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Uber die Inversion des Gaufischen
Wahrscheinlichkeits-Integrals

Von A. Lehmann, Bern

§ 1.
Das GauBsche Wahrscheinlichkeitsintegral.

Als Fehlergesetz bezeichnet man eine Funktion, welche die Héufig-
keit eines Fehlers durch seine Grosse ausdriickt. Bei Zugrundelegung
des GauBschen Fehlergesetzes ist die Wahrscheinlichkeit dafiir, dass
ein Fehler zwischen den Grenzen — A und A liegt, gegeben durch das

Integral
1

E_—fe‘xzdx (A>0).
Va

0

Herleitungen und Begriindungen dieses wichtigen Gesetzes findet
man in Lehrbiichern der Wahrscheinlichkeitsrechnung, z. B. in Czuber
[1]1) oder Muises [2].

Seiner grossen praktischen Bedeutung wegen ist das Fehler-
integral fiir die in Betracht fallenden Abweichungen A berechnet
worden. Kine Tafel findet sich in Jahnke-Emde [3].

Bei variablem z (¢ komplex) wird das Integral

2

2
fp (Z) = V: \/\emﬁ dt
7T

0

eine eindeutige analytische Funktion der oberen Grenze z.

Diese ist nicht durch sogenannte elementare Funktionen darstell-
bar. Um daher den Wert der Funktion @ (2) fir jeden beliebigen
Wert der Verinderlichen angeben zu koénnen, kann man zu Reihen-
entwicklungen greifen.

1) Die bei Autorennamen angebrachten Zahlen beziehen sich auf das Lite-
raturverzeichnis.
2
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I. Bestindig konvergente Potenzreihen.
Die ganzen transzendenten Funktionen
®(z) und & P(2)

kénnen nun um den Nullpunkt in Potenzreihen entwickelt werden,
die in der ganzen Ebene konvergieren.

Die erste dieser Potenzreihen ergibt sich sofort aus der Entwick-
lung der Exponentialgrosse im Integranden. Wenn man diese Reihe
gliedweise integriert [4], so folgt:

i 2 23 2 4 2
M gls(z)‘[/i[2—1!3Jr2:5“3!7+4!9“_'-"]

Ebenso leicht ergibt sich eine zweite, gleichfalls nach steigenden Po-
tenzen von z fortschreitende Reihe:
222 (22%)? (2 2%)° ]

5 :
i i ]- .
(2) D (2) Vﬂe zl TisT1ss T1ss7

Diese Reihen sind zur numerischen Berechnung unserer Transzendente
bei kleinen Werten des Argumentes ‘z[ brauchbar, weil sie dann schnell
konvergieren.

Fiir grosse Werte von |zt (l z| > 1) wiirde die Rechnung sehr miih-
sam werden. In diesen Fillen bedient man sich mit Vorteil einer
Reihe, welche nach fallenden Potenzen von z fortschreitet.

II. Semikonvergente Entwicklung.

Durch partielle Integration ergibt sich unmittelbar

(8) @) =1—

e ) i n 1.3 1.3.5 1.3:5,7 ‘
V7.2 222 (24%)° (2z2)3+ (2 22)* '

Die Glieder der Reihe nehmen ihrem Betrage nach zuerst stark ab,
spiter aber wachsen sie schnell und iiber alle Grenzen. Der Rest-
ausdruck ist absolut kleiner als der Betrag des letztberiicksichtigten
Gliedes. Die Genauigkeit kann somit nicht unter den Absolutwert
des kleinsten Gliedes der Reihe herabgedriickt werden. Fiir den
Index n des Minimalgliedes findet man
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nz[[zz\—l—%],

wobei [ | das GauBsche Klammersymbol bedeutet, und hieraus fiir
den Rest die Abschitzung:

Die Kramp-Laplacesche Transzendente und das allgemeine
Inversionsproblem.

Fine bestimmte Fragestellung!) in der Wahrscheinlichkeits-
rechnung lduft darauf hinaus, die obere Grenze im Integral

A
2
— /e‘xzd:c
Jm |
0

so zu wihlen, dags das Integral einen gegebenen Wert

1
fe‘”a dx —=o Dbesitzt.

0

2
Vn
Die Bestimmung von A, A = 4 («) heisst Inversion. Es ist

1
A (~2—> = 0,476 936 276 . ... die Kramp-Laplacesche Transzendente

(auch «wahrscheinlicher Fehler » genannt).

Es gelingt nun aber nicht ohne weiteres, diese Inversion auszu-

fihren.
Zahlreiche Autoren haben versucht, das Problem auf wndirektem

Wege zu losen. Sie beschrinkten sich darauf, die Gleichung

® (1) =a

1) Man will zu einer gegebenenWahrscheinlichkeit die Fehlergrenze bestimmen.
Dieses Problem stellt sich oft bei der exakten rechnerischen Auswertung statisti-

schen Beobachtungsmaterials.
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mit Hilfe der vorhandenen Tafeln fiir diese Funktion durch Inter-
1
polation zu losen. Daher kommt es, dass tber die Grosse A <§>

verschiedene Angaben gemacht wurden. So hat Fncke [5] den Wert

1
A <§> = 0,476 9360 gefunden.

Hagen [6] setat
1
A (—2—> = 0,476 9364.

Cournot [7] hat

1
A (—2—> = 0,476 936 berechnet.

Meyer [8] gibt in seiner Wahrscheinlichkeitsrechnung fur

1
A (—2~> =p die Formel an:

(| 1 p° 1
o 3 P —— e — /’
e3¢ T 513 ghm

welche sich aus der Entwicklung des Integrals

S

/ e dp =" ergibt.
. 4
0
Auf diese Weise ist es sehr miithevoll, ¢ zu bestimmen.

Opitz [9] hat in seiner Schrift «Die Kramp-Laplacesche Trans-
zendente und ihre Umkehrung» meines Wissens als erster eine direkte
Methode zur Losung der genannten (Gleichung entwickelt. Als An-
wendung ermittelt er den Wert

1
A (_2—) = 0,476 936 2762
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auf 10 Dezimalen genau, und fiigt seiner Arbeit eine Tabelle bei, in
der die zu den prozentualen Wahrscheinlichkeiten gehérenden Fehler-
grenzen mitgeteilt werden.

In dieser Arbeit sollen nun neue Wege aufgesucht werden, um
zu einer direkten Losung fir das allgemeine Inversionsproblem zu
gelangen. Unter einer Lésung des Inversionsproblems verstehen wir
eine explizite Darstellung der Funktion

z2 =12 (£)
die durch die Relation

z

/e‘tz dt =¢

0

definiert 1st. Wir werden uns wie Opitz auf die Darstellung durch die
um den Nullpunkt ¢ = 0 entwickelten Potenzreihe beschrinken, so
dass die Aufgabe darin besteht, die Koeffizienten dieser Reihen-
entwicklung zu ermitteln.

Auf das von Opitz entwickelte Verfahren, das ziemlich umstéind-
lich gestaltet ist, werden wir nicht ndher eintreten, sondern uns sogleich
einigen allgemeinen Methoden zuwenden, um diese dann spéter fir
das vorliegende spezielle Problem nutzbar zu machen.

§ 3.

Eine Darstellung der Liosung mit Differentialoperatoren.

Voraussetzung: Es sei « (f) eine in einer Umgebung von 0 (Kreis I,
Radius R, ‘t' < R) regulire, daselbst nirgends verschwindende

' : 1 ., : :
Funktion. Auch die Reziproke 0 ist dann in 't’ < R regulir. C sei
o

ein beliebiger Weg in K von 0 bis 2. Dann stellt das Integral

¢) =z

c@)=f;%

v



eine eindeutige analytische Funktion der oberen Grenze dar. Hs ist
dann

{=¢() in |z2/< B  reguldr,

und weiter ist 0 = ¢ (0).

Die Funktion { (z) vermittelt eine Abbildung des offenen Kreises K
auf eine Umgebung ¢ = 0.

Zu dieser Umgebung gehort sicher folgender Kreis [10]:

’C{<r:Min}C(z)|
fir 2| =R, <R )

(Kreis C, Radius 7,

Da ausserdem die Ableitung

1

{'(e) =—=+0 ist in [2]< R,
« (2)
so gibt es eine in dieser Umgebung von 0 reguldre 1nverse Funktion
z2=2z (L),

wobei 0 =2z (0) ist.

Wir suchen nun eine fiir die Umgebung { = 0 giiltige Entwicklung

(1) =00+ a2+ a3+ ...
die wir schreiben:

i z("’(O) )
() Z:; i

Die auftretenden Ableitungen sollen nun bestimmt werden. Es ist
noch

3 dz_ 1 -
) —E-——-ﬁ-&f—-a(z).
dz

Indem wir die gegenseitige Abhéngigkeit von z und ¢ berticksichtigen,
ergibt sich folgende Kette von Operationen, es ist:



dz\ d
_>_d;z(’*1)(g“) nach (3) ersetzt

()  das Verfahren wiederholt

I
”'_“\/";"\/"“\
=
SIS
\_—/\——/

[

d
= a(z)% 23
a\"! -
:(a(z) 5) 2'(£) und schliesslich
d \t
(@) #(g) = (a(z) —) @

Unsere gesuchte Entwicklung (2) nimmt dann folgende Gestalt an:

(5) 2 :i

Das Umkehrproblem hat uns somit auf den Operator

d k
(6) (oc (2) E) o(2)  gefiihrt.
Setzen wir abkiirzend
. 7 \k
(M) <oc (2) d—> o (2) = @, (2), so gilt die Differentialrekursion:
2

@ (2) = o (3) pry(2), (B > 1)

(8)
und @, (2) = « (2)
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Wir stellen die ersten 5 Entwicklungen des Operators in einer
Tabelle zusammen. In der Schreibweise sollen obenstehende Indizes
Potenzen, untenstehende Indizes die Ordnung der Ableitung bezeichnen.

k=1, iy = ooy
k=2, g, =a2a, + oo
k=38, o =adag + 4o oy ay + o
k=4, o, =cta, +4adad + 11 a2 0 ay -+ 7T a® oy 2y -+ o}
k=5 ¢gs=a8as+4atol +8atayay +7atad
+ Tago oy + 84 adado; + 11 ad o ay
421 ad o oty -+ 26 a2 o oty | o

Il

Diese Angaben zeigen deutlich genug, dass das allgemeine Bildungs-
gesetz eine recht komplizierte Struktur aufweisen wird.

In einfacheren Fillen gelingt es explizite Ausdriicke zu gewinnen.
So haben Pincherle [11] und Toscano [12] Rekursionsformeln fiir den

Operator
d\" d \"
(a: %> , bzw. (% m)

Wir machen die Feststellung, dass die Summe der Koeffizienten
von g, gleich k! ist.

entwickelt.

Zum Beweis geniigt es « (2) = €° zu setzen, da die Koeffizienten
unabhéngig von der speziellen Wahl der Funktion auftreten. Aus der
Definitionsgleichung ergibt sich dann:

d k
( 2 E) ez — k! e(i-}-k)z

In den Entwicklungsgliedern rechts lisst sich iiberall ¢!!*%7 aus-

klammern; in der Klammer bleibt die Summe der Koeffizienten von

¢.- Nach Kiirzung durch e!*9 bleibt fiir diese Summe der Wert k!
q. e. d.

Fir die formal angesetzte Reihe

) i{( CRIE <>}f:

O
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die eine Erweiterung der Reihe (5) darstellt, lisst sich die erzeugende
Funktion angeben.

Fihren wir
u = @ (2) als neue unabhéngige Variable ein, so gilt die Operatoren-

relation

du dz

du

d duw d dz d d
Az dz du’ '

Um die Ubereinstimmung mit (9) zu erzielen, setzen wir = o (2),
%

oder indem wir die Variablen trennen und integrieren:

_/m_._w

Fir die Umkehrfunktion schreiben wir symbolisch

¢ =g (u)

Die Formel (9) geht mit diesen Setzungen iiber in

-1
B et
Dies 18t die Taylorentwicklung der Funktion
o [qfi (u4-2)].

Die erzeugende Funktion erhilt somit die endgiiltige Gestalt:

X d
(19) Z{( @ d—) a@} = (p+0)

0

Beziiglich der Konvergenz machen wir folgende Feststellungen:

a) fur festes z aus K ist ¢! (¢ (2) + &) in einer Umgebung von
& = 0 regulir.
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b) « (t) ist in einer Umgebung von z regulir. Da ausserdem
@' (p (2)) =2 ist, so folgt:

¢c) o [‘Pul (@(Z)-FE)] ist in einer Umgebung von &= 0 regulir.
Wir spezialisieren unsere gefundene Beziehung (10), indem wir

o (2) = ¢” setzen, und erhalten zunichst

n n =1 12
(ezﬁg) ¢ i_ () _
dz

€
/

oo

-

nl
0

Nun ist ja

C=¢(2)=/%=fe“”dt, und
0 0

¢ (£) = 2z unsere gesuchte Umkehrfunktion.

Aus ¢ (2) = e folgt

als Ableitung der Umkehrfunktion. Diese Relation oben eingesetzt,
ergibt:

& e Oz

— =9 (0)} =i

Dieser Ausdruck stellt die Ableitung unserer gesuchten Umkehr-
funktion z = z ({) dar, entwickelt nach Potenzen von {. Die Potenz-
reihe darf gliedweise integriert werden. Ks ergibt sich:

co . d »—1 . Cv
(11) ZZZ{(” E;) ’ Lou
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Mit der speziellen Funktion e lisst sich nun der Operator leichter
behandeln.

Da sich die Exponentialfunktion beim Differenzieren, abgesehen
von einem Faktor, reproduziert, erscheint folgender Ansatz plausibel:

d k
(12) (ﬁﬁaf“:M@d”W,
<

wo R, (2) ein Polynom %" Grades darstellt.
Ungere Formel (11) nimmt dann folgende Gestalt an:

[e <)

(13) g ==

v=1

R,(0)

p!

¢

Man hat nun die durch (12) definierten Polynome ndher zu unter-
suchen. Hs ergibt sich leicht die Rekursion

(14) By(2) = 2k2 Ry, () + Biy(2), (k> 1)

wobel R, (2) =1 ist.

Die Polynome R, (z) lassen sich also rekursiv bestimmen. Wir
wollen die ersten anschreiben:

(15) Ry(e) = 1
R, (2) = 2
B, (2) = 82242
Ry () = 4823 + 28z
R, (2) = 3842* 4 36822 - 28
"~ By (2) = 88402° 4 521623 + 10162

Wir setzen noch:
(16) g = B, (0).
Wie sich leicht zeigen lésst, ist dann

Qs >0 und Qort1 = 0 (T =0,1,2, .. )
Wir erhalten somit fir (13) die endgiiltige Gestalt:



(17) e Z 05, _ C‘Zv-—}-l

Die zur Berechnung notwendigen Werte ¢,,, als Nullwerte der Poly-
nome R, (¢), wurden von A. Diggelmann [13] ermittelt. Wir geben
einige Zahlen wieder:

(18) ¢ =1
Qs ==
qs = 28
e = 1016
qgs = 69904

410 = T79 6768

g, = 128 236 6912

s = 291 885 678 464

(1s = 878 442 070 428 16

(s = 937 T52 227 494 400 512
(ap = 161 520 244 979 648 174 08

Ks sel nun

}L’k
(19) Q_fefd:c:i
k
0

- VO 95, /= .
20) n= 2t (5

Fir die Transzendente A, und 2,, gewinnt man die Reihenentwick-
lungen:




— 97

a8 () (5 -

Vn @& (Va\', 4 Yz \’
110:%(% +§,‘ 20 —l—y 90 s sALILL

woraus sich die Werte ergeben

Ay = 0,476 936 276. . .
A1 = 0,088 855 990. . .

Wir fiigen noch die Werte hinzu

A100 = 0,008 862 501. . .
21000 = 0,000 886 227 . .

Konvergenzraduus.

Der Konvergenzradius R der Potenzreihe (17) ist nach der be-
kannten Formel von Cauchy-Hadamard

1
R - 2n-1 o
lim sup |/ P

Andererseits ergibt sich R als die Entfernung der dem Ursprung
¢ = 0 néchstliegenden Singularitit der inversen Funktion z = z({).
Da die Koeffizienten der Potenzreithe (17) reell und nicht negativ
sind, findet sich eine der néchstgelegenen Singularititen auf der
reellen positiven Axe, da ihre Schnittpunkte mit dem Konvergenz-
kreis nach einem Satz von Fivanti [14] eine singuldre Stelle der dar-
gestellten Funktion sein muss. Der bezeichnete Punkt ist { = V?ﬂ

Dort ist 2 (£) wesentlich singulér.

e —

E

. Ve . ..
~—, sowie auch —5 und oo sind die einzigen Konvergenzwerte

von { = ¢ (z). Vgl. Huruntz [15] oder Pdlya-Szegd [16].}



Fiar den Konvergenzradius R findet sich der Wert

Ein Vergleich mit der oben angegebenen Formel liefert die asympto-
tische Relation

mn
Vo 4
n eln

falls noch die Stirlingsche Formel

n! ~ ]/27”1, n'em

verwendet wird.

§ 4.
Die Methode der unbestimmten Koeffizienten.

Die Potenzreihe

(1) w = i a,z (@, + 0)

v=1

stellt in ihrem Konvergenzkreis eine regulire Funktion von z dar.
Es gibt dann eine Potenzreihe

(2) #= Z , ", welche in einer Umgebung von o = 0 konvergiert
n=1
und der Gleichung (1) identisch geniigt.

Es muss fiir diese Reihe 1dentisch in o

(3) w = ia_v (i By cu“)v sein. [17]

v=1 =1

Nach dem WeierstraBischen Doppelreihensatz kann die rechte Seite
nach Potenzen von o geordnet werden. Der Koeffizientenvergleich
liefert dann folgende Bestimmungsgleichungen fiir die gesuchten

Koeffizienten o,:



4) 1 = a0
. 2
0 = a0y + ago
3
2 2 4
0 = aloc4—|-2a20(.10(.3+a20(.2+3a30(.10(.2+a40c1
2 2
0 =ay05+2a05008 +2a50505 +3ag0; s+ 8ago]a,

+ 4 a0 2y + agof

2 3
b)) oy=— a,=—— a3 = T,
a, ay a,

Man bemerkt, dags nach diesem Verfahren die ersten Koeffizienten
«, rekursiv bestimmt werden konnen, dass aber die Ermittlung aus
praktisch-technischen Griinden abbricht, falls keine allgemeine expli-
zite Darstellung von o, angegeben werden kann.

Anwendung: Aut unser Problem iibertragen, ergeben sich folgende
Werte:

a'1:1 1:&.1 al:l

a2=0 O=0(2 O(.2==O

1 1, 1

Hy = — 0=0¢3ﬁ§°‘1 Y

a;, =0 0 =ay—aya, oy = 0

2 2 1 5 U

B :71,.07 Ozas—waclocz—oclotg*f—”ia% %5 :"éa
§ 5.

Die Biirmann-Lagrangesche Reihe.

Eine Herleitung der Reihe findet sich in Huwrwitz-Courant [10].
Wie in (1), § 4, sei wieder

8

(1) o= a7 (a,+0)
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Wir fithren zunichst die Hilfsfunktion

1 .
(2) e i (2 ein.
Zav 71
pe=]
2
Aus der Gleichung w :TS’ @ (2) regulir in einer Umgebung
@z

von 2 =0, ¢ (0) £ 0 folgt:

Im Anschluss an dieses Theorem sind in neuerer Zeit verschiedene
Arbeiten entstanden, die wir nun einzeln besprechen wollen.

§ 6.

Eine Polynomdarstellung nach einer symbolisechen Methode
von N. Cioranesco.

In diesem Paragraphen stiitzen wir unsere Ausfithrungen auf eine
Arbeit von N. Croranesco [18]. Der genannte Autor entwickelt eine
zweckmiissige algorithmische Rechentechnik, die innerhalb eines
gewissen Fragenkreises zu formalen Darstellungen der Lésungen fithrt.
Wir entwickeln in der Folge eine solche formale Lésung fiir unser
Inversionsproblem.

Wir beginnen mit einigen notwendigen Definitionen:

I. Symbolkalkiil.

Es set
(1) [0, ] = oty g, gy oo Oy -

eine nicht abbrechende Zahlenfolge, deren Elemente endlich sind.



Besitzt die Reihe

o0

E o, " =g (f) einen von O verschiedenen Konvergenzradius, so

0

heisst ¢ (t) die erzeugende Funktion der Folge. Der nun folgende
Kalkiil wird leicht verstindlich, wenn man sich die Operationen auf
die entsprechenden erzeugenden Funktionen ausgeiibt denkt.

Produkt: Als Produkt zweier Folgen [e,] und [S,] bezeichnet man
die Folge [»,] = [«,] - [B.), deren Elemente durch den Ausdruck

n

(2) P, = Za“' Bes gegeben sind.

i=0
Potenz: Setzt man
(3) [, P == o([()p), agp), AR [a(”)‘]

so gilt definitionsgeméss

0 P oo
(4) <Z % t") = ) g

=0 k=0

Fiar p positiv ganz findet man leicht:

|
N ! P
(5) aP) = 2 SR oAt . 0EE,

wobei die Summe iiber alle p, > 0 zu erstrecken ist, welche den
Bedingungen

Po+Pi+pet .- +o=0201+ 2P+ ... +p,=n

geniigen.

Eine Folge heisst vom Index k, wenn ihre k ersten Elemente ver-
schwinden.

Aus [«,]; vom Index 1, d.h. g(f) = Z o, ', folgt [, ] vom Index p.
1

3
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Mit der Bezeichnung of = &, ergibt sich dann

aﬂ(p) — aff’) '

a =0
(]

Aus der Relation ¢?(f) = ¢"*(f) ¢ (1) folgt die Rekursionsformel

n—:gi‘l
(6) o, ) = Z‘ o, oc,;fﬁfl),
k=1

welche gestattet, die Potenzen von [«,]; rekursiv zu berechnen.

Substitutionsprodukt: Als Substitutionsprodukt
[va] = [Ba] X [,]

verstehen wir eine Folge [y,]| derart, dass aus

N S
gty = Y «, " Gt)= ) B, folat
1 =

Man findet

(7) Yo = Po; Vn=Zoc,;("’ﬁk m=1,2 ...)

k=1

«Spury ewmer analytischen Funktion.
f@@)=a +a,2+ ... +a,2"+ ... sei in der Umgebung von
z == 0 regulér.
Als « Spur» der Funktion f(2) beziiglich der Folge [«, ] bezeichnen
wir den Ausdruck

oo

(8) f([) =) ay o,

k=0

falls diese Reihe konvergiert.
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II. Einfithrung der Polynome /().
Es sei
1 i) =) a,t" (a,%0)
n=1
eine gegebene analytische Funktion.

Wir definieren die Polynome H, (x) durch ihre erzeugende Funktion.
Es 1st

[e =] w o0
zf(t) M agm — v n
(2) e Z — fo A{O_JHn (@) .

Aus der Definition des Substitutionsproduktes ergibt sich

3) [H, ()] = [ - J X [a,]-

Mit Riicksicht auf Formel (7), Abs. I, kénnen wir auch schreiben

@ H, (@) =) a0

wo a,™ die Bedeutung hat von (5), Abs. I, und H, (z) ein Polynom n'™
Grades darstellt.

Relationen: Aus e¥® W) — @+ folgt das Additionstheorem

(5). H(z+y) = ) H,, (2) H, ()
0

Leitet man die Beziehung (2) nach z ab, so ergibt sich

n

(6) H,(2) = ) a, H,,(2)

p=1
und analog folgt bei Differentiation nach ¢

M) H,(a) =— > pa,H,, ()
p=1
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Es lagsen sich also die Polynome H, (x) rekursiv bestimmen. Man
findet
(8) Hy(z) =1
H (x)=0,x

1 2 2 ¢
H, (z) =37 (a7 =° 4 20y )

1 5
H, (z) T [0} 2* + 6 a, ay, 2° + 6 a, z]

1 " ; o 2
H, (z) = [af 2* + 12af a, ° 4 12 (2 0, ay + a3) 2° + 24 a, 2]

III. Entwicklung einer Funktion einer Funktion.

Es seien zwel analytische Funktionen F'(2) und ¢ (2) gegeben,
regulir in |z| < R, bzw. |2/ < o. Ist weiter | (0) < R, so lisst sich
Flg(2)] in eine Potenzreihe nach z entwickeln, welche fiir geniigend
kleine Werte von |z| konvergiert.

Aus
1) F)= 24,7, ¢p@) =07
0

folgt somit

@) Flp@] =) C,”

Im Falle ay=0 gilt

[C,] =1[4,] X [a,] nach Definition des Substitutionsproduktes.

Das Problem ist aber dadurch bloss formal gelost.
Im Falle ay+ 0 setzt man

1) = () — =) 0, 2" (% 0)
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Fiir geniigend kleine || gilt dann

®) Flp ()] = [ao+f2)]—zfn B

Betrachtet man andererseits die Entwicklung
@ (m,Z):fo(z) :Zf (‘)IEHZZHM(LU)Z”
n
0 0

und die «Spur» von @ beziiglich der Folge [z,]

@ o ([a,]5) — f—z?- :, —-ZH ([a.])
so folgt
(5) Flo(2)] = @@ mit der Vereinbarung,

dass [F (ag)]" zu ersetzen ist durch F® (q,). Fiir die gesuchten Koeffi-
zienten ergibt sich somit die Darstellung:

(6) C,=H, ([F™ (a)]) |

wobei [H, (z)] die der Funktion f (2) = ¢ (2) — @, zugeordnete Poly-
nomfolge bedeutet.

IV. Entwicklung der Umkehrfunktion.

Es se1
(1) 0=g@F) =0a2+a;22+ ... Fa, 2"+ ... (@F0)

eine gegebene analytische Funktion. Far gentigend kleine :w} gilt
dann auch die Entwicklung

(2) =2 (@) =yp0 +p;0%+ ... +y, 0" 4+ ...

Die Koeffizienten p, konnen dargestellt werden als « Spur» der Poly-
nome H, (), welche der Funktion
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f (@) = M zugeordnet sind.
2

Wir konnen die Gleichung (1) folgendermassen schreiben:
(3) z2—wh(z) =0,

g 1

o ™ dm—l . i oe .
(4) wﬂww=zm4&mh@)=2mmw
1 z=0 1
Setzt man
1 1 5
(5) ™ (g) = =4 > CiM 7
(a0 + £ () @y nzzl
so folgt:
1 dm-—l ¥ O-(m)
6 _ hm — m—1
( ) ym—l m! [dzm_l (Z)Jz=0 m ’

da bei der Ableitung nur das Glied in 2" ' einen Beitrag liefert.

Die Koeffizienten C{™ lassen sich leicht darstellen auf Grund
von Formel (3), Abs. III. Setzt man dort:

1 T
& 18} = m-, @ (2) = f (¢), so ergibt sich

Flep@|=FIf@]=

(ap + f ()"
Man findet dann

I F®) (0) = (— 1) 42, ot ao—(m +7)

oo

=) Pz

0
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und der Vergleich mit (5) liefert schliesslich

(On+1) 1 n o |
7 n — n — Z__lpop '(p —ﬂ+p+1’
" ’ n—+1 %+1p:1( )P Gl O3 G
oder
n 0?3:1
() o = Z (— 1)p 2P a‘fﬁ(’iﬁ) ao—(n+p+1)'
p=1 4

Fihrt man die zu f (2) gehérigen Polynome H, (z) ein und die Zahlen-
folgen

B) & = (—1)P A5 ag®TPT)  (n fest; p=1,2, ... ),

80 kann man nach (6), Abs. III, schreiben:

(9) v, = H, ([gén)])

Diese Relation zeigt, dass fir die Entwicklung der Umkehrfunktion
einer Funktion ¢ (¢2) die Rechnungen dieselben sind wie fiir die Ent-
wicklung einer analytischen Funktion der Funktion

[y —a3]

nur sind die « Spuren» der Polynome H, (z, f) genommen in bezug auf
Zahlenreihen, die, abgesehen von den Potenzen von @, unabhingig
sind von der betrachteten Funktion ¢ (2).

V. Konvergenz.

Wenn M (r) = Max|f(z)| auf |2| = r bezeichnet, dann gilt nach
M(r)
Cauchy |a, | < — -

,rn

Die Polynome H,(x) haben als Majoranten die Polynome erzeugt
durch




Man findet dann

Cyt M \"
RPACANPATY A

- Beriicksichtigt man, dass lim 711//0?;;1 = 4 1st, so folgt
n—>y o0
1 4 M

3 Ly
lim swp Yira| = < Tomm

Infolgedessen ist die Reihe fiir 2 = 2% (w) konvergent fiir

'cu; <

Dieser Wert stellt eine untere Schranke fiir den Konvergenzradius dar.

VI. Anwendung.
Wir ibertragen die Ergebnisse auf unser Problem. Aus

2

2n+41

: — (—1)" =2
w:g(z):fe_t dt:Z (n!) on |1
0

folgt
g@)—agz v (1)t 2
He) == "; al Bp1
Es 1st somit
—1r 1




Hieraus folgt:

(1) A, = <_Z””)

Die Zahlenfolgen &) nehmen dann die einfache Gestalt an:

) —m\P?
£0) — (__1)19( n) (n fest; p=1,2, ... c<).

Aus @y,,, = 0 folgt nach (5), Abs. I @, =0, d.h.H,, ,(x) =0
und hieraus

(2) Yont1 = 0.

Es fallen somit alle geraden Potenzen weg.
Fir die Koeffizienten ungerader Potenzen y,, = H,, ([51()'2'1)])
erhélt man

2n '(2n) , —17
. o, 1\ —2n—1\P
Konvergenzradius :

Es ergibt sich leicht, dass

M (r) = Maz |f (2)| _-i A
|z]=r — n! (2n41)
ist, so dass die Abschitzung
,’.2
R >—
4 M (r)
und ingbesondere
, r? B
(4) R>lim — =

o 4M(r) 4

gewonnen ist. Man beachte, dass

R =£2’3 — 0,886 ... ist.
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§ 7.
Eine Residuenmethode nach E. Allara [19].

I. Es sei 2 = f (u) eine analytische Funktion in %, regulir in der
Umgebung von % = 0:

1) p=agt+a U+ .o Foa, w4 . (g £ 0).

Umgekehrt ist auch % eine analytische Funktion in z, die sich in einer
Umgebung von z = 0 in eine Potenzreihe nach z entwickeln lésst:

(2) w=Ayz+ 4,2+ ... +4,,2"+ ...

Die Koeffizienten A4, sind eindeutig bestimmt durch die a,. Es gilt
1 /
Ay S{) [%f () du

T omit [ft

wo das Integral iiber einen beliebigen Kreis um u = 0 erstreckt wird.
Es bedeute

1 i & . :
[_n] . der Koeffizient von %™ in der Entwicklung von —1?— nach Poten-
2" g

zen von u.

Die Ermittlung dieses Koeffizienten wird uns das gewiinschte
Resultat liefern.

II. Es sel g, =1, also

(8) d=u+oowt+aw+ ...+ u"+ ...
Dann muss auch 4, =1 sein, da immer 4,a, =1 ist. Es ist dann
(4) u=z+ A2 +A4,"+ ... +4, 2"+ ...

Indem man (4) gliedweise nach u differenziert und zugleich durch 2"
dividiert, erhdlt man

1 1 24, 84, n A
STt T T

&

i (n+1)4,

<

+Mm+2)4,,,2+ )
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Mit Riicksicht auf (3) sieht man leicht, dass

!

n A4, ,— das einzige Glied ist, welches " enthilt.
z

n—

Fir n >1 gilt

1 a1 4, .
—_— == ['u; (l—l—alu"*—azu“—{—...) ]

T 11— du 1—n du

1 a1 C C C,_ ‘
+ nig—kuni3+...+ L e s

1—n du |w ' w U

!

Z
Man stellt fest, dassTin u = 0 das Residuum 1 besitzt, denn es ist

&

2 142a,u+8a,u®+ ... 1
ému(l +a1u_{_a2u2+‘”) —‘J'{-yl—f—ygu_}_

In Verbindung mit (5) folgt hieraus

(6) md, =7, wo r das Residuum von—in u == 0 bedeutet.
S — z

Wir berechnen dieses Residuum. Aus dem Ansatz
1 1 . .,
(M) —=—014ou4ou 4+ ... Fo,u" 4+ ...)

b4 U

ergibt sich nach (3) fur die Koeffizienten «, die Rekursionsformel

(8) . a‘n == (a’n + an—ﬂl O('l + anﬁ2 °‘-2 + tr _l_ a’l OCm,—l)’
oder direkt:
00 ...1 a
00 .
nn-+1) . %
. . 2
®) A @, = (—1) 01 sl gl
\ 1 ay...a,,a0,,
a] az .« e an_l_‘)an




A 1) e

Potenziert man Gleichung (7) mit », so folgt:

i 1 n!
E : 2my+3mgt ...
i T s O({?H a;nz a;?lg L um1+-m3+ my
P

2 u Lo L migl o s

dabei ist die Summe iiber alle ganzzahligen nicht negativen Ldsungen
der Gleichung
p+m +m,+ ... =n zu erstrecken.

Das Residuum 7 ergibt sich aus der weiteren Bedingung
7”1 '“}“lez—I_Sm-g"’_ “ e :n—l.

Aus (6) folgt sodann fir die gesuchten Koeffizienten die Darstellung

(n—1)!
(10) P Z aMiaMraM
, _

!
mytmy! ...

wobei die Summe zu erstrecken ist itber alle ganzzahligen nicht nega-
tiven Losungen des Systems:

(11) p+m +m,+ ... =
my +2my, +3m, + ... =n—1.

III. Umformungen.

Die Bedingungsgleichungen (11) konnen durch ihre Differenz
p—my—2m;— ... =1

ersetzt werden. Die Diskussion der Liosungen fithrt auf die dquivalente
Form

1 n (n_p)! m m m
(12) A”mlz_nz<:p>m|_alla22a33'--’

o s e
/

wobei Mmy+my+mg+ ... =n—7p

und p alle Werte 1, 2, ... » — 1 annehmen kann. Eine weitere Dar-
stellung ist die folgende:

(13) 4,4 = ”;"1%““ i (Z) Z Ry By =00 g s

wobel die zweite Summe iiber alle ganzz. > 0 Losungen der Gleichung



(14) Y+t + ... 1, =n—1 zu erstrecken ist.
Die Relation (13) ldsst sich noch folgendermassen schreiben:

n—1
] == E ( ) E P (g Ty oo Tyy) O Oy e %

wobel p (24, 1y, - . . ,HJ) dle Zahl der Permutationen ohne Wiederholung

A

der Indizes 1,, 4, ...1%,, bedeutet, und wobei die innere Summe
erstreckt ist iiber alle verschledenen Zerlegungen von n—1 in Summen
von (n— p) positiven Zahlen 1,, 1,, ... %, .

Indem wir das Cesaro-Symbol einfithren

n-p
Y . . .
kS Gtt f— p (7/1, 'Lz, ) an_p) O(.?l 0(12 “« s e al‘ )

n-1

erhalten wir schliesslich

1 h— p
| A, , =— .
( 5) n—1 n Z ( >n 1 &,

p=1

IV. Die Berechnung der 4, mittels (15) erfordert die Kenntnis
der «,. Aus (9) ergibt sich aber

n I3
I Al
&%, = Z (_1)» AS a;
k=1 n

Van Orstrand [20] findet folgende Formel:

1 |
(16) Am:—l; (n+1) (n42) ... (ntr )aT a ..
a, plygl...

Die Summe erstreckt sich iiber alle ganzzahligen nicht negativen
Lésungen des Systems
PP ciuy =P?
p+2qg4.... =n—1
V. Die Formel (15) gestattet nun einige Schliisse tiber die Koeffizien-
ten der Umkehrfunktion zu ziehen. Wenn die urspriingliche Reihe (3)
nur ungerade Potenzen enthélt, d. h. wenn a,;, ,; =0, so folgt a,, =0,



und hieraus A4,,,, = 0, d.h. auch die Umkehrfunktion enthalt nur
ungerade Potenzen.
Nach der Formel von Van Orstrand gilt

—Z(— . (n4-1) (n+2) ... (n+r—1)

~af @ s
plq!

1 . (mr—1 r!

oder, indem wir das Cesaro-Symbol einfithren:

1 n-1 ) n—|—v~—1\ rw
) A=y D0 (") S

Vergleicht man diesen Ausdruck mit (15), so folgt:
n—1 ,
n-+p—
nAn—IZZ(ml) ( ; )S v()sa’
p=1 p=1

oder, wenn wir mit C, , bzw. C,  die Zahl der Kombinationen ohne

bzw. mit Wiederholungen von n Elementen zur Klasse p bezeichnen:

(18) i-«ll’cﬂpba—iowp‘a I
p=1 -1

VI. Die Anwendung von (17) auf unser Inversionsproblem ergibt
dann folgende Werte fiir die gesuchten Koeffizienten

Ay =1
1

Ay =—ay + 23 _»?
7

4, = - 30 Ay, =0
1016
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§ 8.
Eine Determinantendarstellung nach Morgan Ward.

In diesen Schlussausfithrungen folgen wir einer Arbeit von Morgan

Ward [21].
I. Es sei 2= f(u) regulir in der Umgebung w =0, f(0) = 0:
(1) Z=aqu +a; w4+ ... 4a w4+ ... (g+0)
Fir gentigend kleine Werte von ‘Z,I gilt dann auch
(2) u=Adgz+ 4,224+ ... + 4,2+ ... (4,%0)

Das Problem besteht darin, fiir die Koeffizienten 4, einen expliziten
Ausdruck zu finden in Funktion der Koeffizienten a,. Hier wird eine
Losung in Determinantenform entwickelt.

II. Nach Lagrange gilt

o PN LAY
nl | \f(u)

u=0

Aus dem Ansatz

(4) <f(%)>n:@(u):cl+czu+...+cn+1u"+...

(’ u [ geniigend klein)

ergibt sich

1 1
(5) m— Cys An—l T
agy n
Hs lassen sich ¢,, ¢5, ... als Determinanten in @, a4, a, ... aus-

driicken.

Indem man (4) logarithmisch differenziert, erhélt man

no nfw) D)
s ) = S’ oder

(4) fw) ' (u) +n D (W) [uf) —fw]=0




Nun ist ja

Hieraus folgt:

Aus

u D'(u) = Z 8 Cgyq W'

w
I
=]

Indem man diese Reihen in (A) substituiert und die entsprechenden
Glieder zusammenfasst, erhilt man:

Z [s +n (r—1)] @, ¢, w7 =0.

1 s=0

Mit den Substitutionen s 4+ r =1, s = k — 1 lisst sich die Identitit
auch schreiben:

>

r

i Z [(i—k) n + F — 1] a, ¢, w' = 0.

=1 k=1

Hieraus folgt:

B) D [—Ba+k—1]a,e=0 (=123

k=1

Setzt man in (B) 1 =1, so ergibt sich das triviale Resultat 0 = 0.

Aus der ersten Gleichung in (5) folgt aqc; = a”"!, und dieses
Resultat, verbunden mit (B) fur « =2, 3, ... ergibt folgendes System
von linearen Gleichungen zur Bestimmung von ¢;, ¢y, ¢5, ...:



Gy ¢y = @
NGy;6; —+ aCy = 0
2naze; +(n+1)ayc, + 2ap¢5 == )
Bnage, + 2n 4 1)azcea+ (n+2)a;c3 + 3 agcy = 'f)
('i_l)naiﬁlcl—I—(@—Q.n—Fl) 12(:2—1-(7,—877,—[—2) @, g Gy
—{—(’iiZn+8)ai_4c4—{—...—+—(@——kn+k—1) . ¢+ ... =0

Lost man die ersten n dieser Gleichungen fir ¢,, so ldsst sich ¢,
schreiben als Quotient zweier Determinanten

Cp— 5 (Cramer.)

D ist die Determinante der ersten n Gleichungen von (C), ihr Wert
ist gleich dem Produkt der Hauptdiagonale:

20,8 agday... (n—1)ay=(n—1)!a;

Die Determinante N erhédlt man aus D, indem man die letzte Spalte
von D ersetzt durch a;""* mit nachfolgenden (n — 1) Nullen, so dass
N dargestellt werden kann als Determinante (n— 1)t Ordnung,

)nl

sie werde mit 4, , bezeichnet, multipliziert mit — = (Entwick-
ag

lung nach der letzten Spalte).

Man erhélt somit

enr
la

" (n— 1)1

ag™!
Aus (B) und (C) ergibt sich fiir das allgemeine Glied a; von 4,

[—k+1n+ k) ay,, fir (—k+1>0)
ik = 0 fix (i—Fk + 1< 0)

G,k=1,23,...n—1)
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Nach der zweiten Formel (5) folgt dann:

(— 1y~
(6) An—l = W n-1
U.Ild A?’Pl -z iaikl (’I’L — 2, 3, . .

ik=1,2,8,...n—1)

1
III. Ergebnis: Hs st 4, =—
&y
nay  a 0 7 0
2nay (n+1)a; 2aq, 0
Snay; (@n+1)a, n+42)a, 0
(— 1" dna, (Bnt+l)a; (2n+2)a 0
M Aea=—er | T T
L ag S

(—3) n a g
(n—2) n a5 ((n—38) n+1) a5 (n—2)a,

mn—na,, (n—1)2%a,, (n—1) 2 a,

(=284 :5:)

In der ersten Spalte n und (n — 1) in der letzten Zeile von 4, ; aus-
geklammert, ergibt schliesslich

%1 (ty 0 0 0 0

2 ay (n—+41)a,20q 0 0 0

ally 2n+1) ay (n+2)a; 3ay 0 0

8) | 4, = - U”f |t (Bn41) ag (2n+2) ay (n4-8) a4 a0
M) | BT | oo s s o o o e oot i e e

(n—3) a, 4 0

(n—2) a, (n—2)a,

Ay q (n_i) Ay o (%—2) an—’& 2 aq
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IV. Aus (8) ergeben sich fiir die ersten 6 Koeffizienten von (2)
die Werte

1 1 1

4 mmp——— A = —— : A, = — thy B
T a, ! ag_al T ad|as2ay
a, a, 0O 0
1 lay ay O 1 |9
as 6a;, 2a, 0
Ag=——20a350a,20ay|; Ad,=—— B o © 0
37 grgr |t et Y8lad[Bag 1lay Tay 3a,

()
s Sa,2a
? =T a6s das 8ay 204

1 | 2@ Tay 2a 0 0
3a; 12a, 8a; 3q, 0
4da, 19a; 14a, 9a, 4a,
a; Sa, 4ay Ja, 2a

5:——
| 11
4! a,

V. Anwendung.

Fiir das Wahrscheinlichkeitsintegral

z oo _ln 2n+1
w :v/-e“2 dt = =1 = ergibt sich
n! 2n 41

0 n=0

4 1 1 (—1)" 1 -0
@y = s%:‘“‘“"%‘“'iﬁ-““zn: oy 2n+1’a2n+1"— .
Hieraus berechnet man

1 7 1016

A()zl,Agz-é-’A4:§6‘,A6= 7! ,...A2n+1:0,



0 1 0 0 0
2
A 0 2 0 0
3
4 :
0 B n -+ 3 3 0
8
1
doyyp=——--| —m— — - — — — — — — — — — — — — —
2n—1)! s
@2n—2) (—1)"
n—1)! (2n—1)
0
(—1) 1 (—1y=
n!  (@2n-+1) (n—1)!

Fir die gesuchte Umkehrfunktion erhélt man somit die explizite

Darstellung

w?

Z:w‘}—”;a;“‘f-

7 5
et w‘
30

1016
+ i w4 .. Ay, Wt
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