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Über die Inversion des Gaußschen
Wahrscheinlichkeits-Integrals

Yon A Lehmann, Bern

§ 1.

Das Gaußsclie Wahrscheinlichkeitsiiitegral.

Als .FeMergesefc bezeichnet man eine Funktion, welche die Häufig-
keit eines Fehlers durch seine Grösse ausdrückt. Bei Zugrundelegung
des Gaußschen Fehlergesetzes ist die Wahrscheinlichkeit dafür, dass

ein Fehler zwischen den Grenzen — A und A liegt, gegeben durch das

Integral

Herleitungen und Begründungen dieses wichtigen Gesetzes findet
man in Lehrbüchern der Wahrscheinlichkeitsrechnung, z. B. in Gm&er

[1] i) oder Mhses [2].
Seiner grossen praktischen Bedeutung wegen ist das Fehler-

integral für die in Betracht fallenden Abweichungen A berechnet
worden. Eine Tafel findet sich in JaTm/ce-Emde [8].

Bei variablem s (s komplex) wird das Integral

eine eindeutige analytische Funktion der oberen Grenze 0.

Diese ist nicht durch sogenannte elementare Funktionen darstell-
bar. Um daher den Wert der Funktion $ (2) für jeden beliebigen
Wert der Veränderlichen angeben zu können, kann man zu Beihen-

entwicklungen greifen.

i) Die bei Autorennamen angebrachten Zahlen beziehen sich auf das Lite-
raturverzeichnis.

0

0

2
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I. Beständig konvergente Potenzreihen.

Die ganzen transzendenten Funktionen

0 (2) und 0 (2)

können nun una den Nullpunkt in Potenzreihen entwickelt werden,
die in der ganzen Ebene konvergieren.

Die erste dieser Potenzreihen ergibt sich sofort aus der Entwick-
lung der Exponentialgrösse im Integranden. Wenn man diese Reihe

gliedweise integriert [4], so folgt:

(1) $ (*) J=
[/ TT

g3 ^5 g' 2"

Tis 2T5 3T7 4T9

Ebenso leicht ergibt sich eine zweite, gleichfalls nach steigenden Po-

tenzen von s fortschreitende Reihe:

(2)
^

(2^2)2
^

(2^)2
1.3 1.3.5 1.3.5.7

Diese Reihen sind zur numerischen Berechnung unserer Transzendente
bei kleinen Werten des Argumentes |a| brauchbar, weil sie dann schnell

konvergieren.

Für grosse Werte von |ä| (M >1) würde die Rechnung sehr müh-
sam werden. In diesen Fällen bedient man sich mit Vorteil einer
Reihe, welche nach fallenden Potenzen von 2 fortschreitet.

II. Semikonvergente Entwicklung.

Durch partielle Integration ergibt sich unmittelbar

(3) <p(*)=l-
(W • £

1
I

1.8 1.3.5
1

1.3.5.7
r» ..9 /r» ..9\2 /r» ,.o\32«® (2^2 (2 ^2)3 (2 2-2)

t

Die Glieder der Reihe nehmen ihrem Betrage nach zuerst stark ah,
später aber wachsen sie schnell und über alle Grenzen. Der Rest-
ausdruck ist absolut kleiner als der Betrag des letztberücksichtigten
Gliedes. Die Genauigkeit kann somit nicht unter den Absolutwert
des kleinsten Gliedes der Reihe herabgedrückt werden. Für den
Index to des Minimalgliedes findet man

/
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n 2® H

wobei [] das Gaußsche Klammersymbol bedeutet, und hieraus für
den Rest die Abschätzung:

§ 2.

Die Kramp-Laplacesche Transzendente und das allgemeine
Inversionsproblem.

Eine bestimmte Fragestellung *) in der Wahrscheinlichkeits-
rechnung läuft darauf hinaus, die obere Grenze im Integral

-jL /V*"dai
(/yt ./

0

so zu wählen, dass das Integral einen gegebenen Wert
A

e ^ da: a besitzt.

0

Die Bestimmung von A, A A (a) heisst inversion. Es ist

0,476 936 276 die Kramp-Lapface.scfee Trans^ewdenfe

(auch «wahrscheinlicher Fehler» genannt).

Es gelingt nun aber nicht ohne weiteres, diese Inversion auszu-
führen.

Zahlreiche Autoren haben versucht, das Problem auf mdirefefem

IFege zu lösen. Sie beschränkten sich darauf, die Gleichung

0 (A) a

2

*) Man will zu einer gegebenenWahrscheinlichkeit die Fehlergrenze bestimmen.
Dieses Problem stellt sich oft bei der exakten rechnerischen Auswertung statisti-
sehen Beobachtungsmaterials.
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mit Hilfe der vorhandenen Tafeln für diese Funktion durch Inter-

polation zu lösen. Daher kommt es, dass über die Grösse A

verschiedene Angaben gemacht wurden. So hat Fbicke [5] den Wert

Al — 0,476 9360 gefunden.

Hagfew [6] setzt

0,476 9364.

A I — 0,476 936 berechnet.

Cowrwoi [7] hat

A /
^

2

Met/er [8] gibt in seiner Wahrscheinlichkeitsrechnung für

1
die Formel an:

1,1?' 1 _+ 5L2 4^
welche sich aus der Entwicklung des Integrals

Ç

ye~*" da; — ergibt.
*0

Auf diese Weise ist es sehr mühevoll, ç zu bestimmen.

Opite [9] hat in seiner Schrift «Die Kramp-Laplacesche Trans-
zendente und ihre Umkehrung» meines Wissens als erster eine direkte
Mefkode zur Lösung der genannten Gleichung entwickelt. Als An-
wendung ermittelt er den Wert

A I - 0,476 936 2762
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auf 10 Dezimalen genau, und fügt seiner Arbeit eine Tabelle bei, in
der die zu den prozentualen Wahrscheinlichkeiten gehörenden Fehler-

grenzen mitgeteilt werden.

In dieser Arbeit sollen nun neue Wege aufgesucht werden, um
zu einer direkten Lösung für das a%ememe InremowsproWem zu

gelangen. Unter einer Lösung des Inversionsproblems verstehen wir
eine explizite Darstellung der Funktion

« « (0

die durch die Relation
S

y e* dt e

o

definiert ist. Wir werden uns wie Opite auf die Darstellung durch die

um den Nullpunkt Ç 0 entwickelten Potenzreihe beschränken, so

dass die Aufgabe darin besteht, die Koeffizienten dieser Reihen-

entwicklung zu ermitteln.

Auf das von Opffc entwickelte Verfahren, das ziemlich umstand-
lieh gestaltet ist, werden wir nicht näher eintreten, sondern uns sogleich
einigen allgemeinen Methoden zuwenden, um diese dann später für
das vorliegende spezielle Problem nutzbar zu machen.

§ 3.

Eine Darstellung der Lösung mit Differentialoperatoren.

Forar/.ssefermjf: Es sei a (f) eine in einer Umgebung von 0 (Kreis K,
Radius K, J f | < B) reguläre, daselbst nirgends verschwindende

Funktion. Auch die Reziproke ist dann in [ f I < R regulär. <7 sei
a

ein beliebiger Weg in K von 0 bis 0. Dann stellt das Integral

C) 2

£(*)
b
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Kl < r Min K(g)|
für £ < B

eine eindeutige analytische Funktion der oberen Grenze dar. Es ist
dann

£ £ (z) in [ 21 < R regulär,

und weiter ist 0 £ (0).

Die Funktion £ (0) vermittelt eine Abbildung des offenen Kreises K
auf eine Umgebung £ 0.

Zu dieser Umgebung gehört sieber folgender Kreis [10]:

Kreis C, Radius r,

Da ausserdem die Ableitung

1

£' (2) —- 0 ist in z < E,
a (0)

so gibt es eine in dieser Umgebung von 0 reguläre mrerse Funktion

g g (£),

wobei 0 z (0) ist.

Wir suchen nun eine für die Umgebung £ 0 gültige Entwicklung

(1) z «i £ -|- »a £^ + «3 £® -f-

die wir schreiben:

vi z'd (0)
(2) 2-^ f.

r 1

Die auftretenden Ableitungen sollen nun bestimmt werden. Es ist
noch

dz 1

dz

Indem wir die gegenseitige Abhängigkeit von z und £ berücksichtigen,
ergibt sich folgende Kette von Operationen, es ist :
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af

<fc\ d
/ — — ^'(C) nach (3) ersetzt

y

a (2) — J 2'*~''(f) das Verfahren wiederholt

(4)

I ,«({)
r-1

(a(^)— 1 «'(£) und schliesslich

d V"~*>

2W(C)=(a(2)—j a (2)

Unsere gesuchte Entwicklung (2) nimmt dann folgende Gestalt an:

(5)

Das Umkehrproblem hat uns somit auf den Operator

(6)

Setzen wir abkürzend

d \*
a (2) —- a (0) geführt.

a£ y

(7) a (2)— a(2) ç>i(2), so gilt die Differentialrekursion:

(8)
%(» «(*) 9ViO*)> (& > 1)

und ç?q (2) a (2)
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Wir stellen die ersten 5 Entwicklungen des Operators in einer
Tabelle zusammen. In der Schreibweise sollen obenstehende Indizes
Potenzen, untenstehende Indizes die Ordnung der Ableitung bezeichnen.

k 1, a«i
7c 2, ç>2 ocj 4" aa[
k 3, ç?3 a® ag -j- 4 or ax aj + oca®

k 4, a^ a4 + 4 a® a| + 11 a^ af aj + 7 a® ax ag + aa[
k 5, ç?5 a® ag -(- 4 a* a| -f- 8 ag ag -(- 7 a* ai]

-f- 7 a4 ax ag -f- 34 a® a] ax + 11 a® a®
0C3

-f- 21 a® a'x ag -f- 26 a® a® ag + aa®

Diese Angaben zeigen deutlich genug, dass das allgemeine Bildungs-
gesetz eine recht komplizierte Struktur aufweisen wird.

In einfacheren Fällen gelingt es explizite Ausdrücke zu gewinnen.
So haben Pmc/ierle [11] und Tosccmo [12] Rekursionsformeln für den

Operator

entwickelt.

Wir machen die Feststellung, dass die Summe der Koeffizienten
von çoj. gleich k! ist.

Zum Beweis genügt es a (2) P zu setzen, da die Koeffizienten
unabhängig von der speziellen Wahl der Funktion auftreten. Aus der

Definitionsgleichung ergibt sich dann:

d \*
r— e* fc!e<i+*>*

^2 y

In den Entwicklungsgliedern rechts lässt sich überall aus-

klammern; in der Klammer bleibt die Summe der Koeffizienten von
ç)j. Nach Kürzung durch bleibt für diese Summe der Wert k!

q. e. d.

Für die formal angesetzte Reihe



die eine Erweiterung der Reihe (5) darstellt, lässt sich die erzewgrende

iUmfctiow angeben.

Führen wir
m 9? (2) als neue unabhängige Variable ein, so gilt die Operatoren-

relation
d dw (i / à d \ d

cte & <2w' \ & y

Um die Übereinstimmung mit (9) zu erzielen, setzen wir —— a (2),

oder indem wir die Variablen trennen und integrieren:

0

Für die Umkehrfunktion schreiben wir symbolisch

0 r/V (m)

Die Formel (9) geht mit diesen Setzungen über in

Dies ist die Taylorentwicklung der Funktion

a [çf* KFC)] •

Die erzeugende Funktion erhält somit die endgültige Gestalt:

(10) ?((-« "dl) * • | tr * k' (v(«)+f)]

Bezüglich der iTonrer^en^ machen wir folgende Feststellungen:

«y für /estes 0 aus iT ist çf* (9? (0) -f- |) in einer Umgebung von
f 0 regulär.
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&j oc (<) ist in einer Umgebung von 0 regulär. Da ausserdem

çf*
(99 (2)) £ ist, so folgt :

cj oc [çT* (99 (2) -f- f)j ist in einer Umgebung von f 0 regulär.

Wir spezialisieren unsere gefundene Beziehung (10), indem wir

a (2) setzen, und erhalten zunächst

Nun ist ja

'-/J) -/«""*
0 0

99^ (£) 2 unsere gesuchte Umkehrfunktion.

Aus 99' (2) e *" folgt

99'(2)

als Ableitung der Umkehrfunktion. Diese Relation oben eingesetzt,
ergibt :

cfe

2
0

<r
e* — I e"

cfe/

c"

n! dC

Dieser Ausdruck stellt die Ableitung unserer gesuchten Umkehr-
funktion 2 2 (4) dar, entwickelt nach Potenzen von 4. Die Potenz-
reihe darf gliedweise integriert werden. Es ergibt sich:

(11)



— 25 —

Mit der speziellen Funktion lässt sich nun der Operator leichter
behandeln.

Da sich die Exponentialfunktion beim Differenzieren, abgesehen

von einem Faktor, reproduziert, erscheint folgender Ansatz plausibel:

(12) ^ e»* B»(s)

wo B, (2) ein Polynom 7c'®° Grades darstellt.

Unsere Formel (11) nimmt dann folgende Gestalt an:

(13)
B,-i(0)y jviZj v! r.

Man hat nun die durch (12) definierten Polynome näher zu unter-
suchen. Es ergibt sich leicht die Eekursion

(14) Bj (2) 2 7c 2 B^ (2) + Bft-i (2), (7c > 1)

wobei Bp (2) 1 ist.

Die Polynome B„ (2) lassen sich also rekursiv bestimmen. Wir
wollen die ersten anschreiben:

(15) B„(2
Ei (2

Ba (2

Bg (2

B^(2
• Bj(2

1

22

822 + 2

4823 _p. 282

3842« + 36822 + 28

384025 _j_ 5216+ + 10162

Wir setzen noch:

(16) <kc =-^/t (0) •

Wie sich leicht zeigen lässt, ist dann

(fa, >0 und <]++i 0 (r 0,1, 2,

Wir erhalten somit für (13) die endgültige Gestalt:
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(17) V fär + l
(2"+1)Ï

Die zur Berechnung notwendigen Werte ^ls Nullwerte der Poly-
nome wurden von A DiggeZmawn [13] ermittelt. Wir geben

einige Zahlen wieder:

(18) % 1

2

g« 28

2e 1016

gg 69904

g40 779 6768

g,o 128 236 6912

244 291 885 678 464

gig 878 442 070 428 16

g„ 337 752 227 494 400 512

gag 161 520 244 979 648 174 08

Es sei nun

(19)

Dann ergibt sich aus (17) f

(20)

Für die Transzendente ^ und A40 gewinnt man die Reihenentwick-
lungen:
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5

<?2 /V^V ?4 / K-7T
5

*io ^\20/ ^ 3! \ 20/ 5! \ 20

woraus sich die Werte ergeben

A
2 0,476 936 276...

Aio 0,088 855 990...

Wir fügen noch die Werte hinzu

A joe 0,008 862 501...
A1000 0,000 886 227...

ifowriergenmidràs.

Der Konvergenzradius B der Potenzreihe (17) ist nach der be-

kannten Formel von Ca-McJt^-üadamard

1

B 2n+l

n—>-oo
lim sup 1/ ——" (2w+l)!

Andererseits ergibt sich B als die Entfernung der dem Ursprung
£ 0 nächstliegenden Singularität der inversen Punktion 0 ä(£).
Da die Koeffizienten der Potenzreihe (17) reell und nicht negativ
sind, findet sich eine der nächstgelegenen Singularitäten auf der

reellen positiven Axe, da ihre Schnittpunkte mit dem Konvergenz-
kreis nach einem Satz von Fiiwih [14] eine singuläre Stelle der dar-

Fr
gestellten Funktion sein muss. Der bezeichnete Punkt ist £ —.2

Dort ist 2 (£) wesentlich singulär.

1 2
sowie auch —und 00 sind die einzigen Konvergenzwerte

von £ 99(0). Vgl. flwrmte [15] oder P(%a-$2ec/ö [16].
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Für den Konvergenzradius B findet sich der Wert

2

Ein Vergleich mit der oben angegebenen Formel liefert die asympto-
tische Relation

2n

|/g2n 4

« e |/tt

falls noch die SFrlww/scfee Formel

n! — "j/2 TT to ra" e~"

verwendet wird.

§ 4.

Die Methode der unbestimmten Koeffizienten.

Die Potenzreihe
oo

(1) CO =^a„2" («1 + 0)

v=l

stellt in ihrem Konvergenzkreis eine reguläre Funktion von e dar.
Es gibt dann eine Potenzreihe

oo

(2) 2 ^ a„ co", welche in einer Umgebung von co 0 konvergiert
,/( l

und der Gleichung (1) identisch genügt.

Es muss für diese Iteihe identisch in co

OO / OO \ -)»

(3) co 2 «„ 2 ^
V 1 l /

Nach dem Weierstraßschen Doppelreihensatz kann die rechte Seite
nach Potenzen von co geordnet werden. Der Koeffizientenvergleich
liefert dann folgende Bestimmungsgleichungen für die gesuchten
Koeffizienten oc„:M
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(4) 1

0

0

0

0

— (ïj CCj

(Xj &2 ~f" GC^

aj ag -j- 2 cfg ag -f- «3 a®

— Ctj CC^ ~{— 2 C&2 CC^ OCg —{— (X2 ^ ^3 ^1 ^2 ~~f"~ ^4

— (X-^ OCg —(- 2 $2 0^1 ^4 ""f" ^ ^2 ^2 ^3 ~~1~ ^ ^3 ^1 ^ 2~J~ ^ ^3 ^1 ^3

-|- 4 «4 a® 1X3 + O5 aj

Hieraus ergibt sich

(5)
1 Cfco oc. " 2 0^2 OCjl OC2 ~~t~ ^3 ®C

1

Man bemerkt, dass nach diesem Verfahren die ersten Koeffizienten
a rekursiv bestimmt werden können, dass aber die Ermittlung aus

praktisch-technischen Gründen abbricht, falls keine allgemeine expli-
zite Darstellung von a„ angegeben werden kann.

Mwwendww/: Auf unser Problem übertragen, ergeben sich folgende
Werte:

Uj 1 1 aj

ßj 0 0 CX2

*
n ^2

«3 U 0C3 aj
B 3

ß4 0 0 «4 Äj Äg

«s 0 ctg — «ja, — cq ag H orj
10 10

1

ag 0

1
OU —®

3

a4 0

7
ou =—®

30

§ 5-

Die Bürmann-Lagrangesche Reihe.

Eine Herleitung der Eeihe findet sich in Hwrmfo-CWrawf f 10].
Wie in (1), § 4, sei wieder

00

(1) to K + 0)

r 1
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Wir führen zunächst die Hilfsfunktion

1

(2) — =<?(-) ein.

r 1

Aus der Gleichung « 99 (2) regulär in einer Umgebung
99(2)

von 2 0, 99 (0) 4^ 0 folgt :

vi «
2=7—' Ii

Dl- (99(2))"

n 1 2 0

Im Anschluss an dieses Theorem sind in neuerer Zeit verschiedene
Arbeiten entstanden, die wir nun einzeln besprechen wollen.

§ 6-

Eine Polynomdarstellung nach einer symbolischen Methode
von N. Cioranesco.

In diesem Paragraphen stützen wir unsere Ausführungen auf eine

Arbeit von IV. dorawesco [IS]. Der genannte Autor entwickelt eine

zweckmässige algorithmische Eechentechnik, die innerhalb eines

gewissen Fragenkreises zu formalen Darstellungen der Lösungen führt.
Wir entwickeln in der Folge eine solche formale Lösung für unser
Inversionsproblem.

Wir beginnen mit einigen notwendigen Definitionen:

I. Symbolkalkül.

Es sei

(1) [a„] 0Cq, otj, a,, a„,

eine nicht abbrechende ZaltLw/oö/e, deren Elemente endlich sind.
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Besitzt die Reihe
oo

2 a„ f" (/ (i) einen von 0 verschiedenen Konvergenzradius, so
0

heisst (/ (f) die eraewgewde Pwnkiion der Folge. Der nun folgende
Kalkül wird leicht verständlich, wenn man sich die Operationen auf
die entsprechenden erzeugenden Funktionen ausgeübt denkt.

ProdwkD Als Produkt zweier Folgen [aj und [/?„] bezeichnet man
die Folge [y„] [aj • [/?„], deren Elemente durch den Ausdruck

71

(2) gegeben sind.
i=0

Polens: Setzt man

(3) [a„f a<?> ^ [a<f>]

so gilt definitionsgemäss

(oo
\ p oo

7c =0 / fc=0

Für p positiv ganz findet man leicht:

(5) «(*>)= ŷ 2VPi' p„!

wobei die Summe über alle pj. > 0 zu erstrecken ist, welche den

Bedingungen

Po + Pi + Pa + • • • + P» P; Pi + 2pa + • • • + wp„ ra

genügen.

Eine Folgte heisst ®om Pndea; fc, wenn ihre fc ersten Elemente ver-
schwinden.

oo

Aus [aJi vom Index 1, d. h. (/(i) ^ folgt [a„]^ vom Index p.
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Mit der Bezeichnung a^' ergibt sich dann

'(p) _ „(P)
w a =0*' o

Aus der Relation g^(i) (f) (/ (1) folgt die Rekursionsformel

w-p +1

(6) «;""=2«*^'<
fc=i

welche gestattet, die Potenzen von [ajj rekursiv zu berechnen.

Sn&stöniionsprodnfci: Als Substitutionsprodukt

[yj [ÄJ ^ [«J

verstehen wir eine Folge [yj derart, dass aus

</ (0 2 ^ ^ ^ 2
1 0

oo

G (<7(9) =2:,y>/'
0

'

Man findet

n

(7) yo ß>; y» 2^ (w l, 2,
Ä 1

«Spnr» einer anaZj/iisc/ien Fnnfciion.

/ («) «q + + • • • + «n^" + • • • sei in der Umgebung von
2 0 regulär.

Als « Spur» der Funktion / (2) bezüglich der Folge [oc„] bezeichnen
wir den Ausdruck

(8) /([«»]) =2"»"'

falls diese Reihe konvergiert.

7e>

7c=Ö



Es sei

(1)
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II. Einführung der Polynome //„(*)•

oo

eine gegebene analytische Funktion.

Wir definieren die Polynome ff„ (a:) durch ihre erzeugende ffnnfction.
Es ist

oo W

(2) ^»=y^T/s=v^(,),4—( m .J

Aus der Definition des Substitutionsproduktes ergibt sich

(3) [ff»(®)]
m I

x [aJ.

Mit Rücksicht auf Formel (7), Abs. I, können wir auch schreiben

(4) ff. (®)=2 ^m

p=i
'

wo a,)'"' die Bedeutung hat von (5), Abs. I, und ff„(a;) ein Polynom n'
Grades darstellt.

Relationen: Aus e^''' e""'' e^+^'C) folgt das ^4däitionstlieorem

oo

(5) ff„ (« + y) 2 (®) (»)•
0

Leitet man die Beziehung (2) nach a ab, so ergibt sich

n

(6) ff;(®) =2«pff„_p(a:),
p l

und analog folgt bei Differentiation nach <

n

(7) ff„ (a) - Y] P «p ff„^ (®)
n "p=i
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Es lassen sich also die Polynome Jî„ (a:) rekursiv bestimmen. Man
findet

(8) (®) 1

(a:) % a;

S-2 (®) 4y («i + 2 «g x)

£Tg (x) =— [of a'' + 6 Oi «2 s® + 6 3]

iï* (a:) — [of a:'' + 12 of dg x® + 12 ('2 o^ + of) ar -)- 24 04 x]

III. Entwicklung einer Funktion einer Funktion.

Es seien zwei analytische Funktionen F(2) und 99(2) gegeben,

regulär in Uj < E, bzw. [2] < g. Ist weiter |

99 (0)| < E, so lässt sich

F [99 (2)] in eine Potenzreihe nach 2 entwickeln, welche für genügend
kleine Werte von 121 konvergiert.

Aus
00 00

(1) F (2) ^4„ 2", 99 (2) ^o„2"
0 0

folgt somit

00

(2) F[ç>(2)]=Vc„F
0

Im Falle Og 0 gilt

[CJ [DJ X [oj nach Definition des Substitutionsproduktes.

Das Problem ist aber dadurch bloss formal gelöst.
Im Falle a„ £ 0 setzt man

/ 9? (') — «0 =2/" ^ ^
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Für genügend kleine 2 gilt dann

F fei
(3) F (*)] F [a„ + / (2)] Y FW K).

Betrachtet man andererseits die Entwicklung

0(œ;«) e^W y ni
0 0

und die «Spur» von 0 bezüglich der Folge [a:„]

" /»(4)

so folgt:

(5)

® ([<1 ; «) 2 nT ^ ^ 2 (fol)

F [9? (2)] e^'"»!]/(^), mit der Vereinbarung,

dass [F ((%)]" zu ersetzen ist durch F'"> (o,). Für die gesuchten Koeffi-
zienten ergibt sich somit die Darstellung:

(6) C„ ff„ ([F<"> («„)])

wobei [iï„ (x)] die der Funktion / (V) 99 (2) — Oq zugeordnete Poly-
nomfolge bedeutet.

IV. Entwicklung der Umkehrfunktion.

Es sei

(1) co <7 (2) a„2 + «1^ + • • • + + • • • K # 0)

eine gegebene analytische Funktion. Für genügend kleine |coj gilt
dann auch die Entwicklung

(•2) 2 1t (co) y„ « + yi co® + + co"+' +
Die Koeffizienten können dargestellt werden als «Spur» der Poly-
nome (;r) welche der Funktion
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c/0) — u„2
zugeordnet sind.

Wir können die Gleichung (1) folgendermassen schreiben:

(3) 2 — co Ä (2) 0,

WO Ä (2) —-
.9 (2) «0 + / (2)

Die Wurzel der Gleichung (8) lässt sich nach L«c/remc/e entwickeln:

(4) H 2 mi

jm-1

ï (2) 2v„ CO

Setzt man

(5) Ä" (2)

so folgt:

(«o + / («))"" «0

1 ^
- L (7(m) ,«

(6) r,»-i ml -r Ä (2)1-1 V /
m-1

m

da bei der Ableitung nur das Glied in 2"' * einen Beitrag liefert.
Die Koeffizienten Cj,'"' lassen sich leicht darstellen auf Grund

von Formel (3), Abs. III. Setzt man dort:

F (2)
(«o + 2)-

Man findet dann

99 (2) / (2), so ergibt sich

2VTK + / («))"

00

/p (2) 2



und der Vergleich mit (5) liefert schliesslich

oder

Führt man die zu / (2) gehörigen Polynome (a;) ein und die Zahlen-

folgen

(8) g<") (- 1)"^ g-C+^'l (» fest; p 1, 2, 00),

Diese Relation zeigt, dass für die Entwicklung der Umkehrfunktion
einer Funktion 3 (2) die Rechnungen dieselben sind wie für die Ent-
wicklung einer analytischen Funktion der Funktion

nur sind die « Spuren» der Polynome (2;, /) genommen in bezug auf
Zahlenreihen, die, abgesehen von den Potenzen von Oq, unabhängig
sind von der betrachteten Funktion <7 (2).

V. Konvergenz.

Wenn M (r) Max[/(.2)| auf | ä | — r bezeichnet, dann gilt nach

1
M M

Ccrac% I a„ I < —•
Die Polynome (a:) haben als Majorante« die Polynome erzeugt

durch

so kann man nach (6), Abs. III, schreiben:

(9)

1

[>(*) —Oo*].
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Man findet dann

<

« /z
P=1 \TO «g +V

C* /
'

M
1 «d |"+v \ | «o | *"

M

Berücksichtigt man, dass lim 4 ist, so folgt
n —>- oo

« ,1 r 1 4 M
lim sup ")/1 y,, | =—

n — >- oo " I ^0 j '

Infolgedessen ist die Reihe für « 4 (co) konuergeni für

Dieser Wert stellt eine wifere »S'ckrawfce für den Konvergenzradius dar.

VI. Anwendung.

Wir übertragen die Ergebnisse auf unser Problem. Aus

e"'* df 2— (—1)" **»+*

m 2 to -(- 1

folgt

/(*)
</(«) — V* (—1)" ~-z-2 to 2 to + 1

n =1

Es ist somit

OU — 1, OU« —
(-1)" 1

-*0 — -*-> "2n — o h » ®2n+l — ^
TO 2 TO -)- 1 ^

und ferner

(i^ (>+*>- - £("7)*"=!>.*"•
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Hieraus folgt:

(1)
\ w

Die Zahlenfolgen nehmen dann die einfache Gestalt an:

4"' (-1)"
—m p-i

(w fest; p 1, 2, oo).

Aus «2n+i 0 folgt nach (5), Abs. I «äi+i 0> d. h. Hgn+i (®) 0

y2«+i — 0-

und hieraus

(2)

Es fallen somit alle geraden Potenzen weg.
Eür die Koeffizienten ungerader Potenzen ([!p"'])

erhält man

(3)

Koroen/ewzradws :

Es ergibt sich leicht, dass

«2w

M (r) Meta; j / (.3) I —'
hl-

' £»!(2»+l)
ist, so dass die Abschätzung

B >4M (r)

und insbesondere

(4) B > lim
•_>o 4M(r) 4

gewonnen ist. Man beachte, dass

4B 4— 0,886 ist.
2
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§ 7.

Eine Residiienmethotle nach E. Allara [19].

I. Es sei 2 / (w) eine analytische Funktion in m, regulär in der

Umgebung von m 0:

(1) 2= a„ m + % + • • • + <Vi w" + • • («o + 0).

Umgekehrt ist auch m eine analytische Funktion in 2, die sich in einer

Umgebung von 2 0 in eine Potenzreihe nach 2 entwickeln lässt :

(2) M 2 -)- 2' + 2" +
Die Koeffizienten ^4^ sind eindeutig bestimmt durch die Es gilt

1 f M /' (M)

der Koeffizient von m
* in der Entwicklung von — nach Poten-

w
* 2"

wo das Integral über einen beliebigen Kreis um tt 0 erstreckt wird.

Es bedeute

1

2^

zen von
Die Ermittlung dieses Koeffizienten wird uns das gewünschte

Resultat liefern.

II. Es sei a„ 1, also

(3) 2 M + ir -f- + + «n—l w" +
Dann muss auch ^ 1 sein, da immer a„ 1 ist. Es ist dann

(4) M 2 + Ai 2* + Ag 2® + + 2" +
Indem man (4) gliedweise nach m differenziert und zugleich durch 2"

dividiert, erhält man

1 /I 2^4, ni. 1

(5) 7- *'(-^ + ^=r + -^+-"+——+(«+1)4»

+ (n + 2) 2 +
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Mit Rücksicht auf (B) sieht man leicht, dass

n .4 — das einzige Glied ist, welches to"' enthält.
2

Für n > 1 gilt

1 d«*-" 1 d
[TO " (1 + «+ + «2^ + • • •) "]

1—n du 1—to dw

1—TO dw

c.
to" ' m" - to" •'* + • • • H——- + C„ + C„+i « + • • •

Man stellt fest, dass — in m 0 das Residuum 1 besitzt, denn es ist

2' 1+2 TO + 3 ßg + —t- yi + r2 « + • •

2 TO (1 + ß-, TO + ßg TO^ + TO

In Verbindung mit (5) folgt hieraus

1

(6) to^4„_i r, wo r das Residuum von —in m 0 bedeutet.

Wir berechnen dieses Residuum. Aus dem Ansatz

1 1

(7) — — (1 + OCj TO + OC2 TO +...+« TO" +
2 TO

ergibt sich nach (3) für die Koeffizienten oc„ die Rekursionsformel

(8) • <*n — (+ + ®n—1 *1 + +—2 + + • • • + ®i <*«—1)>

oder direkt:

(9)
n(n+l)

«,= (-i)~

0 0 1 ßj
0 0 ßj ßg

01 ß„_g ß„^
1 «i • • • ß„^ ß„_i

Vi->+
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Potenziert man Gleichung (7) mit w, so folgt:
1 1 ^ -yi

— =— > af'a?' a?" • • • mi+-'"s+33+. •

p 772-2

dabei ist die Summe über alle ganzzahligen nicht negativen Lösungen
der Gleichung

p -j- wij + mg + n zu erstrecken.

Das Residuum r ergibt sich aus der weiteren Bedingung

wij + 2 r/to + 3 m,, + n — 1.

Aus (6) folgt sodann für die gesuchten Koeffizienten die Darstellung

^ (n —1)!
(10) ^ •<—i p Toi mg

wobei die Summe zu erstrecken ist über alle ganzzahligen nicht nega-
tiven Lösungen des Systems:

(11) p + mj -f- mg + ra

mj + 2m.g 3m., + • • • w — 1-

III. Umformungen.

Die Bedingungsgleichungen (11) können durch ihre Differenz

p — mg — 2m.g — =1
ersetzt werden. Die Diskussion der Lösungen führt auf die äquivalente
Form

(i2) ^=iy77 A-J

(n — p)
Ttj - GC., - GGj

n i \p / mg

wobei mj + '»L + + • • • w — p

und p alle Werte 1,2, w — 1 annehmen kann. Eine weitere Dar-
Stellung ist die folgende:

7>=1

wobei die zweite Summe über alle ganzz. > 0 Lösungen der Gleichung
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(14) ij + F + -f- Vp w — 1 erstrecken ist.

Die Relation (13) lässt sich noch folgendermassen schreiben:

^ ^ ^ Z (p) Z^ ^ "•> • *<«y
p=i

wobei p (ij, F, i die Zahl der Permutationen ohne Wiederholung
der Indizes F> • • • Vp bedeutet, und wobei die innere Summe
erstreckt ist über alle verschiedenen Zerlegungen von rt— 1 in Summen

von (« — p) positiven Zahlen F> F, i
Indem wir das Uesaro-Spra&ol einführen

w-p

S«i Z P "<» "*'» " " ' VP'
n-1

erhalten wir schliesslich

(15)

IV. Die Berechnung der .4„ mittels (15) erfordert die Kenntnis
der a„. Aus (9) ergibt sich aber

W fc

«n — Z ^

/c 1 n

Fem Orslraftfl [-20] findet folgende Formel:

(16)

Die Summe erstreckt sich über alle ganzzahligen nicht negativen
Lösungen des Systems

P + g + r
p + 2 g 4- w — 1

V. Die Formel (15) gestattet nun einige Schlüsse über die Koeffizien-
ten der Umkehrfunktion zu ziehen. Wenn die ursprüngliche Reihe (3)

nur ungerade Potenzen enthält, d. h. wenn o^-h 0, so folgt ocj^i 0,
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und hieraus ^2ä+i 0> d. h. auch die Umkehrfunktion enthält nur

ungerade Potenzen.

Nach der Formel von Fan Orsfrana! gilt

.=2<-D'

-T(-ir

(n+l) (n+2) (n-f-r—1)

p! g!
af a|

n+r—1\ »"!

r / p g
«ï4

oder, indem wir das Cesaro-Symbol einführen:

(17)

Vergleicht man diesen Ausdruck mit (15), so folgt:
«-1 / \ p n-i v n-p

'"V)s«.-vcr)s«,« A„_, 2 HD*

oder, wenn wir mit C bzw. C), die Zahl der Kombinationen ohne
bzw. mit Wiederholungen von n Elementen zur Klasse p bezeichnen:

(18) n .A,,,

/4—A // /(—x p;

p=I p l n-l

VI. Die Anwendung von (17) auf unser Inversionsproblem ergibt
dann folgende Werte für die gesuchten Koeffizienten

Aq — 1

-a, -j- 2 aj

-4.

1

3

7

30~

1016
"" 7T

-^2r+l ®



§ 8.

Eine Determinantendarstellung nach Morgan Ward.

In diesen Schlussausführungen folgen wir einer Arbeit von Morgan
Ward [21].

I. Es sei .« / (m) regulär in der Umgebung m 0, / (0) 0 :

(1) £ $o -f- Gfj 11^ -J- -j- 16^ -f- (ßg ^ 0)

Für genügend kleine Werte von U gilt dann auch

(2) M ,4q 2' + -4^ ^ -)- 4- 2" 4- • • (^0 É 0)

Das ProWem besteht darin, für die Koeffizienten H,, einen expliziten
Ausdruck zu finden in Funktion der Koeffizienten a„. Hier wird eine

Lösung in Determinantenform entwickelt.

II. Nach Lagrange gilt

(3) -4» 1 —W—I 1

16!

er* /' M y
dl*" \/ (16)/

Aus dem Ansatz

(4)
/
l/w : 0 (M) — C-l + Cg W -f- • • • + Cn+1

(|m| genügend klein)

ergibt sich

(5) — ^1 ; Hn-1 — n*
n

Es lassen sich Cg, Cg, als Determinanten in a„, a^, ag aus-
drücken.

Indem man (4) logarithmisch differenziert, erhält man

M M /'(M) 0'(tt)

(A)

-, oder
M / (M) 0 (M)

/(m) 0'(W) + «0(II) [n/'(M) — /(M)] 0



— 46 —

Nun ist ja
oo

/ ('»') z nach (1).
r=l

Hieraus folgt:
oo

M /'(m) — / (M) ^ (r—1) a,_i wh

r— 1

Aus
oo

<£(«)=2®»+i"'
S 0

nach (4), folgt andererseits:

oo

M <P'(«) 2 S C,+i
s=0

Indem man diese Reihen in (A) substituiert und die entsprechenden
Glieder zusammenfasst, erhält man:

oo oo

Z! Zj ^ " (^)] ®r-l ^+1^
r l s=0

Mit den Substitutionen s + r i, s 7c — 1 lässt sich die Identität
auch schreiben:

oo ï

2 2 [(*—» + & — 1] «;-s Cfc «' 0.

4 1 &=1

Hieraus folgt:
4

(®) Z! " + & — 1] «i-fc Cj. 0 (I 1, '2, 3, .)•
fc l

Setzt man in (B) i 1, so ergibt sich das triviale Resultat 0 0.

Aus der ersten Gleichung in (5) folgt Cj und dieses

Resultat, verbunden mit (B) für i 2, 3, ergibt folgendes System
von linearen Gleichungen zur Bestimmung von c^, Cg, Cg, :
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«nC0 ^1 «0

71 Ci + flg Cg =0
2 to ctg Cj + (to + 1) Cg + 2 a„ Cg =0
B 71 Cj —j— (2 ?7 —j— 1) $2 ^2 ~~f~ ~f~ ^1 ^3 H~~ ^ ^0 ^4 ^

(7 — 1) TO ct,_i Cl + (i — 2 TO + 1) a,-_2 Cg + (I — 3 to + 2) ct^ Cg

+ (I — 4 to + 3) ct-^4 C4 + -f (7 — 7c to + 7c — 1) Gt;_j. Cj. + =0

„-W+1

Löst man die ersten to dieser Gleichungen für c„, so lässt sich c„
schreiben als Quotient zweier Determinanten

IV
c„= (Cramer.)

D ist die Determinante der ersten m Gleichungen von (C), ihr Wert
ist gleich dem Produkt der Hauptdiagonale:

«0 Ctg 2 Ctg 3 «0 4 Ctg (TO 1) Og (TO 1) Ctg

Die Determinante IV erhält man aus D, indem man die letzte Spalte
von D ersetzt durch ctg"^* mit nachfolgenden (to — 1) Nullen, so dass

IV dargestellt werden kann als Determinante (to — 1)*®* Ordnung,
(—1)"~*

sie werde mit zl„_j bezeichnet, multipliziert mit —^jr— (Entwick-
«o

lung nach der letzten Spalte).

Man erhält somit

(-1)"' „C
(TO— lj'.og*-*

Aus (B) und (C) ergibt sich für das allgemeine Glied oc# von Zl„^:

(I — 7c + 17i + 7c) ct;_ki_j für (i — fe + 1 > 0)

0 für (I — 7c + 1 < 0)

(1,7c 1, 2, 3, to — 1)
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Nach der zweiten Formel (5) folgt dann:

(6)

mit zIq 1

und Zl„_i (n 2, 3,

i, fc 1, 2, 8, n — 1)

1

III. Ergebnis: Es ist —

w % O
OÖ 0

2 n «a (w+ l) «X 2 Uq 0

Bnaj (2n+l) »2 (w+2) «i 0

4 W «4 (3n+l) ctg (2w+2) «2 0

(w—3) « ®»-3

(w—2) « «n-2 (("—8) ra+1) a„_3 OÖ

(w—1) "««-1 (w—l)*V2 (w—1) 2

(» 2, 3, 4,

In der ersten Spalte w und (n — 1) in der letzten Zeile von zl„_^ aus-

geklammert, ergibt schliesslich

(8)

«i o
Oä 0 0 0

2 05-
2 (n + 1) «4 2 «q 0 0 0

3 ßg (2w+1) 02 (w+2) «4 3 «g 0 0

4 «4 (8w+l) «3 (2w+2) ßg (+3) Q £O
O

(n-2)!a^
(w—3) a„^
(w—2) a„_,

a«-l («—1) <V-2 (w—2) a„_3

0

(« 2)«o

2 ßj
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IV. Aus (8) ergeben sich für die ersten 6 Koeffizienten von (2)
die Werte

; S l
IS

«1 «0

dg 2

2! ai
2 dg 5 flj 2 dg

dg 8 «2 2 dj
8!ä®

ctg 0 0

2 eis 6 2 dg 0

3 dg 11 dg 7 dj 3 dg

d4 4 dg 3 dg 2 dj

«1 dg 0 0 0

2 dg 7 di 2 dg 0 0

3 dg 12 dg 8 dj 3 dg 0

4 d4 19 dg 14 dg 9 di 4 d

«5 5 dj 4 dg 3 dg 2 d

V. Anwendung.

Für das Wahrscheinlichkeitsintegral

£
^ ^ 1)« /n+l

w? / e"'® df > ergibt sich
y Zj m! 2«+lrv »i —n

1 1 (—1)" 1

dg 1, dg — — d^ dj — — — 0_2„ J - 0.
3 10 n! 2 w + 1

Hieraus berechnet man

1 7 1016
0 — ~ 'g" > S ~ 7^" ' ^6 —

y ' • • • 2ri+l —

4
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1

2n "

(2 n—1)

10 0 0

2

"3
0 2

4 « -j- 3

0 0

0 3 0

(2n—2) (—1)'^
(w—1)! (2m—1)

0

(-1) 1

n! (2w + l) " (»— 1)!
0

-1)"

0

0

0

(2«—1)

0

Für die gesuchte Umkehrfunktion erhält man somit die explizite
Darstellung

w" 7 „ 1016
« « + -y + gQ

W + -

Yj-
W' + • + «**"+ +
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