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Das Zufallsrisiko
bei kleinen Versicherungsbestanden.

Von H. Ammeter, Ziirich.

Bei der Berechnung von Sicherheitsreserven und -zuschligen zur
Deckung des Zufallsrisikos beniitzt man mit Vorteil die von der Risiko-
theorie entwickelten Methoden. Die Anwendung dieser Methoden
auf praktische Probleme setzt voraus, dass die zufdlligen Schwan-
kungen im Ablauf des Risikos dem GauBschen Gesetz folgen. Dieser
Grenzfall kann aber nur bei grossen Versicherungsbestinden mit ge-
niigender Anniherung erreicht werden; bei kleinen Versicherungs-
bestinden ist dagegen die Voraussetzung einer GauBschen Verteilung
nicht erfillt. Mit Ritcksicht darauf, dass dem Zufallsrisiko eine um so
8rossere Bedeutung zukommt, je kleiner der Versicherungsbestand
ist, besteht aber gerade bei kleinen Versicherungseinrichtungen, wie
z. B. bei Pensions- und Sterbekassen, das grosste Bediirfnis, dem Zu-
fallsrisiko durch Sicherheitsreserven und -zusehlige Rechnung zu
tragen. Im folgenden wird versucht, eine Methode auszubilden, die
nicht eine GauBsche Verteilung der zufiilligen Schwankungen im
Ablauf des Risikos annimmt und daher den bei einem kleinen Ver-
sicherungsbestand von Iall zu Fall vorliegenden Verhiltnissen Rech-
hung zu tragen vermag.

Bei der Berechnung der Sicherheitsreserve stellen sich dem Uber-
gang von der einzelnen Versicherung zu einem beliebig zusammen-
gesetzten Versicherungsbestand verschiedene Schwierigkeiten ent-
gegen. Diese lassen sich umgehen, wenn von vornherein die Ver-
teilung der im Gesamtbestand moglichen Zufallsschwankungen als
Ausgangspunkt der Untersuchung gewiihlt wird.

Die praktische Anwendung der vorgeschlagenen Methode wird
an einigen Beispielen erprobt, die gleichzeitig Anhaltspunkte tiber die
Grossenordnung der fiir kleine Versicherungsbestiinde erforderlichen
Sicherheitsreserven und -zuschlige vermitteln,

Die folgenden Betrachtungen beschrinken sich auf zufillige
Sehwankungen und erfassen die sogenannte wesentliche Schwankungs-
komponente nicht.
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I. Grundbegriffe der Risikotheorie.
A. Die Verlustfunktion 2) *),

Wir betrachten einen Versicherungsbestand, in dem gleichzeitig
verschiedene Versicherungsformen, beispielsweise Todesfall-, Iir-
lebensfall-, Invalidititsversicherungen usw., vertreten sein konnen.
Mit Hilfe von Rechnungsgrundlagen, die dem Risikoverlauf wiihrend
der in Untersuchung gezogenen Zeitspanne entsprechen, sind die
Primien und Finlagen der Versicherten eines bestimmten Versiche-
rungsbestandes nach dem Aquivalenzprinzip festgesetzt worden.
Wird von Zins-, Unkosten- und Stornogewinnen abgesehen, so hat
die Versicherungseinrichtung aus dem Risikoablauf der tibernommenen
Versicherungen withrend der betrachteten Zeitspanne (beispielsweise
withrend der ganzen Laufzeit der Versicherungen) rechnungsmiissig
weder Gewinne noch Verluste zu gewiirtigen. In Wirklichkeit wird
jedoch nur selten der rechnungsmissige Risikoverlauf zustande
kommen; im besondern nicht bei kleinen Versicherungsbestinden.
Der Gesamtbetrag der Verluste, die sich fiir eine bestimmte Ver-
sicherungseinrichtung wihrend der in Betracht gezogenen Zeitspanne
ergeben, sei mit X bezeichnet. Gewinne werdenim folgenden als negative
Verluste aufgefasst. Der Gesamtverlust X kann verschiedene Werte
annehmen. Doch ist die Zahl der moglichen Werte beschriinkt, weil
X im gegebenen Fall stets die Summe von Risikosummen aus den vor-
handenen HKinzelversicherungen darstellen muss. Wir kénnen alle
Kombinationen von Finzelverlusten, die zum gleichen Totalverlust X
fithren, zusammenfassen und die moéglichen Gesamtverluste nach
steigenden Betrigen ordnen. Das Fintreffen eines jeden dieser mog-
lichen Totalverluste X kann mit einer bestimmten Wahrscheinlich-
keit erwartet werden; Totalverlusten, die nicht als Summe von im
Bestand auftretenden Risikosummen entstanden sein kénnen, ins-
besondere allen Betrigen ausserhalb des durch das minimale und
maximale Risiko abgegrenzten Bereichs, kommt die Wahrscheinlich-
keit Null zu. Den Zusammenhang zwischen den Verlusten X und den
zugehorigen Wahrscheinlichkeiten w(X) nennen wir Verlustfunktion.
Diese nimmt also bei diskontinuierlicher Betrachtung nur fiir eine end-
liche Anzahl von Verlustbetrigen einen von Null verschiedenen Wert

*) Die im Text angefithrten Nummern beziehen sich auf das Literatur-
verzeichnis.
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an, Wird hingegen die kontinuierliche Berechnungsmethode verwendet,
80 kann die Wahrscheinlichkeitsdichte w(X) fiir jeden beliebigen Wert
von X zwischen — oo und -+ oo von Null verschieden sein.

Zur niheren Beschreibung der Verlustfunktion beniitzen wir die
Potenzmomente & Ordnung 1):

mh = Z‘fw (X) X*  oder m, _/ w(X) X*dX

X:—OO

Fir k =0 ist my = Zw(X) =1, weil die Summe der Wahr-
scheinlichkeiten fiir alle moglichen Verluste gleich Lins sein muss.

Das erste Moment m, ist der Mittelwert von X und wird oft auch
als Frwartungswert von X bezeichnet. Werden die Versicherungs-
kosten nach dem Aquivalenzprinzip berechnet, so ist m, stets gleich Null.

Das zweite Moment m, ist auch unter dem Namen Streuung von
w(X) bekannt. Im tibrigen ist m, nichts anderes als das Quadrat des
in der klassischen Risikotheorie bekannten mittleren Risikos.

Das dritte Moment my dient hauptsichlich zur Charakterisierung
der Asymmetrie von w(X). Als «Mass der Schiefen definieren wir den
Augdruck o = m3/m2'g‘. Bei voélliger Symmetrie von w(X) bezig-
lich der Mittelordinate nimmt das Mass der Schiefe den Wert Null an.
Bei agymmetrischen Verteilungen ergibt sich ein positiver oder nega-
tiver Wert, je nachdem die Werte rechts oder links vom Mittelpunkt
dominieren.

Aus mgund my berechnet man den Exzess vonw (X): & =m,/mj—38.
Positiver Exzess liegt vor, wenn in der Verlustfunktion gréssere Ab-
weichungen vom Mittelwert stirker, kleinere Abweichungen schwécher
vertreten sind als bei der GauBlschen Verteilung.

B. Die Summenverlustfunktion.

Summenverlustfunktion nennen wir die Funktion

x
V(X) = Z.“’(X oder W(X):jw(X)dY

W(X) ist die Wahrscheinlichkeit, mit welcher die Versicherungs-
einrichtung alle Verluste erwarten muss, die kleiner oder héchstens
gleich X sind.
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~ Bei diskontinuierlicher Berechnung ist W(X) eine Treppenkurve,
bei kontinuierlicher Berechnung eine monoton von 0 bis 1 ansteigende
Kurve.

Mit Hilfe der Potenzmomente gerader Ordnung kénnen die
Werte der Summenverlustfunktion fir beliebige Verlustfunktionen
abgeschiitzt werden. Fiir niherungsweise Rechnungen diirfte oft
folgende Ungleichung geniigen?):

WY mg) >1——
(1 1/ my )k

(Pearsonsche Erweiterung der Markoff-Tschebycheffschen Ungleichung.)

Dieser Ansatz kann, wie Birger Meidell gezeigt hat, fiir Verlust-
funktionen, die nur einen Maximalwert aufweisen, durch die folgende
Ungleichung verschiirft werden 8):

m,,

[+ 3)uvm

In dieser Formel wird iberdies vorausgesetzt, dass dem Verlust Null
die grosste Wahrscheinlichkeit zukommt.

k

WA Ymy)>1—

C. Sicherheitsgrad und Sicherheitsreserve.

Die Wahrscheinlichkeit, dass die verfiigbaren Kassenmittel zur
Deckung der Versicherungsverpflichtungen ausreichen, nennen wir
inskiinftig Sicherheitsgrad der Kasse. Den Sicherheitsgrad einer
Kasse, die neben dem erforderlichen Deckungskapital iiber einen
Sicherheitsfonds X verfiigt, entnehmen wir ohne weiteres der Summen-
verlustfunktion W(X) (siehe Figur).

Wie hoch muss der Sicherheitsgrad sein, damit von einem ge-
niigenden Risikoausgleich die Rede sein kann? Die absolute Sicher-
heit wird man von einer Versicherungseinrichtung nicht verlangen
wollen, sonst wiirde die Einrichtung ihren Charakter als Versicherung
iiberhaupt verlieren. Man wird jedoch nur dann von einer geniigenden
Sicherheit sprechen, wenn Verluste nur so selten zu erwarten sind,
dass sie praktisch iberhaupt nicht vorkommen. Die Wahl des niotigen
Sicherheitsgrades ist im tibrigen weitgehend dem freien Ermessen an-
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Wahrscheinlichkeiten

W (X)

Sicherheitsgrad

| Maximalverluste

Sicherheitsregserve

»Fheimcestéllt In unseren nachfolgend angefiihrten Beispielen haben
Wir immer einen Sicherheitsgrad von 999 9/, vorausgesetzt.

D. Jihrliche Sicherheitszuschlige.

Wird die Sicherheitsreserve fiir ein Versicherungsjahr bestimmt,
S0 ist sie mit dem jahrlichen Sicherheitszuschlag identiseh. Ist sie
Jedoch fitr eine Dauer von ¢ Jahren berechnet worden, so finden wir
den Jéhrlichen Sicherheitszuschlag aus der Sicherheitsreserve nach
der Formel

Sicherheitsreserve fir ¢ Jahre

Jihrlicher Sicherheitszuschlag = 2
—_ t]

E. Die Wahl der Ausgleichsdauer.

Theoretisch betrachtet kénnten wir eine unendlich lange Aus-
8leichsdauer annehmen, d. h. eine ewige Sicherheitsreserve bestimmen.
er Sicherheitsgrad fir eine einzelne Rechnungsperiode wiire jedoch
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in diesem TFalle betrichtlich kleiner als der bei der Berechnung der
ewigen Sicherheitsreserve vorausgesetzte. FErleidet eine Kasse in
einer Rechnungsperiode einen Verlust, so werden sich die verantwort-
lichen Kassenorgane kaum darauf verlassen wollen, dass die erlittenen
Verluste durch die Lkiinftig zu erwartenden Gewinne wieder gedeck?
werden konnen. Denken wir ferner an die im Laufe der Zeit auf-
tretenden wesentlichen Verinderungen des Risikoverlaufes, so miissel
wir unbedingt verlangen, dass der Risikoausgleich innerhalb einer
jeden Rechnungsperiode gewihrleistet ist. Pensions- und Sterbekassen
werden etwa alle fiinf Jahre versicherungstechnisch begutachtet. Wit
haben daher in unseren Berechnungen immer eine fiinfjihrige Aus-
gleichsdauer vorausgesetzt.

I1. Die Berechnung der Summenverlustfunktion
fiir einen Yersicherungshestand.

A. Die Verlustfunktion fiir eine einzelne Versicherung.

Die folgenden Beispiele zeigen, wie sich die Verlustfunktion fil*
eine einzelne Versicherung angeben ldsst:

a) Die Verlustfunkiron eimer gemischten Versicherung fiir die ganZe
Versicherungsdauer:

Die gemischte Versicherung mit der Versicherungssumme C und
der Versicherungsdauer n sei gegen cine Primie P und eine Einmal-
einlage F abgeschlossen worden. Stirbt der Versicherte im #" Ver-
sicherungsjahr, so entsteht fir die Versicherungseinrichtung ein Ver-

lust von
X,=v'C—apnP—LE (t<n)

Erlebt jedoch der Versicherte das Ende der Versicherungsdauer, $0
hat die Versicherungseinrichtung einen Verlust von

Xn+1:vn0"“ HP“—E

zu decken. Diesen Maoglichkeiten entsprechen die Wahrscheinlich:
keiten

Z !
w(X,) = ( ;“ and  w (X, ) =22,

!

z A
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B) Alters- und Invalidenrentenversicherung:

Die Verlustfunktion fiir das erste Versicherungsjahr einer Alters-
und Invalidenrentenversicherung, die gegen eine Priimie P und eine
n: . . .

]“mlage I abgeschlossen ist, finden wir aus folgenden Formeln:

w(—ap P —E) =¢

w (v, VI—ar-P—E) =49
w (v, Vy —aqnP—E) = p§*

In diesen Formeln bedeuten 1V'i die Reserve nach einem Jahr, wenn
der Vergicherte invalid wird, und V24 die Reserve nach einem Jahr,
wenn der Versicherte aktiv bleibt.

B. Die Bestandesverlustfunktion.

Die Verlustfunktion fiir einen ganzen Versicherungsbestand
hennen wir Bestandesverlustfunktion.

Im folgenden setzen wir immer voraus, dass die verwendeten
Wahrscheinlichkeiten unabhingig sind von der Art und der Hohe der
Versicherungsleistungen und dass die einzelnen versicherten Objekte
Im Sinne der Wahrscheinlichkeitsrechnung voneinander unabhingig
sind, Wenn diese Voraussetzungen in gewissen Tiillen nicht streng
erfiillt sind, so handelt es sich um systematische oder wesentliche Ab-
weichungen, die wir — wie wir eingangs betont haben — nicht be-
riicksichtigen.

Die Bestandesverlustfunktion w, ,(X) fiir einen Versicherungs-
bestand von zwei Versicherungen, deren einzelne Verlustfunktionen
wir mit w,(X) und 1w, (X) bezeichnen, findet man nach folgender

Formel 2):
X

wy 5 (X) = Z 1w, (X —z) wy (2) (1a)

r=—09

Die Bestandesverlustfunktion fiir den ganzen Versicherungsbestand
von ¢ Vergicherungen entsteht somit nach der Rekursionsformel

X

Wioa...i (X) = Z Wy 93... (i-1) (X —z) w; (2) (1b)

T==-00
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Diese Rekursionsformel vermittelt uns bereits eine gute Vorstellung
vom Aufbau der Bestandesverlustfunktion. Ifiar die praktische
Rechnung ist die Formel jedoch nicht brauchbar, indem selbst bei
kleinen Versicherungsbestiinden die Rechnung einen schwer zu be-
wiltigenden Umfang annehmen wiirde.

Fiir die Berechnung der Sicherheitsreserven benétigen wir das
von — oo bis X gezogene Integral der Bestandesverlustfunktion, das
wir als Summenverlustfunktion fir den Versicherungsbestand be-
zeichnet haben. Iis empfiehlt sich, die im folgenden niher begriindeten
Umformungen und Vereinfachungen unmittelbar fiir die Summen-

verlustfunktion
X

WX = ) wy X @)

vorzunehmen. H==cd

C. Die Entwicklung der Summenverlustfunktion in eine Brunssche
Reihe 1).

Mit Hilfe der von Bruns eingefithrten Reihenentwicklung kann
die Summenfunktion W(X) einer beliebigen Verteilungsfunktion
w(X) als unendliche Reihe dargestellt werden. Dabei miissen aller-
dings gewisse Bedingungen erfiillt sein, die jedoch in den fiir unsere
Aufgabe auftretenden Fillen stets erfilllt sind *). Das erste Glied
der Brunsschen Reihe wird durch

X X

O (X) = f(p(X)dX:j L
4 i Ve

das Integral der GauBschen Funktion dargestellt. Die folgenden

Glieder werden durch die mit gewissen Koeffizienten multiplizierte

GauBsche Funktion und ihre Differentialquotienten gebildet; es gilt

also folgende allgemeine Darstellung fiir eine Summenfunktion:

W(X) = B(X) + ¢ @(X) + ¢, ¢/ (X) ... 20)

/

Finige Werte fiir die Funktionen @, ¢”, 9"’ und ¢ sind in der

Tabelle auf Seite 181 zusammengestellt.

*)1) Seiten 254/255.
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Die Ableitungen der GauBlschen Funktion haben die Form

P (X) = p(X) p(X)

W0 p, ein Polynom k** Grades ist, das mit Hilfe der Rekursionsformel
Pepr (X) = —2X p (X) + pi(X)

berechnet werden kann.

Ist die zu entwickelnde Summenfunktion eine Treppenlinie, so
ergeben sich besonders einfache Formeln fiir die Koeffizienten der
Brunsschen Reihe. Der Koeftizient ¢, der k% Ableitung der GauBschen
Funktion ist dann nimlich

1 S |
O = @E’_’"’T(il;:pi)"!ﬁ Y;w'w (X) Preyr (X)), (3)

wo 10 (X) die Verteillungsfunktion ist, aus der die Summenfunktion
W (X) hervorgegangen ist. Frsetzen wir dic Variable X durch &, die
mit X durch die Gleichung

[ p—. (4)

verbunden ist, so erreichen wir, dass die Glieder ¢, (&) und ¢, ¢'(&)
der Brunsschen Reihe verschwinden. Die in der Substitution (4) auf-
tretenden Grossen M, und M, sind die beiden ersten Momente von
w(X). Die iibrighleibende Reihe

W(&) = D(&) +cyp” (&) + 39" (&) ... (2b)

Nennt man die normale Kntwicklung der Brunsschen Reihe. Ist
W(£) mit @(&) identisch, so verschwinden alle Koeffizienten ¢, der
Normalen Entwicklung der Brunsschen Reihe. Die in der normalen
Entwicklung der Brunsschen Reihe im zweiten und den folgenden
Gliedern auftretenden Koeffizienten charaktorisieren also die Ab-
weichung der dargestellten Funktion W (&) von @(&). Diese Koetfi-
zlenten ¢, lassen sich durch die Momente der Verteilungsfunktion
w(X), aus der die zu entwickelnde Summenfunktion W(X) hervor-
gegangen ist, ausdriicken. Im besonderen enthalten die Koeffi-
Zlenten ¢, und ¢;, wie aus den nachstehenden Formeln hervorgeht,
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die Masse fiir die Schiefe und den Fxzess von w(X). Sind M, die
Momente von w(X), so lassen sich die Koeffizienten der normalen
Fntwicklung der Brunsschen Reihe unter Beriicksichtigung der Sub-
stibution (4) wie folgt ausdriicken:

=0
¢, =0
1 M,
By == e | -
1 M, ]
b == - o
oan(ye)t | My
o _1_ _,%w + 1l0 ,ya_
ostye)” | (V) (V)
usw.

Da die Verlustfunktion fiir eine einzelne Versicherung und die
Bestandesverlustfunktion nur spezielle Arten von Verteilungsfunk-
tionen sind, so konnen die zugehorigen Summenverlustfunktionen
in Brunssche Reihen entwickelt werden. Die Summenverlustfunktion
fiir eine einzelne Versicherung koénnten wir ohne weiteres als
Brunssche Reihe darstellen, da uns die Momente der zugehérigen
Verlustfunktion bekannt sind. Um die Summenverlustfunktion fiir
einen ganzen Versicherungshestand in eine Brunssche Reihe ent-
wickeln zu konnen, miissen wir noch angeben, wie die Momente
der zugehérigen Bestandesverlustfunktion berechnet werden kénnen.

D. Die Berechnung der Momente der Bestandesverlustfunktion.

Fiir die nachfolgenden Ableitungen erweist es sich als niitalich,
das Polynom 1)

+ oo

fo) =D w, (X) e

K::—DCI
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als erzeugende Iunktion der Verlustfunktion w,(X) einzufithren.
Multiplizieren wir die erzeugenden Funktionen der Verlustfunktionen
", (X) und w, (X) von zwei einzelnen Versicherungen miteinander, so
finden wiy:

i +o0 -
F) - fa@ =] D w () e[ | ) wy (X) e
K=-oo X=—o0

00

\ ! \ 1
= DT eE Dy (X)) wy (X

X=-o00 X:Xl-}-Xz

+00 %
O
= Z e*x Z wy (X —x) w, (x)

X=-co B=—00

Beachten wir die Formel (1 a) fiir die Bestandesverlustfunktion
Von zwei Versicherungen, so erkennen wir, dass das Produkt der er-
“eugenden I'unktionen von zwel Verlusttunktionen w, (X) und w, (X)
gleich der erzeugenden Iunktion ihrer Bestandesverlustfunktion
“_’1,2 (X) ist. Durch fortgesetzte Wiederholung dieses Verfahrens
finden wir, dass ganz allgemein die erzeugende Funktion der Bestandes-
Verlustfunktion gleich dem Produkt der einzelnen erzeugenden Funk-
'tionen igt.

Diese Eigenschaft der erzeugenden Funktion ermdéglicht es uns,
die Beziehungen zwischen den Momenten der einzelnen Verlust-
fanktionen und denjenigen der Bestandesverlustfunktion herzuleiten.
Zu diesem Zwecke bestimmen wir die k' Ableitungen nach 2z der
zeugenden Funktion f (2):

o0
f® (2) = >_‘1 w (X) e#* XF
i

X=-oc0

Fir 5 — 0 stellt der Ausdruck rechts das & Moment von w (X) dar:

} o0

f(0) = ) w(X) X*

X=-00

~ Die k* Ableitung eines Produktes von zwei Funktionen f, - f,
]?SSt sich nach folgender Formel durch die Ableitungen £ der beiden
“Inzelnen Funktionen darstellen:
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Sl

=0 N

Ma-

Da die erzeugende Funktion der Bestandesverlustfunktion gleiCh
dem Produkt der einzelnen erzeugenden Funktionen ist, da ferner die
Ableitungen f* (z) fiir z = 0 in die Momente m, der Verlustfunktion
fiir eine Versicherung iibergehen und da schliesslich stets m, = 1 und
m, = 0 ist, ergeben sich folgende Beziehungen zwischen den Momente?
der einzelnen Verlustfunktionen m, und den Momenten M, der Be-
standesverlustfunktion:

My=IHIm;=1

M,=%m; =0

M, = Zm,

M, = Xm, ®
M, = Zmy + 3 (Emy)® — 8 3 (my)?

Mg = Zmg + 10 Zmy Tmg — 10 Zm, my

Die Momente der Bestandesverlustfunktion lassen sich also in einfache?
Weise aus den Momenten der einzelnen Verlustfunktionen berechnen-

E. Zusammenfassung,

Als Ausgangspunkte fiir die Berechnung der Summenverlust’
funktion eines Versicherungsbestandes konnen somit die Momente der
Verlustfunktionen fiir die einzelnen Versicherungen des Bestande?
dienen. Daraus lassen sich die Momente der Bestandesverlustfunktio?
nach den Formeln (5) bestimmen. Mit Hilfe der Momente der Be-
standesverlustfunktion finden wir endlich unter Beniitzung der
Formeln (8 a) die Koeffizienten der Brunsschen Reihe. Die Brunsseh®
Reihe (2 b) stellt die gesuchte Summenverlustfunktion fir den ganze”
Versicherungsbestand dar. Praktisch geniigen in vielen Tillen wenige
Glieder, um ein befriedigendes Resultat zu gewinnen, so dass nur die
ersten vier bis finf Momente der Verlustfunktion fiir die einzelne®
Versicherungen bendtigt werden,
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III. Die Abhingigkeit der Summenverlustfunktion
vom Umfang des Versicherungsbestandes.

Wollen wir die Summenverlustfunktion fiir eine ganze Reihe
von Versicherungsbestiinden mit verschieden grossem Umfang, aber
mit gleicher Bestandeszusammensetzung bestimmen, so kann die
Rechenarbeit noch weiter vereinfacht werden. Zu diesem Zwecke
fiihren wir die Durchschnittsmomente der Bestandesverlustfunktion

2 my,

.ZV.[k: "

ein; dabei bedeutet n die Anzahl der Versicherungen. Neben diesen
einfachen Durchschnittsmomenten beniitzen wir noch kombinierte

Durchschnittsmomente wie

m )
99 " und

Die Koeffizienten der Brunsschen Reihe lassen sich unter Ver-
Wwendung dieser Durchschnittsmomente unter Beriicksichtigung der
Anzahl n der Versicherungen wie folgt ausdriicken:

, 1 M, n
=— = el
2 3' (V2)3 (VM2)3

1 M“_B@?& = 3 b
T W () .
o1 M;—10M,, 1
4= = - 2

51()/2) (VM)
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Wie wir bereits unter Abschnitt IT C festgestellt haben, charalkte-
risieren die Koeffizienten ¢,, ¢3, usw. der normalen Entwicklung der
Brunsschen Reihe die Verschiedenheit der Bestandesverlustfunktion
von der GauBlschen Normalverteilung. Je kleiner diese Koeffizienten
ausfallen, desto mehr nihert sich die Bestandesverlustfunktion der
GauBschen Normalverteilung. Aus den Formeln (8b) geht hervor,
dass sich die Bestandesverlustfunktion mit wachsendem Versicherungs-
bestand mehr und mehr der GauBschen Verteilung nihert. Wird die
Anzahl der Versicherten unendlich gross, so verschwinden simtliche
Koeffizienten der normalen Entwicklung, und die Bestandesverlust-
funktion geht in den Grenzfall der GauBlschen Normalverteilung itber.

In der Risikotheorie 2) pflegt man als Bestandesverlustfunktion
die GauBsche Normalverteilung

anzunehmen. In diesem besonderen Fall ist die Verlustfunktion durch
das mittlere Risiko ¢ vollstiindig bestimmt, so dass durch diese Grosse
allein die Stabilitit eines Versicherungsbestandes gemessen werden
kann. Die von der Annahme einer Gaullschen Verteilung ausgehenden
Betrachtungen richten sich daher auf die Eigenschaften und die
Methoden zur Berechnung des mittleren Risikos, das mit der Quadrat-
wurzel aus der Streuung M, der Verlustfunktion identisch ist.

Die aus dieser speziellen Annahme abgeleiteten Frgebnisse
gelten streng genommen nur fiir umfangreiche Versicherungsbestinde,
weil nur fir diese — wie aus den Formeln (3 b) hervorgeht — die Ver-
lustfunktion mit gentigender Annéherung durch eine GauBsche Ver-
teilung dargestellt werden kann. Aber gerade bei grossen Versiche-
rungsbestiinden tritt die Bedeutung des Zufallsrisikos zuriick, wie die
im Abschnitt VI angefithrten Beispiele zeigen.

IV. Die Abhiingigkeit der Summenverlustfunktion
von der Ausgleichsdauer.

Soll die Summenverlustfunktion nicht nur fiir ein Versicherungs-
jahr, sondern fiir eine Zeitspanne von ¢ Jahren berechnet werden
so wird die Momentenberechnung umstindlich und zeitraubend. Ist
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hicht mit wesentlichen Strukturveriinderungen zu rechnen, so kann
Vereinfacht angenommen werden, dass die Anzahl der Versicherungen
der Versicherungseinrichtung konstant bleibt (offene Kasse), wodurch
die Rechnung wesentlich erleichtert wird. Die Momente Wjf, der
Bestandesverlustfunktion fiir ¢ Versicherungsjahre kénnen nimlich
Wie folgt aus den Momenten V37, der Bestandesverlustfunktion fiir
ein Versicherungsjahr berechnet werden:

-1
MrﬁmﬂAwwéaq:ZW ist.
t=0

Die Formeln fiir die Koeffizienten ‘)¢, der normalen Entwicklung
der Summenverlustfunktion W (&) fiir ¢ Versicherungsjahre konnen
dann aus den fir WW (&) geltenden Koeffizienten (¢, ermittelt
Werden :

(0g, — Mg, ——1__

(g, = (g

(l/a D

usw,

Eine Ausdehnung der Ausgleichsdauer ¢ iibt somit einen ihnlichen
Einfluss auf die Form der Summenverlustfunktion aus wie eine ent-
Sprechende Vermehrung der Anzahl » der Versicherungen. Da jedoch

die Quotienten
(’v)

(l/a )

it wachsendem ¢ nicht gegen Null, sondern gegen den Grenzwert

1 —o)¥
1 —o*
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streben, so konvergiert die Summenverlustfunktion mit wachsendem ¢
nicht gegen die Summenfunktion der GauBschen Normalverteilung

Tie

B =—= [ €7 a¢

e

V. Die Berechnung der Sicherheitsreserve
fiir einen Versicherungsbestand.

Nachdem wir die Summenverlustfunktion W(&) fiir einen Ver-
sicherungsbestand in eine Brunssche Reihe entwickelt haben, kénnen
wir den dem gewiinschten Sicherheitsgrad entsprechenden Maximal-
verlust & berechnen. Iir die praktische Rechnung wird man wohl
am einfachsten unter Beniitzung der beiliegenden Tabelle zwei auf-
einanderfolgende Argumentwerte &, und &, bestimmen, die der Be-
dingung

geniigen, wobei wir mit S den gewiinschten Sicherheitsgrad bezeichnen.
Den gesuchten Maximalverlust & finden wir dann nach der Regule
falsi mit geniigender Anniherung zu

_E[W(E) —S]— & [W(E) — 5]
T W (&g — W ()

Die Sicherheitsreserve SR erhalten wir endlich nach der Formel

SR =£12M,

YI. Praktische Anwendungen.

A. Die Summenverlustfunktion fiir einen Bestand von gleichartigen
Risikoversicherungen,

Wir suchen die Summenverlustfunktion fiir einen Bestand von
1000 gleichartigen Risikoversicherungen. Tm Schadenfalle, der mib
einer Wahrscheinlichkeit von 0,01 erwartet wird, ist die Auszahlung
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einer Summe von 100 vorgesehen ; es ist somit eine Priimie von 0,01.100
=1 fiir jede einzelne Versicherung erforderlich.

Die Bestandesverlustfunktion kann in diesem einfachen Fall nach
der Bernoullischen Formel

© 1000 : -
X) — (0,01X +10) , () §g(1000 0,01 X -10)
w(X) (0,01 X 1 0) 0,01 ,

ermittelt werden. Die zugehorige Summenverlustfunktion W(X)
lautet also

X
O 1000 - 001 X -
X) — (0,01X + 10) , () 9Q(1000-0,01 X - 10)
Wi \'—fomo (0,01 X+ 10) 0.01

W(X) fiir esnen Bestand von 1000 Risikoversicherungen.

- - 1 W(X) nach
X § D) |eap™(8) | a9 (8) 04(]7( )(E) Bruns |Bernoulli
Alle Werte sind mit 10* multipliziert
— 950 | — 2,13 13 — 25! 4+ 38| = 0|— 9 0
— 850 | — 1,91 35 — 34| + 5| — 0|+ 6 5
— 750 | — 1,69 84 | — 66| + 6| — O 34 27
— 650 | — 1,46 195 — 80| 4+ 5| 4+ 0 120 101
— 550 | — 1,24 397 — 92| 4+ 0] + 1 306 287
— 450 | — 1,01 766 — 77 — 8 + 2 683 661
— 350 | — 0,79 1319 — 27| — 17 4+ 1 1276 1289
— 250 | — 0,56 2142 + 57| — 21 0 2178 2189
— 150 | — 0,34 3153 4+ 141 | — 19| — 1 3274 3317
— 50 — 0,11 4382 4+ 199 — T | — 8 4571 4573
+ 50| 4+ 011 5618 + 199 + T — 3 5821 5831
+ 150 | + 0,34 6847 + 141 4+ 19| — 1 7006 6974
+ 250 | + 0,56 7858 4+ 57| - 21 0 7936 7925
4+ 3850 | + 0,79 8681 — 27| + 17 41 8672 8656
+ 450 | 4+ 1,00 | 9234 | — 7| + 8| + 2| 9167 9176
+ 550 | -} 1,24 9603 — 92 o] - 1 9512 9521
+ 650 | + 1,46 9805 — 80 — 5 + 0 9720 9736
4+ 750 | 4 1,69 9916 — 66| — 6| — 0 9854 9862
+ 850 | + 1,91, ] 9965 — 34| — 5| — 0 9926 9931
4+ 950 | 4+ 2,13 9987 — 25| — 83| — 0 9959 9967
+ 1050 | - 2,36 9996 — 8| — 2] — 0 9986 9985
4+ 1150 | + 2,58 | 9999 | — 3| — 1 0| 9995 9994
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Mit Hilfe der Brunsschen Reihe erhalten wir dagegen
W (&) = D(£)—0,018 858 ¢"’ (&) -+ 0,000 990 ¢""* (&) — 0,000 041 ™ (£) . - -

wobei & = 0,002 247 X ist. Der Verlauf von W(X) nach den beiden
genannten Formeln ist aus der vorhergehenden Tabello ersichtlich:

Die Bernoullischen Werte bilden eine Treppenkurve. Der an-
geschriebene Wert von X ist jeweils die mittlere Abszisse eines hori-
zontalen Kurvenstiickes. Die mit Hilfe der ersten Glieder der Bruns-
schen Reihenentwicklung berechneten Werte bilden dagegen eine
stetige Kurve. Abgesehen von den Schnittpunkten der beiden Kurven,
die im iibrigen nicht genau in der Mitte der horizontalen Stiicke der
Treppenkurve liegen, liefern daher die beiden Formeln im allgemeinen
zu einem gegebenen Wert von X etwas verschiedene Werte von
W (X) (vergleiche hiezu die gegeniiberstehende graphische Darstellung)-

In der Regel wird die Risikosumme nicht einheitlich wie im ge-
withlten Beispiel, sondern verschieden gross. In diesem letzteren,
allgemeinen Fall ergeben sich noch kleinere Unterschiede zwischen
der effektiven Summenverlustfunktion (Treppenkurve) und der nach
Bruns berechneten Funktion.

Wie dieses und weiter folgende Beispiele zeigen, konvergiert die
Brunssche Reihe in der Regel stark genug, so dass nur zwei bis drei
Glieder berechnet werden miissen. Wenn jedoch die Verlustfunktion
eine betriichtliche Schiefe aufweist, wird die Konvergenz schwach, 80
dass weitere Glieder beriicksichtigt werden miissen. Um in solchen
Fillen die Berechnung der hoheren Momente zu vermeiden, empfiehlt
es sich, die Verlustfunktion niherungsweise durch Typ IV der Pearson-
schen Verteilungskurven darzustellen. Die in der Gleichung

. X
v arely —

X2 m
(1+%)

auftretenden Parameter lassen sich durch die vier ersten Momente von
w(X) ausdriicken. Fiir weitere Kinzelheiten verweisen wir auf das
Buch von W.P. Elderton ®), das eine eingehende Darstellung der
Pearsonschen Verteilungskurven enthilt.

Bei einem Sicherheitsgrad von 9999/, ist fiir den betrachteten
Versicherungsbestand eine Sicherheitsreserve von Fr. 1100 oder 110%
der gesamten Primieneinnahme von Fr. 1000 erforderlich.

w (X) = w (0)
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W(X)

------ W(X) nach der Bernoullischen
Formel

— W(X) nach der Brunsschen
Reihe

Verluste X
B. Das Zufallsrisiko bei einer Sterbekasse.

Die Aufstellung der Verlustfunktion fiir Sterbekassen ist sehr
einfach. Wir beniitzen daher dieses Beispiel, um die Auswirkungen
Verschiedener Bestandesstrukturen und Finanzierungen auf die Hohe
des Sicherheitszuschlages zu untersuchen.

Die betrachteten Sterbekassen gewihren ihren Versicherten eine
lebenslingliche Todesfallversicherung mit einheitlich festgesetater
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Todesfallsumme. Soweit fiir die Finanzierung jihrliche Primien vot-
gesehen sind, werden diese jeweils nur von den Versicherten auf-
gebracht, welche das Alter 65 noch nicht erreicht haben.

Wir beriicksichtigen folgende Versicherungsbestinde:
Bestand I umfagst nur Versicherte im Alter von 80—58 Jahven.

Bestand II umfasst Versicherte im Alter von 80—86 Jahren.
Bestand III umfasst Versicherte im Alter von 58—86 Jahren.

Die einzelnen Altersklassen sind in allen Bestinden ungefihr pro-
portional den [, der Tafel TMG besetzt. Wir betrachten also nach-
einander einen «jungen», einen «normalen» und einen «iiberalterten»

Bestand.

Die von den Versicherten aufzubringenden jihrlichen Priimien
sind wie folgt festgesetzt:

Finanzierung A: Die Versicherten zahlen die individuelle Priimie,
welche dem am Bilanztag erreichten Alter als Hin-
trittsalter entspricht.

Finanzierung B: Die Versicherten zahlen die dem Fintrittsalter 30
entsprechende Primie von 15,74 9/, der Todesfall-
summe.

Finanzierung C: Simtliche Versicherungen sind priimienfrei.

In allen drei Fillen sei das nach den Grundlagen TMG 8 9 erforder-

liche Deckungskapital vorhanden.

Die Finanzierungen A und C sind als extreme Fille zu werten,
withrend bei B eine normale Finanzierung vorliegt. In der folgenden
Tabelle sind die sich fiir die erwiihnten Bestinde und Finanzierungen
ergebenden Kassenmittel in 9/,, der jeweiligen Gesamtversicherungs-
summe angegeben.

TFinanzierung A B C

Bestand

P

IR

z

b

z 0

P

%,V

in 9/, der Gesamtversicherungssumme

I 39 — 16 231 — 457
IT 68 229 12 387 — 545
IIT 30 638 1 705 — 724
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~ Die Verlustfunktion fiir lebensléingliche Todesfallversicherungen
186 durch folgende Ausdriicke gegeben: A

w [U V;:»H sy Vx] = Pz
wC—P—V]=q

Mit Hilfe dieser Verlustfunktion berechnen wir die Sicherheits-
Yeserven fir eine finfjihrige Ausgleichsdauer und die daraus ab-
geleiteten jihrlichen Sicherheitszuschlige.

Jihrlicher Sicherheitszuschlag in ©/y der Gesamtversicherungssumme.

[ —

Bestand I Bestand 11 Bestand III
Al B|lc | a|B|lc|a]B]|C

Personen-
zahl

———

50 185 181 95| 172 126] 99| 159 11,8 ] 107
100 126 | 89| 64| 116] 86| 68| 108] 78| 74

200 86| 61| 44| 79| 58| 46| 74| 54| 5.1
500 521 871 271 48| 86| 88| 45| 38| 82
1000 36 25| 18| 83| 25| 20| 31| 28| 29
10 000 L1l o8] o6 10| o8| o8] 10| 07| o7
100 000 03 02| 02| 03| 02| 02| 08| 02| 02

——————

Vergleichen wir die oben angegebenen Werte untereinander, so
kénnen wir folgendes feststellen:

a) Die Abhéngigkeit des jihrlichen Sicherheitszuschlages von der
Art der Finanzierung der Kassenleistungen ist viel stirker ausgeprigt
als die Abhiingiglkeit von der Altersstruktur des Versichertenbestandes.
Beriicksichtigen wir ferner, dass die Bestiinde I und III eine ex-
treme Alterszusammensetzung aufweisen, so erscheint der Kinfluss
der Bestandesgliederung auf die Hohe des Sicherheitszuschlages als
liberraschend gering.

b) Jo grosser das Deckungskapital einer Kasse ist, desto kleiner
sind die erforderlichen Sicherheitszuschlige.

¢) Fiir pramienpflichtige Versicherungen nimmt der erforderliche
Sicherheitszuschlag mit zunehmendem Durchschnittsalter der Ver-
Sicherten ab, weil die durchschnittliche Risikosumme gleichzeitig
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stark abnimmt. Fiir primienfreie Versicherungen hingegen nimmt der
Sicherheitszuschlag mit zunehmendem Durchschnittsalter der Ver-
sicherten zu. Bei primienfreien Versicherungen steigt nimlich die
durchschnittliche Risikosumme mit wachsendem Durchschnittsalter
der Versicherten verhiltnismissig schwach, withrend anderseits gleich-
zeitig die zu erwartende Anzahl der Versicherungsfille stark zunimmdt.

In der Tabelle auf Seite 175 haben wir die Sicherheitszuschlige
in o, der Gesamtversicherungssumme ausgedriickt. Diese Dar-
stellung hat den Nachteil, dass ein Vergleich mit andern Versicherungs-
formen auf Schwierigkeiten stosst. Fine besser geeignete Masseinheib
bietet daher die Summe der absoluten Betriige der jihrlichen Risiko-
primien. Diese Masseinheit ist allerdings im allgemeinen wenig an-
schaulich. Sind jedoch die jihrlichen Sicherheitszuschlige fiir den
gleichen Bestand, aber fiir verschiedene Versicherungsformen zu ver-
gleichen, so gibt die jihrliche Primieneinnahme einen geeigneten und
zugleich anschaulichen MafBstab, sofern die Primien in beiden Fiillen
in dhnlicher Weise festgesetat sind (z. B. dem gleichen Eintrittsalter
entsprechen). Im folgenden nennen wir die mit der Summe der jéhr-
lichen Primien gemessenen Sicherheitszuschlige relative Zuschlige-
Fiir die Kasse II, B betragen die relativen jihrlichen Sicherheits-
zuschlige:

' Jihrlicher Sicher-
Personenzahl heitszuschlag in 9,
der Gesamtpriimie

50 109 9,

100 74 Y,

200 50 %

500 81 9,

1 000 21 9/,

10 000 69

100 000 297

Die Verlustfunktionen weisen bei Sterbekassen immer eine posi-
tive Schiefe auf, Mit zunehmender Personenzahl n nimmt die Schiefe

mit 7 ab, und die Verlustfunktion nihert sich mehr und mehr del"
GauBschen Verteilung. Diese Verhiiltnisse bringen es mit sich, dass bel
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\J . . . . " .
Sterbekassen die relativen Sicherheitsreserven und -zuschlige bei
Wachsendem 7 rascher abnehmen als das relative mittlere Risiko,

; " -L .
dag proportional der Grésse n™% sinkt.

C. Das Zufallsrisiko bei einer Rentenkasse.

Eine Pensionskasse richte an ihre Versicherten, die das Schluss-
alter 65 erreicht haben, lebenslinglich eine einheitlich festgesetate,
Jihrlich vorschiissig zahlbare Altersrente R aus. Die Verlustfunktion
fiir die einzelnen Versicherungen ist durch die Ausdriicke

WV, .+ R—V,—P) =1p,
w@B—V,—P) =g,

gegeben. In der nachfolgenden Tabelle sind die relativen Sicherheits-
zuschlige fiir Bestinde mit normaler Altersstruktur (Bestand II)
angegeben. Die Versicherten zahlen die dem Kintrittsalter 30 ent-
Sprechende Primie (Finanzierung B).

Personenzahl Rel&tivg jéhrliche
Sicherheitszuschlige
50 162 9,
100 123 9,
200 92 9%,
500 61 9%,
1 000 44 9%,
10 000 14 9,
100 000 5%

Es fillt auf, dass die Sicherheitszuschlige fiir eine Altersrenten-
versicherung hoher ausfallen als fiir eine Sterbekasse mit gleicher
Bestandeszusammensetzung und gleicher Art der Priimienbemessung.
Diese Erscheinung lisst sich dadurch erkliren, dass die Rentenver-
sicherung ein véllig einseitiges Risiko deckt. Wihrend bei Todesfall-
versicherungen die Differenz zwischen Todesfallsumme und Deckungs-
kapital als Risikosumme auftritt, ist bei der Rentenversicherung
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das Deckungskapital selbst als Risikosumme zu betrachten. Die
Risikosumme ist aber bei den hauptsiichlich ins Gewicht fallenden Ver-
sicherungen der iilteren Versicherten bei der Rentenversicherung viel
héher als bei der Todesfallversicherung, so dass die jihrlichen Sicher-
heitszuschlige fiir die Rentenversicherung hoher ausfallen als fiir die
Todestallversicherung.

Die Verlustfunktion weist bei Erlebensfallversicherungen immer
eine negative Schiefe auf. Die relativen Sicherheitszuschlige nehmen
daher mit wachsender Versichertenzahl fiir Erlebensfallversicherungen
nicht so rasch ab wie das relative mittlere Risiko, das proportional

. S
der Grosse n 2 sinkt.

D. Das Zufallsrisiko bei kombinierten Versicherungen.

o) Kombinalionen von Todesfall- und Irlebensfallversicherungen.

Eine Versicherungskasse gewihrt neben einer vom Schlussalter
65 an zahlbaren Altersrente eine Todesfallsumme in der Héhe von fiinf
Jahresrenten. Die Versicherten zahlen der Kasse die dem Iintritts-
alter 30 entsprechende Privmie. In der folgenden Tabelle sind wiedet-
um die relativen Sicherheitszuschlige fiir Versicherungsbestinde mit
normaler Altersverteilung zusammengestellt:

Relative jihrlic

Betsongtmail Sicherheit;zusrf;l(:il;e
50 84 9/,
100 64 9,
200 47 %,
500 31 9,
1 000 23 9,
10 000 19
100 000 29

Die relativen Sicherheitszuschlige fallen in diesem Beispiel kleiner
aus als die entsprechenden Zuschlige fiir die beiden: Komponenten
(vgl. Abschnitt VI B und C). Dieses Ergebnis ist durch den Umstand
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bedingt, dass die Risikosummen der kombinierten Versicherungen
durch Addition aus den Risikosummen der Komponenten entstehen.
Da die Risikosummen der beiden Komponenten entgegengesetztes
Vorzeichen aufweisen, fallen die Risikosummen der kombinierten
Versicherungen verhiltnismissig klein aus.

Das Irlebensfallrisiko herrscht im vorliegenden Fall vor. Die
Verlustfunktion weist daher die typischen Kigenschaften der Ver-
lustfunktionen von Frlebensfallversicherungen, insbesondere ihre
Negative Schiefe, auf.

Bei Kombinationen von Todesfall- und Frlebensfallversicherungen
empfiehlt es sich nicht, nur eine der beiden Komponenten, etwa die
Todestallversicherung, in Riickdeckung zu geben. Durch eine der-
artige Massnahme wiirde die Sicherheit der Kasse vermindert.

B) Kombinationen von Lebens- und Invalidititsversicherungen.

Handelt es sich um eine Kombination von Versicherungsleistun-
gen, bei denen der Versicherungsfall fiir jede einzelne Komponente
mit verschiedener Wahrscheinlichkeit erwartet wird, so gestaltet sich
die Darstellung der Verlustfunktion nicht wie in dem unter «) be-
trachteten Fall. Die Verlustfunktion fiir die kombinierte Versiche-
rung ist néimlich in gleicher Weise zu bilden wie die Bestandesverlust-
funktion von verschiedenen Versicherungen aus den Verlustfunktionen
der einzelnen Komponenten. Der Risikoausgleich verbessert sich
daher bei zunehmender Anzahl der Komponenten in ihnlicher Weise
Wie bei einer entsprechenden Vermehrung des Versichertenbestandes.
Es empfiehlt sich daher auch bei dieser Art von kombinierten Ver-
sicherungen im allgemeinen nicht, eine einzelne Komponente riick-
Zuversichern.

Als Beispiel betrachten wir das Zufallsrisiko bei einer Pensions-
kasse, die einheitlich festgesetzte Alters-, Invaliden- und Witwen-
Yenten versichert. (Witwenrente = 50 9, der Alters- und Invaliden-
tente.) Die Aktiven zahlen einheitlich die dem Eintrittsalter 30 ent-
Sprechende Priimie. iir Bestiinde mit normaler Altersstruktur ergeben
sich folgende relative Sicherheitszuschlige:
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. ) Relative jiahrliche
Personenzahl Sicherheitszuschlige
50 123 %

100 83 %

200 57 %

500 35 9/,

1 000 24 %
10 000 7 %
100 000 9 ‘}/0

Die Bestandesverlustfunktion nimmt im vorliegenden Beispiel
einen dhnlichen Verlauf wie bei einer Sterbekasse. Zufolge der posi-
tiven Schiefe der Bestandesverlustfunktion nehmen die relativen

Sicherheitszuschlige mit wachsendem Versicherungsbestand rascher

. e —-.ﬁl_
ab als die Grosse n 2.

E. Zusammenfassung.

Die angefiihrten Beispiele diirften geniigen, um einen Begriff
von der Grossenordnung der Sicherheitszuschlige zu vermitteln, die
zur Deckung des Zufallsrisikos erforderlich sind. Bei umfangreichen
Versicherungsbestiinden wiiren Zuschlige von 2 %—5 9%, der Priimien
ausreichend. Fs besteht daher keine dringende Notwendigkeit, bei
grossen Versicherungsbestinden dem Zufallsrisiko bei der Priimien-
berechnung besonders Rechnung zu tragen.

Ganz anders verhiilt es sich aber bei kleinen Versicherungs-
bestinden. Zur Deckung der aus zufilligen Schwankungen mdglicher-
weise erwachsenden Verluste sind Sicherheitszuschlige erforderlich,
die unter Umstinden die gleiche Grossenordnung aufweisen wie die
Primien selbst, die von der Versicherungseinrichtung zur Deckung
des itbernommenen Risikos erhoben werden miissen. Iis ist daher ein
dringendes Bediirfnis, bei der Priifung der finanziellen Lage einer
Versicherungseinrichtung - mit kleinem Versicherungsbestand dem
Zufallsrisiko Rechnung zu tragen und angemessene Sicherheits-
zuschlige in die Primien einzurechnen.
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Die Funktionen @(X), ¢" (X), ¢’ (X) und " (X)

X ®(X) 9" (X) " (X) o (X)
0,0 0,500 00 — 1,128 38 0,000 00 6,770 28
0,1 0,556 23 — 1,094 81 0,665 82 6,435 69
0,2 0,611 85 — 0,997 40 1,266 27 5,477 92
0,3 0,664 31 — 0,84563 1,744 89 4,026 87
0,4 0,714 20 — 0,65385 2,061 54 2,273 85
0,5 0,760 25 — 0,439 39 2,196 96 0,439 39
0,6 0,801 93 — 0,22048 2,153 90 1,262 11
0,7 0,838 90 — 0,018 83 1,954 92 92,653 94
0,8 0,871 05 0,166 60 1,687 40 3,619 42
0,9 0,898 45 0,311 22 1,246 89 411173
1,0 0,921 85 0,41511 0,830 22 4,151 08
1,1 0,940 01 0,477 80 0,429 85 8,811 87
1,2 0,955 16 0,502 61 0,077 00 8,200 48
1,8 0,967 00 0,495 54 — 0,20571 2,438 87
14 0,976 14 0,464 11 — 0,409 48 1,638 24
1,5 0,983 05 0,416 26 — 0,535 19 0,891 98
1,6 0,988 17 0,359 38 — 0,591 76 0,262 66
1,7 0,991 90 0,299 76 — 0,59274 0,216 78
1,8 0,994 55 0,242 17 — 0,553 63 0,540 06
1,9 0,996 40 0,189 86 - 0,489 50 0,720 90
2,0 0,997 66 0,144 67" — 0,413 84 0,785 85
21 0,998 51 0,107 26 — 0,385 27 0,764 58
2,9 0,999 07 0,077 44 — 0,262 24 0,689 19
2,3 0,999 43 0,054 50 — 0,198 36 0,585 47
24 0,999 66 0,087 41 — 0,145 41 0,478 54
2,5 0,999 80 0,025 05 — 0,108 47 0,367 04
2,6 0,999 88 0,016 88 — 0,071 56 0,273 83
2.7 0,999 93 0,010 46 — 0,048 14 0,197 25
2.8 0,999 96 0,006 52 — 0,081 54 0,187 51
2,9 0,999 98 0,008 97 — 0,02014 0,092 94
8,0 0,999 99 0,002 37 — 0,01253 0,060 99
3,1 0,999 99 0,001 38 — 0,007 61 0,038 90
3,2 0,00078 — 0,004 51 0,024 14
3,8 0,000 44 — 0,002 61 0,014 59
3,4 0,000 24 — 0,001 47 0,008 59
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Beniitzte Lateratur:

1) R.v. Mises: Wahrscheinlichkeitsrechnung.

2) C. Boehm: Versuch einer systematischen Darstellung der modernen Risiko-
theorie (Blitter fiir Versicherungsmathematik, Band III).

%) Alfred Berger: Die Prinzipien der Lebensversicherungstechnik IT.

%) 0. Anderson: Einfithrung in die mathematische Statistik.

8) Rietz-Baur: Handbuch der mathematischen Statistik.

6) W. P. Elderton: Frequency Curves and Correlation.

" 7) H. Miinzner: Uber Verschirfungen der Tschebycheffschen Ungleichung (Skan-

dinavisk Aktuarietidskrift 1935).

© 8) Birger Meidell: Sur un probldme fondamental de la statistique mathématique

(Skandinavisk Aktuarietidskrift 1922).



	Das Zufallsrisiko bei kleinen Versicherungsbeständen

