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RAusgleichung durch Bernstein-Polynome
Von Dr. Walter Wegmiiller, Walkringen

Einleitung.

Zur Approximation von Funktionen durch Polynome hat M.
Serge Bernstein im Jahre 1912 die nach ihm benannten Polynome
aufgestellt. Auf Grund bemerkenswerter Kigenschaften fanden diese
in der Literatur weiterhin viel Beachtung.

Es schien mir von Interesse, einmal die Frage zu stellen, ob
Bernstein-Polynome zur analytischen Ausgleichung verwertet werden
konnen, gilt es doch auch hier, eine auf Grund statistischer Tirhe-
bungen bekannte Grundfunktion durch analytische Funktionen
moglichst gut zu approximieren.

Die vorliegende Arbeit bezweckt daher, die Verwendbarkeit der
Bernstein-Polynome in der Ausgleichungsrechnung darzutun. Theo-
retische wie praktische Eigenschaften sprechen dafiir. FKine mit Bern-
stein-Polynomen vorgenommene Ausgleichung zeichnet sich vor
allem dadurch aus, gewisse Higenschaften der Grundfunktion in-
variant zu lassen. Iirhaltung der Schranke und der totalen Schwan-
kung, Lirhaltung der Monotonie, der Konvexitit erster und hoherer
Ordnung verbiirgen eine giinstige Ausgleichswirkung. Die Unter-
suchung, ob und wie sich itberhaupt Funktionen durch Bernstein-
Polynome approximieren lassen, ergab ein fir die Anwendungs-
moglichkeiten durchaus hinreichendes Krgebnis, ndmlich: gleich-
missige Approximation stetiger und gewdhnliche Approximation
stiickweilse stetiger Grundfunktionen.

Da einfach im Ansatz und in der numerischen Auswertung,
tithren die Bernstein-Polynome als Ausgleichspolynome relativ rasch
zum Ziele.

Theoretische Gesichtspunkte im Ausgleichsproblem geniessen
in den vorliegenden Ausfithrungen den Vorzug, wihrend die mehr
den Praktiker interessierende I'rage nach der Ausgleichungsgiite des
Verfahrens eher etwas zuriicktritt.



§ 1
Die S. Bernstein-Polynome.

Es sei Y(x) eine im Intervall 0 < z <1 definierte endliche
Funktion. Nach S. Bernstein [1]') werden dieser Funktion die Polynome

n>1

N A\ [n
1)  B,[Yw,z]=) Y{= ()™
(1) o [Y(2), 2] ;ZO <n>(l)w( 4 N<e <1

zugeordnet. Diese so definierten Polynome (S. Bernstein- Polynome)
fiihrten in der Folge zu verschiedenen Untersuchungen [2], 3], [4],
(5], [6], [7], [8]-

Im Hinblick auf die Verwertung der Polynome in der Ausgleichs-
rechnung ist es vorteilhaft, eine Erweiterung des Grundintervalles
[0, 1] vorzunehmen. Wird das allgemeinere Intervall [0, a] zugrunde
gelegt, so dass eine fir 0 < z < a definierte endliche Funktion zu-
gelassen werden kann, so erfihrt die Definition (1) die naheliegende
Moditikation

n>1

1NV [ad) [n ;
2 B,[Y@,a]=-5 ) Y (= Ha—a)™;
() B,[Y(), 2] anz (n>(3>“’(“ %) 0<z<a.

A=0

Y(z) nennen wir in der Folge Grundfunktion.

Diese durch (2) definierten Polynome werden zum Gegenstand
unserer ausgleichungstheoretischen Untersuchung. Dabei haben wir
diejenigen Higenschaften der Bernstein-Polynome eingehend zu
sbudieren, welche ihre Verwendung als Ausgleichspolynome der
Grundfunktion zu rechtfertigen geeignet sind.

Zunéichst einige fundamentale Beziehungen, die aus der Defi-
nitionsgleichung (2) gewonnen werden:

Bis gilt
(3) B,[Y(),0] = Y(0), B,[Y(®),a] = Y(a).

1) Zahlen in eckiger Klammer [] bezeichnen die betreffende Nummer im
Literaturnachweis.
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Die  Bernstein- Polynome stimmen am  Anfangs- wund Endpunkt des
Grundintervalles mat der Grundfunktion iiberein.

Weiter folgt aus
W Y(z) <0  bzw. Y(x) >0
4
B,[Y(x), ] <0 baw. B,[Y(z), z] > 0.

Die Iigenschaft der Grundfunktion, michtpositiv oder nichinegaliv zu
sewn, bleibt ber der Ausgleichung mat Bernstevn- Polynomen invariant.
Von grosser Bedeutung ist die Lanearutitsrelation:

(5) Bn [Yl("m’) - Yz(m)’ LC] = Bﬂ [Yl(w)’ LL‘J - Bn [Y2(CE), :B]
B,[CY(@), 2] = C-B,[Y(®), 2.

Insbesondere folgt aus
C;Y(o)+ ... +C, Y (x) =0
C, B, [Yy(®), 2] + ... 4+ C, B, [Y,(x), x] = 0.

Die  Ausgleichung mat  Bernstein- Polynomen lisst eine vorhandene
lineare Abhdingigkeit von Grundfunktionen invariant.

§ 2

Umformung der Polynome.

Fiir die numerische Auswertung wird es von Interesse sein, die
Polynome B, [Y (x), z] in eine andere Gestalt zu bringen. Diese
unterscheidet sich von der urspriinglich durch die Definitionsgleichung
(2) gegebenen dadurch, dass sie nach Potenzen von x geordnet ist.

Wir gelangen zu dieser Umformung, wenn wir in

vt 30 (%) ) oo

(a—a)"* nach Potenzen von z entwickeln:

B,[Y@), z] = Z Y(f‘ﬁ)( ) JRZ(__U (”;/1> o g

=0



n—i

1 n it ) 5 g N |
B” [Y(.’L‘), £L‘] = ;b—’; Z Z‘ (——-1)*“‘ Y (%) (;'b) (n p ) an Lot :E/.-I—,u'

A=0 p=0 ¢

Die Substitution 4 + u =» ergibt

B, [Y(@), ¢] = ;— D Dy (‘";_Z) (Z’) (ﬁ:ﬁ) s

A=0 v=) 4 /
Mit

D0 =010)

und der Summenformel von Dirichlet folgt:

o mmea- D0 () D (r().

r=0

Unter Verwertung von Differenzenrelationen [10] ldsst sich dieser
Ausdruck weiter vereinfachen.

Bezeichnet
f(z+w) — f(2)

]

Aw f(ill) =

die Differenz erster Ordnung, so folgt allgemein durch wiederholte
Differenzenbildung fiir die Differenz »-ter Ordnung bei gleichblei-
bender Spanne w die Beziehung:

A, f(x) = l; Z el G) Ha+Aw).

w
A=0

Sy (e

~
o

in (6) ist daher nichts anderes als

(ﬁ\)vﬂ w Y(0),

n , n



so dass jetzt gilt:

B, [ Y (@), ] = Zﬂ: (?) (%)yélyi Y(0) 2"

n

r=0
’% 1\/, 2 —1\ ., 2’
=Y (1_;%_) (l—g) . (1— ; ) 4 Y(0) 2

v==0

Setzt man noch

1 o
1(1*@). . .(1-—” 1)
(7) d Cp n n n
% vl - 'V! ’ do,nzl’

so resultiert:

® )
(8) Bn [Y({E), m] = Z‘ d.,.'.nA_a__ Y(O) .

— n

In dieser fiir die Auswertung praktischen Form kénnen die Zahl-
koeffizienten d, , ein fiir allemal numerisch ermittelt werden (ver-
gleiche Seite 52/53), und die Differenzen sind auf Grund des
Differenzenschemas leicht berechenbar.

Diese Darstellung erlaubt uns zudem, eine weitere Aussage iiber
das Verhalten der Bernstein-Polynome zu machen.

Sind alle Differenzen

A% Y(0) =0, »=(m+1), (m+2), ... n; [m<n]

n

(was zum Beispiel der Fall ist, wenn die Grundfunktion selbst ein
Polynom vom Grade m ist), dann ist das Polynom B, [Y(z), 2] nur
vom Grade m.

Schliesslich entdecken wir eine gewisse Verwandtschaft mit der
Newtonschen Interpolationsformel N, [Y(x), z]. Es ist

N, [Y(@), z] = i‘ ;1—' x <w-—-q—> . (w_(v——l)a) A% Y(0)

n

r=0

und

n

B,[Y(@), 2] = ) % 1(1—%). . (1-”;—1) 4% Y(0).

p=()



— 920 —

§ 3

Beziehungen zwischen den Differentialquotienten der Bernstein-
Polynome und den Differenzen der Grundfunktion.

Weitere die Polynome B,[Y(z), ] kennzeichnende Relationen
ergeben sich durch Differentiation der Definitionsgleichung (2)

”;’3; B,[Y(w), 33] = ?“—1520 Y (a_j) (7;) [A2 (a—a)"*— (n—2) &*(a—a)" ']

oder indem wir noch in die beiden Summen aufteilen und passend
umformen mit Riicksicht auf

() =n(0)s (3= (7))
dia: B, [Y(z),z] = an1-1 'i (n;l) 't (a—az)" 1 % lY (a(lyj— 1)>_Y(%>J

A=0

und endlich, wenn wir beachten, dass
1 {Y (a(l—}—l)) B Y(al)
) R

n
10 2\ (n—1
/_’lla Y fL_ n— Mg—n )1
an—lu - (n>(l>w(a’ CE)
=0
Ersetzt man noch in der Differenz das Argument

A Y(‘M) Ai,Y( a _l_“i_)
¥ n, 7 n—1 n n—I1

il
= B,[Y(2), 2] =

®




s0 ist die rechte Seite nichts anderes als der Ausdruck fiir das Bern-
stein-Polynom (n—1)-ter Ordnung der Funktion

1
P Y(a: _—— a:),
_5 (n

' 1
A;_Y(:c—-.~ m),a:

also

d
(9%) —— B,[Y(@), 2] = B,

de " n

Durch fortgesetzte Differentiation erhilt man nun allgemein die Be-
ziehungen:

dv 1 X3 4 o [ad) fn—k )
10 =) A ¥ () () o
=0

n n

e k )
Af‘a_ Y(a:_——a:), x|.

n n

k

d
) | —
(10 ) [l:l?k Bn[Y(CE), CEJ Ck, n Bn—k

Man erkennt also, dass die Ablestungen der Bernstein- Polynome selbst
wieder Bernstein- Polynome von entsprechend erniedrigter Ordnung sind,
oder, was fiir Riickschliisse weit wichtiger sein wird, man erkennt die
Existenz ewmer Beziehung zwnischen den Differentialquotienten  der
B, [Y(x), z] und den Differenzen von Y (z).

§ 4
Fundamentale Eigenschaften.

Wie bereits frither bemerkt wurde, erweisen sich die Bernstein-
Polynome in der Hinsicht beachtenswert, dass in ihnen gewisse bei
der Grundfunktion vorausgesetzte Higenschaften erhalten bleiben.

1. Beschrinktheit.

Es sei Y(z) in [0, a] als beschriinkt vorausgesetzts

m< Y(z) < M.

Dann sind auch sidmtliche zugehérigen Bernstein-Polynome in glei-
chem Masse beschrinkt, denn es 1st



1 : n A n-a 7 1 ; n A n-A

7 m (Z) a* (a—x)"™" < B,[Y (x), 2] < &FZ M (/1) z* (a—2x)
A=0 i l=0

oder

(11) m < B, [Y(), 2] < M.

Die Bernstein-Polynome sind vm ganzen Intervall [0, a] zwischen der
unteren und oberen Grenze der Grundfunktion enthalten.

2. Totale Schwankung.

Die Grundfunktion Y(z) sei jetzt im Intervall [0,a] von be-
schrinkter Schwankung. Darunter hat man folgendes zu verstehen [11]:

Als totale Schwankung einer Funktion f(z) im Intervall [0, a]
definiert man die obere Grenze des Ausdrucks

m

2

u=1

f(@,) — ()

’

der fiir alle moglichen Finteilungen des Intervalles [0, ]

U= gy & B o ne Byl =0
zu bilden ist.
Formelméssig wollen wir fiir die totale Schwankung das Symbol
einfithren

m

X
V, {f(z) } = obere Grenze Z_‘

=1

(@) —f (@,0-1)

Funktionen von endlicher totaler Schwankung 7, heissen «von be-
schrinkter Schwankung».

Die Behauptung ist nun die, dass die totale Schwankung der
Bernstein-Polynome B,[Y(z), #] hochstens gleich der der Funktion
Y(z) ist.

Zin diesem Zweck ist der Ansatz fir die Bernstein-Polynome pas-
send zu wéhlen. Integriert man die Differentialgleichung (9), so folgt

n-1 o

a_ 1 Ia ai n—1 1 n-1-2
- an_lza_n_y(_ﬂ( . )ft (a—ty" - dt,

T 1=0 z

B,[Y(x), t]




e O e

oder nach einigen elementaren Umformungen

(12) B,[Y(@), z] =
o Z [ ()25 fre e

Man bildet nun fiix

xlt -1 < CU#

n

B [Y(:L'), m;:] - Bn [:Y(fl:), w‘u"-l] -

) ()] (1) e

A=0 "~
Zu-1

ferner
I Bn [Y(II?), w,u] _ Bn [Y(JD), wu-—l] I <

<3 (5 -v(%)

z

() -

Al Tu-1
und schliesslich durch Aufsummieren iiber alle x =1,2, ... m
8
(19) 2| B.[Y(@), 2,] — B, [Y@), 2,.1] | <
=1
al - LY | n-i-1
<2 7(5R) ¥ (D)|(7) [ =2 %
ot n n | J \a a a

Das Integral rechts kann direkt ermittelt werden. Die Substitution

¢ . x
7 = — fithrt dieses iiber in das bekannte Fulersche Integral fiir die
a

Beta-Funktion

1 i I'(A++1) - I'(n—A
Ofr’l (1~—1’)""1 l.dr = B (A+1,n—24) = ( F()n—{—f’; ).
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Mit L+ T—A) 2 —d—1)! 1
- I'(n+1) n! N " (fn—l)

geht (18) iiber in:

n—1

e

A=0

m

(14 Z‘

=1

B,[Y (@), 2,]—B,[Y(x), 2, | <

Der Ausdruck
y (ﬂjﬂ) .y (“i)
n n

kann fiir die dquidistante Unterteilung (Spanne ——-) hochstens gleich
) &

sein der totalen Schwankung von Y(z

m S]] cnm

Somit :

(16) i B,[Y@®),z,] — B, [Y(®),z,,] | < K{Y(2)}
=1

Indem noch links die obere Grenze des Ausdrucks gebildet wird fiir
alle moglichen Intervallteilungen z,, so beeinflusst dies den rechts-
seitigen Ausdruck nicht mehr, und es resultiert die Beziehung:

(17) Vo (B [Y(@), €]} < W {Y(2)}.

Die totale Schwankung der Bernstein-Polynome ist nicht grosser als die
der Grundfunktion.

Diese Tatsache verbiirgt uns die erwiinschte Ausgleichswirkung,
dass die ausgeglichenen Werte einen regelméssigeren, glatteren Ver-
lauf aufweisen werden. Das Gleichheitszeichen gilt vor allem bei
monotonen Funktionen.
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3. Monotonie.

Von der Funktion Y(z) wollen wir jetzt ein monotones Ver-
halten fordern.

Dabei wird die Monotonie wie folgt definiert: Eine Funktion f(z)
heigst in einem Intervall [0, @] monoton zunehmend (abnehmend),
wenn fir jedes Wertepaar z, < z, in [0, a] gilt

1 f(2y)
1 f(zy)

Im folgenden wollen wir uns auf den Typus einer monoton zu-
nehmenden Funktion beschrénken, da wir ja monoton abnehmende
Funktionen durch Multiplikation mit —1 stets in solche verwandeln
konnen.

Unmittelbar aus der Definitionsbeziehung liessen sich fiir mono-
tone Funktionen typische Kriterien herleiten, doch sei hier auf die
Beweise verzichtet.

Ist die Funktion f(z) tiberall differenzierbar, so ist die Bedingung

fl(z) >0

notwendig und hinreichend dafiir, dass die Funktion monoton zu-
nimmt,.

Bilden wir andererseits fiir eine bestimmte Spanne o die erste
Differenz, so gilt sicher

A%, f(x) > 0.

Nach diesen Ausfithrungen gehen wir zum Beweise der Behaup-
tung iiber, dass sich die Monotonie auf die Polynome B, [Y(x), z]
ibertragt.

Nach (9) ist

n-1
d 1 L ad\ (n—1\ = s
ang"[Y(““%ml:af—i;"%Y(;)( ¢ e

Da nach Voraussetzung Y (z) monoton zunehmend ist, fallen in der
: al »

rechtsstehenden Summe simtliche A, Y(m> positiv aus und dem-

= n

nach wegen (4) auch "
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d
(18) @B”[Y(m)’ ] >0, n>1.

Damit 1st, gestiitzt auf das hinreichende Differentialkriterium, die
Behauptung bewiesen.

4., Konvexitiat 1-ter Ordnung.

Setzt man nun von der Grundfunktion voraus, dass sie eine kon-
vexe Funktion 1-ter Ordnung sei, so bleibt auch die Konvexitit bei
der Ausgleichung mit Bernstein-Polynomen erhalten. Unter Kon-
vexitidt bzw. Konkavitdt 1-ter Ordnung ist eine Konvexitit bzw.
Konkavitit im gewchnlichen Sinn zu verstehen, die wie folgt defi-
niert wird:

Eine Funktion f(z) heisst konvex (konkav) in [0, «], falls fiir alle
Wertetripel 2, < 2, < x, in [0, a] die Beziehung gilt:

1, f(x,)
L, f(z) | >0(<0).
1 @, f(z,)

Diese neue Definitionsform deckt sich vollstindig mit der gewdhnlich
tiblichen Form von Jensen [12],

Hzy) + f(@,) I
2 (2)f< 2 )’

wie man durch passende Umformung leicht erkennt. Der Vorteil
dieser Determinantenform liegt lediglich in der einfachen Uber-
tragung auf Konvexititen hoherer Ordnung, wie wir noch sehen
werden.

Im folgenden beschrinken wir uns wieder auf einen Funktions-
typus, nimlich auf konvexe Funktionen.

Fir zweimal differenzierbare Funktionen gilt wieder, dass die
Bedingung
f'(z) >0

notwendig und hinreichend ist fir die Konvexitét.



N ", S

Es fallen zudem die zweiten Differenzen bei fester Spanne w
notwendig positiv aus

A2 f(x) > 0.

Aus der Beziehung (10) ergibt sich dann fir k = 2

&’ 1 S 2 ar\ [ n—2 o
“z;:'c'z)‘" Bn [Y({E), iL’] = czl”';iﬁ % A:: Y (ﬁ—-)< Z ):E;' (a“"x) 2 A’ n > 9

n
; A
mit 4% Y ¢ >0, da Y(z) eine konvexe Funktion, die Folgerung:
8 n gerung
dz

Es liegt nun nahe, dieses Resultat der Krhaltung der Konvexitit
zu verallgemeinern und auf konvexe Grundfunktionen Y(x) hoherer
Ordnung zu tbertragen.

5. Konvexitat hoherer Ordnung.

Als eine konvexe (konkave) Funktion k-ter Ordnung definiert
man eine solche Funktion f(x), bei der fiir alle geordneten Werte-
systeme in [0, a]

B < By <o < By < By

die Determinante

Loy af ap f(z)
1z, i ..o f(z)

>0 (<0)

1z, 5322;+2- . .wﬁ+2 f(Z 10)

positiv (negativ) ausfillt.
Fiir konvexe Funktionen k-ter Ordnung gelten entsprechend die

Relationen:
f(k+1)($) > 0

als notwendiges und hinreichendes Differentialkriterium fir die
Konvexitit k-ter Ordnung und
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AEFf(z) > 0

als notwendiges Differenzenkriterium.
Fir den Nachweis der Erhaltung der Konvexitit k-ter Ordnung
bedient man sich wieder der iiblichen Schlussweise. Nach (10) gilt

n[Y(a")’a‘]"—cl»-i-l n n~(}‘. +1) Z Ak+1 (aﬂ) (n I;Z— )ml(a_w)ﬂ—kul—l; n>k+1'

n

Da Y(z) als konvexe Funktion k-ter Ordnung vorausgesetzt wird,
fallen in der Summe siémtliche

a
Aty ( )
n n
positiv aus, so dass wegen (4) auch die Beziehung gilt:

k41

(20) B,[Y@), 2] >0; n>k+1.

dwk-{-l

Damit ist der Beweis fiir die Erhaltung der Konvexitat hoherer Ord-
nung geleistet. Zusammenfassend halten wir fest:

Die Higenschaft der Grundfunktion komvex bzw. komkav wvom bc-
stimmter Ordnung zu sein, bleibt bei der Ausgleichung mit Bernstein-
Polynomen hinreichend hoher Ordnung vnvariant.

§ 5
Gleichmiissige Approximation stetiger Grundfunktionen.

Bisher haben wir uns lediglich mit den zu einer Grundfunktion
formal gebildeten Bernstein-Polynomen befasst und letztere auf ihre
Figenschaften hin untersucht. Dabei wurde auf die Begriindung,
ob und wie genau Funktionen durch Bernstein-Polynome approxi-
miert werden koénnen, tiberhaupt nicht geachtet. In diesem und néch-
sten Paragraphen sollen daher die approximierenden Polynome auf
ihre Konvergenzeigenschaften hin niher untersucht werden

Wir priifen diesbeziiglich, wieviel B, [Y (), 2] von Y(z) in [0, a]
abweichen kann. Unsere Polynomfolge wird da,nn und nur dann
gegen die Grundfunktion Y(z) konvergieren, wenn an jeder Stelle z
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in [0, a], zu jedem noch so klein vorgegebenen positiven ¢, der Aus-
druck
| B, [Y(x), 2] — Y(x) | < ¢

ausfillt, sobald wir nur n hinreichend gross wihlen. Der Hochst-
betrag dieser absoluten Abweichung liefert ferner ein Mass fiir die
Genauigkeit der Anniiherung, wobei wir dieses Mass als Funktion der
Ordnung n darzustellen trachten.

Zundichst befassen wir uns mit Konvergenzuntersuchungen,
welche sich auf stetige Grundfunktionen beziehen, und zwar soll dies
vorerst an einer speziellen, stetigen I'unktion vorgenommen werden.

1. Konvergenzuntersuchung fiir Y(z) = 2".

Die zugehorigen Bernstein-Polynome lauten:
n
1 O/ ar N/ _
(21) B,[# 2] =— Z‘ (fﬁ) (n) ot (a—ax)" ",
i il 4

Entwickelt man andererseits

1n

(22) p(z,2) = i” [a + ((’cif ) x

nach Potenzen von z:

1 N\ /n w2\ ‘ad\” 2
p(, 2) :—dﬁz(l) (a—z)" " - x Z‘ (?)

!
A=a( =0 g ‘u'

@) o= B a]

so erkennt man aus (23), dass y(x,2) die erzeugende Funktion ist
fiir die Bernstein-Polynome n-ter Ordnung der Funktionenklasse z";

(k=0,1,2,...)
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Es besteht demnach allgemein die Beziehung:

ltl‘

e

(24) B, [z, z] = » (2, 2)

z=0
Unter Verwendung der Cauchyschen Integralformel resultiert aus
(24) die Darstellung

1 Kl [a+(e?—1) m]
] e - .
Bn [‘f‘v ’ 'II’IJ - o Qi Zk+1 d

)
@)

wobei sich die Integration iiber einen den Nullpunkt umschliessenden
Kreis C erstreckt.
Eine weitere Umformung fiithrt auf:

n

(25) B[4, 2] = k! Z (i’{b) (E)}.w}., kWO
a

A=0
az Y}
1 ((%"—1)
(26) = ' ,
B A, g i
©)

Es ist jetzt (25) eine fir die Konvergenzuntersuchung giinstigere
Gestalt. Dabei sind die Werte von w, , wie folgt zu bestimmen:
Beachtet man, dass fiir ganze m

9%m m = —1
fz’”dz:{o m ot —1
(©)

ist, so ergeben sich zuniichst, falls man in (26) den Integranden nach
Potenzen von z entwickelt, die Werte:

l>k~ wl’k—_—o

/ k
A=k w,— (ﬁ>
n

Fir 2 < k wird das Integral abgeschiitzt ; wir fithren in (26) zunichst

die Substitution — = w aus
n



— B

a\f 1 (e"—1)*
2=\ ) g [T

Danp findet man, indem als Integrationsweg der Einheitskreis iwl e
gewihlt wird,

k1
‘w’{k Q(E>-m—-2n-l\’lax.!ew——1’)
! n 7T
<\|— -2 ]
n
da | — 1| < (e™—1)} < 2%

Der Wertevorrat von e, , ist demnach wie folgt zu charakterisieren:

A > ]l: CU).,IG m 0

k
@27) A=k o, = (ﬁ)

n ./

()
<|—)-2.
n

Nach diesen Ausfithrungen konnen wir jetzt dazu tibergehen, fiir
Y(z) = 2* die gleichmissige Konvergenz der zugehérigen Bernstein-

}' < k iwl.,k

Polynome nachzuweisen.
Ohne Einschrinkung der Allgemeinheit diirfen wir » so gross

ansefzen, dass gilt
(28) n > 2k

Wir bilden nun, unter Beriicksichtigung von (25) und (27),

k-1

==k 2 (0) () o (1= () o)

L=0

29) |B,[o, 2] —a*| <k! (7_‘:)’}2 (’;) (g.)lgﬂ + 2 (1 — k! (Z) %)

Trsetzt man rechts itberall z durch den Hochstwert a und beachtet,

dass
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k-1

2 G) e (kL) £

L=0

wegen (28), so geht (29) tber in:

| B,[2*, x] — o¥| <k!<£—)kk(kf_1> okl y gk (1—k! (Z) %)

a2 ). g—(k—z)) o (1  n(n-1).. .(:L——(Ic—l))).

n n n

Es besteht so offenbar die Beziehung:
ak' kz . (Qk—1+1)

n

(30) | B, [¢*, 2] — *| <

falls beriicksichtigt wird

- (1--—?9 (1—-%>...<1—k:2><1
(1_(1__%) (lﬁ—%)...(l—— k?)) < (1—{1-—%)]) <

k? k?
i1 F)-E
n n

Aus (80) ergibt sich weiter als Genauigkeitsmass

1
30) oLk e~ =0( ) 3
und ferner
(30" lim B,[2* @] = #* gleichmiissig in [0, a].
n—>» oo

Damit ist einmal die gleichméissige Approximation von Y(z) = ¥
durch Bernstein-Polynome nachgewiesen.

1) 0 (€) stellt das bekannte Symbol von Landau dar, (Landau, Verteilung der
Primzahlen, Bd. I, p. 59.)
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2. Konvergenzuntersuchung fiir allgemeine, stetige Grundfunktionen.

Die Grundfunktion Y(z) weise jetzt einen stetigen, sonst aber
beliebigen Verlauf auf. Mit Hilfe des Weierstraflschen Approxi-
mationstheorems und auf Grund der gewonnenen KErgebnisse lasst
sich zundchst einmal die Konvergenz leicht abschétzen.

Es gel

(81) Y(2) = Y(x) — Py(z) + Py(),

N
WO Py(z) = Z ¢,

A=0

irgendein Polynom vom Grade N ist.
Man bildet dann unter Beachtung von (5)

B,[Y(2),2]—Y(x) = B,[(Y(z) — Py(a)), ] + (B, [ Py(x), z] — Py(2)) —

— (Y(2) — Py())
und

(82) | B,[Y(2),2] — Y(2) | <| Y(z) — Py(a) | +

+ | B,[(Y(@) — Py(@), ]| + | B, [Py(a), 2] — Py(a) |
Da sich nun nach Weierstrass jede in einem endlichen Intervall [0, a]
definierte und dort iiberall stetige Funktion durch Polynome gleich-

missig mit beliebiger (Genauigkeit approximieren lisst, kann man
gtets ein N so bestimmen, dass gilt

&
(38) | Y(z) — Py(z)| < 3
Nach (11) ist dann aber auch
(34) | B, [(Y(@) — Py(@), a]| < 3

Schliesslich lasst sich nach (30) stets ein » so finden, dass

&€
—; (k=1,2,...N
3N le ‘ (C )y “h )

<



ey wird dann

’ B, [Py(x), ] — Py(2) | < 2: | B, [¢,- 2", 2] —¢, - 2" ]

N
< ylc}.l IB"[CBJ,.’L']—Q}LI ’
A=1
oder
(35) | B,[Ay@,0]— By@ | < -

Diese Beziehungen in (32) eingesetzt, ergeben:
(36) |B,[Y(®),z] — Y(@) | <e; Y(x) stetig.

Jede 1 evnem endlichen Intervall [0, a] defymerte und dort iiberall stetige
Funktion Y (x) kann durch Bernstein-Polynome B, [Y(z), z] gleich-
missig approximaert werden.

Quantitative Konvergenzuntersuchungen haben schliesslich zu
folgenden interessanten Krgebnissen gefithrt. Unter der einzigen
Voraussetzung der Stetigkeit hat Popoviciu [8] bisher fiir allgemeine
Grundfunktionen das beste Genauigkeitsmass gefunden zu:

, 1
| B,[Y(2), ] — Y(2) | =0 (—;)

Vn
Unter engern Voraussetzungen iiber die auszugleichende Grund-
funktion lisst sich dieses Mass noch verbessern. Fordert man nédmlich
von Y (z) stetige Differenzierbarkeit bis zur zweiten Ordnung,

1
so gelingt es, das Genauigkeitsmass O(W zu erzielen, wie aus nach-

stehender Herleitung folgt: "
Y () besitze in [0, a] stetige Ableitungen bis zur zweiten Ordnung.

Es sei ferner
| Y'(z) | < M,

Man bildet dann den Ausdruck

B,[Y(@), 2] — Y(2) = 51— > [Y (iﬂ_ Yo) (g) gy,

n
=0 - ’




der mit

al ?
R

n

itbergeht in:
1 N\ /al
87 B,[Y(@®),z] —Y(z) =Y'(z)- = Z (% — g,) (7;) z*(a—xz)"

A=0

e %‘;ng Y"(m-&-ﬁ (%;—a:)) (ﬂ——m> (1) Ha—x)™,

Da sich ferner durch zweimalige Differentiation der Identitit

n

El,; Z (:) ' (a—a)"* =1

A=2(

die Beziehungen ergeben:

(38) *Z (—-——m) ( > ot (a—a)" = 0

o LD () i .

A=0

so resultiert aus (37)

(40) | B

M, z(@—x) oM, 1

= T

9 n s n’
also
M 1
B [Y(x), ] — \____.__
(41) | B,[Y(@), 2] —Y(@) | < T



oder

(41 | B,[Y(@), 2] —Y(@) | =0 (%)

Nach einer Notiz von S. Bernstevn [3] hat Voronovskaya in einer
in den «Comptes rendus de I’Académie des Sciences de I'U. R. 8. 8.,
1932» veriftentlichten Abhandlung tber «Détermination de la forme
asymptotique de 'approximation des fonctions par les polynomes de
S. Bernstein» eine zu unserer Relation (41) gleichwertige Beziehung
gefunden, niamlich

lim»n {B,[Y(2), 2] — Y(x)} = % z (a—zx) Y ().

n—» o0

§ 6
Approximation unstetiger Grundfunktionen.

Wir dehnen nun die Konvergenzuntersuchungen auch auf wn-
stetrge Grundfunktionen aus. Dabei beschriinken wir uns grundsitz-
lich auf stiickweise stetige Grundfunktionen, d.h. auf solche Funk-
tionen, fiir welche es eine Zerlegung des Definitionsintervalles in end-
lich viele Teilgebiete gibt, derart, dass die Funktion im Innern eines
jeden von ihnen stetig ist und bei Anniiherung an den Rand jedes Teil-
gebietes von innen her sich bestimmten, endlichen Randwerten
nithert. In der Sprungstelle selbst soll als Funktionswert das arith-
metische Mittel aus den Randwerten von links und rechts definiert

werden, also

HE) — %[ﬂs—-m FFE+O)

Der Nachweis der Approximationsmoglichkeit einer stiickweise
stetigen Grundfunktion durch Bernstein-Polynome ist das Ziel
unserer weiteren Ausfithrungen.

Der prinzipielle Unterschied zum vorhergehenden Paragraphen
besteht darin, dass die Konvergenz im ganzen Intervall [0, ¢] nicht
mehr gleichméssig sein kann. In der Umgebung derjenigen Stellen,
wo die Grundfunktion unstetig wird, konvergiert die Bernstein-
Polynomfolge ungleichmiissig; denn andernfalls besiisse die in [0, a]



gleichmiissig  konvergente Folge stetiger Iunktionen B,[Y(2), z]
eine stetige Grundfunktion.

Die Konvergenzfrage wird wieder vorerst fiir eine spezielle, un-
stetige Grundfunktion entschieden.

1. Konvergenzuntersuchung fiir Stufenfunktionen ¥ (x).
Die durch
<e< &

(42) P(z) = =&

0
0
2
0

E<r<a

definierte Funktion mit einer Sprungstelle x = & und dem Sprung
0(&) nmennen wir in der Folge Stufenfunktion.

Es ist zu zeigen, dass die Konvergenzbezichung

(43) lim B, [®(x), 2] = @(x)

N—p 00

fiir Stufenfunktionen mit Recht besteht.

Da einmal nach § 5 in jedem abgeschlossenen Teilintervall, das
keine Sprungstelle enthilt, die gleichmissige Konvergenz gesichert
ist, geniigt es, unsere Aufmerksamkeit auf das spezielle Verhalten der
Bernstein-Polynome in der Sprungstelle selbst zu richten. Die Be-
hauptung (48) ist offenbar dann bewiesen, wenn wir zeigen konnen,
dass in der Sprungstelle die Wertefolge B, [@(x), &] dem arith-
metischen Mittel aus den Randwerten von links und rechts zustrebt;

d. h.
_ 3 0
(44) llnl Bn[ap(gj): ‘E_J — 2.

N—3» co

Uber die Lage der Sprungstelle & nehmen wir zunéchst einmal an,
sie halbiere das Intervall [0, a].

1. Fall:
a

(45) §=—.



im T8 ==

Fir diese spezielle Stufenfunktion lésst sich (44) besonders einfach
aus der Symmetrieeigenschaft der Binomialkoeffizienten nach-
weisen. s gilt ndmlich schon die Relation

0
(46) Bn|?1i(a;), %} = fir alle n =1,2,8, ...,

die wie folgt zu beweisen ist:
Es sei n gerade (fiir ungerades n ist die Beweisfithrung analog).
Die zugehorigen Bernstein-Polynome lauten dann:

oder wegen

Beide Gleichungen addiert, ergeben

an[qx(w),%} = a.% n @ _s.

Damit ist aber der Nachweis von (46) erbracht und gleichzeitig auch
die behauptete Konvergenz (44) bewiesen.

Wir gehen nun tiber zur Untersuchung des allgemeinen Falles,
wo & irgendeinen Wert des offenen Intervalles 0 < & < @ annehmen
moge.

2. Fall:

(47) a<é<a—ua; 0<oc<—;—.

Zum Beweise der Beziehung (44)

lim B,[W(2), &] = g

n—>oco



konstruieren wir wieder gemiss (2) die zugehorigen Bernstein-Poly-
nome. Dabel ist darauf zu achten, ob die Sprungstelle & einen Beitrag

liefert oder nicht. Frsteres ist immer dann der Fall, wenn — ganz-
a

zahlig ausfillt. Unter Benutzung des Gaufischen Klammersymbols
— es bedeutet allgemein [z] die grosste ganze Zahl, die = nicht iber-
tritft — kann der Ausdruck der zugehorigen Bernstein-Polynome in
einfacher Weise durch folgenden Polynomialausdruck dargestellt
werden:

nel
a

- [
B,[¥(2),&] =0~ _l—n Z (;) & (a—E) -

@
i=0
(48) né " .
4P [_Z c_j’—‘ [Tgl 5[7' (o— E)H—I'T‘
— a
a :

]5 fiir nicht ganzzahliges )
a

i — fiir ganzzahliges ff
a 2 a

Es ist zn beachten, dass von nun an die eckige Klammer stets im
oben definierten Sinne gebraucht wird. Ks bestehen offenbar die
Beziehungen:

(50) [p] <z<®+1

(50") [2] > 2z—1,

die nun hiufig verwertet werden.

Aus (48) folgt durch Subtraktion der Identitit

a#_{s_.{" M\ ga (, _gyni

A=0



A
B,n[qf () 5&] i —g = : . i 1 (7?') Ei- (Cb-—-f)n A

61 R
s A e B\
RN s

E[_"] (a_sc)n[-na

il et Jon e ]
—]_ n 2[ an [_
¢

FEine fir die Konvergenzuntersuchung wichtige Umformung besteht
nun darin, in (51) die Summen so in Partialsummen aufzubeilen,
dass sich dann die Summationen jeweils nur auf diejenigen Indizes
beziehen, fir die

- ]

0| a—|"%) <
a
(52) bzw. : fj &= e d
2] > e
o (I’ .

ausfillt. Dabei bleibt die genauere Bestimmung des Parameters e
noch vorbehalten. Diese wird sich dann am Schluss auf Grund von
Bedingungsgleichungen leicht ergeben.

Durch diese Aufteilung erhalten wir demnach aus (51):

o o0 1 , 81
ptma-3- 415 (3 o4 413 (D eesr




und daher

0
(52) ‘ Bn [qj (:B), E] ik —2“

mit

(53) B o %'Lﬁ Z (z) £ (gt

Fiir den Beweis der Konvergenz von B, [@¥ (z), £] gecen — ist jetat
2

noch zu zeigen, dass in (52) der rechtsseitige Ausdruck mit wachsendem
n beliebig klein wird. Dies werden wir durch Abschitzung der ein-
zelnen Bestandteile P,, ¢),, I, erkennen.

Abschitzung von R,:

Wegen (49) gilt einmal

e ] ]5 ir nicht manzzahlizes
36) {w| —— N " @
n D) " e
i 0 fiir ganzzahliges —.
a a

Um noch den Restbestandteil abzuschétzen, bedienen wir uns in
sweckmissiger Weise der Relation

([ ™\ o0
(67) —\ ™ £ (a—&) —; <y <a—4,

3 a V”
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die wie folgt zu beweisen ist

N U N A B
— | &% (a—8 <\ |n®a—y) .  (Maximum!)
"\ — o \—

a a

Hieraus folgert man unter Verwertung der Stirlingschen Formel
0

M=o YArete?0<0<1,

nach einigen elementaren Umformungen:
1

1™\ m L a- e 1
2l 6% g <- —
L 1/27:17(03—17) }n

Mit B<n<a—2p

1 1
= = 19

Vi s X
57 e v
11
ergibt sich ferner die behauptete Relation:

1{ ™\ m N a
sl e e <t

" 28 ]/fn
né
. ) 2a
Setzen wir nun » = und wihlen n > —, g0 geniigt es,
n o
a
wegen a< E<a—a,

o
= ) zu setzen,

und es resultiert demnach

n né _[né]
9 $<[7?._§])5[71(a_5)n Ao
a

« n
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so dass sich fiir R, mit Riicksicht auf (56) die Abschétzung ergibt:

(59) B

mit der Zusatzbedingung n >-—, die aber keine Kinschrinkung der
o

Allgemeinheit ist, da wir ja % sowieso gross ansetzen werden.

Abschitzung von I):

n

=

hat man gerade die giinstige Ausgangsgleichung zu dieser Abschitzung.
Aus ihr folgert man nimlich fiir die Partialsumme die Ungleichung

9
= /

(1) & g =22

n
- n

1
Mit (39) - >

A=0

a A a"*

A

Beachten wir noch, dass

2

a

und ,

(50) P L] B
a a

so gelangen wir zur verstirkten Ungleichung
1 n§ ? n A n—/. n
& ("‘h 1) (5) ¢
L1

oder unter Beriicksichtigung von

-

|>[n“’] >n®—1



SN 1, [ —

1 n n
w 2, 1 2. E\N-L
(n“—2) pr 2 (l)é (a—&)"" < T

-

Fir B resultiert so die Abschitzung:

0
(60) B o

Abschitzung von @),:

Den Ausdruck

A N
CREre I RS

formen wir passend um

( n N

né né )
sl e ()
= o a—E&/ N
e ()
R a

Beriicksichtigt man die Relation (58) und modifiziert den Klammer-
ausdruck unter der Summe, so gewinnt man




A=) o
+ 1)(72_[';5] +‘u> (a—§>'

R AT
) (=

o e (

ﬁ
< =5 —
i O 1 20 V'ﬂ ”2:‘1

a .

|
Mit (50) {"—

né . . .
§| < — wird die Ungleichung nur verstirkt:
a a

e ’ ___(ﬂ—-l) a)
oo (l fnf> '(1 ng

Q< | :
2u [/% Z (1 + " (;__5))(1 _;_ngg))
P = i)

' 1
[N
né né
und daher

[n] | \ 2 s 2
da -ﬂl{ _(_f%_. } l1#(&£€_1)_ﬁ }{1 pa
|Q"<2al/?5,u=1} 1 "f) né ) T

- {1 - (Wfié)“ )} : '(1 . (”EB) 1l {1 s

anter Weglassung sémtlicher Faktoren im Nenner, die grosser als

eing sind. Nunmehr treffen wir die Voraussetzung §> Z (der Tall

a .
&< 5 liesse sich analog behandeln) und erhalten so

[‘"w] 1 : PAYY)

O N Lt )! [ e ) }
] —— 1 ] —ij1l —|—-=-
61 |Q"; = ch]fn ;‘1(\ " n (a—$) ( (a—£) .,
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wobel zur weiteren Verstirkung der Ungleichung berticksichtigt
wurde:
L

_|>_,_,.

a
<1 wegen &> —
ua 2

14
T b

<1 fir alle 4 =1, 2,...(u—1)

G () | > (i)

Ersetzen wir noch in (61) die [#n®] von null verschiedene Summanden
umfagsende Summe durch

[n]- { Maximalglied },

wo der grosste Wert fiir ¢ = [n*] angenommen wird, so erhalten wir

ne n® " a ]
V [n]- {(\1+‘[(¢Z1§)> (1 {l"n[%‘]:ﬁ?] >}

schlussendlich also, nach Beriicksichtigung der elementaren Unglei-
chung

@l <+

2 2 [”] 2 .2
_ [n*Pa e O
n?(a—&)* ] "]

2 a__‘g)

und gestiitzt auf (47) und (50)

S 2
‘ Qn ] < a__ n® (1 +Enw—1> a_z niw-2
2&]/% o o
Die gesuchte Abschitzung nimmt so die Gestalt an:

d 3
(62) Q] < —pmie=t (1+Enw-1>.
Q0 o
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Mit den gewonnenen Beziehungen (59), (60), (62) geht jetzt (52)
itber in:

3
(63) } B,[¥(x),5— é‘<é . —i-—, |- ai!n‘“”“'z‘ (1 +—(in“’" 1) + ﬂ—
2| 8 (me—2)* 2 o 2a’|/'n
Aus (63) ergibt sich nun leicht die behauptete Konvergenz. Damit
jedes Glied des rechtsseitigen Ausdruckes gegen null konvergiert,
sind noch, da bereits 0 << w < 1 vorausgesetzt wurde, die beiden
Zusatzbedingungen zu fordern

5
1—2w»w < 0 und 4w—~-§< 0

(64) bzw.
- : i
w — —_—
B w < 8’

womit die anfangs in Aussicht gestellte nihere Festlegung des Para-
meters @ nachgeholt ist. Kine im Sinne unserer Konvergenzunter-
suchung vorgenommene Zerlegung ist also prinzipiell immer mdéglich,
da die beiden Ungleichungen fiir den Parameter o ein offenes Inter-
vall abgrenzen.

1
Wiihlen wir etwa =1’ so ergibt sich

) 1
(65) B, [# (),¢] —-—‘ » o( o )

2 Vn J
Damit ist fiir die allgemeine Stufenfunktion das Konvergenzverhalten
in der Sprungstelle, d.h. die Beziehung

0
(44) lim B,[®(x), &] = —
n—» 0o 2
sichergestellt und somit auch die Konvergenzrelation (43), wie an
der betreffenden Stelle ausgefithrt wurde.

Wir halten also fest:

Die zur Stufenfunktion ¥ (z) gehorige Bernstein-Polynomfolge
konvergiert gleichmiissig in jedem von Sprungstellen freien Teilintervall ;
in der Sprungstelle selbst konvergiert sie gegen das arithmetische
Mittel aus den Randwerten von links und rechts.
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Der Vollstindigkeit halber ser noch bemerkt, dass die eben be-
wiesene Konvergenzbetrachtung auch fiir Stufenfunktionen mit
negativen Funktionswerten und Stufenfunktionen von der Form

JO << &

gilt.

2. Konvergenzuntersuchung fiir stiickweise stetige Grundfunktionen.

Gestittzt auf die gewonnenen Ergebnisse und auf die Linearitits-
relation (5) ist es nun leicht, die Giiltigkeit der Approximation durch
Bernstein-Polynome auch auf stiickwese stetige Grundfunktionen aus-
zudehnen.

Iis sei jetzt Y(z) eine solche Funktion, welche an den endlich
vielen Stellen z =¢, (A=1,2,...m) des Intervalles [0,a] die
Spriinge

8(&;) = Y(§,+0) — Y(§,—0)

besitzt und sonst stetig ist.
Der Beweis der zu vermutenden Beziehung

lim B, [Y(x), ] = Y(x)
H—P 0o

beruht darauf, dass sich die stuckweise stetige Grundfunktion Y(z)
stets in eine iiberall stetige Funktion y(z) und in endlich viele (genau m)
Stufenfunktionen mit den Sprungstellen z = & und den Spriingen
0(&,) zerlegen lisst:

Y(a) = y(a) + ) ().

Wegen der Linearititsrelation (5) gilt nun aber auch

B,[Y(x), 4] = B,[y(@), 4] + ) B,[®, (@), 1]



A/ J——

und fiir den Grenzitbergang, vermoge (36) und (43)

lim B,[Y(x), z] = lim B, [y(a), 7] +Z lim B,[®,(z), «]

R—P= 00 n—)y oo —» oo
m+2%w=ﬂm
A=1

Damit haben wir das fundamentale Frgebnis erhalten:

(66) lim B,[Y(z), 2] = Y(x) ; Y(z) stiickweise stetig.
n—3 00

Jede vm Grundintervall [0, a] stiickweise stetige Grundfunktion Y (x)
lisst sich durch Bernstein-Polynome B, [Y(z), z] approximieren.
Daber konvergiert die Polynomfolge gleichmdssig in jedem von Sprung-
stellen freven, abgeschlossenen Teilintervall; in der Sprungstelle selbst
konvergiest sie gegen das arithmetische Mittel aus den Randwerten von
links und rechts.

Dieses Resultat reicht fiir die Anwendung der Bernstein-Poly-
nome voll aus.

§ 7
Eine Anwendung.

Nachdem wir die theoretischen Figenschaften der Bernstein-
Polynome kennen, gehen wir dazu iiber, noch einige Bemerkungen
praktischer Natur anzuschliessen und die Ausgleichungsergebnisse
einer mit Bernstein-Polynomen vorgenommenen Ausgleichung dar-
zutun.

Kennzeichnend fiir eine Ausgleichung mit Bernstein-Polynomen
ist der einfache und handliche Ansatz. Zu einer gegebenen Grund-
funktion Y(z) wird das Approximationspolynom n-ter Ordnung

, al’
konstruiert, indem (n-4-1) dquidistante Werte derselben: Y& " ),
A =0,1,...n mit den zugehorigen Polynomen n-ten Grades ver-
bunden werden.

n

(2) B [Y), 2] = “1” Z Y( ak ) (\/1) Ma—x)";

=0 1

n =1

0 <2 <a.



Dieser Eigenschaft wegen konnte man das Verfahren als konstruktives
Ausgleichsverfahren bezeichnen. Iis unterscheidet sich von den ge-
wohnlich iiblichen analytischen Verfahren dadurch, dass im Ansatz
keine Parameter vorkommen, sondern dass direkt diskrete Werte der
Grundfunktion verwertet werden. Von vornherein fillt also jede
Parameterbestimmung und damit auch jede allfillige numerische
Integration weg. Is ist dies eine fiir die praktische Auswertung
giinstige Kigenschaft.

Dagegen muss, um eine befriedigende Ausgleichung zu erzielen,
die Ordnung der Approximationspolynome im allgemeinen héher
angesetzt werden als bel andern analytischen Methoden. Iis liegt dies
im Umstand begriindet, dass zwischen den Bernstein-Polynomen
und der Grundfunktion ausser den im Polynomialansatz vorkom-

menden einzelnen Werten Y(ﬁ) A=0,1...7n keine weitere
Bindung existiert. "

Ferner sei noch erwiihnt, dass sich nach erfolgter Ausgleichung
der analytische Ansatz der Bernstein-Polynome zur kontinuierlichen
Berechnung von allfilligen weitern Masszahlen im allgemeinen nicht
eignen wird, da letztere nicht durch einfache Ausdriicke darstellbar
sind.

Fiir die numerische Auswertung einer Ausgleichung mit Bernstein.-
Polynomen ist
n

) BIY@,a] = ) d Y02 =) a,

r=10 e r=0

die giinstigste Gestalt. Die Zahlen d, , wurden fiir die durchgefiihrte
Ausgleichung ein fiir allemal numerisch ermittelt und zusammen-
gestellt (Seite 88/39), die zehn ersten Potenzen der Zahlen 1 bis 100
sind tabelliert in Pearsons Tabellenwerk [18], so dass es bei einer

Ausgleichung lediglich noch darauf ankommt, die Differenzen 4% Y(0)
n

der Grundfunktion zu ermitteln, gestiitzt auf die allgemeine Diffe-
renzenrelation

Aw f(m) o M_—i@_.'

w
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Bevor zur systematischen Auswertung des durch (8) gelieferten
Approximationspolynomes geschritten wird, ist es noch empfehlens-
wert, die Richtigkeit der Entwicklungskoeffizienten «, , zu iiber-
priifen. Die Eigenschaft der Bernstein-Polynome, im Anfangs- und
Endpunkt des Grundintervalles [0, a] mit der Grundfunktion iiberein-
zustimmen, liefert eine einfache Kontrollmoglichkeit.

Um uns Rechenschaft iiber die Ausgleichung mit Bernstein-
Polynomen an einem konkreten Beispiel zu geben, wurden die Zahlen
der Kranken- und Unfalltage, wie sie sich aus den Erfahrungen der
Jahre 1926—1980 der Krankenkasse fiir den Kanton Bern ergeben
haben, mit diesen Polynomen ausgeglichen. Die rohe Beobachtungs-
reihe der durchschnittlichen Zahl der Kranken- und Unfalltage eines
a-jihrigen Mannes: k;*" diente als Grundfunktion.

Fir die praktische Auswertung ist nun darauf zu achten, dass
bei getroffener Wahl des Grundintervalles Anfangs- und Endwert
der auszugleichenden Grundfunktion einer kritischen Betrachtung zu
unterwerfen sind. Da diese den Verlauf der Bernstein-Polynome
nach (3) wesentlich mitbestimmen, sind sie eventuell passend ab-
zuindern. Ks ist eben zu bedenken, dass die Beobachtungswerte
gerade an den Enden einer statistischen Reihe oft unzuverlissig aus-
fallen. Fir die praktische Anwendung kann es daher vorteilhaft sein,
zur Bestimmung dieser Endwerte die Nachbarwerte mitzuberiick-
sichtigen, obschon dies zu einer kleinen Modifikation des theoretischen
Ansatzes fiihrt.

Um einmal das Verhalten der Approximationspolynome
B [k, 2] mit zunehmender Ordnung n zu charakterisieren, wurde
fir das Intervall 25 < z < 85 eine Ausgleichung mit Bernstein-
Polynomen 4-ter, 6-ter und 10-ter Ordnung vorgenommen. Mit der
Setzung

kit = 17,50 und ki = 43,30

resultierten folgende Ansiitze:
B, [100 Kt x] =750 + 8,2 (2—25) + 0,436 667 . (2—25)*
+ 0,118 519.10" . (z—25)® — 0,722 219.107* . (z—25)*.
B, [100 K+, 2] = T50 + 5,9 - (2—25) + 0,191 667 - (z—25)*
+ 0,178 704.107" + (z—25)% — 0,425 927.107% . (2—25)*
+ 0,906 636.10° . (z—25)°® — 0,611 712.107 . (z—25)°.
6



Wertetabelle
4, 0=
\ 3
" \ 1 2 3 4 5
1 1 .
2 1 0,250 000 000
3 1 0,383 333333 | 0,370 370 370.101
4 1 0,375 000 000 | 0,625 000 000.101 | 0,390 625 000.102
5 1 0,400 000 000 | 0,800 000 000.10° | 0,800 000 000.102| 0,320 000 000.103
6 1 0,416 666 667 | 0,925 925 925.101 | 0,115 740 741.101 | 0,771 604 937.10°3
7 1 0,428 571 428 | 0,102 040 816 0,145 772 595.101 | 0,124 947 938.1072
8 1 0,437 500 000 | 0,109 375 000 0,170 898 438.10°1 | 0,170 898 438.10°2
9 1 0,444 444 444 | 0,115 226 337 0,192 043 895.10-1 | 0,213 382 106.10°2
10 1 0,450 000 000 | 0,120 000 000 0,210 000 000.101 | 0,252 000 000.10°2

By, [100 K:+, 2] = 750 — 6,166 666 667 - (2—25) -+ 2,875 - (z—25)?

— 0,244 444 444 - (z—25)° + 0,151 842 592.10°! - (z—25)*

0,478 074 078.10 - (z—25)° + 0,709 182 098.107° - (z—25)°

0,247 256 514.107 - (2—25)" — 0,278 330 831.10°- (x—25)®

0,389 612 862.1071°. (z—25)°— 0,181 578 873.107%- (z—25)°.

In Figur 1 sind, neben den rohen Beobachtungszahlen, die durch
B,, B,, By, gelieferten Approximationskurven aufgezeichnet. Diese
Darstellung zeigt einmal, wie die Bernstein-Polynome im grossen den
Grundverlauf wiedergeben und wie sie sich mit zunehmender Appro-

ximation der Grundfunktion néhern.

Mit einer zweiten Auswertung schliesslich soll noch gezeigt
werden, dass bei geeigneter Intervallabgrenzung der Genauigkeitsgrad
der Annitherung wesentlich verbessert werden kann. Konstruiert man

der Zahlen d, ,.

(22 65

!

;dOnzl

]

10

0,214 834 704.10%
0,594 990 181.10¢
0,106 808 746.10°3
0,158 060 819.10°®
0,210 000 000.103

0,121 426 567.10°
0,381 469 722.10°
0,752 670 556.10°5
0,120 000 000.104

0,596 046 448.1077
0,209 075 149.106
0,450 000 000.106

0,258 117 479.108
0,100 000 000.1077

0,100 000 000.10°°

fir das praktisch wichtige Intervall 20 < z < 60 das Polynom 10-ter Ordnung

By, [100 Ki+Y, o] — 859 — 6,75 - (2—20) — 2,615 625 - (z—20)?

+ 0,414 875 - (z—20)° — 0,228 945 313.10™ . (z—20)*

+ 0,575 859 875.10 - (x—20)°> — 0,681 884 765.107° . (—20)°

+ 0,805 664 063.107 - (z—20)" — 0,375 595 098.10°° . (z—20)°

+ 0,910 949 707.107%° - (z—20)° — 0,745 670 136.1072. (z—20)',

wobei fir ki und Kt das arithmetische Mittel aus fiinf benach-
barten Werten gesetzt wurde

+2
k7c+u - i ],Jc +u
z 5 T+

also

ki = 8,59

h=-2

und kg™ = 12,78,
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so erschliesst der graphische Verlauf (Figur 2) eine befriedigendere
Approximation.

Zur Beurteilung der Ergebnisse sei noch auf den Unterschied
hingewiesen, der entsteht, wenn man die beobachtete Anzahl von
Kranken- und Unfalltagen der an Hand der ausgeglichenen Werte
ermittelten erwartungsméssigen Zahl gegeniiberstellt. In der ersten
Auswertung (25 < x < 85) iibersteigt fiir das Ausgleichspolynom
10-ter Ordnung das Total der erwartungsméssigen Kranken- und
Unfalltage das der beobachteten um 98 256 Tage; die Abweichung
selbst betrigt: + 6,18 9. Tir die zweite Auswertung (20 < z < 60)
sind die entsprechenden Daten fir B,, 80 424 Tage oder - 2,18 9/,

Aus diesem Vergleich ersieht man zunéchst auch, dass bei gleicher
Ordnung n der Polynome die Ubereinstimmung durch Finschrinkung
des Grundintervalles verbessert werden kann.

Im weitern 1st zu beachten, dass eine Ausgleichung nach dieser
konstruktiven Ausgleichsmethode nicht dann schon als gelungen be-
trachtet werden kann, wenn wirkliche und erwartungsmégsige Kr-
eigniszahlen im Total verhiltnismissig gut ibereinstimmen. Hs ist
in jedem Fall zu untersuchen, wie die positiven und negativen Ab-
weichungen zwischen den beobachteten und ausgeglichenen Werten
aufeinander folgen und wie sie sich auf den gesamten Verlauf verteilen.

Im allgemeinen wird eine Ausgleichung mit Bernstein-Polynomen
um so giinstiger ausfallen, je besser die Grundfunktion konvexen oder
konkaven Verlauf im gesamten Intervall aufweist.
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' Kranken- und Unfallordnung: k:+.

50 4
1 — Rohe Werte
o B4 [ki+ u’ X]
ol e B[R fi

--= By, [ki+ua x] N

Figur 1.
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A Kranken- und Unfallordnung: k%"

15

—— Rohe Werte
—-= B[R, x]

14

14 Figur 2.
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