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B. Wissenschaftliche Mitteilungen

Sur une équation integrale
de l'analyse démographique et industrielle.

Dans un récent cahier du Bulletin, M. Hadwiger nous a fait
connaître une nouvelle solution d'une équation intégrale qui joue un
rôle fondamental dans l'analyse démographique aussi bien que dans

certains problèmes de l'assurance, de la génétique, de l'économie poli-
tique, etc. En passant, cet auteur nous donne un résumé de la méthode

appliquée à ce genre de problème en première ligne par Sharpe et

Lotka, ensuite par H. T. J. Norton, J. B. S. Haldane, A. Linder, et

plusieurs autres. A ce propos, il fait la remarque que cette méthode
(basée sur les travaux de P. Hertz et de G. Herglotz) présente des

difficultés parfois peut-être insurmontables.
Ces difficultés, dans les cas que j'ai rencontrés en pratique, ne

sont cependant pas sérieuses. Pour prévenir un malentendu à cet

égard, il sera peut-être utile d'illustrer les faits par un exemple.
Eappelons d'abord que l'équation fondamentale citée par M. Had-

wiger,

s'applique à divers problèmes, selon l'interprétation que nous don-
nons aux symboles. Dans son application démographique G (/) dé-

signe, par exemple, les naissances annuelles de filles à l'instant £,

et JSC (I) la reproductivité nette des femmes d'âge f, c'est-à-dire le

produit Z (I) m (£) dont le premier facteur £ (|) est la probabilité
pour un nouveau-né du sexe féminin de survivre à l'âge £; quant
au second facteur, m d f est la probabilité pour une femme d'âge |
de donner naissance à une fille avant d'atteindre l'âge f + d #. Dans

Par /h/red J. Loffta, New York.

(1)
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une autre application, à un problème industriel, le symbole G (<)

désigne, par exemple, les remplacements annuels de certains articles
d'emploi (tel que les traverses d'une voie ferrée), tandis que iï
désigne le produit £ dont le premier facteur est la pro-
habilité pour une traverse, au moment de son installation, de durer
en service jusqu'à l'âge !; le second facteur est le «taux instan-
tané de mortalité». La limite supérieure a de l'intégrale est le der-
nier âge pour lequel K a encore une valeur non nulle. Il est en-
tendu que K ne peut avoir que des valeurs positives, en effet,

On peut alors se demander quel sera le nombre annuel de rem-
placements nécessaires à une époque donnée, dans un système installé
au moment < 0 et comprenant alors jV pièces, étant donné que
chaque pièce mise hors de service est immédiatement remplacée par
une nouvelle, et que le système doit être maintenu constant. Ce

problème est tout à fait analogue à une question d'assurance sur la
vie traitée par L.Herbelot il y a une trentaine d'années *), cependant
sans application à aucun effectif.

A titre d'exemple basé sur la pratique ®), il conviendra ici d'illustrer
notre méthode au moyen des données publiées par E. B. Kurtz dans

son livre Li/e Expectancy 0/ PàysicaZ Property, 1930, p. 104, fig. 50.

Cet auteur trouve que la «courbe des décès», c'est-à-dire la fonc-
tion Z y K d'une certaine classe d'objets d'usage indus-

triel est représentée assez bien par une fonction du type I de

Pearson, laquelle, comme on le sait, est définie en termes des quatre
premiers moments de la distribution observée. Dans la suite, nous
admettrons ®) également, en traitant cet exemple, que les quatre
premiers moments suffiront à fixer les caractéristiques de la solution
cherchée.

*) Bulletin de l'Institut des Actuaires de France, 1909, p. 292.

*) Pour une application démographique, voir A. J. Lotka, Théorie analytique
des associations biologiques, Hermann et Cie., Paris, 1939, pp. 78 et seq.

') Ce n'est pas que cette hypothèse soit nécessaire pour l'application de la
méthode à illustrer. Voir p. 5, note -).

£ > 0

K 0
0< !< a

> a
(2)
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Cette solution, d'après F. Hertz et 6. Herglotz *), a la forme

oo

G(<) 2^"' (3)

1

les quantités étant les racines de l'équation caractéristique

/ (*) Z (I) d | 1 (4)

tandis que les constantes .4 dépendent des conditions initiales. Afin
de déterminer ces constantes, il faut connaître les valeurs de G (f) pour
0 < f < a, ce qui est nécessaire pour préciser le problème. Par un
procédé semblable à celui qui sert à définir les constantes dans une
série de Fourier ®), on trouve

F'"' G (<) — /G(< — I) Z(f) dfUf
^ 1 (5)

y | g—'»ni (f) d f

.Racines de l'egMafion caracfensfigtte fd,).

Pour calculer ces racines, posons

M„ J K (I) d f (6)

log« / (2) log« M„ — Aj 2 + A 22 _A 23 _)_ ii ^4 (7)

L'équation (7) n'est autre chose qu'une définition des semi-
invariants A (Thiele) de la fonction If (£). Pour qu'elle satisfasse
à (4), l'on doit avoir

loge / («) loge 1 2 TT W i
m + 1, 2, 3,...

(8)

1) P. Hertz, Mathem. Annalen 1907, vol. 65, p. 1 ; G. Herglotz, ibid. 21-87.
*) A. J. Lotka, Annals of Mathem. Statistics, 1939, vol. 10, p. 9.



Racine reeZte. Dans les problèmes qui nous occupent, if (£) ne
peut avoir que des valeurs positives. On voit facilement qu'alors
(4) ne peut avoir qu'une seule racine réelle z„, qui d'ailleurs, dans

l'exemple dont nous nous occupons ici, sera 0, puisque les pièces de

l'installation sont remplacées immédiatement au fur et à mesure
qu'elles sont usées, de sorte que

M„ (#) d | 1 (9)

et

log« 0 (10) i)

.Racines complexes. Pour dégager les racines complexes, nous
posons dans (7)

Z=lt + ît) (11)

loge / (*0 9> K *>) + » V K ") (12)

où l'on a écrit, pour abréger

g? (M, D) logg Mg— Ai n + — »*) — « (M® — 3D*)

A

+ —y
(l/d — 6 M® -j- id) 0

Âq

y (M, d) — Aj D + ^2 M » — — v (3 n- —1)2) _|_

L. ^ 12 21 O
(14)

H MÎ) (ir — tr) '2 jrn
8!

Pour chaque valeur de n, on a donc une paire d'équations simul-
tanées en n, n. Pour leur résolution numérique, le procédé suivant a

été trouvé le plus pratique:

i) Même si z„ ^ 0 la solution de (8) pour la racine réelle 2„, ne présente
aucune difficulté pratique si | «„ | est suffisamment petit, ce qui sera généralement
le cas dans l'application au problème démographique. Les termes au-delà du
deuxième degré sont alors négligeables, et on n'a qu'à résoudre une simple équation
quadratique, en choisissant la racine qui satisfait à 14).
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En admettant pour m une suite de valeurs convenablement choi-
sies, on calcule d'après (13) les valeurs correspondantes de y, ce qui
est facile puisque les puissances impaires de y sont absentes, de façon
qu'on a affaire à une équation biquadratique *).

On introduit ensuite dans (14) les couples de valeurs m, y ainsi

obtenus, et l'on calcule les valeurs de n qui en résultent et qui, en géné-

ral, ne seront pas des nombres entiers. Cependant, en traçant la courbe
de w en fonction de ît et de il est facile d'en extraire des valeurs

(provisoires si l'on veut) de m, y correspondant aux valeurs entières
de to. Ces valeurs provisoires peuvent servir à calculer des valeurs

plus exactes d'après les méthodes bien connues ^).
Ces calculs et ces graphiques ont été faits en partant des données

de Kurtz; les résultats sont présentés dans la fig. 1 et le tableau I.

Falews TOwroengMes et cowr&es correspoTOdcrotes.

Dans l'exemple déjà cité de Kurtz, les valeurs de m et y ont
été calculées jusqu'au vingtième ordre (to 20) ; les résultats in-

0 II faut, cependant, prendre garde en formant la racine carrée, de choisir
le signe qui rend correctement la racine réelle. Voir page 4, note *).

*) Dans ce qui précède, nous nous sommes tenu particulièrement à l'exemple
où le semi-invariant de plus haut ordre était ce qui comprendra la plupart
des cas pratiques. Des remarques plus ou moins analogues s'appliquent cependant,
mîTOatis «wSamfe, aux cas où les semi-invariants jusqu'au septième ordre entrent
en ligne de compte. L'équation (13) sera alors une bicubique en y dont la résolution
algébrique sera toujours possible. A la rigueur, on pourrait même aller jusqu'à
tg, et résoudre l'équation (13) comme une équation du 4® degré en

Toutefois, ce n'est que très rarement, dans les problèmes de cette sorte,
qu'il est nécessaire, ou même justifié, d'aller au-delà de A,.

Il convient d'effectuer les opérations dans l'ordre indiqué, ce procédé étant
le plus direct. Cependant, il y a diverses possibilités.

Au lieu de calculer ?i d'après (14) pour des paires de valeurs données de
m et y correspondant à (13), on peut calculer d'après l'équation cubique (14) une
suite de valeurs de y pour une suite de valeurs données des ît et une valeur de w
entier. En admettant pour —w les valeurs 1, 2, 3,... on obtient ainsi une famille
de courbes (14) dont les intersections avec (13) correspondent aux racines de (4).

On peut même éviter l'inconvénient d'équations cubiques et n'avoir à ré-
soudre que des équations quadratiques en éliminant r* de (13) et de (14) multi-
pliée par u. On obtient de cette façon une nouvelle famille de courbes pour —re
1, 2, 3,.. qui, elles aussi, donnent par leurs intersections avec (13), les racines
voulues de (4). Cependant, il y a lieu de remarquer que l'orthogonalité des courbes
(13), (14), propriété avantageuse pour le calcul, n'appartient plus à la famille
de courbes obtenue par l'élimination de g*.
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diqués dans le tableau I ont été obtenus au moyen du graphique
(fig- 1) i).

_

Dans la fig. 2, la position des racines successives a été indiquée
le long de la courbe (18). On voit les points en question se serrer de

plus en plus étroitement à mesure que w augmente. En effet, le calcul
montre que si la valeur de » est d'environ 14, w est de l'ordre de 5000.

Toutefois, la suite de ces points s'étend à l'infini. Les six premières
composantes oscillatoires sont tracées dans la fig. 3, et pour les étapes
initiales, plus en détail, dans la fig. 4.

Puis, la fig. 5 présente la courbe définie par la solution (3), en

retenant les six premières composantes oscillatoires. Sur le même

graphique, on a tracé la distribution à travers le temps des remplace-
ments d'après leurs rangs successifs. On s'assure facilement que

VALEURS DE -71 SELON LIQUATION 14-).

CORRESPONDANT AUX PAIRES DE VALEURS DEFINIES PAR L'EQUATION (13)

22

20

/6

/6

/4

— 71J /2

/o

8

6

4

2

0
0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

-21 ou + 2f

D'après les observations de Kurtz, E. B., «Life Expectancy of Physical Property» 1930, page 104, fig. 50.

_ _
Pig. 1.

i) Jusqu'au sixième ordre, ces valeurs étaient toutefois connues par un
calcul antérieur effectué par une méthode un peu différente.

-) Les remplacements directs de l'installation initiale sont «de premier rang»,
leurs remplacements à leur tour sont «de deuxième rang», et ainsi de suite.

/
/

Courbe de -a / Courbe de /
y//

/
r

/////
'

Graphique construit pour obtenir
les valeurs de Un.^n correspondant
aux valeurs entières de-/i>6
Les points calculés directement
sont indiqués par les cercles O

1 1 1



TabZeaw J.

Valeurs de —« selon l'équation (14) correspondant aux paires de

valeurs définies par l'équation (13).

(Voir le graphique fig. 1.)

—n Un Vn —ri Un Vn

i — 0,110 0,578 12 — 1,100 2,535
2 — 0,301 0,989 13 —1,137 2,620
3 — 0,465 1,284 14 —1,175 2,700
4 — 0,595 1,515 14,71 — .1,200 2,750
5 — 0,698 1,705 15 — 1,213 2,775
6 — 0,780 1,861 16 —1,238 2,840
7 — 0,860 2,000 17 — 1,260 2,905
8 — 0,918 2,130 18 —1,290 2,960
9 — 0,975 2,250 19 — 1,310 3,010
9,55 -1,000 2,309 20 —1,340 3,080

10 — 1,020 2,350 22,62 - 1,400 3,219
11 —1,070 2,445

Les valeurs de Mn, % correspondant à—n 1, 2, 3, 4, 5, 6 et à 9,55, 14,71,
22,62 sont calculées directement; les autres sont interpolées par la méthode gra-
phique. D'après les observations de Kurtz, E. B., «Life Expectancy of Physical
Property», 1930, p. 104, fig. 50.

la solution reproduit en effet la sommation à chaque instant des

remplacements contemporains. Au début seulement, jusque vers
t 5, ces six premières composantes oscillatoires sont insuffisantes.
Ce ne serait qu'une perte de temps de vouloir pousser les calculs
plus loin pour cette partie de la courbe, car dans ces premières étapes
il ne s'agit que des remplacements de premier rang qui ont une valeur
appréciable. En effet, pour f 5, ils représentent à peu près 999

pour mille de la somme totale des remplacements. Or, ces remplace-
ments de premier rang ne sont autre chose que les valeurs de la fonc-
tion ET (f), connues pour 0 < f < o comme données fondamentales
du problème.



20 PREMIÈRES RACINES COMPLEXES DE L'EQUATION CARACTERISTIQUE (4)
Représentées par les intersections de la courbe [13] avec les courbes de la famille 14]

-0.2

-0.4

-0.6
*

* -0.8

- /.o

- /,2

- /.4
Les points d'intersection sont indiqués par les cercles ©

En tenant compte des 4 premiers semi-invariants, les équations (13) et (14) étant alors du 4^ degré.
D'après les observations de Kurtz, E. B., «Life Expectancy of Physical Property», 1930, page 104, fig. 50.

Pig. 2.

0,2 0,4 0.6 0.8 l,0 1,2 1.4 1.6 1.8 2.0 2.2 2,4 2.6 2.8 3,0 3,

<»

•Si
'o^O.

L 1 J aJLi _ Ä

PREMIÈRES SIX COMPOSANTES OSCILLATOIRES DE LA COURBE DES REMPLACEMENTS

REMPLACEMENTS ®

* Écarts mesurés de la composante apériodique comme base.
D'après les observations de Kurtz, E. B.. loc. cit.

Pig. 3.
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PREMIERES SIX COMPOSANTES OSCILLATOIRES DE LA COURBE DES REMPLACEMENTS

REMPLACEMENTS • DETAIL OES ÉTAPES INITIALES

LAPS DE TEMPS DEPUIS L'INSTALLATION INITIALE

Écarts mesurés de la composante apériodique comme base

D'après les observations de Kurtz, E.B., loc. cit.

Fig. 4.

Enfin, la fig. 6 présente en détail les premières étapes de la courbe
de la fig. 5. Elle montre aussi l'histogramme des données originales
et le fragment correspondant de la courbe de Pearson.

Il faudrait encore noter que l'application de la méthode Hertz-
Herglotz n'est nullement bornée au cas où l'installation initiale a

lieu à un instant f. Cette méthode s'applique aussi, par exemple, au
cas d'une population dont la répartition par âge est donnée à l'instant
f, et dont on veut connaître l'évolution ultérieure sous le régime d'une
table de mortalité et de fécondité donnée. En effet, ce fut là la pre-
mière application *) de cette méthode aux problèmes du genre qui
nous intéresse ici.

i) F. R. Sharpe et A. J. Lotka, A Problem in Age Distribution, Phil. Mag.,
1911, tome 21, p. 435.
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REMPLACEMENTS TOTAUX*
REMPLACEMENTS

LAPS DE TEMPS DEPUIS L'INSTALLATION INITIALE
* D'après les observations de Kurtz, E.B., loc. cit.

Fig. 5.

REMPLACEMENTS TOTAUX*

REMPLACEMENTS
DETAIL DES ÉTAPES INITIALES

* D'après les observations de Kurtz, E.B., loc. cit.

Fig. 6.
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Ordre des racines w„, i>„. Pour que la solution formelle (3) soit

utile, il faut

lo que cette série soit convergente;
2° que le procédé (13), (14) pour calculer les racines de (4) les produise

comme suite ordonnée selon les valeurs décroissantes de n„, du moins

pour les valeurs de n plus grandes qu'un certain nombre connu
Examinons quelles sont les circonstances à cet égard dans l'exemple

emprunté aux observations de Kurtz.
En ordonnant les termes de l'équation (13) selon les puissances

de s on a

A4 / A4 Ao Ao \"+i) +

+ (ii«4—+ =0 (15)

ou, pour abréger

a®* + /8®* + y=0 (16)

_ -^ + T/y-t»y
2a

Dans les observations déjà citées de Kurtz, les semi-invariants
ont les valeurs suivantes:

^ + 10,00 A3 — 1,30

^ + 6,72 — 12,12 2)

Avec ces valeurs, la quantité —/? aussi bien que (/P — 4ay) pour
toute valeur de w < 0, va en augmentant lorsque n augmente. Il
en résulte que le graphique de (13) dans le quadrant — m, + ® est

incliné de gauche à droite dans toute son étendue ; la dérivée y est
CM?

constamment négative, excepté au point 0,0, où elle s'annulle.

i) Ce n'est que la racine carrée positive qui doit être acceptée ici, selon la
règle indiquée dans la note *) de la page 4, car pour 0 il n'y a que la va-
leur m 0 qui est admissible, correspondant à l'unique racine réelle de (4).

*) Une correction, d'ailleurs sans importance pour notre exemple, qui m'a
été indiquée trop tard pour en profiter dans les calculs, donne la valeur de A4 12,21.

2
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Puis, remarquons que ce graphique reste entièrement dans le

demi-quadrant limité au-dessus par l'axe des « positifs et au-dessous

par la diagonale
% — — v

car, en posant m —u dans (13) on constate qu'aucune valeur posi-
tive de « ne peut satisfaire à cette équation, de sorte que la courbe (13)

ne peut franchir la diagonale.
Or, dans ce demi-quadrant, les courbes (14) correspondant à la

suite des nombres entiers n —1, —2, —3, se rangent de gauche
à droite dans l'ordre de leurs indices w. Pour s'en rendre compte, on
forme la dérivée partielle d'après (14) en considérant % comme constant

<5» — 2 jr
(20)

<5n A, Ao

— M (M* — 3t>2) — — («2 —1>2) -f Aa M — Al

Avec les valeurs (18) des A, on constate que

dans le demi-quadrant en question, où —w<». Donc, pour toutes
les valeurs de m, les courbes (14) dans ce demi-quadrant sont ordonnées
de gauche à droite selon les valeurs croissantes de «. Il s'en suit

que la courbe (13) coupe les courbes (14) de telle façon que les racines

correspondant à w —1, —2, —3... sont elles-mêmes ordonnées

selon les valeurs croissantes de —m et de +v. Le cas des racines

conjuguées correspondant à «= +1, 2, 3... est tout analogue.
En calculant les racines dans l'ordre indiqué, il n'y a donc pas de

danger d'en omettre une plus importante que celles qu'on a déjà
calculées.

Nous étant ainsi assurés que notre procédé donne les ra-
eines £„ dans l'ordre voulu, il reste à voir si la série qui en résulte est

convergente. Dans ce but, nous allons examiner l'allure asymptotique
de ses termes.

Falews asi/rapfo%Mes de m ef ». Pour n suffisamment grand, les

termes de quatrième degré dominent les expressions (13), (14). Les

quantités w, » tendent alors vers les valeurs correspondant d'après (13) à
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îF 6lF _j_ ^4 _ Q

w (1 — J/2") «

— Ü (1 + J/2) «

et ensuite, d'après (14), à

— 67m (8 -|- 2 1/2)

*= IT

[—671 (3 + 2 J/2) %
j./ \ n. 74.r

(22)

(23)

(24)

(25)

(26)

(27)

les coefficients Jij, -Kg étant indépendants de n.

FaZewrs ost/mpto%ttes des coe//fcfenfa ^4. Dans la formule (5),
le dénominateur a la forme

et puisque / («„) 1

— /' W

(3^

d/ (*

(28)

/ (2) «5 «

<5 loge / (*0

d a

iœ d w 1

— + t
i M d«

77 — « F
772 +F*
77 + 7 F

(29)

(30)

(31)

(32)
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les coefficients £7, F étant donnés d'après (13), (14)

Î7 Ai — Aa M + (M^ —1;2) — A w («2 — 3 v^) (38)

F (Aa — 3 A3 w) « + v (3 iF — A*) (34)

Le numérateur a une forme particulièrement simple dans l'exemple
d'un système installé à l'époque f 0 et maintenu constant par le

remplacement immédiat des articles mis hors de service. Si l'installa-
tion originale comprend IV articles, IV étant aussi le nombre constant
de l'installation, alors le terme correspondant à la racine réelle
est tout simplement

.NV°'
d e®»' (35)

— /' («,)

Pour les termes correspondant aux racines complexes, on trouve

2IV e"'
_|_ ^"g(u—»»)/ (£7 cos vf — F sin Vf) (36)'

772 _|_ 72 \

Les valeurs de ££„, F„ jusqu'à w 6 sont présentées dans le Tableau II.

Tableau II.
Valeurs des constantes ££„, F„.

71 £/ y 1/ F
U2 + F2 £/2 + y2

0 10,0000 0,0 0,10000 0,0
1 11,1688 4,1458 0,07869 0,02921
2 14,3353 7,6696 0,05423 0,02902
3 18,4982 10,4425 0,04100 0,02314
4 23,1094 12,7773 0,03314 0,01832
5 27,8759 14,8877 0,02791 0,01491
6 32,5165 16,7797 0,02429 0,01253
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Fedewrs asT/wpioitgwes de F ei F. On obtient des expressions pour
les valeurs asymptotiques de F et F en retenant seulement les termes
de plus haut degré dans (83), (34) et en introduisant la relation
asymptotique

u (1 — 1/2) « (23)

— u (l + (/2)w (24)

On obtient ainsi les formules alternatives

F — — (2 — V2) e» — (4 + 3 V2) w® (37)
3 3

F ^ (4 — 3 ]/2) V» 4"- (2 + l/2) m® (38)
3 3

et par conséquent

F (l/2— 1)77 (39)

puis les valeurs asymptotiques

F 2 + 1/2
_

3 (3 + 21/2) 1

[72 + 72 4 [7 4
'

^ «a

C\/w% d'après (26) (41)

^ _ JL ^ ^ _L (42)
F® + F* 4 Z, v®

(7a/n% d'après (26) (43)

les coefficients F étant indépendants de «.

Donc, dans la solution (3), les valeurs absolues des termes de

la forme

e cos vi,F* + F®
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tendent vers

C e— e"' cos

n% < (7 ß—fen*/**

pour les grandes valeurs de w, les coefficients C et If étant indépen-
dants de w. Le cas des termes en siw uf est tout à fait analogue. La
convergence de la série (3) est alors assurée pour toute valeur de f > 0

par celle de l'intégrale

e— la:

Les deux conditions que nous avons notées, auxquelles la solu-

tion formelle (3) doit satisfaire pour qu'elle soit utile, sont donc

remplies dans le cas de notre exemple : la série (3) converge, et ses termes

se produisent dans l'ordre voulu, si on les calcule selon la méthode

indiquée, basée sur les équations (13), (14).
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