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Das Zufallsrisiko
bei kleinen Versicherungsbeständen.

Von H. ämmeler, Zürich.

Bei der Berechnung von Sicherheitsreserven und -zuschlagen zur
Deckung des Zufallsrisikos benützt man mit Vorteil die von der Risikotheorie

entwickelten Methoden. Die Anwendung dieser Methoden
auf praktische Probleme setzt voraus, dass die zufälligen Schwankungen

im Ablauf des Risikos dem Gaußschen Gesetz folgen. Dieser
Brenzfall kann aber nur bei grossen Versicherungsbeständen mit
genügender Annäherung erreicht werden; bei kleinen Versicherungsbeständen

ist dagegen die Voraussetzung einer Gaußschen Verteilung
nicht erfüllt. Mit Rücksicht darauf, dass dem Zufallsrisiko eine um so

grössere Bedeutung zukommt, je kleiner der Versicherungsbestand
lst, besteht aber gerade bei kleinen Versicherungseinrichtungen, wie
z- B. bei Pensions- und Sterbekassen, das grösste Bedürfnis, dem Zu-
fallsrisiko durch Sicherheitsreserven und -zuschlägo Rechnung zu
tragen. Im folgenden wird versucht, eine Methode auszubilden, die
nicht eine Gaußsche Verteilung der zufälligen Schwankungen im
Ablauf des Risikos annimmt und daher den bei einem kleinen
Versicherungsbestand von Fall zu Fall vorliegenden Verhältnissen Rechnung

zu tragen vermag.
Bei der Berechnung der Sicherheitsreserve stellen sich dem Übergang

von der einzelnen Versicherung zu einem beliebig zusammengesetzten

Versicherungsbestand verschiedene Schwierigkeiten
entgegen. Diese lassen sich umgehen, wenn von vornherein die
Verteilung der im Gesamtbestand möglichen Zufallsschwankungen als

Ausgangspunkt der Untersuchung gewählt wird.
Die praktische Anwendung der vorgeschlagenen Methode wird

an einigen Beispielen erprobt, die gleichzeitig Anhaltspunkte über die

Grössenordnung der für kleine Versicherungsbestände erforderlichen
Sicherheitsreserven und -zuschlage vermitteln.

Die folgenden Betrachtungen beschränken sich auf zufällige
Schwankungen und erfassen die sogenannte wesentliche Schwankungskomponente

nicht.
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I. Grundbegriffe der Risikotheorie.

A. Die Verlustfunktion 2) *).

Wir betrachten einen Versicherungsbestand, in dem gleichzeitig
verschiedene Versicherungsformen, beispielsweise Todesfall-,
Erlebensfall-, Invaliditätsversicherungen usw., vertreten sein können.
Mit Hilfe von Rechnungsgrundlagen, die dem Risikoverlauf während
der in Untersuchung gezogenen Zeitspanne entsprechen, sind die

Prämien und Einlagen der Versicherten eines bestimmten
Versicherungsbestandes nach dem Äquivalenzprinzip festgesetzt worden.

Wird von Zins-, Unkosten- und Htornogewinnen abgesehen, so hat
die Versicherungseinrichtung aus dem Risikoablauf der übernommenen

Versicherungen während der betrachteten Zeitspanne (beispielsweise
während der ganzen Laufzeit der Versicherungen) rechnungsmässig
weder Gewinne noch Verluste zu gewärtigen. In Wirklichkeit wird

jedoch nur selten der rechnungsmässige Risikoverlauf zustande

kommen; im besondern nicht bei kleinen Versicherungsbeständen.
Der Gesamtbetrag der Verluste, die sich für eine bestimmte
Versicherungseinrichtung während der in Betracht gezogenen Zoitspanne
ergeben, sei mit X bezeichnet. Gewinne werden im folgenden als negative
Verluste aufgefasst. Der Gesamtverlust X kann verschiedene Werte
annehmen. Doch ist die Zahl der möglichen Werte beschränkt, weil

X im gegebenen Fall stets die Summe von Risikosummen aus den
vorhandenen Einzelversicherungen darstellen muss. Wir können alle

Kombinationen von Einzelvorlusten, die zum gleichen Totalverlust X
führen, zusammenfassen und die möglichen Gesamtverluste nach

steigenden Beträgen ordnen. Das Eintreffen eines jeden dieser
möglichen Totalverluste X kann mit einer bestimmten Wahrscheinlichkeit

erwartet werden; Totalverlusten, die nicht als Summe von im
Bestand auftretenden Risikosummen entstanden sein können,
insbesondere allen Beträgen ausserhalb des durch das minimale und

maximale Risiko abgegrenzten Bereichs, kommt die Wahrscheinlichkeit

Null zu. Den Zusammenhang zwischen den Verlusten X und den

zugehörigen Wahrscheinlichkeiten w(X) nennen wir Verlustfunktion.
Diese nimmt also bei diskontinuierlicher Betrachtung nur für eine
endliche Anzahl von Verlustbeträgen einen von Null verschiedenen Wert

*) Die im Text angeführten Nummern beziehen sich auf das
Literaturverzeichnis.
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an. Wird hingegen die kontinuierliche Berechnungsmethode verwendet,
so kann die Wahrscheinlichkeitsdichte w(X) für jeden beliebigen Wert
von X zwischen — oo und + oo von Null verschieden sein.

Zur näheren Beschreibung der Verlustfunktion benützen wir die
Potenzmomente kler Ordnung1):

Für k 0 ist m0 Siö(Z) 1, weil die Summe der
Wahrscheinlichkeiten für alle möglichen Verluste gleich Eins sein muss.

Das erste Moment m, ist der Mittelwert von X und wird oft auch
als Erwartungswert von X bezeichnet. Werden die Versicherungskosten

nach dem Äquivalenzprinzip berechnet, so ist stets gleich Null.
Das ziveite Moment m2 ist auch unter dem Namen Streuung von

w(X) bekannt. Im übrigen ist w2 nichts anderes als das Quadrat des

in der klassischen Risikotheorie bekannten mittleren Risikos.
Das dritte Moment m3 dient hauptsächlich zur Charakterisierung

der Asymmetrie von w(X). Als «Mass der Schiefe» definieren wir den

Ausdruck g m3/m2if. Bei völliger Symmetrie von w(X) bezüglich

der Mittelordinate nimmt das Mass der Schiefe den Wert Null an.
Bei asymmetrischen Verteilungen ergibt sich ein positiver oder negativer

Wert, je nachdem die Werte rechts oder links vom Mittelpunkt
dominieren.

Aus m4 und w2 berechnet man den Exzess von w (X) : e m,,/m2 — 3.

Positiver Exzess liegt vor, wenn in der Verlustfunktion grössere
Abweichungen vom Mittelwert stärker, kleinere Abweichungen schwächer

vertreten sind als bei der Gaußschen Verteilung.

-{- oo

oder

B. Die Summenverlustfunktion.

Summenverlustfunktion nennen wir die Funktion

x x
W(X) ^w(X) oder W(X) jto(X) dX

X —oo

IF(X) ist die Wahrscheinlichkeit, mit welcher die Versicherungseinrichtung

alle Verluste erwarten muss, die kleiner oder höchstens

gleich X sind.
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Bei diskontinuierlicher Berechnung ist W(X) eine Treppenkurve,
bei kontinuierlicher Berechnung eine monoton von 0 bis 1 ansteigende
Kurve.

Mit Hilfe der Potenzmomente gerader Ordnung können die
Werte der Summenverlustfunktion für beliebige Verlustfunktionen
abgeschätzt werden. Für näherungsweise Bechnungen dürfte oft
folgende Ungleichung genügen7):

(Pearsonsche Erweiterung der Markoff-Tschebycheffschen Ungleichung.)
Dieser Ansatz kann, wie Birger Meidell gezeigt hat, für

Verlustfunktionen, die nur einen Maximalwert aufweisen, durch die folgende
Ungleichung verschärft werden 8) :

In dieser Formel wird überdies vorausgesetzt, dass dem Verlust Null
die grösste Wahrscheinlichkeit zukommt.

Die Wahrscheinlichkeit, dass die verfügbaren Kassenmittel zur
Deckung der Versicherungsverpflichtungen ausreichen, nennen wir
inskünftig Sicherheitsgrad der Kasse. Den Sicherheitsgrad einer
Kasse, die neben dem erforderlichen Deckungskapital über einen
Sicherheitsfonds X verfügt, entnehmen wir ohne weiteres der
Summenverlustfunktion W(X) (siehe Figur).

Wie hoch muss der Sicherheitsgrad sein, damit von einem
genügenden Risikoausgleich die Rede sein kann? Die absolute Sicherheit

wird man von einer Versicherungseinrichtung nicht verlangen
wollen, sonst würde die Einrichtung ihren Charakter als Versicherung
überhaupt verlieren. Man wird jedoch nur dann von einer genügenden
Sicherheit sprechen, wenn Verluste nur so selten zu erwarten sind,
dass sie praktisch überhaupt nicht vorkommen. Die Wahl des nötigen
Sicherheitsgrades ist im übrigen weitgehend dem freien Ermessen an-

W (A ]/to2 > 1

C. Sicherheitsgrad und Sicherheitsreserve.
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Wahrscheinlichkeiten

heimgestellt. In unseren nachfolgend angeführten Beispielen haben
immer einen Sicherheitsgrad von 999 %o vorausgesetzt.

D. Jährliche Sicherheitszuschläge.

Wird die Sicherheitsreserve für ein Versicherungsjahr bestimmt,
s° ist sie mit dem jährlichen Sicherheitszuschlag identisch. Ist sie
Jedoch für eine Dauer von t Jahren berechnet worden, so finden wir
den jährlichen Sicherheitszuschlag aus der Sicherheitsreserve nach
der Formel

T Sicherheitsreserve für t Jahre
jährlicher Sicherheitszuschlag

£2

E. Die Wahl der Ausgleichsdauer.

Theoretisch betrachtet könnten wir eine unendlich lange Aus-
§'eichsdauer annehmen, d. h. eine ewige Sicherheitsreserve bestimmen.
^er Sicherheitsgrad für eine einzelne ßechnungsperiode wäre jedoch
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in diesem Falle beträchtlich kleiner als der bei der Berechnung der

ewigen Sicherheitsreserve vorausgesetzte. Erleidet eine Kasse w
einer Kechnungsperiode einen Verlust, so werden sich die verantwortlichen

Kassenorgane kaum darauf verlassen wollen, dass die erlittenen
Verluste durch die künftig zu erwartenden Gewinne wieder gedeckt
werden können. Denken wir ferner an die im Laufe der Zeit
auftretenden wesentlichen Veränderungen des Bisikoverlaufes, so müssen

wir unbedingt verlangen, dass der Bisikoausgleich innerhalb einer

jeden Bechnungsperiode gewährleistet ist. Pensions- und Sterbekassen

werden etwa alle fünf Jahre versicherungstechnisch begutachtet. Wir
haben daher in unseren Berechnungen immer eine fünfjährige
Ausgleichsdauer vorausgesetzt.

II. Die Berechnung der Summenverlustfunktion
für einen Versich erungsbestaud.

A. Die Verlustfunktion für eine einzelne Versicherung.

Die folgenden Beispiele zeigen, wie sich die Verlustfunktion für
eine einzelne Versicherung angeben lässt:

a) Die Verlustfunhtion einer gemischten Versicherung für die ganze

Versicherungsdauer :

Die gemischte Versicherung mit der Versicherungssumme C und

der Versicherungsdauer n sei gegen eine Prämie P und eine Einmal-

einlago E abgeschlossen worden. Stirbt der Versicherte im t'm

Versicherungsjahr, so entsteht für die Versicherungseinrichtung ein Verlust

von
Xt=vlC—aj-| P — E (t <n)

Erlebt jedoch der Versicherte das Ende der Versicherungsdauer, s°

hat die Versicherungseinrichtung einen Verlust von

Xn+1 vnC~ariP~E

zu decken. Diesen Möglichkeiten entsprechen die Wahrscheinlich'

keiten

«,(*,) und W(Z^1)=-^L-
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ß) Alters- und Invalidenrentenversicherung :

Die Verlustfunktion für das erste Versicherungsjahr einer Altersund

Invalidenrcntenversicherung, die gegen eine Prämie P und eine
Dirdagc K abgeschlossen ist, finden wir aus folgenden Formeln:

w (—a-qP—P) C
u>(vlVJx-a.rP-E)=i'?

J]P-E)=P?
In diesen Formeln bedeuten ßVJx die Reserve nach einem Jahr, wenn
der Versicherte invalid wird, und jFj.1 die Reserve nach einem Jahr,
wenn der Versicherte aktiv bleibt.

B. Die Bestandesverlustfunktion.

Die Verlustfunktion für einen ganzen Versicherungsbestand
nennen wir Bestandesverlustfunktion.

Im folgenden setzen wir immer voraus, dass die verwendeten
Wahrscheinlichkeiten unabhängig sind von der Art und der Höhe der

Versicherungsleistungen und dass die einzelnen versicherten Objekte
im Sinne der Wahrscheinlichkeitsrechnung voneinander unabhängig
sind. Wenn diese Voraussetzungen in gewissen Fällen nicht streng
erfüllt sind, so handelt es sich um systematische oder wesentliche
Abweichungen, dio wir — wie wir eingangs betont haben — nicht
berücksichtigen.

Die Bestandesverlustfunktion w12{X) für einen Versicherungsbestand

von zwei Versicherungen, deren einzelne Verlustfunktionen
wir mit w L (X) und w2 (X) bezeichnen, findet man nach folgender
Dormel2) :

x

wj,2 (V) ^ n>i (Vi — x) w2 (x) (1 a)

X ~oo

Hie Bestandesverlustfunktion für den ganzen Versicherungsbestand
von i Versicherungen entsteht somit nach der Rekursionsformel

x

Wl. 2, 3 i (X) 2 «>1, 2, 3 (£-1) (X — %)Wi (X) V)

X — -O0
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Diese Rekursionsformel vermittelt uns bereits eine gute Vorstellung

vom Aufbau der Bestandesverlustfunktion. Für die praktische
Rechnung ist die Formel jedoch nicht brauchbar, indem selbst bei

kleinen Versicherungsbeständen die Rechnung einen schwer zu
bewältigenden Umfang annehmen würde.

Für die Berechnung der Sicherheitsreserven benötigen wir das

von — oo bis X gezogene Integral der Bestandesverlustfunktion, das

wir als Summenverlustfunktion für den Versicherungsbestand
bezeichnet haben. Es empfiehlt sich, die im folgenden näher begründeten

Umformungen und Vereinfachungen unmittelbar für die
Summenverlustfunktion

x

W(X)= (2)

vorzunehmen. x=-oa

C. Die Entwicklung der Summenverlustfunktion in eine Brunssche

Reihe *).

Mit Hilfe der von Bruns eingeführten Reihenentwicklung kann
die Summenfunktion W{X) einer beliebigen Verteilungsfunktion
to (X) als unendliche Reihe dargestellt werden. Dabei müssen
allerdings gewisse Bedingungen erfüllt sein, die jedoch in den für unsere

Aufgabe auftretenden Fällen stets erfüllt sind *). Das erste Glied

der Brunsschen Reihe wird durch

x x

&(X)= f <p(X)dX= I UA'2 dX
J J y 7i

-oo -OO '

das Integral der Gaußschen Funktion dargestellt. Die folgenden
Glieder werden durch die mit gewissen Koeffizienten multiplizierte
Gaußsche Funktion und ihre Differentialquotienten gebildet; es gilt
also folgende allgemeine Darstellung für eine Summenfunktion:

w (X) 0 (X) + C0 <p (X) +Cl<p'(X) (2 a)

Einige Werte für die Funktionen 0, cp", cp'" und cp^ sind in der

Tabelle auf Seite 181 zusammengestellt.

*) ') Seiten 254/255.
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Die Ableitungen der Gaußschen Punktion haben die Form

<pW(X) pk(X) <p(X)

Wo pk ein Polynom ktm Grades ist, das mit Hilfe der Rekursionsformel

Vk+1 (X)=-2Xpk(X) + p'k(X)

berechnet werden kann.
Ist die zu entwickelnde Summenfunktion eine Treppenlinie, so

ergeben sich besonders einfache Formeln für die Koeffizienten der
Erunsschen Reihe. Der Koeffizient ck der ku" Ableitung der Gaußschen
Punktion ist dann nämlich

2 +°°

c'=2««(ï+i)! m

"wo w(X) die Verteilungsfunktion ist, aus der die Summenfunktion
IF (X) hervorgegangen ist. Ersetzen wir die Variable X durch f, die
ßdt X durch die Gleichung

X — M,
| (4)

l/2 Ma

verbunden ist, so erreichen wir, dass die Glieder c0 ç>(f) und cx <//(f)
der Brunsschen Reihe verschwinden. Die in der Substitution (4)
auftretenden Grössen Mj und M2 sind die beiden ersten Momente von
w(X). Die übrigbleibende Reihe

IF(f) 0(f) + c2 cp" (f) + c3 cp'" (f) (2 b)

nennt man die normale Entwicklung der Brunsschen Reihe. Ist
IF(f) mit 0(f) identisch, so verschwinden alle Koeffizienten ck der

normalen Entwicklung der Brunsschen Reihe. Die in der normalen
Entwicklung der Brunsschen Reihe im zweiten und den folgenden
Gliedern auftretenden Koeffizienten charakterisieren also die

Abweichung der dargestellten Funktion IF(f) von 0(f). Diese
Koeffizienten ck lassen sich durch die Momente der Verteilungsfunktion
W{X), aus der die zu entwickelnde Summenfunktion W(X)
hervorgegangen ist, ausdrücken. Im besonderen enthalten die
Koeffizienten c2 und c3, wie aus den nachstehenden Formeln hervorgeht,
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die Masse für die Schiefe und den Exzess von w(X). Sind Mk di-e

Momente von w(X), so lassen sich die Koeffizienten der normalen

Entwicklung der Brunsschen Beihe unter Berücksichtigung der
Substitution (4) wie folgt ausdrücken:

co — 0

Cj 0

G o —
8 (]/2)8

1

4ÏW
1

5!([/2)6

Mo

(l/M2)3

M.

/M
M5 M3

5 + 10 —
{fM,

usw.

Da die Verlustfunktion für eine einzelne Versicherung und die

Bestandesverlustfunktion nur spezielle Arten von Verteilungsfunktionen

sind, so können die zugehörigen Summenverlustfunktionen
in Brunssche Reihen entwickelt werden. Die Summenverlustfunlction
für eine einzelne Versicherung könnten wir ohne weitores als

Brunssche Reihe darstellen, da uns die Momente der zugehörigen
Verlustfunktion bekannt sind. Um die Summenverlustfunktion für
einen ganzen Versicherungsbestand in eine Brunssche Reihe
entwickeln zu können, müssen wir noch angeben, wie die Momente
der zugehörigen Bestandesverlustfunktion berechnet werden können-

D. Die Berechnung der Momente der Bestandesverlustfunktion.

Für die nachfolgenden Ableitungen erweist es sich als nützlich,
das Polynom l)

-|- oo

/(*) V w_

X=-eo
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Ms erzeugende Funktion der Verlustfunktion wt (X) einzuführen.
Multiplizieren wir die erzeugenden Funktionen der Verlustfunktionen
101 (X) und io2 (X) von zwei einzelnen Versicherungen miteinander, so
finden wir:

-{- oo

/i (*) • /2 («) 2Wi {]Ç) e*x 2Wa (Z)
A'=-oo

2e*z 2wi(Zi)w2(Xa)
X=-oo X^Xt + X2

+ oo X

2 ('*x 2^z—^t(,a ^
X -oo X — — 00

Beachten wir die Formel (1 a) für die Bestandesverlustfunktion
v°n zwei Versicherungen, so erkennen wir, dass das Produkt der
eräugenden Funktionen von zwei Verlustfunktionon iv1 (X) und w2 (V)
gleich der erzeugenden Funktion ihrer Bestandesverlustfunktion
'^1,2 (X) ist. Durch fortgesetzte Wiederholung dieses Verfahrens
finden wir, dass ganz allgemein die erzeugende Funktion der Bestandes-
Verlustfunktion gleich dem Produkt der einzelnen erzeugenden Funk-
Honen ist.

Diese Fdgenschaft der erzeugenden Funktion ermöglicht es uns,
file Beziehungen zwischen den Momenten der einzelnen Verlust-
lunktionen und denjenigen der Bestandesverlustfunktion herzuleiten.
Zu diesem Zwecke bestimmen wir die ktm Ableitungen nach z der

^'zeugenden Funktion / (2) :

-j- CO

/<*> (*) y w (X) e'x xk
X=-oo

Für z 0 stellt der Ausdruck rechts das kte Moment von w (X) dar:

-f-°o

/(«(o) y to(x) xk
X=-oo

Die kte Ableitung eines Produktes von zwei Funktionen fx • f2
'ässt sich nach folgender Formel durch die Ableitungen ff der beiden
Einzelnen Funktionen darstellen:
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(/.«"'=2 (*)/s"-r"
t= 0 ' '

Da die erzeugende Funktion der Bestandesverlustfunktion gleich

dem Produkt der einzelnen erzeugenden Funktionen ist, da ferner die

Ableitungen f-k) (z) für z 0 in die Momente mk der Verlustfunktion
für eine Versicherung übergehen und da schliesslich stets ra0 1 und

m1 0 ist, ergeben sich folgende Beziehungen zwischen den Momenten
der einzelnen Verlustfunktionen mk und den Momenten Mk der Be*

standesverlustfunktion :

M0 IIm0 1

M1 2m4 0

M2 2m2
(5)

M3 2m3

M4 S m4 + 3 (Sm2)2 — 3 2 (m2)2

Mg Sm5 + 10Sm2 Sm3 — 10 2m2 m3

Die Momente der Bestandesverlustfunktion lassen sich also in einfacher
Weise aus den Momenten der einzelnen Verlustfunktionen berechnen-

E. Zusammenfassung.

Als Ausgangspunkte für die Berechnung der Summenverlust'

funktion eines Versicherungsbestandes können somit die Momente de1

Verlustfunktionen für die einzelnen Versicherungen des Bestandes

dienen. Daraus lassen sich die Momente der Bestandesverlustfunktion
nach den Formeln (5) bestimmen. Mit Hilfe der Momente der Be'

standesverlustfunktion finden wir endlich unter Benützung de1

Formeln (3 a) die Koeffizienten der Brunsschcn Reihe. Die Brunssch0

Reihe (2 b) stellt die gesuchte Summenverlustfunktion für den ganz®11

Versicherungsbestand dar. Praktisch genügen in vielen Fällen wenige

Glieder, um ein befriedigendes Resultat zu gewinnen, so dass nur die

ersten vier bis fünf Momente der Verlustfunktion für die einzelne11

Versicherungen benötigt werden.
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III. Die Abhängigkeit der Summenverlustfunktion
vom Umfang des Versicherungsbestandes.

Wollen wir die Summenverlustfunktion für eine ganze Reihe
von Versicherungsbeständen mit verschieden grossem Umfang, aber
ndt gleicher Bestandeszusammensetzung bestimmen, so kann die
ßechenarbeit noch weiter vereinfacht werden. Zu diesem Zwecke
führen wir die Durchschnittsmomente der Bestandesverlustfunktion

Mk
2 mb

ßin; dabei bedeutet n die Anzahl der Versicherungen. Neben diesen
einfachen Durchschnittsmomenten benützen wir noch kombinierte
Durchschnittsmomente wie

M,
2 (ra2)2

2,2 und

M,
2 ma m3

Die Koeffizienten der Brunsschen Reihe lassen sich unter
Verwendung dieser Durchschnittsmomente unter Berücksichtigung der
Anzahl n der Versicherungen wie folgt ausdrücken:

Co n
3!(y2)3 [/Ma)

1 M4-3M,
4!(V2)4 {]/%)

1 M5-iom.

2»2
n

5!()/2)6 (]/M2
2,3 _JL

n 2

(3 b)

usw.

12
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Wie wir bereits unter Abschnitt II C festgestellt haben, charakterisieren

clie Koeffizienten c2, c3, usw. der normalen Entwicklung der

Brunsschen Reihe die Verschiedenheit der Bestandesverlustfunktion

von der Gaußschen Normalverteilung. Je kleiner diese Koeffizienten
ausfallen, desto mehr nähert sich die Bestandesverlustfunktion der

Gaußschen Normalverteilung. Aus den Formeln (8 b) geht hervor,
dass sich die Bestandesverlustfunktion mit wachsendem Versicherungsbestand

mehr und mehr der Gaußschen Verteilung nähert. Wird die

Anzahl der Versicherten unendlich gross, so verschwinden sämtliche
Koeffizienten der normalen Entwicklung, und die Bestandesverlustfunktion

geht in den Grenzfall der Gaußschen Normalverteilung über.

In der Risikotheorie 2) pflegt man als Bestandesverlustfunktion
die Gaußsche Normalverteilung

1 -±( xylo
(X) e 3 V «f

a ]/27t

anzunehmen. In diesem besonderen Fall ist die Verlustfunktion durch
das mittlere Risiko a vollständig bestimmt, so dass durch diese Grösse

allein die Stabilität eines Versicherungsbestandes gemessen werden
kann. Die von der Annahme einer Gaußschen Verteilung ausgehenden

Betrachtungen richten sich daher auf die Eigenschaften und die

Methoden zur Berechnung des mittleren Risikos, das mit der Quadratwurzel

aus der Streuung Ma der Verlustfunktion identisch ist.
Die aus dieser speziellen Annahme abgeleiteten Ergebnisse

gelten streng genommen nur für umfangreiche Versicherungsbestände,
weil nur für diese — wie aus den Formeln (3 b) hervorgeht — die
Verlustfunktion mit genügender Annäherung durch eino Gaußsche

Verteilung dargestellt werden kann. Aber gerade bei grossen
Versicherungsbeständen tritt die Bedeutung des Zufallsrisikos zurück, wie die

im Abschnitt VI angeführten Beispiele zeigen.

IV. Die Abhängigkeit der Summenverlnstfnnktion
von der Ausgleichsdauer.

Soll die Summenverlustfunktion nicht nur für ein Versicherungsjahr,

sondern für eine Zeitspanne von t Jahren berechnet werden,

so wird die Momentenberechnung umständlich und zeitraubend. Ist
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nicht mit wesentlichen Strukturveränderungen zu rechnen, so kann
Vereinfacht angenommen werden, dass die Anzahl der Versicherungen
der Versicherungseinrichtung konstant bleibt (offene Kasse), wodurch
die Bechnung wesentlich erleichtert wird. Die Momente <()MÄ der
Bestandesverlustfunktion für t Versicherungsjahre können nämlich
wie folgt aus den Momenten der Bestandesverlustfunktion für
ein Versicherungsjahr berechnet werden:

i-i
{t)Mk wMk a?}, wobei a^} ^ v'" ist.

0

Die Formeln für die Koeffizienten der normalen Entwicklung
der Summenverlustfunktion wW (£) für t Versicherungsjahre können
dann aus den für wW (f) geltenden Koeffizienten wck ermittelt
Werden :

usw.

Eine Ausdehnung der Ausgleichsdauer t übt somit einen ähnlichen
Einfluss auf die Form der Summenverlustfunktion aus wie eine ent-
sPrechende Vermehrung der Anzahl ro der Versicherungen. Da jedoch
die Quotienten

w
ttiit wachsendem t nicht gegen Null, sondern gegen den Grenzwert

(1— v2)~ï

l—vk



streben, so konvergiert die Summenverlustfunktion mit wachsendem t

nicht gegen die Summenfunktion der Gaußschen Normalverteilung

1« J
- oo

V. Die Berechnung der Sicherheitsreserve
für einen Versicherungsbestand.

Nachdem wir die Summenverlustfunktion IF(f) für einen

Versicherungsbestand in eine Brunssche Beihe entwickelt haben, können

wir den dem gewünschten Sicherheitsgrad entsprechenden Maximalverlust

£ berechnen. Für die praktische Rechnung wird man wohl

am einfachsten unter Benützung der beiliegenden Tabelle zwei

aufeinanderfolgende Argumentwerte und £2 bestimmen, die der

Bedingung

W (|x) < S < F(!2)

genügen, wobei wir mit S den gewünschten Sicherheitsgrad bezeichnen.

Den gesuchten Maximalverlust f finden wir dann nach der Regula
falsi mit genügender Annäherung zu

Die Sicherheitsreserve SR erhalten wir endlich nach der Formel

SB I |/ 2 M2

VI. Praktische Anwendungen.

A. Die Summenverlustfunktion für einen Bestand von gleichartige»
Risikoversicherungen.

Wir suchen die Summenverlustfunktion für einen Bestand von
1000 gleichartigen Risikoversicherungen. Im Schadenfalle, der mit
einer Wahrscheinlichkeit von 0,01 erwartet wird, ist die Auszahlung
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einer Summe von 100 vorgesehen ; es ist somit eine Prämie von 0,01.100
1 für jode einzelne Versicherung erforderlich.

Die Bestandesverlustfunktion kann in diesem einfachen Fall nach
der Bernoullischen Formel

m _ / 1000 \ n m <°.°l x h 10>
• o oqoooo o,oi x - io>W(X) "(,0,01z + ioJ0'01 U,JJ

ermittelt werden. Die zugehörige Summenverlustfunktion W(X)
lautet also

F(X) (0 o/y00 10) 0,01<°'ot x + 10»
• 0,99(100° °'01 A'" 10>

X -1000 ' ^ /

W{X) für einen Bestand von 1000 Risikoversicherungen.

X m C2<p "(1) c3(p "(<?) c4(p('l) (f)
TF(A') nach

Bruns |13emoulli
Alle Werte sind mit 104 multipliziert

— 950 2,13 13 25 + 3 0 — 9 0
— 850 — 1,91 35 — 34 + 5 — 0 -I- 0 5

— 750 — 1,09 84 — 50 + 0 — 0 34 27
— 050 — 1,40 195 — 80 + 5 + 0 120 101

- 550 — 1,24 397 — 92 1- 0 -!- 1 300 287
— 450 — 1,01 700 — 77 — 8 -b 2 083 001

— 350 —• 0,79 1319 — 27 — 17 4- 1 1276 1289

-- 250 — 0,50 2142 + 57 — 21 0 2178 2189
— 150 — 0,34 3153 + 141 — 19 — 1 3274 3317

— 50 — 0,11 4382 + 199 — 7 — 3 4571 4573

+ 50 + 0,11 5018 + 199 + 7 — 3 5821 5831
-1- 150 + 0,34 0847 + 141 -1- 19 — 1 7000 0974

+ 250 + 0,50 7858 h 57 21 0 7930 7925

+ 350 + 0,79 8081 — 27 4- 17 4- 1 8072 8050
"h 450 + 1,01 9234 — 77 8 + 2 9167 9170
4- 550 + 1,24 9003 — 92 0 4- 1 9512 9521

+ 650 + 1,46 9805 — 80 — 5 4- 0 9720 9730

+ 750 + 1,69 9910 — 50 -- 0 —. 0 9854 9802

+ 850 + 1,91. 9965 — 34 — 5 — 0 9920 9931

+ 950 + 2,13 9987 — 25 — 3 — 0 9959 9907

+ 1050 -1- 2,30 9990 — 8 — 2 — 0 9986 9985

+ 1150 + 2,58 9999 3 — 1 0 9995 9994
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Mit Hilfe der Brunsschen Beihe erhalten wir dagegen

W($) <P(0 —0,018353 p"(0 + 0,000990<p'"(£) —0,000041/"(0 -..
wobei £ — 0,002 247 X ist. Der Verlauf von W(X) nach den beiden

genannten Formeln ist aus der vorhergehenden Tabelle ersichtlich.
Die Bernoullischen Werte bilden eine Treppenkurve. Der

angeschriebene Wert von X ist jeweils die mittlere Abszisse eines
horizontalen Kurvenstückes. Die mit Hilfe der ersten Glieder der Brunsschen

Reihenentwicklung berechneten Werte bilden dagegen eine

stetige Kurve. Abgesehen von den Schnittpunkten der beiden Kurven,
die im übrigen nicht genau in der Mitte der horizontalen Stücke der

Treppenkurve liegen, liefern daher die beiden Formeln im allgemeinen
zu einem gegebenen Wert von X etwas verschiedene Werte von

W(X) (vergleiche hiezu die gegenüberstehende graphische Darstellung)-

In der Begel wird die Bisikosumme nicht einheitlich wie im ge"

wählten Beispiel, sondern verschieden gross. In diesem letzteren,

allgemeinen Fall ergeben sich noch kleinere Unterschiede zwischen
der effektiven Summenverlustfunlction (Treppenkurve) und der nach

Bruns berechneten Funktion.
Wie dieses und weiter folgende Beispiele zeigen, konvergiert die

Brunssche Reihe in der Begel stark genug, so dass nur zwei bis drei

Glieder berechnet werden müssen. Wenn jedoch die Verlustfunktion
eine beträchtliche Schiefe aufweist, wird die Konvergenz schwach, so

dass weitere Glieder berücksichtigt werden müssen. Um in solchen

Fällen die Berechnung der höheren Momente zu vermeiden, empfiehlt
es sich, die Verlustfunktion näherungsweise durch Typ IV der Pearson-
schen Verteilungskurven darzustellen. Die in der Gleichung

auftretenden Parameter lassen sich durch die vier ersten Momente von

w(X) ausdrücken. Für weitere Einzelheiten verweisen wir auf das

Buch von W. P. Elderton6), das eine eingehende Darstellung der

Pearsonschen Verteilungskurven enthält.
Bei einem Sicherheitsgrad von 999°/00 ist für den betrachteten

Versicherungsbestand eine Sicherheitsreserve von Fr. 1100 oder 110%

der gesamten Prämieneinnahme von Fr. 1000 erforderlich.
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W(X)

Verluste X
B. Das Zufallsrisiko bei einer Sterbekasse.

Die Aufstellung cler Verlustfunktion für Sterbekassen ist sehr
einfach. Wir benützen daher dieses Beispiel, um dio Auswirkungen
verschiedener Bestandesstrukturon und Finanzierungen auf die Höhe
des Sicherheitszuschlages zu untersuchen.

Die betrachteten Sterbekassen gewähren ihren Versicherten eine

lebenslängliche Todesfallversicherung mit einheitlich festgesetzter
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Todesfallsumme. Soweit für die Finanzierung jährliche Prämien
vorgesehen sind, werden diese jeweils nur von den Versicherten
aufgebracht, welche das Alter 65 noch nicht erreicht haben.

Wir berücksichtigen folgende Versicherungsbestände:

Bestand I umfasst nur Versicherte im Alter von 30—58 Jahren.
Bestand II umfasst Versicherte im Alter von 30—86 Jahren.
Bestand III umfasst Versicherte im Alter von 58—86 Jahren.

Die einzelnen Altersklassen sind in allen Beständen ungefähr
proportional den lx der Tafel TMG besetzt. Wir betrachten also
nacheinander einen «jungen», einen «normalen» und einen «überalterten»
Bestand.

Die von den Versicherten aufzubringenden jährlichen Prämien
sind wie folgt festgesetzt:

Finanzierung A: Die Versicherten zahlen die individuelle Prämie,
welche dem am Bilanztag erreichten Alter als

Eintrittsalter entspricht.
Finanzierung B: Die Versicherten zahlen die dem Eintrittsalter 30

entsprechende Prämie von 15,74 °/00 der Todesfallsumme.

Finanzierung C: Sämtliche Versicherungen sind prämienfrei.

In allen drei Fällen sei das nach den Grundlagen TMG 3 % erforderliche

Deckungskapital vorhanden.

Die Finanzierungen A und C sind als extreme Fälle zu werten,
während bei B eine normale Finanzierung vorliegt. In der folgenden
Tabelle sind die sich für die erwähnten Bestände und Finanzierungen
ergebenden Kassenmittel in °/o0 der jeweiligen Gesamtversicherungssumme

angegeben.

Finanzierung A B C

Bestand
SP SP SP 2,K

in %0 dtîr Gesamttrersicsherun jssumme

I
II

III

39

68

30

229

638

16

12

1

231

387

705

— 457

545

724
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Die Verlustfimktion für lebenslängliche Todesfallversicherungen
lyt durch folgende Ausdrücke gegeben:

W [® K+l — P — Vx] Vx

w [vC — P — Vx\ qx

Mit Hilfe dieser Verlustfunktion berechnen wir die Sicherheitsieserven

für eine fünfjährige Ausgleichsdauer und die daraus
abgeleiteten jährlichen Sicherheitszuschläge.

Jährlicher Sicherheitszuschlag in °/00 der Gesamtversicherungssumme.

Personenzahl Bestand I Bestand II Bestand III
A B C A B C A B C

50 18,5 13,1 9,5 17,2 12,6 9,9 15,9 11,3 10,7
100 12,0 8,9 6,4 11,6 8,6 6,8 10,8 7,8 7,4
200 8,G 6,1 4,4 7,9 5,8 4,6 7,4 5,4 5,1
500 5,2 3,7 2,7 4,8 3,6 3,8 4,5 3,3 3,2

1 000 3,6 2,5 1,8 3,3 2,5 2,0 3,1 2,3 2,2
10 000 1,1 0,8 0,6 1,0 0,8 0,6 1,0 0,7 0,7

100 000 0,3 0,2 0,2 0,3 0,2 0,2 0,3 0,2 0,2

Vergleichen wir die oben angegebenen Werte untereinander, so
können wir folgendes feststellen:

a) Die Abhängigkeit des jährlichen Sicherheitszuschlages von der
Art der Finanzierung der Kassenleistungen ist viel stärker ausgeprägt
als die Abhängigkeit von der Altersstruktur des Versichertenbestandes,
berücksichtigen wir ferner, dass die Bestände I und III eine
externe Alterszusammensetzung aufweisen, so erscheint der Einfluss
Oer Bestandesgliederung auf die Höhe des Sicherheitszuschlages als
überraschend gering.

h) Je grösser das Deckungskapital einer Kasse ist, desto kleiner
Slnd die erforderlichen Sicherheitszuschläge.

c) Für prämienpflichtige Versicherungen nimmt der erforderliche
Sicherheitszuschlag mit zunehmendem Durchschnittsalter der
Verscheiden ab, weil die durchschnittliche Kisikosumme gleichzeitig
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stark abnimmt. Für prämienfreie Versicherungen hingegen nimmt der

Sicherheitszuschlag mit zunehmendem Durchschnittsalter der
Versicherten zu. Bei prämienfreien Versicherungen steigt nämlich die

durchschnittliche Risikosumme mit wachsendem Durchschnittsalter
der Versicherten verhältnismässig schwach, während anderseits gleichzeitig

die zu erwartende Anzahl der Versicherungsfälle stark zunimmt.
In der Tabelle auf Seite 175 haben wir die Sicherheitszuschläge

in °/oo der Gesamtversicherungssumme ausgedrückt. Diese

Darstellung hat den Nachteil, dass ein Vergleich mit andern Versicherungsformen

auf Schwierigkeiten stösst. Eine besser geeignete Masseinheit

bietet daher die Summe der absoluten Beträge der jährlichen
Risikoprämien. Diese Masseinheit ist allerdings im allgemeinen wenig
anschaulich. Sind jedoch die jährlichen Sicherheitszuschläge für den

gleichen Bestand, aber für verschiedene Versicherungsformen zu
vergleichen, so gibt die jährliche Prämieneinnahme einen geeigneten und

zugleich anschaulichen Maßstab, sofern die Prämien in beiden Fällen
in ähnlicher Weise festgesetzt sind (z. B. dem gleichen Eintrittsalter
entsprechen). Im folgenden nennen wir die mit der Summe der
jährlichen Prämien gemessenen Sicherheitszuschläge relative Zuschläge-
Für die Kasse II, B betragen die relativen jährlichen Sicherheitszuschläge

:

Personenzahl
Jährlicher
Sicherheitszuschlag in %
der Gesamtprämie

50 109 %
100 74%
200 50%
500 31%

1 000 21%
10 000 6%

100 000 2%

Die Verlustfunktionen weisen bei Sterbekassen immer eine positive

Schiefe auf. Mit zunehmender Personenzahl n nimmt die Schiefe

mit ri~T ab, und die Verlustfunktion nähert sich mehr und mehr der

Gaußschen Verteilung. Diese Verhältnisse bringen es mit sich, dass bei
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Sterbekassen die relativen Sicherheitsreserven und -zuschlage bei
Wachsendem n rascher abnehmen als das relative mittlere Risiko,
das proportional der Grösse ri~T sinkt.

C. Das Zufallsrisiko bei einer Rentenkasse.

Eine Pensionskasse richte an ihre Versicherten, die das Schlussalter

65 erreicht haben, lebenslänglich eine einheitlich festgesetzte,
jährlich vorschüssig zahlbare Altersrente R aus. Die Verlustfunktion
für die einzelnen Versicherungen ist durch die Ausdrücke

w (tf % + l + B — Vx — P) Vx

W (R — yx — P)= qx

gegeben. In der nachfolgenden Tabelle sind die relativen Sicherheitszuschläge

für Bestände mit normaler Altersstruktur (Bestand II)
angegeben. Die Versicherten zahlen die clem Eintrittsalter 30

entsprechende Prämie (Finanzierung B).

Personenzahl
Relative jährliehe

Sicherheitszuschläge

50 162 %
100 123 %
200 92%
500 61%

1 000 44%
10 000 14%

100 000 5%

Es fällt auf, class die Sicherheitszuschläge für eine Altersrenten-
Versicherung höher ausfallen als für eine Sterbekasse mit gleicher
Bestancleszusammensetzung und gleicher Art cler Prämienbemessung.
Diese Erscheinung lässt sich dadurch erklären, class die Rentenversicherung

ein völlig einseitiges Risiko deckt. Während bei
Todesfallversicherungen die Differenz zwischen Todesfallsumme und Deckungskapital

als Risikosumme auftritt, ist bei der Rentenversicherung
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das Deckungskapital selbst als Risikosumme zu betrachten. D10

Risikosumme ist aber bei den hauptsächlich ins Gewicht fallenden
Versicherungen der älteren Versicherten bei der Rentenversicherung viel

höher als bei der Todesfallversicherung, so dass die jährlichen
Sicherheitszuschläge für die Rentenversicherung höher ausfallen als für die

Todesfallversicherung.

Die Verlustfunktion weist bei Erlebensfallversicherungen immer
eine negative Schiefe auf. Die relativen Sicherheitszuschläge nehmen

daher mit wachsender Versichertenzahl für Erlebensfallversicherungen
nicht so rasch ab wie das relative mittlere Risiko, das proportional

der Grösse n'\ sinkt.

D. Das Zufallsrisiko bei kombinierten Versicherungen.

a) Kombinationen von Todesfall- und Erlebensfallversicherungen.

Eine Versicherungskasse gewährt neben einer vom Schlussalter
65 an zahlbaren Altersrente eine Todesfallsumme in der Höhe von fünf
Jahresrenten. Die Versicherten zahlen der Kasse die dem Eintrittsalter

30 entsprechende Prämie. In der folgenden Tabelle sind wiederum

die relativen Sicherheitszuschläge für Versicherungsbestände mit
normaler Altersverteilung zusammengestellt :

Personenzahl
Relative jährliche

Sicherheitszuschläge

50 84%
100 64 %
200 47 %
500 31%

1 000 23%
10 000 7%

100 000 2%

Die relativen Sicherheitszuschläge fallen in diesem Beispiel kleiner
aus als die entsprechenden Zuschläge für die beiden Komponenten
(vgl. Abschnitt VI B und C). Dieses Ergebnis ist durch den Umstand
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bedingt, class die Bisikosuinmen der kombinierten Versicherungen
durch Addition aus den Bisikosummen der Komponenten entstehen.
Da die Bisikosummen der beiden Komponenten entgegengesetztes
Vorzeichen aufweisen, fallen die Bisikosummen der kombinierten
Versicherungen verhältnismässig klein aus.

Das Erlebensfallrisiko herrscht im vorliegenden Fall vor. Die
Verlustfunktion weist daher die typischen Eigenschaften der
Verlustfunktionen von Erlebensfallversicherungen, insbesondere ihre
negative Schiefe, auf.

Bei Kombinationen von Todesfall- und Erlebensfallversicherungen
empfiehlt es sich nicht, nur eine der beiden Komponenten, etwa die

Todesfallversicherung, in Rückdeckung zu geben. Durch eine

derartige Massnahme würde die Sicherheit der Kasse vermindert.

ß) Kombinationen von Lebens- und Invaliditätsversicheningen.

Handelt es sich um eine Kombination von Versicherungsleistungen,

bei denen der Versicherungsfall für jede einzelne Komponente
mit verschiedener Wahrscheinlichkeit erwartet wird, so gestaltet sich
die Darstellung der Verlustfunktion nicht wie in dem unter a)
befrachteten Fall. Die Verlustfunktion für die kombinierte Versicherung

ist nämlich in gleicher Weise zu bilden wie die Bestandesverlust-
funktion von verschiedenen Versicherungen aus den Verlustfunktionen
der einzelnen Komponenten. Der Risikoausgleich verbessert sich
daher bei zunehmender Anzahl der Komponenten in ähnlicher Weise
wie bei einer entsprechenden Vermehrung des Versichertenbestandes.
Es empfiehlt sich daher auch bei dieser Art von kombinierten
Versicherungen im allgemeinen nicht, eine einzelne Komponente rück-
zuversichern.

Als Beispiel betrachten wir das Zufallsrisiko bei einer Pensionskasse,

die einheitlich festgesetzte Alters-, Invaliden- und Witwenrenten

versichert. (Witwenrente 50 % der Alters- und Invalidenrente.)

Die Aktiven zahlen einheitlich die dem Eintrittsalter 30

entrechtende Prämie. Für Bestände mit normaler Altersstruktur ergeben
sich folgende relative Sicherheitszuschläge:
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Personenzahl
Relative jährliche

Sicherheits7,uschläge

50 123 %
100 83%
200 57%
500 35 %

1 000 24%
10 000 7%

100 000 2%

Die Bestandesverlustfunktion nimmt im vorliegenden Beispiel

einen ähnlichen Verlauf wie bei einer Sterbekasse. Zufolge der
positiven Schiefe der Bestandesverlustfunktion nehmen die relativen

Sicherheitszuschläge mit wachsendem Versicherungsbestand rascher

ab als die Grösse ri~ ï.

E. Zusammenfassung.

Die angeführten Beispiele dürften genügen, um einen Begriff
von der Grössenordnung der Sicherheitszuschläge zu vermitteln, die

zur Deckung dos Zufallsrisikos erforderlich sind. Bei umfangreichen
Versicherungsbeständen wären Zuschläge von 2 %—5 % der Prämien
ausreichend. Es besteht daher keine dringende Notwendigkeit, bei

grossen Versicherungsbeständen dem Zufallsrisiko bei der

Prämienberechnung besonders Rechnung zu tragen.

Ganz anders verhält es sich aber bei kleinen Versicherungsbeständen.

Zur Deckung der aus zufälligen Schwankungen möglicherweise

erwachsenden Verluste sind Sicherheitszuschläge erforderlich,
die unter Umständen die gleiche Grössenordnung aufweisen wie die

Prämien selbst, die von der Versicherungseinrichtung zur Deckung
des übernommenen Risikos erhoben werden müssen. Es ist daher ein

dringendes Bedürfnis, bei der Prüfung der finanziellen Lage einer

Versicherungseinrichtung mit kleinem Versichorungsbestand dem

Zufallsrisiko Rechnung zu tragen und angemessene Sicherheitszuschläge

in die Prämien einzurechnen.
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Die Funktionen &(X), <p"(X), <p"'(X) und (p^(X)

X 0(X) cp"(X) <p'"(X)

0,0 0,500 00 — 1,128 38 0,00000 6,770 28
0,1 0,556 23 — 1,094 81 0,665 82 6,435 69

0,2 0,611 35 — 0,99740 1,266 27 5,477 92

0,3 0,664 31 — 0,845 63 1,74489 4,026 87

0,4 0,714 20 — 0,658 85 2,061 54 2,273 85

0,5 0,760 25 — 0,439 39 2,196 96 0,439 39

0,6 0,801 93 — 0,22043 2,153 90 — 1,26211
0,7 0,838 90 — 0,013 83 1,954 92 — 2,653 94

0,8 0,871 05 0,166 60 1,637 40 — 3,619 42

0,9 0,898 45 0,311 22 1,246 89 — 4,11173

1,0 0,921 35 0,41511 0,830 22 — 4,151 08

1,1 0,940 01 0,477 80 0,429 35 — 3,811 37

1,2 0,955 16 0,502 61 0,077 00 — 3,200 43

1,3 0,967 00 0,495 54 — 0,205 71 — 2,438 37

1,4 0,976 14 0,46411 — 0,409 43 — 1,638 24

1,5 0,983 05 0,416 26 — 0,535 19 — 0,891 98
1,6 0,988 17 0,359 38 — 0,591 76 — 0,262 66
1,7 0,991 90 0,299 76 — 0,592 74 0,216 78
1,8 0,994 55 0,24217 — 0,553 63 0,540 06
1,9 0,996 40 0,189 86 — 0,489 50 0,720 90

2,0 0,997 66 0,144 67 ' — 0,413 34 0,785 35
2,1 0,998 51 0,107 26 — 0,335 27 0,76458
2,2 0,999 07 0,077 44 — 0,262 24 0,689 19

2,3 0,999 43 0,05450 — 0,198 36 0,585 47
2,4 0,999 66 0,037 41 — 0,145 41 0,473 54

2,5 0,999 80 0,025 05 — 0,103 47 0,367 04

2,6 0,999 88 0,016 38 — 0,071 56 0,273 83

2,7 0,999 93 0,010 46 — 0,048 14 0,197 25

2,8 0,999 96 0,006 52 — 0,031 54 0,137 51

2,9 0,999 98 0,003 97 — 0,02014 0,092 94

3,0 0,999 99 0,002 37 — 0,012 53 0,060 99
3,1 0,999 99 0,001 38 — 0,007 61 0,038 90

3,2 0,00078 — 0,00451 0,02414
3,3 0,00044 — 0,002 61 0,014 59

3,4 0,000 24 — 0,001 47 0,008 59
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