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Über das asymptotische Verhalten
der Erneuerungsfunktion.

Von Paul Legras, Freiburg.

1. Problenilage und historischer Köckblick.

Die Lösung rp (t) der linearen Volterraschen Integralgleichung

t
(1) 9J(0=P(0 + /p(' — x)<p(x)dx

o

nennen wir im Hinblick auf die Interpretation, welche die vorliegende

Gleichung in der Versicherungswissenschaft, insbesondere beim
Problem der Erneuerung kontinuierlicher Gesamtheiten erfährt,
Erneucrunysfunktion. Aus gleichen Gründen setzen wir über die
Ausscheidedichte abgesehen von der als selbstverständlich
angenommenen eigentlichen Biemannschen Integrierbarkeit in jedem
endlichen Teilintervall von (0, «>), voraus :

(2) p(<)J>0
und

oo

(3) j°p(t)dt — 1.
o

Durch Integration der Gleichung (1) gelangt man zu

t

(4) 1 P (f) -f- P(t — x)<p (x) d x,
o

wobei
t

(5) P (f) 1 — l~ p (x) d x
o

ist, eine Form, die in der Fachliteratur sehr häufig als Ausgangsgleichung

gewählt wird. Von Bedeutung ist der Wert des im
allgemeinen als existierend vorausgesetzten Integrals

13



(6)

oo oo

r=y p(t)dt f tv(t)dt.
0 0

Seit den ersten Studien über die Erneuerungsgleichung (1) bzw. (4)

von Ch. Moser (23) 0 hat sich eine reichhaltige Spezialliteratur
herausgebildet. Von den älteren Arbeiten erwähnen wir diejenigen von
L. Herbslot (15), R. Risser (29), E.Zivinggi (32) und A. J. Lotka (18).

Es handelt sich u. a. um die Anwendung der klassischen Theorien

zur Berechnung der Erneuerungsfunktion. Besonders erwähnen wir
die Darstellung durch die C. Neumannsche Reihe:

(7) <p(t) MO + MO + MO + • •

wobei die in der Reihe auftretenden Funktionen durch die
Integralrekursion

MO M)
(8) /

Pn(0 J Pn-1 (t — n)p(v) dx> n 1, 2, 3,
0

gegeben sind. Die tatsächliche Berechnung der Erneuerungsfunktion
auf Grund dieser Reihenentwicklung fand in der Praxis wenig
Beachtung, da die durch die Rekursion (8) vorgeschriebenen
Integrationen nur in seltenen Fällen explizite durchgeführt werden können
oder dann auf umständliche Ausdrücke führen. Beachtung muss hier
einem neuen Gesichtspunkte geschenkt werden, der darin besteht,
die Funktion p (t) so passend zu wählen, dass alle nach (8)
vorzunehmenden Integrationen in geschlossener und übersichtlicher Form

vorgenommen werden können. Dies ist dann möglich, wenn die

Funktionen Lösungen 1er Funktionalgleichung

t

(9) p(A + B,0 j p(A,t — x) p{B,x) dx
o

sind. Die Ausscheidedichte enthält nach dieser Forderung einen
Parameter, der ein transzendentes Additionstheorem veranlasst. Die

Erneuerungsfunktion kann in diesem Fall nach (7) mit Rücksicht auf (8)

und (9) in der folgenden expliziten Form geschrieben werden:

>) Die Zahlen beziehen sich auf das am Schlüsse der Arbeit beigefügte
Literaturverzeichnis.
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(10) (pit) p(A,t) + p(2A,t) + p{SA,t) +

In einer kürzlich erschienenen Note hat H. Hadiviçjer (14) eine
Zusammenstellung von Lösungen cler Funktionalgleichung (9)
gegeben. Mit Rücksicht auf die Interpretation als Wahrscheinlichkeitsdichte

sind die folgenden beiden Lösungen beachtenswert: Eine erste
einfache Lösung ist

(11) p{A!i)=^^tA-1e-at (A>0, a>0).
1 (A)

Hie explizite Darstellbarkeit der Erneuerungsfunktion in diesem Fall
Wurde z. B. von A. W. Broion (1) behandelt, während noch speziellere
Halle (A ganz) vielerorts eine Rolle spielen. Vgl. z. B. E. Zwinggi (84).

Eine zweite Lösung, die in der mathematischen Bevölkerungstheorie

von Bedeutung ist — vgl. die Arbeiten H. Hadmger (10) und
Hl- Hadmger und W. Ruchti (13) — ist gegeben durch

(12) p(A,t) =-£==-e2aA"T-a2' (A > 0, a> 0).
l/aP

Ober Darstellung und Verhalten der Erneuerungsfunktion in diesem
speziellen Fall vgl. H. Hadmger (11).

Die Darstellung durch die C. Neumannsche Reihe gestattet auf
Grund der Voraussetzung (2) unmittelbar auf

(13) <p(t)^0

zü schliessen. Ist die Ausscheidedichte beschränkt, d. h. gilt im Inter-
^äill (0 Co)

(14) p(f)<M,
so ergibt sich aus (7) leicht die rohe Abschätzung

(15) <p{t) < Mem.

Ober die Darstellung der Erneuerungsfunktion als Lösung einer
Differentialgleichung vgl. E. Zivinggi (32), und über die Entwicklung
ln eine Potenzreihe H. Hadwiger (7). Eine explizite Berechnung bei
eüier ganz speziellen Ausscheidedichte — Gesetz von Achard — wurde
v°n H. Schulthess (30) durchgeführt.
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Die in der Erneuerungsgleichung (1) auftretende Integralbildung
stellt eine sogenannte Faltung dar. Dies ermöglicht die Anwendung

spezieller Verfahren zur Auflösung. Vgl. A. J. Lotka (18), V. A. K°s'
titzin (16) und V. Fock (5). In der neusten Zeit wurde wiederholt die

hauptsächlich von G. Doetsch (2) geschaffene Theorie der Laplace-

Transformation herangezogen. Bei der Auflösung der Gleichung spie"1

der wichtige Faltungssatz (G. Doetsch [2], S. 161) eine entscheidende

Bolle. Vgl. hierzu die Arbeiten von L. Féraud (4), Ii. Tarjan (31)

und H. Hadiviger und W. Wegmüller (12). Durch die Abhandlungen

von H. Richter (28) und W. Feller (3), die wir noch oft zitieren müssen,

hat die Theorie der Erneuerungsgleichung einen gewissen AbschluSS

erfahren.
Die Existenzfrage für die Lösung der Gleichung (1) kann,

abgesehen von der Möglichkeit, welche die klassische Theorie liefert,

mit Hilfe eines Theorems von Paley und Wiener aus der Theorie dei

Laplace-Transformation (vgl. G. Doetsch [2], S. 282) gelöst werden.

Vgl. hierzu H. Hadiviger (8), S. 10. Der vorliegenden Sachlage besser

angepasst ist es, den Existenznachweis auf Grund eines Theorems von

Bernstein und Widder betreffend die Laplace-Stieltjessche Darstellung
absolut-monotoner Funktionen zu führen, wie W. Feller (3), S. 247

bis 249, entwickelt.
In der letzten Zeit ist die Frage nach dem asymptotischen

Verhalten der Erneuerungsfunktion in den Vordergrund der Betrachtung
gerückt. Verschiedene Autoren waren schon früher bestrebt, allgemeingültige

Aussagen über den Verlauf der Lösung <p(t) für t—>°° zü

machen, eine Aufgabe, die sich mit Bücksicht auf die praktische
Deutung dieser Funktion naturgemäss aufdrängte. So glaubte man
bewiesen zu haben, dass unter normalen Voraussetzungen über p(t) d10

Lösung <p (t) sich stets wellenförmig dem asymptotischen Wert

(16) lim <p(f) =-1-
t —>-oo 1

nähert. Strebt die Erneuerungsfunktion gegen eine Konstante, w'10

die asymptotische Formel (16) dies darstellt, so spricht man von eige^'

licher Stabilisierung. Im Gegensatz zu einer allgemeinen Aussage voU

E. Zwinggi (33) hat H. Hadiviger (6) gezeigt, dass sich die Erneuerung3'

funktion auch monoton verhalten kann. Wie später H. Hadiviger (9)
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Leiter gezeigt hat, kann man ohne schärfere Voraussetzungen über
die Ausscheidedichte nicht einmal auf die eigentliche Stabilisierung
s°hliessen. Es gibt Fälle, wo die Erneuerungsfunktion eine nicht
abbrechende Folge unbeschränkt wachsender Oszillationen ausführt,
fr- Richter (26) bewies dann, dass die Relation

^ ') lim f(t) =0
t —oo

eme notwendige Bedingung für die eigentliche Stabilisierung darstellt.
Wesentlich schwieriger gestaltet sich die Frage nach hinreichenden
Bedingungen. Es hat sich gezeigt, dass die sogenannte Stabilisierung
>rn Mittel weit einfacher und unter sehr allgemeinen Voraussetzungen
hergeleitet werden kann. Es handelt sich um die asymptotische
Delation

t

i r lfr 8) lim — / cp(x)dx — •

t —oo i J -f
0

Sie bedeutet, dass sich nicht die Erneuerungsfunktion selbst, sondern
Jbr Integralmittelwert stabilisiert. Die Existenz des Integrals (6),
das den Wert T liefert, ist hierbei vorausgesetzt. Dieser Konvergenzsatz

wurde von H. Richter (28) unter der weiteren Voraussetzung,
dass das Integral

oo

fr9) f['p(t)]2ät
6

konvergiert, abgeleitet. Unabhängig wurde der gleiche Satz auch von
W. Feiler (8) auf Grund eines Theorems der Tauberschen Asymptotik
(0. Doetsch [2], S. 208) gefunden.

Eigentliche Stabilisierung tritt nach den Untersuchungen von
-fr- Richter (28) jedenfalls dann ein, wenn ausser der Existenz der
frdegrale (6) und (19) noch diejenige von

oo

j p(t) tint dt
ö

^ausgesetzt wird. Dadurch wird klargestellt, dass die Art der Stabi-
lsierung der Erneuerungsfunktion vom asymptotischen Verhalten

dßr Ausscheidedichte abhängig ist.
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Einen schärferen Konvergenzsatz hat W. Feller (3) abgeleitet :

Es bezeichne mv das Moment

oo

(21) — /fp(t)dt, T,
o

das für v 1, 2, n (w>;2) existieren soll. Die Funktionen
f.i 1, 2, n — 2 seien im Intervall (0, oo) von beschränkter Variation

und es gelte
oo

(22) lim 0, lim <"~2 fp(t)dt 0.
t —>- oo t —y OO J

t

Dann gilt die asymptotische Beziehung

(23)
^

lim r2(t) — -1-1 0.

Diese Formel liefert auch eine Aussage über die Stärke, mit welcher
die eigentliche Stabilisierung erfolgt.

Verfasser leitet in dieser Arbeit eine asymptotische Formel ab,

welche unter hinreichend starken Voraussetzungen für die
Erneuerungsfunktion Approximationsfunktionen liefert, wobei der
Approximationsfehler einer exponentiellen Abschätzung unterworfen wird.

2. Darstellung der Erneuerungsfunktion mit Hilfe
der Laplace-Transformation.

In bezug auf die Ausscheidedichte setzen wir für das

Nachfolgende weiter voraus, dass p (t) für t > 0 (in t 0 von rechts)

stetig und stetig differenzierbar sei. Wie wir der klassischen Theorie
der Volterraschen Integralgleichungen entnehmen wollen, überträgt
sich diese Eigenschaft auf die im übrigen eindeutig bestimmte Lösung
cp(l) der Gleichung (1). Vgl. hierzu auch die Darstellung durch die

in jedem endlichen Teilintervall von (0, oo) gleichmässig konvergente
Neumannsche Reihe (7).

In der Halbebene B [2] > 0 konvergieren die Laplace-Integrale
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(24) J e'zt <p (t) dt h (z)

o

und
oo

(25) je~zl P(t)dt H(z)
0

absolut und stellen nach einem grundlegenden Theorem (Doetsch [2],
8-43, Satz 6) die oben mit h(z) und H(z) bezeichneten analytischen
und in der genannten Halbebene regulären Funktionen dar.

Von grosser Bedeutung für die weitere Entwicklung ist die
charakteristische Gleichung

(26) 1—Ä(Ä)=0.

Mit Rücksicht auf (3) gilt offenbar

(27) |M«)|<1, «M>0,

so dass in der Halbebene R [z] > 0 keine charakteristisciie Wurzel
der Gleichung (26) liegen kann. Sehr einfach lässt sich zeigen, dass

0 eine einfache Wurzel ist und dass jede von z0 verschiedene
Wurzel in der Halbebene R [2] < 0 liegen muss.

Wir führen nun die Hilfsfunktion

(28) m
h(z)

1 —h{z)

ein. Zieht man die Relation (5) in Betracht, aus welcher sich der
Zusammenhang

(29) H(z)=- 1 —h(z)

ergibt, so lässt sich für die Funktion (28) auch schreiben:

(30) /(*)
zH(z)
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Nach den oben gemachten Feststellungen betreffend die
charakteristischen Wurzeln ergibt sich, dass die Hilfsfunktion f(z) in der

rechten Halbebene Z? [0] > 0 regulär ist. Nach einem Theorem von

Paley und Wiener (Doetsch [2], S. 282) gibt es eine in jedem endlichen
Teilintervall von (0,00) eigentlich integrierbare und in jedem Intervall
(0, a) absolut integrierbare Funktion <pn (/), so dass das Laplace-
Integral

00

(31) Ie~" (p0(t)clt f(z)
0

in der Halbebene R [z] > 0 absolut konvergiert und dort die reguläre
Funktion f(z) darstellt. Aus der zwischen den beiden analytischen
Funktionen h(z) und f(z) bestehenden algebraischen Beziehung

(32) m h(z) + h(z)m

kann nach dem Faltungssatz (Doetsch [2], S. 161) auf die Faltungsrelation

1

(33) (f>0 (t) p{t) + J p (t x) <p0(x) dx + rj(t)
0

geschlossen werden. Hierbei ist rj{t) eine sogenannte N-ullfunktion,
d. h. es gilt

t

j~ rj (x) d x 0.
ô

Aus (33) folgert man nun, dass

(34) <p{t) ip0(l) — rj(t)

die Lösung der Integralgleichung (1) darstellt. Da offenbar

00

J e'"r](t)dt^o
0

ist, folgt für die Laplace-Transformierte der Erneuerungsfunktion in

R[z]> 0
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oo

(35) J e~zl q>(t)dt /(2)
0

Eine Integraldarstellung für die gesuchte Lösung <p(t) lässt sich
erziehen, wenn man die komplexe Umkehrformel der Laplace-Transformation

(Doctsch [2], S. 105) anwendet. Die hierzu erforderlichen
Voraussetzungen sind mit Berücksichtigung der sich aus unsern Vor-
aussetzungen ergebenden Eigenschaften von <p(t) erfüllt. So ergibt
sich die Darstellung für t > 0 und a > 0

«+ too
1 r(36) cp(t)------ I Ctzf(z)dz,

2m J
«-too

oder nach (28)
a-\- ioo

f37) <p(t) ——r [ é3 h^ dz,
2 Ti i J 1 - - h (z)

oder endlich nach (30)
«-too

«-h too

<88) J e"\l^-1)<h-
«-too

Diese Integraldarstellungen können in gewissen Fällen zur Berechnung
der Erneuerungsfunktion dienen. Es sei z. B. :

(89) P(t) <r" ,") •

Die Funktion muss aber den hier vorliegenden Verhältnissen angepasst
sein, d. h. es muss X > 0 und

P(0) 1, also «0 1 und für t > 0 stets P'(t) <( 0 sein.

In diesem Falle wird

(40) H(z) + —?!_ + +w s + x (2 + x)2 r
(2 -i- xy
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unci

(z + A)"+1 — i {«o o + A)" + at (z + A)""1 + + a,,}

Z {«0 (« + A)" + «1 (z + A)""1 + • • • + «„}

also eine rationale Funktion, die sich unter cler Voraussetzung, dass

alle n + 1 Wurzeln
z0 0, z%, 2n

cler charakteristischen Gleichung

(42) z {u0 (z + A)" + (z + A) 1 + -f- an} 0

einfach sind, in die Partialbrüche

(43) /(*)=— +
Co y c.
z

v =L

zerlegen lässt. Für das Residuum CQ erhalten wir noch

A"+1
C'°

a0 A" + % A""1 + + an
'

ein Wert, der wie leicht zu verifizieren ist, mit — übereinstimmt.

Durch gliedweise Anwendung der Formel

a-h i'oo

1 f dz
I c'" r»'

2 m J z — zc
a-ioo

in cler Darstellung (36) gewinnen wir

n

(45) (p(t) C0+J]Cvc^t.

Was nun den Verlauf von cp(l) anbetrifft, so ergeben sich nach

dieser Darstellung zwei Möglichkeiten, je nachdem die
charakteristischen Wurzeln sämtlich reell oder teilweise konjugiert komplex
sind. Unter Berücksichtigung von
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ROJcO, (o > 0)

ergibt sich die monotone oder wellenförmige Konvergenz der Er-

üeuerungsfunktion gegen die Konstante C0 — —

3. Die Stabilisierung im Mittel.

Wie weiter oben dargelegt wurde, konvergiert das Laplace-
Integral

oo

(3ß) Je'" <p(t) dt f(z)
0

der Halbebene B [2] >0 absolut, und es gilt

(30) f{s)
1

- — 1 wobei
zH(z)

00

(25) H(z) J er" P(t)dt ist.
0

Setzen wir die Existenz des Integrals

00

(0) T— [P(t)dt
0

voraua, so gilt nach dem Stetigkeifcssafcz für Laplace-Infcegrale (Doetsch
[2], S. 47)

(^6) H(z) —y T für z (reell, positiv) —V 0.

Hieraus schliessen wir

(47) zf(z) —>- für z (reell, positiv) — > 0.

Hit Rücksicht auf (13), wonach cp(t) >0 ist, kann ein Satz der Tau-
Derschen Asymptotik verwendet werden (Doetsch [2], S. 208, Satz 2),
Wonach für t ->
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(48)
o

gilt, oder also die asymptotische Relation

(18) f

durch welche die Stabilisierung im Mittel dargestellt wird.

4t. Eine asymptotische Formel für die Erneuerungsfunktion.

Wir werden jetzt unter einer zusätzlichen starken Voraussetzung
über die Ausscheidedichte die eigentliche Stabilisierung der
Erneuerungsfunktion ableiten und darüber hinaus eine Formel entwickeln,
welche in gewissen Fällen gestattet, beliebig scharfe Approximationsfunktionen

herzustellen. Ausser den früher aufgestellten Bedingungen
(2), (3) und (6) fordern wir noch, dass p(t) für t > 0 (in t 0 von

rechts) stetig und 2mal stetig differenzierbar sei und dass weiter
für v 0,1, 2 die asymptotische Relation

gelte. Nach dieser Voraussetzung gibt es eine positive Konstante M,
so dass für t > 0 und v 0, 1, 2

gilt. In der Halbebene R [2] > — a konvergieren die Laplace-Integrale

(49) pW(l) 0 {e~al}, a > 0

(50) eat p(v) (0 <, M

00

(24)
0

und
00

0

und für die Momente



(52)

erhält man
(53)
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oo

Mn f rv{t)ät

(—l)"/t(n) (0).

Berücksichtigt man die für R[z] >—a geltenden Beziehungen

(54) lim estf(t)=0, lim e f' (t) 0,
{ — >• oo / —oo

so gewinnt man durch zweimalige partielle Integration von (24) für
z + 0 und R [z]> — a

(55) h(z)
Z Z& Z* J

Wir betrachten nun in der 2-Ebene einen Streifen

(56) —a < R[z] < q, 0<cr<a, p>0.
Bür R\z\ >_ —u gilt mit Rücksicht auf (50)

M
(57) J e'2iv"{t)dt <

a —er
so dass

lach (55) im Streifen (56) die Abschätzung

(58) h{z) —
p(0) < |p'(0)| +

M

gilt. Wir greifen jetzt zurück auf die wichtige charakteristische
Gleichung

(26) l—h(e)=0

und studieren insbesondere die im Streifen (56) gelegenen Wurzeln.
Da sich h (z) auf dem im Streifen gelegenen Stück (—ff, q) der reellen
Achse monoton verhält, ist z0 0 dort die einzige reelle Wurzel.
Sie ist ausserdem einfach, da

/»'(0) —Ml< 0 ist.
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Die andern Wurzeln müssen paarweise konjugiert-komplex sein. Ist
a + iß, ß + 0 eine komplexe Wurzel, so muss

oo

(59) J e~at cosßtp(t) dt 1

o

sein. Subtrahieren wir diese Gleichung von (3), so folgt

oo

(60) / (1 —e~at cosßt) p(t) dt 0,
o

so dass mit Rücksicht auf (2), auf Voraussetzung ß ^ 0 und auf die

Stetigkeit der im Integral (60) geschriebenen Funktionen
offensichtlich auf

(61) a < 0

geschlossen werden kann. Das bedeutet, dass alle von z0 0

verschiedenen Wurzeln der charakteristischen Gleichung (26) in der

offenen Halbebene R[^]<0 liegen müssen.

Nun gilt im Streifen (56) weiter

(62) h(z) —y 0 gleichmässig für z—y o©,

d.h. es kann zu einem 0 < d < 1 ein A > 0 so gefunden werden, dass

für \J[z~\\~^>A und — a<R [z] < g

(63) |M*)|<d<l

ausfällt. Die im Streifen (56) liegenden charakteristischen Wurzeln

liegen dann alle im Rechteck

(64) — a < R[Ä] < g, — A<,J[Z]<^A,

und nach einem bekannten Satz der Funktionentheorie können es

nur endlich viele sein. Wir bezeichnen sie mit

(65) Zq 0, Z[, Z%, Z_2, Zn, Z_n,
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*o die Numerierung so gewählt sein soll, dass

<68> Ï, - 2-
ist.

Die komplexen Wurzeln sollen für das folgende als einfach
vorausgesetzt werden.

Die Hilfsfunktion
h{z)Ö8) m _

1 — h(z)

ist im Rechteck (64) bis auf die Punkte zv (v 0,1, — 1, n, —n)
regulär. In diesen Punkten besitzt / (z) Pole 1. Ordnung mit den
Residuen

(67) C„

f e-*vl?{t)dt
ÄW 0

r
I e V tp(t) dt

Speziell ist

(68) <70=—= -L.
0

Mx T
Nach (66) gilt noch

(69)
*

Ist a so gewählt, dass auf der Geraden R [F] — a keine charakte-
ristische Wurzel liegt, so ist die Funktion f(z) auch auf dem Rand des
Rechtecks (64) regulär.

Nach dem Residuensatz erhält man für das im positiven Sinn
über den Rand des Rechtecks erstreckte Integral

(70) euf{,)dz=ycys.
171%

*/ -n

Der Wert Cveuv stellt das Residuum der Funktion elzf{z) im Pol

\ dar.
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Durch Zerlegung des Bandintegrals (70) in die vier geradlinige11

Teilintegrale
Q-i A

(71)

(72)

(73)

(74)

gewinnt man

(75)

p-T [ eUf{z)dz J^t),ni J

2 Tti

Ini

-o- i A

£>+ »'A

/
(t-iA

-a -f- iA

/
g-MA

-<7-1 A

el*f(z)dz J2 (t),

euf(z)dz J3(<),

~ [ ëzf{z)dz Ji{t),
\n i J

-n -f i A

r»

<7i(0 + ^(O + ^(l) + <74(1) ^ C0 6zol

Ist e > 0 und t > 0 beliebig vorgegeben, so kann nach Peststellung (63)

und mit Bücksicht auf die Darstellungsformel (36) ein A0 so gross

gewählt werden, dass für alle A > A0 die folgenden beiden Bedingung«11

erfüllt sind:

1.

2.

e"f(z) <
2jte

3 (q + o)

Q -f- l'A

für J[*] A, — a < B[Ä] < Q

2 71 i
etzf{z) dz — <p(t) <

n-lA

Dann ist also

(76) J i(«)
e

<¥'
e

<¥' <72 (0 (0 <
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so dass sich aus (75)

(77)

7t

-<p(t)-JS) < e für A > An

ei'gibt. Dies bedeutet, dass das Integral

-o + i'oo

—L f eU f(z)dz J(t)
2m J

(78)

('ils Cauchyscher Hauptwert) existiert und dass die Relation

H

(79) <p(t)=^cve°»' +J(t)
-7»

besteht. Dio in der vorstehenden Darstellung rechts geschriebene
Summe stellt offensichtlich eine Approximationsfunktion für <p(t)

CW, und es gilt nun, das Restintegral J (t) abzuschätzen. Zunächst
ist für t > 0

-o-h too
1 r p(°)(80)

2ni J z—p(0)
-a—i oo

dz 0.

2ur Verifikation führe man die Substitution z p(0) —s durch und
vergleiche mit dem bekannten diskontinuierlichen Faktor (vgl. Doetsch

[2], S. 105)

0 für t > 0

CO-{- too

(81)
1 r ds/ e~ls —Im J s

für 1=0 (o> > 0).

1 für t < 0

Wenn wir jetzt (80) von (78) subtrahieren, ergibt sich

(82) J(t) 2jii

-O-f- l'oo
1 7 «•(/» y,0)

z —p(0)
dz.
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Nun berücksichtigen wir die Darstellung (28) und erhalten für den

im Integral (82) auftretenden Klammerausdruck nach einiger
Umrechnung

(88) f(z)
p{0) *<*)_£!»)

z | 1 — h(z)z — p(0) z — p (0)

Auf der Geraden B [z] — a sei

(84) | 1 — h(z) | >0 >0.

Die Annahme einer solchen positiven Schranke 0 ist mit Rücksicht

auf die Konvergenz (62) und auf die Voraussetzung, wonach auf der

genannten Geraden keine charakteristische Wurzel liegen soll, gerechtfertigt.

Auf der Geraden ist ferner wegen p (0) > 0

(85) ^ 1.
z — p(0)

Berücksichtigen wir ausser (84) und (85) noch die Abschätzung (58).

so ergibt sich für das Restintegral (82)

-a -f l'oo

(86) U(<)|<
1

2 nO
P'(0) I +

M
a —v] / Ie"

dz

oder

(87) J(t) I <
1

p'(0) | +
M

2(T0 1
1 * 1 a—a

wo noch der Wert des bekannten Integrals

/d$ 7i

—oo

eingesetzt wurde. Nach (79) lässt sich jetzt schreiben

(89) 9,(f)=Y<7„eV +0{e-"'}-
-n
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Setzen wir in (89) noch

£0 0 ; ^0
"y"

zo — f» + iy» i c„ ^4„ + i ß0
(» 1,2, ra),

z-v — iv—iV» ' C_„ Äv — iBv

so erhalten wir endlich clie asymptotische Formel

(90) ç,(<) A 4. 2^VV {Av cos r)vt — ß„ sin rç„<} + 0 {<*•"'}.
0-1

Besonders beachte man, dass

(91) 0<£„<(T (v 1,2, n)
gilt.

Die erhaltene Formel (90) zeigt, dass unter den gewählten
Voraussetzungen (49) über die Ausscheidedichte die Erneuorungsfunktion

stets gegen den asymptotischen Wert —konvergiert und dass, falls

ausser z0 0 noch andere Wurzeln der charakteristischen Gleichung
Ol Streifen —u<ß(X|<(p liegen, diese Konvergenz wellenförmig
erfolgt. Die durch die Formel gelieferte Approximation kann um so mehr
verfeinert werden, je grösser man er wählt und je mehr charakteristische
Wurzeln also verwertet werden. Es kann natürlich der Fall eintreten,
class im oben genannten Streifen ausser z0 0 keine charakteristische
Wurzel mehr liegt. Die Formel reduziert sich dann auf

(92) ?(0 y +0{<T"},

V'obei über die Form der Annäherung an den asymptotischen Wert
nichts entnommen werden kann.

Besondere Beachtung verdient der Fall, wo

(93) lim sup 1/—- 0
n—^ 00 V W
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ist; dann ist nämlich
oo _ _

(94) h(g)=y (— 1)» —p- «»

ti nl

eine ganze transzendente Funktion. Da h (0) 1 ist, kann der Wert 1

nicht der Picardsche Ausnahmewert sein, und die charakteristische

Gleichung (26) hat in der linken Halbebene R[z\ < 0 unendlich viele,

paarweise konjugiert-komplexe Wurzeln.

In der asymptotischen Formel (90) kann dann a jede beliebig

grosse Zahl sein; es ist aber die Bedingung zu beachten, dass auf der

Geraden R[z] —a keine charakteristische Wurzel liegen soll.

Die Erneuerungsfunktion kann formal für t —y co durch die

asymptotische Reihe

1 °°

(95) (p{t) — — + 2e'Svt (Avcos — sin nJ)
v= 1

dargestellt werden. In gewissen Fällen wird durch (95) eine gleich-
massig konvergente Reihenentwicklung geliefert. Die genaue
Abklärung dieser Frage erfordert weitere Studien, u. a. über die
Verteilung der charakteristischen Wurzeln.

Wir bemerken noch, dass die Bedingung (93) jedenfalls dann
erfüllt ist, wenn
(96) p (t) 0 für t> o),

d. h. wenn die Ausscheidedichte ausserhalb eines endlichen Intervalls
verschwindet.
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