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Analytische Ausgleichung durch Polynome

mit einer Anwendung
auf die schweizerischen Volkssterbetafeln

Von Dr. Werner Ruchti

1.
Theoretischer Teil.

1. Einleitung.

Es ist die urspriinglichste Aufgabe der Statistik, einfache, mess-
bare Vorginge durch eine Reihe von Beobachtungen in ihrem Verlaufe
festzuhalten. Denken wir uns eine Anzahl solcher Beobachtungs-
punkte gegeben. Um einen ersten Uberblick iiber die Verteilung zu
erhalten, konnen wir die aufeinanderfolgenden Punkte durch gerade
Strecken verbinden, wodurch wir einen gebrochenen Linienzug her-
stellen. Mehr als zu einer ersten, primitiven Veranschaulichung kann
uns aber dieser nicht dienen, denn trotz des anscheinenden Zusammen-
hangs bleibt es noch bei der diskontinuierlichen Punktverteilung.
Die Aufgabe des mathematischen Statistikers ist es, diesen Polygon-
zug durch eine stetige Funktion zu ersetzen, so dass der Funktions-
wert nicht nur an den beobachteten Stellen angegeben werden kann,
sondern an jeder beliebigen Stelle zwischen den #dussersten Grenzen.
Diese Aufgabe heisst Interpolation.

In einer solchen beobachteten Verteilung sind aber neben den
wesensmissigen, grossen Schwankungen auch immer kleinere, zu-
fallige enthalten, und zwar um so mehr, je kleiner die Gesamtzahl
der Beobachtungen ist. Denken wir uns dazu noch eine grosse Anzahl
von Beobachtungspunkten, so fithrt das zu einer sehr komplizierten
Polygonlinie. Wenn der Mathematiker auch hier noch diese diskon-
tinuierliche Verteilung durch eine stetige ersetzen will, so kann es
sich nicht mehr darum handeln, eine Funktion zu finden, die fur alle
die gegebenen Punkte erfiillt ist. Is handelt sich vielmehr darum,
eine Kurve zu finden, die den Gesamtverlauf moglichst naturgemiss
wiedergibt, ohne den zufallsbedingten Schwankungen zweiter und
dritter Ordnung zu folgen.

[1=9
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Diese Aufgabe ist nicht mehr reine Interpolation, sondern man
nennt sie die Ausgleichung von Beobachtungswerten. Wenn man
dazu analytische Funktionen verwendet, heisst sie eine analytische
Ausgleichung.

Diese analytischen Funktionen, mit denen wir es immer wieder
zu tun haben werden, sind von der Form:

flx) =ay+ a2+ ay2®*+ ... +a, z"

Wir fragen uns, durch wieviele Punkte in allgemeiner Lage die
entsprechende Funktionskurve eindeutig festgelegt ist oder welches
das Maximum von Punkten ist, durch die diese Parabel m. Grades
gelegt werden kann.

Setzen wir einmal n beliebige Punkte (zy, f(xy)) ... (%, f(z,))
ein:

g+ a; 2 +ay i+ ... +a, 2 —f(z) =0

.........................................

Fiir diese n inhomogenen Gleichungen stellen wir folgende Punkt-
matrix auf:

' L, B 5, 5w i — (2

n n |i
Der Maximalrang dieser Matrix ist gleich der festen Zahl der
Spalten, das heisst = m + 2.

Der effektive Rang betrigt aber nur = n. Daraus folgt:
Losungsdimension = m + 2 — n.

Haben wir also z. B. zwei Punkte (n = 2), so kénnen wir durch
diese zwel unabhingige Parabeln (m = 2) legen. Alle andern lassen
sich aus diesen zwel linear kombinieren.

Nun suchen wir aber dasjenige n, fiir das nur eine unabhingige
Losung existiert:

m-+2—n=1
n=m-41
Das heisst, die Parabel niedrigster Ordnung, die durch n vor-

gegebene Punkte gelegt werden kann, ist vom Grade m — 1.
Diese Betrachtung fithrt uns auf einen ersten Gedanken:
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Gegeben sei eine Reihe von n Beobachtungswerten. Diese
n Punkte tragen wir moglichst genau auf Millimeterpapier ab und
versuchen, aus dem Verlauf den Grad fiir die Ausgleichungsparabel
zu ermitteln. s sel der m. Grad. Folglich stellen wir das Polynom m.
Grades mit den m -1 1 unbekannten Koeffizienten auf. Es wire
nun moglich, n Gleichungen zur Bestimmung dieser m + 1 Unbe-
kannten aufzustellen. Statt dass wir aber m 4 1 beliebige von den
n auswiahlen, zeichnen wir die gewiinschte Kurve moglichst genau durch
die Beobachtungspunkte ein und greifen dann m -1 far die be-
treffende Kurve typische Punkte zur Bestimmung der Koeffizienten
heraus.

Fiar komplizierte Verteilungen ist mnatiirlich diese empirische
Methode zu ungenau. Aber wir finden durch sie den Anschluss an
eine erste Verbesserung. Sicher mochten wir die provisorische Kurve
$0 durch die n Punkte einzeichnen, dass die Summe der absoluten
oder quadratischen Fehler minimal wird. Eine Methode, bei der die
Koeffizienten nach diesem Gesichtspunkt bestimmt werden, existiert.
Sie heisst die «Methode der kleinsten Quadrate».

2. Die Methode der kleinsten Quadrate.

1. Ausgehend von den n beobachteten Werten ¥y, s, ... ¥, an
den Stellen z, x,, ... z, stellen wir folgendes Polynom auf:

f(iE) = CLOR)(JC) _!" y E(m) _l_ azg(x) + +awz Pm(m)

Dabei sind die P,(x) bekannte, passend gewiihlte Funktionen
von z. Z.B. kann man wihlen P.(z) = z'. Die a; sind wieder zu
bestimmende Parameter. Durch Einsetzen der n Punkte werden wir
auf folgendes System gefiihrt:

Y1 = @ 190('%1) + ay 1)1((,131) + g ‘P.Z(‘,Bl) + v + Ay, 'Pm(a’l)

....................................................

yn - a’O I?)(mn) + al Pl(mn) + a2 'PZ('CE’H) + LR + am En(xn

Es muss natiirlich gelten n > m -+ 1. Interessant ist nur der
Fall, won >m -+ 1, sonst hat man einfach » inhomogene Gleichungen
zur Bestimmung von n Unbekannten vor sich.

2. Wir begniigen uns nun aber nicht damit, diese m + 1 Unbe-
kannten aus irgendwelchen m 1 von den n Gleichungen zu be-
stimmen, sondern wir wollen dazu alle n Gleichungen verwenden.
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Zur Berechnung der a; stellen wir folgende Forderung:

n n

E (a'ﬂ E)(Ei\) + al Pl(wl) + e + am 1:3))1($k) _—— yk)2E E (f ('xl\) _yk.)z

1 1

soll ein Minimum sein. Da diese Summe als Funktion der Parameter
a; aufzufassen ist, miissen die partiellen Ableitungen nach den a;

verschwinden.
DER @) (F@) —y) — 0
i

n

Z B(x) (f(z) — ) =0

------------------------

E Balay) (F(2) — 9,) =0

1

n
Setzt man nun Z P (z)-E(z) = 6, = o}
1

und " Pt(xk) Y = 0;
1

so erhilt man zur Bestimmung der a, folgendes System

| e
Gop Qo 1 Op1 @1 + - - - -+ Gop Xy, = O

| ot
G1p (g + G171 @1 1= - - - = Opy Ay, = Oy
Gm()a() + Gl ay _'_ $ + GCuun a’m — m

Das sind m -+ 1 inhomogene Gleichungen mit m - 1 Unbekannten.
Die einfache Matrix ist symmetrisch. In diesen m + 1 Gleichungen
sind aber nun alle n Beobachtungen verwertet. Durch Auflosen des
Systems findet man diejenigen Koeffizienten a, die vereint mit den
einmal gewihlten Funktionen P.(z) bei der Ausgleichung die kleinsten

quadratischen Fehler ergeben.
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3. Das sind nun nicht die kleinsten Fehler, die iiberhaupt erreicht
werden konnen, denn die Giite des Resultats ist neben den a; auch
abhiingig von den P.(z). Diese haben wir jedoch nur durch Probieren
ermitteln kénnen. Es wire ein Zufall, wenn man dabei gerade auf die
allerbesten gestossen wiire. So ist die Genauigkeit der Ausgleichung
schon beschrinkt, ehe man nur zur Bestimmung der Koeffizienten
nach der Methode der kleinsten Quadrate schreitet. Wir brauchen
deshalb noch ein Kriterium fiir diese Funktionen P (z). Diese Frage
findet durch die Theorie der orthogonalen Polynome, die in einem der
folgenden Kapitel berithrt werden soll, eine praktische Ldsung.

Zuerst wollen wir uns noch einer andern, mit der der kleinsten
Quadrate verwandten Methode zuwenden, die man dem Mathe-
matiker Cauchy zu verdanken hat.

3. Die Methode von Cauchy ?).

Zu den Abszissenstellen z;, x,, ... z, selen die Beobachtungs-
werte iy, s, ... Y, gegeben. Wir setzen wieder:

f(x) = a; K (2) + ag B(2) + a3 B(x) + ... ad.lib.

Die Methode von Cauchy geht etappenweise vor: Die Resultate
der n. Niherung dienen zur Berechnung der Konstanten der Funktion
fir die (n4-1). Niherung.

Erste Naherung.
Man nimmt vorliufig nur f(z) =a, F(z) oder kurz f(z) =
a-P(x) ... (1).
Damit hat man zur Berechnung der einen Unbekannten a folgendes
System von n Gleichungen:

f(2) = a- P(z,)
f () = a- P(xy)

f(m-n) = a- P(a;1b)

Nun trigt man in einem Koordinatensystem {P(x),0,f(x)}
folgende n Punkte ab:

M, (P(z}), f(z;), 1=1,2,...n



0 P(z) P(z) B

f(z;) = P(x;)-tg @

tg @; = a, gesetzt.

x)

Wir haben damit n Gerade durch den Nullpunkt mit den Rich-
tungskoeffizienten a, ), ... a, festgelegt.

Die Methode von Cauchy besteht darin, die Resultierende der

n Vektoren &\Zi zu berechnen und den Richtungskoeffizienten des
resultierenden Vektors, dessen Linge fiir uns keine Rolle spielt, als
das gesuchte @ anzunehmen. Das bedeutet, dass man den Schwer-
punkt S der n Punkte M, bestimmt und auf der GeradenOS den Vektor

>
0S n mal abtrigt, was zu dem Punkt M fiihrt.
Es sind also in gewissem Sinne die M, die beobachteten und die

N,, die auf OM liegen, die berechneten Werte. Die Abweichungen
sind von der Form

NiM; =f(x;) — P(z;) - tg

Infolge der charakteristischen Schwerpunktseigenschaft ist aber
die Summe dieser Fehler, wenn man das Vorzeichen beriicksichtigt,
gleich null.

n

Z if(2;) — Pz)-tg @} = 0

1

Folglich ergibt sich fir die Resultierende:



@) o=a=-1

Y

2 P(z,)

1

Bemerkung: Dieses Vorgehen verlangt eine Erginzung. Wiren
nimlich die Punkte M, gerade so beidseitig des Ursprungs verteilt,
dass S und somit auch M die Abszisse 0 hétte, dann wire:

a = tg (900) = o<,

Somit wiirde jeder Fehler ~. Je mehr sich @ einem rechten
Winkel néhert, desto schlechter wird diese Methode.

Um zu verhiiten, dass in (2) der Nenner null wird, addiert man
nicht die n Gleichheiten f(z,) = a- P(x;) direkt, um dann nach a
aufzulésen, sondern man multipliziert zuerst jede mit + 1, je nachdem
der entsprechende Wert von P(x;) positiv oder negativ ist. Die so
erhaltenen Summen wollen wir mit %' bezeichnen. Diese Abénderung
wirkt sich also nur dann aus, wenn der Punkt M ; elne negative Ab-
szisse hat.

Begriindung dieser neueingefiithrten Summen 3':

e

M
Mi ,
M

Nach der Figur ist a, >0, wihrend agy << 0, wo a; = tg @,
Also muss das resultierende a kleiner sein als - Statt M, hat man
also M, zu beriicksichtigen, fiir das a, = tg @ gleich gross ist wie
fir M,. Damit gelangt man schliesslich nach M’ statt nach M.



— 52 —

‘Diese Uberlegung kann man leicht auf den dritten Quadranten
ausdehnen und sieht, dass auch da eine Riuckfithrung, und zwar in
den ersten Quadranten, notig ist.

MK//’/
M
Fig. 3.
ag, verlangt eine Verkleinerung des a, a, dagegen eine Ver-
grosserung.
Fiir den Parameter a erhilt man das endgiltige FErgebnis:
, ——
(21) & == ‘AI—(:‘E@)
X' Pm)
"N Damit nehmen die Fehler zwischen Beobachtung und Berechnung
die Form an:
X ()
Af(x; —
flo) = @) —5rpry P
g ! ;
wobel 24 (=) =Z f(z,) %mﬂ -2 P(z) =0
2 P(x,)

Haben diese Abweichungen Af(z;) nicht den Charakter von Zu-
fallsfehlern, so nimmt man eine

Zweite Naherung.
(3) f(x) = a; B (z) + ay E ()

Man geht wieder gleich vor. Je nachdem F (z) positiv oder
negativ ist, multipliziert man mit -+ 1 oder — 1 und addiert. So
findet man:



' f(x) =ay X' F(x;) + a5 Z' E ()

Sy =B
@ =T By “T R

o [ B () X' E(z)) .
f(z;) = (f;“f);@— Ay m) B(z;) 4+ ay B(x,)

X f () X' E(z,;)
f(x,) _ﬁm.ﬁ(mi) = Oy (1:5(%) ST B(z) - B (z, )

in (3) eingesetzt:

oder Af(x) = ay-A B(x))

Daraut iben wir wieder jene Manipulation mit + 1 aus, je
nachdem A B(z,) positiv oder negativ ist. So wie wir die Summen,
die vom Vorzeichen von F(z,) abhinglg sind, mit X’ bezeichnet
haben, so wollen wir jetzt die Summen, die dem Vorzeichen von
A E(z,) Rechnung tragen, X'’ nennen.

' Af(x) = a, X" A B(z,)

woraus
(4" Uy

und von fruher

X Af(x)
B Z” A 'P.Z(m!)

@) o Zt@) X (@)
T YRy ?> P ()

Die Fehler ergeben sich nun in der Form:

U Af ()

A @) = A1) =5 oy

-4 B(zy)

Wegen der Schwerpunktseigenschaft gilt auch hier:
S A2 f(z) =0

Zeigen die Fehler A2 f(x;) noch immer systematischen Charakter,
so versucht man eine

Dritte Niaherung.
(5) f(x) =a, E(z) + a, Pz(w) + a3 B(x)
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Je nachdem I (z) positiv oder negativ ist, multipliziert man mit + 1
und addiert.

Xf(xy) = a X B (xy) + ap ' B(2,) + ag ' E(x)

6 g o 2T X' By (x
‘ VY E@E) T hE)

AN
)

f@»z(xﬂay_axﬁmfﬂ

ZP(Q})

B ()
-I—as( 3 (2 )— B(z) R(fﬁs))

Af(x) = a; A B(z;) + ag 4 B(x)

p2
f(%-m&1~ -~%( m93m0+

Man macht wieder die bekannte Multiplikation, jetzt in bezug
auf A4 B (x)):

S Af(e) = ay 2 AB(z)) + a, = 4 B(a)

o . E”A}‘(aci)) 3 A B(x)

Y ARG “TARE)

in 4 f(x;) eingesetzt:

SUAf@)  IAB@E)\
4 f(mc) = <Z” A g(ml) — U3 S A Ra(mz)>‘d ‘P.Q(xn) + aSA Pl(mz)
0 Af(e) E“AP<>
A1) = g1 oy ARG = o (AB(e)— 5 T AR

A% (z) = a, 4* B(z)

Dieselbe Erweiterung mit + 1 fithrt man aus fir 42 E(z,) und
bezeichnet die entsprechenden Summen mit 2"

b3 A2f(a~l) = Gg i A2 R(aj!)



i BB o

= A2 f(z)

6/1 —
ot TR A B

Die Gleichungen (6"), (6) und (6) ergeben sukzessive die gesuchten
Parameter.
Abweichungen:

49 f(zy) = 42 fla) — DT

T I A B,
wobei: ZA3f(x;) =0.

Wiirde eine dritte Niherung noch nicht geniigen, so kénnte man
analog weiterfahren.

Im Falle von n beobachteten Werten und m Gliedern oder Koeffi-
zienten kann der zu f(x) gehérende mittlere quadratische Fehler e
wie folgt definiert werden:

am+V2WWMVw

n—m

4. Riickfiihrung der Methode von Cauchy
auf die Methode der kleinsten Quadrate nach Carvallo.

Die von Cauchy verwendeten Gewichte T 1 konnen durch andere
ersetzt werden. Multipliziert man z. B. jede der n Gleichungen

fx) = ay () + ap B(z;) + a3 B(x,)

mit, dem zugehorigen F(z;), so bedeutet das hinsichtlich der Vor-
zeichen dasselbe wie die Erweiterung mit + 1. Die neuen Summen,
die bei der Addition entstehen, wollen wir mit 'Y bezeichnen.

Das Analoge kann durchgefithrt werden far I (z;) und B(z,).
Es selen "X und "2 die entsprechenden Summen.

X f(z) B(z) = ay B Pi(x) + a, BB () - B (2) + ag 2 By(,) - B ()
(1) T f(x;) = ay 'E B(x;) + ay 'Z B (z) + a3 'Z B(z))

und analog

(2) "Ef(z) =a "E B(z) + ap "2 B (x) 4 a5 "2 B(a))

B Ef(e) =a "I Rle) +apE B(x) + ay "E L))
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Das sind drei Gleichungen fiir die drei Unbekannten a. Auf
dasselbe System stosst man aber auch, wenn man die partielle Ab-
leitungen von

Sf(x) —ay B(z) — ap B(2;) — a3 B(z,)}?
nach den a gleich null setzt.

Aus (1) folgt

o o 2l
1R P,

2 E () 'Z By ()

T Be)  CEBE)

D)

) —a
Eingesetzt in (2) und (3)

o 2 () 'S5 () = B (x;

@)E”““(GRWJM%ER@J S B ()

+ ap "X E(z;) + a3 "X E(z)

(3) "Ef(z) =(...)"EB(x) + ay "B E(z;) + a3 "E L(z))

Aus (2') folgt sodann:

;)"'EB(%‘) -+

2) BHo) s "ERE) =
=%(ano EPE§@P<Q4—
+a3<”EP3(£E5)— _H— Pl(xt-))

Nun 1st:
'ﬂﬂ@%ﬂggggﬁp()ﬁzﬂ; B(z)—
| ﬂ%— B(z)-B(a)
— 2 P(z) |f(z) ; 1{;((3;?) B (z)

= PJ(:I"l) A f(mi)
~ 7 A f()
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Analoge Bezeichnungen fithren wir auch fiir die Ausdriicke auf der
rechten Seite von (2") ein.

Dann geht (2") iiber in

L " Af(x) =ay"E A E(x;) + ay "2 A B(x,)
Analog verfihrt man mit (3') und findet

1L "EAf(x) =ay,""T A B(x)) + a3 ""E A B(x))
Aus 1. folgt

/:EA f(wg) NE A B‘}(;Ul)
a2 - 1! _as 1

In II. eingesetzt

!Hz A )((a;{) =

/”ZAIC(QZ-) HZAB(QC)
— Y I 13 A R - Iy P o,
(Eamey T ane) AR 0 B ARG

"% A f(z,)
e L N> A R Y e
.HEA 1?2'(1:2) .,(a;l)
' "% A B(x)

— /nE P N

8 A fa) —

¥ P())

”’Z AZ f(’Tz) - a’3 ’”Z AZ Pﬁ(wz)

R A f ()

by = YDA cim 1P)

(), (B) und (y) zeigen, dass wir tatséchlich das gleiche Liosungs-
system erhalten wie bei der Multiplikation mit = 1; nur sind darin
die alten Summen durch die neuen ersetzt.

Damit sind wir wieder bei der Methode der kleinsten Quadrate
angelangt. Ihr Vorteil liegt in der Bestimmung der Koeffizienten,
withrend ein Kriterium fiir die Funktionen P(z) noch fehlt. Man
muss sie einfach ausprobieren. Andert man aber nachtriiglich eine
davon ab oder fiigt eine neue bei, so verlangt das jedesmal wieder eine
vollstindig neue Berechnung der Koeffizienten.
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Hier setzt nun die Arbeit von Techebychef ein. Er ersetzte diese
willkiirlichen Funktionen P(x) durch ganz bestimmte, die selbst
wieder Polynome sind. Sie gehéren zur Klasse der orthogonalen
Funktionen und werden als «Orthogonale Polynome» bezeichnet.
In der Literatur werden sie auch etwa «Tchebychefsche Polynome»
genannt. Das mag daher stammen, dass sie Tchebychef zur Aus-
aleichung heranzog. Die eigentlichen Tchebychefschen Polynome,
die eine Kernfunktion enthalten und auch orthogonal sind, werden
dabel nicht verwendet.

Die orthogonalen Polynome, die, wie wir sehen werden, ausge-
zeichnete Figenschaften besitzen, werden nun, vereint mit der Methode
der kleinsten Quadrate, die erwihnten Mingel beheben.

5. Orthogonale Polynome.
1. Bei der Methode der kleinsten Quadrate stiessen wir auf
Produkte von der Form:

Tp—-1

D:P(a)- Bx)

Die Funktionen F.(z), iiber die nichts vorausgesetzt war, wollen
wir ersetzen durch Polynome T, (z), wo der Index den Grad angeben
soll. Diese Polynome T, (z) wollen wir so definieren, dass wir folgende
fundamentale Eigenschaft von ihnen verlangen:

Tp-1

(1) ETZ (.’L’) ’ Tm (,‘1:) = () wenn +m

Polynome, die diese Figenschaft besitzen, heissen orthogonal fiir
das angegebene Summationsintervall.

2. Wir wollen versuchen, solche orthogonale Polynome zu finden.
Dazu gibt es mehrere Wege, wie ja auch die Kategorie dieser Funk-
tionen recht vielgestaltig ist. Sehr systematisch ist der folgende Weg,
der sich auf die Differenzenrechnung stiitzt und eine Formel fir

2 (u,-v,) gibt 2).
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E, =1 + Ay; X, = A" sollen sich nur auf u, beziehen
By==1+ A,; X,=A;" sollen sich nur auf v, beziechen

E =144 ;X = A" sollen sich auf die Produktfunktion (u,v,) be-

ziehen.
A, v,) = (B, Ey—1)u, v, Ey, =1 -+ A, eingesetzt:
=l + B, 45— 1w, v,
= (By Ay + A w0,
=E, A, (1 +E} A, A) u,v,
Durch Inversion folgt daraus:
Z(u,v) =4  u, v,
=E147(1 + Ef 4, 497
=E1 471 — B A A 4+ ER A A7 — + .. ) u, o,
= (B{A]} —EP A A2 + EP A A7 — + .. ) u, v,

='LL_I__[Z’U ——A u X2y, + A%u, 230, — +

:EAI)

Nun setzen wir ux =T, (x) und v, =T (z), wobei wir annehmen
m =1 o
ZTHL( ) ‘P(I) = Tl(‘l’.ul) }:T ( ) 74AT(CE#“2) B m('r) s o
() 4 T o1 1) B T, ()

m

konstant

Diese unbestimmte Summe nennen wir S(x). Die Summe zwischen
den Grenzen z,—»> X, , st dann
Tn-1

S‘T (2) Ty(x) = S(z,) — S(xo)

m

Verschwinden nun, wenn m > [, die Summen

(2) 2T, (x), 22T, (x), ... 2" T,,(2)
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alle fiir die Grenzen z = z;, und z = z,, dann wird auch S(z,) — S(x,)

verschwinden. Ist aber m — [, so wird das letzte Glied nicht null.
Das 1st gerade, was wir wiinschten.

3. Wir haben somit die urspriingliche Bedingung (1) in (2) iiber-
gefithrt. Iis wird also unsere Aufgabe sein, solche 7 (x) zu finden, die
der Bedingung (2) geniigen.

Wir setzen:

E" T, (7) = G (o)

=T (x) = A G(x)

m

T (x) = 4™ G(x)

Fs wird nun verlangt, dass die Funktion G(x) und ihre m ersten

Differenzen verschwinden fir =z = x, und x = x,. Das bedeutet,
dass G(x) selbst verschwinden muss fiir
=10y =0+ 1, 2=0,+2,... 6 =25+ m—1

z,+2 ... 2=2,+m—1

» r =T

F=8 41 &=
Das st der Fall, wenn (/(x) folgende Ifaktoren enthélt:
(r—2xg), (x—2z9—1), ... (z2—2y—m +1)
und (x—=z,), (z ) o (2—z,—m—+1)

Da G(x) = X" T, (x) vom Grade 2m in x ist, so kann es neben

diesen Faktoren hochstens noch eine Konstante als weiteren Faktor
enthalten. Die Wahl dieser Konstanten ist beliebig. Wir wihlen

dafir E—')é’ damit die absteigenden Fakultitenfunktionen in Bino-
m ’

mialkoeffizienten ibergehen.

(x—xy) (x—xg—1) ... (:Lfn—atolm—i—l)
m!

(x—=zx,) (t—z,—1) ... (z—x,—m-+1)

m!
S
m m

\ / %

Gie) =
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®) T (2) — A" (m—m0> (x—— a:,,)

m m

Da es nur eine einfache Verschiebung des Intervalls bedeutet, die
man jederzeit riickgingig machen kann, dirfen wir ohne weiteres
setzen x; = 1. Das gefundene orthogonale Polynom lautet dann ein-
facher

@ e

4. Umformung von (4).
. [x—m : L—mn
s sei ( m ) = f(z) und folglich ( m ) = f(x + m — n)

Wir wollen die Differenzenformel von Newton

ot m) =1 + (1) At + (5 ) 4@ + ... + 1@

anwenden und gerade beriicksichtigen, dass
qo(T—m\ _ (g—m
m )  \m—q
und (m-mn> = (—1) (n——m—l—q————l)
q q

flo+ mn—n)] = f(2) + m—n) Af (@) + ... + (”"_”) A" f ()

(") = () e G+ (757 () +

5



(:J (az;m) _ @ (z—1) ”W:b!(m—m_l_l) -

(x—m) (z—m—1) ... (z—2m 1)
. m!

-

M R

(x—m) (x—m—1) ... (z—2m -+ 2)
' (m—1)! o

~(ame_t) i1 =

(' x ) @m—1) 2m—2)...m [/ g ) 'Qm——l\
- \2m—1 m! '“ (2m~—~1/( m

\ /

T\ [T—m z(z—1) ... (z—m+1)

(—m) (x—m—1) ... (z—2m -+ 8)
' (m—2)! -

_( i ) @m—2)!
S \2m—2/)m! m—2)!

_ <2m3;—2> (2m—2) (2971,;!3) (mf—l) _ (27?2:1;_2) (Qmm—Q)

............................................................




)~ CE) ()= o)+
L) (T ) ()2

In (4) eingesetzt:

O B =) () = () e () +
RO A

(5) 1st die endgiiltige Form des gesuchten orthogonalen Polynoms
Tp==
T (x) =22 — (n—1)

H

T (2) iﬁ(g)_g S(n—2) =z +(n;1>

....................................

n-1 n-1 n—

Aus DT, (@) Ty(@) =0 folgt V3T, (&) Tye) = =T, (z) =0

m

o

0 0
Das heisst, die orthogonalen Polynome liegen so in ihrem Intervall,
dass sich die positiven und die negativen Ordinaten bei der Summation
gegenseitig aufheben. Sie liegen entweder punktsymmetrisch oder
axialsymmetrisch zur Mitte des Intervalls, je nachdem sie von un-
gerader oder gerader Ordnung sind.
5. Aus der gefundenen Entwicklung fiir 7, (x) ldsst sich sofort
eine solche fiir A" T (x) angeben; diese Reihe bricht mit dem

Glied, das (g) als Faktor enthilt, ab.

(®) AWM@=@ﬁﬁ@:ﬂhcﬁ;vm*mﬂwi_ﬂ+

/

b e (" (T



wiw Gl

Setzen wir in (5) und (6) z = 0, so erhalten wir zwei Hilfsformeln,
die wir bel der Anwendung gebrauchen werden

(5) T (0) — (—1)" (n~1)

om
m—1Uk

©) T T (0) — (—1) (fm;CH’f;) (nﬁkd)

m—Kk

6. Bemerkenswert ist die Verwandtschaft dieser orthogonalen
Polynome mit den Legendreschen Polynomen

m

d
£ la) =1 e {z™ (2 —n)™}

so dass / (%) - B(z)dz =0 wenn m F [

Die Summation wird also hier kontinuierlich durchgefiihrt.

7. Wir konnen aber auch von den frither besprochenen, will-
kiirlichen Funktionen P(x), bei denen der Index nicht den Grad
anzugeben braucht, zu orthogonalen Polynomen gelangen.

Bs war  f(x) = ap B(@) + oy B() + ... +a, By@)
Die Ausrechnung fithrte dann auf die Produktsummen

Tp—1

ZP B ld) =gy = 6y

Nun substituieren wir fiir die P(z) neue Funktionen @(zx) 1) mit
der Hrliuterung

Goo P Gpp Gop1 B)
N = — 0 A

Dy (x) = o649 Dy (x) = P Dy () = | 619 01y Pl
Gio 41 P
Gap O21 L9

Gop Op1 + + + Com-1 Pé

G190 011 »+ + O1m1 P1

@m(x) == 620 621 s 4. G2m—1 ‘P‘B

Gmo O-ml O ymm-1 Pm
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Damit erhalten wir ein neues Polynom:
(7) [(z) = Ao By(2) + 4, Py (2) + ... + 4, P, ()

Diese Funktionen @(x) sind selbst Polynome, und wir werden
jetzt beweisen, dass sie orthogonal sind, dass sie also folgender Be-
dingung genuigen:

20 (z) Dy(x) =0 wenn v+ k

000 . Gﬂk
Bs se1 D, =|06;.:: 04 1< k
Oko - -+ Opx

Pi(a) = " =Dy-B+D¥-R+ ... + DR
0,006,020 VR0, - DENR 0+ .t 2R
Darin lautet der Koeffizient von D' (p <1< k)

D:B &, —D¥)sRE 4+ DF)iRE + ... + DFYIRE,

Dieser Ausdruck ist nichts anderes als die nach der letzten Spalte
entwickelte Determinante D,. Jedoch steht darin an Stelle der k.
Spalte noch einmal die p. Also ist:

0-00 « e GOP PRI O-Ok—l Gop

W i +-- Opp « o+ Ogpy O
", .B) (Dk . 10 1p 1%-1 M1p
G0 Oip =+ + Oki-1 Okp

Da diese Determinante zweimal dieselbe Spalte enthilt, ver-
schwindet sie. Damit ist wirklich



20, (x) Dy (x) — 0

da darin alle Glieder null werden.

Ist aber 4 = k, so wird p, das die Werte 0, 1, 2, ... 7 annimmt,
fir p =1 =k automatisch der hochste Spaltenindex, so dass in
dieser Determinante nicht zwei gleiche Spalten vorkommen:

T @2 (z) £0

Die @(z) sind tatséchlich orthogonale Polynome, wenn der Grad
mindestens 1 ist.

Bewsprel 1):

z, =0,1, 2, 3, 4.
Wir nehmen ein Polynom 8. Grades und wihlen P (z) = z'.
Dann ist:

4 4
Goo—ZP{z) =-"]. =5
0 0
4 4
0
4 4
o =ZREB=31-2"=0+1+4+9+16 =50

................................................

Ggp = O 6or = 10 Goz = 30 63 = 100
610 = 10 611 = 30 612 — 100 6153 = 354
Gg9 = 80 Gy = 100 Gos = 9554 Gy3 = 1300
G5 = 100 0g; = 354 639 = 1300 655 = 4890

Beachtenswert ist die vollstdndige Symmetrie in bezug auf die
Hauptdiagonale.

Gop-Ly 181
D, = o P —iIOm =5 (z—2)




— 67 —

6006011%’ I 5 101
@2 = | Oy G].].’Pl = | 10 30 x == 50(%2—4 $+2)
Gao Ty T3 | 30 100 =z*
Goo o1 S0z Lo 5 10 301
P
O, = |0z 1| 10 80 0@l i (5 3—30x2+ 43 z—6)

Ggao Oa1 Oag 12 30 100 3854 z*
Ty Oy Tug Lp 100 854 1300 z°

8. Schliesslich sei noch auf einen dritten Weg hingewiesen, der
zu orthogonalen Polynomen fithrt. Hs ist der Weg, den Tchebychef
hauptséchlich gegangen ist. Man beniitzt dazu die Kettenbruch-
rechnung.

Es selen wieder =y, %y, ... 2,, die n DBeobachtungsstellen.
Dann stellen wir folgende provisorische Funktion auf:

F(z) = (z—z) (x—y) ... (2—2py)

Diese Funktion differenzieren wir und entwickeln = in) elnen
Kettenbruch. ()
F=F.Q,+ R,
F' = Ro'Q1 i R1
Ry = Ry -y ‘f‘ By
Rn—3 R-n—2 Qn 1
K R, 1
oGt =%ty
R,
Wir set i =@, + Hy ein:
ir setzen R, = R, .
F 1
— =) +
F_, QO QI +1

schliesslich erhélt man:



B 0 1
ZAA
@+ 1
0,1
1
Qn—z + 1
Qn—l
Qo = Q_lo Nenner N, =1
1
Qo +L= QOQ% Nenner N, = @,
¢ '
1 Qo @1 @2 + Qo + @2
Qo + s Nenner N, = + 1 ete.
e+ Q@ +1 ¥R
Qs
Diese aufeinanderfolgenden Nenner N sind orthogonal, und es
gilt:
Zn-1
DN, N, =0 fir 0%k
-1 '
und e N. =0

Damit stellen wir endgiiltig das Polynom auf
(8) f(x) = o9 Nog + oy Ny(2) + ... + o Ny (2)

Bewsprel 1):
Wir nehmen dasselbe Intervall 0 < 2 < 4 wie 1m vordern Bei-
spiel.

Hilfsfunktion F(z) = 2(z—1) (x—2) (z—3) (z—4)
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Da die Abszissen symmetrisch um die Mitte (z—2) liegen, ist
es vorteilhaft zu substituieren (z—2) =z

Fi)=(+2)(@+1)zE—1) (z—2)
=2(22—1) (:2—4)
= 25— 528 4 42

F'(z) =524 — 1522 + 4

()

® n einen Kettenbruch.
"(z

Nun entwickeln wir

2
25——5z3+4z:5z4-1522—|—4=—5m~—_Q0

4
2% — 323 +gz

16
—233—{—“—3—3 :RO

16 5

524—1522+4:—223+-—5—z m—maz =@
524 — 822

16 2
“233+—5—z:—722+4=7z = &)

223 83
_"Z S
7
2
7—-z:R2
35
mst L 4 74 245 0
—_— —_— = ——Z =
Cr gy 7 3
— 722
4 =R,
72 18

—z:d=——z=
35 55 ° = ¥



Also:
F 1
= o
F’ 5 41
——2z
i —
2
—z+1
245 1
——23
72 —
18
— 2
35
Die aufeinanderfolgenden Nenner lauten:
Ny=1
denné = (), wird als Ganzes aufgefasst.
Iy = ° 2
o2
5
Noy=——22+41
2 n .
N, — 17523 — 4252
72
8524 — 10522 4 28
v 28
2 = ¢ — 2 rickwirts ersetzt:
5
N=——(z—2
1 9 (x )
—b5x?+ 20— 13
N, — x4+ 20z
7
N 17523 — 1050 22 4 16752z — 550
3 percuncrng
72

N 35124 — 28028 + 73522 — 700z | 168
4$

28
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Diese Kettenbruchentwicklung braucht man aber nicht jedesmal
auszufithren, denn es gibt fiir die Nenner eine Rekursionsformel, die
man leicht herleiten kann.

Fithren wir fiir den Kettenbruch mit den Quotienten @, @, ...
@, die abkiirzende Bezeichnung | (790 4 T ‘ ein, so konnen
wir schreiben, wenn wir diesen Kettenbruch in einen einfachen Bruch
zuriickfithren:

- F,
iQO’Ql’ "'Qn—l‘ - N !
o1
ﬁ__xQ Zy _ Q@1 + 1 Z, _ Qo @1 @2 + Qo + @,
No ’ N, @ N, @1 Qs +1

In diesen Briichen besteht folgendes Rekursionsgesetz:
Zy =QyZps+ 2y,
Ny =€, Ny + Ny

Die Allgemeingiiltigkeit kann durch vollstindige Induktion
bewiesen werden. Da das Gesetz fiir die niedrigsten Indizes offen-
sichtlich gilt, zeigt man, dass aus der Giiltigkeit fir p — 1 sofort auch
die fiir p folgt. Wir setzen also voraus, es gelte:

Zp—i = Qp—l Zp-2 + Zp-ﬂ
N p-1 Q:n—i N 2 +N 3

Z 1
Um daraus —* zu erhalten, muss man fiir ¢, , setzen ¢, , + —
¥, 0,
/ 1
7 Q + —> Z -2 + Z —
“ {E B ( r-1 Qp P -3
N 1
¥ <Qp—l + Q—)N p-2 + N p-3
P/

o Qp (Qp~1 Zp-—2 + Z;n*3) —I_ pr—2

Qp (Qp—l Np-2 —I_ Np—S) + Np—?

_ Qp'Zp—i +Zpa2
Qﬁ'Np—l £3 Np—‘-’
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Damit ist die Allgemeingiiltigkeit dieser Rekurrenz bewiesen, so
dass man die aufeinanderfolgenden Nenner nach der Formel

(9) N;=@;Ni, + N,
berechnen kann.

10. Die Polynome N sind aber nicht gerade einfach, wie wir ge-
sehen haben. Tchebychef fand eine andere Rekursionsformel, die
zugleich eine Verallgemeinerung darstellt. Bis jetzt haben wir fir die
Aquidistanz der Beobachtungspunkte, das heisst fiir x,—, ,, immer

den Betrag 1 vorausgesetzt. Hat man bei einer Serie von Beobach-
tungen die Aquidistanz d

so kann man setzen

Damit ist auf der &-Achse die Aquidistanz 1 wieder hergestellt
und der Anfangspunkt in den Ursprung verschoben.

| ‘xo 2 =Ty + d Ty Tg

0| =0 &=1 £ —2 & —3

Am Schluss hat man diese Verzerrung wieder riickgiingig zu
machen.

Diese Aquidistanz d hat Tchebychef in seiner Rekursionsformel
beriicksichtigt. Bezeichnet man mit v (z) das orthogonale Polynom
p. Grades, so lautet diese Formel:

d2- p?* (2 — p?)
4 (4p2 — 1)

(10) Ppi1(€) = % pp(2) — “Pp-1(2)

Dabei ist n die Anzahl der Beobachtungen z,, z,, ... z,, und
d also die Aquidistanz z;, — z,_,.

Voraussetzung fir Formel (10) ist, dags man den Ursprung in
die Mitte des Intervalls xz,—> z, ;, verschoben hat. Ist das nicht der
Fall, so kann man die Verschiebung auch in der Formel nachholen.

Fur die Abszissen 1, 2, ... n z. B. lautet sie:



1 d2.p2 (n2—np2
'ﬂ+>%($)m_ 2° (nd—pY

(107) Qn"p+1(m) = (m'— R 4 (dp*—1) C ()

und fir 0,1, 2, ... n—1:

=1 8 BBl
1) @) = (2" ) wo) = STy 0

Beisprel : r=0,13,92 85, 4 G=1 n==5
Yo =1
Py = &—2
Wy = x2—4 -+ 2

523— 3022 48 x—6

Y3 =

.........................

Das Glied vom hochsten Grade hat immer den Koeffizienten 1.

Diese Rekursionsformeln werden zur Berechnung der orthogo-
nalen Polynome hé#ufig benutzt. Wir werden es aber bel unseren
Anwendungen vorziehen, die frither gefundene Iormel (5) zu ver-
wenden, da fiir diese die Rechnung in ein sehr bequemes Schema
gebracht werden kann.

Nachdem wir gesehen haben, wie man die orthogonalen Poly-
nome finden kann, wollen wir sehen, welche Vorteile sie uns bei der
analytischen Ausgleichung bieten.

6. Anwendung der orthogonalen Polynome bei der
analytischen Ausgleichung.

Es sei irgendeine Verteillung (zy, ¥o)s (1o Y1) -+« (Zpts Ypy)
beobachtet.

Scheint es uns zweckmiigsig, zur Ausgleichung dieser Beob-
achtungsreihe ein Polynom m. Grades zu wihlen, so schreiben wir

f(@) = ayTo + 0y Ty () + ... +a, T, ()



Dabei sind also die T'(x) orthogonale Polynome, gleichgiiltig, nach
welcher der angegebenen Methoden sie berechnet wurden.

Wir setzen

&
Ry = De{aTo + ay Ty (&) + .. + a,, T,(@) — y(a))}?

=Z (f(2) — y (=)

Zur Bestimmung der a verlangen wir, dass Rf,, minimal werde.
Die partiellen Ableitungen nach den ¢ miissen verschwinden. Fiir die
Ableitung nach a; erhilt man: '

DT (@) (f () — y (@) = 0

Nun macht sich die orthogonale Eigenschaft geltend, und es

bleibt einzig
0, )3T a) — D3 T, (x) -y ()} = O

" D2l (@) y(x)
@ = —=y —_
D12 (a)

Man sieht, dass «, nur abhiingig ist von 7} (z), an das es gebunden
ist, wihrend es unberiithrt bleibt von allen andern a und 7. Das be-
deutet, dass man im Polynom f(z) eine Abéinderung vornehmen kann,
z. B. das Anbringen eines weiteren Gliedes, ohne dadurch, wie es
bei den willkiirlichen P(x) der Fall war, die bereits gemachte Rech-

nung zu annullieren.

woraus

Man kann das auch direkt zeigen:
R?m) = 2 {a’ﬁ + y Tl (.CE) 4 el A Tm (SC) __ J(m)}z
=X +Xa2T%2)+ ... + 2 a2 T2(x)
—2 '{a{) 2 Y (‘IE) +Cl1 ETI (CC) Y (LE) = o s ﬁg—a’m ETm (m)y(x)
+ X y?(2)
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Es 1st aber
_ =y(@

0=
n

2 y(x)
n

2
Gy = Qg

n-at =X a; = a, = y(x)
und allgemein
Y aiTi(z) = a; ZT;(x) y(z)

- - 2
Eingesetzt in R,

R(zm) =2y (2) —ay L y(z) —a, ETy (2) y (%) —. ..—a,, ZT,, (2) y (2)
g — R(2m+1) = R}, —a,.; X T, 11(2) y()

So kann R? Schritt fiir Schritt berechnet werden, und jede Ver-
grosserung des Grades vermindert den Wert von R?2 bis es fiir ein
Polynom vom (n—1). Grade null wird, da in diesem Falle gleichviel
Unbekannte a vorhanden sind wie Gleichungen, so dass die Methode
der kleinsten Quadrate nicht mehr nétig ist.

Die Giite einer Ausgleichung wird allerdings nicht durch den
blossen Wert von R?2 charakterisiert, sondern es kommt auch darauf
an, mit welchem Grad man diese Fehler erzielt hat. Lidstone gibt
folgendes Kriterium an, das den Grad m mitberiicksichtigt:

 R2(m)

n—m—1

%)

Schreiten wir z. B. von einem Polynom 3. Grades zu einem solchen
4. Grades, so muss danach, wenn das Resultat mit dem 4. Grad besser

sein soll, gelten:

Bemerkung.

Wir haben immer stillschweigend vorausgesetzt, allen Beob-
achtungen komme dasselbe Gewicht zu. Ist das nicht der Fall, be-
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zeichnet z. B. 02 das Gewicht an der Stelle z, so muss man die Koeffi-
zienten aus der Formel

_ ZT(@)-y(o)-62

12 e
e RO

Y

berechnen. Wir werden unsere Anwendungen jedoch auf den Fall
beschrinken, wo allen Beobachtungen dasselbe Gewicht anhaftet.

Gliederung der Rechnung.

Trotz der Eleganz der Formel (11) erfordert die Berechnung der
a eine betrichtliche Arbeit. s ist jedoch eine systematische Gliederung
moglich, die die Ausrechnungen in ein einfaches Schema bringt und
dadurch eine gute Kontrolle schafft.

Dazu definieren wir folgende Summen 2)

z | ylx) St S2

0 | ¥ | Ss=Yo+11+Yst . +Yy | Sp=S;+S1+...+SL,

1y | Si= Y tYat o A Yy | Si= S+ S
2 |y | Sz= Yok oo F Yy | Sz = S+ +8
P=1| Yyt | Spa= Yt | Snt = Snt = Yt

Aus (11) folgt:
a; ZT5(x) = ET'(2) y(x)

_ Z{y(x)(Ti(O)—]—(C{)ATi(O)+(Z)A2Ti(0)+ . +(f)A "Ti(O))]

~T,0) 2y(e) + ATO 2 (7 )t + +ATOE ()i

—=T,(0) S} + A T,(0) 82 + AP T,(0) SE+. . . + A° T,(0) S+
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T;(0) Sy+ AT, (0) ST+ A*T(0) S5+ . . 4 AT T(0) St
=T (@)

Nach dieser Formel werden wir bei den Anwendungen die Kon-
stanten berechnen. Dabei brauchen wir also nur die Summen von der
Form S} 1.

Auch f(z) stellen wir indirekt dar:

f(0) = ag 4 a; T, (0) + a5 To(0) +-...+ A, Tm(o)
(1) { AH0) = ay ATy 0) + ay AT0) + ...+ a, 4T, (0)
A*§(0) = ay A2 Ty(0) 4. ..+ a,, A>T, (0)

..................................................

] I

09) o) =10 +(5) 4 10)+ (5) 4510 4.+ (1) 4" 0

Fiar die praktische Durchfithrung ist diese Darstellung die zweck-
migsigste.

Zusammenstellung der notigen Formeln:

o m- (- CT (5
'+€id>c_;H)QjJ%f%”+“AVOTU

/
,\‘
o

(5  T,0) = (—1)F (":1> -

j I it %+]€ n—k—l
6)  AFT0) = (—1) ( k)( o )

g g BOSHATOS 4. +ATOS 2
(13) a;= 2 ) S T2 ()

(14)  ATf(0) = a; A*T(0) + ;4 4' T;14(0) +.. .+ a,, 4° T,(0)

15) 1) =10 +(7) 10+ () K0+ () 4" 0

6
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n-1

Schema fiir die Tabellierung von A*T,(0) und ¥ T%(x)
Q

~ ] l ‘
k\m\ 0 | 1 2 3
O 1 ES *
1 0 2 *
2 0 0 6
3 0 0 0 20
n-1 |
> T%(x) n * * *
= .

In der Tabelle sind die Diagonalglieder 1, 2, 6, 20, ... fur jedes n
dieselben. Finzig die mit * bezeichneten Werte sind zu berechnen.

So ist die ganze Arbeit systematisch gruppiert.

Bemerkung.

Bevor wir an die eigenen Versuche herantreten, sei erwihnt,
welche Anwendung die Methode kiirzlich in Frankreich gefunden hat 8).

Es handelt sich um eine Ausgleichung der einjédhrigen Sterbens-
wahrscheinlichkeit der franzosischen Bevolkerung in der Periode von
0 bis 25 Jahren.

Bevor diese Aufgabe nach der Methode von Tchebychef gelost
wurde, war ein besonderer Ausschuss damit beauftragt worden,
empirisch ein Polynom aufzustellen und auf dieses die Methode der
kleinsten Quadrate anzuwenden. Dieser Ausschuss stellte ein Poly-
nom 6. Grades zusammen, das aber nicht bessere Resultate ergab als
das von den angefithrten Autoren spidter hergeleitete Polynom
3. Grades mit Orthogonalfunktionen, ganz abgesehen von der grésseren
Anzahl an Wendepunkten.



II. TEIL.

Anwendung auf die schweizerischen Volkssterbetafeln
1921—1930 und 1929—1932.

Bei der Ausgleichung von Sterbetafeln stellen sich oft grosse
Schwierigkeiten ein, namentlich, soweit das erste Lebensdrittel in
Betracht fillt. In den ersten 2—3 Lebensjahren zeigt die Sterblich-
keitskurve einen tiberaus steilen Abfall, erreicht ungefihr bei z = 12
ein Minimum und nimmt spéter bei z = 20 noch einmal voriiber-
gehend ab. Dann steigt g, monoton an, so dass die Beobachtungs-
rethe von da an mit Vorliebe durch das Gesetz von Makeham ersetzt
wird.

Es soll unsere Aufgabe sein, den Verlauf von ¢, in diesem ersten,
etwas komplizierten Intervall nach der behandelten Methode von
Tchebychef auszugleichen. Dabei werden wir uns der Orthogonal-
funktionen von der Form 7'(z) bedienen, da mit ihnen die besten Er-
fahrungen gemacht wurden.

Bei den ersten Versuchen stellte es sich heraus, dass ein Polynom
3. Grades zur Darstellung der Sterblichkeit im ersten Lebensdrittel
fiir die schweizerischen Verhiltnisse vollstindig ungeniigend 1st.
Brstens ist der Abfall am Anfang tiberaus steil und zweitens hat er
sich ungefihr bei z = 3 oder 4 schon fast ganz ausgewirkt, so dass
eine starke Verflachung folgt. Um diesem Umstand gerecht zu werden,
bediirfte man eines so hohen Kurvengrades, dass dadurch der prak-
tische Wert in Frage gestellt wiirde.

Es bestinde die Moglichkeit, mit der Ausgleichung erst beim
dritten oder vierten Lebensjahre anzufangen und fur die fritheren
einfach die unausgeglichenen Werte zu nehmen, wie es in der Schweiz
bei der Anwendung der Kingschen Methode gemacht wurde ?). Jedoch
wird ein Polynom dritten Grades auch dem weiteren Verlaufe nicht
gerecht.

Nach diesen Uberlegungen schien es vorteilhaft, eine Parabel
zweiten Grades zu verwenden und diese am Anfang wie auch am
Ende durch eine moglichst einfache Korrektur zu ergéinzen. Die
Korrektur am Anfang muss den steilen Abfall bewirken, und die am
Ende muss den Anstieg bei z = 20 herum unterbrechen und fiir
spater hinausschieben.
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Damit diese Korrekturen nur da wirken, wo sie erwiinscht sind,
und den iibrigen Verlauf nicht stéren, wurden sie so berechnet, dass
sie an gewiinschter Stelle aus der reellen Zahlenachse verschwinden.

Auf diese Art und Weise konnten besonders bei den Beobachtungs-
ergebnissen der Periode 1921—1930 recht befriedigende Resultate
erzielt werden. Die neuesten Messungen 1929—1932 weisen nach dem
Alter 20 jenes erwihnte Abnehmen der Sterblichkeit auf, das durch
die neue hygienische und sportlerische Lebensweise hervorgerufen
zu sein scheint und jedenfalls bei der Ausgleichung nicht schlechthin
iibergangen werden darf. Deshalb war es hier nicht moglich, mit
einer einzigen Kurve die Sterblichkeit ebensovieler Altersjahre wieder-
zugeben wie bei der Beobachtungsperiode 1921—1930, wenigstens.
wenn die Korrektur nicht zu kompliziert werden sollte.

1. Tafel fir die Minner 1921—1930.

Die unausgeglichenen Werte der ¢, findet man in der Schluss-
tabelle neben den ausgeglichenen. Bequemlichkeitshalber fithren wir
die Rechnung nicht fir ¢, selbst durch, sondern fir 10%.¢,.

Im Intervall 3—19 wollen wir die besprochene Parabel 2. Grades
berechnen: n = 17

St — 87,49 S? — 308,22 S5 — 1643,79
Tabelle fiix A% T}(0)
B o | 1 2
Y T !
0 1 — 16 120
1 0 2 — 45
2 0 0 6
S T2 (x) 17 1632 | 69768
Zy — 87,49 4, = 2,2058 £(0) — 3,37306
Z, = 6,60 4y = 0,00404 A F(0) = — 0,45407
7, — 716,64 ay — 0,01027 A2 {(0) = 0,06162

Die Parabelgleichung lautet also gemiss (15)

f(z) = 3,37306 — 0,45407 z + 0,06162@)
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Der Ursprung liegt aber bei # = 3, und um diese Verschiebung
riickgéinglg zu machen, substituieren wir x/z—3:

(1) f*(z) = 5,105 — 0,66974 z - 0,03081 22

Nun tabelliert man die Werte von f*(z) (siehe Schlusstabelle). Die
obere Grenze ist vorldufig noch nicht festgelegt. Fiir die ersten
Stellen werden oft die unausgeglichenen Werte gesetzt. Wir wollen
davon absehen und fiir die Alter x = 0, 1, 2 eine Korrektur ¢(z) be-
rechnen, die aber mehr nur den Zweck haben soll, die Kurve zu ver-
vollstindigen. Sie haben die Form: '

35,53 /3 —a
1+ 17,8822

Die zweite Korrektur y(z) ist schwieriger zu berechnen. FErstens
1st es sehr wichtig zu erkennen, von wo an sie wirken soll. Es schien
hier am besten, wenn y(z) etwa von z = 18,8 ab zu bremsen beginnt.
Als Zahler von 9(z) kann man somit schreiben

V/(z—18,8)2

Um den Nenner zu bestimmen, nimmt man eine Anzahl Punkte
heraus, durch die die ausgeglichene Kurve gehen sollte. Diese kénnen
nach einer beliebigen Methode ermittelt werden. An jeder dieser
Stellen berechnet man sodann, wie gross der Nenner sein miisste, um
eine genaue Ubereinstimmung zu liefern. So ergibt sich die Ab-
hiingigkeit des Nenners von z, und man kann dafiir eine Funktion
aufstellen, die, wenn nétig, nach der Methode der kleinsten Quadrate
berechnet werden kann.

Als Nenner ergab sich so folgende lineare Funktion:

3,6 4 0,025z

Y(e—18,8)°

3,6 + 0,025
35,58)/8—z ]/ (z—18,8)3
147,8822 3,640,025z
Bemerkung: Die Werte der Parabel f*(x) berechnet man am

schnellsten, indem man die zwel ersten Differenzen berechnet. Die
zweite ist konstant, und die erste verndert sich stets um diesen

(2) () =

(3) y(x) =

(4) F(x) =5,105—0,66974z 4 0,03081 22 4

konstanten Betrag.



Tabelle Nr. 1
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Beobach- Aus- Ab-
x |tete Werte| f*(x) @ (x) —(z) |geglichene | weichungen
1000 gz Werte I'(z) | I'(2)-1000-q,
0 66,65 5,11 61,54 66.65 0
1 10,13 447 5,66 10,13 0
2 4,96 3,89 1,09 4,98 -+ 0,02
3 3,42 3,37 3,37 — 0,05
4 2,88 2,92 2,92 10,04
5 2,35 2,52 2,52 0,17
6 2,22 2,20 2,20 — 0,02
7 1,95 1,93 1,93 — 0,02
8 1.87 172 172 015
9 1,72 1,57 157 — 015
10 1,55 149 1,49 —0,06
11 1,41 1.46 1.46 40,05
12 1.38 1,50 1,50 40,12
13 151 | 1,60 1,60 10,09
14 1,76 1,76 1,76 0
15 1,90 1,99 1.99 -+ 0,09
16 2,27 2,27 2,27 0
17 2,81 2,62 2,62 —0,19
18 2,99 3,03 3,03 -+ 0,04
19 3,50 3,50 0,02 3,48 — 0,02
20 3,70 4,03 0,32 3,71 + 0,01
21 3,79 4,62 0,79 3.83 -+ 0,04
292 3,86 5,28 1,38 3,90 -+ 0,04
23 3,91 6,00 2,06 3,94 —‘-— 0,03
24 3,94 6,78 2,82 3,96 + 0,02
25 3,99 | 7,62 3,65 3,97 — 0,02
26 3,85 | 8,52 4,55 3,97 0,12
27 405 | 9,48 5,49 3.99 — 0,06
28 401 | 10, 51 6,49 4,02 -+ 0,01
29 3,84 11,59 7,53 4,06 + 0,22
30 4,29 12,74 8,61 4,13 —0,16
31 4,36 13,95 9,73 4,22 —0.,14
32 4,41 15,22 10,89 4,33 — 0,08
33 4,35 16,55 12,09 4,46 + 0,11
34 4,44 17,95 13,32 4,63 -+ 0,19
35 4,82 19,41 14,57 4,84 + 0,02
36 5,08 20,95 15,85 5,10 -+ 0,02
37 5,567 22,50 17,15 5,35 — 0,22
38 5,73 24 14 18, 49 5 ,65 — 0,08
39 5,85 25,84 19,85 5,99 + 0,14
40 6,37 27,61 21,22 6,39 -+ 0,02
41 6,83 29 44 22 61 6,83 0
42 7,65 31,33 24,03 7,30 —0,35
43 7,88 35,27 25,46 7,81 — 0,07
44 8 41 35,29 26,91 8,38 — 0,03
45 9,08 37.36 28,38 8,98 — 0,10
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Bewertung:

Bei den Versicherungsgesellschaften ist folgende Wiirdigung
einer Ausgleichung iblich: Man wendet die ausgeglichenen Wahr-
scheinlichkeiten auf die Zahl der unter Risiko gestandenen Personen
L, an und vergleicht die Anzahl der erwarteten Todesfélle mit den
wirklichen.

Dieser Vergleich wird hier gebracht fir Gruppen von 5 zu 5
Altersjahren.

A(Q,)lNach der
Altersgruppen (1) er,rkhch?, Zishl %S’egﬁeisgggeies Differenz (2)—(1)
von Todesfillen wartete Zahl von
Todesfillen )

00— 4 29259 29256 + 4
5— 9 3121 3070 i — 51
10—14 2466 2539 ? + 78
15—19 4574 4537 —
20—24 6159 6183 + 24
25—29 5628 5686 + 58
30—34 5469 5443 — 27
35—39 6267 6233 — 84
40—44 8303 8203 — 100
45 1998 1973 — 95

Die Differenzen iitberschreiten also nur selten 19, der wirklichen
Quote. Ausgenommen am Schluss, wo die ausgeglichene Kurve
infolge der Korrektur die Tendenz annimmt, zu tief zu verlaufen,
sind keine systematischen Fehler vorhanden. Man ersieht auch aus
der Tabelle Nr.1, dass das Vorzeichen der Abweichungen stark
wechselt, was naturgemiiss ein gutes Zeichen fiir eine Ausgleichung ist.
Je hiufiger der Zeichenwechsel, desto besser die Bewertung.

Aus diesen Erwigungen und aus der Betrachtung der graphischen
Darstellung ist man geneigt, die durchgefithrte Ausgleichung als sehr
befriedigend zu bezeichnen. Man vermisst aber in diesen Proben
etwas Handfestes, Sicheres, an Stelle des Gefithlsmissigen. In zweifel-
haften Fillen ist es auf diese Weise nicht moglich, einen Entscheid
zu fillen.

Dieser Frage betreffend die Giite einer Ausgleichung wird der
letzte Teil unserer Arbeit gewidmet werden.
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2. Tafel fiir die Frauen 1921—1930.

Die unausgeglichenen Werte findet man wieder in der Schluss-
tabelle.

Parabel 2. Grades im Intervall 3—16; n =14
S1 = 26,50 S? = 159,69 S3 = 662,41
Tabelle fiiv A* T,(0)
T 0 1 2
\ —
0 1 — 13 78
1 0 2 — 36
2 0 0 6
X T2 (x) 14 910 26208
Z, = 26,50 a, = 1,89286 #(0) = 3,12292
7, = — 25,12 a4, = — 0,02760 A (0) = — 0,45732
Z, = 292,62 a, = 0,01117 A% 1(0) = 0,06702

f(z) — 3,12292 — 0,45732 |- 0,06702 (g)

(1) fE(z) = 4,897 — 0,69189 & + 0,03351 22

" 26,58 1/3.2—z
P = T 06
V(z—17)2
3 e e
) e 6,7 — 007z

26,58 1/3,2—=z  }/(a—17)3
1+7,0622 6,7—0,07x

(4) F(x) = 4,897—0,69189x 4 0,03351 22 +



Tabelle Nr. 2.
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Beobach- Aus- Ab-
x| tete Werte T @ () —(z) |geglichene | weichungen
1000-q, Werte F'(z) | F'(z)-1000+q,,

0 52,45 4,90 47,55 52,45 0

1 9,13 4,24 4,89 9,13 0

2 4,59 3,65 0,99 4,64 -+ 0,05

3 3,28 3,12 0,18 3,30 + 0,02
4 2,44 2,66 2,66 10,22

5 2,98 2,28 2,98 0

6 1,95 1,95 1,95 0

7 1,62 1,69 1,69 + 0,07

8 1,64 1,51 1,51 0,13

9 145 1,39 1,39 — 0,06
10 1,42 1,33 1,33 — 0,09
11 1,31 1,34 | 1,34 + 0,03
12 1,26 1,42 | 1,42 + 0,16
13 1,56 1,56 1,56 0
14 1,77 1,78 1,78 10,01
15 2,13 2,06 2,06 — 0,07
16 2,39 2 40 2,40 + 0,01
17 2.88 2,82 2,82 — 0,06
18 3,02 3,30 0,18 3,12 + 0,10
19 3,44 3,85 0,53 3,32 — 0,12
20 3,41 4,46 0,98 3,48 + 0,07
21 3,59 5,14 1,53 3,61 + 0,02
922 3,79 5,89 2,16 3,73 — 0,06
23 3,83 6,71 2,88 3,83 0
24 3,93 7,59 3,68 3,91 — 0,02
25 4,10 8,54 4,57 3,97 —0,13
26 4,02 9,56 5,53 4,03 + 0,01
27 3,89 10,64 6,5 4,07 + 0,18
28 4,05 11,80 7,70 4,10 10,05
29 4,11 13,01 8,90 4,11 0
30 4,05 14,30 10,19 4,11 1+ 0,06
31 4,07 15,65 11,56 4,09 + 0,02




(1) Wirkliche Zahl |

(2) Nach der
Ausgleichung des

Altersgruppen von Todesfillen erv\vf;;'tfgfgeésa il Differenz (2)—(1)
von Todesfillen
\

0— 4 22880 | 22969 + 89

5— 9 2708 ' 2674 — 34
10—14 2349 2407 -+ 58
15—19 4831 4784 — 47
20—24 6356 6355 — 1
25—29 6396 6416 + 20
30—31 2371 2390 + 19
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Auch hier bleiben die Differenzen in einem ertriglichen Rahmen.
Der Erfolg dieser Ausgleichung liegt darin, eine komplizierte Ver-
teilung in einem ziemlich grossen Intervall ohne nennenswerte Fehler
bewiltigt zu haben. Legt man Wert darauf, dem ganzen Abschnitt
mit einer einzigen Funktion zu gentigen, so darf man mit diesen
Resultaten zufrieden sein.

3. Tafel fiir die Minner 1929—1932.
Man geht immer nach demselben Arbeitsschema vor:

Quadratische Parabel von x = 3 bis 2 = 19:

\

f(a) — 8,12275 — 0,42810 2 + 0,06036 (; )

Joes (1) f*¥(z) = 4,769 — 0,63936 = + 0,0301822

28,31/3,3 —x
2 = =
i R = + 12,52 /a3
‘ N (=,
®) P == "0

28,3 1/8,83—z  1/(2—19)3
(4) F(x) = 4,769 —0,639362 4 0,0801822 4 — V7L V(—"E——)
1412,52 1/ 22 4,05

Da die Beobachtungsdauer dreimal kiirzer ist als bei den Mes-
sungen 1921—1930, so sind die Beobachtungswerte der g, ungleich-
missiger verteilt, so dass die Abweichungen im Durchschnitt etwas
grosser werden.

Dazu kommt noch das besprochene Zuriickgehen der Sterblich-
keit zwischen 24 und 30, das nicht zufilliger Natur zu sein scheint.
Dieses Stiick wird von der Funktion F(x) nicht gerade gut ausge-
glichen, und es wire empfehlenswert, ungefihr ab 23 mit einer neuen
Ausgleichung anzufangen.



Tabelle Nr. 3.
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Beobach- Aus- Ab-
xz |tete Werte| [*(x) p(z) —(z) | geglichene | weichungen
1000-q, Werte F'(z) | F(x)-1000-q,
0 56,19 4,77 51,42 56,19 0
1 7,33 4,16 3,17 7,53 0
2 4,57 3,61 0,91 4,52 —0,05
3 3,32 3,12 0,23 3,35 -+ 0,03
-4 2,40 2,69 2,69 + 0,29
5 2,24 2,32 2,32 + 0,08
6 1,99 2,01 2,01 -+ 0,02
7 1,94 1797 1,77 -
8 1,55 1,58 1,58 + 0,03
9 1,64 1,46 1,46 —0,18
10 1,46 1,39 1,39 — 0,07
11 1,41 1,39 1,39 0,02
12 1,35 1,44 1,44 -+ 0,09
13 1,67 1,56 1,56 —0,11
14 1,51 1,73 1,73 -+ 0,22
15 1,83 1,97 1,97 -+ 0,14
16 9,44 2,27 2,97 — 017
17 2,64 2,62 2,62 — 0,02
18 2,80 3,04 3,04 -+ 0,24
19 3,72 3,52 3,52 —0,20
20 3,60 4,05 0,25 3,80 +0,20
21 4,02 4,65 0,70 3,95 — 0,07
22 3,98 5,31 1,28 4,03 + 0,05
23 3,94 6,03 1,98 4,05 +0,11
24 4,28 6,81 2,76 4,05 — 0,23
25 4,08 7,65 3,63 4,02 — 0,06
26 3,76 8,54 4,57 3,97 10,21
27 3,66 9,50 5,59 3,91 + 0,25
28 3,93 10,53 6,66 3,87 — 0,06
29 3,80 11,61 7,81 3,80 0
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(ﬁ) Nlaghh der
Altersgrappen | (1) Wirkliche Zahl | g (5600 (CE8 | itterens (2)—(1)
von Todesfiallen srwartete Zahl

von Todesfillen
6— 4 7827 7853 + 26
5— 9 984 962 — 22
10—14 729 737 + 8
15—19 1469 1468 |
20—24 2163 2169 + 6
25929 1961 1995 + 84

4. Tafel fiir die Frauen 1929—1932.

Quadratische Parabel von z = 3 bis z = 19:

f(z) = 2,7718 — 0,37243 & -+ 0,05238 G’)
s (1) f¥(z) = 4,208 — 0,55576 & + 0,02619 22

26,33 |/2,8—«

e P = T 6
(2—18)3
o o —— L

26,33 /2,8—z /(z—18)?

(4) F(x)=4,208—0,555762 + 0,0261922 +

1+ 17,16z 6,25
(2) Nach der
- Ausgleichung
Altersgruppen (1) erl:kgc}‘lf'lZlahl des Verfassers Differenz (2)—(1)
von Todesfillen erwartete Zahl
von Todesfillen
0— 4 6077 6086 + 9
5— 9 878 848 — 30
10—14 622 656 + 34
15—19 1331 1297 — 34
20—24 1942 1951 + 9
25-—26 850 848 — 2




Tabelle Nr. 4.

Beobach- Aus- Ab-
z | tete Werte f*(x) @(z) —(x) |geglichene | weichungen
1000-g, Werte F(z) | F'(x)-1000-q,

0 44,12 4,20 39,92 44,12 0

| 7,35 3,67 3,68 7,35 0

2 4,10 3,19 0,94 4,13 + 0,03

3 2,81 2,77 2,77 — 0,04

4 2,30 2,40 2,40 + 0,10

5 2,08 2,08 2,08 0

6 1,93 1,81 1,81 — 0,12

7 1,49 1,59 1,59 -+ 0,10

8 1,56 1,43 1,43 —0,13

9 1,46 . 1,32 1,32 —0,14
10 1,16 1,26 1,26 -+ 0,10
11 1,09 1,25 1,25 + 0,16
12 1,25 1,30 1,30 -+ 0,05
13 1,31 1,40 1,40 -+ 0,09
14 1,61 1,56 1,56 — 0,05
15 1,78 1,76 1,76 -
16 2,15 2,02 2,02 —0,13
17 2,55 2,32 2,32 —p28
18 2,51 2,68 2,68 + 0,17
19 3,04 3,10 0,16 2,94 —0,10
20 2,92 3,56 0,45 3,11 + 0,19
21 3,09 4,08 0,83 3,25 + 0,16
22 3,57 4,65 1,28 3,37 — 0,20
23 3,49 5,28 1,79 3,49 | 0
24 3,67 5,95 2,35 3,60 — 0,07
25 3,72 6,68 2,96 3,72 | 0
26 3,86 7,46 3,62 3,84 —0,02.

Die Genauigkeit der erzielten Resultate kann nach diesen ein-
fachen Proben als sehr befriedigend bezeichnet werden, wofiir wir im
letzten Teil noch eine genauere Bestitigung finden werden. Grosse
Febler von systematischem Charakter sind nicht vorhanden.
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Mit Riicksicht auf das von Lidstone gegebene Kriterium ist es
durch eine Erhohung des Grades der Parabel nicht moglich, eine Ver-
besserung zu erzielen, denn die Abweichungen wiirden nicht stark
genug verkleinert, dass der Ausdruck

R2(m)

n—m—1

vermindert wiirde. Schliesslich ist es ja auch gar nicht der Sinn einer
Ausgleichung, die Ersatzfunktion in allen Finzelheiten den beobach-
teten Werten anzupassen; sie soll vielmehr unter Wahrung der charak-
teristischen Ziige die vereinzelten Punkte in einen glatten Verlauf
tibertithren.

] b
sk

Unter Umsténden kann jedoch noch auf einem andern Wege eine
Verbesserung der Resultate versucht werden.

Erscheint die Reihe der Beobachtungspunkte, die man aus-
gleichen will, als eine Zusammensetzung von einzelnen, in sich selbst
typischen Teilstiicken, so kann es sich eventuell lohnen, an Stelle des
Gesamtintervalles jedes einzelne dieser Teilstiicke fiir sich mit einem
Polynom auszugleichen 3).

Diesem Versuch ist der folgende Abschnitt gewidmet. s schien
mir némlich, dass der Verlauf um das Minimum einen spezifischen
Charakter hat, dem man durch diese Aufteilung noch besser gerecht
werden kann.

5. Partielle Tafel fiir die Miinner 1929—1932.

Intervall 0 —> 4.
Quadratische Parabel durch = = 2, 3, 4:

AN
/

f(x) = 4,57 — 1,252 4 0,33 (;)

/

o (1) f*=)=8,06—2,0752 + 0,165 22

34,04 )/2—=a
1+ 27852

(2) @ (z) =
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3) F(z) — 8,06 — 9,075z + 016542 1~ 0x V22
14 27,85z
Beobach- Aus- Ab-
* tete Werte 1*(x) @(z) geglichene weichungen
1000-q, Werte F(z) | F(z)-1000-q,
0 56,19 8,06 48,13 56,19 0
1 7,33 6,15 1,18 7,83 0
B 4,57 4,57 4,57 0
3 3,32 3,32 3,32 0
4 2,40 240 | 2,40 0

Intervall 4 — 12.
Quadratische Parabel:

f(z) = 2,4242 — 0,21816 = - 0,024 (;)
2, [*(x) = 8,586 — 0,326z + 0,012 22

Beobachtete Aus- ;
. Abweichungen
x Werte geglichene F(2)— 1000+
1000-g, | Werte f*(z) ~’°

(4) 2,40 9,42

5 2,24 2,21 — 0,03

6 1,99 1,99 0

7. 1,94 1,84 — 0,10

8 1,55 1,69 + 0,14

9 1,64 1,57 — 0,07
10 1,46 1,47 -+ 0,01
11 1,41 1,40 — 0,01
12 1,35 1,35 0

Intervall 12 — 23.
Parabel 3. Grades:

f(x) = 1,4818 + 0,0316 z + 0,1412 (;) — 0,034 (ff)
2 fH@) = 24,448 — 4,6021 z + 0,2917 22 — 0,00567 2

rz-12
7
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von Todesfillen

erwartete Zahl
von Todesfillen

Beobachtete Aus- ;
: Abweichungen
@ Werte geglichene £*(2) —1000-
1000-q, | Werte f*(z) ’ I

(12) 1,35 1,43

13 1,67 1,46 —0,21

14 1,51 1,63 + 0,12

15 1,83 1,91 + 0,08

16 2,44 2,27 — 0,17

17 2,64 2,66 + 0,02

18 2,80 3,06 + 0,26

19 3,72 3,43 —0,29

20 3,60 3,73 + 0,13

21 4,02 3,94 — 0,08

22 3,98 4,02 10,04

23 3,94 3,93 —0,01

(2) b{a_c};l der
Intervall L) witiialis, ekt (ﬁags‘gv’::fas‘;gli Differenz (2)—(1)

0— 4 7827 7827 0
5—12 1407 1402 — b5
13—23 3482 3470 — 12

Es ist noch interessant, einen Vergleich mit den offiziellen aus-
geglichenen Zahlen des Kidgenossischen Statistischen Amtes zu
machen.

Dazu muss vorausbemerkt werden, wie diese Zahlen hergeleitet
wurden. Von 0 bis 3 wurden die unausgeglichenen Werte iiber-
nommen. Der schwierige Teil von 4 bis 20 wurde stiickweise graphisch
ausgeglichen, wobei man auf eine moéglichst genaue Anpassung an die
rohen Werte achtete. Deshalb sollen diese offiziellen Zahlen mit
unserer partiellen Ausgleichung verglichen werden. Fur Alter iiber
20 wandte das statistische Amt die Methode von King an.
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1000-q, _
Abweichungen

Ausgeglichene Werte

v (1) @)
Rohe Werte | idg. Stat. ®) @—@) | &—

- Verfagser
0 56,19 56,19 56,19 0,00 0,00
1 7,33 7,33 7,33 0 0
2 4,57 4,57 4,57 0 0
3 3,32 3,32 3,32 0 0
4 2,40 2,54 2,40 + 14 0
5 2,24 2,20 2,21 — 4 — 3
6 1,99 1,99 1,99 0 0
7 1,94 1,82 1,84 — 12 — 10
8 1,55 1,68 1,69 + 13 + 14
9 1,64 1,57 1,57 — 7 —
10 1,46 1,47 1,47 + 1 + 1
11 1,41 1,40 1,40 — 1 — 1
12 1,35 1,38 1,35 + 3 0
13 1,67 1,48 1,46 — 19 — 21
14 1,51 1,68 1,63 + 17 + 12
15 1,83 1,94 1,91 + 11 + 8
16 2,44 2,25 2,27 — 19 — 17
17 2,64 2,61 2,66 — 3 + 2
18 2,80 2,99 3,06 + 19 + 26
19 392 8,57 3,43 — 85 — 29
20 3,60 3,65 3,73 + 5 -+ 13
21 4,02 3,86 3,94 — 16 — 8
22 3,98 4,02 4,02 + 4 + 4
23 3,94 4,06 3,93 + 12 — 1

¥ abs. = 2,15|3 abs.= 1,77
N =—017|% = —0,17

Die erzielte Genauigkeit 1st also befriedigend.
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6. Partielle Tafel fiir die Frauen 1929—1932.

Intervall 0 —> 10.
Parabel von 3 —» 10:

\

f(x) = 2,7358 — 93373 z - 0,042 (g )

ooa (1) f*(z) =4—0,d848 2 + 0,021 22

23.05 /5,08 —2
@) p(2) = L
1+ 42 4 8,63x2

23,05 1/3,08 —z

3 F(z) =4 —0,4843 0,021 z2
®) & s e 1+ 42 + 3,632

Beobachtete | Aus- Ab-

x Werte () @(x) geglichene weichungen
1000-q, Werte F(z) | F'(z)-—1000-q,
0 44,12 4 40,12 4412 0
1 7,35 3,54 3,81 7.35 0
2 4,10 3,11 0,99 4,10 0
3 2,81 2,74 0,08 2,82 + 0,01
4 2,30 2,40 | 2,40 + 0,10
5 2,08 2,10 | 210 | + 0,02
6 1,93 185 185 | — 0,08
7 1,49 1,64 1,64 | + 0,15
8 1,56 1,47 1,47 ’ —0,09
9 1,46 1,34 1,34 — 012
(10) 1,16 1,26 1,26 ‘
Intervall 10 — 17.
Parabel:

\

f(z) = 1,1376 1 0,00482 % -+ 0,0657 (;"')

ogo [¥(x) =4,7079 — 0,68553 4 0,03285 22
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Beobachtete Aus- .
" Abweichungen
x Werte geglichene F%(2)—1000-
1000-q, | Werte f*(z) (2) o
10 1,16 1,14 — 0,02
11 1,09 1,14 -+ 0,05
12 1,25 1,21 — 0,04
13 1,31 1,35 -+ 0,04
14 1,61 1,55 — 0,06
15 1,78 1,81 + 0,03
16 2,15 2,15
17 2,55 2,55
Intervall 17 —> 23.
Gerade: f(x) = 2,4897 + 0,1782z
1w @) = — 0,5897 + 0,17822
Beobachtete A.us- Khyelobmges
@ Werte geglichene F*(2) — 1000-
1000-g, Werte f*(z) %
(17) 2,55 2,49
18 2,51 2,67 1+ 0,16
19 3,04 2,85 — 0,19
20 2,92 3,02 + 0,10
21 3,09 3,20 + 0,11
22 3,57 3,38 — 0,19
23 3,49 | 3,56 + 0,07
(2) Nach der
33 Ausgleichung
Intervall (1) Wnl\]éch;ﬁlahl des Verfassers Differenz (2)—(1)
von Todesfillen erwartete Zahl
von Todesfillen
0— 9 6955 6954 — 1
10—-17 1318 1318 0
18—238 2158 2164 + 6




1000+,

: Abweichungen

Ausgeglichene Werte
v 1) 2

Rohe Werte Eid( )Stat (3) (2) — (1) (@)1

i’mt " | Verfasser (1)
0 44,12 44,12 44 .12 0,00 0,00
1 7,35 7,35 7,35 0 0
2 4,10 4,10 4,10 0 0
3 2,81 2,81 2,82 0 + 1
4 2,30 2,36 2,40 + 6 + 10
5 2,08 2,08 2,10 0 + 2
6 1,93 1,84 1,85 o 1) wes
T 1,49 1,65 1,64 + 16 + 15
8 1,56 1,50 1,47 — 6 — 9
9 1,46 1,36 1,34 — 10 — 12
10 1,16 1,20 i,14 + 4 — 2
11 1,09 1,11 1,14 + 2 + 5
12 1,25 1,19 1,21 — 6 — 4
13 1,31 1,35 1,35 + 4 + 4
14 1,61 1,57 1,55 — — 6
15 1,78 1,82 1,81 + 4 + 3
16 2,15 2,11 2,15 4 0
17 2,55 2,39 2,565 — 16 0
18 2,51 2,64 2,67 + 13 + 16
19 3,04 2,86 2,85 — 18 — 19
20 2,92 3,05 3,02 4 18 + 10
21 3,09 3,23 3,20 + 14 + 11
22 3,57 3,40 3,38 — 17 — 19
23 3,49 3,54 3,56 + 5 + 7

3 abs.= 1,713 abs.= 1,63
N =—009|Y =—005

Es ist deutlich ersichtlich, dass man durch diese partielle Aus-
gleichung dem wirklichen Verlaufe besser gerecht wird als mit einer
einzigen Funktion. Dafir bedeutet diese Methode gewissermassen
eine Vergewaltigung der Verhiiltnisse bei den Zusammensetzstellen,
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indem dort die ¢,-Funktion sowie die Intensitit unstetig werden. Da-
durch wird die Brauchbarkeit bei diesen Stellen fragwiirdig.

Es héngt vom vorliegenden Beispiel ab, zu entscheiden, ob sich
diese Aufteilung lohnt. Bemerkenswert ist, dass es Methoden gibt,
die es erlauben, bei den Ansatzstellen die Stetigkeit wieder herzu-
stellen.

Uber solche Methoden hat J.P. Gram Veréffentlichungen ge-
macht, und es soll hier eine davon zitiert werden 3):

x sel ein Punkt, wo zwel Intervalle zusammenstossen. Dabei
wird man natirlich einen solchen Punkt nicht da wihlen, wo die
Verteillung grosse Schwankungen macht. Die Umgebung von z,
z. B. das Stiick o —h bis 4+ h sel zweimal ausgeglichen worden
durch f,(x) und fy(z).

Lineare Kombination: F(z) = A(z) fy(z) -+ (1—A(x)) fo()

Fuar A(z) wihlt man passende echte Briiche. Diese werden so
bestimmt, dass sie nur von & abhéngig sind, fiir b = 0 14 werden und
fiir positive h gegen 1, fiir negative gegen 0 streben.

Solche Briiche findet man z. B., wenn man in (1 4 1)™ die
Glieder allméhlich addiert und durch 2™ dividiert.

7. B. ergibt m = 3 die Reihe BA=0,1,4,7, 8
h— 9 8(1—A) =8, 7, 4,1, 0
fi(z) - .. fi(z—2), fi(z—1), fi(z), fL(z+1)
fo(z) ... fo(x—1), fo(2), folz+1), fo(z+2)
He) . s, THETD HRED )+ 4
hat) + Thiz+) o

8

Je mehr iiberschobene Werte vorliegen, desto glatter wird der
Ubergang. Vollstindige Kontinuitdt kann aber nie erreicht werden.
Wegen der Methode der kleinsten Quadrate war

T T(2) - f(x) = Z T(=) - y(x)

Momentensumme der ausgeglichenen Werte = Momentensumme der
unausgeglichenen Werte.
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Diese Eigenschaft, die fir f,(x) und fy(z) nach Herleitung erfiillt
ist, geht bei der Ausglittung verloren, so dass um die Stelle z herum
unter Umstdnden eine Verschlechterung eintritt.

In derselben Arbeit hat Gram noch andere Methoden angegeben.
Oft wird es aber schon geniigen, wenn man bei den Grenzstellen die
beiden Kurven geniigend iibereinandergreifen lésst.

Bei den vorausgegangenen Anwendungen wurden diese Be-
trachtungen nicht verwirklicht. Es wurde hauptsichlich danach ge-
trachtet, die einzelnen typischen Stiicke gut herauszupriparieren.

III. TEIL.
Die Giite einer Ausgleichung.
1. Kriterium fiir den Grad der Ausgleichsfunktion.

Es 1st schon ein Kriterium erwdhnt worden, das tiber die Giite
der Ausgleichung entscheidet, wenn man hinsichtlich des zu wihlenden
Parabelgrades im Zweifel ist. In diesem Falle entscheidet also nicht
die Summe der quadratischen Fehler allein, sondern man hat sie zu
dividieren durch (n—m—1), wo n die Anzahl der beobachteten Merk-
male und m der Grad der Parabel ist.

Es sei als Beispiel folgende Verteilung gegeben:

a:|0€1|2’3|4,5|6"7»8l9,10’11

167 ' 151 1 183 { 244 ‘ 264 l 280 ‘ 372 ‘ 360 ' 402 | 398 r 394

Y |135

Diese Zahlen stammen aus 10° . ¢, fiir Ménner 1929—1932,
vom 12. bis 28. Altersjahr. Wir wollen sie mit folgenden vier Poly-
nomen ausgleichen:

fo = o
f1(z) = ap + ay T4(x)
fo(2) = ay + a; Ty(z) + ap Ty()
[a(x) = ag + a, Ty(x) + ay Ty(x) + ag Ty(x)
Durch den iiblichen Prozess findet man:
Iy == 279,17
fi(z) = 125,84 + 27,86 x
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fo(@) = 115,01 + 88,772 — 1,18 (;5)

fo(2) = 143,18 + 8,16 2 4 14,12 (;C 34 (g’)
& Y fo f1(z) f2(x) fa(z)
0 185 ' 279 126 115 143
1 167 279 154 149 146
2 151 279 181 181 163
3 183 279 209 213 191
-+ 244 279 237 243 227
5 264 279 265 272 266
6 280 279 293 300 306
7 372 279 321 327 343
8 360 279 349 352 373
9 402 279 377 377 394
10 398 279 404 399 402
11 394 279 439 421 393

R2 =118056 R} =6872 R -—=6433  R2=2778

R R, R
— = 10732 —- = 687 — =T15 — = 347
11 10 9 8

Man erkennt, dass z. B. die Gerade besser bewertet wird als die
quadratische Parabel, da ihre Fehler nur unbedeutend grosser sind.
Wie man sieht, ist der 3. Grad hier am Platze. Kine weitere Grad-
erhohung wiirde nach Lidstone wieder zu einer Verschlechterung
tiahren.

Dieses Kriterium ist jedoch in seiner Anwendungsmoglichkeit
beschrinkt, indem es nur gerade fiir ganze rationale I'unktionen gilt.
Ferner bedingt es, dass das gegebene Material durch mindestens zwei
Polynome verschiedenen Grades ausgeglichen worden ist. In diesem
Falle gibt es nur eine relative Beziehung zwischen der Giite dieser
Ausgleichungen, sagt aber nicht aus, welche davon in ein erlaubtes
Mass fallen und welche es iiberschreiten. Es fehlt also die absolute

Beurteilung.
Wir wollen nun ein anderes Kriterium heranziehen, das diese

Miingel nicht mehr aufweist.
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2. Die y>-Methode.

Mit der Entwicklung dieser Theorie sind die Namen Pearson 19),
Elderton 5), R. A. Fisher 4), Cramer ), Anderson 7), Helmert ?) und
Bortkiewicz 7) verbunden.

(Gegeben sei irgendeine Verteilung, gleichgiltig, an welchem
Material sie beobachtet worden sei. Sie werde dann ersetzt durch eine
gesetzméssige, theoretische, sel es durch analytische Ausgleichung
oder auf einem andern Weg. Dann dringt sich sofort die Frage auf,
ob diese theoretische Verteillung auch ruhig an Stelle der beobachteten
verwendet werden diirfe, das heisst, ob sie das Gesetz, das die unaus-
geglichenen Zahlen schon durchblicken lassen, gut wiedergebe oder
ob sie systematische Abweichungen davon zeige. Schliesslich ist auch
von Bedeutung zu wissen, ob die beobachtete Verteilung tiberhaupt
homogen genug ist, um durch eine zuverlissige theoretische ersetzt
werden zu konnen. Die Grosse der einzelnen Fehler oder die Summe
ihrer Absolutbetrige gibt uns nur in den extremsten Féllen zuver-
lissigen Aufschluss.

Ein interessantes Kriterium zur Beurteilung der Giite der An-
passung ist die 72-Methode. Wie wir sehen werden, macht sie funda-
mentale Voraussetzungen iiber die Struktur des Materials, die nicht
in jedem praktischen Falle erfiillt sind, so dass ihre Anwendbarkeit
dadurch beschrinkt wird.

Das Wesentliche der y2-Methode besteht darin, dass man nicht
die beobachtete Verteilung, sondern die theoretische als die primére
auffasst. Sie stellt die zu erwartende Verteilung dar, das heisst, das
Gesetz des Vorganges. Von ihr ausgehend, berechnet man sodann die
Wahrscheinlichkeit fiir das Eintreffen einer gleich guten oder schlech-
teren Verteilung als die beobachtete. Die Wahrscheinlichkeit fiir eine
genau gleich gute wiire praktisch verschwindend klein, weshalb man die
Wahrscheinlichkeit fiir eine hochstens gleich gute sucht.

An jeder Stelle wird also der ausgeglichene Wert als der zu er-
wartende aufgefasst. Nun setzt die x2-Methode voraus, dass sich
bei oftmaliger Wiederholung derselben Messungen die Héufigkeiten
in jeder einzelnen Merkmalklagse nach der Gaussschen Art, das heisst
in Glockenform, um den betreffenden theoretischen Mittelwert an-
ordnen.



L math. Erwartung

Xo - r Xo Xo + t
Fig. 6.

Normalverteilung wenn ¢ = 1.

Die Wahrscheinlichkeit fir eine Abweichung > ¢ vom Mittel-
wert z, wird gegeben durch die beiden #dusseren Ilichenstiicke, divi-
diert durch die Gesamtfliche unter der Kurve:

1 " (e 1 A G
H—— j e 202 A + — /C- 262 g
c)2n c)Y2x
P — =09 ID'T‘t sty
h 1 a2
—_— e 2 dx
G V Qa ~
o - (x-l‘o)_z
2 [e * do
l‘gt‘f"t

_(zag)?

2 [e > do
Zo

% (e)?
/ e 2% dx
T '—H
B — 0 o (y 2
A z-1)

/ e 2° (dx
0

z
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Das muss bel jeder beliebigen Stelle der Verteilung gelten, bei
jeder nach einer andern unabhiingigen Verdnderlichen z und mit
einer andern Streuung.

Fassen wir nun zwei Stellen auf einmal ins Auge und betrachten
die Resultierende der beiden Einzelabweichungen als totale Ab-
welchung, so erhalten wir eine zusammengesetzte Gausssche Funktion
z = f(z, y), die sich also nach zweil unabhéingigen Variabelnrichtungen
verdndern kann. Wir erhalten als Bild nicht mehr eine Kurve, sondern
eine Flache, eine sogenannte Korrelationstliche.

Yy

dF

XoYol dx
(@)

Fig. 7.

Die Mittelwerte der beiden Verteilungen legen wir in den Punkt
Zy Yo und wihlen diesen als Basispunkt der Fliche f(x, ¥).
'Die Masse der Verteilung, die itber dem Gebiet (G) liegt, wird
gegeben durch das Doppelintegral
[[zdF = [ [ f(x, y) dedy ... Volumen.
i) @ WA
Erklirt man f(z, ) als Wahrscheinlichkeit, und integriert in den
beiden Richtungen von — oo bis -+ o, so wird dieses Doppelintegral
analog wie das einfache, bel einer einzigen Variabeln, = 1.

Jetzt handelt es sich darum, die Funktion z = f(z, y) zu finden.
Die unabhéngigen Funktionen lauten:

(z-2q)2 (y-10)?
L T 1
fa)=—=e ™1  fl=—=e ™

61V 2n ' G ]/23{
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Die zusammengesetzte Gausssche Funktion ist das Produkt der
unabhéngigen. Sie lautet also:

1 B % {(as:l;o)2 i (!:@;o)”l
Z=flay=——e L2

2\7'[ Gq Oy

T—1,)° Y—1o)°
( 29) 4 (y ‘)yo) _ g
o} o5

sind konzentrische Ellipsen um (z,,). Wenn ¢, = o, ist, gehen sie
in Kreise iiber.

Die Wahrscheinlichkeit B, fir das Eintreffen gewisser Mindest-
abweichungen #; und ¢, vom Mittel f(z,, y,) erscheint nun als Quotient
zweler Doppelintegrale.

Haben wir nicht nur eine zweifach zusammengesetzte Funktion,
sondern eine solche mit » unabhéingigen Variabeln, so werden wir
folglich fiir E, n-fache Integrale zu lésen haben.

Pearson gelang es, diese n-fachen Integrale auf einfache zuriick-
zufithren 1°), und er erhielt fir die Wahrscheinlichkeit I, den Aus-
druck:

°e 2

1
fe gx_ﬁn"ldm
P

x
1
__sz
f(,’, 17 L ldx
0

Die untere Grenze y ist eine Funktion der einzelnen Abweichungen
in den n verschiedenen Richtungen. Sie driickt also noch die Ab-
-hiéingigkeit von den n Variabeln aus. Bezeichnen wir mit ¢; die ins
Auge gefasste Abweichung vom Mittelwert T, in der 2. Variabeln-

richtung, so ist:
r=2i7
1

Sehen wir nun zu, welche Form %2 bei unserem Ausgleichungs-
problem annimmt! An den n Stellen z,, z;, ... z,, seien die Werte
Yor Yy - - - Y4 Dbeobachtet worden und ausgeglichen durch eine
Funktion f(z).
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Nun nimmt man an, f(z) stelle bei jedem betrachteten Punkte
den Mittelwert dar, und y. z. B. set, wenn man viele Messungen machte,
normal um das Mittel f(z,) verteilt. Die Gesamtheit der n Beobach-
tungsstellen zusammen liefert die Problemstellung, die von Pearson
behandelt wurde.

Damit ist:

o N3 (f(@) — y(@))?
=

(ausgeglichener, d. h.: erwarteter Wert — beobachteter Wert)?2

ausgeglichener Wert

Wichst 7 von 0 bis o, so nimmt P ab von 1 bis 0. HEs ist also
diejenige Ausgleichung die beste, die das kleinste 7 beziehungsweise
7% liefert; denn fiir diesen Wert wird F, am grossten. P bedeutet
aber die Wahrscheinlichkeit far gleich grosse oder, was wichtig ist,
fur noch grossere Fehler.

Elderton 12) und Fisher %) haben die Grossen n, 72, I tabuliert,
so dass man die entsprechenden Werte nur abzulesen braucht.

Bei der praktischen Anwendung ist es schwer, einen Wert fiir
P anzugeben, der die Grenze der Brauchbarkeit einer Ausgleichung
darstellt. Fisher und Anderson nehmen dafiir ungefihr den Wert
P = 0,05 an; das heisst, nur in einem Fall von 20 sind gleich grosse
oder noch grossere Fehler als die vorliegenden zu erwarten. Fs kommt
iibrigens gar nicht auf eine genaue Kenntnis von P an. Betrigt
dieses etwa 0,05 oder noch weniger, so bedeutet das, dass Grund vor-
handen ist, dem aufgestellten Ausgleichungsgesetz zu misstrauen. Vor-
aussetzung ist natiirlich immer, dass geniigend Beobachtungen ge-
macht wurden, so dass die gegebenen Punkte das Verteilungsgesetz

durchblicken lassen.

Der Willkiirlichkeitsgrad einer Verteilung.

Man muss bei der Anwendung der yz2-Methode noch einen weiteren
Faktor beriicksichtigen, den sogenannten Willkiirlichkeitsgrad oder
Freiheitsgrad der Verteilung:

Iis seien N Beobachtungen auf m» Merkmalgruppen verteilt, so,
dass den Punkten x4, z;, ...z, , die Mengen ¥, ¥y, ... Y, ent-
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sprechen. Diese gegebene Verteilung werde nun ersetzt durch ein
Gesetz f(z). Is gibt Fille, beil denen gelten muss:

LT Tp-1

fl) =) ylx) = N

o

das heisst, das Gesetz f(z) muss sich an die vorgegebene Elementen-
zahl N halten. Es hat also die Aufgabe, genau die N Elemente, nicht
mehr und nicht weniger, in die » Gruppen zu verteilen. Man kénnte
also unter Umstéinden die Mengen in n—1 Gruppen willkiirlich wihlen,
natiirlich nicht > N; dann ist aber die Menge in der n. Gruppe fest-
gelegt. Man kann nicht mehr willkiirlich tber sie verfiigen, denn sie
betriigt genau N, vermindert um die Zahl der schon verfigten Ele-
mente. Man sagt, der Willkiirlichkeitsgrad sei in diesem Falle gleich
n—1.

Bedingt man etwa aus, dags nicht nur die Gesamtzahl N in beiden
Verteilungen iibereinstimmen muss, sondern auch der hiufigste Wert,
so schrinkt das die Verfigungsfreiheit weiter ein, und der Willkiirlich-
keitsgrad sinkt auf n—2.

Iis 18t nun klar, dass, je mehr solcher Bedingungen man voraus-

setzt, die die beobachtete und die berechnete Verteilung aneinander-
kniipfen, desto kleiner von selbst die Abweichungen werden. Dieser
Umstand muss beriicksichtigt werden, wenn man die Giite einer Aus-
gleichung beurteilen will.
- Es kann gerade an dieser Stelle bemerkt werden, dass bei Sterbe-
tafeln der Willkiirlichkeitsgrad identisch ist mit n, denn es existieren
keine Postulate, die die Freiheit der Ausgleichung einschrianken. Die
Summe der ausgeglichenen q,-, [,- oder d,-Werte braucht nicht mit der
der unausgeglichenen iibereinzustimmen.

Elderton 5) wies darauf hin, dass man diesen Faktor beobachten
misse, um das berechnete P richtig einzuschidtzen. Er meint aber,
es sel ohne Verwirrung nicht moglich, diese Grosse systematisch in
die Rechnung einzubeziehen. In seiner Tabelle bedeutet n die Anzahl
der Merkmalklassen. Fisher 4) dagegen misst dieser Tatsache grossere
Bedeutung zu. In seiner Tabelle bedeutet n nicht mehr die Anzahl
der Merkmale, sondern die Anzahl derjenigen von ihnen, die man
beliebig besetzen kann, also den Willkiirlichkeitsgrad. Da es aber
nicht auf den genauen, sondern nur auf den angenidherten Wert von
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P ankommt, so hat dieser Unterschied in den meisten Fillen keine
allzugrosse Bedeutung.
Es folgt ein Ausschnitt aus der Tabelle von Fisher ¢) (Seiten 96/97):

y Pr 0,99 0,98 . 0,05 ... 0,01
1 0,000157 0,000628 3,841 6,635
2 0201 0404 5,991 9,210
3 115 185 7815 11,341
4 297 429 9,488 18,277
5 554 752 11,070 15,086
6 872 1,134 12,592 16,812
7 1,239 564 14,067 18,475
30 14,953 16,306 43,773 50,892

Ubersteigt n den Wert 30, so kann man die Kolonnen ein Stiick
weit extrapolieren und erkennt dann leicht, in welche das berechnete
x2 fallt. Ferner gibt Fisher ¢) eine Ersatzmethode an, die um so genauer
wird, je mehr n wichst: Fiir eine grosse Anzahl von Messungen an
demselben Material nimmt némlich % angendhert die Form einer
Normalverteilung an, und zwar um so genauer, je grosser n ist. Fine

gute Niherung ist die Annahme, dass /222 normal um das Mittel
V2n—1 verteilt ist. V2n—1 ist also der Frwartungswert fiir 22
V252 — V2mn—1 ist normal um 0 verteilt. Je grosser n ist, desto
besser ist die Anndherung an die Normalverteilung.

Als Ubergangsstelle, die ungefihr dem Wert P, = 0,05 ent-
spricht, gibt Fisher folgenden Ausdruck an:

V222 —12n—1 = +29

Man kann sich leicht selbst davon iiberzeugen, dass diese Gleichung,
fiir irgendwelche konkreten n, x2-Werte liefert, denen angenihert
P = 0,05 entspricht. Wird die linke Seite grosser als 2, so bedeutet
das, dass wir der gemachten Ausgleichung misstrauen miissen. Kin
gutes Zeichen ist es, wenn sie negativ wird.
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Aus der Definition von %2 erkennt man, dass es 1m wesentlichen
nichts anderes ist als die Bedingung der kleinsten Quadrate. Neu ist
einzig, dass die Fehler nicht absolut gewertet werden, sondern im Ver-
héltnis zur zugehoérigen Ordinate. Kine Abweichung von 4 an einer
Ordinate von 50 fillt z. B. weniger ins Gewicht als an einer Ordinate
von 10. Das ist ohne weiteres verniinftig. Im ersten Falle ist eine
Abweichung > 4 wahrscheinlicher als im zweiten.

Die x2-Methode kann deshalb neben ihrer Verwendung als nach-
triagliche Probe auch benutzt werden, wie die Methode der kleinsten
Quadrate, zur Bestimmung des Polynoms. Dadurch wird die Summe
der quadratischen Fehler grosser, jedoch sind dafiir die Abweichungen
proportional zu den Ordinaten verteilt.

Es sel g, eine durch Beobachtung erhaltene Serie von Sterbens-
wahrscheinlichkeiten. Die Ausgleichung soll gemacht werden mit
dem Polynom

a’0+ al'pl(m) _'_ Gg Ba(a’) + + oy, Pm(x)

Dann stellt man zur Bestimmung der Koeffizienten die Forderung
auf:

gt — E {ap + @, B(@) + ... + a, By(x) — q,)2
E a + a, B(2) + ... +a, B,(2)

goll ein Minimum sein. FEine bedeutende Komplikation stellt nun der
Nenner dar. H. Cramer ) hat aber gezeigt, dass die Fehler ganz un-
bedeutend sind, wenn man im Nenner die unausgeglichenen Werte
setzt.

Damit lautet die Bestimmungsgleichung:

) S CESERN CE,

Die Auflésung ist nun ganz analog wie bei der blossen Methode
der kleinsten Quadrate.

Derselbe Autor weist darauf hin, dass es beim Gesetz von Makeham
bequemer ist, mit der Intensitit u, statt mit der Wahrscheinlichkeit
q, zu rechnen. Sind I, die Personen unter Risiko und d, die beobach-
teten Todesfille, so ergibt sich:
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72 =N ‘2 (d:l. _— lﬂ: ILL:E)Q
S g,
N0 4 B
[, (4 -+ Bc

> {d, — Al,— Be* 1,12

Nun setzt man einige Werte fir den Parameter ¢ ein und be-
rechnet 4 und B. Dann stellt man die resultierenden y2-Werte zu
den Abszissen log. ¢ graphisch dar. Daraus erkennt man, dass x?2
als Funktion von log. ¢ ziemlich genau als Parabel 2. oder 3. Grades
erscheint. Man bestimmt das Minimum dieser Parabel und liest seine
Abszisse ab. Damit ist ¢ bestimmt. Mit diesem Wert von ¢ berechnet
man sodann endgiiltig die Paramter 4 und B.

Diese stark vereinfachte Methode von H. Cramer gab befriedigende
Resultate fur x2

3. Anwendung der y>Methode.

Zuerst sei ein ganz einfaches Beispiel vorausgeschickt, das auch
den Sinn des Willkiirlichkeitsgrades zeigt 19):

Das Vererbungsgesetz von Mendel lehrt, dass die Hilfte der
Nachkommen von zwei Kaninchen z. B., von denen das eine weiss,
das andere schwarz ist, von gemischter Farbe sind. Nur ein Viertel
ist rein weiss und ein Viertel rein schwarz. Dies sind die Erwartungs-
werte. Sie spielen die Rolle wie bei unserem Problem die ausgeglichenen
Werte.

weiss X schwarz

Pl B
e v TR
Weliss gemischt (gefleckt)  schwarz
Y ¥ ¥
Ya Vo A

Bei einer Anzahl solcher Paare sind 158 Junge beobachtet
worden. N = 158, n = 8.
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Die Verteilung ergab sich folgendermassen:

schwarz gefleckt weiss
erwartet . . . . 39,5 79 39,5
beobachtet . . . 389 78 41
(0,5)2 12 (1,5)2
= - = 0,0759
P05 T 9 T 595 7

Die Anzahl der Klassen ist also n = 3. Die theoretische Ver-
teilung ist aber nicht frei. Die Summe der 8 Posten muss 158 ergeben.
Also kénnte man nur zwei von den drei Klassen willkiirlich ausfiillen.
Die Anzahl in der dritten wire dadurch festgelegt. Also ist der Will-
kirlichkeitsgrad nur 2. In der Tabelle von Fisher entspricht den
Werten n = 2, % = 0,0759 ungefihr P = 0,96. Das heisst, nur in
vier Fillen von hundert ist ein so gutes oder noch besseres Resultat
zu erwarten. Dieser Versuch spricht also stark fiir das von Mendel
aufgestellte Gesetz.

Nun kehren wir zuriick zu unserer Ausgleichungsaufgabe. Bevor
wir die x2-Methode anwenden koénnen, miissen wir noch eine Be-
merkung machen.

Multipliziert man die Zahl N der Beobachtungen mit irgendeiner
Zahl @), so wird auch %2 mit ¢) multipliziert, wenn man auch die Ab-
weichungen mit demselben Faktor vergrossert. Das ist einleuchtend ;
denn wenn man die Anzahl N der beobachteten Elemente verviel-
facht, so sollte die resultierende Verteilung gleichmissiger ausfallen,
da die Zufélligkeiten nach und nach der Gesetzmissigkeit zustreben.
Ist das nicht der Fall, so ist es ein Zeichen dafiir, dass das vorliegende
Material heterogener ist und dass von der theoretischen Verteilung
aus die Aussicht fiir eine gleich oder weniger wahrscheinliche Ver-
teillung wie die beobachtete sinkt.

Wollten wir nun direkt die gegebene Serie der ¢, priifen, so wiirde
uns der zugrunde liegende Massstab fehlen. KEs kommt sicher auf
dasselbe heraus, ob wir ¢, beriicksichtigen und dabei gewisse Ab-
weichungen erhalten oder etwa 1000.¢q, und dementsprechend auch
1000mal grossere Abweichungen. Beide Ausgleichungen sind genau
gleich gut. Trotzdem wiirde %2 bei der zweiten 1000mal grésser.
Die x2-Probe ist empfindlich gegeniiber einem Massstab, von dem
die Wahrscheinlichkeiten ¢, selbst gelost sind. Es ist von grosser Be-
deutung, aus wievielen Beobachtungen diese g, berechnet worden sind.
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Also miissen wir, um eine Anwendung machen zu kénnen, zu der
Reihe der I, oder d, zuriickkehren.

Méanner 1929—1932.

x ‘d;c beobachteti dz berechnet x fda; beobachtet| dz berechnet
0 5923 5923 12 128 137
1 871 871 13 160 149
2 454 449 14 146 166
3 335 337 15 186 201
4 244 273 16 260 241
5 230 239 17 295 293
6 207 209 18 312 338
7 203 186 19 416 395
8 166 169 20 397 419
9 178 159 21 446 438
10 153 146 22 436 441
11 142 139 23 428 439

Der Willkiirlichkeitsgrad ist hier identisch mit der Anzahl
Klassen: n = 24.

Aus diesen Werten ergibt sich 3% = 19,3.

Und nach der Tabelle von Fisher E, ~ 0,73.

Das Resultat kann als befriedigend bezeichnet werden, besonders,
wenn man noch einen wichtigen Umstand beriicksichtigt, auf den wir
noch zu sprechen kommen werden.

Frauen 1929—1932.

T 'da: beobachteﬂ dgz berechnet T |dx beobachtet| dz berechnet
0 4458 4458 13 123 132
1 718 718 14 153 148
2 397 400 15 179 177
3 276 272 16 229 o215
4 228 238 17 288 262
5 210 210 18 285 304
6 197 185 19 350 339
7 153 163 20 337 359
8 163 150 21 364 382
9 155 140 22 417 394

10 120 130 23 405 405

11 108 123 24 419 411

12 118 123 25 ' 421 421

. 26 429 427
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Woraus 2 = 16,8
und B, ~ 0,98.

Geht man von der berechneten Verteilung aus, so wire danach
m 93 von 100 Fillen mit schlechteren Werten zu rechnen als die,
welche tatséichlich beobachtet wurden. Umgekehrt bedeutet es, dass
die gemachte Ausgleichung das Verteilungsgesetz der rohen Zahlen
sehr gut getroffen hat.

Die Ubereinstimmung ist also noch grésser als bei den ¢, der
Ménner.

Nun wire es auch interessant, ein Kriterium dafiir zu besitzen,
wann sich die Aufteilung in Intervalle, wie wir es fiir die Messungen
von 1929—1932 versucht haben, lohnt und wann nicht. Es ist aller-
dings sehr schwer, ein solches, absolut giiltiges Gesetz aufzustellen,
und man wird die Hilfe der rein anschaulichen Uberlegung nie aus-
schalten konnen. Jedoch ist es naheliegend, dass man versuchsweise
die Wahrscheinlichkeiten P fiir die einzelnen Teilintervalle berechnet
und daraus iiber das ganze Intervall das gewogene arithmetische
Mittel bildet.

Fir die g, bei den Madnnern gibt das:

P~ 0,78 also gleich wie P,

Bel den Frauen dagegen
B, ~ 0,85 gegeniiber B; ~ 0,93.

Stellt man auf diese Probe ab, so hitte also die Aufteilung in
keinem der beiden Fille eine lohnende Verbesserung gebracht. Dies
kommt daher, dass in einzelnen Intervallen die Summe der absoluten
Fehler kaum verkleinert werden konnte. In diesen wird dann P sofort
bedeutend kleiner, und ein solches Intervall vermag das ganze Resultat
bedeutend zu beeintrichtigen. In andern, besonders typischen Teil-
stiicken dagegen ist der Vorteil unzweifelhaft.

sk &
*

Bei den Messungen von 1921—1930 erstreckte sich die Beob-
achtungsdauer iiber 6 Jahre mehr als bei denen von 1929—1932. Will
man hier die y2-Methode anwenden, so offenbart sich eine dusserst
wichtige Tatsache. Man erhdlt nédmlich fir die Alter von 0 bis 45
Jahren einen Wert von %2 bei 80 herum. Extrapoliert man die
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Kolonnen der Tabelle, so sieht man, dass das entsprechende P kleiner
1st als 0,05, wonach die Ausgleichung vollstindig ungeniigend wiire.
Auch mit der von Fisher angegebenen Ersatzmethode kommt man

zum selben Schluss, denn }2x% — J/2n—1 nimmt einen Wert um
- 3 herum an.

Betrachtet man aber die graphische Darstellung, so darf man
ruhig behaupten, dass die Ausgleichung auf keinen Fall so schlecht
1st, sondern im Gegenteil recht befriedigend.

Der Fehler liegt wirklich nicht in der Ausgleichung, sondern in
der Annahme, dass man die x2-Methode anwenden konne.

Die x2-Methode geht von der fundamentalen Voraussetzung
aus, dass in jeder Gruppe die Hiufigkeit bei oftmaliger Wieder-
holung der Messungen nach dem Gaussschen Gesetz, das heisst, in
Glockenform, um einen wahrscheinlichsten Mittelwert herum verteilt
sel. Diese Voraussetzung trifft nun aber fir die ¢, nicht zu. Es 1st
eine nachgewiesene Tatsache, dass in letzter Zeit die Sterblichkeit fiir
jedes einzelne Alter im Laufe der Kalenderjahre abnimmt. So stellt
das ¢, fir jedes bestimmte Alter eine mit der Zeit irgendwie ab-
nehmende Funktion dar.

Einen wahrscheinlichsten Mittelwert im Sinne der Zufalls-
verteilung gibt es da nicht. Diskontinuierlich aufgefasst hat eigent-
lich jedes Kalenderjahr seinen eigenen Mittelwert, so dass bei einer
langen Beobachtungsdauer an Stelle eines einzigen wahrscheinlichsten
Wertes eine ganze Anzahl auftritt. Statt des Verlaufes (1) nimmt also
die Kurve schematisch den Verlauf (2) an.

Die Stidrke der Abflachung ist proportional zu der Lénge der
Beobachtungszeitspanne. Das Fehlerintegral ist somit hier nicht
brauchbar und ebensowenig die x2-Methode. Die Flédche unter der
Kurve ausserhalb einer gewissen Grenze —+ t ist grosser als bei der
reinen Zufallsverteilung. Damit ist auch das Verhiltnis gebildet
aus der Fliche ausserhalb dieser Grenzen, dividiert durch die Gesamt-
fliche grosser als normal. Wendet man nun doch die x2Methode
an, 0 benutzt man die den Tatsachen nicht entsprechende Verteilung
(1). Damit wird ein g,, das vielleicht noch maximale Wahrscheinlich-
keit besitzt, als zu weit vom Mittel entfernt und daher als unwahr-
scheinlich taxiert. |

Verlangert man eine Beobachtungsdauer von u auf k-u Jahre,
so kann daher x2 niemals k mal kleiner werden. Die Tendenz, durch



Wigx

<qo-t G qosl

Fig. 8.

die Vergrosserung der Anzahl der beobachteten Elemente einer gesetz-
missigeren Verteilung zuzustreben, ist vorhanden, jedoch wirkt ihr
eine zweite Kraft entgegen, eben dieses Abnahmegesetz der g, die
das Material wieder heterogener macht.

Wie man aus einem Vergleich der beiden Messungen sieht, hat
bei diesem Entgegenwirken der zwel genannten Krifte doch die aus-
gleichende die Oberhand behalten, denn das Material von 1921—1930
ist tatsichlich etwas homogener als dasjenige von 1929—1932, jedoch
nicht in dem von der y2-Methode geforderten Masse.

Die Voraussetzung der yx2-Methode ist ein rein abstraktes Postulat
und scheint auch in vielen andern Fillen nicht restlos erfiillt zu sein,
wenn auch nicht in dem Masse wie bei den q,.

Die erwihnte Verfilschung der Tatsachen wirkte natirlich auch
schon bei der kiirzeren Beobachtungsperiode 1929—1932. Jedoch
ist dort die Verflachung des Maximums noch nicht so bedeutend, so
dass die Gausssche Verteilung noch als Néherung benutzt werden
kann. Jedenfalls wiire aber auch hier, wenn es auf den genauen Wert
von P ankidme, das Frgebnis ein wenig besser zu bewerten, als das
berechnete P angab.

Am besten wire die x2Methode anwendbar, wenn sich die Be-
obachtungen auf ein einziges Jahr beschrénkten, was aber eine grossere
Bevolkerung voraussetzt, als dies in der Schweiz der Fall ist.

£ ]
%
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4. Beispiel.

Die yx2-Methode soll uns noch dazu dienen, einen Vergleich der
verschiedenen, in dieser Arbeit erwihnten Ausgleichungsarten zu
machen.

Der Einfachheit halber wollen wir eine fiktive Verteilung an-
nehmen:

z o |1 2|38 |45 |6 |7

vl felslafrlels]

In allen Féllen soll diese Verteilung durch eine Parabel zweiten
Grades ersetzt werden.

a) Empirische Methode.

Wir zeichnen die Parabel moglichst gut von Hand ein und lesen
ab, dass sie durch die Punkte (0,1), (3,7) und (7,1) gehen soll. Durch
diese drei Punkte ist folgende Parabel bestimmt:

fi(x) =1 + 8,52 — 0,52

23 = 1,4167 |
S (fy(a) — y)? — B =8

b) Methode der kleinsten Quadrate.

Bs sei P(z) = z*

fa(2) = ay + oy @ + ay z®
Gop = S 6oy = 28 Goe = 140 0 = 87
Gy = 28 6, = 140 61 = T84 o, = 180
Gpo = 140 6y = 184 Gyy = 4676 0y = b78

Man hat also das System zu losen:
8ay, + 28a; + 140a, = 37
28a, + 140a, + T84a, = 130
140a, + 784a, + 4676a, = 578
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Daraus erhdlt man: a, = 1,5418(5)
a, = 3,0534
ay = — 0,4345

folx) = 1,5418 + 3,0534x — 0,4345z>

T 0 | 1 | ) ’ 3 ’ 4 ] 5 6 4
fo() 1,542. 4,161 I 5,911 } 6,792‘ 6,803( 5,946 | 4,220 | 1,625
xg = 0,6799
R‘g = 2,1496

¢) Methode von Cauchy.
f3(z) = a; z + ay z*

Um nicht noch eine Konstante a, berechnen zu miissen, wollen
wir das Intervall 0—7 verschieben nach 1—8, was wir nachtriglich
durch die Substitution a/x-+1 wieder riickgéingig machen konnen.
Nun setzen wir die 8 Punkte ein:

z=1.. 2=a;, a4

x=2 .. 4 =2 + 4a,
=38 .. 5=23a,+9a,
z=4 .. T=4a, 4 16a,
z=5 .. T =>5a;+ 25a,
x=6 .. 6 =06a, + 36a,
z=T7 . . 5="Ta + 49a,
=8 .. 1=8a, 4 64a,

37 = 36a, + 204a,

Die Koeffizienten von a, sind alle positiv. Also konnten wir

direkt addieren.
37 204

a0 = — ——— 0y

36 36

87 204

fa(x) = (ga—ﬁa2>.m+a2$z



G e, Bk (1 f¥¥{> 0,972 L6667
! s T _— = (0 —— . == —
36 ° 36 ’ PRDT G
2B, gt g fa 204) 1,9444 — — 7.3333
e . ]_8 —az( —lg/ ) — Ty az
;= 5O _ (9 204) 1,9167 38,0000
e 12 —012 ——E, ) == T Oy a’2
37 / 9204
z =4 .7——?r:=a2@6m~?r— 2,8889 — — 6,6667 a,
185 1020
T =5..  T—— —ay (25— 1,8611 — — 3,333 a,
36 36
37 904
2 —6...6— = (36———) | —01667 =+ 2,0000 a,
259 © 1498
o = .5-—ﬁ==%(%a—__— 92,1944 = -+ 9,333 a,
36 3
296 1632)
e=8... 1——Z=a (64—— d ) —7,2222 = - 186667 ag

Vor der Addition miissen wir hier diejenigen Gleichungen, die
einen negativen Koetfizienten von a, haben, mit —1 erweitern. Die
Summe %'’ ergibt dann:

— 19,1666 = 60,0000 a,
ty = — 0,3194
a, = 2,877

fo(r) = 2,8877z — 0,819422  */,,
fa(x) = 2,5188 + 2,1989 z — 0,3194 22



wIO‘1‘2‘814|5[6l7

f3(2) I 2,518 ’ 4,398| 5,638‘ 6,240' 6,204] 5,528’ 4,2131 2,260

22 =1,2991
R? = 4,4748

Es wire mindestens eine dritte oder vierte Niherung nétig, um
ein brauchbares Resultat zu erhalten. Dafir hat die Methode von
Cauchy den Vorteil, dass sie nicht auf die Aquidistanz der Beobach-
tungspunkte angewiesen ist, denn sie stellt ja nur auf den Schwerpunkt
der Verteilung ab.

d) Methode der kleinsten Quadrate mit Orthogonalpolynomen.

n=8 St = 87 2 — 130 3 — 994
AT [~ - 1 .
e
0 1 7 21
1 0 2 18
9 0 0 6
3 T%(z) s | 188 | 1512
Z, — 87 a, = 4,625 £,(0) = 1,5422
Z, =1 a, = 0,006 A £,(0) = 2,6184
7, =19 a4y = —0,1448  A%§,(0) = — 0,8688

fi(z) = 1,5422 12,6184 — 0,8688 Z)
5

@ | 0 ’ 1 \ 2 | 3 l 4 i | 6 | 7
fa(z) | 1,542' 4,160’ 5,910' 6,791 6,803' 5,946‘ 4,221 ‘ 1,626
%2 = 0,6798

R? = 92,1473



— 120 —

e) x*~Minimum-Methode.

Es kommt natiirlich nur die von H. Cramer angegebene Verein-
fachung in Betracht, wonach im Nenner an Stelle der theoretischen
Werte die beobachteten stehen. Damit lésst sich aber die Anwendung
der orthogonalen Polynome nicht mehr ohne weiteres verbinden, denn
man wiirde bei der Auflésung fiir den Koeffizienten a; die Gleichung
erhalten:

Ti(x) Y Ti=)-y(@) -
25 y(z) 2 ve @ =l

Somit wiirden alle Koeffizienten ausser a, verschwinden. Des-
halb setzen wir:
f5(2) = ap + oy @ + ay 2®
Dann soll

72 — (ag + a; T + ay 2 — y(z))*

y(x)

ein Minimum sein.
Analog wie beil der Methode der kleinsten Fehlerquadrate setzen
wir bei der Auflésung
ik !

x , o .
Gy = )2 - und o, :-Z x’izzw"
P 0 Y

So erhalten wir das System:

6 = 2,6024 6y = 10,6883 6oy = 64,9880 o, =8
6y, = 10,6888 o, = 64,9880 6y, — 421,8883  o; = 28
6y = 64,9880 o, = 421,8888  o,, = 2815,9595 g, = 140

Aufzulésen sind also folgende drei Gleichungen:

2,6024 a, - 10,6888 a; + 64,9880 a, — 8
10,6833 a, + 64,9880 a, + 421,8838 a, — 28
64,9880 a, + 421,8883 a, -+ 2815,9595 a, — 140

Daraus ergibt sich: a, = 1,7285
a, = 3,0238
a, = — 0,4432



fs(x) = 1,7285 -+ 3,0238x — 0,4432x2

w|0|1'2’3[4\5}6|7
f5() | 1,729} 4,309' 6,0031 6,811 ‘ 6,733 5,’768‘ 3,916} 1,178
15 = 0,5841
R? = 2,5425
* " ES

Anhand dieser funf Resultate kann man nun leicht die ver-
schiedenen Methoden, wenigstens oberflachlich, beurteilen. In erster
Linie sieht man, dass die xz2- und die R2Proben wie erwartet ganz
verschiedene Resultate geben. Ferner ist an diesem einfachen Beispiel
der Vorteil der orthogonalen Polynome nicht deutlich genug zum Aus-
druck gekommen, abgesehen von der grossen Vereinfachung der
Rechnung.

Die x2-Methode geht dem Problem tiefer auf den Grund als
simtliche andern, indem sie ganz bestimmte Voraussetzungen iber die
Struktur der Verteilung macht. Jedoch sind diese Voraussetzungen
nicht in allen Fillen erfillt, so dass die Anwendbarkeit der y2-Methode
beschrinkt ist. Wir haben schon den Fall angetroffen, wo das »2-
Gesetz als Probe fir die Giite einer Ausgleichung nicht zulissig ist,
und nun sei auch noch darauf hingewiesen, dass es sich ebenfalls
nicht immer zur Ausgleichung als 7*-Minimum-Methode eignet:

Bei vielen Haufigkeitsverteilungen sind die &ussersten Werte,
da sie nur selten auftreten, ziemlich regellos verteilt, wihrend die
hiufigeren, um den Krwartungswert herum, das Gesetz schon deut-
lich zeigen. Nun verlangt aber die x2-Methode eine maximale An-
schmiegung an die kleinen Werte auf Kosten der grossen. Auf diese
Weise wiirde man wegen den &ussersten, unzuverlidssigen Mengen
systematische Fehler bei den regelmissigeren in der Nihe des Hr-
wartungswertes heraufbeschworen. Eine Anwendung ist nur dann
am Platze, wenn die Zahl N der Beobachtungen so gross ist, dass auch
die seltensten Werte von zufélligen Schwankungen so weit als méglich
befreit sind.

Die %2-Probe kann auch iiber die Homogeneitit oder Hetero-
geneitit eines Materials entscheiden. Wenn man trotz bestmoglicher
Ausgleichung unbefriedigende Werte fir die Wahrscheinlichkeit P
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erhilt, so darf man schliessen, dass das gegebene Material zu heterogen
sel und dass das Verteilungsgesetz zu wenig durchblicke.

Bei der Beurteilung eines P-Wertes muss man die Homogeneitit
des beobachteten Materials mitberiicksichtigen. 7. B. kann P = 0,5
bei einer sehr regelméssigen Verteilung ein schlechtes Zeichen fiir eine
Ausgleichung sein, wihrend es diese bei einem heterogenen Material
gutheissen kann.

IV. TEIL.
Zusammenfassung der Ergebnisse.

1. Das Prinzip der Methode von Cauchy ist sehr elegant, jedoch
ist die rechnerische Durchfithrung etwas umstindlich. Auch die
Genauigkeit des Resultates wird von einzelnen anderen Methoden
iberboten.

2. Die Methode der kleinsten Quadrate, die von einem ganz anderen
Gesichtspunkt ausgeht, ist der Grundstein fir die analytische Aus-
gleichung. Sie stellt nicht ein abgeschlossenes Ganzes dar, sondern
vielmehr einen Ansatzpunkt, der auf anderem Wege noch vervoll-
stindigt werden kann.

3. Kin solcher Weg der Vervollstindigung ist die Einfithrung der
orthogonalen Polynome. Sie schalten die Zufilligkeit, die in der Auf-
stellung der Ausgleichungsfunktion besteht, aus und bringen eine
wesentliche Vereinfachung der Rechnung mit sich, so dass der Arbeits-
umfang nicht grésser wird als bei den hiufig verwendeten elementaren
Methoden. Bei der Anwendung auf die schweizerischen Sterbetafeln
hat diese Methode in der schwer auszugleichenden Periode von 0
bis 25 Jahren sehr befriedigende Resultate gezeigt.

4. Die wichtige Frage, wie die Giite einer Ausgleichung zu be-
urteilen sei, erlaubt schwerlich eine allgemeingiiltige Antwort. Die
z2-Methode ist etwas vom Interessantesten, was in dieser Hinsicht
geschaffen wurde, doch ist sie ein hochempfindliches Kriterium. Die
Anwendung auf die schweizerischen Volkssterbetafeln hat gezeigt,
dass in jedem Fall zuerst die Voraussetzungen gepriift werden miissen,
da man sonst leicht zu irrefihrenden Folgerungen gelangen kann.
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