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Untersuchungen iiber das asymptotische
Verhalten rekurrenter Zahlenreihen

Von H. Hadwiger, Bern

Vorbemerkungen.

s 1st eme jedem Versicherungsmathematiker gut bekannte
Erschemmung, dass das ndmhche Problem auf zwei grundsiatzlich ver-
schiedene Arten mathematische Gestalt annehmen kann, je nachdem
man die kontinuierliche oder die diskontinuierliche Auffassung zu-
grunde legt. Es bietet dann sicher Interesse, zu untersuchen, wie
weit sich eine vorhandene Analogie in den Entwicklungen verfolgen
lisst. Dass solche gelegentlich sehr auffallend in Erscheinung treten,
wurde von verschiedenen Autoren oft zur Beachtung empfohlen. So
scheint, ganz allgemein gesehen, die Integralgleichung, die in der
kontinuierlichen Methode der Versicherungsmathematik eine grosse
Bedeutung erreicht hat, in der diskontinuierlichen Methode durch die
rekurrente Rethe ihr Analogon zu finden.

Die vorliecende Arbeit liefert einen kleinen Beitrag zu ihrer
Theorie, indem das asymptotische Verhalten Gegenstand unserer
Untersuchung bildet. Es zeigt sich, dass die Theorie 1imstande ist,
gerade dort etwas zu liefern, wo die tatsichliche Berechnung der Glie-
der der Reihe in den meisten Féllen lingst aufgehort hat, ndmlich

mm Unendlichen.
1. Definitionen und allgemeine Bemerkungen.
Wenn eine feste Zahlenfolge (Skala)
(1) gy Moy Bhgs gy was
vorgegeben ist, so wird durch die Festsetzung

@) g =



(8) An :Z o An =3 (”’ }z ]-)

eine relourrente Rethe

(4) Ay, Ay, Ay A, ...

erzeugt. s wird allgemein bekannt sein, dass man hiaufig auf cine
solche rekurrente Krmittlung einer Zahlenreihe gefithrt wird, wie das
beispielsweise in Problemen der diskontinuierlich sich erneuernden
Gesamtheiten der Fall ist. Fine klare Ubersicht und Kenntnisse iiber
weitere diesbeziigliche Titeratur vermittelt die Dissertation von
A. Maret 1).

Sehr oft ist die Skala endlich. Diese Moglichkeit ist selbstver-
stdndlich durch die Spezialfille berticksichtigt, in denen die Skala (1)
nur endlich viele von 0 verschiedene Glieder enthilt.

Die explizite Berechnung der Glieder der rekurrenten Reihe fithrt
in den meisten Fillen sofort auf untibersichtliche Ausdriicke. Ver-
gleiche etwa die Resultate von W. Maschler 2). Diese Schwierigkeiten
sind natiirlich rein #dusserlicher Natur und verhindern nicht, dass
iitber die rekurrente Folge Aussagen gemacht werden konnen, die
theoretisch sicher interessant, aber auch praktisch verwendbar sind.
Ihre Ermittlung geht dann nicht iiber die explizite Ausrechnung, aber
verwendet dafiir weniger naheliegende, mathematische Hilfsmittel.
An dieser Stelle mochte ich ganz besonders auf die Arbeit von H. \'reis %)
hinweisen, auf die wir spéiter noch zuriickkommen werden.

In der vorliegenden Arbeit sollen unter gewissen Voraussetzungen
solche Konvergenzerscheinungen nachgewiesen werden, die es ge-
statten, itber das asymptotische Verhalten der Folge | 4, befriedigenden
Aufschluss zu erteilen. Insbesondere konnen Aussagen itber die not-
wendigen und hinreichenden Bedingungen des stationdren Verhaltens
(Konvergenz der Folge {4,}) gefolgert werden.

al
Y Maret, A.: Untersuchungen iiber diskontinuierlich sich erneuernde Gesamt-
heiten. Diss. Bern, Paul Haupt 1936.
%) Méschler, W.: Abbau und Irneuerung des Bestandes einer Sterbekasse.
Festgabe Moser. Bern, Stampfli 1931.
3) Kreis, H.: Stabilitiit einer sich jahrlich erneuernden Gesamtheit. M. V.S. V..
Heft 32, 1936.
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Iis erweist sich noch als lohnend, den Begriff stationdr im Maittel
m die Betrachtungen einzuschliessen. Dabei heisst die Folge {4, ]
stationdéir im Mittel, falls die Folge der arithmetischen Mittel

| Ay 4 Ag 4. + 4, |
l n [

konvergiert.

2. Voraussetzungen.

In dem folgenden kleinen Abschnitt sollen die Voraussetzungen,
auf die wir unsere weitteren Untersuchungen aufbauen wollen, sorg-
faltig auseinandergesetzt werden:

Zunichst wird festgesetzt, dass wir uns auf nicht-negative Skalen
beschrinken wollen, also:

(A) @, =0; (1< v< o)

r
Es st nicht notig, Beschrinktheit fir die Skala zu fordern, immerhin
sel das Anwachsen gemiissigt durch die weitere Voraussetzung:

. Jr—

(B) lim. sup. Jo, = a < >~

7'**-\:
Mit diesem Grenzwert o verkniipfen wir eine weitere Voraussetzung,
deren Motivierung erst spiter zuginglich wird:

©) D, (i) ~1
: ,.

Wir wollen die Voraussetzung (C) als erfillt betrachten, wenn
o = 0 ist oder wenn die angeschriebene Reihe divergiert.

Is 1st besonders zu beachten, dass die Voraussetzungen (B) und
(C) sicher erfillt sind, wenn wir eine endliche Skala zugrunde legen.

3. Die allgemeinen Konvergenzsitze.

nl

Wir fithren nun eine wichtige Hilfsfunktion ein. Is sei

(5) F)=) 02
1



Der Konvergenzradius dieser Potenzreihe ist nach Festsetzune (B
b te)

i
6=—>>10

oL

Da nach Voraussetzung (C)

1st 1), gibt es eine reelle positive Wurzel der Gleichung
(6) 1—F () =0

Bezeichnen wir sie mit R, so gilt offenbar

(7) 0<R<o

das heisst, die betrachtete Nullstelle der mit (6) angeschriebenen
Funktion st ein innerer Punkt des Konvergenzkreises der Reihe (5).
Bs 1st leicht zu zeigen, dass in der offenen Kreisscheibe

(8) 2| <R

keine Wurzeln der Gleichung (6) liegen konnen, denn aus

\ '
> o, 8 =1 folgt
1
oo
[P - 5 3
E «,|2]">1 und der Vergleich mit
1
oo
% 1L 5 ’ . | — 1
% B =1 fihrt zur Ungleichung 2| > I
1
Aus diesem Grunde ist die gebrochene Funktion
1
1—F(z)

1) z = s ist nach einem Satze von (. Vivanti, Rivista di Matematica, Bd. 3,
S. 112, 1893, ein singulirer Punkt der Funktion (5), so dass die Voraussetzung (C)
im allgemeinen dadurch erfiillt ist, dass die Reihe dort divergiert. (Das Gegenteil
kann als Ausnahme gelten.)
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! regulir, kann somit um den Punkt z = 0 in eine
Potenzreihe entwickelt werden, die R zum Konvergenzradius hat.

Nun ist die Folge der Entwicklungskoeffizienten identisch mit
der rekurrenten Rethe (4), das heisst es gilt die fiir alles folgende grund-
legende Identitit:

1 %
9) — >4,
1 —F(z) 4~
Verifikation: Da die Konvergenzfrage erledigt ist, fihrt die rein for-
male Rechnung

oo (o5 ]
. }j
1=11— o, & A, z*
ra—— P ¢
0

; 1

1= }j 4,7 Y N, LA,

)'=l ‘u=0
(5] . n -
4 \j 4 c,n
— “1[- _ j G, A, 5%
121 K], o
zu1 den Relationen
A== 1

LY -
‘71)‘1. — L x; ‘4n%i. s (n ; 1)

A=1

deren Ubereinstimmung mit den Definitionen (2) und (3) festgestellt
werden kann.

Wie oben erwihnt, ist der Konvergenzradius der Reihe (9) genau
durch die positive Wurzel R gegeben. Die Anwendung einer geliu-
figen Formel der Funktionentheorie fithrt zu einer ersten Konvergenz-

relation:

Unter den Voraussetzungen (A), (B), (C) qult:

I lim. sup. |/ 4,
(D) . 8] I =5



s BB

Anschliessend an (9) schreiben wir weiter

1 O
10 e R,‘r A 1t
( ) -l o Py (R E) Z”J o é ?

wo die rechts stehende Potenzreihe den Konvergenzradius 1 aufweist,
falls wir nun & als Varable betrachten.

Dann gilt

I J;E-w:lim . ! = :
s »11—F(RE) >1R1F(R)—F(R§)} RF'(R)

| " B—Dhc

Dabei haben wir uns daran erinnert, dass mit Riicksicht auf (7) die
Funktion I' (z) in z = R regulir ist. Aus gleichen Griinden kann die
Potenzreihe (5) gliedweise differenziert werden. Also
(11) F (R = E vo, R1

1
Da nicht alle «, Null sind und R > 0 ist, muss I' (R) > 0 sein, so
dass der Grenzwert

| 1
lim (1—&) > R A, & = T
S—>»1 b /

existiert. Nun lassen wir emen von Hardy und ILattlewood ) ent-
deckten Satz zur Anwendung gelangen, der sich auf Potenzreihen (mait
reellen, nicht negativen Koeffizienten), die 1m Hinheitskreise kon-
vergieren, bezieht, und insbesondere auf die Bildung des oben an-
gegebenen Grenzwertes. So gelangen wir zu der folgenden Grenz-
formel:

Unter den Voraussetzungen (A), (B), (C) qlt:

an lim RA, +R2Ad, 4+ R34y +...-+- R4, o 1
. n R F'(R)

D Hardy und Tattlewood, The Messenger of Mathematics, Ser. 2, Bd. 43, 5. 141.
1914,



Die Anwendung der asymptotischen Formeln (I) und (II) setzt
die Bestimmung der positiven Wurzel I von (6) voraus. In beson-
deren Fillen 1st dies eventuell ohne Schwierigkeiten durchfithrbar.
So ist im TFalle einer endlichen Skala eine algebraische Gleichung
aufzulosen. Ist die direkte Ermittlung der Wurzel nicht moglich, so
kénnen doch zweckdienliche Abschitzungen fir den Betrag der ab-
solut kleinsten Nullstelle aus der mathematischen Literatur heran-
gezogen werden, so etwa die Formeln von Takahashil), Carmachael %)
oder Rudnicky ).

Aus der Konvergenz (1I) darf natiirlich nicht auf die Konvergenz

1
lim R‘)? "4'73 = T

n-—p 00 RF, (Z{)

geschlossen werden (umgekehrt schon). Wir wollen nun zeigen, dass
aber die oben erwihnte, stirkere Konvergenz unter einer weiteren
zusitzlichen Voraussetzung in der Tat nachgewiesen werden kann.

Wir haben frither gezeigt, dass m der offenen Kkreisscheibe (8)
2zl < R keine Wurzel der Gleichung (6) liegen kann. Auf dem Rande
2| = R liegt natiirlich mindestens eine, nimlich R. Iis kénnen aber
noch andere, eventuell komplexe Wurzeln auf diesem Rande liegen.
Dass dies nun verboten sei, 18t der Inhalt der angedeuteten Voraus-
setzung, die wir wie folgt formulieren:

(D) R st die einzige Wurzel der Gleichung 1 —I (2) = 0 auf dem
= B.

Kreise

n
~

Unter dieser Voraussetzung gehen wir nun an die Herleitung der
versprochenen Grenzformel.

Nach (9) 1st

1 5
1—F(z) ~

Die Anwendung der Cauchyschen Integralformel ergibt
Y Takahashi, Shin-ichi, Proc. phys. math. Soc. Jap. I1I, 5.13, 1931.
2) Carmichael, R. D., American M. S. Bull. 24, 1918.

3) Rudnicki, J., Mathematica 8, 1934.
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1 K“('_WMI ) dz

12 A= \ s
( ) n \ 1 “—F(Z) ! 2 1-4n

Qw1

wo K ein Kreis vom Radius » << R ist, der den Nullpunkt umschliesst.
Weiter sieht man leicht ein, dass es einen Kreis um Null K, vom
Radius ry, B < ry << & gibt, der keine Nullstelle der Funktion 1 — F'(z)
enthilt ausser z = R. Man {iberlegt sich zu diesem Zwecke etwa,
dass in einem Kreisring R <_|z| < 6’ << o nur endlich viele Null-
stellen liegen kénnen, da sie nach dem Theorem von Bolzano-Weier-
strass sich sonst 1m betrachteten Kreisring, insbesondere also im
Regularititsgebiet der Funktion 1 — F' (2) hdufen miissten, was nach
einem bekannten Satz nur fir die identisch verschwindende Funktion
zutreffen kann. Mit Ricksicht auf die Voraussetzung (D) folgert man
so die Existenz eines von ( verschiedenen Mmimums der Abstinde
der von z = R verschiedenen Nullstellen von der Kreisperipherie

Ist nun K, festgelegt, so kann um den Punkt z = R ein weiterer
Kreis K, vom Radius r; gezeichnet werden, der ganz mnerhalb von
K,, aber ganz ausserhalb von K verliuft.

R +r, <ry; R—r; >7r (man vergleiche Iigur).

o<
@
2%
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Setzen wir

1 Bty 1
(13) Bt ( )&
2ai | \1—F()/ 2t
e 1\ dz
14 0 =. -
( ) n 27%[(1—F(2))ZI+71

so gilt nach allgemeinen Sitzen (die Integranden der betrachteten
drei Integrale sind in dem dreifach zusammenhingenden Gebiet, das
durch das Innere von K, und das Aussere von K und K, gebildet wird,
regulir):

(15\ Bn - A-n s Cn

&
Mit Riicksicht auf (7) lisst sich entwickeln:

?) = F(R)—F (2) = F(B) —F(R + [+—R))

2)
1 —F(z) = —F'(R) [¢—R]—[:—R]?Q (z, 2—R)

Verwenden wir diese Darstellung im Integral (14), so folgt

Cf 1 K[ ( 1 \) 1 dZ
" 2as | \F'(B)+[z—R]Q/ " +—R
Als Cauchysche Integralformel riickwiérts gelesen

1
C S
(16) n _Rl +n Fl (R)

f

Tst ferner M das Minimum des Betrages | 1—F (2)| auf dem Kreise I\,
so kann das Integral (13) leicht abgeschiitzt werden:

7 (8] & e
(1") | n];ﬂfﬁ)’

Nach (15) kann geschrieben werden

i[{“ ])’nl — ‘Rﬂ A" + R" Cnf
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Verwerten wir jetzt (16) und (17), so gewinnen wir

L — 1 | 1 (R

RF'(R)| = M \r,,

und hieraus folgt wegen r, > R

1
lm R A, = ————
N3 oo R -l' ! (R)

Damit haben wir bewiesen:
Unter den Voraussetzungen (A), (B), (C), (D) gilt

1
I1T Im "4, — ——
(I11) S = R

4, Uber das stationdre Verhalten.

Aus der Grenzformel (II) lasst sich zunéchst eine Folgerung
ziehen, die sich auf das stationidre Verhalten im Mittel bezieht. Is
ailt offenbar: '

Die rekurrente Rethe {4, ist dann im Maittel stationdgr, falls
R >1 ust.

Die reelle positive Wurzel R der Gleichung (6) 1st also fiir das
asymptotische Verhalten der Reihe (4) entscheidend.

Da R =1 bzw. R > 1 gleichbedeutend ist mit

oo oo

R )
Za’ =1 bzw. Z_‘oc,, < 1,

1 1

lisst sich die besprochene Konsequenz in folgender Weise notieren:

A, + 4 ...+ 4 — Yo, =
([\') ]1]1’1 ..w.l.. I__ - .,2:,,7” e }_J v 11.

N—p 00 n
g 0 ; e <1

Hierbei ist, wie in (II), (A), (B), (C) vorausgesetzt.
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Analog gewinnen wir aus der Grenzformel (III)

1
- Sa=1
V) lim 4, — J Xva,

S ] 0 Do, <1
Hierbet 1st, wie in (ILI), (A), (B), (C), (D) vorausgesetzt.

5. Beispiele.

Wir behandeln nun drei Beispiele B, B, und B, mit unendlicher
Skala, indem wir alle Grossen und Funktionen, die in der entwickel-
ten Theorie von Bedeutung sind, in einer Tabelle zusammenstellen.
Die Beispiele sind so gewéhlt, dass sich die rekurrente Reihe in ex-
pliziter Form anschreiben ldsst. Dies scheint in ziemlich seltenen
Fallen moglich zu sein. Der allgemeine Fall der zweigliedrigen Skala
wird ausfithrlich behandelt bei 4. Maret 1). Diese Frage hingt iibrigens
mit der Moglichkeit zusammen, das Integral (12) in geschlossener
Form zu ermitteln.

Das Beispiel B; erlangt prinzipielle Bedeutung, indem es die
Unentbehrlichkeit der Voraussetzung (D) beweist, die dem Konver-
genzsatz (V) beigegeben ist. (Siehe nachstehende Tabelle.)

6. Erneuerungsfolgen.

Wir studieren in diesem Abschnitte noch eine besondere Klasse
rekurrenter Reihen, nidmlich die Erneuerungsfolyen. Der Begriff der
Frneuerungszahl ist geldufig, aber diese Tatsache ersetzt keine exakte
Definition, deren man unbedingt bedarf, wenn man mathematische
Aussagen iiber sie machen will. Wir definieren:

Unter einer Frneuerungsfolge verstehen wir jede Zahlenfolge
14,}, wo

=1
n
(18) 4,=1 _Z P14,

A=1

1y Maret, A.: Untersuchungen iiber diskontinuierlich sich erneuernde Gesamt-
heiten. Diss. Bern, Paul Haupt 1936.



B 1 b, B,
| ]
Q, L” ungerade| I\ v 1
= (1 )J, | » gerade] (m‘j) T
V2, f
. ].’ ['n = O]d 1’ [’)1, _ 0] 1 1 1
A , [n ungerade] . I
1 —, [n> 0] 1! 2! n!
5" [n gerade] | 2 |
G 1/5 b >0
i Z4 2
F (2) = o - = 1—(1—2) ¢
(2) : @, 2 9 2 5, ( 2)e
o s 2
At (2) _tF . SO 2 €
2—F | 2—2F
1—F((z)=0 =1, 2,=—1 z=1 =1
R 1 1 i
1 2 g2 29—z | e B
1—F (2) 21— 2% 21 —z] 1—z
1 o 1 1
RF'(R) 4 2 e
. A +A, 4.+ A4, 1 1 1
lim i —
n-yoo n 4 9 e
' Eixistiert nicht. 1 1
) h;n 4, Voraussetzung 5 -
| (D) nicht erfillt. ¢
lim sup ’i/Zl 1 1 1
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1st, wobei die nicht negative Folge {p,} folgende Voraussetzungen er-
fullt :

() Po =1
(F) Pozplipzz---
(&) lim p, = 0

9P 3= 00

Die Rekursionsgleichung (18) ist die Frneuerungsgleichung fiir
diskontinuierlich sich erneuernde Gesamtheiten. Die A, sind die
Eirneuerungszahlen, und die p, stellen das Abbaugesetz einer sich dis-
kontinuierlich auf 0 reduzierenden geschlossenen Kinheitsgesamtheit
dar, das den Untersuchungen als gegeben zugrunde gelegt wird. Um
die Allgemeinheit nicht zu beemtrichtigen, pflegt man keine weiteren
FEinschriinkungen iber die Abbauordnung {p,] vorzunehmen, als
durch die Voraussetzungen (I), (IY), (G) angeschrieben wurde ). Um
nun den Zusammenhang mit den in der allgemeinen Theorie behan-
delten rekurrenten Reihen herzustellen, miissen wir die Rekursions-
gleichung (18) einer Umformung unterwerfen. Zu diesem Zwecke

setzen wir:

(19) Py —P=0; (r=21)

Nach (18) ist

n—I1

)
A4, =1 “Z‘ Y ——
1

4,=1 ”‘“i YR -
1

und hieraus folgt durch Subtraktion

n—1

= z,
*4u — A)I-—l +A—J P, A-pz-—l——/'. - D, An—-/‘.
1 1

1 In diesem Zusammenhang darf erwiihnt werden, dass das Frneuerungs-
problem auch sinnvoll ist fiir Gesamtheiten von irgendwelchen Lebewesen oder
toten (iegenstinden.

o
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n—1 n
N 3“1
4, = P Ay — oty Ay s
0 1
n

4, = Z (Pra—pi) Ay

1

so dass wir die rekurrente Formel
n
=)
(20) Ay= ) o 4, ;

A=1

gewinnen. Damit ist die Ubereinstimmung mit der Aunsgangsglei-
chung (3) hergestellt. Die Erneuerungsfolgen treten so als rekurrente
Reihen in Erscheinung, deren Skala durch (19), durch die sogenannte
Awusscherdeordnung, gegeben 1ist.

Um die allgemeinen Resultate iiber das asymptotische Verhalten
rekurrenter Reihen fiir Erneuerungsfolgen nutzbar zu machen, miissen
noch zweckdienliche Voraussetzungen iiber die Abbauordnung {p,}
getroffen werden. s zeigt sich, dass zwel Voraussetzungen geniigen.

(H) Iim J]/]A),< 1
?—m 0O

(J) Dhe FunktfionZ p, 2" besitzt auf dem Kreise ‘z‘ — 1 Feine
0 Nullstellen.

Wir wollen nun nachweisen, dass (H) bzw. (H) und (J), zusammen
mit den zur Definition gehorenden Voraussetzungen (E), (F) und (G).
die Voraussetzungsgruppen (A), (B), (C) bzw. (A), (B), (C), (D), die
sich auf die Skala (19) beziehen, ersetzen.

Voraussetzung (A): ist erfilllt, wie unmittelbar aus (IY) folgt.
o, ,:/__ 0 '
Voraussetzung (B): ist erfillt, denn wegen (F) und (If) gilt
x, <1

¢ |
lim sup. ]/a,,—: e so | Ky S
»—9 co ]



T Oranss 1y .
Voraussetzung (('):

oo

Z o, (;i\)r‘; 1
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18t erfillt, denn die Summe lidsst sich um-
formen zu

(L)Yl

Nun 1st aber
lim sup. 'i//;; <_ lim ]’i),
y P o0 T >
und daher mit Riicksicht auf Voraus-
setzung (H) « <1, woraus (C) folgt.

Voraussetzung (D):
R 1st die einzige Wur-
zel der Gleichung

1—F () =0
auf dem Ireise

lz| =R

ist ebenfalls erfiillt, falls Voraussetzung
(J) giltig 1st. Denn zunichst folgt mit
Riicksicht auf (E) und (G)

2 &= 1,
1

woraus zu entnehmen 1st, dass die cha-
rakteristische Wurzel £ fur Erneue-
rungsfolgen 11st. Die Funktion 1—F(z)
lasst sich mithelos umformen in

Il

So erkennen wir leicht, dass mit Hin-
blick auf (J) die Voraussetzung (C)
ailt.

Nach diesen Vorbereitungen lassen sich betretfend das asympto-
tische Verhalten von Erneuerungsfolgen die folgenden Konvergenz-

satze aussprechen:
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Die Erneverungsfolge {4, ist im Mittel stationgir:

A+ Ay 4.4 4, 1

o lim -
(I\ *) N> o0 n Lj
2.
0

wenn Voraussetzung (H) erfiillt ist.

Die Erneuerungsfolge {A,} ist stationqir:

nJ
) 1
Im A = -

n

7% n -——-—) o0 Njiii 7
(V¥) S
0

wenn die Voraussetzungen (H) und (J) erfiillt sind.

Prinzipielles Interesse verdient die I'rage, ob die in den Kon-
vergenzsitzen (IV*) und (V*) geforderten Voraussetzungen (H) und
(J) m vollem Umfange unentbehrlich sind. Die Beantwortung dieser
ziemlich subtilen Frage wiirde ein noch tieferes Iindringen in die
vorliegende mathematische Materie erfordern, das im engen Raum
dieser kleinen Publikation noch nicht erreicht werden konnte. Zweifel-
los steht aber die Unentbehrlichkeit der Voraussetzung (J) fiir den
Konvergenzsatz (V*) fest. Man tiberprift leicht, dass das Beispiel I3,
im vorigen Abschnitt eine nicht konvergente Erneuerungsfolge liefert.
Sie oszilliert ohne Ende. Soweit dem Autor bekannt ist, hat H. Kreis 1)
als erster mit aller Deutlichkeit auf diese Moglichkeit aufmerksam
cemacht. Seine sorgfiltig angelegte Untersuchung, die sich auf eine
endliche Skala bezieht, fordert ndmlich auf anderem Wege genau die
Voraussetzungen zutage, die man aus den unsrigen erhilt, wenn man
auf eine endliche Skala spezialisiert. Im Falle einer endlichen Skala
fallen offenbar die Voraussetzungen (G) und (H) weg, da sie von
selbst erfiillt sind. Is bleibt nur noch (J) als wesentliche Voraussetzung

1) Kreis, H.: Stabilitiit einer sich jihrlich erneuernden Gesamtheit. M. V.S. V.,
Heft 32, 1936.
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fiir den konvergenzsatz (V*). Diese erhilt ber Kreis noch eine prak-
tisch tbersichtlichere Gestalt, indem sie in der Voraussetzung der
Nichtperiodizitit der Abbauordnung !p,| ihr Aquivalent findet. Auch
Kreis erwihnt die Unentbehrlichkeit der Voraussetzung. Daraus
ergibt sich, dass der in der Frneuerungsliteratur hiufig zitierte Satz,
nach dessen Wortlaut die Erneuerungszahlen gegen eine Grenzzahl
konvergieren, also eine stationére Folge bilden, nur unter den oben
erwihnten Voraussetzungen richtig ist, sonst aber nicht.
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