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Uber das asymptotische Verhalten
der Erneuerungsfunktion.
Von Paul Legras, Freiburg.

1. Problemlage und historischer Riickblick.

Die Losung ¢(f) der linearen Volterraschen Integralgleichung

]
(1) o) =p(t) + [ p(t—2) p(x) da

Nennen wir im Hinblick auf die Interpretation, welche die vorlie-
gende Gleichung in der Versicherungswissenschaft, ingbesondere beim
Problem der Erneuerung kontinuierlicher Gesamtheiten erfihrt,
Erneuerungsfunktion. Aus gleichen Griinden setzen wir iiber die
Ausscheidedichte p(f), abgesehen von der als selbstverstiindlich an-
genommenen eigentlichen Riemannschen Integrierbarkeit in jedem
endlichen Teilintervall von (0, <), voraus:

() p(t) >0
und
(3) () dt = 1.
]
Durch Integration der Gleichung (1) gelangt man zu
t
4) 1=PM) + [ P(t—2)p(2)dz,
0
wobei
t
(5) Pt)=1—[p(a)de
0

18t, eine Form, die in der Fachliteratur sehr hiufig als Ausgangs-
gleichung gewihlt wird. Von Bedeutung ist der Wert des im all-
gemeinen als existierend vorausgesetzten Integrals

135
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(6) T =fwP(t) dt = ftp(t) dt.
¢ 0

Seit den ersten Studien iiber die Erneuerungsgleichung (1) bzw. (4)
von Ch. Moser (28) 1) hat sich eine reichhaltige Spezialliteratur heraus-
gebildet. Von den élteren Arbeiten erwihnen wir diejenigen von
L. Herbelot (15), R. Risser (29), E. Zwinggi (82) und A. J. Lotka (18)-

Es handelt sich u. a. um die Anwendung der klagsischen Theorien
zur Berechnung der Erneuerungsfunktion. Besonders erwiihnen wir
die Darstellung durch die C. Neumannsche Reihe:

(7) pt) = po(&) + pr(t) + po () + ...,

wobei die in der Reihe auftretenden Funktionen durch die Integral-
rekursion

o) Pult) = [ P (t—0) p(2) dz, m = 1,238, ...

gegeben sind. Die tatsidchliche Berechnung der Erneuerungsfunktion
auf Grund dieser Reihenentwicklung fand in der Praxis wenig Be-
achtung, da die durch die Rekursion (8) vorgeschriebenen Inte-
grationen nur in seltenen Fillen explizite durchgefithrt werden konnen
oder dann auf umsténdliche Ausdriicke fithren. Beachtung muss hier
einem neuen Gesichtspunkte geschenkt werden, der darin besteht,
die Funktion p(t) so passend zu wihlen, dass alle nach (8) vorzu-
nehmenden Integrationen in geschlossener und iibersichtlicher Form
vorgenommen werden koénnen. Dies ist dann méglich, wenn die
Funktionen Losungen der Funktionalgleichung

{
(9) p(d+B,t) = [ p(d,t—a)p(B,a)da
0

sind. Die Ausscheidedichte enthilt nach dieser Forderung einen Para-
meter, der ein transzendentes Additionstheorem veranlagst. Die Fr-
neuerungsfunktion kann in diesem Fall nach (7) mit Riicksicht auf (8)
und (9) in der folgenden expliziten Form geschrieben werden:

1) Die Zahlen beziehen sich auf das am Schlusse der Arbeit beigefiigte Lite-
raturverzeichnis.
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(10) pt) =p(4,0) +p@4,0) +pBA,H) + ...

In einer kiirzlich erschienenen Note hat H. Hadwiger (14) eine
Zusammenstellung von Losungen der Funktionalgleichung (9) ge-
8eben. Mit Riicksicht auf die Interpretation als Wahrscheinlichkeits-
dichte sind die folgenden beiden Losungen beachtenswert: Eine erste

einfache Lsung ist
A

(11 A ) =gt gt A>0,a>0).
) p (1) ) e ( )

f

Die explizite Darstellbarkeit der Erneuerungsfunktion in diesem Fall
Warde z. B. von 4. W. Brown (1) behandelt, withrend noch speziellere
Fille (4 ganz) vielerorts eine Rolle spielen. Vgl. z. B. E. Zwingg: (34).

Eine zweite Losung, die in der mathematischen Bevolkerungs-
theorie von Bedeutung ist — vgl. die Arbeiten H. Hadwiger (10) und
H, Hadwiger und W. Ruchti (18) — ist gegeben durch

A4 A2
(12) (A f) = —==e*" T (4>0,a>0).
wl

Uber Darstellung und Verhalten der Erneuerungsfunktion in diesem
Speziellen Fall vgl. H. Hadwiger (11).

Die Darstellung durch die C. Neumannsche Reihe gestattet auf
Grand der Voraussetzung (2) unmittelbar auf

(18) P(t) >0

U schliessen. Ist die Ausscheidedichte beschriinkt, d. h. gilt im Inter-
Vall (0,00)

(14) p) <M,

80 ergibt sich aus (7) leicht die rohe Abschitzung
(15) p(t) < Me™.

Uber die Darstellung der Erneuerungsfunktion als Ldsung einer
_Differenti&lgleichung vgl. E. Zwinggi (82), und aber die Entwicklung
! eine Potenzreihe H. Hadwiger (7). Eine explizite Berechnung bei
Siner ganz speziellen Ausscheidedichte — Gesetz von Achard -— wurde
Yon H. Schulthess (30) durchgefiihrt.
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Die in der Erneuerungsgleichung (1) auftretende Integralbildung
stellt eine sogenannte Faltung dar. Dies ermoglicht die Anwenduns
spezieller Verfahren zur Auflosung. Vgl. 4. J. Lotka (18), V. 4. Kos-
taitzan (16) und V. Fock (5). In der neusten Zeit wurde wiederholt die
ha,uptsa,chhch von (. Doetsch (2) geschaffene Theorie der Laplace-
Transformation herangezogen. Bei der Auflésung der Gleichung gpielt
der wichtige Faltungssatz (G. Doetsch [2], S. 161) eine entscheidende
Rolle. Vgl. hierzu die Arbeiten von L. Féraud (4), R. Tarjan (31)
und H. Hadwiger und W. Wegmiiller (12). Durch die Abhandlungel
von H. Richter (28) und W. Feller (8), die wir noch oft zitieren miissett
hat die Theorie der Frneuerungsgleichung einen gewissen Abschluss
erfahren.

Die Existenzfrage fiir die Losung der Gleichung (1) kann, ab-
gesehen von der Moglichkeit, welche die klassische Theorie liefert:
mit Hilfe eines Theorems von Paley und Wiener aus der Theorie der
Laplace-Transformation (vgl. . Doetsch [2], S.282) gelost werden:
Vgl. hierzu H. Hadwiger (8), 8. 10. Der vorliegenden Sachlage besser
angepasst ist es, den Existenznachweis auf Grund eines Theorems Vol
Bernstein und Widder betreffend die Laplace-Stieltjessche Darstellung
absolut-monotoner Funktionen zu fithren, wie W. Feller (3), S. 247
bis 249, entwickelt.

In der letzten Zeit ist die Frage nach dem asymptotischen Ver-
halten der Erneuerungsfunktion in den Vordergrund der Betrachtung
geriickt. Verschiedene Autoren waren schon frither bestrebt, allgemein‘
gilltige Aussagen iiber den Verlauf der Lésung ¢ (f) fiir ¢ —» oo 24
machen, eine Aufgabe, die sich mit Riicksicht auf die praktische Det”
tung dieser Funktion naturgemiiss aufdringte. So glaubte man be’
wiesen zu haben, dass unter normalen Voraussetzungen iiber p(#) die
Losung ¢ (t) sich stets wellenférmig dem asymptotischen Wert

1
(16) lim () =
§—poo 1

nihert. Strebt die Erneuerungsfunktion gegen eine Konstante, wie
die asymptotische Formel (16) dies darstellt, so spricht man von eigent”

licher Stabfzhswrunq Im Gegensatz zu einer allgemeinen Aussage VO"
E. Zwinggt (38) hat H. Hadwiger (6) gezeigt, dass sich die Erneuerung®”
funktion auch monoton verhalten kann., Wie spiter H. Hadwiger (9
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Weiter gezeigt hat, kann man ohne schirfere Voraussetzungen iiber
die Ausscheldodlchte nicht einmal auf die eigentliche Stabilisicrung
Schliessen. T gibt Fille, wo die Erneuerungsfunktion eine nicht
abbrechende Folge unbeschriinkt wachsender Oszillationen ausfiihrt.
H. Richter (26) bewies dann, dass die Relation

(17) lim p(t) =

>
eing notwendige Bedingung fiir die eigentliche Stabilisierung darstellt.
Wesentlich schwieriger gestaltet sich die Frage nach hinreichenden
Bedmgunﬁen Es hat sich gezeigt, dass die sogenannte Stabilisierung
Um Mittel weit einfacher und unter sehr allgemeinen Voraussetzungen
herﬂeleltet werden kann. Es handelt sich um die asymptotische

Relation
t
1 1
(18) t_lui;nm—t p(z)de = T

Sie bedeutet, dass sich nicht die Erneuerungsfunktion selbst, sondern
thr Integralmittelwert stabilisiert. Die Existenz des Integrals (6),
das den Wert T liefert, ist hierbei vorausgesetzt. Dieser Konvergenz-
Satz wurde von H. Richter (28) unter der weiteren Voraussetzung,
dass dag Integral

(19) | /?o[p )]z dt

kOnverglert abgeleitet. Unabhiingig wurde der gleiche Satz auch von
W. Feller (3 (3) aut Grund eines Theorems der Tauberschen Asymptotik

(4. Doetsch, [2], S. 208) gefunden.
Eigentliche Stabilisierung tritt nach den Untersuchungen von

H. Richter (28) jedenfalls dann ein, wenn ausser der Existenz der
Integrale (6) und (19) noch diejenige von

(20) /'p(t) thnt dt
VOl‘ausgesotat wird. Dadurch wird klargestellt, dass die Art der Stabi-

hSIeruncr der Krneuerungsfunktion vom asymptotischen Verhalten
dex Ausschmdedwhbe abhiingig ist.
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Einen schirferen Konvergenzsatz hat W. Feller (3) abgeleitet:
Es bezeichne m, das Moment

(21) m, = [€p()dt, my =T,
0

das fiir v = 1,2, ... n (n >2) existieren soll. Die Funktionen # p(f);
u=1,2,...n-—2seien im Intervall (0, ) von beschrinkter Varia-
tion und es gelte

oQ

(22) lim 2 p() =0, lim t”'zfp (t)dt =0.
t—poo t—p oo
¢
Dann gilt die asymptotische Beziehung
: . 1
(28) lim ¢ (p(t)-,—,l=0.
{ —>» oo /|

Diese Formel liefert auch eine Aussage iiber die Stirke, mit welcher
die eigentliche Stabilisierung erfolgt. ‘
Verfasser leitet in dieser Arbeit eine asymptotische Formel ab,
welche unter hinreichend starken Voraussetzungen fiir die Erneue-
rungsfunktion Approximationsfunktionen liefert, wobei der Approxi-
mationsfehler einer exponentiellen Abschidtzung unterworfen wird.

2. Darstellung der Erneuerungsfunktion mit Hilfe
der Laplace-Transformation.

In bezug auf die Ausscheidedichte setzen wir fiir das Nach-
folgende weiter voraus, dass p(f) fix t >0 (in t =0 von rechts)
stetig und stetig differenzierbar sei. Wie wir der klassischen Theorie
der Volterraschen Integralgleichungen entnehmen wollen, iibertrigt
gsich diese Eigenschaft auf die im iibrigen eindeutig bestimmte Lésung
@(f) der Gleichung (1). Vgl. hierzu auch die Darstellung durch die
in jedem endlichen Teilintervall von (0, c) gleichmiissig konvergente
Neumannsche Reihe (7).

In der Halbebene R [z] > 0 konvergieren die Laplace-Integrale
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o0

(24) [etpyat=ne)
und 0
(25) / e P(tydt = H(2)

absolut und stellen nach einem grundlegenden Theorem (Doetsch [2],
8. 43, Satz 6) die oben mit k(z) und H (z) bezeichneten analytischen
und in der genannten Halbebene reguliren Funktionen dar.

Von grosser Bedeutung fiir die weitere Entwicklung ist die cha-
rakteristische Gleichung

(26) 1—h(z) =0.
Mit Riicksicht auf (3) gilt offenbar
(27) |h(z)| <1, R[z]>0,

80 dass in der Halbebene R[z] >0 keine charakieristische Wurzel
der Gleichung (26) liegen kann. Sehr einfach lisst sich zeigen, dass
% =0 eine ewnfache Wurzel ist und dass jede von z, verschiedene
Wurzel in der Halbebene R [2] < 0 liegen muss.

Wir fihren nun die Hilfsfunktion

h(2)

(28) f(2) = m

oin. Zieht man die Relation (5) in Betracht, aus welcher sich der
Zusammenhang

(29) H(2) :i{l —h(z)]

2
ergibt, so lisst sich fiir die Funktion (28) auch schreiben:

1

2 H (z) — L

(30) (o) =
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Nach den oben gemachten Feststellungen betreffend die charak-
teristischen Wurzeln ergibt sich, dass die Hilfsfunktion f(z) in der
rechten Halbebene R[z] >0 regulir ist. Nach einem Theorem von
Paley und Wiener (Doetsch [2], S. 282) gibt es eine in jedem endlichen
Teilintervall von (0, ) eigentlich integrierbare und in jedem Intervall
(0,a) absolut integrierbare Funktion gq,(t), so dass das Laplace-
Integral

(31) [ potydt=f(z)
0

in der Halbebene R[z] > 0 absolut konvergiert und dort die regulire
Funktion f(z) darstellt. Aus der zwischen den beiden analytischen
Funktionen h(2) und f(z) bestehenden algebraischen Beziehung

(32) f(2) = h(z) + R(2) ()

kann nach dem Faltungssatz (Doetsch [2], S.161) auf die Faltungs-
relation

(39) 7o) =p(O) + [ P(t—2) po(a) dz + ()
0

geschlossen werden. Hierbei ist 7(f) eine sogenannte Nullfunktion,

d. h. es gilt

¢
[ n(2) da=0.
0
Aus (33) folgert man nun, dass

(34) () = @o(t) —n(t)

die Losung der Integralgleichung (1) darstellt. Da offenbar

je—"n(t) dt=0
0

ist, folgt fiir die Laplace-Transformierte der Erneuerungsfunktion in
Rz} >0
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(35) fme-zt p)dt = f(2) .
0

Eing Integraldarstellung fiir die gesuchte Losung ¢(t) lisst sich er-
Teichen, wenn man die komplexe Umkehrformel der Laplace-Trans-
formation (Doetsch [2], S.105) anwendet. Die hierzu erforderlichen
VOraussetzungen sind mit Beriicksichtigung der sich aus unsern Vor-
Qussetzungen ergebenden Eigenschaften von ¢(t) erfiillt. So ergibt
Sich die Darstellung fiir ¢ > 0 und o >0

a-ico
1 f
36 - 10z,
) 0] 5] j e f(2)
oder nach (28)
a-+ioo
1 h(2)
(87 = [ " —"—de,
) v =53 _ 1o
oder endlich nach (30)
a-tioo
1 1 |
(38 f) = f %“’[ —1dz.
) =07 | Clamm

a—{oo

Diese Integraldarstellungen kénnen in gewissen Fillen zur Berechnung
der Erneuerungsfunktion dienen. Es sei z. B.:

39 O (1) — o7H My by 1 M|
(39) P(i) = ¢ [a0+1!t+2!t LERERI et

Die Funktion muss aber den hier vorliegenden Verhiltnissen angepasst
Semn, d. h. es muss 4 >0 und

P(0) =1, also @y =1 und fir ¢ >0 stets P’(t) < 0 sein.
In diesem Falle wird

o y a,

4 - M
(40) He) =+ irm Tt




und

PN B et Y o el Lo AT 0

alag @+ +a (2 FA 4+ ...+ a,)

also eine rationale Funktion, die sich unter der Voraussetzung, dass
alle n +1 Wurzeln

29 =0;28;%, .2
der charakteristischen Gleichung
(42) elag e+ +a, 4+ + ... +a}=0

einfach sind, in die Partialbriiche

’ ) ~C’O - C
(43) fmﬂ7+é

v
z2—2,

zerlegen lasst. Tir das Residuum €, erhalten wir noch

An-H
o A" +a A"+ L +oa,

(44) 00 =

y

: . o - . 1
ein Wert, der wie leicht zu verifizieren ist, mit a iibereinstimmd®.
Durch gliedweise Anwendung der Formel

ot 1oo

dz
~ 1 _ el: = c:vt
21 7 —2,

a-100

in der Darstellung (36) gewinnen wir
&

(45) plt) = Co + ) C, e,
v=1

Was nun den Verlauf von ¢(f) anbetrifft, so ergeben sich nach
dieser Darstellung zwei Méglichkeiten, je nachdem die charakte-
ristischen Wurzeln simtlich reell oder teilweise konjugiert komplex
sind. Unter Beriicksichtigung von
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R[ZU]<U, (’U>O)

ergibt sich die monotone oder wellenformige Konvergenz der K-

1
111

Neuerungsfunktion gegen die Konstante Cj ==

3. Die Stabilisierung im Mittel.

Wie weiter oben dargelegt wurde, konvergiert das Laplace-
Integral

(35) [etpyat =)
0
I der Halbebene R[z] >0 absolut, und es gilt
(30) fd) = . -—1 wobel
ZH(2)
(25) H(z) = [etP@ydt ist.
0

Setzen wir die Existenz des Integrals
(6) T = [ P(t)de
0

Voraus, so gilt nach dem Stetigkeitssatz fiir Laplace-Integrale (Doetsch
(2], 8.47)
(46) H(z)—>T fir z(reell, positiv) —0.

Hieraus schliessen wir
4 L .
(47) 2f(z) —> ra fir 2 (veell, positiv) —» 0.

Mit Riicksicht auf (13), wonach @(f) >0 ist, kann ein Satz der Tau-
berschen Asymptotik verwendet werden (Doetsch [2], S. 208, Satz 2),
Wonach fiir ¢ —» oo
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(48) ](p m)d:z;w—tr—

gilt, oder also die asymptotische Relation

1
(18) lm1—4/¢ ) da =—
[=» 0 T

durch welche die Stabilisterung 1m Mittel dargestellt wird.

4. Eine asymptotische Formel fiir die Erneuerungsfunktion.

Wir werden jetzt unter einer zusitzlichen starken Voraussetzung
iiber die Ausscheidedichte die eigentliche Stabilisierung der Erneue-
rungsfunktion ableiten und dariiber hinaus eine Formel entwickeln,
welche in gewissen Fillen gestattet, beliebig scharfe Approximations-
funktionen herzustellen. Ausser den frither aufgestellten Bedingungen
(2), (8) und (6) fordern wir noch, dass p(f) fiir ¢ >0 (in ¢t = 0 von
rechts) stetig und 2mal stetig differenzierbar sei und dass weiter
fir v = 0,1, 2 die asymptotische Relation

(49) P =0{e*},a>0

gelte. Nach dieser Voraussetzung gibt es eine positive Konstante M,
so dags fir t >0 und v=20,1,2

(50) e pt () < M

gilt. In der Halbebene R[z] > — a konvergieren die Laplace-Integrale

oo

(24) [ et p(t) dt = h(2)
0
und
(51) / et pt)ydt = (—1)" RO (2.
0

und fir die Momente
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(52) M, = j " p(t)dt
0
erhilt man
(53) M, = (—1)"k" (0).

Beriicksichtigh man die fiix R[z] > — a geltenden Beziehungen

(54) lim e p(f) =0, lim e*'p'() =0,

[ —>»oc0 {—» o0
80 gewinnt man durch zweimalige partielle Integration von (24) fiir
2¥0und R[z] > —a

p(0) P '(0)

2 22

(55). h(z) = + = ] ety () dt.

Wir betrachten nun in der z-Iibene einen Streifen
(56) — o< R[7]<o, 0<a<a, 0>0.

Fir R[2] > — o gilt mit Ricksicht auf (50)

. M
(57) / e’ dtl<——w--
’ a—ao
80 dass
hach (55) im Streifen (56) die Abschiitzung
0) M 1

8 L (R

) (2) p \P l - I’? I2
gilt. Wir greifen jetzt zuriick auf die wichtige charakteristische Glei-
chung
(26) 1—h(z) =

und studieren insbesondere die im Streifen (56) gelegenen Wurzeln.
Da sich % (z) auf dem im Streifen gelegenen Stiick (—a, ) der reellen
Achse monoton verhilt, ist 2o =0 dort die einzige reelle Wurzel.
Sie ist ausserdem einfach, da

W (0) = — M, < 0 ist.
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Die andern Wurzeln miissen paarweise konjugiert-komplex sein. Ist
a + 18, B+ 0 eine komplexe Wurzel, so muss

oo

(59) [ e cosptpiyat =1

0

sein. Subtrahieren wir diese Gleichung von (8), so folgt

[ore)

(60) f (1 —e™ cospt) ptydt =0,

0

so dass mit Riicksicht auf (2), auf Voraussetzung 8+ 0 und auf die
Stetigkeit der im Integral (60) geschriebenen Funktionen offen-
sichtlich auf

(61) a<<0

geschlossen werden kann. Das bedeutet, dass alle von z, =0 ver-

schiedenen Wurzeln der charakteristischen Gleichung (26) in der
offenen Halbebene E[z] << 0 liegen miissen.

Nun gilt im Streifen (56) weiter
(62) h(z) —» 0 gleichmiissig fiir z—» co,

d. h. es kann zu einem 0 < § < 1 ein 4 > 0 so gefunden werden, dass
fir [J[2]|=4 und —o< R[zJ<e

(63) | R Ss<1

ausfillt. Die im Streifen (56) liegenden charakteristischen Wurzeln
liegen dann alle im Rechteck

(64) — o< RlE<e — A< T[4,

und nach einem bekannten Satz der Funktionentheorie kénnen es
nur endlich viele sein. Wir bezeichnen sie mit

(65) 20 :Or 21,3_1, zz, z_z, e zﬂ, 2—71’



— 197 —

Wo die Numerierung so gewithlt sein soll, dass

(66) 2, 5=,

18t

Die komplexen Wurzeln sollen fiir das folgende als einfach vor-
ausgesetzt werden.

Die Hilfsfunktion

h
29) ) =

8t im Rechteck (64) bis auf die Punkte z, (v =0,1,—1, ... n,—n)
Yegular. In diesen Punkten besitzt f(z) Pole 1. Ordnung mit den
Residuen

[ et plyat
(67) O e e B
T [enttpat
0

Speziell ist

1 1
(68 C, = =—
: T M, T
Nach (66) gilt noch
(69) C.,=0,
Ist ¢ g0 gewihlt, dass auf der Geraden BE[z] = — ¢ keine charakte-

Yistische Wurzel liegt, so ist die Funktion f(z) auch auf dem Rand des
Rechtecks (64) regulir.

Nach dem Residuensatz erhilt man fiir dag im positiven Sinn
Uber den Rand des Rechtecks erstreckte Integral

1 U :
70 - iz _ tzv-
(70) 2m,fe fe)dz = Z:C’ue

Der Wert C,e'% stellt das Residuum der Funktion e'*f(z) im Pol
zu dar.
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Durch Zerlegung des Randintegrals (70) in die vier geradlinigen
Teilintegrale
o—-id

1 ;
-o-iA
o+iA
1 ,
™) W HCIEE AT
2w
o014
-o+4+id
(73) P f e f(2)dz = Jy (b),
o+iA
1 —-6—-1A
(74) — e f(e)dz = J, (1),
2m1
—r1A
gewinnt man
(75) Ji(O) + Jat) + T5(t) 4 T Zo et

Ist ¢ > 0 und ¢ > 0 beliebig vorgegeben, so kann nach Feststellung (63)
und mit Riicksicht auf die Darstellungsformel (36) ein 4, so gross
gewiihlt werden, dass fiir alle 4 > A4, die folgenden beiden Bedingunge™
erfullt sind:

Qme
1. te 200 e || =4, —e< R[] <
1] < ot o || = 4 —s S RIS
l o |
&€
2. e 2 —opf) | <« .
’27” e f(2)de —op )|< 5
o-id |

Dann ist also

)

(76) Ja(t)| <00 ~—«p(t)( <<,

P
J, (1 oy
1()‘< 3
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80 dags sich aus (75)

(77) <e fir 4> 4,

D Gt — () —J4(0)

ergibt. Dies bedeutet, dass das Integral

—g-} ioo

f e fydz = J(t)

-0—100

1

Qw1

(78)

(als Cauchyscher Hauptwert) existiert und dass die Relation

(79) o(l) = Z 0, et 4 J (1)

besteht. Die in der vorstehenden Darstellung rechts geschriebene
Summe stellt offensichtlich eine Approximationsfunktion fir ¢ (f)
dar, und es gilt nun, das Restintegral J(t) abzuschitzen. Zuniichst
ist fiir ¢ > 0

g4 100
1 0
(80) _ feiz—p() dz =0.
27:@___ z2—p(0)

Zur Verifikation fiihre man die Substitution z = p(0) — s durch und
vergleiche mit dem bekannten diskontinwierlichen Faktor (vgl. Doetsch
(2], 8. 105)

0 fur ¢t >0
1 w-Fi00 l 1
(81) e o) i t=0 (0>0).
Q7 _ s 2
1 fir t<O0

Wenn wir jetzt (80) von (78) subtrahieren, ergibt sich

-0} {oo

— " p(0)
(82) T =5 f et {f(z)—ﬂm dz.

~o={oco

14
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Nun beriicksichtigen wir die Darstellung (28) und erhalten fiir den
im Integral (82) auftretenden Klammerausdruck nach einiger Um-
rechnung

, p(0) 4
I O =T i LR

P 0) } 1
z J1—h()

Auf der Geraden R[z] = — o sei
(84) |1 —h()|=0>0.

Die Annahme einer solchen positiven Schranke 6 ist mit Riicksichb
auf die Konvergenz (62) und auf die Voraussetzung, wonach auf der
genannten Geraden keine charakteristische Wurzel liegen soll, gerecht-
fertigt.

Auf der Geraden 1st ferner wegen p(0) >0

(85)

Z
__\<1.
z2—p(0)

Beriicksichtigen wir ausser (84) und (85) noch die Abschiitzung (53)
so ergibt sich fiir das Restintegral (82)

-0+ loco

1 , M | dz
6 70|57 | IP01+ =y | [ lel| 5]
oder
] i, Moy,
@) 70| S50 {1701+ 725 |,

wo noch der Wert des bekannten Integrals

(o]

a8 a¢ =
e foz-[-&'z—_(;

-0

eingesetzt wurde. Nach (79) lisst sich jetzt schreiben

(89) p(t) = ) C,est +0{e™).



Setzen wir in (89) noch

: 1
2'0-_—:0 . COZ’T
zv=_5u+inv CDZA"—I—?:B"

‘ (= 1;% s5: M),
Z_v*:—.fu—— “7.; C—-v ='Av_—?:BU

S0 erhalten wir endlich die asymptotische Formel
1 '.l s . s
00) @) = a -4 22(3’*»‘ {4, cosy,t — B, sinn,t} +0{e}.
v=1

Besonders beachte man, dass

(1) 0<é& <o (=12 ...n)
gilt,

Die erhaltene Formel (90) zeigt, dass unter den gewihlten Vor-
aussetzungen (49) iiber die Ausscheidedichte die Iirneuerungsfunktion

1 :
Stets gegen den asymptotischen Werb-ﬁ;l‘:onverglert und dass, falls

Ausser z, == 0 noch andere Wurzeln der charakteristischen Gleichung
I Streifen — o < R[z] <p liegen, diese Konvergenz wellenférmig
erfolgt. Die durch die Formel gelieferte Approximation kann umso mehr
Verfeinert werden, je grosser man o withlt und je mehr charakteristische
Wurzeln also verwertet werden. Es kann natiirlich der Fall eintreten,
dass im oben genannten Streifen ausser 2z = 0 keine charakteristische

Wurzel mehr liegt. Die Formel reduziert sich dann auf

1
(92) () =7 +0{e},

Wobei iiber die Form der Anniherung an den asymptotischen Wert
Dichts entnommen werden kann.

Besondere Beachtung verdient der Fall, wo

n

(98) lim sup l/lw” =0

ﬂ—-)oo n!
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ist; dann ist nimlich

oo

(94) hz) = Z (— 1y M

!
o n.

eine ganze transzendente Funktion. Da %(0) = 1 ist, kann der Wert 1
nicht der Picardsche Ausnahmewert sein, und die charakteristische
Gleichung (26) hat in der linken Halbebene R[z] < 0 unendlich viele,
paarweise konjugiert-komplexe Wurzeln.

In der asymptotischen Formel (90) kann dann ¢ jede beliebig
grosse Zahl sein; es ist aber die Bedingung zu beachten, dass auf der
Geraden R[z] = — o keine charakteristische Wurzel liegen soll.

Die Erneuerungsfunktion kann formal fix ¢ — oo durch die
asymptotische Reihe

1 oo
(95) ) ~—+ > e*" (4, cos n,t — B, sin n,1)

dargestellt werden. In gewissen Fillen wird durch (95) eine gleich-
miissig konvergente Reihenentwicklung geliefert. Die genaue Ab-
klirung dieser Frage erfordert weitere Studien, u. a.iiber die Ver-
teilung der charakteristischen Wurzeln.

Wir bemerken noch, dass die Bedingung (93) jedenfalls dann er-
fullt ist, wenn
(96) p(t) =0 fir t>w,

d. h. wenn die Ausscheidedichte ausserhalb eines endlichen Intervalls
verschwindet.
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