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Untersuchungen über das asymptotische
Verhalten rekurrenter Zahlenreihen

Von H. Hadwiger, Bern

Vorbemerkungen.

Es ist- eine jedem Yersicherungsmathematiker gut bekannte
Erscheinung, dass das nämliche Problem auf zwei grundsätzlich
verschiedene Arten mathematische Gestalt- annehmen kann, je nachdem

man die kontinuierliche oder die diskontinuierliche Auffassung
zugrunde legt. Es bietet dann sicher Interesse, zu untersuchen, wie
weit sich eine vorhandene Analogie in den Entwicklungen verfolgen
lässt. Pass solche gelegentlich sehr auffallend in Erscheinung treten,
wurde von verschiedenen Autoren oft zur Beachtung empfohlen. So

scheint, ganz allgemein gesehen, die Integralgleichung, die in der
kontinuierlichen Methode der Versicherungsmathematik eine grosse

Bedeutung erreicht hat, in der diskontinuierlichen Methode durch die

rekurrente Eeihe ihr Analogon zu finden.

Die vorliegende Arbeit liefert einen kleinen Beitrag zu ihrer
Theorie, indem das asymptotische Verhalten Gegenstand unserer

Untersuchung bildet. Es zeigt sich, dass die- Theorie imstande ist,
gerade dort etwas zu liefern, wo die tatsächliche Berechnung der Glieder

der Eeihe in den meisten Fällen längst aufgehört hat, nämlich
im Unendlichen.

1. Definitionen und allgemeine Bemerkungen.

Wenn eine feste Zahlenfolge (Skala)

(1) 0t1, C-2, lZ-3> £*4» • • •

vorgegeben ist, so wird durch die Festsetzung

(2) J0 1
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(3) An An->. : (»>1)
;.=l

eine rekurrente Reihe

(4) A0, AA s,

erzeugt. Es wircl allgemein bekannt sein, dass man häufig auf eine
solche rekurrente Ermittlung einer Zahlenreihe geführt wird, wie das

beispielsweise in Problemen der diskontinuierlich sich erneuernden
Gesamtheiten der Eall ist. Eine klare Übersicht und Kenntnisse über
weitere diesbezügliche Literatur vermittelt die Dissertation von
A. MaretJ).

Sehr oft ist die Skala endlich. Diese Möglichkeit ist selbstverständlich

durch die Spezialfälle berücksichtigt, in denen die Skala (1)

nur endlich viele von 0 verschiedene Glieder enthält.
Die explizite Berechnung der Glieder der rekurrenten bleibe fuhrt

in den meisten Fällen sofort auf unübersichtliche Ausdrücke.
Vergleiche etwa die Resultate von W. Möschler 2). Diese Schwierigkeiten
sind natürlich rein äusserlicher Natur und verhindern nicht, dass

über die rekurrente Folge Aussagen gemacht werden können, die

theoretisch sicher interessant, aber auch praktisch verwendbar sind.
Ihre Ermittlung geht, dann nicht über die explizite Ausrechnung, aber

verwendet dafür weniger naheliegende, mathematische Hilfsmittel.
An dieser Stelle möchte ich ganz besonders auf die Arbeit von H. Kreits3)
hinweisen, auf die wir später noch zurückkommen werden.

In der vorliegenden Arbeit sollen unter gewissen Voraussetzungen
solche Konvergenzerscheinungen nachgewiesen werden, die es

gestatten, über das asymptotische Verhalten der Folge befriedigenden
Aufschluss zu erteilen. Insbesondere können Aussagen über die

notwendigen und hinreichenden Bedingungen des stationären Verhaltens

(Konvergenz der Folge (MnJ) gefolgert werden.

P Maret, A.: Untersuchungen über diskontinuierlich sich erneuernde Gesamtheiten.

Diss. Bern, Paul Haupt -1936.

2) Möschler, TU.: Abbau und Krneuerung des Bestandes einer Sterbekasse.
Festgabe Moser. Bern, Stämpfli 1931.

3) Kreis, H.: Stabilität einer sich jährlich erneuernden Gesamtheit. M. V.S.Y..
Heft 32. 1936.
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Es erweist sich noch als lohnend, den Begriff stationär im Mittel
in die Betrachtungen einzuschliessen. Dabei heisst die Folge }.!„]
stationär im Mittel, falls die Folge der arithmetischen Mittel

| -4i + ^2 + • • • + An \

\ n f

konvergiert.

2. Voraussetzungen.

In dem folgenden kleinen Abschnitt sollen die Voraussetzungen,
auf die wir unsere weiteren Untersuchungen aufbauen wollen,
sorgfältig auseinandergesetzt werden:

Zunächst wird festgesetzt, dass wir uns auf nicht-negative Skalen
beschränken wollen, also:

(A) a„ > 0 ; (1 < v < oo)

Es ist nicht nötig, Beschränktheit für die Skala zu fordern, immerhin
sei das Anwachsen gemässigt durch clie weitere Aroraussetzung:

(15) lim. sup. | a,, a < ^
j- — oo

Mit diesem Grenzwert a verknüpfen wir eine weitere AMraussetzung,
deren Motivierung erst später zugänglich wird:

oo

(to y,aA1-)>i
—J v a '
l

AA ir wollen die Voraussetzung (C) als erfüllt betrachten, wenn

a 0 ist oder wenn die angeschriebene Beihe divergiert.

Es ist besonders zu beachten, dass die A'oraussetzungen (B) und

(C) sicher erfüllt sind, wenn wir eine endliche Skala zugrunde legen.

3. Die allgemeinen Konvergenzsätze.

AA'ir fuhren nun eine wichtige Hilfsfunktion ein. Es sei

oo

(">) j'»=y]a,2"
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Der Konvergonzradius dieser Potenzreiho ist nach Festsetzung (13)

1

a — >0
y.

Da nach Voraussetzung (C)
oo

^ a er1' > 1

l

ist x), gibt es eine reelle positive Wurzel der Gleichung

(ti) 1 —V(z)

Bezeichnen wir sie mit E, so gilt offenhar

(7) 0 < E < g

das heisst, die betrachtete Nullstelle der mit (13) angeschriebenen
Funktion ist ein innerer Punkt des Konvergenzkreises der Keihe (5).
Es ist leicht zu zeigen, dass in der offenen Kreisscheibe

(8) \z\<E
keine Wurzeln der Gleichung (6) liegen können, denn aus

oo

ar zv 1 folgt
l

oo

(^er Vergleich mit
l

oo

a E'' 1 führt zur Ungleichung \z \ 7> E

l

Aus diesem Grunde ist die gebrochene Funktion

1

i -m
') z — i ist nach einem Satze von Cr. Vivanti, Rivista di Matematica, Bd. 3,

S. 112, 1893, ein siiiguliirer Punkt, der Punktion (5), so dass die Voraussetzung (G)
im allgemeinen dadurch erfüllt ist, dass die Reihe dort divergiert. (Das Gegenteil
kann als Ausnahme gelten.)



— 97 —

im Kreise | z | < B regulär, kann somit um den Punkt 2 0 in eine
Potenzreihe entwickelt werden, die B zum Konvergenzradius hat.

Nun ist die Folge der Entwicklungskoeffizienten identisch mit
der rekurrenten Reihe (4), das heisst es gilt die für alles folgende
grundlegende Identität:

(9)
1 -F(z)

Ta^'

Verifikation: Da die Konvergenzfrage erledigt ist, führt die rein
formale Rechnung

1 1 OL., Z'' y A„ *
CO CO

1=
0

1 A

zu den Relationen

V
o r

?l l

^ V. ^ }>.—}.

/. =1

A0 1

Än ^ Än; (ra > 1)

(leren Übereinstimmung mit den Definitionen (3) und (3) festgestellt
werden kann.

Wie oben erwähnt, ist der Konvergenzradius der Reihe (9) genau
durch die positive Wurzel B gegeben. Die Anwendung einer geläufigen

Formel der Funktionentheorie führt zu einer ersten Konvergenzrelation

:

Unier den Voraussetzungen (A), (B), (G) gilt:

(I) lim. sup. y'An
11 CO

1

Ii
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Anschliessend an (9) schreiben wir weiter

oo

(10) V Ei" A1
1 — F(B£) ^ "

0

wo die rechts stehende Potenzreihe den Konvergenzradius 1 aufweist,
falls wir nun £ als Variable betrachten.

.Dann gilt

lim lim i 1

\F(B)—F(BS)\ BF'(Et)
I Ei —BS I

Dabei haben wir uns daran erinnert, dass mit Eucksicht auf (7) die

Punktion F (z) in 0 — II regulär ist. Aus gleichen Gründen kann die

Potenzreihe (5) gliedweise differenziert werden. Also

(11) F'(B)=^ —1

Da nicht alle a.r Null sind und II > (J ist. muss F' (Ii) > 0 sein, so

dass der Grenzwert

lim (1 — £) y Iia An f" —
1

-> 1 BF'(Ii)

existiert. Nun lassen wir einen von Hardy und Litileuood 1)

entdeckten Satz zur Anwendung gelangen, der sich auf Potenzreihen (mit
reellen, nicht negativen Koeffizienten), die im Einheitskreise
konvergieren, bezieht, und insbesondere auf die Bildung des oben

angegebenen Grenzwertes. So gelangen wir zu der folgenden Grenzformel

:

Vntcr den Voraussetzlingen (A), (B), (C) gilt:

IM,+ B'a, + BMS+...+ !(/!,, 1

<n' :

; -RF-(U,

D thinly und Littleirood, The Messenger ofMatheniatics. Ser. '2. Bd. 43. S. 141
1914.
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Die Anwendung der asymptotischen Formeln (I) und (II) setzt
die Bestimmung der positiven Wurzel B von (6) voraus. In besonderen

Fällen ist dies eventuell ohne Schwierigkeiten durchfuhrbar.
So ist im Falle einer endlichen Skala eine algebraische Gleichung
aufzulösen. Ist die direkte Ermittlung der Wurzel nicht möglich, so

können doch zweckdienliche Abschätzungen für den Betrag der
absolut kleinsten Nullstelle aus der mathematischen Literatur
herangezogen werden, so etwa die Formeln von Takahashi1), Garmichael2)
oder Eudnicki 3).

Aus der Konvergenz (II) darf natürlich nicht auf die Konvergenz

lim B" A
„

" BF'(B)

geschlossen werden (umgekehrt schon). Wir wollen nun zeigen, dass

aber die oben erwähnte, stärkere Konvergenz unter einer weiteren
zusätzlichen Voraussetzung in der Tat nachgewiesen werden kann.

Wir haben früher gezeigt, dass in der offenen Kreisscheibe (8)

z\ < K keine Wurzel der Gleichung (6) liegen kann. Auf dem Bande
z\ — B liegt natürlich mindestens eine, nämlich B. Es können aber

noch andere, eventuell komplexe Wurzeln auf diesem Bande liegen.
Dass dies nun verboten sei, ist der Inhalt der angedeuteten

Voraussetzung, die wir wie folgt formulieren:

(D) B ist die einzige Wurzel der Gleichung 1—F (z) =0 auf dem

Kreise \ z | B.

Unter dieser Voraussetzung gehen wir nun an die Herleitung der

versprochenen Grenzformel.

Nach (9) ist

1 V
1 -F(z)

A„ z"

(i

Die Anwendung der Cauchyschen Integralformel ergibt

U Takahashi, Shin-ichi, Proc. phys. math. 8oc. Jap. III. S. 13, 1931.

2) Carmichael, B. L)., American M. S. Bull. '24. 1918.

3) liudnicki, Mathematics 8, 1934.
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wo l\- ein Kreis vom Radius r < Ii ist, der den Nullpunkt umschliesst.
Weiter sieht man leicht ein, dass es einen Kreis um Null A"0 vom
Radius rQ, Ii < r0 < er gibt, der keine Nullstelle der Funktion 1 —F(z)
enthält ausser z R. Man überlegt sich zu diesem Zwecke etwa,
dass in einem Kreisring R <C ]z\ <Z er' < er nur endlich viele Null-
steilen liegen können, da sie nach dem Theorem von .Bolzano-Weier-
strass sich sonst im betrachteten Kreisring, insbesondere also im
Regularitätsgebiet der Funktion 1 — F (z) häufen müssten, was nach

einem bekannten Satz nur für die identisch verschwindende Funktion
zutreffen kann. Mit Rücksicht auf die Voraussetzung (D) folgert man
so die Existenz eines von 0 verschiedenen Minimums der Abstände
der von z — Ii verschiedenen Nullstellen von der Kreisperipherie
2 Ii.

Ist nun K„ festgelegt, so kann um den Punkt z — R ein weiterer
Kreis K1 vom Radius ?-j gezeichnet werden, der ganz, innerhalb von
Kn, aber ganz ausserhalb von K verläuft.

R + Cj < r0; R — ?'j > r (man vergleiche Figur).
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Setzen wir

(18) B„
1 K°f i 1 \ dz

2ni / 1 l—F(z) zi+"

<14)

so gilt nach allgemeinen Sätzen (die Integranden der betrachteten
drei Integrale sind in dem dreifach zusammenhängenden Gebiet, das

durch das Innere von K0 und das Äussere von K und gebildet wird,
regulär):

(IS) Bn An + C„

Mit Rucksicht auf (7) lässt sich entwickeln:

1 _ f(z) F(li)—F{z) F(E) —F{R + [z—B\)

1 - F (z) — F' (Ii) [z — B] - (z-Bf Q (z, z~B)

Verwenden wir diese Darstellung im Integral (14), so folgt

1 A71 \ 1 dz
~~ YTTi I \ ~F'(E) + [2—ÄJ Q

' ' IT— B

Als Cauchysche Integralformel rückwärts gelesen

1

(16) C„
EHnF'(B)

Ist ferner M das Minimum des Betrages ;
1 —F (z) | auf dem Kreise A~0,

so kann das Integral (10) leicht abgeschätzt werden:

m |b,,I

Nach (15) kann geschrieben Averden

' Ii" F>„ I |RM„ + BnCn
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Verwerten wir jetzt (16) und (17), so gewinnen wir

1 1 i B\"
BHAn < —" BF'(B) ~M\r0'

und hieraus folgt wegen r0 > B

lim Bn An
1

BF'(Ii)
J")amit haben wir bewiesen:

Unter den Voraussetzungen (A), (B), (0), (D) gilt

1

(III) lim B" AV ^

BF'(B)

4. Über das stationäre Verhalten.

Aus der (irenzformel (II) lässt sieh zunächst eine Polgerung
ziehen, die sieh auf das stationäre Verhalten im Mittel bezieht. Es

gilt offenbar:

Die rekurrente Beihe [An\ ist dann im Mittel stationär, falls
B > 1 ist.

Die reelle positive Wurzel B der Gleichung (6) ist also für das

asymptotische Verhalten der Reihe (4) entscheidend.

Da B 1 bzw. B > 1 gleichbedeutend ist mit

oo oo

\1 X"1
^oc,, 1 bzw. / |

oc,, < 1,

l l

lässt sich die besprochene Konsequenz in folgender Weise notieren:

E oc,. 1

X OL,, < 1

Hierbei ist, wie in (II), (A), (B), (C) vorausgesetzt.

(IV) lim + ^2 +• • •+ At
1

'• V 0Ly

0



Analog gewinnen wir ans der Grenzformel (III)

1

(V) lim An v 2 a,. 1
2j v a,.

0 S a,. < 12 a,. < 1

Hierbei ist, wie in (III), (A), (B), (C), (D) vorausgesetzt.

5. Beispiele.

Wir behandeln nun drei Beispiele B1, B2 und ß3 mit unendlicher
Skala, indem wir alle Grössen und Funktionen, die in der entwickelten

Theorie von Bedeutung sind, in einer Tabelle zusammenstellen.
Die Beispiele sind so gewählt, dass sich die rekurrente Reihe in
expliziter Form anschreiben lässt. Dies scheint in ziemlich seltenen
Fällen möglich zu sein. Der allgemeine Fall der zweigliedrigen Skala
wird ausführlich behandelt bei A. Alciret1). Diese Frage hängt übrigens
mit der Möglichkeit zusammen, das Integral (12) in geschlossener
Form zu ermitteln.

Das Beispiel B1 erlangt prinzipielle Bedeutung, indem es die
Unentbehrlichkeit der Voraussetzung (D) beweist, die dem
Konvergenzsatz (V) beigegeben ist. (Siehe nachstehende Tabelle.)

Wir studieren in diesem Abschnitte noch eine besondere Klasse

rekurrenter Reihen, nämlich die Erneuerungsfolgen. Der Begriff der

Erneuerungszahl ist geläufig, aber diese Tatsache ersetzt keine exakte

Definition, deren man unbedingt bedarf, wenn man mathematische

Aussagen über sie machen will. Wir definieren:

Unter einer Erneuerungsfolge verstehen wir jede Zahlenfolge

6. Erneuerungsfolgen.

A0 l
n

(18)

Maret, A.: Untersuchungen über diskontinuierlich sich erneuernde Gesamtheiten.

Diss. Bern, Paul Haupt 1986.
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B, II, Bs

0, [ r ungerade]

(v:,)' Lv 8eradeJ
\ 4

i}J v — 1

vi

A

1, [n 0]

0, [n ungerade]
*

[» gerade]

1, [n 0]

2» L»>°]
1 1 1

1— + (-1)"—
1! 2!

K ' nl

a ]/2 2

oo

i

22

2 —22 2 —z
1 — (1 — z) ez

F' (2)
4 2

[2 — 22]2

2

L2-,f
2 e*

oII1T"~l zx \, 22 —1 2 1 2 1

R 1 1 1

1 2 —22 2 — 2 e~s

1 F iz) 2 11 — 22] 2 [1-2] 1—2

1 1 1 1

RF'(R) 4 2 e

A1+A2 + + An
Inn —

n >-oo ^

1

dT

1

2

1

e

lim ^4n
n —^ oo

Existiert nicht.
Voraussetzung

(/)) nicht erfüllt.

1

2

1

e

lim sup "j/^
7i—oo

1 1 1



ist, wobei die nicht negative Folge {p; j folgende Voraussetzungen
erfüllt :

(E) Po 1

Po>Pi>P2>
lim pr 0

(F)

(G)
r —>> oo

Die Rekursionsgleichung (18) ist die Erneuerungsgleichung für
diskontinuierlich sich erneuernde Gesamtheiten. Die An sind die

Erneuerungszahlen, und die pr stellen das Abbaugesetz einer sich
diskontinuierlich auf 0 reduzierenden geschlossenen Einheitsgesamtheit
dar, das den Untersuchungen als gegeben zugrunde gelegt wird. Um
die Allgemeinheit nicht zu beeinträchtigen, pflegt man keine weiteren

Einschränkungen über die Abbauordnung {p,,} vorzunehmen, als

durch die Voraussetzungen (E), (F), (G) angeschrieben wurde 1). Um
nun den Zusammenhang mit den in der allgemeinen Theorie behandelten

rekurrenten Reihen herzustellen, müssen wir die Rekursions-

gleicliung (18) einer Umformung untenverfeu. Zu diesem Zwecke

setzen wir:

(19) 'Pr-1 — Pr «, 5 (" >
Nach (18) ist

n—1

n

und hieraus folgt durch Subtraktion

n—1 nn

d-i, — -^n—l "I- Pl An—i—P). An.

J) tu diesem Zusammenhang darf erwähnt werden, dass das Erneuerungsproblem

auch sinnvoll ist für Gesamtheiten von irgendwelchen Lebewesen oder

toten Gegenständen.
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0 1

n

so (lass wir die rekurrente Formel

»

(20) A

gewinnen. Damit ist die Übereinstimmung mit der Ausgangsgleichung

(3) hergestellt. Die Erneuerungsfolgen treten so als rekurrente
Reihen in Erscheinung, deren Skala durch (19), durch die sogenannte
Ausscheideordnung, gegeben ist.

Um die allgemeinen Resultate über das asymptotische Verhalten
rekurrenter Reihen für Erneuerungsfolgen nutzbar zu machen, müssen
noch zweckdienliche Ahraussetzungen über die Abbauordnung [pA]

getroffen werden. Es zeigt sich, dass zwei Ahraussetzungen genügen.

Wir wollen nun nachweisen, dass (H) bzw. (H) und (J), zusammen
mit den zur Definition gehörenden Ahraussetzungen (E), (E) und (G),
die Ahraussetzungsgruppen (A), (B), (G) bzw. (A), (B), (C), (D), die

sich auf die Skala (19) beziehen, ersetzen.

(H)
!'-> CO

V -(J) Die Funktion / frzr besitzt auf dem Kreise \z\ 1 keine

0 Nullstellen.

Ahraussetzung (A):
> 0

ist erfüllt, wie unmittelbar aus (F) folgt.

Ahraussetzung (B): ist erfüllt, denn wegen (E) und (F) gilt

r V a <C 1.
Jim sup.]/a,,= a<^ 1



Voraussetzung (C):

i
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ist erfüllt, denn die Summe lässt sich
umformen zu

o

Nun ist aber

lim sup. [''a,, <i lim "|/pir
)' —CO )' —oo

und daher mit Bücksicht auf Voraussetzung

(H) a<l, woraus (C) folgt.

Voraussetzung (D):
B ist die einzige Wurzel

der Gleichung

1 —F(z) =0
auf dem Kreise

'

z I B

ist ebenfalls erfüllt, falls AToraussetzung

(J) gültig ist. Denn zunächst folgt mit.

Bücksicht auf (E) und (G)

l
1,

woraus zu entnehmen ist, dass die
charakteristische Wurzel B für
Erneuerungsfolgen 1 ist. Die Funktion 1 —F(ä)
lässt sich mühelos umformen in

(1-s) V P„Z

So erkennen wir leicht, dass mit
Hinblick auf (J) die Voraussetzung (C)

gilt.

Vach diesen Vorbereitungen lassen sich betreffend das asymptotische

Verhalten von Erneuerungsfolgen die folgenden Konvergenzsätze

aussprechen:
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Die Erneuerungsfolge (M„) ist im Mittel stationär:

lim +DÜ+A» __L^
(IV*) „ n ^ Vy

0

nenn Voraussetzung (H) erfüllt ist.

Die Erneuerungsfolge {M„] ist stationär:

1

lmi A»
oo

(Y*) W—-V ^
2j p'

n

wenn die Voraussetzungen (H) und (.1) erfüllt sind.

Prinzipielles Interesse verdient die Präge, ob die in den

Konvergenzsätzen (IV*) und (V*) geforderten A'oraussetzungen (H) und
(J) in vollem Umfange unentbehrlich sind. Die Beantwortung dieser
ziemlich subtilen Frage würde ein noch tieferes Pindringen in die

vorliegende mathematische Alaterie erfordern, das im engen Baum
dieser kleinen Publikation noch nicht erreicht werden konnte. Zweifellos

steht aber die Unentbehrlichkeit der Voraussetzung (J) für den

Konvergenzsatz (V*) fest. Alan uberprüft leicht, dass das Beispiel Ii]
im vorigen Abschnitt eine nicht konvergente Erneuerungsfolge liefert.
Sie oszilliert ohne Ende. Soweit dem Autor bekannt ist, hat H. Kreis x)

als erster mit aller Deutlichkeit auf diese Möglichkeit aufmerksam

gemacht. Seine sorgfältig angelegte Untersuchung, die sich auf eine

endliche Skala bezieht, fordert nämlich auf anderem AVege genau die

Voraussetzungen zutage, die man aus den unsrigen erhält, wenn man
auf eine endliche Skala spezialisiert. Im Falle einer endlichen Skala
fallen offenbar die AVmiussetzungen (G) und (II) weg, da sie von
selbst erfüllt sind. Es bleibt nur noch (J) als wesentliche AAmiussetzung

U Kreis, H.: Stabilität einer sich jährlich erneuernden Gesamtheit At.V.ft.Y.,
Heft 32, 193G.
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für den Konvergeuzsatz (V*). Diese erhält bei Kreis noch eine praktisch

übersichtlichere Gestalt, indem sie in der Voraussetzung der

Kichtperiodizität der Abbauordnung [p,.j ihr Äquivalent findet. Auch
Ivreis erwähnt die Unentbehrlichkeit der Voraussetzung. Daraus

ergibt sich, dass der in der Erneuerungsliteratur häufig zitierte Satz,
nach dessen Wortlaut die Erneuerungszahlen gegen eine Grenzzahl

konvergieren, also eine stationäre Folge bilden, nur unter den oben

erwähnten Voraussetzungen richtig ist, sonst aber nicht.
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