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Über die Glättung
statistischer Verteilungsreihen.

Von M. Faes/, Bern.

Einleitung.

Um grobe Unregelmässigkeiten in statistischen Zahlenreihen ab-

zuschwächen, wird gelegentlich so verfahren, dass man jedes Element
der Reihe durch das arithmetische Mittel der Elemente einer sym-
metrischen Nachbarschaft ersetzt. Diesen Prozess nennt man GZäffwng

der statistischen Reihe.
Soll die Definition der Glättungsoperation überall einheitlich aus-

fallen, so muss jedes Element der Reihe eine symmetrische Nachbar-
Schaft aufweisen, das heisst die Reihe darf keinen Anfang und kein
Ende besitzen. Es ist aus diesem Grunde zweckmässig, nur statistische
Zahlenreihen zu betrachten, die beidseitig unbegrenzt sind. Diese Fest-
Setzung bedeutet keine wesentliche Einschränkung der Gesamtheit
der zugelassenen Reihen, denn eine endliche Reihe kann formal durch
Hinzufügen von Nullen zu einer beidseitig unbegrenzten Reihe er-
weitert werden.

Wesentlicher ist die Voraussetzung, dass die aus den Zahlen der
statistischen Reihe gebildete unendliche Reihe konvergiert. Wenn die
Summe der Reihe 1 beträgt, so nennen wir die statistische Reihe
normiert. Die Auszeichnung, welche die normierte statistische Reihe
in den folgenden Untersuchungen erfährt, hängt mit der Interpréta-
tionsmöglichkeit als diskontinuierliche Wahrscheinlichkeitsverteilung
zusammen. Besonders beachte man den Umstand, dass die Normiert-
heit eine in bezug auf die Glättungsoperation invariante Eigenschaft
darstellt.

Solche normierte statistische Reihen werden nun der mehrfach
iterierten Glättung unterworfen. Verschiedene sich hier aufdrängende
Fragen abzuklären, ist das Ziel der vorliegenden Arbeit. Insbesondere

wird das asymptotische Verhalten der geglätteten Reihe bei unbe-

grenzt fortgesetzter Iteration der Glättungsoperation Gegenstand ein-
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gehender Untersuchungen sein. Das Hauptresultat ist ein Konvergenz-
satz, wonach die die geglätteten Reihen treppenförmig interpolierenden
Verteilungsfunktionen hei geeigneter Maßstabsänderung mit unend-
lieh wachsendem Iterationsindex gleichmässig gegen die Gaußsche

Verteilungsfunktion konvergieren.
Dieses Ergebnis stellt das diskontinuierliche Analogon zu einem

Grenzwertsatz von L. Maurer *) dar. Beide Resultate hängen aufs
engste mit den Fundamentalsätzen der Wahrscheinlichkeitsrechnung
zusammen, über die man etwa bei R. von Mises nachlesen kann. Der
Nachweis des oben erwähnten Konvergenzsatzes wurde absichtlich
unabhängig von den Fundamentalsätzen durchgeführt.

Problemstellung und Ergebnis der folgenden Arbeit haben keine
unmittelbare Beziehung zu der praktischen Aufgabe, welche die

Glättung der statistischen Reihe innerhalb der Statistik zu erfüllen
hat. Das Hauptinteresse ist auf die Entwicklung des Formalismus ge-
richtet, wobei die symbolische Betrachtungsweise stark betont ist.

§ 1-

Die statistische Verteilungsreihe. Schiebungs- und Glättungs-

Operationen.

1. Gegenstand unserer Untersuchungen ist eine statistisc/ie Fer-

fefhmpsref/te

M_2, ^4—i, MQ, HJ, zig, • • (1)

die abkürzend mit

a {zl; }, — co < A < oo (2)

bezeichnet wird und folgende Forderungen erfüllt:

cg) Die Reihe ist mc/if negraür, d.h. es gilt

-4,>0. (3)

1) L.Maurer: Über die Mittelwerte der Funktionen einer reellen Variablen.
Math. Ann. 47 (1896), S. 263—280.

2) R. von Mises: Wahrscheinlichkeitsrechnung und ihre Anwendung in der
Statistik und theoretischen Physik. Leipzig und Wien, 1931, S. 197 ff.



Die Beihe ist normiert, d. h. es ist

oo

2^ 1- (4)

A=-

Die Konvergenz der angeschriebenen unendlichen Beihe ist in die

Voraussetzung mit eingeschlossen.

Eine spezielle normierte Verteilungsreihe ist die .EteTOentarreiTie

£ (5)

die definiert ist durch

fl für A 0
~ (o für ^ J 0.

Wir definieren noch die lineare Komposition von Verteilungsreihen

aa + &/? y (7)

durch

<*={4i}> y={a^ + hBj, (8)

wenn a> 0, b> 0 und a 6 1 ist.

2. Unter der Fersc/iie&nn# nacfe rec/its, ausgeübt auf a {.4,},
verstehen wir den Übergang zur Beihe

ja {jD;}, wo jJj ist. (9)

Symbolisch deuten wir diese Operation an durch

S (a) ja (10)

Analog verstehen wir unter der FerscÄie&nntj nacfe lin/cs den Übergang

zur Beihe

_ja !_jD^} wo _j^4j ist (11)

oder symbolisch
S~* (a) _ja (12)
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Weiter treffen wir die Festsetzung

fa) a (13)

Durch die Rekursionsbeziehung

S [S" (a)] S»+i (a) S""* [S"" (a)] (a) (14)

für w (> 0 wird S"" (a) für alle positiven oder negativen m definiert.
Die Richtigkeit der Gleichung

S [S" (a)] Cot) (15)

für beliebige, ganzzahlige m und w ist ohne weiteres ersichtlich.
Ebenso genügt der Operator S dem distributiven Gesetze, d. h. es gilt

S (aa -f- fr/5) =aS(a) + fe S (/3) (16)

wo a>0, fc>0, a + î>=l ist.

3. Unter der ersten Gtäffwwp der Reihe a {.4,} verstehen wir
die Reihe

{^1} (17)

WO

^1 __
*"^A—fc ~f~ "^A—fc+1 "~t~ • • • -^A+& /jg\* "

2fc+ 1
'

Dabei sei fc als ganze, feste Zahl (> 1 vorausgesetzt, die wir GZäffwips-

parameter nennen wollen. Symbolisch deuten wir die erste Glättung
von a an durch

G (a) od. (19)

Wir treffen die Festsetzung

G»(a)=a. (20)

Die Rekursion

G [G" (a)] — G"+' (a) (21)
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für n ]> 0 definiert G"* (a) für alle ganzzahligen m > 0. Bedeuten
weiter m und w nicht negative, ganze Zahlen, so gilt

G"[G"(a)] G"+"(<x). (22)

Zudem genügt schliesslich der Operator G dem distributiven Gesetze,
d. h. es ist

G (a a + 6 /S) a G (a) -j- & G (/S) (23)

wobei a > 0 5 > 0 und a + 6 1.

Die Operatoren S' und G sind kommutativ, also

SG (a) G«S (a) (24)

oder allgemein

S G" (a) G" S (a) (25)

und führen normierte Zahlenreihen in ebensolche über, d. h. es ist auch

und 2^ 1- (26)
A= —oo A= —oo

4. Es lässt sich nun jede statistische Zahlenreihe a durch die

folgende formale Reihenentwicklung darstellen:

« 2^S*(e). (27)
A= —oo

Dann gilt für die w-fach geglättete Reihe a" auf Grund der oben ab-

geleiteten Eigenschaften des Operators G

oo

G» (a) 2 G" (e). (28)

Aus diesem Ansatz für G"(a) geht hervor, dass wir uns zur Unter-
suchung der w-ten Glättung der Reihe a zunächst mit der w-ten

Glättung der Elementarreihe befassen müssen und dann die formal
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angeschriebene Beihenentwicklung auszuwerten haben. Bevor wir uns
aber dem speziellen Studium der Elementarreihe zuwenden, sind noch
zwei wichtige Begriffe zu definieren.

5. Yerteilungsreihe und zugeordnete Ferteihcw/s/imfcticm. Die zur
normierten "Verteilungsreihe

oo

a={4i}, ^4i l ^9)
A= —oo

zugeordnete Verteilungsfunktion mit der Präzision co > 0 ist definiert
durch

[a, a;] co ^ ^A ~ ^ ^ + 7>~)
> (30)

(A 0, 1, -1, 2, -2,
Es gilt das distributive Gesetz

[«« + a;] a [a, z] + & [/?, a;] (31)

für a > 0, > 0, a + & 1.

Die der verschobenen Verteilungsreihe S (a) {,^4;.} zugeordnete Ver-

teilungsfunktion lässt sich t'olgendermassen darstellen:

[S"(a), a:] ^A — ^ — < a:< ^A + —^ —

['3'"(a), «] tu 4t_», ^ ^ < a: < (a + —j -
Durch die Substitution A —>- A + n geht die letzte Zeile über in

9>„ [<?" (oc), a:] co + n —^ i < a;< + w + —^

/ INI » / 1 \ 1

y. [S- («), x] - » ,1,



und dies lässt sich auch schreiben als

9>» («), z] ^ a,
CO

(32)

Für die der geglätteten Yerteilungsreihe G" (a) {H} zugeordnete
Verteilungsfunktion findet man ähnlich

P» [G- («), ®] fi) (a-i) i < s < + i) I.
Formal kann dies auch so dargestellt werden:

9V [G"(a), £c] ^
oo

oder

[G»(a),s] 2" G"(e), x-
CO

Insbesondere gilt noch infolge der Normierung

oo

y 9?„, [«, 3'] d a: 1

und allgemein

(83)

(34)

/V„ [G»,ap*=l. (35)

— oo

6. Die zugeordnete iZïZ/s/wifcfion. Wir definieren die zur Beihe

a zugeordnete Hilfsfunktion durch

oo

JF(s)=2^'S*- (36)



— 68 —

Dabei machen wir hier über die Eeihe {A^} noch die Voraussetzung,
dass es ein g > 0 gibt, so dass

1

a — - -ß > ß >

lim sup i/i,
a->~

^ *

(87)

1 1 1

lim sup £
A—oo

ausfällt. In diesem Falle ist nämlich die Funktion F (0) in einem Kreis-
ringgebiet 0 < r •< | 0 | < R, das den Kreis vom Radius y (r < ß < R)
enthält, regulär und wird dort durch die Laurentsche Reihenentwick-
lung, wie oben angegeben, dargestellt.

Wegen der Voraussetzung ^ E, 1 ist speziell R > 1 und
A=—00

r < 1. Die obigen "Ungleichungen sind ohne weiteres erfüllt bei end-
liehen Reihen (r 0, R 00), sowie bei links, bzw. rechts abbrechen-
den Reihen (r 0, R > 1, bzw. r < 1, R 00).

Auf Grund der Definition besteht eine eineindeutige Zuordnung
zwischen statistischer Zahlenreihe und zugeordneter Hilfsfunktion

a -<—>• F (2). (38)

Der Reihe S (x) entspricht die Hilfsfunktion

S(aH—>»-F(«) (39)

und allgemein

S"(a)«<—>-a"-F(«) (40)

und der Reihe (7(a) die Hilfsfunktion



Allgemein

G" (oc) «—> + z~*+* + + z',fc\ n

)F(a). (42)
2fc + i y

Infolge der gemachten Voraussetzungen kann die Punktion

"* + z~*+i + +
2fc + l (43)

nach Laurent entwickelt werden, wobei sich die Koeffizienten be-

rechnen lassen durch

1 «Y /«T-* + + + a*Y F (2)

2 Tri 2fc + l «1 + ^»
dz,

1 (C)/ ' 1 Y7 a*+T — a-(* +1) Y ^ (*)

2 Tri / \2 fc + 1 i L
£ 2~ 0 2

•vi dz, (44)

wo G einen den Nullpunkt umschliessenden Kreis vom Radius p,

r < p < E, bedeutet.

Für die Elementarreihe e ist insbesondere

oo

F (z) ^ F^ z* 1 und deshalb
A=-oo

V+i — a-(*+i) \" dz1
(C)/*

$
2T« / \2fe + 1

1

1 1_

2 2" 2 2

(45)

Wählen wir o 1, integrieren also längs des Einheitskreises, so

winnen wir durch die Substitution 2 e'® das Integral

2 TT

A*

F?
2or

sin fc + ~ 0

(2fe -)-1) sin
0

(cos A 0 — i sin A 0) d 0 (46)
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Der Imaginärteil dieses Integrals versehwindet. Ersetzen wir noch 0

durch 2 0, so erhalten wir

TT

- /
TT J

0

Damit haben wir für die Glieder der n-fach geglätteten Elementar-
reihe eine Integraldarstellung gefunden.

sm (2 fc +1) 0

(2 1) sin 0
cos 2 A 0 d 0 (47)

Der Grenzübergang für die Elementarreihe.

1. Nach Definition ist die der w-fach geglätteten Elementarreihe
zugeordnete Verteilungsfunktion gegeben durch

Unter Verwendung der Integraldarstellung für geht diese Gleichung
über in

9?o> [«"> •']
TT

sin (2/e-f 1) 0

(2/c+l) sin 0
cos 2A0•d0,

A —~)-<o;<(A +—) —
2 / w \ 2 / a»

Es bedeute IL«]] die Gaußsche Klammer, d.h. die grösste ganze Zahl

< a. Dann ist für co ]/n

T'y- [«"' *1
2 j/n

K"(0) cos 2 j/n a: +
11

0 • d0 (1)



wobei abkürzend

K(0)
sin (2Ä+1) 0

("2 fc-f-1) sin 0

gesetzt wurde.

Zur Berechnung des Integrales (1) setzen wir

%.(*)
2 |/n

TT

1

/ Iî"f0) cos 2 r + !" 0 • d0

(2)

(3)

und

*»(®)
2 (/r

Ül"(0) cos 2 ]/n a;

wo n so gross gewählt sei, dass

1

<
TT

Dann ist

0 • d0

fn 2(2fc+l)

®] vJ«) + j&.(®)
i"

(4)

(5)

2. Zur Behandlung der Integrale (3) und (4) ist die genaue
Kenntnis von K(0) unerlässlich. Wir unterbrechen hier deshalb unsere
Ausführungen und wenden uns in diesem Abschnitt dem Studium der
Funktion (2) zu.

Durch einige Umformungen *) gelangt man zu den beiden folgen-
den Darstellungen von I?(0) :

i) Polya-Szegö: Aufgaben und Lehrsätze aus der Analysis, II. Berlin,
Springer, 1925, S. 77.

Enzyklopädie der Math. Wissenschaften, 2. Band, 3. Teil, 1. Hafte, S. 36.
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1 + 2 (cos 20 + cos 40 + + cos 2fc0)
; _ 2/c+l ' * '

2fe / ^ \ j
Z(ö)=fT ^=7 — • W

r l \ / 2(2Ä+1)

Unter Berücksichtigung der Definitionsgleichung (2) erhalten wir
aus (7) durch logarithmische Differentiation

2& 9 • (9 (9
a,, sin y cos y sin (2fc+l) 0 cos 0— (2fc+l) sin 0 cos (2fc+l)0

^ 1—a^snDy sin (2fe+l) 0 • sin 0

Dividiert man diese Gleichung durch sin—und führt dann den Grenz-

Übergang 0 —> 0 durch, so gewinnt man

2Ä „
(2fe+l)2 — 1 18)

eine Relation, die wir später verwenden werden.

Von besonderem Interesse für uns ist weiterhin das Verhalten der
Funktion X(0) im Intervall

0 < 0 < 19)
=2 (2fc+l) '

Man stellt leicht fest, dass X(0) dort monoton fällt. Ferner erhalten
wir aus (7)

log X (0) ^ log /1 — a* sin^ — j

HL .22. 1 /
logX(fl) "

r — 1 /t=l '

sin —
2/
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Nun konvergieren alle Reihen

^7
// ^ ^

sin — 1 < v < 2 fc

im Intervall (9), denn dort gilt

0 \ i
a„ sin — 1 <

/M V 1/2 + V3

2/t

Wir können also schreiben

logZ(fl)=-2^8in»"-, ^
/i l

(10)

oder auch, wie es in unserem Fall zweckmässig ist,

0 1 0
log Z (0) — /? sin ^ ^ ^ sin 2." _ /? ^ (11)

Setzen wir
M=2

0 /?
/S sin* — — (1 — cos 0)

£02 /I
h - 1 — COS 0 —

02

so folgt weiter

log Z(0)
£ 02

< 1 — cos 0
02 0

+2 ^ ^ ^
/t=2

Nach Entwicklung der Cosinusfunktion erhält man zunächst

02 04 06 08
1 — cos 0 4 —- + •

2 4! 6! 8!



und da

jU 1
02 < < _4(2fc+l)2 8

ist, kann folgende Abschätzung vorgenommen werden:

02 0«
1 — cos 0 < — (1 + 02 4- 0« +2 =24 "
1 — cos 0 —

2
<U

16
(18)

Ferner erreicht man unter Berücksichtigung der Definitionsgleichung
(10) für ^

oo 2/c 2itvi „ 0 vi 1 / 0Z"» ' 2=I^Z("-2
/t=2 (tt=2 ^ r=l ^

VI ,0 v* /' 0 " ^
und

2 ^ V * 2
/t=2 ^=2

Durch Summation der geometrischen Reihe und nachfolgender Be-

rücksichtigung der Ungleichungen

0
oc, sin — <Olli —

2 y 2 -j- ]/3

sowie

.0.0sin — <• —
2 2

erreicht man

vi 0 / fco' ri4i/ ß„ sin""- < '
Aj U" 2=8 sin" 2
,,=2 2(2Ä + 1)
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"Verwenden wir die Abschätzungen (13) und (14) für (12), so folgt

I £02
j log Z(Ö) + ^- < Z0*

wo wir abkürzend

5 fc

Z — +32 8sin*^jj

gesetzt haben. Somit ist also

_^ + yÄ0i
Z(9) c * — 1 < y < 1

oder

Z"(0) e
+ nyZ6«

und schliesslich

Z*(0) — 6 * e

Î/S02 W/Ö0

_ r wytf 0«
1 (15)

3. Nach den im vorangehenden Abschnitt durchgeführten Unter-
suchungen der Punktion Z(0) kehren wir zu unserer eigentlichen
Aufgabe zurück, und zwar soll zunächst das Integral (4),

TT

~2~

0 • d0

F
abgeschätzt werden.

Nun gilt, wie sich einfach zeigen lässt,

*»(«)
^ 1/n

TT
Z"(0) cos 2

1

|/re £C +

^ U(2fc+1)) ' 2(2fc+l)
®

2



und deshalb auch

1 \ 1 TT

A I ^ > A'(0) < 0 < -y w / — y w — — 2

Zufolge (11) ist aber

1 \ —/? sin«

<e 2^
yn /

oder, indem wir nochmals vergrössern,

Verwenden wir diese Abschätzung in (4), so folgt

— - 4 V"
I < Vw d '

4. Nunmehr gelangen wir zur Berechnung von (8),

|4T
2 j/rT /V»(®) cos 2 [/« a: + — 0 -d0

$
Durch die Substitution 0 —— geht dieses Integral über

F"

V»(«) — / cos 2
Try \j/»

6

1 Tl
C



oder auch

%.(*)
2 /*

cos 2 )/« a: + - -î= -d0
|/n

/ e * cos 2 |/n ï +[r» » + ~]2 J |/n

y«

e * — Z" cos 2 [/«ï +
11 1?

J2 jj j/;
' d$.

n

(17)

Dabei ist das erste Integral in (17)

£#2

TT
cos 2 jjj/n a; +

11 i?

2jj |/r
• S# :

Setzen wir noch

4 IT

W/S ]/« + 3" n/S
[/n ® + — — y

-4(«+A 2 i^r ; '

wo 0 < y < 1 ist, so ergibt naheliegende Abschätzung der Differenz

/? \ 2-j/n / — g ^
K/S TT

die Ungleichung

e * cos 2 IV»*+f]11 #
I,

d#— ,— i
JJ J/n K/S7t

2 —4»?

<
2 |/2

^Kcjt K^
(18)
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Für das zweite Integral erhalten wir

2 /* [T 11
— / e * cos 2 |/n i +

-fr
2_ (/n

CTO

:/
fr

2 f
< - / e * • di? (19)

TT

und zur Abschätzung des dritten Integrals von (17) besitzen wir in
der Relation (15) ein Hilfsmittel. Es ist nämlich

2

TT

f>
/?#2

— IT ,?_

|/n j cos 2 Jf«i +
11

di?

fr y«
2 /* r /y?94 -, 2 /•_*£ - if #4

•3*1VI e~*~—1 di?+-/e « e~"~—l
— 7C / TT /

0 fr
di?

TT TT

Berücksichtigt man

TT |/n" \
2K -7=

<—57= eV*
TT f/w3~

y«

so folgt

f"
2

7C

/ 7?

e ^r —R"(tt cos 2 jj^fJ a: + -^L • dd
|/'U

2Ï 2 „ /»f»
< _3^_

eV» + — fw (e®—l)e —
TT ff* TT

(20)
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5. Auf Grund der Formeln (5) und (17) und unter Zuhilfenahme
der Abschätzungen (16), (18), (19) und (20) haben wir nun

< Kw e +
l/n 2 ^2~

/S (/eTi j/r
+

oder

+ - / e * d# +
TZ /

V»r

2K
TT j/w»

eV» + — y« (e*—l) e

lim œ Fe", a;l —n->ooV * ' ' ^
2

e

4
Ersetzen wir hierin noch — nach Massgabe von (8) durch

ß

6
so folgt

(2 ft + 1)^ — 1 *

lim œ le", ad -=• e
* *

—->«*7" * ' ' (GT (2fc +1) — 1

Das asymptotische Verhalten der Polynomialkoeîfizienten *)•

Bevor wir zur Glättung der allgemeinen Beihe übergehen und

für diese den Grenzübergang vollziehen, wenden wir das bisherige
Ergebnis auf spezielle Polynomialkoeffizienten an. Es handelt sich

um die Koeffizienten der Entwicklung einer Polynompotenz

(1 + f + !*+... + !*)" PL,o + 11 + ^,21" + • • • +

+^W"- (l)

*) V.Brun: Gauß fordelingslov. Norsk Matematisk Tidskrift, 3. Heft, 1932.
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Es gilt die Bekursionsformel

po 1
2fe, 0 — >

Ä (2)
pn \ pn-1

2fe, A "*•
2fc,/.-v *

v=0

Dabei ist P^-p. 0 für A < 0 und A > 2fc?i zu setzen.

Die Rekursionsformel (2) ist nichts anderes als die Rechenvor-
schrift für das verallgemeinerte Pascalsche Dreieck. Eür den Spezial-
fall fc — 1 und n 0, 1, 2, 8, erhalten wir das folgende Schema:

1

1 1 1

1 2 3 2 1

1 3 6 7 6 3 1

Zur weitern Untersuchung müssen die Polynomialkoeffizienten
normiert werden. Als Normierung bezeichnen wir die Division aller

Polynomialkoeffizienten für ein vorgegebenes w und fc durch ein und
denselben Paktor so. dass sie der Bedingung

2 few

;.=o

genügen. Offensichtlich ist

pn* 2fe,

pn
2fe,

(2fc + iy

was unmittelbar aus (1) folgt, wenn man f 1 setzt. Die Rekursion
für normierte Polynomialkoeffizienten lautet dann

2fe, 0 1,

r =0

H Pi;n-l
2fe, /.-r

(3)

2fc+ 1
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und für den Fall fc 1 geht vorangehendes Schema über in

1

1 1 1

3 3 3

2 3 2 1

32 32 32 32

6 7 6 3

33 33 33 33

In diesem Falle ist die Summe durch die Mittelwerte ersetzt. Aus
der Rekursion (3) folgt ohne weiteres die Identität der normierten
Polynomialkoeffizienten mit den Gliedern der entsprechenden Glät-
tung der in § 1 definierten Elementarreihe, d. h. es gilt

È. Plv.-,>

Tim —A •

Aus den Untersuchungen des § 2 geht deshalb hervor, dass auch die
die Polynomialkoeffizienten treppenförmig interpolierende Verteilungs-
funktion bei der durch die Präzision <w ]/n definierten Maßstabs-

änderung mit unendlich wachsendem Exponenten gleichmässig gegen
die Gaußsche Verteilungsfunktion konvergiert.

Endlich haben wir in untenstehender Figur für den Spezialfall
fc =*= 1 die zur Elementarreihe zugeordnete Funktion çj [e, er], sowie die

zu der ersten, zweiten, vierten, achten und sechzehnten Glättung zu-
geordneten Funktionen <p [P\ œ], » 1, 2, 4, 8, 16, dargestellt.

1/W



§ 4.

Die Glättung der allgemeinen normierten Verteilungsreihe.

Wir gelangen nun zur Glättung der allgemeinen normierten Ver-

teilungsreihe
a

Die zu ihrer n-ten Glättung zugeordnete Verteilungsfunktion haben

wir in § 1 formal dargestellt durch die Reihe



Dabei gilt, infolge der gleichmässigen Konvergenz der Funktionen-
folge çy— [e", .x], (w — 1, 2, 3, für alle w und alle ,t

0<y/-[e", ®]<M,

wo M eine nicht näher bestimmte, feste Schranke bedeutet.

Es sei

«,(*> 2^. *
•p/n

s a:

und Z > f. Dann gilt
J

— «<(*) 2 ^ ^
oder

;.=-i

9».

A=-l
y»

£ a; -

£ a: —

A=-i

e a- -

£ \ £ *

und

S|(«)—«i(») |<M

s,(a:) — Sj(a:) I < M

2 + Z ^
A=-J A=i

* ;

2>-2>
A=-Z A= -i

Wegen der Konvergenz der Keihe {d; j gibt es zu einem beliebigen
?7 > 0 ein IV — IV so, dass

| s,(a;) — Sj(a;) j yM-j?

für alle > i > IV ist. Damit haben wir aber nachgewiesen, dass die

Reihe
A

Vyj-[«">*] =2J^y- i- -j - ^ - A ry,7
A=-oo

für alle n gleichmässig konvergiert.

£ x -

^Ti
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Jetzt können wir den Grenzübergang durchführen. Es ist

1 [*"' *1 2
M-Voo r n-V-oo^ ^ X=-oo

Wegen

folgt sofort

und endlich

lAT |/n

oo

2 vw-Voo k
/.= —oo '

e x —

lim œ
1/«n->-oo r

£ X
(/n

Ä

|/tt
-7i* x»

lim x] — e-^YU
n-^-oo V [/TT 3^^^ ' A=-oo

/i
hm 99 [a", x] — g"

w— y 00 y y^
-Ä»X»

wobei P den Wert
6

il2
(2fc + l)*

besitzt.

Damit haben wir das anfangs in Aussicht gestellte Ergebnis be-

wiesen und gezeigt, dass die zur n-fach geglätteten statistischen Reihe

a zugeordnete Verteilungsfunktion mit n—>-<*> gleichmässig gegen die

Gaußsche Verteilungsfunktion konvergiert.
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