Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 41 (1941)

Artikel: Zur Darstellung des mathematischen Wertes von Wertpapieren

Autor: Zwinggi, E.

DOI: https://doi.org/10.5169/seals-966752

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zur Darstellung des mathematischen Wertes von Wertpapieren.

Von E. Zwinggi, Basel.

- 1. Als mathematischen Wert eines Wertpapieres bezeichnet man allgemein den jeweiligen Barwert des Kapitals und der künftigen Zinsen, berechnet auf Grund der verbleibenden festen Laufzeit oder auf Grund des Tilgungsplanes 1). Neben dieser, hauptsächlich für die praktische Berechnung bestimmten Umschreibung des Begriffes bestehen noch weitere Möglichkeiten zur Darstellung des mathematischen Wertes; im folgenden möchten wir diese anderen Formen, die zum Verständnis der mathematischen Bewertung wesentlich beitragen, kurz aufzeigen.
 - 2. Wir führen die folgenden Bezeichnungen ein:
- B_t : Nomineller Wert des geschuldeten Kapitals t Zeiteinheiten nach Beginn des Schuldverhältnisses; B_o ist dann gleich dem Nominalwert der Anfangsschuld.
- k_t: Mathematischer Wert der Kapitaleinheit.
- Δ_{l} : Intensität der nominellen Verzinsung.
- $\delta_t\colon$ Intensität der Bewertungs-Verzinsung.
- ε_t : Intensität der vorzeitigen Kapitalrückzahlung (Intensität der Tilgung).
- r_t : Rückzahlungswert der Kapitaleinheit.

Im Zeitabschnitt t bis t+dt gelangt vom geschuldeten Kapital B_t nominell $B_t \varepsilon_t dt$ zur Rückzahlung. Die Zunahme des geschuldeten Kapitals $-dB_t$ ist also gleich $B_t \varepsilon_t dt$. Daraus folgt für die noch bestehende nominelle Schuld B_t die Darstellung

$$B_{t} = B_{o} e^{-\int_{\varepsilon_{\xi} d\xi}^{t}}.$$

¹⁾ Z. B. im Bundesratsbeschluss über die Bewertung der Wertpapiere in den Bilanzen der inländischen Lebensversicherungsgesellschaften vom 21. November 1939.

Mit Ablauf des Schuldverhältnisses bei t = n werde der Rest mit

$$B_n = B_o e^o$$

auf einmal zur Rückzahlung fällig.

Die Schuld «1» bedingt im Zeitabschnitt λ bis $\lambda + d\lambda$ für die Bewertung an Zins den Betrag von $\delta_{\lambda} d\lambda$; gleichzeitig wirft die nämliche Schuld nominell $\Delta_{\lambda} d\lambda$ Zins ab. Der Wert der im Zeitpunkte λ fälligen Schuld «1», bestimmt im Zeitpunkte $t (\lambda \ge t)$, ist

$$e^{\int_{0}^{\lambda} \delta_{\xi} d\xi} = v(\lambda, t);$$

weiterhin wird der Wert im Zeitpunkt t des im Zeitabschnitt λ bis $\lambda + d\lambda$ fälligen Zinsbetreffnisses $\Delta_{\lambda} d\lambda$ gleich $v(\lambda, t) \Delta_{\lambda} d\lambda$.

Der Wert im Zeitpunkt t aller künftigen Kapitalrückzahlungen ist gleich der Summe

$$\int_{1}^{n} v(\lambda,t) B_{\lambda} \varepsilon_{\lambda} r_{\lambda} d\lambda + v(n,t) B_{n} r_{n};$$

auf den nämlichen Zeitpunkt wird der Wert der nominellen Zinsen dargestellt durch

$$\int_{t}^{n} v(\lambda,t) B_{\lambda} \Delta_{\lambda} d\lambda.$$

Für den mathematischen Wert k_t der Kapitaleinheit erhalten wir dann mit der eingangs aufgeführten Definition die Darstellung 1)

(I)
$$k_{t} = \frac{1}{B_{t}} \int_{t}^{n} v(\lambda, t) B_{\lambda} \left\{ \varepsilon_{\lambda} r_{\lambda} + \Delta_{\lambda} \right\} d\lambda + \frac{v(n, t) B_{n} r_{n}}{B_{t}}.$$

$$k_t = e^{-\delta(n-t)} + \Delta \int_t^n e^{-\delta(\lambda-t)} d\lambda = e^{-\delta(n-t)} + \Delta \overline{a_{n-t}}.$$

¹) Bei dem nach den Bestimmungen des Bundesratsbeschlusses vom 21. November 1939 meist vorkommenden Fall ist $\delta_{\lambda} = \text{konstant} = \delta, \epsilon_{\lambda} = 0, \Delta_{\lambda} = \text{konstant} = \Delta, r_n = 1$ und $v(\lambda, t) = e^{-\delta(\lambda - t)}$. Gleichung (I) nimmt dann die bekannte Form an

3. Wir erweitern den Ausdruck (I) bei t = o mit $\frac{1}{v(t,o)}$ und trennen das Integral in die beiden Teile $\lambda = o$ bis $\lambda = t$ und $\lambda = t$ bis $\lambda = n$

$$\begin{split} \frac{k_o B_o}{v\left(t,o\right)} - \int\limits_o^t \frac{v\left(\lambda,o\right)}{v\left(t,o\right)} \, B_\lambda \left\{ \varepsilon_\lambda r_\lambda + \varDelta_\lambda \right\} d\lambda = \\ = \int\limits_t^n \frac{v\left(\lambda,o\right)}{v\left(t,o\right)} \, B_\lambda \left\{ \varepsilon_\lambda r_\lambda + \varDelta_\lambda \right\} d\lambda + \frac{v\left(n,o\right) B_n r_n}{v\left(t,o\right)} \, . \end{split}$$

Da aber

$$\frac{v(\lambda, o)}{v(t, o)} = e^{-\int_{0}^{\lambda} \delta_{\xi} d\xi} + \int_{0}^{t} \delta_{\xi} d\xi = -\int_{0}^{\lambda} \delta_{\xi} d\xi = v(\lambda, t)$$

und

$$\frac{1}{v(t,o)} = v(o,t) \text{ ist, folgt}$$

(II)
$$k_{t} = \frac{B_{o}k_{o}v\left(o,t\right)}{B_{t}} - \frac{1}{B_{t}}\int_{0}^{t}v\left(\lambda,t\right)B_{\lambda}\left\{\varepsilon_{\lambda}r_{\lambda} + \Delta_{\lambda}\right\}d\lambda.$$

Der mathematische Wert der Kapitaleinheit ist gleich dem zum Bewertungszinsfuss aufgezinsten mathematischen Anfangswert der Anfangsschuld, vermindert um die Summe der zum Bewertungszinsfuss aufgezinsten Rückzahlungsbeträge und um die Summe der zum Bewertungszinsfuss aufgezinsten nominellen Zinserträgnisse, alles bezogen auf die noch bestehende Schuld «1».

4. Gleichung (II) ist entstanden durch Integration der linearen Differentialgleichung

(III)
$$\frac{dk_t}{dt} - (\delta_t + \varepsilon_t)k_t + \Delta_t + \varepsilon_t r_t = 0.$$

Darin bedeuten $(\Delta_t - \delta_t k_t) dt$ den Unterschied zwischen dem nominellen Zinsertrag und dem Bewertungszinsertrag der Schuld «1»,

also gewissermassen einen «Zinsüberschuss» (der gegebenenfalls auch negativ sein kann) und $\varepsilon_t(r_t-k_t)\,dt$ den Unterschied zwischen dem absoluten Rückzahlungsbetrag und dem mathematischen Wert des Rückzahlungsbetrages der Schuld «1», also gewissermassen einen «Kursgewinn» (der gegebenenfalls auch negativ sein kann).

Beziehung (III) lässt sich mit den vorstehenden Umschreibungen wie folgt in Worte kleiden:

Die Zunahme des mathematischen Wertes der Kapitaleinheit dk_t im Zeitabschnitt t bis t+dt ist gleich dem negativen Wert der auf den Rückzahlungen «1» erzielten Kursgewinnen $\varepsilon_t (r_t-k_t) dt$ und der auf der Schuld «1» erzielten Zinsüberschüsse $(\Delta_t-\delta_t k_t) dt$.

5. Das Integral der Differentialgleichung (III) lässt sich ausser in der Form (II) auch darstellen als

$$k_t = k_o - \int_o^t (\Delta_\lambda - \delta_\lambda k_\lambda) d\lambda - \int_o^t \epsilon_\lambda (r_\lambda - k_\lambda) d\lambda$$

oder

(1)
$$k_{t} = v(o,t) k_{o} - \int_{o}^{t} v(\lambda,t) \left\{ \Delta_{\lambda} + \varepsilon_{\lambda} (r_{\lambda} - k_{\lambda}) \right\} d\lambda$$

oder

und

(2)
$$k_t = \frac{B_o k_o}{B_t} - \frac{1}{B_t} \int_0^t B_\lambda \left\{ \Delta_\lambda - \delta_\lambda k_\lambda + \varepsilon_\lambda r_\lambda \right\} d\lambda.$$

In (1) und (2) setzen wir t=n, erweitern mit $v(n,t)=\frac{v(o,t)}{v(o,n)}$ oder mit $\frac{B_n}{B_t}$ und trennen die Integrale in die Teile $\lambda=o$ bis $\lambda=t$ und $\lambda=t$ bis $\lambda=n$. Dann folgt, weil $k_n=r_n$:

$$\begin{split} v\left(o,t\right)k_{o} - \int\limits_{o}^{t} v\left(\lambda,t\right)\left\{\Delta_{\lambda} + \varepsilon_{\lambda}\left(r_{\lambda} - k_{\lambda}\right)\right\}d\lambda &= \\ (\text{IV}) &= k_{t} = v\left(n,t\right)r_{n} + \int\limits_{t}^{n} v\left(\lambda,t\right)\left\{\Delta_{\lambda} + \varepsilon_{\lambda}\left(r_{\lambda} - k_{\lambda}\right)\right\}d\lambda \end{split}$$

$$\begin{split} \frac{B_{o} \, k_{o}}{B_{t}} - \frac{1}{B_{t}} \int_{o}^{t} B_{\lambda} \left\{ \Delta_{\lambda} - \delta_{\lambda} \, k_{\lambda} + \varepsilon_{\lambda} \, r_{\lambda} \right\} d\lambda = \\ (\text{V}) & = k_{t} = \frac{B_{n} \, r_{n}}{B_{t}} + \frac{1}{B_{t}} \int_{t}^{n} B_{\lambda} \left\{ \Delta_{\lambda} - \delta_{\lambda} \, k_{\lambda} + \varepsilon_{\lambda} \, r_{\lambda} \right\} d\lambda \, . \end{split}$$

Die Gleichungen (IV) und (V) lassen die folgenden Deutungen zu:

Der mathematische Wert der Kapitaleinheit ist gleich dem zum Bewertungszinsfuss diskontierten Rückzahlungswert der Kapitaleinheit bei Beendigung des Schuldverhältnisses vermehrt um den Barwert — berechnet zum Bewertungszinsfuss — der künftigen nominellen Zinserträgnisse der Schuld «1» und vermehrt um den Barwert — berechnet zum Bewertungszinsfuss — der bei den künftigen vorzeitigen Rückzahlungen «1» erzielten Kursgewinne.

Der mathematische Wert der Kapitaleinheit ist gleich dem Rückzahlungswert der Restschuld, vermehrt um die Summe der künftigen, auf der jeweiligen Schuld erzielten Zinsüberschüsse und vermehrt um die Summe der Werte der künftigen Rückzahlungen, alles bezogen auf die Schuld «1».

Literaturnachweis.

- 1. K.-G. Hagstroem: Rilievi sulla teoria del deprezzamento. Giornale dell' Istituto Italiano degli Attuari, Anno 10, 1939.
- E. Zwinggi: Die Bewertung der Wertpapiere in den Bilanzen der schweizerischen Lebensversicherungsgesellschaften. Assekuranz-Jahrbuch, Band 59, 1940.

a grand

25.5