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Ein transzendentes Ädditionstheorem
und die Neumannsche Reihe.

Von H. Hadwiger, Bern.

Die Lösung F (x) der Volterraschen Integralgleichung

(1) F(x) — xf0(x—g)F($dS G(x)

kann nach einem bekannten Theorem der klassischen Theorie durch

(2) F (x)= G (x) +Jw (»-!) G(£) d£

dargestellt werden, wo der «lösende Kern»

(3) W(x) =W(x,X)

in die Neumannsche Reihe

oo

(4) V(x,X)=J^Xn0n(x)
tt 1

entwickelt werden kann. Die Reihe (4) konvergiert in jedem endlichen
Intervall 0 < x < a gleichmässig, falls der Kern der Integralgleichung
(1) im gleichen Intervall beschränkt ist. Die in der Entwicklung (4)
auftretenden «iterierten Kerne»

(5) 0n(x) (» 1,2,3,

sind durch die Integralrekursion

(6) 01 (X) 0 (x)

(x) f®n-i («—'?) 0 (I) df (n 2, 3, 4,
0J

gegeben.
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Dio Berechnung der Lösung cler Integralgleichung mit Hilfe der
Neumannschen Reihe fand in der mathematischen Praxis der

Versicherungswissenschaften und Statistik, wo derartige Faltungsgleichungen

sehr häufig auftreten (Erneuerung von Gesamtheiten,
Bevölkerungstheorie, Vererbung u. a.) wenig Verwendung. Dies ist
wohl zum Teil darauf zurückzuführen, dass die itcrierten Kerne als

mehrfache Integrale in der Regel nicht in geschlossener Form durch
elementare Funktionen dargestellt werden können; wo dies der Fall
ist, führt die mehrfache Integration in vielen Fällen auf unübersichtliche

Ausdrücke.
Die vorliegende Arbeit ist der Aufgabe gewidmet, Kernfunktionen

aufzufinden, die die Eigenschaft haben, dass sich alle durch die

Faltungsrelationen (6) ergebenden iterierten Kerne in einfacher,
geschlossener Form elementar darstellen lassen. Dies ist dann der Fall,
wenn die Funktion (5) vom Parameter n und der Veränderlichen x
so elementar abhängig ist, dass die Funktionalgleichung

(7) <K+m (x) (x-£) 0m (I) d £
oJ

erfüllt ist. Wir erweitern das durch die oben ausgesprochene Forderung
gestellte Problem dadurch, dass wir weiter einen kontinuierlichen
positiven Parameter A in Betracht ziehen, der sich bei der Faltung,
das heisst bei der in (7) auftretenden Integralbildung, additiv verhält.
So tritt an die Stelle von (7) die allgemeinere Funktionalgleichung

(8) 0„+ m (x, A + B) I 0n (<&-£, A) 0m (£, B) d £.
od

Diese Relation stellt ein gleichzeitig für zwei Parameter ausgesprochenes
transzendentes Additionstheorem dar.

Wir gelangen nun zu der exakten Formulierung der gestellten
Aufgabe: Gesucht werden Funktionen

(9) 0n (x, Ä)

mit folgenden Eigenschaften:

(a) Die Funktion (9) ist für die Veränderliche x>0 und für die

Parameter A> 0 und n 1, 2, 3, definiert.
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Q>) Die Funktion (9) ist in jedem endlichen Intervall 0< a^x<b

eigentlich integrierbar, und in 0 < x ^ a absolut (eventuell
uneigentlich) integrierbar.

(c) Es gibt, eine reelle Zahl co, so dass das Laplace-Integral

(pn (z, A) (e~'x &n (x, A)dx
o 1

in der Halbebene R[z]l>a) absolut konvergiert.

(d) Die Funktion (9) ist eine Lösung der Funktionalgleichung (8).

Nach einem bekannten Satz über die Stetigkeit der Faltung *) *)
folgt leicht, dass eine Lösung (9) für x > 0 und n (> 2 eine stetige
Funktion sein muss. Yon entscheidender Bedeutung für die
Herleitung derartiger Lösungen ist der folgende Sachverhalt:

Eine für x > 0 und nP 2 stetige Funktion (9), die den drei
Voraussetzungen (a), (b), (c) genügt, ist dann eine Lösung des Problems,
das heisst genügt dann der wesentlichen Forderung (d), wenn die
Laplace-Transformierte

(10) cpn(z,A)=L{0n(x,A); z)

die Form

C11) <Pn Ob A) [v> (z))n[x (*)]A

annimmt.

In der Tat folgt aus

L {<£„ (x, A) ; z) L {(Pm (x, B);z} L {0n+m (x, A + B);z}

auf Grund des Faltungssatzes 2) der Theorie der Laplace-Transforma-
üon für x > 0

(12) 0n (x, A) * 0m (x, B) 0n+n (x, A + B).

*) Die kleinen Zahlen beziehen sich auf die am Schlüsse der Arbeit
angebrachten Anmerkungen.
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Dabei wurde noch berücksichtigt, dass die rechtsstehende Punktion
in (12) im Hinblick auf die Voraussetzung stetig ist, da jedenfalls
n + m 2; 2 ist. (12) ist aber die mit Hilfe der Faltungssymbolik
dargestellte Integralrelation (8).

Es lassen sich also Lösungen der gestellten Aufgabe auf die Weise

gewinnen, dass man geeignete Funktionen

V («) und X iz)

wählt, und dann die zu der Resultatfunktion (11) gehörende
Objektfunktion (9) aufsucht, symbolisch:

(13) 0„ (x, A) IT1 {0 (*)]" [% (*)]A ; x).

Es ist nun aber nicht etwa so, dass man nach diesem Schema

sozusagen mechanisch beliebig Lösungen herstellen kann. Einmal
muss bei der Wahl der Funktionen auf die Existenz der
Objektfunktion geachtet werden. Diese Bedingung wirkt sich in dem hier
vorliegenden Falle in ziemlich delikater Weise aus. Dies wird
verständlicher, wenn man bedenkt, dass die charakteristischen Bedingungen
dafür, dass eine analytische Funktion als Laplace-Transformierte
interpretiert werden kann, in der allgemeinen Theorie noch nicht
angegeben werden konnten. Dann muss daran erinnert werden, dass

durch die Existenz einer Objektfunktion (9) noch nicht eine Lösung
in dem hier angestrebten Sinne sichergestellt ist. Es wird ja
grundsätzlich die elementare Darstellbarkeit gefordert.

Wir stellen nun im folgenden eine Anzahl von Lösungen der

Funktionalgleichung (8) tabellenmässig zusammen.
In Tabelle I sind die Funktionen W (z) und % (z) eingetragen,

die auf Grund von (11) bzw. (13) zu den in Tabelle II aufgeführten
und entsprechend numerierten Lösungen führen.

Es würde zu weit führen, die zu den Verifikationen gehörenden
Rechnungen einzeln vorzutragen. Da es sich darum handelt,
nachzuprüfen, ob die Laplace-Transforinierten der eingetragenen
Lösungen (ßn (x, A) tatsächlich auf die Form (11) gebracht werden können,
begnügen wir uns damit, dass wir in den beigefügten Anmerkungen
auf Literaturstellen hinweisen, wo man einige zur Rechnung erforderlichen

Transformationsformeln finden kann.
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Derartige Hinweise werden wir in den Anmerkungen durch die
Kurzbezeichnung LT. (Laplace-Transformation) einleiten.

Kür die drei, allen Lösungen gemeinsamen Parameter

A, n und a gilt : A > 0, n — 1, 2, 8, —• °o < a < oo.

Wo weitere Parameter auftreten, ist der Gültigkeitsbereich in
der ganz rechts stehenden Kolonne der Tabelle angegeben. Dort
befinden sich auch Anmerkungsnummern.

Tabelle I.

N f(z) z(«)

1

2

1
1

a + z

1
1

a + z

1

a-\-z

8

4

I+c(-rT\a + «/

1

a -f- z

ß^O

1 - 2 ]/a-|-3
e

5 1
4 c

(a + «)s— 4 c2
G > 0

6

7

1
4 G

(ia + z)2 + 4 c2
c > 0

— "|/a + 2
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N f(z) z(«)

ft /2a + 2z — l\fi 4
ß^O\2a + 2« + 1 / 4 (a + z)2 —1

9
C

1 — ea+*
1

a + z
c > 0

10
c

1 — e «+*
1

a -\- z
c > 0

11
c

<?« + *
1

a + z
c > 0

12
c

Ç a + z

1

a + z
c > 0

13 1
2 c

c > 0
a + z + ]/(« + *02 — 4 c2

14 1
2 c

c >0
a 0 + ]/(a + z)2 + 4 c2

15 -0|/(a+«)»-4c" 2 c ß>0
a + z + )/(a + £)2 — 4 e2 c > 0

16 -Me»
2 c ß>0

a + z + '\j{a + z)2 + 4 c2 c > 0
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Tabelle II.

N 0u(x,A)

1 -ax A-l

me "

r A -|- n)

~ax .1-1 (A-l) x
(' x Ln '(x)

-ax A-i V"1 /%\ C />'»

e 31 LU-^-—^xr(ßv + A)

ß>0 5)

< c •< ^

A Aa

(' x

|/ 71X3

H~^re~a^ h-^6x)
c > 0 7)

JA ,ßcx)
r(A) 2

c> 0 w)

n-f1

]/nx\^x J
"+1(^2"]/as

A2

r$A)
"* A-lMn,AA.(x)6 X 1YLaß,

e-'Y my(»)(JL)*T
\v \ VC

V 0 \ /
1A-1 (2 \fvcx)

ß^O 10)

c > 0 n)

10

«"Hei
c > 0 l<)

u=0
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N 0n(x,A)

11
e~" {^)~r Ia~i (2Vwca;)

c > 0 13)

12
e~°x(2 J-i-i(2Vnca;)

c > 0 «)

13
— e IÄ(2cx)

o > 0 15)

14
^eaxJA(2cx)

c > 0 16)

15

x + nß {AU^ + Zncßü^x)^

U^~{x+ S)2

|Ö ^ 0 17)

c > 0

16 e'ax

«+^{-"F'W + 2"'iF-'<l)|

w^i+^)TjA^-nr)

/8 ^ 0 I«)

c > 0

•
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Anmerkungen.

Die beiden Werke:
G. Doetsch: Theorie und Anwendung der Laplace-Transformation. Berlin, J. Springer,

1937,
N. W. McLachlan et P. Humbert, Formulaire pour le calcul symbolique. Mémorial

des Sciences Mathématiques, Fase. C. Paris, Gauthier-Villars, 1941

werden wir durch Angabe der Autorennamen zitieren,
ü Doetsch: S. 159, Satz 1.

2) Doetsch: S. 161, Satz IV b.

3) Dass eine Lösung der Funktionalgleichung (8) vorliegt, kann in diesem einfach
gearteten Fall durch Ausrechnung direkt verifiziert werden. Die Relation ist im
wesentlichen identisch mit der bekannten Formel

f(l-0)Ä-10B-'d6 r(f^ ; A>0,B>0,
o

1 \A+B)
durch die eine Darstellung der Beta-Funktion durch Gamma-Funktionen bewerkstelligt

ist. Die auf dem Bestehen der Funktionalrelation beruhende Möglichkeit
der expliziten Gestaltung der Neumannschen Reihe wurde z. B. in dem hier
vorliegenden Fall von A. W. Broum, Ann. math. Statist. 11, 448—453 (1940) genutzt.

') Hier bedeutet L^(x) das durch die Identität

i ~Ê?e~*Xn+a ^®aL»'(®) (n 0, 1, 2,...)

definierte «verallgemeinerte» Laguerresche Polynom. LT. Doetsch: S. 403, Nr. 42.

°) Man stellt leicht fest, dass sich für c 0 die 1. Lösung, für c — 1, ß 1

die 2. Lösung ergibt.
*) Vgl. die direkte Verifikation für das Bestehen der Funktionalgleichung (8)

H. Hadwiger, Skand. Aktuarietidskr. 1940, 101—113. Über eine Anwendung
auf die Entwicklung der Lösung einer Integralgleichung in die Neumannsche
Reihe vgl. H. Hadwiger, Mitt. Vereinig. Schweiz. Vers.-Math. 40, 31—39 (1940).
LT. Doetsch: S. 402, Nr. 19.

') Es bezeichnet

Ia(x) Ja(ix) { i y—1 Ja (x) Besseische Funktion }

LT. McLachlan-Humbert, S. 35, 4. Formel von oben.
8) LT. Doetsch: S. 403, Nr. 37.

8) Hier bezeichnen Hn (x) die Hermiteschen Polynome, die durch die Identität

-^e* e*Hn(x) (» 0,1,2,...)

definiert werden können. LT. McLachlan-Humbert, S. 17, 8. Formel von oben.

5
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10) Hier bedeutet Mk, m (œ) die Whittakersche Funktion

Mk< m (x) xm +i e~v LF1 (to+ y — k, 2m + 1 ; x),

wo xF^{a,Q', x) die konfluente hypergeometriscJie Reihe

a x ci(a+l) x2
x) + ^lT+7(^i! +

darstellt. LT. Doetsch: S. 310.

Die 5. Lösung für c ist ein Spezialfall der 8. Lösung. Man setze ß 0

und beachte die Identität

M0<m{x) 4T(m+1) \/xIm(j)-

u) LT. McLachlan-Humbert: S. 35; 6. Formel von oben.

12) LT. Doetsch: S. 403, Nr. 37.

13) LT. wie [1).

») LT. wie 12).

15) LT. McLachlan-Humbert: S. 35, 12. Formel von oben.

«) LT. Doetsch: S. 403, Nr. 34.

") LT. McLachlan-Humbert : S. 37, 3. Formel von unten. Setzt man ß 0,
so ergibt sich die 13. Lösung.

18) LT. McLachlan-Humbert : S. 30, 4. Formel von unten. Setzt man ß 0,
so ergibt sich die 14. Lösung.
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