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Ausgleichung durch Bernstein-Polynome
Von Dr. Walter Wegmüller, Walkringen

Einleitung.

Zur Approximation von Funktionen durch Polynome hat M.

Serge Bernstein im Jahre 1912 die nach ihm benannten Polynome
aufgestellt. Auf Grund bemerkenswerter Eigenschaften fanden diese

in der Literatur weiterhin viel Beachtung.

Es schien mir von Interesse, einmal die Frage zu stellen, ob

Bernstein-Polynome zur analytischen Ausgleichung verwertet werden

können, gilt es doch auch hier, eine auf Grund statistischer
Erhebungen bekannte Grundfunktion durch analytische Funktionen
möglichst gut zu approximieren.

Die vorliegende Arbeit bezweckt daher, die Verwendbarkeit der

Bernstein-Polynome in der Ausgleichungsrechnung darzutun.
Theoretische wie praktische Eigenschaften sprechen dafür. Eine mit
Bernstein-Polynomen vorgenommene Ausgleichung zeichnet sich vor
allem dadurch aus, gewisse Eigenschaften der Grundfunktion
invariant zu lassen. Erhaltung der Schranke und der totalen Schwankung,

Erhaltung der Monotonie, der Konvexität erster und höherer

Ordnung verbürgen eine günstige Ausgleichswirkung. Die
Untersuchung, ob und wie sich überhaupt Funktionen durch Bernstein-

Polynome approximieren lassen, ergab ein für die

Anwendungsmöglichkeiten durchaus hinreichendes Ergebnis, nämlich: gleich-

massige Approximation stetiger und gewöhnliche Approximation
stückweise stetiger Grundfunktionen.

I)a einfach im Ansatz und in der numerischen Auswertung,
führen die Bernstein-Polynome als Ausgleichspolynome relativ rasch

zum Ziele.

Theoretische Gesichtspunkte im Ausgleichsproblem gemessen
in den vorliegenden Ausführungen den Vorzug, während die mehr
den Praktiker interessierende Frage nach der Ausgleichungsgüte des

Verfahrens eher etwas zurücktritt.
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§ 1

Die S. Bernstein-Polynome.

Es sei Y(x) eine im Intervall 0 < x < 1 definierte endliche
Funktion. Nach S. Bernstein [l]1) werden dieser Funktion die Polynome

A /. \ ' \ n > 1

,D 0<I<1

zugeordnet. Diese so definierten Polynome (S. Bernstein-Polynome)
führten in der Folge zu verschiedenen Untersuchungen [2], [3], [4],
[5], [6], [7], [8],

Im Hinblick auf die Verwertung der Polynome in der Ausgleichsrechnung

ist es vorteilhaft, eine Erweiterung des Grundintervalles

[0,1] vorzunehmen. Wird das allgemeinere Intervall [0, a] zugrunde
gelegt, so dass eine für 0 < x < a definierte endliche Funktion
zugelassen werden kann, so erfährt die Definition (1) die naheliegende
Modifikation

1 / 3 \ 7 \ n >1
(2) BAY(x),x}=--^Y(Ca-)(n)x>ia-xr>-;

a fZo ^ n ' ^ ' < x <ci.

Y(x) nennen wir in der Folge Grundfunktion.

Diese durch (2) definierten Polynome werden zum Gegenstand
unserer ausgleichungstheoretischen Untersuchung. Dabei haben wir
diejenigen Eigenschaften der Bernstein-Polynome eingehend zu

studieren, welche ihre Verwendung als Ausgleichspolynome der
Grundfunktion zu rechtfertigen geeignet sind.

Zunächst einige fundamentale Beziehungen, die aus der

Definitionsgleichung (2) gewonnen werden:

Es gilt

(3) Bn [Y(x), 0] Y(0), Bn [Y(s), a] Y(a).

x) Zahlen in eckiger Klammer [] bezeichnen die betreffende Nummer im
Literaturnachweis.



Die Bernstein-Polynome stimmen im Anfangs- und Endpunkt des

Grundintervalles mit der Grundfunktion überein.

Weiter folgt aus

Y(x) < 0 bzw. Y(x) > 0
(4)

Bn\Y{x), x\ < 0 bzw. Bn [Y(«), a:] > 0.

Die Eigenschaft der Grundfunktion, nichtpositiv oder nichtnegativ zu
sein, bleibt bei der Ausgleichung mit Bernstein-Polynomen invariant

Yon grosser Bedeutung ist die Linearitätsrelation:

B„ Kl®) + Y2(x)> X1 B„ UiW. x\ + Bn Kl«).
(5)

Bn[CY(x),x] C-Bn[Y(x),x].

Insbesondere folgt aus

Cx Yx(x) +...+Ck Yk(x) 0

@i Bn [Y^(x), x] CkBn \Yk{x), x~\ 0.

Die Ausgleichung mit Bernstein-Polynomen lässt eine vorhandene

lineare Abhängigkeit von Grundfunktionen invariant.

§ 2

Umformung (1er Polynome.

Für die numerische Auswertung wird es von Interesse sein, die

Polynome Bn [ Y{x), x\ in eine andere Gestalt zu bringen. Diese

unterscheidet sich von der ursprünglich durch die Definitionsgleichung
(2) gegebenen dadurch, dass sie nach Potenzen von x geordnet ist.

Wir gelangen zu dieser Umformung, wenn wir in

n

Bn [Y(x), .1=^1 a*) (f) ^{a—x)n~k

r=o ' n ' v '

(n—xjn';' nach Potenzen von x entwickeln:

B. [V(x), *] _ iX Y (") ** 2 (V) *"
A 0

N ' /!-«
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1
n n~^'

0 fi—0

Die Substitution X + /« v ergibt

n n
1 V1 V1, -TT / aX\ fn\ in—X\

[w.*i=-7ZZh" 17 (t) U) (U)
n w

1 '

B
a"^tT ' W/W\>

Mit

öc^-CH;
und der Summenforrael von Dirichlet folgt:

(6) B, er«, x] _ 2 (;) (|)' 2 (-•)-' (;) r (»*).
I =0 1=0

Unter Verwertung von Differenzenrelationen [10] lässt sich dieser
Ausdruck weiter vereinfachen.

Bezeichnet

f(x+m) — f(x)
dw f(x)

tu

die Differenz erster Ordnung, so folgt allgemein durch wiederholte
Differenzenbildung für die Differenz v-ter Ordnung bei gleichbleibender

Spanne co die Beziehung:

Km O)
;.=o

'''1 (7)t(x+k°)-

>. (v\y (a^

;.=o

in (6) ist daher nichts anderes als

A a Y(0),
n / n
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so dass jetzt gilt:
n

Bn [Y(x),x] 2 H (-)^£ m
»' 0

X

n/ \ n / Ti
' ' v\

=o

Setzt man noch

(7) ^ C-,n \ nj \ ^
"v, n

"
I „I > a0,n~ J>

Vi Vi

so resultiert:
n

(8) ß„ [ Y(a:), ®] ^ „ Al Y(0) x\
* 0 "

In dieser für die Auswertung praktischen Form können die
Zahlkoeffizienten dy n

ein für allemal numerisch ermittelt werden

(vergleiche Seite 52/58), und die Differenzen sind auf Grund des

Differenzenschemas leicht berechenbar.

Diese Darstellung erlaubt uns zudem, eine weitere Aussage über

das Verhalten der Bernstein-Polynome zu machen.

Sind alle Differenzen

A'a Y(0) 0 v (m+1), (w+2), n; [m < n]
n

(was zum Beispiel der Fall ist, wenn die Grundfunktion selbst ein

Polynom vom Grade m ist), dann ist das Polynom Bn[Y(x), x] nur
vom Grade m.

Schliesslich entdecken wir eine gewisse Verwandtschaft mit der

Newtonschen Interpolationsformel Nn[Y(x), x\. Es ist

S 1 / a\ (v—l)a
N, rY(«), x] / — x x •.. x

n

und

B,

„ [YW, *] -2 *Hf) • • {X r.)A\ Y<0)

v! \ n / \ n
v**0
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§ 3

Beziehungen zwischen den Differentialquotienten der Bernstein-

Polynome und den Differenzen der Grundfunktion.

Weitere die Polynome Bn[Y(x),x] kennzeichnende Relationen
ergeben sich durch Differentiation der Definitionsgleichung (2)

d

dx

n

Bn [Y(x), x] -^Y (^) Q [.Xx'-l(a-xr(n-X) x'ia-x)«^]

oder indem wir noch in die beiden Summen aufteilen und passend
umformen mit Rücksicht auf

d

dx

1
^

\
Bn[Y(x),x] ^(Vi Aa-xr1-"• -a"~x \ X

A 0

a(A+l)\ y/aX
n j \n

und endlich, wenn wir beachten,

Y | ^+1)^ _ y
\ n

R -v( a^
ZU Y

n

d

dx

n-1

(9) - B, [YM, I] -Ry4 Y (W) (" x
1) *>-_*)»-<

A 0

Ersetzt man noch in der Differenz das Argument

XY^-zr.Y^-I-W~ \ n ' \w—1 n n—1



so ist die rechte Seite nichts anderes als der Ausdruck für das

Bernstein-Polynom (n—l)-ter Ordnung der Funktion

also

(9*)
d

dx
Bn [Y(a;), x] B^ A\ Y (x — — x), x

n n

i

Durch fortgesetzte Differentiation erhält man nun allgemein die
Beziehungen :

Man erkennt also, dass die Ableitungen der Bernstein-Polynome selbst

wieder Bernstein-Polynome von entsyrechend erniedrigter Ordnung sind,
oder, was für Bückschlüsse weit wichtiger sein wird, man erkennt die

Existenz einer Beziehung zwischen den Differentialquotienten der

Bn\Y(x), x] und den Differenzen von Y(x).

Wie bereits früher bemerkt wurde, erweisen sich die Bernstein-
Polynome in der Hinsicht beachtenswert, dass in ihnen gewisse bei
der Grundfunktion vorausgesetzte Eigenschaften erhalten bleiben.

1. Beschränktheit.

Es sei Y(x) in [0, a] als beschränkt vorausgesetzt:

to < Y(ai) < M.

Dann sind auch sämtliche zugehörigen Bernstein-Polynome in
gleichem Masse beschränkt, denn es ist

§ 4

Fundamentale Eigenschaften.



n M
1

a,n

oder

(11) to < Bn [Y(x), x] < M.

Die Bernstein-Polynome sind im ganzen Intervall [0, a] zwischen der
unteren und oberen Grenze der Grundfunktion enthalten.

Die Grundfunktion Y(x) sei jetzt im Intervall [0, a] von
beschränkter Schwankung. Darunter hat man folgendes zu verstehen [11]:

Als totale Schwankung einer Funktion /(x) im Intervall [0, a]
definiert man die obere Grenze des Ausdrucks

der für alle möglichen Einteilungen des Intervalles [0, a]

0 x0 < xt < .< xm_t < xm a

zu bilden ist.

Formelmässig wollen wir für die totale Schwankung das Symbol
einführen

Funktionen von endlicher totaler Schwankung V0 heissen «von
beschränkter Schwankung».

Die Behauptung ist nun die, dass die totale Schwankung der

Bernstein-Polynome BJY(x), x] höchstens gleich der der Funktion
Y(a;) ist.

Zu diesem Zweck ist der Ansatz für die Bernstein-Polynome
passend zu wählen. Integriert man die Differentialgleichung (9), so folgt

2. Totale Schwankung.

V0 {f(x)} obere

n-l

AtFAy
n

a
a oA\ In—1

77 W )/'Bn[Y(x),t] t'' (a—t)1^1'1 • dt,
X

X
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oder nach einigen elementaren Umformungen

(12) Bn[Y(x),x]
I nrlir Y(a)+W2

;.=o

Y\ai l—Y
n

Man bildet nun für

ferner

®,.-i < xm

Bn [Y(x), xß] — Bn [Y(a),

V

Bn [Y(«), xß] — Bn [Y(a), a^J \

Xft-1

n--l

2
A 0

(y)/G)'Ky^-1 dt

/ a
xu-l

und schliesslich durch Aufsummieren über alle ju 1,2, m

Bn [Y(x), ®,J — Bn [Y(®), xß_x]

,t=i
d») 2

n-1

'2< n

A=»0

y(oO+l)\ y/oA
n / \ n

_\Yi dt
A )J \a) \ aj a

x0=0
V(i.

Das Integral rechts kann direkt ermittelt werden. Die Substitution

r — führt dieses über in das bekannte Eulersche Integral für die
a

Beta-Funktion

l
J T* (1—t)"^1 dr B (A+l, n-X)
o

T(A+1) • F{n—X)

r(n+1)
'



Mit /'(A+l) • l\n—X) X\ (n—X—1)!

/'(n+1)

geht (18) über in:

n:
n

n—1

<») 2
ft l

Der Ausdruck

Bn[Y(x),xu]-Bn[Y(a),Vl]
tt-1

<2
A 0

Y t(/l+l)\
n j •Ä:.

.n.

V J l _ y [^f-i \ n / \n J
x=o

kann für die äquidistante Unterteilung (^Spanne: — höchstens gleich

sein der totalen Schwankung von Y(a:), also

n-l
i n ',) 1 1 \ \ f n 1 \

<F0 {Y(x)}.(15)

Somit

(16)

2
;.=o

Y|'o(A+1)\ Y(a*\
/ n J

T/t

2
,«=>1

Bn[Y{x),xl-Bn\Y{x),x^ F0{Y(^)}.

Indem noch links die obere Grenze des Ausdrucks gebildet wird für
alle möglichen Intervallteilungen xfl, so beeinflusst dies den

rechtsseitigen Ausdruck nicht mehr, und es resultiert die Beziehung:

(17) V0{Bn[Y(x),x]} <F0{Y(a:)}.

Die totale Schwankung der Bernstein-Polynome ist nicht grösser als die
der Grundfunktion.

Diese Tatsache verbürgt uns die erwünschte Ausgleichswirkung,
dass die ausgeglichenen Werte einen regelmässigeren, glatteren Verlauf

aufweisen werden. Das Gleichheitszeichen gilt vor allem bei
monotonen Funktionen.
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3. Monotonie.

Yon der Funktion Y(x) wollen wir jetzt ein monotones
Verhalten fordern.

Dabei wird die Monotonie wie folgt definiert: Eine Funktion f(x)
heisst in einem Intervall [ 0, a] monoton zunehmend (abnehmend),
wenn für jedes Wertepaar xl < x2 in [0, a) gilt.

1 /(«i)

1/W
> 0 (< 0).

Im folgenden wollen wir uns auf den Typus einer monoton
zunehmenden Funktion beschränken, da wir ja monoton abnehmende

Funktionen durch Multiplikation mit —1 stets in solche verwandeln
können.

Unmittelbar aus der Definitionsbeziehung Hessen sich für monotone

Funktionen typische Kriterien herleiten, doch sei hier auf die
Beweise verzichtet.

Ist die Funktion f(x) überall differenzierbar, so ist die Bedingung

f'(x) > 0

notwendig und hinreichend dafür, dass die Funktion monoton
zunimmt.

Bilden wir andererseits für eine bestimmte Spanne co die erste

Differenz, so gilt sicher

^/(*) >0-

Nach diesen Ausführungen gehen wir zum Beweise der Behauptung

über, dass sich die Monotonie auf die Polynome Bn[Y(x),x]
überträgt.

Nach (9) ist

d
Bn[Y(x),x] ~-t 2] ä\ Y(^j (n A1) x\a—x)n-'-x-, n > 1.

dx a"-1^ n \n;.=o

Da nach Voraussetzung Y(x) monoton zunehmend ist, fallen in der

rechtsstehenden Summe sämtliche A la Y(-^j positiv aus und demnach

wegen (4) auch "
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(18)

Damit ist, gestützt auf das hinreichende Differentialkriterium, die

Behauptung bewiesen.

4. Konvexität 1-ter Ordnung.

Setzt man nun von der Grundfunktion voraus, dass sie eine

konvexe Funktion 1-ter Ordnung sei, so bleibt auch die Konvexität bei
der Ausgleichung mit Bernstein-Polynomen erhalten. Unter
Konvexität bzw. Konkavität 1-ter Ordnung ist eine Konvexität bzw.

Konkavität im gewöhnlichen Sinn zu verstehen, die wie folgt
definiert wird:

Eine Funktion f(x) heisst konvex (konkav) in [0, a], falls für alle

Wertetripel x, < x2< x3 in [0, a] die Beziehung gilt:

Diese neue Definitionsform deckt sich vollständig mit der gewöhnlich
üblichen Form von Jensen [12],

wie man durch passende Umformung leicht erkennt. Der Vorteil
dieser Determinantenform liegt lediglich in der einfachen
Übertragung auf Konvexitäten höherer Ordnung, wie wir noch sehen

werden.

Im folgenden beschränken wir uns wieder auf einen Funktionstypus,

nämlich auf konvexe Funktionen.

Für zweimal differenzierbare Funktionen gilt wieder, dass die

Bedingung

1 fix,)

1 x2f(x2) >0«0).
1 x3 f(x3)

f"(x) > 0

notwendig und hinreichend ist für die Konvexität.
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Es fallen zudem die zweiten Differenzen bei fester Spanne a>

notwendig positiv aus

4L/(s) >0-

Aus der Beziehung (10) ergibt sieh dann für k — 2

d1

dx
-- Bn [Y(x), x]=ciin-~^A\~Y fn

x
2

x'- (a x)"~2~l, n > 2

;.=o

a A
mit d2a Y( — > 0, da Y(a:) eine konvexe Funktion, die Folgerung:

(19)
d2

dx2 B„[Y(a:), cc] > 0; n > 2.

Es liegt nun nahe, dieses Resultat der Erhaltung der Konvexität
zu verallgemeinern und auf konvexe Grundfunktionen Y(x) höherer

Ordnung zu übertragen.

5. Konvexität höherer Ordnung.

Als eine konvexe (konkave) Funktion fc-ter Ordnung definiert

man eine solche Funktion f(x), bei der für alle geordneten
Wertesysteme in [0, a]

Xl < X2 < • • • < < ^{+2

die Determinante

\xl x\ xl f{xt)

1 X2 X2 f{%2)

1 xk+2 xt +2* * -Xk+2f(.Xk+2)

>0(<0)

positiv (negativ) ausfällt.

Für konvexe Funktionen fc-ter Ordnung gelten entsprechend die

Relationen:
f{k+l\x) >0

als notwendiges und hinreichendes Differentialkriterium für die

Konvexität fe-ter Ordnung und
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^ /(®) > 0

als notwendiges Differenzenkriterium.
Für den Nachweis der Erhaltung der Konvexität fc-ter Ordnung

bedient man sich wieder der üblichen Schlussweise. Nach (10) gilt

/t + l 1 "-(fc+l) ' i\ / 7 1\

4+'YWl »

Da Y(x) als konvexe Funktion fc-ter Ordnung vorausgesetzt wird,
fallen in der Summe sämtliche

aTY{-\
n \ n 1

positiv aus, so dass wegen (4) auch die Beziehung gilt:

dk+l
(20) Bn[Y(x), x] > 0; n>k + l.

Damit ist der Beweis für die Erhaltung der Konvexität höherer

Ordnung geleistet. Zusammenfassend halten wir fest:

Die Eigenschaft der Grundfunktion konvex bzw. konkav von
bestimmter Ordntmg zu sein, bleibt bei der Atisgleichung mit Bernstein-

Polynomen hinreichend hoher Ordnung invariant.

§ 5

Gleichmiissige Approximation stetiger Grunclfunktionen.

Bisher haben wir uns lediglich mit den zu einer Grundfunktion
formal gebildeten Bernstein-Polynomen befasst und letztere auf ihre

Eigenschaften hin untersucht. Dabei wurde auf die Begründung,
ob und wie genau Funktionen durch Bernstein-Polynome approximiert

werden können, überhaupt nicht geachtet. In diesem und nächsten

Paragraphen sollen daher die approximierenden Polynome auf
ihre Konvergenzeigenschaften hin näher untersucht werden.

Wir prüfen diesbezüglich, wieviel Bn[Y(x), x] von Y(x) in [0, a]
abweichen kann. Unsere Polynomfolge wird dann und nur dann

gegen die Grundfunktion Y(a;) konvergieren, wenn an jeder Stelle x
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in [0, o], zu jedem noch so klein vorgegebenen positiven e, der
Ausdruck

] Bn [Y{x), x] - Y(x) | < e

ausfällt, sobald wir nur n hinreichend gross wählen. Der Höchstbetrag

dieser absoluten Abweichung liefert ferner ein Mass für die

Genauigkeit der Annäherung, wobei wir dieses Mass als Funktion der

Ordnung n darzustellen trachten.

Zunächst befassen wir uns mit Konvergenzuntersuchungen,
welche sich auf stetige Grundfunktionen beziehen, und zwar soll dies

vorerst an einer speziellen, stetigen Funktion vorgenommen werden.

1. Konvergenzuntersuchung für Y(x) Yc.

Die zugehörigen Bernstein-Polynome lauten:

(21)

;.«o

n
x'-{a—x)n>\

Entwickelt man andererseits

(22) V (x> z)

nach Potenzen von z:

nl
er ^ U

A-0

a + 1p " —-1) x

V l'aXYz"

u=0
n ; /i!

a I ftf ^ \ n /

(23) f{x,z) ^Bn[x",.
i '

so erkennt man aus (28), dass ip(x>z) die erzeugende Funktion ist
für die Bernstein-Polynome w-ter Ordnung der Funktionenklasse xk;

(h =0,1,2, ...)•



Es besteht demnach allgemein die Beziehung:

(24) Bn[x'1, x] — f(x,z)
3=0

Unter Verwendung der Cauchyschen Integralformel resultiert aus

(24) die Darstellung

Bn [xk, x\
1 kl
an 2ni

a + \en —1/ x
Jt+1 dz,

(C)

wobei sich die Integration über einen den Nullpunkt umschliessenden
Kreis C erstreckt.

Eine weitere Umformung führt auf:

(25)

(26)

Bn[x",x] k\J]
;.=o

ft); j. —'"l 2ni
dz.

Je +1

(C)

Es ist jetzt (25) eine für die Konvergenzuntersuchung günstigere
Gestalt. Dabei sind die Werte von k wie folgt zu bestimmen:

Beachtet man, dass für ganze m

J zm dz

(C)

%ni m —

0 «i t
1

ist, so ergeben sich zunächst, falls man in (26) den Integranden nach
Potenzen von z entwickelt, die Werte:

X > k

X k

mk,k— o

/ a^k

Für X < k wird das Integral abgeschätzt; wir führen in (26) zunächst

t n • • az
die Substitution — w aus

n



Dann findet man, indem als Integrationsweg der Einheitskreis |wj| 1

gewählt wird,

| <»x,k | '271'Max" I ßW~ 1 iA

<(#*'
da | ew— 11'" < (e:w| — 1)* < 2A.

Der Wertevorrat von (ol k ist demnach wie folgt zu charakterisieren:

X > 1c ak — 0

ax'(
(27) X k cokk

\n/

X < k |

coAik | < (• 2*.

Nach diesen Ausführungen können wir jetzt dazu übergehen, für
Y(a;) od* die gleichmässige Konvergenz der zugehörigen Bernstein-

Polynome nachzuweisen.
Ohne Einschränkung der Allgemeinheit dürfen wir n so gross

ansetzen, dass gilt
(28) n > 2 k.

Wir bilden nun, unter Berücksichtigung von (25) und (27),

k-l

K [«*» ®] — xk h! 2 j) (7) Wl'" ~ xk f1—'k1 UI ak Wkt k

A 0

k-l

n\ 1

Ersetzt man rechts überall x durch den Höchstwert a und beachtet,

dass
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A-l

ZI)2*<+-+*-'
;.=o N 7

wegen (28), so geht (29) über in:

| Bn [+, x] — xk | < k! (—^ k ^ 2ft_1 + — k!
^ ^

<

kj nk

k2-ak-24_1 w(w—l)...(n—(k—2)) ^ n(w—l)...(w—(k—1))^- ^ +« y ^ >

Es besteht so offenbar die Beziehung:

(80) | Bn [xk, x] — xk | <j., ^0*^.(2^+1)

falls berücksichtigt wird

nj \ nj
und

M'4)K)4-")M'-K))<
/ k2\ fc2

<1-1+- =-.\ n / n

Aus (80) ergibt sich weiter als Genauigkeitsmass

(30') \Bn[J,xl-xk\ o(^j i)

und ferner

(30") lim Bn [+, x\ 3? gleichmässig in [0, a,].
n—^-oo

Damit ist einmal die gleicbmässige Approximation von Y(x) — xk

durch Bernstein-Polynome nachgewiesen.

x) 0(e) stellt das bekannte Symbol von Landau dar. (Landau, Verteilung der
Primzahlen, Bd. I, p. 59.)
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2. Konvergenzuntersuchung für allgemeine, stetige Grundfunktionen.

Die Grundfunktion Y(x) weise jetzt einen stetigen, sonst aber

beliebigen Verlauf auf. Mit Hilfe des Weierstraßschen
Approximationstheorems und auf Grund der gewonnenen Ergebnisse lässt
sich zunächst einmal die Konvergenz leicht abschätzen.

Es sei

(31) Y(x) Y(X)-Pn(X) + Pn(X),

N

WO PN{x) ^crx"
;.=o

irgendein Polynom vom Grade N ist.

Man bildet dann unter Beachtung von (5)

Bn[Y(x),x]—Y(x) Bn[(Y(x) — PN(x)),x] + (Bn[PN(x),x] — PN(x)] —

-(Y(X)-Pn(X))
und

(82) | Bn[Y(x), x] — Y(a;) | < | Y{x) — PN(x) | +

+ | Bn[(Y{x) — PN(x)),x] | + | Bn [PN(x), x] — PN(x) \.

Da sich nun nach Weierstrass jede in einem endlichen Intervall [0, a]
definierte und dort überall stetige Punktion durch Polynome gleich-
mässig mit beliebiger Genauigkeit approximieren lässt, kann man
stets ein N so bestimmen, dass gilt

(33) \Y(x)-Pn(X)\<~

Nach (11) ist dann aber auch

(34) | Bn [(Y(a:) — PN(x)), z] | < |.
Schliesslich lässt sich nach (30') stets ein n so finden, dass

| Bn [xk, x] — x,£ | < ——r; (/c=l, 2,... N)
ö i\ | ck\
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es wird dann
N

| B„ [Pn(x)> «] — Pdx) | < I B" tc;. • x>'> x] — h •x>'

;.= i

N

< X! I c>. M B» o1' ®] — I

;.=i
oder

(35) | Bn [Pw(a:) ,x] — PN(x)\

Diese Beziehungen in (32) eingesetzt, ergeben:

(36) | Bn [Y(x), x] — Y(a;) | < e ; Y(x) stetig.

Jede in einem endlichen Intervall [0, a] definierte und dort überall stetige

Funktion Y(x) kann durch Bernstein-Polynome Bn[Y(x),x] gleich-
mässig approximiert iverden.

Quantitative Konvergenzuntersuchungen haben schliesslich zu

folgenden interessanten Ergebnissen geführt. Unter der einzigen
Voraussetzung der Stetigkeit hat Popoviciu [8] bisher für allgemeine
Grundfunktionen das beste Genauigkeitsmass gefunden zu:

j B„[Y(a:), x] — Y(x) | 0
'

]/n

Unter engern Voraussetzungen über die auszugleichende
Grundfunktion lässt sich dieses Mass noch verbessern. Fordert man nämlich
von Y (x) stetige Differenzierbarkeit bis zur zweiten Ordnung,

so gelingt es, das Genauigkeitsmass 0 ^ zu erzielen, wie aus
nachstehender Herleitung folgt:

Y(x) besitze in [0, a] stetige Ableitungen bis zur zweiten Ordnung.
Es sei ferner

| Y» | < M2.

Man bildet dann den Ausdruck

1
n

\
Bn[Y(x), x] - Y(x) -2 Y - Y(x) Q x'-(a-xr\
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der mit

— Y(x) — (-- — x Y'(x)\n / \n

aX
— x

übergeht in:

2!

(37) Bn[Y(x),x]-Y(x)=Y\x).^^(^-x)(n^(ar-xr

r-(* + e (?)_,))

0< 0< 1

a TZ \ n
A=aQ

\ \ n // \ n \Kj

Da sich ferner durch zweimalige Differentiation der Identität

A 0
X

die Beziehungen ergeben:

(38)

1 vH
(39)

a tiVn
so resultiert aus (37)

a=o

aX X2

(40) |B„[Y(®),s]-Y(®)| <

< -
1 1 vi
2! a'H

A Ü

r(, + e(H_ \ ^ / 'HaX
® ^ (a—x)

n / \ a
»-A

M., ®(a—®) a-Mjj 1

< - < —
'2 n 8 n

also

(4t) Bn[Y(x), x] — Y(®) | <
a-M.2 1

8 n
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oder

(41') | B„[Y(x), as] — Y(a:) | 0 (^j-

Nach einer Notiz von S. Bernstein [3] hat Yoronovskaya in einer
in den «Comptes rendus de l'Academie des Sciences de l'U. R. S. S.,

1932» veröffentlichten Abhandlung über «Determination de la forme

asymptotique de l'approximation des fonctions par les polynomes de

S. Bernstein» eine zu unserer Relation (41) gleichwertige Beziehung
gefunden, nämlich

lim n [Bn[Y(x), a;] — Y(®)} — x (a—x) Y"(x).
n->oo 2

§ 6

Approximation unstetiger Grundfunktionen.

Wir dehnen nun die Konvergenzuntersuchungen auch auf
unstetige Grundfunktionen aus. Dabei beschränken wir uns grundsätzlich

auf stückweise stetige Grundfunktionen, d. h. auf solche
Funktionen, für welche es eine Zerlegung des Definitionsintervalles in endlich

viele Teilgebiete gibt, derart, dass die Funktion im Innern eines

jeden von ihnen stetig ist und bei Annäherung an den Rand jedes
Teilgebietes von innen her sich bestimmten, endlichen Randwerten
nähert. In der Sprungstelle selbst soll als Funktionswert das

arithmetische Mittel aus den Randwerten von links und rechts definiert
werden, also

/(f)=^-[/(f-o) + /(£+0)].

Der Nachweis der Approximationsmöglichkeit einer stückweise

stetigen Grundfunktion durch Bernstein-Polynome ist das Ziel

unserer weiteren Ausführungen.

Der prinzipielle Unterschied zum vorhergehenden Paragraphen
besteht darin, dass die Konvergenz im ganzen Intervall [0, a| nicht
mehr gleichmässig sein kann. In der Umgebung derjenigen Stellen,
wo die Grundfunktion unstetig wird, konvergiert die Bernstein-

Polynomfolge ungleichmässig; denn andernfalls besässe die in [0, a]
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gleichmässig konvergente Folge stetiger Funktionen Bn[Y(x), x]
eine stetige Grundfunktion.

Die .Konvergenzfrage wird wieder vorerst für eine spezielle,
unstetige Grundfunktion entschieden.

1. Konvergenzuntersuchung für Stufenfunktionen (x).

Die durch
ö 0 < x< f
d

(12) «»(a) x f
2

0 f < x < a

definierte Funktion mit einer Sprungstelle x f und dem Sprung
(5(f) nennen wir in der Folge Stufenfunktion.

FjS ist zu zeigen, dass die Konvergenzbeziehung

(453) lim Bn[*P(x), x\ W(x)
U—>oo

für Stufenfunktionen mit Beeilt besteht.

Da einmal nach § 5 in jedem abgeschlossenen Teilintervall, das

keine Sprungstelle enthält, die gleichmässige Konvergenz gesichert
ist, genügt es, unsere Aufmerksamkeit auf das spezielle Verhalten der

Bernstein-Polynome in der Sprungstelle selbst zu richten. Die
Behauptung (43) ist offenbar dann bewiesen, wenn wir zeigen können,
dass in der Sprungstelle die Wertefolge Bn [lV(x), f | dem
arithmetischen Mittel aus den Band werten von links und rechts zustrebt;
d. h.

d
(44) limB,,[«P(a), f]

n co ^

Über die Lage der Sprungstelle f nehmen wir zunächst einmal an,
sie halbiere das Intervall [(),«].

1. Fall:
a

(^) ^ ~2''
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Für diese spezielle Stufenfunktion lässt sich (44) besonders einfach
aus der Symmetrieeigenschaft der Binomialkoeffizienten
nachweisen. Es gilt nämlich schon die Relation

(46) B. W(x),- für alle n 1, 2, 3,

die wie folgt zu beweisen ist:
Es sei n gerade (für ungerades n ist die Beweisführung analog).

Die zugehörigen Bernstein-Polynome lauten dann:

Bv V(x),-

(D)

9» i—i

I n
d 1 In

2" f-1 \XJ 2 2n \ 2,
A=0

oder wegen

B.

n
n—X

1 "
71

2nLu\X
H

Beide Gleichungen addiert, ergeben

+

|-M

1 /«'
2 2"( «

Ii

2 B. W(x),- 42(n
\X

r=o

Damit ist aber der Nachweis von (46) erbracht und gleichzeitig auch
die behauptete Konvergenz (44) bewiesen.

Wir gehen nun über zur Untersuchung des allgemeinen Falles,
wo £ irgendeinen Wert des offenen Intervalles 0 < £ < a annehmen

möge.

2. Fall¬
et,

(47) a < £ < a — a; 0<a<
Zum Beweise der Beziehung (44)

lim Bn[*P(x), £]
tt->oo
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konstruieren wir wieder gemäss (2) die zugehörigen Bernstein-Polynome.

Dabei ist darauf zu achten, ob die Sprungstelle £ einen Beitrag

liefert oder nicht. Ersteres ist immer dann der Fall, wenn — ganz-
a

zahlig ausfällt. Unter Benutzung des Gaußschen Klammersymbols
— es bedeutet allgemein [$] die grösste ganze Zahl, die x nicht übertrifft

— kann der Ausdruck der zugehörigen Bernstein-Polynome in
einfacher Weise durch folgenden Polynomialausdruck dargestellt
werden:

1
l'1"1/

X

Bjn' <*>, {] _ j - 2] (") («-ir*+
;.=o ^ '

(48)

+ >P

mit (49)

l-llL" 1

(o—I)

für nicht ganzzahliges

für ganzzahliges —.2 a

n£

Es ist zu beachten, dass von nun an die eckige Klammer stets im
oben definierten Sinne gebraucht wird. Es bestehen offenbar die

Beziehungen:

(50) [®] < x < x + 1

(50') [»]>»—1,

die nun häufig verwertet werden.

Aus (48) folgt durch Subtraktion der Identität

ö 1

2
A 0

„Z1



B„[W(x),

(51)

& » 1
£1

;.=o

-44 S (I) f <-»'+

+

'ng \
a l

* i
n / 2

'
a"

a /
PIfL"1 (a-f)

Eine für die Konvergenzuntersuchung wichtige Umformung besteilt

nun darin, in (51) die Summen so in Partialsummen aufzuteilen,
dass sich dann die Summationen jeweils nur auf diejenigen Indizes
beziehen, für die

0 «

(52) bzw.
a

a

< [wa

0 < co < 1

> M
ausfällt. Dabei bleibt die genauere Bestimmung des Parameters co

noch vorbehalten. Diese wird sich dann am Schluss auf Grund von
Bedingungsgleichungen leicht ergeben.

Durch diese Aufteilung erhalten wir demnach aus (51):

4-4 v (i)
S öl sri In

2 a" Lu \A

[TR-K

y\-l
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Bn [<P(z), f] < Pn + Qn +

und daher

(52)

mit

(58)

54) Q, {• i 2 (*) f - T-~ y I") «* (-«"1
»"UAJS

2 a" Lj \A

(55) B„ f[a '(a-I) |a

Ö

Für den Beweis der Konvergenz von Bn[ni(x), |] gegen — ist jetzt
2

noch zu zeigen, dass in (52) der rechtsseitige Ausdruck mit wachsendem

n beliebig klein wird. Dies werden wir durch Abschätzung der

einzelnen Bestandteile Pn, Qn, R„ erkennen.

Abschätzung von Rn:

Wegen (49) gilt einmal

(56)

— für nicht ganzzahliges
2

0 für ganzzahhges —.

a

Um noch den Restbestandteil abzuschätzen, bedienen wir uns in

zweckmässiger Weise der Relation

(57) 4 nrl £ 0 («—£) ° <
a

2/1f ß < >/ < a — ß,
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die wie folgt zu beweisen ist

2 / w \ ny n-nr> 1
n \ '— n-n''

— InrjJ |8 (a—I) a < — nr] J rj
a (a —rj) a. (Maximum!)

Hieraus folgert man unter Verwertung der Stirlingschen Formel

_
AI |/2it ]/A Al e~l em; 0 < 0 < 1,

nach einigen elementaren Umformungen:

nt\ „12 n

n>i f) a <
|/2 nr] (a—rj) ]/'

Mit ß < rj < a — ß

1 .f. 10
gl2n<e12< B>1

,— 24
T/2 re > —' 11

ergibt sich ferner die behauptete Relation:

1 / n\ n-'± „.»2 a
n^U°(a—|) «<o" \ — / 2 ß ]/n

Setzen wir nun

wegen

a

a

w

a

2a
und wählen n > —, so gentigt es,

a

a < I < a — a,

ß — zu setzen,

und es resultiert demnach

n
(58)

1

a

i i \n"f~l a
lL "](«-£) lflJ< —,

a yn



so class sich für Bn mit Kücksicht auf (56) die Abschätzung ergibt:

<5 a
(59) Bn<

2 a ]/wT

2a
mit der Zusatzbedingung n > —, die aber keine Einschränkung der

a

Allgemeinheit ist, da wir ja n sowieso gross ansetzen werden.

Abschätzung von Pn:

aX
Mit (39) (7)

a ' \ n
;.=o

£ («—f)

hat man gerade die günstige Ausgangsgleichung zu dieser Abschätzung.
Aus ihr folgert man nämlich für die Partialsumme die Ungleichung

|(a—|) <

Beachten wir noch, dass

und

(50')
n|

< + 1)

so gelangen wir zur verstärkten Ungleichung

a-ZP
H21

a
-1) (^)^(a-^-<|,

oder unter Berücksichtigung von

X —
a

> [nU>] >nto — 1
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(n"-2)a-„--2W{i(°-|)"J<T

Für Pn resultiert so die Absehätzung:

d
(60)

Abschätzung von Qn:

Den Ausdruck

P<
8 {nm—2)-

formen wir passend um

n£ (a-f)" 1 «
w~i -2- Ku

n

a
~hw i

-h,«ti a (a —£)

<3 1

2"a"

n
n|
a

£L 01 («-£)

[>]
•2 a

— P,

n
n£

a

£ V"
a—£

+ W /

n
n|
a

f V
a—£

Berücksichtigt man die Relation (58) und modifiziert den Klammerausdruck

unter der Summe, so gewinnt man
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da
[>1

2a] n ^
n£ n£

a J\ o> a /' 4"

n —
n£

a
hl n + /•'

£

a—£.

(«- n£

a a
—+1)

n£

a

«£

a
+,«)

£ \"
Or-t

Mit (50)
71 £

< — wird die Ungleichung nur verstärkt:
a

\QJ<-
da k"]

y
2a I/n

* u 1

n£j V n£

1

n (a—£),
1

/na

n (a—|)

11
n (a—£),

1
(,«—1) a

w (a—|)

(l + ~)...(l+^)
\ «<W \ n$

unci daher

ii da Ölf
2a]/n | l

a- i

i (,«—1) a

n £

,1_/_c«-1)aYl lj /«*

n (a—|) / J " 'I \ w («—|) Ml n (a—£)

unter Weglassung sämtlicher Faktoren im Nenner, die grösser als

a
eins sind. Nunmehr treffen wir die Voraussetzung f > (der Fall

2

£ < -fl Hesse sich analog behandeln) und erhalten so
2

öa VI(ß,) |e"
n (o—|)

f.ia

n (a—£)
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wobei zur weiteren Verstärkung der Ungleichung berücksichtigt
wurde:

n£ a
< 1 wegen f > —

/ita 2

n (o—£)

1 — | | < 1 für alle X =1,2,... (,w—1)

1H YUU^YUI, 1 "" v"'
n (a—i) / I { \ n (a—|) / J \n (a—£)

Ersetzen wir noch in (61) die [ftw] von null verschiedene Summanden
umfassende Summe durch

[n1"] • {Maximalglied},

wo der grösste Wert für tx [n"J] angenommen wird, so erhalten wir

^ i
da

Qn\<
2a]/ft

\( KM/ f K]3 «3 l^Al

schlussendlich also, nach Berücksichtigung der elementaren Ungleichung

2(a—£)2J ' L
Jft2(a—£)2

und gestützt auf (47) und (50)

| | < —nw (l+-n»A - n3w~2.

2a]/ft \ « / <*

Die gesuchte Abschätzung nimmt so die Gestalt an:

da3 ö a ,\
(62) \Qn\<
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Mit den gewonnenen Beziehungen (59), (60), (6'2) geht jetzt (52)

über in:

(63) ß„[<T(z),f!-~
<5an .....5 da

< t + ; nw~ s" 1H—n'^ ü /~,<0 n\2 1 \ 1

„8 (nw—2)2 2«:i V a / 2oc|/V

Aus (68) ergibt sich nun leicht die behauptete Konvergenz. Damit
jedes Glied des rechtsseitigen Ausdruckes gegen null konvergiert,
sind noch, da bereits 0 < co < 1 vorausgesetzt wurde, die beiden

Zusatzbedingungen zu fordern
5

1 — 2co < 0 und 4co — — < 0
Ji

(64) bzw. 15CO >— CO < —,2 8

womit die anfangs in Aussicht gestellte nähere Festlegung des

Parameters co nachgeholt ist. Eine im Sinne unserer Konvergenzuntersuchung

vorgenommene Zerlegung ist also prinzipiell immer möglich,
da die beiden Ungleichungen für den Parameter co ein offenes Intervall

abgrenzen.
7

Wählen wir etwa co =—, so ergibt sich

(65)

12

1
0

]/w '

Damit ist für die allgemeine Stufenfunktion das Konvergenzverhalten

in der Sprungstelle, d. h. die Beziehung

a

(44) hm £]= --
M— ^ oo ^

sichergestellt und somit auch die Konvergenz relation (48), wie an

der betreffenden Stelle ausgeführt wurde.

Wir halten also fest:

Die zur Stufenfunktion (x) gehörige Bernstein-Polynomfolge

konvergiert gleichmässig in jedem von Sprungstellen freien Teilintervall;
in der Sprungstelle selbst konvergiert sie gegen das arithmetische

Mittel aus den Bandwerten von links und rechts.
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Der Vollständigkeit halber sei noch bemerkt, dass die eben
bewiesene Konvergenzbetrachtung auch für Stufenfunktionen mit
negativen Funktionswerten und Stufenfunktionen von der Form

0(x)

0 0 < x < £

<3 £ < x < a

gilt.

2. Konvergenzuntersuchung für stückweise stetige Grundfunktionen.

Gestützt auf die gewonnenen Ergebnisse und auf die Linearitäts-
relation (5) ist es nun leicht, die Gültigkeit der Approximation durch

Bernstein-Polynome auch auf stückweise stetige Grundfunktionen
auszudehnen.

Es sei jetzt Y(x) eine solche Funktion, welche an den endlich
vielen Stellen x £k (A 1, 2, m) des Intervalles [0, a] die

Sprünge
d(|;.) Yfe+0)-Y(|,-0)

besitzt und sonst stetig ist.

Der Beweis der zu vermutenden Beziehung

lim Bn [Y(®), ®] Y{x)
11 —oo

beruht darauf, dass sich die stückweise stetige Grundfunktion Y(x)
stets in eine überall stetige Funktion y(x) und in endlich viele (genau m)
Stufenfunktionen mit den Sprungstellen x £k und den Sprüngen
<5(£,_) zerlegen lässt:

m

Y(x) y(x) + 2jy,r(®)-
;.=i

Wegen der Linearitätsrelation (5) gilt nun aber auch

m

Bn [Y(®), x\ Bn[y{x), ®] + 2 Bn lip>. («)» x'l

A=1



49

und für den Grenzübergang, vermöge (86) und (43)

m

lim Bn[Y(x), x] lim Bn[y(x), x] -f ^ lim Bn[q^(x), x]

yix) +1 qi>. (x) Y(x).

Damit haben wir das fundamentale Ergebnis erhalten:

(66) lim Bn[Y(x), x] Y(x) ; Y(x) stückweise stetig.

Jede im Grundintervall [0, a] stückweise stetige Grundfunktion Y(x)
liisst sich durch Bernstein-Polynome Bn[Y(x),x] approximieren.
Dabei konvergiert die Polynomfolge gleichmässig in jedem von Sprungstellen

freien, abgeschlossenen Teilintervall; in der Sprungstelle selbst

konvergiert sie gegen das arithmetische Mittel aus den Bandwerten von
links und rechts.

Dieses Kesultat reicht für die Anwendung der Bernstein-Polynome

voll aus.

Nachdem wir die theoretischen Eigenschaften der Bernstein-

Polynome kennen, gehen wir dazu über, noch einige Bemerkungen

praktischer Natur anzuschliessen und die Ausgleichungsergehnisse

einer mit Bernstein-Polynomen vorgenommenen Ausgleichung
darzutun.

Kennzeichnend für eine Ausgleichung mit Bernstein-Polynomen
ist der einfache und handliche Ansatz. Zu einer gegebenen
Grundfunktion Y(x) wird das Approximationspolynom ri-ter Ordnung

konstruiert, indem (n-f-1) äquidistante Werte derselben: Y

A 0, 1, « mit den zugehörigen Polynomen w-ten Grades

verbunden werden.

§ 7

Eine Anwendung.
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Dieser Eigenschaft wegen könnte man clas Verfahren als konstruktives

Ausgleichsverfahren bezeichnen. Es unterscheidet sich von den
gewöhnlich üblichen analytischen Verfahren dadurch, dass im Ansatz
keine Parameter vorkommen, sondern dass direkt diskrete Werte der
Grundfunktion verwertet werden. Von vornherein fällt also jede
Parameterbestimmung und damit auch jede allfällige numerische

Integration weg. Es ist dies eine für die praktische Auswertung
günstige Eigenschaft.

Dagegen muss, um eine befriedigende Ausgleichung zu erzielen,
die Ordnung der Approximationspolynome im allgemeinen höher

angesetzt werden als bei andern analytischen Methoden. Es liegt dies

im Umstand begründet, dass zwischen den Bernstein-Polynomen
und der Grundfunktion ausser den im Polynomialansatz vorkom-

faX\menden einzelnen Werten Y — X 0,1 n keine weitere

Bindung existiert. ^ '
Ferner sei noch erwähnt, dass sich nach erfolgter Ausgleichung

der analytische Ansatz der Bernstein-Polynome zur kontinuierlichen
Berechnung von allfälligen weitern Masszahlen im allgemeinen nicht
eignen wird, da letztere nicht durch einfacho Ausdrücke darstellbar
sind.

Für die numerische Auswertung einer Ausgleichung mit Bernstein-

Polynomen ist

n n

(8) Bn[Y(x),x] =^drtnA;Y(0)xr =J^a,inx"
r=0 " l' 0

die günstigste Gestalt. Die Zahlen dVi n wurden für die durchgeführte
Ausgleichung ein für allemal numerisch ermittelt und zusammengestellt

(Seite 38/39), die zehn ersten Potenzen der Zahlen 1 bis 100

sind tabelliert in Pearsons Tabellenwerk [13], so dass es bei einer

Ausgleichung lediglich noch darauf ankommt, die Differenzen A\ Y(0)
n

der Grundfunktion zu ermitteln, gestützt auf die allgemeine
Differenzenrelation

4.«.) _«*=»=«$..
CO
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Bevor zur systematischen Auswertung des durch (8) gelieferten

Approximationspolynomes geschritten wird, ist es noch empfehlenswert,

die Richtigkeit der Entwicklungskoeffizienten ar n zu
überprüfen. Die Eigenschaft der Bernstein-Polynome, im Anfangs- und

Endpunkt des Grundintervalles [0, d\ mit der Grundfunktion
übereinzustimmen, liefert eine einfache Kontrollmöglichkeit.

Um uns Rechenschaft über die Ausgleichung mit Bernstein-

Polynomen an einem konkreten Beispiel zu geben, wurden die Zahlen

der Kranken- und Unfalltage, wie sie sich aus den Erfahrungen der

Jahre 1926—1980 der Krankenkasse für den Kanton Bern ergeben

haben, mit diesen Polynomen ausgeglichen. Die rohe Beobachtungsreihe

der durchschnittlichen Zahl der Kranken- und Unfalltage eines

»-jährigen Mannes: kx+H diente als Grundfunktion.
Für die praktische Auswertung ist nun darauf zu achten, dass

bei getroffener Wahl des Grundintervalles Anfangs- und Endwert
der auszugleichenden Grundfunktion einer kritischen Betrachtung zu
unterwerfen sind. Da diese den Verlauf der Bernstein-Polynome
nach (3) wesentlich mitbestimmen, sind sie eventuell passend
abzuändern. Es ist eben zu bedenken, dass die Beobachtungswerte
gerade an den Enden einer statistischen Reihe oft unzuverlässig
ausfallen. Für die praktische Anwendung kann es daher vorteilhaft sein,

zur Bestimmung dieser Endwerte die Nachbarwerte mitzuberück-

sichtigen, obschon dies zu einer kleinen Modifikation des theoretischen
Ansatzes führt.

Um einmal das Verhalten der Approximationspolynome
BJJihx+", »] mit zunehmender Ordnung n zu charakterisieren, wurde
für das Intervall 25 < x < 85 eine Ausgleichung mit Bernstein-
Polynomen 4-ter, 6-ter und 10-ter Ordnung vorgenommen. Mit der

Setzung
kk+" 7,50 und kk+u 43,30

resultierten folgende Ansätze:

B4 [100 Jcl+U, »] 750 + 8,2 • (»—25) + 0,486 667 • (»—25)2

+ 0,113 519.10"1 • (»—25)3 — 0,722 219.10"' • (»—25)4.

B6 [100 kk+", x] 750 + 5,9 • (»—25) + 0,191 667 • (»—25)2

+ 0,178 704.10"1 • (»—25)3 — 0,425 927.10"3 • (»—25)4

+ 0,906 686.10"5 • (»—25)6 — 0,611 712.10"7 • (»—25)6.

6
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Wertetabelle

\ v
n \ 1 2 3 4 5

1

2

1

1 0,250 000 000

3 1 0,333 333 333 0,370 370 370.10"1

4 1 0,375 000 000 0,625 000 000.10"1 0,390 625 000.10"2

5 1 0,400 000 000 0,800 000 000.10"1 0,800 000 000.10'2 0,320 000 000.10'3

6 1 0,416 666 667 0,925 925 925.10"1 0,115 740 741.10"1 0,771 604 937.10"3

7 1 0,428 571 428 0,102 040 816 0,145 772 595.10"1 0,124 947 938.10"2

8 1 0,437 500 000 0,109 375 000 0,170 898 438.10"1 0,170 898 438.10"2

9 1 0,444 444 444 0,115 226 337 0,192 043 895.10'1 0,213 382 106.10"2

10 1 0,450 000 000 0,120 000 000 0.210 000 000.10"1 0,252 000 000.10"2

B10 [100 k\+u, x] 750 — 6,166 666 667 • (x—25) + 2,375 (x—25)2

— 0,244 444 444 • (x—25)3 + 0,151 342 592.10"1 • (x—25)4

— 0,478 074 073.10"3 • (x—25)5 + 0,709 182 098.KT5 • (x—25)6

+ 0,247 256 514.10"7 • (x—25)7 — 0,273 330 331.10"8 • (x—25)8

+ 0,389 612 S62.10"10 • (x—25)9— 0,181 578 873.10"12 • (x—25)10

In Figur 1 sind, neben den rohen Beobachtungszahlen, die durch

J34, B6, B10 gelieferten Approximationskurven aufgezeichnet. Diese

Darstellung zeigt einmal, wie die Bernstein-Polynome im grossen den

Grundverlauf wiedergeben und wie sie sich mit zunehmender
Approximation der Grundfunktion nähern.

Mit einer zweiten Auswertung schliesslich soll noch gezeigt

werden, dass bei geeigneter Intervallabgrenzung der Genauigkeitsgrad

der Annäherung wesentlich verbessert werden kann. Konstruiert man
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der Zahlen d„
i n*

m_Fih-M.A-rD
nj \ nj \ n

i > ^0, n
^

v 1

6 7 8 9 10

0,214 334 704.10"4

0,594 990 181.10"4

0,106 808 746.10"3

0,158 060 819.10"3

0,210 000 000.10"3

0,121 426 567.10'5

0,381 469 722.10"5

0,752 670 556.10"6

0,120 000 000.10"4

0,596 046 448.10"7

0,209 075 149.10"6

0,450 000 000.10"6
0,258 117 479.10"8

0,100 000 000.10"7 0,100 000 000.10"9

für das praktisch wichtige Intervall 20 < x < 60 das Polynom 10-ter Ordnung

B10 [100 k\+u, x] 859 — 6,75 • (x—20) — 2,615 625 • (x—20)2

+ 0,414 375 • (x—20)3 — 0,223 945 313.10"1 • (x—20)4

+ 0,575 859 375.1CT3 • (x—20)5 — 0,681 884 765.10~5 • (x—20)6

+ 0,805 664 063.10~7 • (x—20)7 — 0,375 595 093.10"8 • (x—20)8

+ 0,910 949 707.10"10 • (x—20)9 — 0,745 670 136.10"12 • (®—20)10,

wobei für kk2+u und k\+u das arithmetische Mittel aus fünf benachbarten

Werten gesetzt wurde

kl+u 1 ^ /s*+„

;.=-2

k\+u 8,59 und kk+u 12,78,

o
/.=-2

also
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so erschliesst der graphische Verlauf (Figur 2) eine befriedigendere
Approximation.

Zur Beurteilung der Ergebnisse sei noch auf den Unterschied
hingewiesen, der entsteht, wenn man die beobachtete Anzahl von
Kranken- und Unfalltagen der an Hand der ausgeglichenen Werte
ermittelten erwartungsmässigen Zahl gegenüberstellt. In der ersten

Auswertung (25 < x < 85) übersteigt für das Ausgleichspolynom
10-ter Ordnung das Total der erwartungsmässigen Kranken- und
Unfalltage das der beobachteten um 98 256 Tage; die Abweichung
selbst beträgt: + 6,18 %. Für die zweite Auswertung (20 < x < 60)

sind die entsprechenden Daten für Bl0 80 424 Tage oder + 2,18 %.
Aus diesem Vergleich ersieht man zunächst auch, dass bei gleicher

Ordnung n der Polynome die Übereinstimmung durch Einschränkung
des Grundintervalles verbessert werden kann.

Im weitern ist zu beachten, dass eine Ausgleichung nach dieser

konstruktiven Ausgleichsmethode nicht dann schon als gelungen
betrachtet werden kann, wenn wirkliche und erwartungsmässige
Ereigniszahlen im Total verhältnismässig gut übereinstimmen. Es ist
in jedem Fall zu untersuchen, wie die positiven und negativen
Abweichungen zwischen den beobachteten und ausgeglichenen Werten
aufeinander folgen und wie sie sich auf den gesamten Verlauf verteilen.

Im allgemeinen wird eine Ausgleichung mit Bernstein-Polynomen

um so günstiger ausfallen, je besser die Grundfunktion konvexen oder

konkaven Verlauf im gesamten Intervall aufweist.
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Kranken- und Unfallordnung: khx+u.

— Rohe Werte
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