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B. Wissenschaitliche Mitteilungen

Sur une équation intégrale

de l'analyse démographique et industrielle.
Par Alfred J. Lotka, New York.

Dans un récent cahier du Bulletin, M. Hadwiger nous a fait
connaitre une nouvelle solution d'une équation intégrale qui joue un
role fondamental dans I'analyse démographique aussi bien que dans
certains problemes de I'assurance, de la génétique, de ’économie poli-
tique, ete. En passant, cet auteur nous donne un résumé de la méthode
appliquée & ce genre de probléme en premiére ligne par Sharpe et
Lotka, ensuite par H.T. J. Norton, J. B. 5. Haldane, A. Linder, et
plusieurs autres. A ce propos, il fait la remarque que cette méthode
(basée sur les travaux de P.Hertz et de G. Herglotz) présente des
difficultés parfois peut-étre insurmontables.

Ces difficultés, dans les cas que j'al rencontrés en pratique, ne
sont cependant pas sérieuses. Pour prévenir un malentendu & cet
égard, il sera peut-étre utile d’illustrer les faits par un exemple.

Rappelons d’abord que I’équation fondamentale citée par M. Had-
wiger,

G(t)zfg’(t—é)ff(é)df )

s’applique & divers problemes, selon linterprétation que nous don-
nons aux symboles. Dans son application démographique G () dé-
signe, par exemple, les naissances annuelles de filles & linstant ¢,
et K (£) la reproductivité nette des femmes d’age &, c’est-d-dire le
produit I (&) m (&) dont le premier facteur I (&) est la probabilité
pour un nouveau-né du sexe féminin de survivre & I'dge &; quant
au second facteur, m (&) d & est la probabilité pour une femme d’age &
de donner naissance & une fille avant d’atteindre I'dge & + d & Dans
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une autre application, & un probleme industriel, le symbole G (t)
désigne, par exemple, les remplacements annuels de certains articles
d’emploi (tel que les traverses d’une voie ferrée), tandis que K (&)
désigne le produit ! (&) u (&) dont le premier facteur I (&) est la pro-
babilité pour une traverse, au moment de son installation, de durer
en service jusqu'a I'dge &; le second facteur u (&) est le «taux instan-
tané de mortalité». La limite supérieure a de l'intégrale est le der-
nier age pour lequel K (&) a encore une valeur non nulle. Il est en-
tendu que K (&) ne peut avoir que des valeurs positives, en effet,

K()=0 V< < a @)
K (§ =0 E>a

On peut alors se demander quel sera le nombre annuel de rem-
placements nécessaires a une époque donnée, dans un systeme installé
au moment ¢ =0 et comprenant alors N piéces, étant donné que
chaque piéce mise hors de service est immédiatement remplacée par
une nouvelle, et que le systeme doit étre maintenu constant. Ce
probléme est tout a fait analogue & une question d’assurance sur la
vie traitée par L. Herbelot il y a une trentaine d’années 1), cependant
sans application & aucun effectif.

A titre d’exemple basé sur la pratique 2), il conviendra ici d’illustrer
notre méthode au moyen des données publiées par E. B. Kurtz dans
son livre Life Expectancy of Physical Property, 1930, p. 104, fig. 50.
Cet auteur trouve que la «courbe des déces», c’est-a-dire la fone-
tion (&) u (&) = K (£) d’une certaine classe d’objets d’usage indus-
triel est représentée assez bien par une fonction du type I de
Pearson, laquelle, comme on le sait, est définie en termes des quatre
premiers moments de la distribution observée. Dans la suite, nous
admettrons 3) également, en traitant cet exemple, que les quatre
premiers moments suffiront & fixer les caractéristiques de la solution
cherchée.

1) Bulletin de I'Institut des Actuaires de France, 1909, p.292.

%) Pour une application démographique, voir A. J. Lotka, Théorie analytique
des associations biologiques, Hermann et Cie., Paris, 1939, pp. 78 et seq.

3) Ce n’est pas que cette hypothése soit nécessaire pour I'application de la
méthode a illustrer. Voir p. 5, note 2).
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Cette solution, d’aprés F. Hertz et G. Herglotz 1), a la forme

“ﬁ
G() =) A (3)
1
les quantités z, étant les racines de 1’équation caractéristique

f(z):f;_”K(E)dle (4)

tandis que les constantes 4 dépendent des conditions initiales. Afin
de déterminer ces constantes, il faut connaitre les valeurs de (7 () pour
0<t<<a, ce qui est nécessaire pour préciser le probleme. Par un
procédé semblable & celui qui sert & définir les constantes dans une
série de Fourier 2), on trouve

i [Z—Zn'{G(t)—[é(t———f)ﬂ(f)dé}iltu 5

f& et K (§)d &

Racines de Uéquation caractéristique (4).

Pour calculer ces racines, posons
Mo:fK(«E)dS (6)

A A A
logcf (Z) = loge Mo_ 2.12 +~2~—“;-22—-ﬁ§53!_z3 _I__4_;4|, 24 (7)

I’équation (7) n’est autre chose qu’une définition des semi-
invariants A (Thiele) de la fonction K (£). Pour qu’elle satisfasse
a (4), 'on doit avoir

log, 7 (&) =log,1 =2 n a4 ®)
n=-+1, 2, 3,...
1) P. Hertz, Mathem. Annalen 1907, vol. 65, p.1; G.Herglotz, ibid. p. 87.
%) A. J. Lotka, Annals of Mathem. Statistics, 1939, vol. 10, p. 9.
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Racine réelle. Dans les problémes qui nous occupent, K (&) ne
peut avoir que des valeurs positives. On voit facilement qu’alors
(4) ne peut avoir qu’une seule racine réelle z,, qui d’ailleurs, dans
I'exemple dont nous nous occupons ici, sera 0, puisque les pidces de
I'imstallation sont remplacées immédiatement au fur et & mesure
qu’elles sont usées, de sorte que

MO:/aK(é)dézl (9)
et
log, M, = 0 (10) 1

Racines complexes. Pour dégager les racines complexes, nous
posons dans (7)

Z2=1u-+1 (11)
log, f (2) = @ (u,v) + vy (u,0) (12)

ol 'on a écrit, pour abréger

Ay Ay
@ (u,v) =log, M,— A, u + 91 (u? —v?) —*;))'u (@ =B 1) A (13)
Ay
—[~ZT— (ut — 6 u20? +ot) = 0
Ag 2 2
p (u, v) = —Alv+22uv—~—3—Tv(3u — %) +
(14

A
—{——éit—uv (u?2—v®) =2an

Pour chaque valeur de 7, on a donc une paire d’équations simul-
tanées en u, ». Pour leur résolution numérique, le procédé suivant a
été trouvé le plus pratique:

1) Méme si 2z, >~ 0 la solution de (8) pour la racine réelle z,, ne présente
aucune difficulté pratique si | z,| est suffisamment petit, ce qui sera généralement
le cas dans l'application au probléme démographique. Les termes au-dela du
deuxiéme degré sont alors négligeables, et on n’a qu’a résoudre une simple équation
quadratique, en choisissant la racine qui satisfait & (4).
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En admettant pour w une suite de valeurs convenablement choi-
sies, on calcule d’apres (13) les valeurs correspondantes de v, ce qui
est facile puisque les puissances impaires de » sont absentes, de facon
qu'on a affaire & une équation biquadratique ).

On introduit ensuite dans (14) les couples de valeurs u, v ainsi
obtenus, et 'on calcule les valeurs de n qui en résultent et qui, en géné-
ral, ne seront pas des nombres entiers. Cependant, en tracant la courbe
de m en fonction de u et de v, il est facile d'en extraire des valeurs
(provisoires si I'on veut) de u, » correspondant aux valeurs entieres
de n. Ces valeurs provisoires peuvent servir & calculer des valeurs
plus exactes d’aprés les méthodes bien connues 2).

Ces calculs et ces graphiques ont été faits en partant des données
de Kurtz; les résultats sont présentés dans la fig. 1 et le tableau I.

Valeurs numériques et courbes correspondantes.

Dans l'exemple déja cité de Kurtz, les valeurs de w et v ont
ebé calculées jusqu’au vingtiéme ordre (n = 20); les résultats in-

1) 11 faut, cependant, prendre garde en formant la racine carrée, de choisir
le signe qui rend correctement la racine réelle. Voir page 4, note 1).

%) Dans ce qui précéde, nous nous sommes tenu particuliérement & I’exemple
ou le semi-invariant de plus haut ordre était i,, ce qui comprendra la plupart
des cas pratiques. Des remarques plus ou moing analogues s’appliquent cependant,
mutatis mutandis, aux cas ou les semi-invariants jusqu’au septiéme ordre entrent
en ligne de compte. L’équation (13) sera alors une bicubique en v dont la résolution
algébrique sera toujours possible. A la rigueur, on pourrait méme aller jusqu'a
%9, et résoudre I’équation (13) comme une équation du 4¢ degré en v2.

Toutefois, ce n’est que tres rarement, dans les problémes de cette sorte,
qu’il est nécessaire, ou méme justifié, d’aller au-deldy de 2,.

I1 convient d’effectuer les opérations dans I'ordre indiqué, ce procédé étant
le plus direct. Cependant, il y a diverses possibilités.

Au lieu de calculer n d’aprés (14) pour des paires de valeurs données de
u et v correspondant & (13), on peut calculer d’aprés 1'équation cubique (14) une
suite de valeurs de v pour une suite de valeurs données des w et une valeur de n
entier. En admettant pour —n les valeurs 1, 2, 3,... on obtient ainsi une famille
de courbes (14) dont les intersections avec (13) correspondent aux racines de (4).

On peut méme éviter I'inconvénient d’équations cubiques et n’avoir a ré-
soudre que des équations quadratiques en éliminant v* de (13) et de (14) multi-
pliée par v. On obtient de cette facon une nouvelle famille de courbes pour —n =
1,2, 3,... qui, elles aussi, donnent par leurs intersections avec (13), les racines
voulues de (4). Cependant, il y a lieu de remarquer que 1’orthogonalité des courbes
(13), (14), propriété avantageuse pour le calcul, n’appartient plus a la famille
de courbes obtenue par I’élimination de ?.
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diqués dans le tableau I ont été obtenus au moyen du graphique
(Hg. 1) 1),

Dans la fig. 2, la position des racines successives a été indiquée
le long de la courbe (13). On voit les points en question se serrer de
plus en plus étroitement & mesure que n augmente. En effet, le calcul
montre que si la valeur de v est d’environ 14, n est de 'ordre de 5000.
Toutefois, la suite de ces points s’étend & l'infini. Les six premiéres
composantes oscillatoires sont tracées dans la fig. 3, et pour les étapes
mitiales, plus en détail, dans la fig. 4.

Puis, la fig. 5 présente la courbe définie par la solution (3), en
retenant les six premiéres composantes oscillatoires. Sur le méme
graphique, on a tracé la distribution & travers le temps des remplace-
ments d’apres leurs rangs %) successifs. On s’assure facilement que

VALEURS DE -n SELON L’ EQUATION (14],
CORRESPONDANT AUX PAIRES DE VALEURS u,,v, DEFINIES PAR L'EQUATION (13)

22 P
20 / /
Courbe de -u [ Courbe de ur/
/ /
/8 -
Il //
16
o PII
14
// /! ]
-n| /2
/ i
10 ' /
£ B
8 / /
/
p /
,f /w Graphique construit pour obtenir
J/J J_‘//U les valeurs de un, v, correspondant
* T n//" aux valeurs entieres de-n>6
S =7 Les points calculeés directement
2 /i}/ = sont indiqués par les cercles ©
T P I

0 .2 4 6 8 10 1.2 14 16 18 20 22 24 26 28 30 32 34 36 38 40
~Uou +T ;

D’aprés les observations de Kurtz, E. B., «Life Expectancy of Physical Property» 1930, page 104, fig. 50.
Fig. 1.

1) Jusqu'au sixiéme ordre, ces valeurs étaient toutefois connues par un
caleul antérieur effectué par une méthode un peu différente.

?) Les remplacements directs de I'installation initiale sont «de premier rang»,
leurs remplacements A leur tour sont «de deuxiéme rang», et ainsi de suite.



Tableaw 1.

Valeurs de —n selon ’équation (14) correspondant aux paires de
valeurs u, v, définies par I’équation (13).

(Voir le graphique fig.1.)

—MN Un Vn —n Un Un
1 0,110 0,578 12 — 1,100 2,535
2 —-0,301 0,989 13 1,187 9,620
3 0,465 1,284 14 1 AT5 2,700
4 0,595 1,515 14,71 | — 1,200 2,750
5 0,698 1,705 15 1,218 2,775
6 —0,780 1,861 16 1,988 2,840
Vi —0,860 2,000 17 — 1,260 2,905
8 — 0,918 2,130 18 1,290 2,960
9 0,975 2,250 19 -4 810 3,010
955 | 1,000 | 2,309 20 ~1,340 | 3,080
10 1,020 2,350 92,62 | — 1,400 3,219
11 —1,070 2,445

Les valeurs de un, vn correspondant & —n =1, 2, 3,4, 5, 6 et & 9,55, 14,71,
22,62 sont calculées directement; les autres sont interpolées par la méthode gra-
phique. D’aprés les observations de Kurtz, E. B., «Life Expectancy of Physical
Property», 1930, p. 104, fig. 50.

la solution reproduit en effet la sommation & chaque instant des
remplacements contemporains. Au début seulement, jusque vers
t =5, ces six premiéres composantes oscillatoires sont insuffisantes.
Ce ne serait qu'une perte de temps de vouloir pousser les calculs
plus loin pour cette partie de la courbe, car dans ces premiéres étapes
il ne s’agit que des remplacements de premier rang qui ont une valeur
appréciable. En effet, pour = 5, ils représentent & peu prés 999
pour mille de la somme totale des remplacements. Or, ces remplace-
ments de premier rang ne sont autre chose que les valeurs de la fonc-
tion K (), connues pour 0 < t< a comme données fondamentales
du probléme.
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20 PREMIERES RACINES COMPLEXES DE L'EQUATION CARACTERISTIQUE (4)
Représentees par les intersections de la courbe [13] avec les courbes de la famille (14)

v

—_—

5 02 04 06 08 10 12 14 16 18

_—ﬁhmaih‘?F}\\\»
-0.2
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\

-0.6 B

-0.,8 6

\
&
- 1,0
0!
=T,2

20 22 24 26 28 30 32

-4 L . N L L "

Les points d’intersection sont indiqués par les cercles @

En tenant compte des 4 premiers semi-invariants, les équaticns (13) et (14) étant alors du 4° degré.
D’aprés les observations de Kurtz, E. B., «Life Expectancy of Physical Property», 1930, page 104, fig. 50.

Fig. 2.

PREMIERES SIX COMPOSANTES OSCILLATOIRES DE LA COURBE DES REMPLACEMENTS
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D’aprés les observations de Kuritz, E. B., loc. cit.

Fig. 3.
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PREMIERES SIX COMPOSANTES OSCILLATOIRES DE LA COURBE DES REMPLACEMENTS
REMPLACEMENTS ® DETAIL DES ETAPES INITIALES
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-8 000 /

M— —
lD.OODo \ 2 3 ry 3

LAPS DE TEMPS DEPUIS L'INSTALLATION INITIALE

# Ecarts mesurés de la composante apériodique comme base.
D'aprés les observations de Kurtz,E.B., loc. cit.

Fig. 4.

Enfin, la fig. 6 présente en détail les premiéres étapes de la courbe
de la fig. 5. Elle montre aussi 'histogramme des données originales
et le fragment correspondant de la courbe de Pearson.

Il faudrait encore noter que l'application de la méthode Hertz-
Herglotz n’est nullement bornée au cas ol l'installation initiale a
lieu & un instant t. Cette méthode s’applique aussi, par exemple, au
cas d'une population dont la répartition par Age est donnée a l'instant
t, et dont on veut connaitre 1’évolution ultérieure sous le régime d'une
table de mortalité et de fécondité donnée. En effet, ce fut 1a la pre-

miere application ') de cette méthode aux problémes du genre qui
nous intéresse ici.

') F. R. Sharpe et A. J. Lotka, A Problem in Age Distribution, Phil. Mag.,
1911, tome 21, p. 435.
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Ordre des racines u,, v,. Pour que la solution formelle (3) soit
utile, il faut

10 que cette série soit convergente;

20 que le procédé (13), (14) pour calculer les racines de (4) les produise
comme suite ordonnée selon les valeurs décroissantes de u,, du moins
pour les valeurs de n plus grandes qu’un certain nombre connu n,.

Examinons quelles sont les circonstances a cet égard dans I'exemple
emprunté aux observations de Kurtz.

En ordonnant les termes de I'équation (13) selon les puissances
de v on a

Ay Ay Ag Ay
" ”2(?“2“7 Tt
A A A
s A VR
ou, pour abréger
avt+ B2y = (16)
— 2
2 B+ ]/25 day 4y
o

Dans les observations déja citées de Kurtz, les semi-invariants
ont les valeurs suivantes:

A, = + 10,00 1y =—1,80
Ay

1, = + 6,72 — 12,122 (o)

Avec ces valeurs, la quantité — £ aussi bien que (5% — 4ay) pour
toute valeur de w < 0, va en augmentant lorsque n augmente. Il
en résulte que le graphique de (13) dans le quadrant — u, -+ v est
ineliné de gauche & droite dans toute son étendue; la dérivée i y est

v
constamment négative, excepté au point 0,0, ot elle s’annulle.

1) Ce n’est que la racine carrée positive qui doit étre acceptée ici, selon la
régle indiquée dans la note ') de la page 4, car pour v = 0 il n'y a que la va-
leur w = 0 qui est admissible, correspondant & l'unique racine réelle de (4).

2) Une correction, d’ailleurs sans importance pour notre exemple, qui m’a
été indiquée trop tard pour en profiter dansles caleuls, donne la valeur de 4, = 12,21.

2
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Puis, remarquons que ce graphique reste entiérement dans le
demi-quadrant limité au-dessus par I'axe des » positifs et au-dessous
par la diagonale

U=—0

car, en posant w = — v dans (13) on constate qu’aucune valeur posi-
tive de v ne peut satisfaire a cette équation, de sorte que la courbe (13)
ne peut franchir la diagonale.

Or, dans ce demi-quadrant, les courbes (14) correspondant & la
suite des nombres entiers n = —1, —2, —3, ... se rangent de gauche
a droite dans I'ordre de leurs indices n. Pour s’en rendre compte, on
forme la dérivée partielle d’aprés (14) en considérant » comme constant

" 8—?u(u2——3v2)~—2—?(uz——v2)+/12u—21

Avec les valeurs (18) des 4, on constate que

ov =0

on
dans le demi-quadrant en question, ot — % <<v. Dong, pour toutes
les valeurs de u, les courbes (14) dans ce demi-quadrant sont ordonnées
de gauche & droite selon les valeurs croissantes de n. Il g'en suit
que la courbe (13) coupe les courbes (14) de telle fagon que les racines

correspondant & n = —1, —2, —3 ... sont elles-mémes ordonnées
selon les valeurs croissantes de —u et de +v. Le cas des racines
conjuguées correspondant & n = 1, 2, 3... est tout analogue.

En calculant les racines dans l'ordre indiqué, il n’y a donc pas de
danger d’en omettre une plus importante que celles qu'on a déja
calculées.

Nous étant ainsi assurés que notre procédé donne les ra-
cines z, dans 'ordre voulu, il reste & voir si la série qui en résulte est
convergente. Dans ce but, nous allons examiner I'allure asgymptotique
de ses termes.

Valeurs asymptotiques de w et v. Pour n suffisamment grand, les
termes de quatrieme degré dominent les expressions (13), (14). Les
quantités u, v tendent alors vers les valeurs correspondant d’apres (13) &



s 1B e

ut —6u2ev? 4+ 01 =0 (22)
= (1—)2)v (23)
—v=(1+)2)u (24)

et ensuite, d’apres (14), a

—6an 34+ 2)2)

= 2
— 6 Ya
{ n32—|—21/2)}/ Y — K, nt 26)
4

nh =K, n% (27)

{ 6 ( 3—21/2)}%

les coefficients K,;, K, étant indépendants de n.

Valewrs asymptotiques des coefficients A. Dans la formule (5),
le dénominateur a la forme

—te=— {52} R
et puisque f (z,) =1
€=, N
M_{alo?zf (Z)L:zn 50
—v_iv=T1" 32




les coefficients U, V étant donnés d’apres (13), (14)

A y:
U=Zl—12u+2—?(uz——'v2)—3—‘fu(u2—3fu2) (33)

A
Vx(12—323u)v+3—fv(3u2—172) (34)

Le numérateur a une forme particuliérement simple dans I'exemple
d’un systéme installé & I'époque ¢ = 0 et maintenu constant par le
remplacement immeédiat des articles mis hors de service. Si I'installa-
tion originale comprend N articles, N étant aussi le nombre constant
de I'imstallation, alors le terme correspondant a la racine réelle z,
est tout simplement

N 2ot
A efot — —eﬁ (35)

/
_f (zo)
Pour les termes correspondant aux racines complexes, on trouve

ul
A'dutint . glpu—int -——2 Ne (U cos vt — V sin i) (36)
U2 + V2

Les valeurs de U,, V, jusqu'a n = 6 sont présentées dans le Tableau II.

Tableaw I1I.
Valeurs des constantes U, V,.

U V
" u Y T e Trve
0 10,0000 0,0 0,10000 0,0
1 11,1688 4,1458 0,07869 0,02921
2 14,3353 7,6696 0,05423 0,02902
3 18,4982 10,4425 0,04100 0,02314
4 23,1094 12,7773 0,03314 0,01832
5 27,8759 14,8877 0,02791 0,01491
6 32,5165 16,7797 0,02429 0,01253
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Valeurs asymptotiques de U et V. On obtient des expressions pour
les valeurs asymptotiques de U et V' en retenant seulement les termes
de plus haut degré dans (33), (34) et en introduisant la relation

asymptotique 3
w=(1—V)2)v

—v= (14 Vg)u

On obtient ainsi les formules alternatives

U=—%4—(2—]/§)v3:%‘—(4+3]/§)u3

V:% (4 —87V2)1® = %i(zﬂ/%)us

et par conséquent
V=(2—1)U

puis les valeurs asymptotiques

U 2472 8 (8+272) 1
U:4V: 4U 4 Ay v

= .0, [n% d’apres (26)

v 3.(1+1/§). 1

U4+ V: 4 Ay v
= (Cy/n%  d’apres (26)

les coefficients €' étant indépendants de n.

(23)

(24)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

Done, dans la solution (3), les valeurs absolues des termes de

la forme

U
U2+V2

¢ cos vt ,



tendent vers

1
C e—Hn'ls g cog vt
nY%

a2 | C e—kn'lst

pour les grandes valeurs de n, les coefficients C' et K étant indépen-
dants de n. Le cas des termes en sin vt est tout & fait analogue. La
convergence de la série (3) est alors assurée pour toute valeur de ¢t >0

par celle de I'intégrale
f ot dg
0

Les deux conditions que nous avons notées, auxquelles la solu-
tion formelle (3) doit satisfaire pour qu’elle soit utile, sont done
remplies dans le cas de notre exemple: la série (3) converge, et ses termes
se produisent dans l'ordre voulu, si on les calcule selon la méthode
indiquée, basée sur les équations (13), (14).
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