

!
log @, — log ¢,

(9] 5 B )

und

log @) = log a, — e log (1+4-hv) = log @,— Sarr, Do log, ¢+ ln (14-hv).
o o g - o) o Yz ])I Na;-|--l ob

Bedenken wir nun, dass e, der Rentenbarwert zum Argument ¢ =
1st, ferner

S, 1 d log a,
e S s S ] o L = —
D, a, 08 d o

und nach (78) In (1 + hov) = &' — & wird, so erkennen wir, dass die
beiden Formeln (T9) wund (28) von Birger Meidell sich auf ein wnd
dieselbe  Interpolation bezichen, nimlich die lineare Interpolation des
Logarithmus des Leibrentenbarwertes a, mat &' als Argument.  Nur
liegen, am ersten Falle zwei verschiedene Interpolationsstellen, ndmlich
3 = 0 und & vor, wihrend 1m zweiten von der Stelle § aus rein oskulierend

interpoliert wird.
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Als Hauptanwendung der Interpolation einer Funktion ¥ = ¥'(¥)
der gegebenen Funktion y = f (h) untersuchen wir das Verfahren,
das Palmguist [20] zur Herleitung seiner bekannten Formel

hva—H e

31 a1+ 22 P
(1) %™ O 15N

z-+1

gegeben hat, auf seinen Interpolationscharakter hin. In einer schon
von Palmquist selber bemerkten Verallgemeinerung besteht das Vor-
gehen im folgenden: Man setzt die vorgelegte Funktion iy = f (h)
von der ihr Wert und die Werte ihrer » ersten sukzessiven Ableitungen
an der Stelle h=0, y,=71(0), y5=f©), ..., y{’' = £ (0)
oder, mit andern Worten, die ersten » + 1 Koeffizienten by, b,, ..., by
der Potenzreihe (29) numerisch gegeben sein sollen, einer lfunktion
y = (Y)Y) gleich, wodurch dann Y implizit als Funktion von A,
Y = Y (k) definiert wird, und entwickelt diese Funktion ihrerseits
in die Taylorsche Reihe an der Stelle k =0

(81) Y = )| B,W.

0=0

Durch Abbrechen dieser Reihe nach der r-ten Potenz von h — wie
leicht zu iiberlegen ist, kénnen wir die numerischen Werte der Koeffi-

zienten B, gerade bis zu dieser Potenz angeben — erhalten wir fiir
Y (h) einen Naherungswert Y, (k), der, in y = p(Y) eingesctat,
seinerseits einen Naherungswert y, = p (Y,) fiir y = f (h) liefert.

Veranlassung zu dieser zuniichst etwas merkwiirdig und umstind-
lich erscheinenden Vorschrift hat Palmquist die Formel (20) von Stef-
fensen, a, = a;y(h), gegeben. Diese liuft nimlich darauf hinaus,
zuerst die Dauer n der Zeitrente () als Funktion von & und 1
zu berechnen, und die hierbei gefundene Niaherung fiir n,n o a, — h o,
ist nichts anderes als die nach der ersten Potenz von h abgebrochene
Entwicklung von n nach Potenzen von h. Das weitere Ziel, das Palm-
qvist mit dem dargelegten Ansatz verfolgt, besteht darin, Y =¥ (¥)
geeignet so zu wihlen, dass die Anndherung fir y = f (h)

ya~of(Yy) =f(By+ Byh+ ... + B, 1)

1) Um mit der von ung bisher beniitzten Bezeichnungsweise im Einklang at

x 2 . . . . . = . 7

bleiben, miissen wir auf die Originalbezeichnung von Pabnquist verzichten und «Y»
statt seines «y» setzen.
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besser wird als die durch die r-te Teilsumme der Potenzreihe (29)
dargestellte 3, ~by + b, h + ... + b, h'". Dies zu erreichen, ist fiir
dio praktisch wohl einzig in Frage kommenden Fille » = 1 und r = 2
nicht schwer; ist 9 = f () im Intervall (0, k) eine monotone Funktion,
80 geniigt es im ersten Fall, dass v’ (Y) im Intervall der zugehorenden
Y-Werte nicht verschwindet, withrend im zweiten Fall noch dazu-
kommt, dass 4" (Y) stets das entgegengesetzte Vorzeichen von
Y’ (Y) hat.

Fragen wir jetzt nach dem Sinn der Reihe (81), so erkennen wir,
dass sie einfach die Taylorsche Entwicklung der Umkehrfunktion
Y=%(y) =y'(y) von y =y (Y) ist, und ihre Koeffizienten
B, das jj-fache der Ableitungen von Y =¥ (y) =¥ (f(h)) nach
h sind. Erinnern wir uns des frither ausgesprochenen Satzes iiber das
Abbrechen einer Potenzreihe, so kénnen wir daher sagen:

Das vorgingig dargelegte Palmquistsche Verfahren zur Erlangung
etnes Niherungswerts der Funktion y = f (k) ist identisch mat der rein
oskulierenden Interpolation der Funktion Y =¥ (y) =¥ (f(h)) von
der Stelle h = 0 aus mittels des Polynoms r-ten Grades Y = @ (h), wobes
die gegebene Funktion Y = W (y) dve Umkehrfunktion von y = w(Y) 4st.

Nach dem zu Beginn dieses Abschnittes gegebenen Satz kénnen
wir das Verfahren auch so deuten, dass die vorgelegte Funktion y = f (h)
von der Stelle h = 0 aus rein oskulierend mittels der Funktion y = ¢ (h) =
=y (D (h)) interpoliert wird.

Palmquist wihlt als einfachsten Ansatz einer solchen IFunktion

1
I=rye

wo k* eine beliebige Konstante + 0 ist. Das Abbrechen von (81)
nach der ersten Potenz von h bedeutet dann, dass die Interpolations-
funktion von Y = ¥ (y) die lineare ganze, Y =y, + y, b ist, somit
wird y = f (h) von k = 0 aus rein oskulierend interpoliert durch

y=@h) =G+ =y L+,

und die Gleichungen (64) zur Bestimmung der Konstanten y,, v,
lauten
Yo=00) =70  yp=0" 0) =yoy k*
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Zur Interpolation des Barwertes der lebenslinglichen Leibrente ergibt
sich daher

S ho\¥
(82) a;=a3(1__iiﬂf’_ ,
\ k"N,,,

Rein ziffernméssig durchgefithrte Priifungen haben Palmquist erwiesen;
dass diese Formel die besten Ergebnisse liefert, wenn k*~ —1,5
gewithlt wird. Auf den von Poukka bemerkten engen Zusammenhang
zwischen seiner Konstanten k ~ 0,84 und k* haben wir schon frither
hingewiesen. Fsscher [24] und spiter unabhingig von ihm und mib
der Priizisierung, dass k* nur in bezug auf das Zinsmass konstant sein
muss, Giittinger [25] haben ihn in hochst einfacher Weise formulieren
konnen. Formel (82) ist die Liosung der durch das Poukkasche Ver-
hiltnas k, (41) gegebenen Differentialgleichung 2. Ordnung

d®a, da, d?a,
— P Cb ——
y(2) d 2 : T e
S oodn dv o
f * - o 7 - ; ~No
S N ey (e
da di
z2u den Anfangsbedingungen
. da, da S, .
a, = a,1) = a,, At AW s 1
du dy &,

Aus der mit dieser Differentialgleichung identischen

[ d*a, da, d Y ;
a - a
l Yoda? dv J <( a“) - ,_( . & — 9 k—1

& | & da,
i
folgt néimlich
da,
N 1 4 @17 +7)
o A& @k—=Di+y & —@2k—1)

= Fo it =17} =y {14

y (—9) |
e 8,
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f) Die natiirlichen Nidherungen (Béhmer).

Meissner [2] hat als Abschluss seiner Zusammenstellung der wich-
bigsten Arbeiten iiber das Zinstussproblem die von Béhmer [46] defi-
hierten n-ten «natiirlichen Niherungen» einer analytischen Abhiingig-
keit @ (z, i) = 0 zur Losung des Problems herangezogen. Doch haben
sich keine neuen Formeln ergeben. Die erste dieser Néherungen ist
einfach die Iormel fiir die oskulierende Interpolation mittels der
Geraden und ergibt im besondern Fall des Leibrentenbarwerts «,,
die Formel (27) von Steffensen; die zweite Niherung ist mit der Inter-
polationsformel (88) identisch, die fiiv @, als zu interpolierender
Ffunktion die erste Iormel von Poukka (39) ergibt. Die weitern Nihe-
rungen aber kommen fiir das Zinsfussproblem schon deshalb prak-
tisch nicht in Frage, weil sie die Kenntnis der dritten Ableitungen der
Rentenbarwerte und somit der Grossen S©® verlangen. Es sei nur
noch vermerkt, dass es funktionentheoretisch-geometrische Gesichts-
punkte waren, die Béhmer zur Einfithrung dieser Néherungen und
ithrer Bezeichnung als «natiirliches veranlasst haben. Kine Deutung
des Begriffes «natiirlich» in dem Sinne, dass mit den natiirlichen
Niherungen besonders gute Niherungen zu erzielen seien, wire daher
verfehlt.

g) Die zweite Formel von Poukka als Interpolationstormel ; eine Formel
von Giittinger.

Nachdem wir von verschiedenen Standpunkten aus die erste
Poulkkasche Formel (39) als Interpolationstormel haben interpretieren
konnen, liegh es nahe, zu fragen, ob auch eine Interpolationsvorschritt
besteht, aus der fiir den Fall rein oskulierender Interpolation unmittel-
bar die zweite Poukkasche Formel

U
'lS-l
can By T

L z+1

(42) a’::; Ny, — Ay
l—l—k—s—ﬂhv
N

xt1

hervorgeht, in welcher k als eine fest vorgegebene Konstante aufzu-
fassen ist. Eine solche kann in der Tat konstruiert werden; doch
diirfen wir bei dem starken Bingriff, den wir durch das Konstantsetzen
des Verhéltnisses k, (41) in der ersten Poukkaschen IFormel vor-
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genommen haben, nicht dariiber erstaunt sein, von bisher nicht ver-
wendeten und etwas kiinstlich gebildeten Vorstellungen Gebrauch
machen zu miissen. Wir konnen (42) deuten als Formel der rein osku-
lierenden Interpolation mittels einer der mannigfachen Interpolations-
funktionen

Y1 h
— h = —
y=gh) 70+'1+y2h
die die ¢normalen» Bedingungen
(33) () =y ¢(h) =y, oder auch
(84) 2 (0) = yo, ¢’ (0) =y,

erfilllen, und deren Koeffizienten y,, y,, ¥, der zusitzlichen « Grenz-
bedingung»
lim Yo (he) « va(h) — T

i) hy>-0 1 (hy)

geniigen. Gehen wir von den Voraussetzungen (84) aus, so ist In
Yo?V2
Y1
beim Ausgehen von (83) wire dagegen diese letztere Bedingung zu
streng. Dies ersehen wir an einer Interpolationsformel, die Giittinger
[26] gegeben hat. Sind die Rentenbarwerte a, (1,) und a, (¢,) zu den
beiden Zinssidtzen 1, und i, bekannt, und wird zur Abkiirzung

(85) die Limesbeziehung nicht notig, es hat

=k selber zu gelten;

A4, 2" _B, 4+B=1,

o1 —Y

-

a:c(’iZ) - a’m(ll) =D

gesetzt, so kann die fiir den Barwert a, = a, (1) zum Zinssatz %
durch lineare Interpolation gewonnene erste Annidherung

L=Ba, (i) +Ada, () =0,(,)+4D
in einfacher Weise durch das Korrekturglied

Dz D2 D2
084 AB— =0844(1—A4)— =084 4-—0,84 42 —
L ( ) L L
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Vverbessert und «, durch
2

D
(86) ay~ L—0,84 4 (1—4) -

dargestellt werden. Ordnen wir (86), von dieser gedriingten, fiir den
praktischen Gebrauch aber sehr niitzlichen Gestalt abgehend, nach
Potenzen von A,

a2(i) + 2 a,(5) - AD+A2D? — (0,84 A — 0,84 A2) D2

= a’x(il) + A D
) kD (1+k) D?
il . AL Sl
e {2 a iy ] At W
14+ — A
a’x 'Ll)

und ersetzen
AD — (Tza:('b?,)_(’?x(?«]) (7’,_"'7/1) dureh O -k ’ O — ax("’?);q,xg:g h— (?;'“"—741) ,

Tg—1y a1
$0 konnen wir (86) oder

. kD . 1+k)cz . .
aa:('bl) —I— (2— . (t ) ) C- (?,’__ "’1) + ( :—(Z)) (q,'__ 7,1)2

(86:) a; — z\"1 O . z\“1

deuten als Interpolation mittels einer der Funktionen

Yo+ yih+y BP
1+7’3h

o) =

’

deren Koeffizienten aus den beiden «normalen» Bedingungen
p(0) = a,(ty) , p(h) = p(ia—1y) = aliy) ,

der «normalen Zusatzbedingung»
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Vs

= 14k
Yo V2

und der zusdtzlichen «Grenzbedingung»

%y,
lim 71 (415 B) _9

ia>iy Yo (%, 79) - Vs (7:1, 19)

hervorgehen.

Auf ein Weiterverfolgen der gegebenen oder dhnlicher Beziehungen
konnen wir ruhig verzichten, da dies doch eher auf eine Spielerei
hinauslaufen wiirde. Wir haben das erste Beispiel nur angefiihrt,
um den tiefgehenden Unterschied zu zeigen, der zwischen den beiden
Poukkaschen Formeln besteht. Mit dem zweiten Beispiel aber wollten
wir nicht versiumen, auf die sehr niitzliche I'ormel (86) von Giittenger
hinzuweisen. Dass sie unmittelbay auch auf die Barwerte temporirer
Leibrenten und Zeitrenten {ibertragen werden darf, diirfte aus den
dargelegten Uberlegungen hinlinglich hervorgehen. Tis ldsst sich dies
aber auch aus der Herleitung von (86) nach Giittinger ablesen, wenn
man bedenkt, dass innerhalb der dort notigen Vernachlissigungen
das Verhéltnis k, , (43) ruhig auch konstant 0,84 angenommen werden
darf.

T, n

§ 6.
Der «metodo dei quozienti» von Frucht und Vellat.

Als Abschluss unserer Untersuchungen wollen wir noch eine aus-
fithrlichere Betrachtung einem Interpolationsansatz widmen, den die
beiden italienischen Alktuare Frucht und Vellat [27] unter der Be-
zeichnung «metodo des quozientr» in die versicherungsmathematische
Literatur eingefithrt haben. Wir hitten zwar die Flemente auch schon
an fritherer Stelle passend einflechten kénnen, haben es aber vor-
gezogen, den ganzen Fragenkreis im Zusammenhang zur Sprache zu
bringen. '

Als Ausgangspunkt sebzen wir voraus, es seien von der Funktion
y = f(z) die drei Funktionswerte

Yo =f(zy), yo=1(zp), y,=7(x

bekannt, die zu den um h dquidistanten Argumenten
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(87 a) g, =ay—h, %5, T, ==a+h

gehoren und — der Grund dieser Finschriinkung wird sich spiter
leicht einsehen lassen — alle gleichzeitig positiv oder negativ sind.
Wollen wir das Verfahren zuniichst allein dazu anwenden, die Werte
der vorgelegten Tunktion y = f (z) in den dquidistanten Argument-
stellen

(87b) Ty =1ao+2h, zy3=ay+3h,..., T, =25+ 1h

zu interpolieren, so liegt es nahe, die Annahme zu treffen, dass die
Quotienten von je zwei aufeinanderfolgenden interpolierten Werten

po) e e
@ (zy)

@ (x5)
eine arithmetische Folge erster Ordnung

(88 a) @y =

89a) qy=¢qo+2d, q3=¢q,+84d,..., q =q,+rd

mit dem Anfangsglied ¢, und der Differenz d,

Yo Yy
= @1=— d=g¢;— 4

_ Y1 Yo
Y Yo Yo Yy

898 g, =

bilden sollen. In einfachster Weise ergeben sich dann die gesuchten
Werte zu

009 f(@)~p@) = ¢+ 1) = Tt =T+ ed.

o=l

Fir die praktische Anwendung wird man mit Vorteil statt von y,
vom ebenfalls noch vorgegebenen Wert ¥, ausgehen, man erspart
sich eine Multiplikation und erhalt

f(22) ~ gy, = (01 + &) 11
[(z5) ~qaqsyy = (g, +d) (2 + 2d) s

-----------------------------------

(90 )

19
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Dehnen wir die Definition der Quotienten (88 a) auch auf negative
Indizes aus,

(88b) g, = 9 (@)

v Qe = N

@ (2,

‘P(m—l) _ E(m—z) .
ey T play)

und setzen die Folge (93 a) nach riickwirts fort (r > 0)

890) qu=q—d, Qa=q@—2d, ..., ¢, =¢q——1)d

s0 erhalten wir als Ergiinzung zu (944) fiir die Interpolation von f(2)
in den Argumenten
87¢) z,=2g—2h, zy3=2y—8h, ..., &, =x,—1rh

=

(90b)  f(x.,) = @(x.,) = @p(xy —rh) =

Y Yo . Y

o T or-t T ort T
M, TM@w—ed T (g—ed
e=0 0=0 e=1

Hinsichtlich der Frage, innerhalb welchen Bereiches die Formeln
(90a) und 90d) iiberhaupt sinnvoll sind, bemerken wir vorliufig
nur, dass zwei Fille zu unterscheiden sind. Ist d positiv, so ist die
Interpolation von f(x) fiir jedes Argument mit positivem Index,
Ty, Ty, ..., moglich; fiir ein Argument mit negativem Index — 1
r >0, jedoch nur so lange, als ¢, = ¢y — (r— 1) d noch positiv
bleibt, d. h.

o 0
91 —_r > —— =] =— ==
(1) = d d

ist. Bel negativen d dagegen sind die Verhiltnisse gerade entgegen-
gesetzt: unbeschrinkte Interpolationsméglichkeit von z, aus riick-
wirts, fiir ein z, = xy + rh mit r > 0 jetzt aber nur so weit, als
q, = qo + r d positiv bleibt, d. h.

(92) g R

1st.
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Liisst sich das Argument des gesuchten Funktionswerts nicht in
die durch die Ausgangswerte festgelegte Folge idquidistanter Argu-
Mente einordnen, so versagt die gegebene einfache Darstellung der
interpolierten Funktionswerte, und wir haben explizit auf die der ver-
Wwendeten Interpolationsvorschrift zugrunde liegende Interpolations-
funktion y = ¢ (z) zuriickzugehen. Diese muss offenbar der Diffe-

renzengleichung

p(z + 8h) -9 @(x+ 2h) @ (z + 1) =0
@ (x + 2k @ (x + h) ¢ (x)

(93)

8eniigen, die aus dem einfachern, die beniitzte Vorschrift deutlicher
wiedergebenden Differenzenausdruck

p(z+2h)  glz+h)

— —d
@(z + h) @ (z)

(94)

durch Elimination der von den Anfangsbedingungen
pay) =@@—h) =y, @@)=1yp p@) =e+h =y,

abhingenden Konstanten ¢ hervorgeht, und von der dann (94) das
erste Integral bedeutet.

Wie sich unter Zuriickgehen auf die Definitionsgleichung
(95) I'z+1)—2I{E) =0

der FEulerschen I-Funktion leicht nachpriifen lisst, hat diese Diffe-
renzgleichung (98)

0 P(@) =y - r(% + yz) - 0,(@)

Zur allgemeinen Losung; wegen des Eulerschen Krgéinzungssatzes

1

') . I'l —z) = pr—
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konnen wir diese Funktion auch in der Gestalt

T
I

(96') iy O '+ . O (@)

& *
(-t )

schreiben. Dabei bedeuten Qh(z) bzw. £;(x) vollkommen will-
kiirliche periodische F'unktionen von der Periode h, wihrend y,, ¥4, V2
bzw. vy, v1, ¥ Konstante sind, die durch die Anfangsbedingungen

bestimmt werden. Sie ergeben sich in unserm Ifalle als

' . ()1 Yo
N=—uy=-——-——=d
Yo Ya
R . SV RO
2 yd h d B y.,d h
‘ vy = Yo _ Yo
L 1] o Zo ’
ar I‘(i> av T <?1.>
Yol d
g _ (_____ngl_) Y :
(—d)w Y (—d)w
und fiihren zu den Darstellungen
r—2 7
e P( h o 'I/Jld)
O @) =yd =y (2) =
&
Yo d




O7)  *@) = yo(—d) : — 2,(@) =
I‘(— fo )

wobei fiir oin und dieselbe Interpolationsfunktion y = @ (x) == ¢* ()
zwischen den zugehorigen willkiirlichen I'unktionen £, (z) und £, (z)
die Beziehung

T— o T—2xy,
" = LI ﬁ) F( - ) aty
£ () B ( h - d h “d d 0

Qu(2) (ql ) ( % ) e
F — P —_— e e/ b
d d (—d)
-z ) 5
h (l ]—' h d _xﬁ.’.’tg_
B q q =
r 1) . I’(l ——1)
( d d
sin %1_ 7T e
S M—
sin ( L% gl) -
L d
. Qo
sin "”“Z— 14 iy
; (—1)7 "

besteht.
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Fiir die Wahl von ,(z) bazw. Q;(z) ist es wieder nobig
zwischen den Fillen d >0 und d <0 zu unterscheiden; der Aus-
artung der beiden Iille in d = 0 eine Bemerkung zu widmen, wird
sich spiter eine geeignetere Gelegenheit bieten. Ist d > 0, so wiihlen
wir 2,(z) =1 und verwenden (97):

(98) e ; _—
ity h Yo d a3 h d
@ (x) = Yod » = Yod * 1
@
Yod d

fir d <0, womit dann —d > 0 ist, gehen wir hingegen von (97')
aus und setzen £, (z) = 1:

K F(——y‘-’—> o
., % %o y_1|d| T (I(l|> et
(z) = ?‘jo'fll ’ R y = 3/0|d| ¢ T d
0 J0 I—, _0
F( h +y_1|d|) ( n ]

Durch Verwendung der Grundgleichung (95) der I-Funktion
lisst sich leicht bestiitigen, dass fiir Argumente z, die um Vielfache
von k von x, abstehen, jede der beiden Formeln (98) und (99) mit dem
Ansatz (90 a/b) identisch ist. Was aber die durch (91) und (92) ge-
gebenen Schranken fiir die Anwendbarkeit des «metodo dei quozienti»
anbetrifft, so finden sie ihr Gegenstiick und ihre tiefere Begriindung
darin, dass die I-Funktion, die im Endlichen nie null wird, nur filr
2> 0 einen zusammenhingenden, stetigen Kurvenzweig besitsb,
wihrend sie in 2z =0 und allen negativ-ganzzahligen Argument-
stellen unstetig wird. Hierdurch bleiben (98) und (99) als Inter-

r—1x, +ﬂ s bz W
h d

polationsfunktionen nur verniinftig, solange

T — Ty Qo

h T ](l‘

> 0 sind, was wir auch in der Gestalt

T — Xy 0
P ]
h d

(1)

wenn d >0, und



(92') < o= —

Wenn d << 0 ist, schreiben kénnen. Bedenken wir nun, dass ¢ =

angibt, um welches Vielfache von h z von z, absteht, so erkennen wir
In diesen beiden Beziehungen (91°) und (92') nichts anderes als (91)
und (92) wieder, nur mit dem Unterschied, dass jetzt & im Gegensatz
20 r als stetige Verinderliche betrachtet wird.

Fragen wir uns nach der Ursache der Asymmetrie in der Anwend-
barkeit der Formeln (90 a/b) oder (98) und (99), so miissen wir sie
darin erkennen, dass die Bildung der Quotienten g, schon asymme-
trisch ist: stets wird der Funktionswert hohern Arguments zu dem-
jenigen des um % niedrigern Arguments ins Verhéltnis gesetzt. Wir
kénnen daher die bisherigen Entwicklungen zutreffend als den «metodo
dei quozienti» mit «aufsteigendery Quottententildung préizisieren, und
83 ist dann naheliegend, ihm einen solchen mit «absteigend» gebildeten
Quotienten entgegenzusetzen zu versuchen. Wir haben in diesem Fall

a . 69 (331) (} . (;) (a’l2) & . &) (wr—l) \
9= = » §3 == ’ ¢ Yp =%
@ (%) @ (23) @ (z,)
~ @ (2.0) G = @ (2-5) - P ()
=, g = ——————, ..y e
@ (2) g (ay) o @ (Zpp)
Zu definieren, entsprechend (89 b)
~ Yoo . Ya ow s o~ Yo Ya
==, =, d= — T T
R A LT

festzusetzen und zu verlangen, dass diese Quotienten wiederum eine
arithmetische Folge erster Ordnung bilden:

‘j2=ao+2‘~i’ &s=§o+33, ceey ‘jlr=‘i70+7'c~i-
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Damit werden wir zu den interpolierten Funktionswerten

@)~ (@) = ¢ (5 +rh) = -2 = Y0 n
) Qo 1T (@ +ed) T[ +od)
(100) AU} I}
r—1 r—1 - -
fx)~e () =@@@—rh) = yo;ﬂ;&p = y{,;lTl(E;o—Q;z) — y_l(:”'l (&Ozgd)

gefiihrt mit den formelentsprechenden Anwendungsbereichen, wie sie
fiir (90 a/b) festgestellt worden sind. Indem aber aus

g Y Y Y (?/0 yl):_?f;ld=* d = osd
1 Yo Y1 \ Y+ Yo Y1 YIRS

hervorgeht, dass ¢ das entgegengesetzte Vorzeichen wie d hat, haben
wir durch diese «absteigende» Bildung von Quotienten erreicht, dass
der auf ihnen aufgebaute Metodo dei quozienti gerade da unbeschrink-
tes Interpolieren grundsitzlich zulisst, wo der auf «aufsteigend» e
bildeten Quotienten fussende eine Beschriinkung vorsieht, wofiir dand
umgekehrt der erstere in der Anwendung beschriinkt bleibt, wenn der
letztere unbeschrinkte Giiltigkeit des Ansatzes vorsieht.

Dieses Ergebnis bestiitigt sich auch bei der allgemeinen Behand-
lung der dem Ansatz (100) zugrunde liegenden Interpolationstunktion-
Da die Uberlegungen den friither durchgefiihrten Uberlegungen voll-
kommen analog verlaufen, kénnen wir uns kurz fassen und nur die
Hauptergebnisse anfithren. Jetzt von der Differenzgleichung

plE+2h) , eEt+h 9@

: ez )
@ (x4 3h) @ (x+2h) @ (x -+ h)

mit dem ersten Integral'

P+l 9@
@ (x+2h) @ (x4 h) ¢

ausgehend, ist die Interpolationsfunktion ¢ (z) von der allgemeine®
(restalt
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~ . .x & .
(101) ¢ (x) =yoyi "I (— -+ 72) * O (2)
und
(101 7 (@) =—1 G (a) ;

€ ~%
P(/_ + 72)
(2

die Konstanten ergeben sich zu

Va B

o ~ o
Yo Yy
~ Ty Yy Ty do o Yo T @

Ve %&,:7&“—7; Vz—?]}j % 7 I

3 Yo (—d W - L (g
= b ()_ Yo = Yod F(—;L) ‘

yl) _ ;'
r(-%)
d

Ist @>0, so gehen wir jetzt von (101") aus und wiihlen 2 (z) = 1:

(102) P (%) = Y, o (w—% &1)

fir ¢ < 0 dagegen wird unter Beriicksichtigung von 0, (z) =1 aus

(101)
F(%km+¢%>

(108) () =y &L_'
- r{r)
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Fiir (102) ergibt sich als Anwendungsbereich

~

x— %
L 41

104 s
(104) 7 -
fiir (103)

T— 12 Qo &0
105 e < ~ =S
(199) PR TR

welche beiden Bedingungen (91’) und (92") formal wieder vollkommen
entsprechen. Indem aber

Qo 1 fj_l_ ()

d d’ 4 d

gilt, spiegelt sich in der daraus hervorgehenden inhaltlichen Ver-
schiedenheit von (104) und (105) gegeniiber (91') und (92) nochmals
die Inversion der Anwendungsbereiche der einander entsprechenden
Interpolationsfunktion ¢ (z) und ¢ (), @* (z) und ¢* (z) wieder.
Fiir diese Paare einander entsprechender Funktionen gelten schliess-
lich noch die Verhiltnisse

I o DB+
=) ey (T
o(ix) I p(ﬂ_ m_m") 44 P(—ZI-I—— "

d 5 5{] h

-.%ﬁ+%%> '%é+kw
© () M Gy a
“(2) n r(q—"— a;ma:0> Y P(_q;__ T — Tg

g ‘¢

Gehen wir dazu iiber, die dem «metodo dei quozienti» sinngemiiss
entsprechende Formel fiir die rein oskulierende Interpolation zu be-
stimmen, so geniigt es, den Grenziibergang h—»0 an einer einzigen
der gegebenen vier Interpolationsformeln, etwa an (98) zu vollziehen.
Hierbei miissen wir beachten, dass mit A—»0 auch die « Konstante»
d = d (h) nach null strebt, und zwar mindestens wie k2%, was unmittel-
bar aus der fiir sie noch méglichen Darstellung
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dqpy=Yi_ Y _ Yi¥a— Yo _ Yo (s — 2ot 90) — o —)* _
Yo o Ya Yo Yy Yo Y-
2 m - A 2 1
_ Bl ) —(AF@F g, Pz, h) -
Yo Y1 Y Y

hervorgeht, indem nach einem elementaren und bekannten Satz iiber
den Zusammenhang zwischen Differenzen- und Differentialquotienten

¥ (q,, ) = lim {y_l Afey) ( Af (2.9 )2} _ {yo &f(z) (df(;n)>2L

2 .
A0 h? h da dz

wird, sobald nur f” (2) fir z = z, existiert und stetig ist. Auf Grund
dieser Erkenntnis und unter Verwendung der Stirlingschen Formel

1 —_—
I'w) =uge" |/2n "™,

)

1 (U) = — 0<d<1,
() 12 = =
. (@) : .
formen wir 7 ”_ sunichst in der folgenden Weise um:
Yo
rm N\ /T — 2 o SR TR AN TS
(fl:) T-a 8_(_h_9- * %1;)( : _I— Jl. ) (Tll i Yod 2) o ( h +yod)
AT h Yo d -
f n. /o Ly (b
0 e_?/;ld“(_y_l,«) (yold 2) » e‘ (yod)
Yo d

T-Ty

= h

-, - " » 1 -
Y1 \=+ z r—2 | ) Jfl__) (__o "
Jl ) A .C—- . 0 + J].- ( = +'U0d 5) . elu W +ygd
Yod

2 -1, . g , th 1 T2 y y
= (ﬂl)To" e h'J ; (1 -+ uyo_d> (_h_'*";;)_t{ 2) . e{'“( ho Afhlm—ld)m'u('—tmid
Yo
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(1+—«-—¥J“) | (1 Lk (w”""")"’(“vh))m?.[e‘@h—"".
Yo Y1 Y-

— , . : , .
. (1 +h (. — @) v (z_1, 1) ) hz,,J(;/ 11 h)} (1 g (& —29) ¥ (2.0, 1) )_? |
yl ?/—-1 yl y_l

1 Y l-1 1 ny-1
[ L —. R —
. e' { h2 (h (w-z9) - ey, h) ) ¢ € i) W (x 1 k) .

()
Yo
unmittelbar, dass sie fiir A—> 0 nach 1 streben; zur Ermittlung der
Limites der drei andern Ifaktoren empfiehlt es sich, zuerst die Grenz-
werte fiir A—>0 ihrer Logarithmen zu bestimmen. Diese ergeben

Von den drei letaten dieser sechs Faktoren von - erkennen wir

sich zu
y L) - .
Fm i (1 L ”") b= lim 20 gy (1 +-”—£_.”‘L) _
h=»0 Yo k=30 J %o

L— Ty - S L TR TAN % ROt fy — o (;
= lim 3 (——~1)~’“‘——<' - ) = (x — ;) lim Z‘(-——-l)”‘l B (:_-_f/

-y0 o= e\ Yo S 0

Nt ( Y — ?/0) [ ()
= lim — ,
o\ Ry Yo

. = M\ _
lim ln(1+} %)y ‘“h)) b (o) limlln(l—l—h——(x %o) w..(_“ffiﬁ>/

h->»0 ?/1 y—l h=»0 (2 yl y_l
2 1 o ’7
= (x— L) lm Z— (— 1)t ( (x— ) p (T, t)) _
h=>0 o1 h e Y1 Yy
(60 Im D (—1)* b‘”(@’v—mo)w(w_l,k)):
-0 Y1Y-

(}:
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mhln[e‘ﬁfi.(14-h(w """ xﬁyww*'h)>zﬂﬂff51::

Y1 Y
= lim [_ T — x, . “1_ YU ) o - 1)<’~ll (h (T — @) p (34, 1) )o} ~
By o h hew(x_,h) = 0 Y1 Y
e o s\ ]
= lim (,,_ 1)(’—1 l'__ (JJ _— 3;0)(’ (_’qi_(ft‘l i)_) = hm —— ("c— :130)2 ¥ (‘L : L)
by g = 0 Y Yy horo 2 Y1 Y

)

. . . . n .
Damit wird aber, wenn in gewohnter Weise y, und y, die als vor-
! n
gegeben zu betrachtenden Werte 1/0 = f" (x,) und 1/0 = " (z,) der
ersten und zweiten Ableitung von | an der Stelle 2 = x, bedeuten,
o

! " ’
: yn_,_}_,_ af Yo __(vo)\2
lim ¢ (2) =¥, (3! o), Tl EO)z(Ho ({fo) )}
h>»0

Der «metodo dei quozientiy geht fitr rein oskulierendes Interpolieren in
dasjenige mittels der Faxponentialfunktion

T — v -l yo a2
(1()6) o s (P(J) = ¥, c()’l({cﬁrg) + ya (w-w)?) — Yo e(n-l' lyaz?)
iiber.
Dieses Lrgebnis befremdet zuniichst etwas, denn fiir jede (end-
liche) Spanne h geniigt die angegebene Exponentialfunktion der Diffe-

renzengleichung

(07) gz 3 Pz +20)
pe+2) [ p@+2h) = ]@Eﬁf wleth
@&+ h) 9 ()
oder

lp @2} [p@+RP

px+8h)p(x-+h @ (x+2h) @) :

(107"
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mit dem ersten Integral

p+2k) | ple+h)  e@+2Me@ _ o,
@ (z -+ h) ¢ (2) lp (= + W)

und nicht der Gleichung (93). Der scheinbare Widerspruch klirt sich

aber leicht auf: die beiden Differenzengleichungen 3. Ordnung gehen

mit h—»0 in ein- und dieselbe Differentialgleichung 3. Ordnung

(108) ¢ g 9@ () P (99’ () )3: "

@ (%) ( (2))? ¢ (2)
tiber, die auch in der Gestalt

d3In g (2) 0
dz®

geschrieben werden kann und offensichtlich (106) zum Integral be-
sitzt. Mittels der bekannten Beziehungen ¢ (x + k) = ¢ (2) + 4 ¢ (2),
p@+2h) =@ +24¢(@)+ A%¢(2), ¢(x+8h) =¢ @) +
+-3A¢@ (2) - 34%¢(x) +A%@ (x) konnen wir nimlich durch eine ele-
mentare Umformung, die wir der Kiirze halber auslassen wollen, (93)
und (107) in die Gestalt

(p(2)) 4° p(x) — B p() A2 () - A@(a) + 2 (A ()P — B _

93" a/107"
(98" /107" i

iiberfithren, wobei fiir (97) K zu K, = [p(z+2h) ¢ (z + h) ¢ (2)]
und B zu

(937b) By = 4% p(a) - A g(a) — 2 [4% p(2) ] (x) + [4 p(2)]* 4° p(2)

[p(z+-2R) - p(z +h)]?
¢ ()

anzusetzen ist, wihrend fir (111") K = K, =

und
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(107" )
B =R, = A ¢(z) [4 p(z)] — [42 ()] p(z) +
{42 p(z) [4 p(a)]? — 2[42 @(2)]2 4 p(z) + A3 () [4 @(z)]2 p(z)}

+3 {0 g(z) - ) - [p(a)]? — 4° p(2) [4 ¢(2)]* plz) —
—[A* ()] [p(2)]* + [4 p(x)]*}

bedeutet. Dividieren wir dann die Differenzengleichungen (93" a/107" a)
durch h3 und lassen anschliessend h— 0 streben, so geht der aus-
geschriebene Teil in der Tat in das K = (¢(z))%-fache von (108)
tiber, withrend in beiden Fillen die Reste R verschwinden.

Analog dem «metodo dei quozienti» von Frucht und Vellat,
dessen Interpolationsvorschrift die Differenzengleichung (93) ist,
kénnen wir auch von der Differenzengleichung (107) aus eine «Quo-
trentenmethode» entwickeln, die in gewissem Sinn diese Bezeichnung
mit noch grosserm Recht verdient und gestattet, fiir Argumente z,,
die einer Argumentenfolge (87 a/b) angehdren, die IFunktionswerte
y = f(z,) aus den drei gegebenen Werten y_ = f(x,), y, = f(z,),
y, = f(x,) mittels der Funktion (106) @(z) =y, e***72** ohne Zu-
hilfenahme einer Logarithmentafel zu interpolieren. Unter Ver-
wendung der Bezeichnungsweise (88) — man ersieht leicht, dass die
Differenzengleichung (107) sowohl die «aufsteigendes wie die «ab-
steigende» Quotientenbildung kennzeichnet, und dass es daher aus-
reicht, allein die erstere zu betrachten — lautet hiernach unsere Vor-

schrift (107)

0y _ % D _ Trn

- - E]

01 T a4 0y

wo g durch
a  "w _ mo

R yo/y_1 Yo

gegeben ist. Multiplizieren wir alle diese Doppelquotienten g, so
erhalten wir

&% =0q9=0q9",

multiplizieren wir hierauf alle Einzelquotienten ¢,(¢ =0,1,...7
bzw. 9 =0,—1,—2, ..., —r 4+ 1), so folgen die Endformeln



— 294 —

(109)
: ¢ (z,) \ L el VR 2 1)
Mg, ="—"=qqg"" 0 =qiqgz =qgq 2
o=1 Yo
ﬁq % “© . _ % _ 4
ot -0 (P(w—r) q1+2+...+(r—1) qr(rz—n qr(rz—i-l)
4 i) i+l
f@)~p) =@ +rh) =y, Tqug =% qiq 2 =1Yqq °?
0:
1) r(r1).
Yo _ e ®*  _ Y *®

f(w—f) oo P (27_1) = ‘P(-To e Th) =

r

Qo

r

a4

ﬁ‘l

IS

q.

1

1l

£

Die Anwendungsmoglichkeit dieser Formel ist grundsitzlich unbe-
grenzt, es bestiitigt sich hierin noch einmal, dass die Bildung einer
Folge «absteigender» Quotienten ¢’ iiberfliissig ist.

Veranlassung zur Ansetzung der Differenzengleichungen 8. Ord-
nung (93) und (107) zur Definition von Interpolationsfunktionen hat
der Umstand gegeben, dass — wenigstens fiir die praktisch vorkommen-
den Spannen — die einfachere Differenzengleichung 2. Ordnung

*rp(a;+2h) B @ (x4 k) — 0

p(x+h) @ (2)

(110)

mit dem ersten Integral

p(z+h) _

@ (z) i

(111)

auch nicht annihernd von f(z) erfiillt wird, wihrend dann durch die
getroffenen Erweiterungen in den Voraussetzungen iiber ¢ (z) dieses
die F'unktion f(z) befriedigend anzunihern vermag. Anstatt nun die
Differenzengleichung (110), die sich als ausgearteter Sonderfall d =0
bzw.q =1 der Gleichungen (93) und (107) erweist, in den durch-
gofiihrten Weisen zu erweistern, konnen wir auch die zu interpolierende
Funktion so zu dndern und in eine Funktion y = F () iiberzufithren
suchen, dass die aus den vorgegebenen Werten y_, = f(x_,), y = f()»
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Y, = f(z,) hervorgehenden Werte Y_ =F(x_), Y, =F(z,), Y, =
= I'(z,) von y = F(z) (110) befriedigen, wodurch dann eine Inter-
polation von y = F'(z) mittels der Losungsfunktion von (110) statt-
haft erscheint. Am einfachsten ist es, f(x) durch eine additive
Konstante ¢ zu «korrigieren», also

F(z) = () —¢

aus dem Ansatz (110) heraus zu interpolieren; dabei muss ¢ wegen der
Bedingung

YiY— y%
Y1—2 Yo + Y

0 =

gewiihlt werden !). Indem wir die willkiirliche periodische Funktion
£2,(z) in der allgemeinen Losung der Differenzengleichung (114)
vorweg gleich 1 setzen, hat dann, wie man selber leicht nachpriift,
(114) die Funktion

Y e fP(ZB) = aQf = EQ(I—%) — e tre e;’l + ya (@-2o)

zur Liésung, dabei ist () die im ersten Integral (111) von (110) enthaltene
Konstante und ergibt sich aus unseren Anfangswerten ¥ =y  —e¢,
Yo=yo—e¢, Y, =y, —c zu

g il
Yo— Y

withrend o offensichtlich zu « = y, angesetzt werden muss. Zu f(x)
selber wieder zuriickkehrend, konnen wir sagen, dass der dargelegte

1) Dass der Nenner in ¢ um ein Erhebliches von 0 abweicht, ist selbstver-
stiindlich. Denn wiire dies nicht der Fall, so wiirde schon die aus der Differenzen-
gleichung A2 f(z) = 0 hervorgehende Parabel 2. Grades als Interpolations-
funktion taugen und die ganze vorliegende Bemiihung sich eriibrigen.

20
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Ansatz einfach die Interpolation von y = f(z) mittels der Inter-
polationsfunktion

(112) y — ¢(m) — lyo _|._ e?’l‘i‘}’ﬂx - _?;0 + e;l“l';ﬂ(Ho)

bedeutet. Praktisch wirkt sich das Verfahren, das auch schon von
Frucht und Vellat [27] entwickelt und als «metodo dev quozients raggua-
gliati» (Methode der ausgeglichenen Quotienten) bezeichnet worden ist,
so aus: Sei zunichst z, wieder ein Argument der Folge (87), wo 7
eine beliebige ganze Zahl bedeuten kann, so erhilt man

(118 a)
F(z)=F(zg+rh) vz +rh) =Y, @ =Y, Q" =Y, ¢,

wo Yo=1yo—c¢, Y  =9y,—¢c, Y, =1y, — ¢ ist, und daraus weiter

(118b)  f(z,) =F(zg+h) + ¢ plag+7h) ¢ = (yg—0) " + ¢ =
= (L — @ o= (h—a) Q" + .

Wie bei unsgerer « Quotientenmethode» kénnen wir also auch im
vorliegenden Fall im Prinzip ohne Verwendung einer Logarithmentafel
die Werte zu den um ganzzahlige Vielfache von % abstchenden Argu-
menten interpolieren. Fiir ein beliebiges © = x, + & bleibt formal
die Formel die gleiche,

(118 f(z) =f(xy +%h) =F(zg + Fh) + c o p(zg + Fh) 4 ¢ =
= Y@ o= (3o—) Q"+ 0.

Q? ist aber jetzt entweder aus ganzzahligen Potenzwerten von Q
geeignet zu interpolieren oder logarithmisch zu berechnen.

Dass, wie Frucht [8] festgestellt hat, beim Ubergang zur rein
oskulierenden Interpolation die Formel von Christen (52), heraus-
kommt, ist nicht erstaunlich, denn (112) ist ja gerade die Interpolations-
funktion, die dieser Formel zugrunde liegt.

Wie aus den der Originalarbeit [27] beigegebenen Zahlenbeispielen
deutlich hervorgeht, gibt fiir die Interpolation der Leibrentenbarwerte
der «metodo dei quozienti» bessere Niherungen, als wie sie aus den
gleichen Ausgangsgrossen mittels der gewohnlichen parabolischen
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Interpolation hervorgehen. Die Autoren des «metodo» haben daher
auch einen analytischen Beweis fiir diese Feststellung versucht, der
noch von Mazzons [28] in einigen Punkten erginzt worden ist. Doch
hat schon Broggt [80] darauf aufmerksam gemacht, dass die gezogenen
Schliisse nicht stichhaltig sind und das angefiihrte Verhalten sehr
einfach durch die Feststellung plausibel wird, dass die dem «metodo»
zugrunde liegende Interpolationsfunktion ein dhnlicheres Verhalten
zur gegebenen Funktion zeigt als die Parabel zweiten Grades. Mit
diesem Hinweis wollen wir uns ebenfalls begniigen und darauf ver-
zichten, nach einem einwandfreien analytischen Beweis zu suchen.
Ein solcher wiirde doch immer sich auf Feststellungen stiitzen miissen,
die nur durch erhebliche numerische Rechnungen zu gewinnen wiren,
und der dabei zu erbringende Arbeitsaufwand wiirde in keinem Ver-
hiltnis zum erzielten Ergebnis stehen. Numerische Nachpriifungen
zeigen im iibrigen noch, dass die Giite der Annidherungen, die aus den
verschiedenen Quotientenbildungen hervorgehen, fir alle von der
gleichen Grossenordnung ist. Es lag uns mit unserer Untersuchung
auch gar nicht daran, die von Frucht und Vellat gemachten Ansitze
o zu erweitern und zu ergénzen, dass bessere Frgebnisse zu erreichen
wiiren. Wir wollten vielmehr nur zeigen, wie die bei einem genauern
Hinsehen sich aufwerfenden Fragen nach dem mdoglichen Anwendungs-
bereich der Ansdtze zu beantworten und zu begriinden sind und in
welcher Weise eine Abéinderung und Erweiterung der Ansiitze mog-
lich ist.
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Zusammenfassung und Schlusswort.

Wir blicken zuriick und fassen die hauptsiichlichen Ergebnisse
der zwei getrennte Teile umfassenden Untersuchung zusammen.
Nach einer kurzen Darstellung der Grundlagen zur Berechnung von
Versicherungswerten und der Derivierten der Versicherungswerte
nach den Zinsmassen gaben wir eine gedriingte Zusammenstellung der
wichiigsten Losungsvorschidge zum Zinsfussproblem bei der Leibrente.
Wohl bestehen schon derartige Zusammenfassungen, und der Grund-
gedanke des zur Anwendung gekommenen, dusserst wertvollen Ord-
nungsprinzips ist keine vollstindige Neuschopfung. Wir sind uns dieser
beiden Tatsachen bewusst, glauben aber doch, die Ausfiillung einer
Liiicke vollzogen zu haben, die sich vor allem dem in der Praxis stehen-
den Aktuar niitzlich zeigen wird. Er findet hier die Beziehungen von
allem fiir ihre Anwendung unnétigen Beiwerk der oft nur zufilligen
Herleitung entkleidet und kann dank der befolgten Anordnung ohne
grosses Suchen entscheiden, welche der Formeln ihm bei seiner Kenntnis
an Ausgangswerten grundsitzlich zur Verfliigung stehen, oder um-
gekehrt, welche Werte bekannt sein miissen, damit eine bestimmte
Formel verwendbar wird. Als Ausdruck fiir die Giite der mit den ein-
zelnen Formeln zu erreichenden Darstellung soll eine im Anhang
gegebene Ubersicht durchgerechneter Zahlenbeispiele dienen.

Im zweiten und Hauptteil unserer Arbeit, der im dritten Kapitel
geine Darstellung gefunden hat, wandten wir die Theorie der Inter-
polatron mit einer Verdnderlichen allgemein auf den Leibrentenbarwert
als 'unktion des Zinsmagses an und deuteten die Losungen des Zins-
~ fussproblems, welche Kommutationszahlen enthalten und in der vor-
angegangenen Zusammenstellung als vierte Ldsungsgruppe bezeichnet
worden sind, als Interpolationsformeln. Im besondern richteten wir
unser Augenmerk auf die Verfahren, die Poukka (zwei Verfahren)
und Palmquist zur Herleitung geeigneter Liosungen des Zinsfuss-
problems entwickelt haben. Wir konnten von ihnen zeigen, und zwar
in weitgehender sinngemiisser Verallgemeinerung, dass sie stets durch
rewn oskulierende Interpolationen ersetzbar sind, welche vm allgemeinen
ewnfacher und natiirlicher zur gesuchten Niherungsformel fiihren als
die genannten Verfahren. Damit haben wir die erste von unsg auf-
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geworfene Irage vollstindig erledigt: die von Poukka wund Palmquust
entwickelten Verfahren kionnen micht als besondere Quellen meuer Nihe-
rungen angesehen werden. Als zweite Irage gaben wir vor, zu ent-
scheiden, ob und wie die fiir die Leibrentenbarwerte gefundenen Nihe-
rungswerte auch unmittelbar auf andere Versicherungswerte aus-
gedehnt werden konnen. Sie beantwortet sich sehr leicht: die Aus-
dehmungsmoglichkeit ist fior die Losungen der dritten und vierten Gruppe
unserer Zusammenstellung ohne weiteres gegeben; an Stelle der Leib-
rentenbarwerte und ihrer Derivierten sind die- dem beziiglichen Ver-
sicherungswert entsprechenden'Wérte‘einzuéetzen; eine systematische
Yusammenstellung der Derivierten der Versicherungswerte schickten
wir schon in § 2 unserer Arbeit voraus.

" Tine letzte Frage lisst sich noch stellen und ist einer kurzen Ei-
withnung wert. Die Darstellung einer Ausscheideordnung durch ein
Ausscheidegesetz kann als Interpolation der Werte der Ordnung mittels
der das Gesetz bestimmenden Funktion aufgefasst werden. Kann daher
das Losen des Zinsfussproblems unter der Annahme, die Ordnung ge-
horche einem bestimmten Ausscheidegesetz, auch als Interpolieren
gedeutet werden, und in welcher Weise hat die Deutung zu erfolgen ?
Wir verzichten darauf, auch noch dieser Frage in der vorliegenden Ar-
beit nachzugehen.
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Anhang.

Die im folgenden zur Darstellung gelangenden Zahlentabellen
bilden eine Erginzung zu der in unserer Arbeit — vornehmlich in
deren § 8 — gegebenen Zusammenstellung von Néherungsformeln
zum Zinsfussproblem im Hinblick auf deren praktische Anwendung.
Sie wollen einzig und allein ein Urteil dariiber ermoglichen, welche
Grissenordnung die in den einzelnen Néherungsformeln steckenden
Fehler — absolut und relativ in 9/, des vorgelegten Rentenbarwerts —
besitzen. Hierbei sei noch im besondern auf folgende Punkte aufmerk-
sam gemacht.

1. Im Gegensatz zu Meissner [2] und Hantsch [5], deren Zahlen-
material den Barwert der lebenslinglichen Leibrente betrifft und
auf welches nachdriicklich hingewiesen sei, geben wir hier Zahlenwerte
fiir die in der Praxis der privaten Lebensversicherung viel hiufiger
vorkommenden temporiren Leibrenten, und zwar nehmen wir die
Barwerte a, g der worschiissig zahlbaren temporéren Leibrenten
zum festen Schlussalter s =z 4+ n =60 und den Beginnaltern
z = 20, 80, 40, 50 (Dauern n = 40, 80, 20, 10). Diese Werteauswahl
reicht vollkommen aus, sie ldsst die Grdssenordnung der einschligigen
Fehler auch fiir andere Alterszusammenstellungen geniigend gut
beurteilen.

2. Wir legen unsern Berechnungen die schweizerische Volks-
sterbetafel SM 1921—1980 [47] und einen Ausgangszinsfuss von 814 %
zugrunde; wo Rentenbarwerte zu noch andern Zinsséitzen benotigh
werden, ziehen wir diejenigen der 4- und 414 %igen Verzinsung heran.
Da die von Hantsch und Meissner und den Originalverfassern der ein-
schligigen Formeln auf Grund anderer Sterbetafeln erhaltenen Werte
den unsrigen im wesentlichen entsprechen, darf vermutet werden, dass
mit Ausnahme der Formeln, die ganz besondere Bedingungen an die
Ausgcheideordnung stellen, die Anderung der Sterbetafel sich auf die
Griossenordnung der Fehler der Naherungsformeln nicht auswirken
wird. Indem wir dann die Rentenbarwerte zu 8 9, und 214 9, Ver-
zinsung berechnen, gehen unsere Rechnungen in der Richtung, welche
der jiingst vergangenen und noch gegenwirtigen Wirtschaftslage
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(sinkende Zinssiitze) entspricht. Da die Rentenbarwerte aber fiir
kleine Zinssitze sich am stidrksten éndern, sind unsere Fehlerwerte
als eher ungiinstig zu bewerten und kénnen daher auch gut als obere
Fehlerschranken aufgefasst werden.

8. Der heutigen Tendenz folgend, die Rentenbarwerte mit 4 Dezi-
malstellen anzugeben, haben auch wir (neuberechnete) Rentenbarwerte
mit 4 Dezvmalstellen verwendet, was bei der Beurteilung der Fehler-
grossen bei Verwendung anderstelliger Rentenbarwerte gebithrend zu
beachten ist.

4. Unter dem positiv oder negativ zu nehmenden absoluten Fehler
verstehen wir die Abweichung des Naherungswerts vom richtigen
Wert, d. h. mit andern Worten die Korrektur, die am Néherungswert
anzubringen ist, damit sich der richtige Wert ergibt.

5. Wir beriicksichtigen die folgenden Formeln: (14) (Boreh),
(15) (Weber), (16) (Lenzi; in unserm Fall liegt Extrapolation vor),
(27) (Steffensen), (30) (van Dorsten), (40) (Poukka I), (42) (Poukka II,
k., = konstant = 0,84) (44) (Poukka mit den Werten (43) fiir
k,,) von Hantsch), (81) (Palmqvist), (50) (Palmqvist mit abge-
stuften Werten (48) fiir k, , 1)), (67) (Frucht), (68) (Frucht; ¢; = 0,04,
14 == 0,085), (100) (Metodo dei quozienti, «absteigend» gebildete
Quotienten).

1) Hierbei war zu beachten, dass beim vorschiissigen Rentenbarwert die im
Nenner von (40) zu verwendenden Hilfswerte nicht mehr kz 4 1, » waren, sondern als

kg+t,n-1 ¢ anzusetzen sind.



Ubergang zu 4’ = 0,025

(14) (Borch)

“(15) (Weber)

(16) (Lenzi)

(27) (Steifensen) -

m B
abs. F. rel. F. (%40) abs. F. rel.. F. (%/40) abs. F. \ rel. F. (%/40) abs. F. | rel. F. (%)
20 + 0,0170 0,72 —0,0482 2,04 —0,0208 i 0,88 + 0,3472 ‘ 14,71
30 + 0,0074 0,38 —0,0294 1,50 —0,0129 0,66 + 0,1834 9,32
40 + 0,0022 0,15 —0,0146 1,00 —0,0027 0,18 -+ 0,0687 4,69
50 -+ 0,0002 0,02 — 0,0042 0,50 —0,0004 0,05 -+ 0,0111 1,33
) * 43) (Poukka, verbessert
. (30) (van Dorsten) ' (40) (Poukka I) (42) (Poukka II) (#3) (P Hantey o
abs.F. | relF. (%) | abs.F. | relF.(y) | abs.F. | relF. (%) | abs.F. | rel F. (%)
20 -+ 0,0310 1,31 —0,0101 0,43 —0,0202 0,86 —0,0107 0,45
30 -+ 0,0131 0,67 —0,0034 0,17 —0,0117 0,59 — 0,0041 0.21
40 -+ 0,0038 0,26 —0,0005 0,03 —0,0032 0,22 —0,0006 0,04
50 -+ 0.,0003 0,04 —0,0001 0,01 -+ 0,0003 0,04 —0,0001 0,01
(31) (Palmgqvist) (80) (Balmovist, ver- (67) (Frucht) (63) (Frucht)
& 4 bessert nach Hantsch)
abs.F. | rel. F. (%) | abs.F. |relF. (%) | abs.F. |relF.(%) | abs.F. | relF. (%)
20 —0,0135 0,57 —0,0072 0,31 —0,0142 0,60 —0,0135 | 0,57
30 —0,0087 0,44 — 0,0026 0,13 —0,0093 0,47 —0,0040 0,20
40 —0,0022 0,16 —0,0003 0,02 — 0,0026 0,18 — 0,0007 0,05
50 -+ 0,0004 0,05 —0,0001 0,01 -+ 0,0003 0,04 —0,0003 0,04
oy |
z (metodo dei quozienti) Gompsts Wiste
abs. F. rel. F. (%g0)
20 + 0,0121 0,51 23,6120
30 -+ 0,0034 0,17 19,6867
40 |+ 0,0007 0,05 14,6363
50 \ —0,0005 0,06 8,3614

606



Ubergang zut’ = 0,03

(14) (Borch)

(15) (Weber)

(16) (Lenzi)

(27) (Steffensen)

& -

abs. F. ‘ rel. F. (%/40) abs. F. rel. . (%/40) abs. F. rel. F. (%/p0) abs. . rel. F. (%/q0)
20 + 0,0096 | 0,44 —0,0213 0,97 —0,0057 0,26 —+ 0,0826 3,76
30 + 0,0041 0,22 —0,0135 0,73 —0,0033 0,15 + 0,0444 2,39
40 -+ 0,0014 0,10 — 0,0068 0,48 —0,0007 0,05 -+ 0,0169 1,20
50 -+0,0001 0,01 —0,0021 0,26 — 0,0002 0,02 -+ 0,0026 0,32

. ) 1. (43) (Poukka, verbessert

. (30) (van Dorsten) B (40) (Poukka I) (42) (Poukka II) nach Hantsch)

abs. F. rel. F. (%40) abs. F. rel. F. (°/40) abs. F. rel. F. (°/g0) abs. F. rel. F. (%)
20 + 0,0035 0,16 —0,0012 0,05 —0,0036 0,16 —0,0014 | - 0,06
30 + 0,0016 0,09 — 0,0004 0,02 —0,0023 0,12 — 0,0006 0,03
40 -+ 0,0007 0,05 -+ 0,0002 0,01 — 0,0004 0,03 -+ 0,0002 0,01
50 — 0,0001 0,01 —0,0001 0,01 0.0000 0 —0,0001 0,01

. (50) (Palmqvist, ver-

i (81) (Palmqvist) biesert, mach Thmtech} (67) (Frucht) (63) (Frucht)

abs. F. | rel. F. (%) | abs.F. | rel. F. (%) | abs.F. | rel. F. (%) | abs. F. | rel. F. (%)
20 —0,0026 0,12 —0,0012 0,05 —0,0029 \ 0,13 —0,0022 0,10
30 —0,0018 0,10 —0,0004 0,02 —0,0020 0,11 — 0,0005 0,03
40 —0,0002 0,01 -+ 0,0002 0,01 — 0,0004 0,03 -+ 0,0001 0,01
50 -+ 0,0000 0 —0,0001 0,01 0,0000 0 0,0000 0

o R e

. (metodo dei quozienti) Ceniie Wets

abs. F. rel. F. (%)
20 -+ 0,0027 0,12 21,9410
30 -+ 0,0006 0,03 18,5848
40 + 0,0003 0,03 14,0645
50 — 0,0003 0,04 8,1951

€06
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