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Uber die Glattung
statistischer Verteilungsreihen.
Von M. Faesi, Bern.

Einleitung.

Um grobe Unregelmissigkeiten in statistischen Zahlenreihen ab-
zuschwichen, wird gelegentlich so verfahren, dass man jedes Element
der Reihe durch das arithmetische Mittel der Elemente einer sym-
metrischen Nachbarschaft ersetzt. Diesen Prozess nennt man Gldittung
der statistischen Reihe.

Soll die Definition der Glattungsoperation iiberall einheitlich aus-
fallen, so muss jedes Element der Reihe eine symmetrische Nachbar-
schaft aufweisen, das heisst die Reihe darf keinen Anfang und kein
Ende besitzen. Es ist aus diesem Grunde zweckmiissig, nur statistische
Zahlenreihen zu betrachten, die beidseitig unbegrenzt sind. Diese Fest-
setzung bedeutet keine wesentliche Einschrinkung der Gesamtheit
der zugelassenen Reihen, denn eine endliche Reihe kann formal durch
Hinzufiigen von Nullen zu einer beidseitig unbegrenzten Reihe er-
weitert werden.

Wesentlicher ist die Voraussetzung, dass die aus den Zahlen der
statistischen Reihe gebildete unendliche Reihe konvergiert. Wenn die
Summe der Reihe 1 betrigt, so nennen wir die statistische Reihe
normiert. Die Auszeichnung, welche die normierte statistische Reihe
in den folgenden Untersuchungen erfihrt, hingt mit der Interpreta-
tionsmoglichkeit als diskontinuierliche Wahrscheinlichkeitsverteilung
zusammen. Besonders beachte man den Umstand, dass die Normiert-
heit eine in bezug auf die Glattungsoperation invariante Kigenschaft
darstellt.

Solche normierte statistische Reihen werden nun der mehrfach
iterierten Glittung unterworfen. Verschiedene sich hier aufdringende
Fragen abzukliren, ist das Ziel der vorliegenden Arbeit. Insbesondere
wird das asymptotische Verhalten der geglitteten Reihe bei unbe-
grenzt fortgesetzter Iteration der Glattungsoperation Gegenstand ein-
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gehender Untersuchungen sein. Das Hauptresultat ist ein Konvergenz-
satz, wonach die die gegléitteten Reihen treppentérmig interpolierenden
Verteilungsfunktionen bei geeigneter MaBstabsinderung mit unend-
lich wachsendem Iterationsindex gleichmiissig gegen die GauBsche
Verteilungsfunktion konvergieren.

Dieses Ergebnis stellt das diskontinuierliche Analogon zu einem
Grenzwertsatz von L. Maurer ') dar. Beide Resultate hingen aufs
engste mit den Fundamentalsitzen der Wahrscheinlichkeitsrechnung
zusammen, tiber die man etwa bei R. von Mises 2) nachlesen kann. Der
Nachweis des oben erwihnten Konvergenzsatzes wurde absichtlich
unabhingig von den Fundamentalsitzen durchgefiihrt.

Problemstellung und Krgebnis der folgenden Arbeit haben keine
unmittelbare Beziehung zu der praktischen Aufgabe, welche die
Glattung der statistischen Reihe innerhalb der Statistik zu erfallen
hat. Das Hauptinteresse ist auf die Entwicklung des Formalismus ge-
richtet, wobei die symbolische Betrachtungsweise stark betont ist.

§ 1.

Die statistische Verteilungsreihe. Schiebungs- und Glattungs-
operationen.

1. Gegenstand unserer Untersuchungen ist eine stafistische Ver-

terlungsrevhe
ey Agy Ay Ay Ayp Agy o5 5 (1)

die abkiirzend mit

o ={d;}, —eco <A< oo (2)
bezeichnet wird und folgende Forderungen erfiillt:
a) Die Reihe ist micht negativ, d.h. es gilt

Ay =1 (3)

1) L. Maurer: Uber die Mittelwerte der Funktionen einer reellen Variablen.
Math. Ann. 47 (1896), S.263—280.

2) R. von Mises: Wahrscheinlichkeitsrechnung und ihre Anwendung in der
Statistik und theoretischen Physik. Leipzig und Wien, 1931, S.197 ff.
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b) Die Reihe ist mormiert, d. h. es ist

ZAlzl. (4)

Die Konvergenz der angeschriebenen unendlichen Reihe ist in die
Voraussetzung mit eingeschlossen.

Eine spezielle normierte Verteilungsreihe ist die Elementarreihe

e= {0}, (5)
die definiert ist durch
1 fir A=0
g = 0 fir 22 0. ()

Wir definieren noch die lineare Komposition von Verteilungsreihen

ac + b=y (7)
durch

«a={4,}, p={B)}, y={ad, +bB)}, (8)

wenn ¢ >0, b>=0und a + b =1 ist.

2. Unter der Verschiebung nach rechts, ausgeiibt auf o = {4,}
verstehen wir den Ubergang zur Reihe

b

o0 ={34;}, wo ,4,=4, , ist. (9)
Symbolisch deuten wir diese Operation an durch
S{e) = 6. (10)

Analog verstehen wir unter der Verschiebung nach links den Ubergang
zur Reihe

= {4}, wo _jd; =4, ist (11)

oder symbolisch
L () = _qec. (12)
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Weiter treffen wir die Festsetzung
SO () = . (13)
Durch die Rekursionsbeziehung
SIS @] =S+ (@), STST @] =S () (14)

fir » >0 wird S™(«) fiir alle positiven oder negativen m definiert.
Die Richtigkeit der Gleichung

S™ [S" ()] = S™*" (x) (15)

fir beliebige, ganzzahlige m und = ist ohne weiteres ersichtlich.
Ebenso geniigt der Operator S dem distributiven Gesetze, d. h. es gilt

S (aa+bp) = aS (@) +bS (B, (16)

wo a=0, b=0, a+4b=1 ist.

8. Unter der ersten Glittung der Reihe « = {4,} verstehen wir
die Reihe

ol = {A;I} . (17)
WO
A} = A+ g+ -+ 4

18
2k 41 19

Dabei sei k als ganze, feste Zahl > 1 vorausgesetzt, die wir Gldittungs-
parameter nennen wollen. Symbolisch deuten wir die erste Glattung
von o an durch

Gla) =l (19)
Wir treffen die Festsetzung

GO{et) =, (20)
Die Rekursion

G 6" (@] = @+ (x) (21)
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fiir m >0 definiert G™(«) fiir alle ganzzahligen m >0. Bedeuten
weiter m und » nicht negative, ganze Zahlen, so gilt

G" [G" ()] = @™ (w) . (22)

Zudem gentigt schliesslich der Operator G dem distributiven Gesetze,
d. h. es ist

Glan+bp) =aGx)+ bG(B), (23)
wobeia=>0, b=0 und a+4b=1.
Die Operatoren S und G sind kommutativ, also

SG (a) =GS («) (24)
oder allgemein

S™G" (@) = G" 8™ (o) (25)

und fithren normierte Zahlenreihen in ebensolche iiber, d. h. es ist auch

inAzzl und iﬁ”{zl. (26)
I=—oco 1=—o0

4. Bs ldsst sich nun jede statistische Zahlenreihe o« durch die
folgende formale Reihenentwicklung darstellen:

o = Z A, S (e). (27)

A: —_—00

Dann gilt tar die n-fach geglittete Reihe «" auf Grund der oben ab-
geleiteten Figenschaften des Operators &

G (o) = Z 4,8 G (e). (28)

A=—o00

Aus diesem Ansatz fir G"(x) geht hervor, dass wir uns zur Unfer-
suchung der n-ten Glattung der Reihe o zunichst mit der n-ten
Glittung der Elementarreihe befagssen miissen und dann die formal
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angeschriebene Reithenentwicklung auszuwerten haben. Bevor wir uns
aber dem speziellen Studium der Elementarreihe zuwenden, sind noch
zwel wichtige Begriffe zu definieren.

5. Verteilungsreihe und zugeordnete Verteilungsfunktion. Die zur
normierten Verteilungsreihe

a=1{4,}, Z o =1 (29)

zugeordnete Verteilungsfunktion mit der Prizision @ > 0 ist definiert
durch

1\ 1 1% 1
et =od (=2 2e< (4 )2, o
2 = 2] w

)
A=0,1, —1, 2, —2, ...).
Bs gilt das distributive Gesetz
¢, [ax+ b, 2] =ag,[x, 2] +bo,[B 2] (31)
fir a=0, b=>0, a+4+b=1.

Die der verschobenen Verteilungsreihe S*(«) = {,4,} zugeordnete Ver-
teilungsfunktion lisst sich folgendermassen darstellen:

1\ 1 1% 1
a0, ol =04y, (1= <a< (24 5) L

b w w

1% 4 1\ 1
o 1560 2] =0 4y, (A= g ) 0 o< (L 5) o

w w

Durch die Substitution A —> 4 4 n geht die letzte Zeile iiber in

. 1\ 1 1\ 1
@, [S" (@), 2] = 4,, <l+n——g>g§w<<ﬂ+n+—)~,

o 2 w

" 4 1 1< n A 1\ 1
(Pw[S (CX-),HZ]Z(,() 5 (l—'_g_)——‘____m——<< _I—_Q,-)—C;

o) w



== B ==

und dies lasst sich auch schreiben als

n
20 IS (), 2] = @, [ w—m] - (32)

w

Fiar die der geglitteten Verteilungsreihe G" (a) = {4}} zugeordnete
Verteilungsfunktion findet man #dhnlich

1N 1 1\ 1
Po [0 (@), 2] = 0 41, (z——)~5x<(z+—)—
2/ w = 2 w

Formal kann dies auch so dargestellt werden:

@, [G" (), 2] [Z 4,84 G"(e), z ]

A=—00

Po G (@), 2] = D 4,9, [SG"(e), a]

Az=—o0

oder

— V1
9o [6" (), 7] = )" 4, 9, [Gﬂ(ex o — 5} . (33)

A=—o0

Insbesondere gilt noch infolge der Normierung

[ a)

[ERCETE en
und allgemein
f(pw [G" (), ] dz=1. (35)

6. Die zugeordnete Hilfsfunktion. Wir definieren die zur Reihe
« = {4,} zugeordnete Hilfstunktion durch

F(2) =iA,1-z‘. (36)

f=—0c0
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Dabei machen wir hier iiber die Reihe {A,} noch die Voraussetzung,
dass es ein p > 0 gibt, so dass

1

3 T R>p,
lim sup /4,
I~ o0 (37)
1 1 1
: 7 =—>—
lim sup /4., r e

l=» oo

ausfillt. In diesem Falle ist ndmlich die Funktion F (2) in einem Kreis-
ringgebiet 0 < 7-< | 2| < R, das den Kreis vom Radius ¢ (r < ¢ < R)
enthilt, reguldr und wird dort durch die Laurentsche Reihenentwick-
lung, wie oben angegeben, dargestellt.

Wegen der Voraussetzung ZAA:I ist speziell R>1 und

A=—co
r < 1. Die obigen Ungleichungen sind ohne weiteres erfiillt bei end-
lichen Reihen (r = 0, R = oc), sowie bei links, bzw. rechts abbrechen-
den Reihen (r=0, R>1, baw. r <1, B =o0).

Auf Grund der Definition besteht eine eineindeutige Zuordnung
zwischen statistischer Zahlenreihe und zugeordneter Hilfsfunktion

o <—> I (2). (38)
Der Reihe S (x) entspricht die Hilfsfunktion
S(x) <—> 2z F(2) (39)
und allgemein

S" (o) <—» 2" F (2) (40)

und der Reihe G («) die Hilfsfunktion

—k —Fk+1 K
2+ 2z +“'+2)F(2). (41)

G(“)*_*( ok +1



Allgemein

Z_k+2_k+1+...+2k n

G" - F(2). 42

W (e, @

Infolge der gemachten Voraussetzungen kann die Funktion

A A =

F - n A Q

( ok +1 ) ? _Z it =)

nach Laurent entwickelt werden, wobei sich die Koeffizienten be-
rechnen lassen durch

e 1 (Cé) FE L LA\ F(2) s
P o 2k+1 g

(©) n k+L (el 7
1 /1 ty — 7 (*+t3) \" F(z
A= ( )(Z i 12) (zdz, (44)
) 27’5’1; Qk"‘—l 29 — 2 o Zl+

wo (' einen den Nullpunkt umschliessenden Kreis vom Radius p,
r<< o << R, bedeutet.

Fur die Elementarreihe & ist insbesondere

F(z) = Z E,2 =1 und deshalb

A=—co

(0) n g+ L —(k+Ly
1 1 ] d
o P ()( ) (Z r—a ¢ 2)> @)
’ 2w 2k+1 2o — 2 o Zr

Wihlen wir o = 1, integrieren also lings des Einheitskreises, so ge-
winnen wir durch die Substitution z = ¢ das Integral

2

ro 1
E} =— ; (cos A@—q sin 20)d0. (46)
(2k41) sin-z—
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Der Imaginérteil dieses Integrals verschwindet. Ersetzen wir noch 6
durch 20, so erhalten wir

14

2

2 in(2k+1)0 1"

o | S@EEDO0 1 a10-a0. (47)
7T (2k—41) sin 0

0

Damit haben wir fiir die Glieder der n-fach geglitteten Elementar-
reithe eine Integraldarstellung gefunden. '

§ 2.
Der Grenziibergang fiir die Elementarreihe.

1. Nach Definition ist die der n-fach geglitteten Hlementarreihe
zugeordnete Verteilungsfunktion gegeben durch

1\ 1 1\1
o ¢ 2] = 0 B, (’1—§>—§$<(’1+§>_'

w w

Unter Verwendung der Integraldarstellung fir E7 geht diese Gleichung
ither 1n

T
2

9 sin (2% 4-1)0]
o, [ 2] = — sin (2k+1)0 }cos 210 -d0
7T (2k+1) sin 0

0

(pg)a=e<lrrg).
“3)e="=tg),

Es bedeute [[a] die GauBsche Klammer, d.h. die grosste ganze Zahl
< a. Dann ist fir o = J/n

k14

Ay [€"; 2} = 21/?T/VK”(G‘) cos 2 H:]/ﬁcc + —;—:H 0-do, 1)
0

7T



wobei abkiirzend

_sin (2k+1) 0
~ (2k+1) sin 6

K(0)
gesetzt wurde.

Zur Berechnung des Integrales (1) setzen wir

1

I
Pl) = QTV:L fI{"(B) oS 2“-me —}—%—” 0-do

0

und

T

2

1 (T) = QJVIE fK”(B) cos 2 [[V?Ta: e é—j” 0-do,

1

%

wo n so gross gewahlt sei, dass

1 7

n = 2@k+1)

Dann ist

¢fMﬂ:%m+mm

n

(2)

(3)

(4)

(5)

2. Zur Behandlung der Integrale (3) und (4) ist die genaue
Kenntnis von K (0) unerldsslich. Wir unterbrechen hier deshalb unsere
Ausfithrungen und wenden uns in diesem Abschnitt dem Studium der

Funktion (2) zu.

Durch einige Umformungen 1) gelangt man zu den beiden folgen-

den Darstellungen von K(0):

1) Polya-Szegi: Aufgaben und Lehrsitze aus der Analysis, II. Berlin,

Springer, 1925, S. 77.

Enzyklopidie der Math. Wissenschaften, 2. Band, 3. Teil, 1. Hiitte, S. 36.
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1+ 2 (cos 20 + cos 40 + ... + cos 2k0)
2k41

K(0) = ; (6)

2k . 6 1
K(G):Tl-(l——% Sln2~2->,oc_v:m—. (7)

pu=i 2(@2k+1)

Unter Beriicksichtigung der Definitionsgleichung (2) erhalten wir
aus (7) durch logarithmische Differentiation

Z o?sin  cos T sin (2k-+-1) 0 cos 0— (2k-+1) sin 0 cos (2k+1)0
(2’ sin (2k-41) 0-sin 0

Dividiert man diese Gleichung durch sing und fithrt dann den Grenz-

iibergang @ —» 0 durch, so gewinnt man

Zoc2 _ 2 [(2k+1)2——1] (8)
v 3 ? .

p==]
eine Relation, die wir spéter verwenden werden.

Von besonderem Interesse fiir uns ist weiterhin das Verhalten der
Funktion K(f) im Intervall

T

=2 (2k4+1) 9)

<
IA
<>
A

Man stellt leicht fest, dass K(0) dort monoton féllt. Ferner erhalten

wir aus (7)
ok
0
- Z log (1—0(3 sin? 5) :
v=1

log K (6 221 2 % ( sin *)2“ .



wie B s

Nun konvergieren alle Reihen

im Intervall (9), denn dort gilt

1 0\2"
— @& gih —
M(” 2)

Wir kénnen also schreiben

oo 6 1 v
log K(6) =— ) B, sin™ -, B, = m D
rv=1

=1

IA

1( 1 ‘>2|u
p\V2+y8 /)

oder auch, wie es in unserem Fall zweckmissig ist,

oo

0 0
log K(6) =—8 Sian—ZﬁF‘ sinz-“—Q—, BB

n=2
Setzen wir

0 p
e’ P
f sin 5 5 ( cos 0)
02 62
— 'BT—{—%(I—GOS 0——2—>,
so folgt weiter
log K(0)+%~ 'g 1— cos Gﬂ—% i

=2

Nach Entwicklung der Cosinusfunktion erhélt man zunichst

92 04 66 68
1'—‘ CcoSs 6—?:_—z —}-HMM—P Caes

(11)



und da
73 1

2 I
"= rerreE =

IA

ist, kann folgende Abschitzung vorgenommen werden:

02 04
l== 0 —— | < — (1 62 N
cos 5 ___24( +024+004...),

02 0t

5 (18)

1— cos 0 —

IA

Ferner erreicht man unter Beriicksichtigung der Definitionsgleichung
(10) fir B,

?Sj oo 1 27\7ﬁ 2
Zﬁﬂsm Z—Z(a sin )
n=2 =2 # =1

und

2u

Z‘ KLsm — < kZ(alsm 9)

"=

Durch Summation der geometrischen Reihe und nachfolgender Be-
riicksichtigung der Ungleichungen

.0 1
By Bl — Semmm——e
2 T V248
sowle
] )
gin — < —
9 = 8
erreicht man
N\ g ¥ k 6% (14)

B, sin —_—
L P 2 7 Bsint T

=2 2(2k+1)
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Verwenden wir die Abschidtzungen (13) und (14) fir (12), so folgt

02
log K(G)—I—%t— < K@,

wo wir abkiirzend

gesetzt haben. Somit ist also

_ PO ke
K(e)=(,’ ! :—léyél
oder
_ npez iy K 68
K%y — e °
und schhesslich
e PR wone
K"0)—e * =¢ * e —1 (15)

3. Nach den 1im vorangehenden Abschnitt durchgefithrten Unter-
suchungen der Funktion K(0) kehren wir zu unserer eigentlichen
Aufgabe zuriick, und zwar soll zundchst das Integral (4),

JT

2

In(E) = gV—n/K"(O) cos 2 [I:]/Em + %—]] 6-do,

1/
L
i
abgeschitzt werden.

Nun gilt, wie cich einfach zeigen lisst,

A N S
K(m>—”e)’wk+1)> =73



und deshalb auch

1 1
K( >>K(B), — <0<

fn

IA
IA
0| 9

Zufolge (11) ist aber

oder, indem wir nochmals vergrossern,

IR
R , 1671/n
w() <

Verwenden wir diese Abschétzung in (4), so folgt

o Bt
| aa(m) | < Y e W) (16)

4. Nunmehr gelangen wir zur Berechnung von (3),

1

P
2n 1
(L) = l/:b /K"(f)) cos 2”:]/n z -+ 5] H-do.
0
Durch die Substitution 6 = _L;i: geht dieses Integral tiber in
n

; o 4 > 21 1V L } _'({\, 1)
wle) = . { (l/;@, co8 l[],nac | Q:I] Vf;iw i



oder auch
92 w;ﬂ"f
qpn(x):;fe * cos 2 [[]/nx—l———:ﬂ— - dy
0
—E e 40032[[]/%:5—[—— - dd t
Y
o
2 i 9\ - 17 9
R 4 nf R |
ﬂ'/[e K(Vﬁ) cosﬂ“i]/n:c~l~2:[|]/E
0 :

Dabei ist das erste Integral in (17)

Setzen wir noch
4 B 172 4 / 1 .
plrmess] = (mes5 )

= % <a: + 127/«,;?)2’

wo 0 <y < 1 ist, so ergibt naheliegende Abschétzung der Differenz

2

|
T

die Ungleichung

(=]

2 _ % ey 2 [/§
— 4 _ s dy— B
- / oS [[/na:+ Vﬂ ﬁ —== @ o

BVenV/n

- (18)
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Fiir das zweite Integral erhalten wir

oo

2 £ 9 r
—fe 4 cos 2 [I:l/n:c—{——-" — - dd <—-fe tody (19)
7 7

@ a

und zur Abschétzung des dritten Integrals von (17) besitzen wir in
der Relation (15) ein Hilfsmittel. Es ist ndmlich

2 W il
e YT ) - 1 9
. 4 _ Jn 2 B | I |
n/[é‘ K(Vq_%_) cosQ[[]/nw—{— 21' = dﬁ'
0
2 n_ B2 K94 0 %_ BI% [ K9t
_<_—fe 4|e”——1]dz9+—fe 4[6"—1Idﬁ
= | -
’ a

g (e 1) + 2 parjes—n 51

IA
Q|

Beriicksichtigt man

. Yn — 9 ..
—f/ﬁ"(eﬁ—l) = ”QT/E? (ev = ! >< - f; evr
Vn
so folgt
2 b ,319' ,,9 17
= o V—nﬂ ‘”“[[Vmﬂ]wdﬁl
2K ﬁi‘/n
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5. Auf Grund der Formeln (5) und (17) und unter Zuhilfenahme
der Abschétzungen (16), (18), (19) und (20) haben wir nun

I S X x 22
. n P B 16 L
[‘PW [", 2] Vﬁne <|ne +ﬁl/e_nV'ﬁ+
gL 9K X By
_ 4 VYn N . 4
+"f€ do + T Ot Vn (€“—1)e
oder

2
hm — E", Tl =- e
o ‘P]/,, [€", ] ]/__,B:n

Krgetzen wir hierin noch — nach Massgabe von (8) durch

., 6
@k4+12—1"

so folgt

h 2 g 6
lim ¢ " 2 —

n=yo00 1/;1— [S’m]:ﬁe ’ B (2k+1)2—1 .

Das asymptotische Verhalten der Polynomialkoeffizienten 1).

Bevor wir zur Glittung der allgemeinen Reihe iibergehen und
fir diese den Grenziibergang vollziehen, wenden wir das bisherige
Ergebnis auf spezielle Polynomialkoeffizienten an. KEs handelt sich
um die Koeffizienten Py, , der Entwicklung einer Polynompotenz

I+ E+ 8+ 8 =Pho+ Ph &+ P+ . +
—l_ ng, 2kn 5%” L4 (1)

1) V. Brun: Gaul} fordelingslov. Norsk Matematisk Tidskrift, 3. Heft, 1932.



BEs gilt die Rekursionsformel

ng,o =1,
2%
" . (2)
Py, = Z Pyl . '
y=0

Dabei ist Py, = 0 fir << 0 und 2 > 2kn zu setzen.

Die Rekursionsformel (2) ist nichts anderes als die Rechenvor-
schrift fiir das verallgemeinerte Pascalsche Dreieck. Fiir den Spezial-
fall k =1 und n =0, 1, 2, 3, ... erhalten wir das folgende Schema:

1
1 1 1
1 2 8 2 1
1 3 6 7 6 3 1

-------------------------------

Zur weitern Untersuchung miissen die Polynomialkoeffizienten
normiert werden. Als Normierung bezeichnen wir die Division aller
Polynomialkoeffizienten fiir ein vorgegebenes n und k& durch ein und
denselben Faktor so, dass sie der Bedingung

geniigen. Offensichtlich ist

7
Pay,

@k4+1)" "’

——
Py =

was unmittelbar aus (1) folgt, wenn man & = 1 setzt. Die Rekursion
fiir normierte Polynomialkoeffizienten lautet dann

ng,ozl ’ l

P —
W‘zzjzhw (8)
Zk, r Pt 2 k —l— 1 l
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und fir den Fall kK = 1 geht vorangehendes Schema iiber in

1
111
3 3 3

12 8 2 1

32 382 82 32 932

-------------------------------

In diesem Falle ist die Summe durch die Mittelwerte ersetzt. Aus
der Rekursion (3) folgt ohne weiteres die Identitdt der normierten
Polynomialkoeffizienten mit den Gliedern der entsprechenden Glit-
tung der in § 1 definierten Elementarreihe, d. h. es gilt

E,= Py, »

n ___ 3N
Hi= Phgirins

Aus den Untersuchungen des § 2 geht deshalb hervor, dass auch die
die Polynomialkoeffizienten treppenférmig interpolierende Verteilungs-
funktion bei der durch die Prizision o = Vﬁ definierten MaBstabs-
dnderung mit unendlich wachsendem Exponenten gleichmissig gegen
die GauBsche Verteilungsfunktion konvergiert.

Endlich haben wir in untenstehender Figur fur den Spezialfall
k=1 die zur Elementarreihe zugeordnete Funktion ¢ [¢, z], sowie die
zu der ersten, zweiten, vierten, achten und sechzehnten Glattung zu-
geordneten Funktionen ¢ & [€" ], » =1, 2, 4, 8, 16, dargestellt.
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§ 4.
Die Glittung der allgemeinen normierten Verteilungsreihe.

Wir gelangen nun zur Glittung der allgemeinen normierten Ver-

teilungsreihe
) o = {A;.} .

Die zu ihrer n-ten Glittung zugeordnete Verteilungsfunktion haben
wir in § 1 formal dargestellt durch die Reihe

- 9
tp]/ﬂ_[oc,ac]:Azzél;’(pl/r7 [e,mﬁﬁﬁ

L==—00




- B

Dabei gilt, infolge der gleichméssigen Konvergenz der Funktionen-
folge (p]/; [ 2], (m=1, 2, 8, ...) fur alle » und alle z

Oé(p]/n_[a",m]éM,

wo M eine nicht ndher bestimmte, feste Schranke bedeutet.

Es sel

$; () = Z A;.- ‘iol/F [an’ L= MV%

und ! >+ Dann gilt

i

! _
A A
§(x) —s;(x) = 4, ¢ — [s",x———: — 4,9 — |&fr——
| Z‘ G Vu Z PPy | /n
oder
P ! L
A

$(x) —s;(x) = Z 4, chA &, T— an A“p]/n_ [8?2’3:—79“%:
P ] :

A=~

(@) —s@) | <M | )4+ ) 4
| 5,(@) —s;(2) | < M ZAZ—Z..A,.

Wegen der Konvergenz der Reihe {4,} gibt es zu einem beliebigen
n >0 ein N = N (n) so, dass

und

| 8(@) —s;(z) | < My

fiir alle [ >4 > N ist. Damit haben wir aber nachgewiesen, dass die
Reihe

el = > 4 [0 — =
— 8] = €
(P]/n i P (p]/n V'nv

fiir alle n gleichméssig konvergiert.
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Jetzt konnen wir den Grenziibergang durchfithren. Ks ist

_ 1
Iim ¢_— [o", ] = lim A4 & r— —=
=Yoo ]/_ [ o o ;_;o * (pl/n— ! V'n ]
3 2

= A, lim 8”, L= —

/_Z_oo N=Pp-co (pl/;r V’n ]

Wegen
A h
lim & r— — — e
N=Ppo0 (p]/ [ l/'n]
folgt sofort
hm P [«", 7] = — e % Z 4,

Vﬂ A=—c0

und endlhich
h

- [an’ :E] o e—h’ m’

-

wobel h2 den Wert
6
@k L1321

h? =
besitzt.

Damit haben wir das anfangs in Aussicht gestellte Krgebnis be-
wiesen und gezeigt, dass die zur n-fach gegléitteten statistischen Reihe
« zugeordnete Verteilungsfunktion mit n—» e gleichmissig gegen die
GauBsche Verteilungsfunktion konvergiert.
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