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Analytische Ausgleichung durch Polynome
mit einer Anwendung

auf die schweizerischen Volkssterbetafeln

Von Dr. Werner Ruch//

I.

Theoretischer Teil.

1. Einleitung.
Es ist die ursprünglichste Aufgabe der Statistik, einfache, mess-

bare Vorgänge durch eine Eeihe von Beobachtungen in ihrem Verlaufe
festzuhalten. Denken wir uns eine Anzahl solcher Beobachtungs-
punkte gegeben. Um einen ersten Überblick über die Verteilung zu
erhalten, können wir die aufeinanderfolgenden Punkte durch gerade
Strecken verbinden, wodurch wir einen gebrochenen Linienzug her-
stellen. Mehr als zu einer ersten, primitiven Veranschaulichung kann

uns aber dieser nicht dienen, denn trotz des anscheinenden Zusammen-

hangs bleibt es noch bei der diskontinuierlichen Punktverteilung.
Die Aufgabe des mathematischen Statistikers ist es, diesen Polygon-
zug durch eine stetige Funktion zu ersetzen, so dass der Funktions-
wert nicht nur an den beobachteten Stellen angegeben werden kann,
sondern an jeder beliebigen Stelle zwischen den äussersten Grenzen.
Diese Aufgabe heisst Interpolation.

In einer solchen beobachteten Verteilung sind aber neben den

wesensmässigen, grossen Schwankungen auch immer kleinere, zu-

fällige enthalten, und zwar um so mehr, je kleiner die Gesamtzahl
der Beobachtungen ist. Denken wir uns dazu noch eine grosse Anzahl

von Beobachtungspunkten, so führt das zu einer sehr komplizierten
Polygonlinie. Wenn der Mathematiker auch hier noch diese diskon-
tinuierliche Verteilung durch eine stetige ersetzen will, so kann es

sich nicht mehr darum handeln, eine Funktion zu finden, die für alle
die gegebenen Punkte erfüllt ist. Es handelt sich vielmehr darum,
eine Kurve zu finden, die den Gesamtverlauf möglichst naturgemäss
wiedergibt, ohne den zufallsbedingten Schwankungen zweiter und
dritter Ordnung zu folgen.

4
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Diese Aufgabe ist nicht mehr reine Interpolation, sondern man
nennt sie die Ausgleichung von Beobachtungswerten. Wenn man
dazu analytische Funktionen verwendet, heisst sie eine analytische
Ausgleichung.

Diese analytischen Funktionen, mit denen wir es immer wieder
zu tun haben werden, sind von der Form:

/($) ap + % a: + «2 + • • +
Wir fragen uns, durch wieviele Punkte in allgemeiner Lage die

entsprechende Funktionskurve eindeutig festgelegt ist oder welches
das Maximum von Punkten ist, durch die diese Parabel to. Grades

gelegt werden kann.
Setzen wir einmal « beliebige Punkte (h,/(h)) (a;„, /(«„))

ein:

«o + «1 H + Ctg + • • • + «m — /(H) 0

«o + «i L» + «2 + • • • + % — / K) 0

Für diese n inhomogenen Gleichungen stellen wir folgende Punkt-
matrix auf:

1, oy, a;?, as,—-/(h)

1, a;„, a& as,— /(ai„)

Der Maximalrang dieser Matrix ist gleich der festen Zahl der

Spalten, das heisst to + 2.

Der effektive Bang beträgt aber nur w. Daraus folgt :

Lösungsdimension to + 2 — n.

Haben wir also z. B. zwei Punkte (n 2), so können wir durch
diese zwei unabhängige Parabeln (to 2) legen. Alle andern lassen

sich aus diesen zwei linear kombinieren.
Nun suchen wir aber dasjenige w, für das nur eine unabhängige

Lösung existiert:

to + 2 — « 1

n to -j- 1

Das heisst, die Parabel niedrigster Ordnung, die durch n vor-
gegebene Punkte gelegt werden kann, ist vom Grade n — 1.

Diese Betrachtung führt uns auf einen ersten Gedanken:
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Gegeben sei eine Reihe von n Beobachtungswerten. Diese

n Punkte tragen wir möglichst genau auf Millimeterpapier ab und
versuchen, aus dem Verlauf den Grad für die Ausgleichungsparabel
zu ermitteln. Es sei der to. Grad. Folglich stellen wir das Polynom m.
Grades mit den m -1- 1 unbekannten Koeffizienten auf. Es wäre

nun möglich, w Gleichungen zur Bestimmung dieser to + 1 Unbe-
kannten aufzustellen. Statt dass wir aber to + 1 beliebige von den

n auswählen, zeichnen wir die gewünschte Kurve möglichst genau durch
die Beobachtungspunkte ein und greifen dann to -|- 1 für die be-

treffende Kurve typische Punkte zur Bestimmung der Koeffizienten
heraus.

Für komplizierte Verteilungen ist natürlich diese empirische
Methode zu ungenau. Aber wir finden durch sie den Anschluss an
eine erste Verbesserung. Sicher möchten wir die provisorische Kurve
so durch die n Punkte einzeichnen, dass die Summe der absoluten
oder quadratischen Fehler minimal wird. Eine Methode, bei der die

Koeffizienten nach diesem Gesichtspunkt bestimmt werden, existiert.
Sie heisst die «Methode der kleinsten Quadrate».

2. Die Methode der kleinsten Quadrate.

1. Ausgehend von den w beobachteten Werten jq, î/g, an
den Stellen aq, aq, a:„ stellen wir folgendes Polynom auf:

/(®) -Po(z) + ®i *1(3) + cq i»(a:) + + a„ PJœ)

Dabei sind die P;(a;) bekannte, passend gewählte Funktionen
von a;. Z. B. kann man wählen P;(.r) ad. Die cq sind wieder zu
bestimmende Parameter. Durch Einsetzen der w Punkte werden wir
auf folgendes System geführt:

2/l ^0 (*®l) ~t~ (®l) ®2 ^2 (®l) V • • V (®l)

2/» «0 ^0 («,.) + «1 (O + «2 ~^2 (««)+•••+ a« ^ (O
Es muss natürlich gelten w > to + 1. Interessant ist nur der

Fall, won > to + 1> sonst hat man einfach n inhomogene Gleichungen

zur Bestimmung von n Unbekannten vor sich.

2. Wir begnügen uns nun aber nicht damit, diese to -f- 1 Unbe-

kannten aus irgendwelchen m + 1 von den w Gleichungen zu be-

stimmen, sondern wir wollen dazu alle w Gleichungen verwenden.
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Zur Berechnung der a- stellen wir folgende Forderung:

n 72

2s -Poo**)+'ai Pi(^) + p„(^)—%)«==2 (/(**)—»*)*
i i

soll ein Minimum sein. Da diese Summe als Funktion der Parameter

«, aufzufassen ist, müssen die partiellen Ableitungen nach den a-
verschwinden.

2^) (/(%> — %) =0
1

M

2^W fit) 0

1

n

i

n

Setzt man nun 2 ^ (%•) ' •**(«*) <bi °,'i
1

72

und 2^*)'^ e>

1

so erhält man zur Bestimmung der a- folgendes System

<*00 ~f~ <*01 "l T • T Com ~ @0

<*io "P <*11 eq -f- -]- a„ ßj

^VnO «0 ^7221 ^1 ~i~ • • • ~i~ ^772272 ^722 @72

Das sind m -f-1 inhomogene Gleichungen mit m -f-1 Unbekannten.
Die einfache Matrix ist symmetrisch. In diesen w +1 Gleichungen
sind aber nun alle « Beobachtungen verwertet. Durch Auflösen des

Systems findet man diejenigen Koeffizienten a, die vereint mit den

einmal gewählten Funktionen FJ (a:) bei der Ausgleichung die kleinsten

quadratischen Fehler ergeben.
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3. Das sind nun nicht die kleinsten Fehler, die überhaupt erreicht
werden können, denn die Güte des Resultats ist neben den auch

abhängig von den FJ (a;). Diese haben wir jedoch nur durch Probieren
ermitteln können. Es wäre ein Zufall, wenn man dabei gerade auf die

allerbesten gestossen wäre. So ist die Genauigkeit der Ausgleichung
schon beschränkt, ehe man nur zur Bestimmung der Koeffizienten
nach der Methode der kleinsten Quadrate schreitet. Wir brauchen
deshalb noch ein Kriterium für diese Funktionen P; (x). Diese Frage
findet durch die Theorie der orthogonalen Polynome, die in einem der

folgenden Kapitel berührt werden soll, eine praktische Lösung.
Zuerst wollen wir uns noch einer andern, mit der der kleinsten

Quadrate verwandten Methode zuwenden, die man dem Mathe-
matiker Cctwc/tt/ zu verdanken hat.

3. Die Methode von Cauchy *).

Zu den Abszissenstellen a^, a^, a;„ seien die Beobachtungs-
werte î/j, z/g> z/„ gegeben. Wir setzen wieder:

/(a;) % Pi(a;) + + «s + • • • ad. lib.

Die Methode von Cauchy geht etappenweise vor: Die Resultate
der zi. Näherung dienen zur Berechnung der Konstanten der Funktion
für die (w+1). Näherung.

Erste Näherung.

Man nimmt vorläufig nur /(a;) %Pj(a;) oder kurz /(a:)
a • P(a:) (1).

Damit hat man zur Berechnung der einen Unbekannten a folgendes

System von w Gleichungen:

/(«x) a-P(®i)

/(a^) a • P^)

/(®n) =«^W
Nun trägt man in einem Koordinatensystem |P(a:), 0,/(a;)}

folgende n Punkte ab:

M; (P(a^), /(a;J), z l, 2, n.
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f(X)

M

Fig. 1

0 ^ (®i) ^ (%)

/K) 9?i

9>; ««) gesetzt,

Wir haben damit n Gerade durch den Nullpunkt mit den Eich-
tungskoeffizienten o^, a^, festgelegt.

Die Methode von Cauchy besteht darin, die Resultierende der

n Vektoren OM; zu berechnen und den Richtungskoeffizienten des

resultierenden Vektors, dessen Länge für uns keine Rolle spielt, als
das gesuchte a anzunehmen. Das bedeutet, dass man den Schwer-

* punkt S der w Punkte M,; bestimmt und auf der Geraden 0»S den Vektor
— V-

OS w mal abträgt, was zu dem Punkt M führt.

Es sind also in gewissem Sinne die M,- die beobachteten und die

V;, die auf OM liegen, die berechneten Werte. Die Abweichungen
sind von der Form

Infolge der charakteristischen Schwerpunktseigenschaft ist aber
die Summe dieser Fehler, wenn man das Vorzeichen berücksichtigt,
gleich null.

VjM,- /(a;,) — P(z.) • fc/ <p

Folglich ergibt sich für die Resultierende:
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n

99 a
1

n

Bemerkung: Dieses Vorgehen verlangt eine Ergänzung. Wären
nämlich die Punkte gerade so beidseitig des Ursprungs verteilt,
dass S und somit auch M die Abszisse 0 hätte, dann wäre:

Somit würde jeder Fehler oo. Je mehr sich einem rechten
Winkel nähert, desto schlechter wird diese Methode.

Um zu verhüten, dass in (2) der Nenner null wird, addiert man
nicht die ra Gleichheiten /(zj « • P(ai,) direkt, um dann nach a
aufzulösen, sondern man multipliziert zuerst jede mit + 1, je nachdem
der entsprechende Wert von P(a^) positiv oder negativ ist. Die so
erhaltenen Summen wollen wir mit 2' bezeichnen. Diese Abänderung
wirkt sich also nur dann aus, wenn der Punkt M- eine negative Ab-
szisse hat.

Begründung dieser neueingeführten Summen 2':

Nach der Figur ist > 0, während < 0, wo a-, fg ç>..
Also muss das resultierende u kleiner sein als Statt Mj, hat man
also Mj. zu berücksichtigen, für das as,. fg ^ gleich gross ist wie
für Mj.. Damit gelangt man schliesslich nach M' statt nach M.

a <gr (90°) oc.

n

Mk
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Diese Überlegung kann man leicht auf den dritten Quadranten
ausdehnen und sieht, dass auch da eine Rückführung, und zwar in
den ersten Quadranten, nötig ist.

Fig. 3.

verlangt eine Verkleinerung des a^, dagegen eine Ver-

grösserung.
Für den Parameter a erhält man das endgültige Ergebnis:

(2') a
27 (®i)

2' P(«i)

Damit nehmen die Fehler zwischen Beobachtung und Berechnung
die Form an:

,1 / (a: •) / (a;,) -—— • P(.i'0
2' P(a;,:)

wobei 2 J / (s,) 2 / (s<) - ^ • 2 Pfo) 0

Haben diese Abweichungen Zl /(a:^) nicht den Charakter von Zu-

fallsfehlern, so nimmt man eine

(3)

Zweite Näherung.

/7) «1-^07 + «2^7)

Man geht wieder gleich vor. Je nachdem FJ7) positiv oder

negativ ist, multipliziert man mit -(- 1 oder —• 1 und addiert. So

findet man:
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S' /(«,•) S' Pi (a;.) + «g S' Pa(a;,-)

2'/(an) S'P(a:,)
(4) a, — ag —— m (3) eingesetzt :

S'3 (a,) 2' Pi (aij) ^ *

~ (l>||- " •) • 4W + «» 5 'W

' <*<> ~ ^ "='» ="•(*'<*<> " ^ '<*<>

oder ZI /(a^) Ö2 "4l ^(®j)

Darauf üben wir wieder jene Manipulation mit +. 1 ans, je
nachdem zl P(a;;) positiv oder negativ ist. So wie wir die Summen,
die vom Vorzeichen von -Fj(a;;) abhängig sind, mit 2' bezeichnet

haben, so wollen wir jetzt die Summen, die dem Vorzeichen von
zl P|(uij) Kechnung tragen, 2" nennen.

2'M/^) =a,S"zlP,(®<)
woraus

S'M/W
(4 «e. T;2" Zl P^O;)

und von früher

2'/(*,) 2'P2^)
(4) «i — Ur, ——-^ * 2'P^) *2<P,K)

Die Fehler ergeben sich nun in der Form:

Wegen der Schwerpunktseigenschaft gilt auch hier:

2zl«/(®,-) =0
Zeigen die Fehler A ^/(a:,;) noch immer systematischen Charakter,

so versucht man eine

Dritte Näherung.

(5) / (a:) % Pi (a;) + «2 ^2 (®) + «3 (®)
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Je nachdem P(x) positiv oder negativ ist, multipliziert man mit +. 1

und addiert.

2' /(x,-) «i 2' P(.r,) + «a 2' P(x,-) + og 2' i>(x,-)

„ _ S'/fa) S'Pfa) S'Psfc)^ * 2'P(x,.) '2'Pi(s,) ®"2'Pi(®,.)

+ Os^3(®<)

/ (®<) — 3 (®<) «2 ^2 (®i) — 3 (®i) +2'P^(^) " " ^ 2' Pj (X,;)

zf / (x,) «g zl P(x;) + «g zl Pg(x,)

Man macht wieder die bekannte Multiplikation, jetzt in bezug
auf zl P (x,) :

(6')

2" zl /(x,) «2 2" zl P(a^) + «g 2" Zl Pg(x,)

2"zl/(.r,) 2»JP,W
* 2" zl P(xJ ® 2" zl P(X,-)

in zl / (x,-) eingesetzt :

' "*<> (Ir^—
" «*•>-^ sm - - (" 'w)

^ «S^PPg^,-)

Dieselbe Erweiterung mit +_ 1 führt man aus für Zl ^ P (x,) und
bezeichnet die entsprechenden Summen mit 2"'

2'"/!»/(«<) «g 2"' ZP p(x,)



(6")

Die Gleichungen (6"), (6') und (6) ergeben sukzessive die gesuchten
Parameter.

Abweichungen :

Würde eine dritte Näherung noch nicht genügen, so könnte man
analog weiterfahren.

Im Falle von w beobachteten Werten und m Gliedern oder Koeffi-
zienten kann der zu /(x) gehörende mittlere quadratische Fehler e

wie folgt definiert werden:

4. Rückführung der Methode von Cauchy
auf die Methode der kleinsten Quadrate nach Carvallo.

Die von Cauchy verwendeten Gewichte + 1 können durch andere
ersetzt werden. Multipliziert man z. B. jede der n Gleichungen

mit dem zugehörigen F[(x,-), so bedeutet das hinsichtlich der Vor-
zeichen dasselbe wie die Erweiterung mit .+ 1. Die neuen Summen,
die hei der Addition entstehen, wollen wir mit 'S bezeichnen.

Das Analoge kann durchgeführt werden für P(x,,) und I^(x,).
Es seien "2 und "'S die entsprechenden Summen.

S / (D) 3 (®,0 S P; (a:,.) + Oo S ^ (,r,) • Ij (s,.) + «3 S (xj • Pi (x,) :

(1) 'S /(x,-) % 'S Pj(x;) + «2 'S J>(x<) + «3 'S Pg(x,.)

(2) "S / (x;) % "S Pi (x,-) + «2 "2 ^2 (®<) + «3 "2 P3 (®<)

(8) "'S /(x,) % "'S Pi(s,) + a* "'S Pj(®<) + ug "'2 Ps(®<)

z!3/(xi) zD/OD)

wobei : 2 4®/(«<) =0-

/(®i) «1 3(®i) + «2 ^(®,-) + «3 3(®<)

und analog
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Das sind drei Gleichungen für die drei Unbekannten o. Auf
dasselbe System stösst man aber auch, wenn man die partielle Ab-

leitungen von

S {/(£;) — Ol Pi(®<) ^ Oa — Og P,K)P
nach den o gleich null setzt.

Aus (1) folgt

'S/K» 'SP2K) 'SP,K)
* 'S^K) "'SJ?K) "'SP,K)

Eingesetzt in (2) und (3)

...(a)

+ Og "2 PgK) + «g "2 P3K)

(3') "'S /K) (•••) "'S PiK) + «2 "'S PaK) + «3 "'S P,K)

Aus (2') folgt sodann :

'S /(V)
C2") ^

02 ^"S PgK) — +

Nun ist:

-S /K) - "S PiK) s /K) • 3(*<) -
;V-J/ \

'S/K)

S PaK) -2| /K)
"SJ/K)



Analoge Bezeichnungen führen wir auch für die Ausdrücke auf der
rechten Seite von (2") ein.

Dann geht (2") über in

I. "2 /I /(»,•) «a "2 zd ^(Sj) + «s "2 /I Pg(a:,.)

Analog verfährt man mit (3') und findet

II. "'2 zl /(a;,-) «g "'2 zl + «g "'2 zl

Aus I. folgt

"2 zl /(»,•) "2JP,(®,)
"2zlP,(®,.) ®*"2ZIP2(®,.) ^

In II. eingesetzt

"'2 Zl /(a; -)

/' "2 Zl /(»,•) "2zlP(a;,.) \- «r " ^ " '<**'

"2zl/(x,-)

«»("^aPsW-AA||i| '»s^w
'"2zl^/(a;-) «g "'2 zl^ I^(a:-)

"'2z|8/(®,-)
"'S ••• (y)

(a), (/?) und (y) zeigen, dass wir tatsächlich das gleiche Lösungs-
system erhalten wie bei der Multiplikation mit + 1 ; nur sind darin
die alten Summen durch die neuen ersetzt.

Damit sind wir wieder bei der Methode der kleinsten Quadrate
angelangt. Ihr Vorteil liegt in der Bestimmung der Koeffizienten,
während ein Kriterium für die Funktionen P(.xj noch fehlt. Man

muss sie einfach ausprobieren. Ändert man aber nachträglich eine

davon ab oder fügt eine neue bei, so verlangt das jedesmal wieder eine

vollständig neue Berechnung der Koeffizienten.
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Hier setzt nun die Arbeit von Tcltefcycfee/ ein. Er ersetzte diese

willkürlichen Funktionen P(a:) durch ganz bestimmte, die selbst
wieder Polynome sind. Sie gehören zur Klasse der orthogonalen
Funktionen und werden als «Orthogonale Polynome» bezeichnet.

In der Literatur werden sie auch etwa «Tchebychefsche Polynome»
genannt. Das mag daher stammen, dass sie Tchebychef zur Aus-

gleichung heranzog. Die eigentlichen Tchebychefschen Polynome,
die eine Kernfunktion enthalten und auch orthogonal sind, werden
dabei nicht verwendet.

Die orthogonalen Polynome, die, wie wir sehen werden, ausge-
zeichnete Eigenschaften besitzen, werden nun, vereint mit der Methode
der kleinsten Quadrate, die erwähnten Mängel beheben.

5. Orthogonale Polynome.

1. Bei der Methode der kleinsten Quadrate stiessen wir auf
Produkte von der Form:

%-i

Die Funktionen ^(«), über die nichts vorausgesetzt war, wollen
wir ersetzen durch Polynome 7;(cc), wo der Index den Grad angeben
soll. Diese Polynome ïj (a;) wollen wir so definieren, dass wir folgende
fundamentale Eigenschaft von ihnen verlangen:

*n-l

(1) (>') • (z) 0 wenn 1 £ m

Zo

Polynome, die diese Eigenschaft besitzen, heissen oriTiogwiaü für
das angegebene Summationsintervall.

2. Wir wollen versuchen, solche orthogonale Polynome zu finden.
Dazu gibt es mehrere Wege, wie ja auch die Kategorie dieser Funk-
tionen recht vielgestaltig ist. Sehr systematisch ist der folgende Weg,
der sich auf die Differenzenrechnung stützt und eine Formel für

S gibt 2).



1 + dj; 2j d)* sollen sich nur auf beziehen

Eg 1 + dg! ^2 =/l^ sollen sich nur auf beziehen

E 1 -f- d ; 2 d~* sollen sich auf die Produktfunktion be-

ziehen.

d (Wj, ig.) (Ej Eg — 1) ig.ig, Eg 1 -j- zig eingesetzt:

(Ei + Ei .-do 1) ig, ig

(Ei dg + dj) tg

Ei d2 (1 + Eï* di dg*) ig

Durch Inversion folgt daraus:

^ (»,: ^ «, lg

E)' dl* (1 + Ei*didg')-* u, r„

E,*dg* (1 - EI*di dg* + Efd'j dg* - + n, r,

(El*dg* - Eg di dg* + EI* d'f dg* -+...) ig

«•, 1
S ig — d ig., 22 ig + d 2 2® i' h • •

.(.'EM .,C
Nun setzen wir 11 =2)(:r) und ig 2*„,(r), wobei wir annehmen

m > 1

2T,.T,(s) T,(.r-1) 2T„,(.t)-dT,(a:-2) 2»T„(:r) + -...+
+ (-1) 'd ' '/) (.r — E —1) 2' <T„,(.r)

—-konstant

Diese unbestimmte Summe nennen wir S'(r). Die Summe zwischen

den Grenzen £Cq —ist dann

/^„,(a:) 7)(,r) N(.ig) — £(%)

Verschwinden nun, wenn m > Z, die Summen

(2) 2 T„„(,•), 22 T,„(,•), 2»T„(z)
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alle für die Grenzen a: a^ und a; a;„, dann wird auch <S(a;„) — $(^o)
verschwinden. Ist aber m 1, so wird das letzte Glied nicht null.
Das ist gerade, was wir wünschten.

3. Wir haben somit die ursprüngliche Bedingung (1) in (2) über-
geführt. Es wird also unsere Aufgabe sein, solche ï"„,(x) zu finden, die
der Bedingung (2) genügen.

Wir setzen:

Es wird nun verlangt, dass die Funktion G(as) und ihre m ersten
Differenzen verschwinden für a; a:„ und ,x a:„. Das bedeutet,
dass G(x) selbst verschwinden muss für

£C a;„, x x„ + 1, x Xg + 2, x Xg + m — 1

£ ®n> ® + 1» ^ + + 2, x x„ + m — 1

Das ist der Fall, wenn G(x) folgende Faktoren enthält:

Da G(x) Z3+(x) vom Grade 2m in x ist, so kann es neben
diesen Faktoren höchstens noch eine Konstante als weiteren Faktor
enthalten. Die Wahl dieser Konstanten ist beliebig. Wir wählen

dafür 7—7-7,, damit die absteigenden Fakultätenfunktionen in Bino-
(m!+

mialkoeffizienten übergehen.

2"T„(s) G(x)

E""'T„(x) =zlG(s)

TJx) ZT G(:r)

und

(x— Xg), (x—Xg—1), (x— Xg— m-f-1)

(x—xj, (x —x„—1), (x — x„—m + 1)

G(x)
(x—Xg) (x—Xg—1) (x—Xg-^m+1)

m!

(x—x„) (x—x„-—1) (x—x„—m+1)
m!



(3) T„(s)
a: — a;„

m

Da es nur eine einfache Verschiebung des Intervalls bedeutet, die

man jederzeit rückgängig machen kann, dürfen wir ohne weiteres
setzen a;,- I. Das gefundene orthogonale Polynom lautet dann ein-
facher

<*>

4. Umformung von (4).

Es sei ^ ~ /(®) folglich ^ ^^ / (a; + m — w)

Wir wollen die Differenzenformel von Newton

/(z + w) =/(œ) + + + ••• +4l"/(a:)

anwenden und gerade berücksichtigen, dass

.„/a;—ra\ /£C—m

« j U-î
m—__ / —m + g—1
l J 5

/[® + (m—w)] =/(«) + (m—n) Zl /(a;) + + ^ ZT /(a:)

a:—n\ —m\ /'a;—m\ /m—«\ /a;—m\
+ (»-»)L_i+ o L_o +m / y m / \to — 1/ \ 2 / \m — 2

/m—«
+ • • • + I

\ m

a;—m\ / a;—m
m "•>(,„-1

--K-D"2 / \m — 2/ • \ m
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/ a; \ /x—m\ _
x (x —1) (x —m + 1)

\m/ \ m / m!

(x—m) (x—m—1) (x — 2m +1)
m!

/ x \ (2m)! / x \ /2m\
\2my (m!)® \2my y m /

/x\ /x—m\ _
x (x—1) (x—m + 1)

\m/ \m — 1/ m!

(x—m) (x—m—1) (x—2m + 2)

(m—1)

/ x \ (2m —1)!
\2m — 1 / m! (m—1)!

_
/ x \ (2m—1) (2m—2) m _/ x \ /'2m—1\
' 2m—1/ m! \2m—1 /\ m /

/x\ /x—m\ _ x (x —1) (x—m + 1)

\m/ \m — 2/ m!

(x—m) (x—m—1) (x—2m+ 8)

(m—2)

/ x \ (2m—2)!
\2m—2/m! (m—2)!

_
/ x \ (2m—2) (2m— 8) (m—1) _ / x \ /2m—2\

~ \2m.—2/ m! \2m—2/ \ m /
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Eingesetzt :

/«\/œ—w\ /2m\ / a\ /2m—1\ ,/ a: \
\m/\ m \m/\2m/ \ m ^ \2m—1/

+CT') (-;+') UT) -+••+<-" CT) (:)
In (4) eingesetzt:

» ^)=c:)(;Ht>-<T)+
+CT')("-r')(T,)-+CT)
(5) ist die endgültige Form des gesuchten orthogonalen Polynoms

T — 1
-i-0 — 1

Ti(a:) 2a: — (n— 1)

2;(®)=6(j)-8-(n-J0« + (V)
n-1 n-1 n-1

Aus 2 (®) D (®) 0 folgt 2T (®) rp(®) 2 ^»(®) 0

0 0 2 0

Das heisst, die orthogonalen Polynome liegen so in ihrem Intervall,
dass sich die positiven und die negativen Ordinaten bei der Summation
gegenseitig aufheben. Sie liegen entweder punktsymmetrisch oder

axialsymmetrisch zur Mitte des Intervalls, je nachdem sie von un-
gerader oder gerader Ordnung sind.

5. Aus der gefundenen Entwicklung für T„(®) lässt sich sofort
eine solche für zP P„(x) angeben; diese Eeihe bricht mit dem

Glied, das ^j als Paktor enthält, ab.

m * -fr) CT) -C"T) (»-) (._ï_i)+
m — fc

; /m + fc\ /w—fc—1\
+ -••+(-!)( fc
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Setzen wir in (5) und (6) a; 0, so erhalten wir 'wei Hilfsformeln,
die wir bei der Anwendung gebrauchen werden

(50

(60

rjo) (-1)

^X(O) =(-1)

w—1
m

TO fc

m + fc\ /n—fc — 1

TO—-fc

6. Bemerkenswert ist die Verwandtschaft dieser orthogonalen
Polynome mit den LegrewdrescÄew Polynomen

d

so dass

n

/ -P„(a0-^(a0 d® 0 wenn to +Z

Die Summation wird also hier kontinuierlich durchgeführt.

7. Wir können aber auch von den früher besprochenen, will-
kürlichen Funktionen P(a:), bei denen der Index nicht den Grad

anzugehen braucht, zu orthogonalen Polynomen gelangen.

Es war /(a;) a„ ^(a:) + % ^(®) + + ?,„(«)

Die Ausrechnung führte dann auf die Produktsummen

y ife -»fei

Nun substituieren wir für die P(a;) neue Funktionen (Z>(a;) *) mit
der Erläuterung

<Po(®) -»00
®00 d()

^»(ï)

®00 <*01

<*10 <*11

<*20 <*21

-»mO "ml

$2 (®)

®0»-l ^0

<*lm-l

^2m-l ^2

<*oo <*oi

<*10 <*11

<*20 <*21 ^2

^mm-1
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Damit erhalten wir ein neues Polynom:

(7) /(as) ®o(«) + («)+... + <P„(as)

Diese Funktionen $(a;) sind selbst Polynome, und wir werden
jetzt beweisen, dass sie orthogonal sind, dass sie also folgender Be-

dingung genügen:

S <P;(») ö>j(®) 0 wenn i + fe

<%> •

Es sei 4),= ®io •

%> •

i < &

und P^' die zu g^ gehörende Unterdeterminante in P^. Dann ist:

Goo • • • G,OH 4^

G,;n G P.

Pf.Po + Pf.P,+ + Pf-i>

Darin lautet der Koeffizient von P?* (p < i < fc)

••• +<2^
44® ®op + 44J* oüp + • • • + Pjf ffftp

Dieser Ausdruck ist nichts anderes als die nach der letzten Spalte
entwickelte Determinante P,.. Jedoch steht darin an Stelle der fc.

Spalte noch einmal die p. Also ist:

^00 • • <*0p • • <%-l ^Op

P 0,p

®10 • ®lp • ®ip

• ®Äp •

Da diese Determinante zweimal dieselbe Spalte enthält, ver-
schwindet sie. Damit ist wirklich
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S<P,(«)<P*(®) =0
da darin alle Glieder null werden.

Ist aber i k, so wird p, das die Werte 0, 1, 2, i annimmt,
für p — i fc automatisch der höchste Spaltenindex, so dass in
dieser Determinante nicht zwei gleiche Spalten vorkommen:

£0?(z)*O

Die 0(a;) sind tatsächlich orthogonale Polynome, wenn der Grad
mindestens 1 ist.

Beispiel *) :

2, 0, 1, 2, 3, 4.

Wir nehmen ein Polynom 8. Grades und wählen fj (,r) ad.

Dann ist:

<*oo=2^o =21 =5
0 0

<% 2 Ii 21 • ® =0 + 1+ 2 + 8+ 4 10
0 0

S Po S 1 • œ® 0 + 1 + 4 + 9 + 16 30
0 0

Man findet so das System.

<*oi 10<*00 — 5

<*io — 10 30

<*2o 30 <*21 =100

-»30 100 <*31 354

30

=100

->22 354

1300

<*03 — 100

<*i3 354

<*23 1300

do» 4890

Beachtenswert ist die vollständige Symmetrie in bezug auf die

Hauptdiagonale.

— 0"nn — 5

0i <*oo 5 1

<*10 ^1 10 a;
5 (a;—2)
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<*00 <*01 ^0 5 10 1

02 <*10 <*11 10 30 œ 50 (a^—4 x + 2)

<*20 <*21 F 30 100 œ*

03

<*00 <?01 <*02 ^0

<*10 <*11 <*12 ^1

<*20 <*21 <*22 ^2

<*30 <*31 <*32 ^3

5 10 30 1

10 80 100 œ

30 100 354

100 354 1300 ^
140 (5 —30a^-(- 43 a;— 6)

8. Schliesslich sei noch auf einen dritten Weg hingewiesen, der

zu orthogonalen Polynomen führt. Es ist der Weg, den Tchebychef
hauptsächlich gegangen ist. Man benützt dazu die Kettenbruch-
rechnung.

Es seien wieder a^, a^i die n Beobachtungsstellen.
Dann stellen wir folgende provisorische Funktion auf:

F(a;) (x — ®o) (x — »i) (x—Vi)
F(s)

Diese Funktion differenzieren wir und entwickeln —— in einen
F'(x)Kettenbruch.

Wir setzen

F F' Qo -f-

F' -Rq • Qi + Fi
F« — Fi • §2 ~4~ Fg

F„-3 F„_2 • Q„_1

F F,
7 — Qo + j/,' <?o + "^7

F' „ Fi
— öl + TT

F'
F„

F F„
ein:

F „ +
Qi + 1

Fn

Fi
schliesslich erhält man:
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~ ÖT+T
§2 + 1

ft +jj_

"+T
ft-2 + 1

ft-1

ft ^ Nenner ft 1

ft + 1
^

Nenner ft ft
ft

ft -J
ft ~^~ ft ^ ft fanner ft ft ft + 1 etc.^ ft+£ ftft + 1 "

ft
Diese aufeinanderfolgenden Nenner IV sind orthogonal, und es

gilt:
*B-1

2*ftft 0 für i 7c

%-i

und ^jft 0

£C0

Damit stellen wir endgültig das Polynom auf

(8) / (z) oc„ No + ai ft (a;) + + a„ (a;)

Beispiel *) :

Wir nehmen dasselbe Intervall 0 < a; < 4 wie im vordem Bei-

spiel.

Hilfsfunktion F(a;) as (a; — 1) (a:—2) (as—8) (a:—4)
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Da die Abszissen symmetrisch um die Mitte (x—2) liegen, ist
es vorteilhaft zu substituieren (a;—2) «

F (0) (0 + 2) (0 +1) 0 (0—1) (0 — 2)

0(0^ — 1) (02 — 4)

0® — 00® + 40

F'(0) 504 — 1502 + 4

Nun entwickeln wir—— in einen Kettenbruch.
F'(0)

0® — 50® + 40 : 504 — 1502 -|- 4 —
4

®

0® — 30® -j—0
5

16
20® "i 0 En

5

„ 16 5
504 — 1502 + 4 : — 20® -| 0 0 Q,

5 2
504 — 802

— 702 + 4 El

16 2
— 20® H 2! : — 702 + 4 —0 Q2

— 20® + -—0

72
0 En

35 *

72 245
— 70® + 4 : — 0 0 0„

35 72
— 70®

4 Rg

72 18
— 0:4= — 0 Q.
35 35
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Also:
F 2 1

F' 5 5
0 + 1

2
2

r+i 245
-0 + 1

72

Die aufeinanderfolgenden Nenner lauten:

JV„ 1

denn — wird als Ganzes aufgefasst.
5

5
A\ 0* 2

5
No 0® + 1

7

1750® — 4250
tf,= -

18
£

35

®
72

350* — 1050® + 28
* 28

0 a; — 2 rückwärts ersetzt :

N„=l

— 5a:® + 20a; — 13- —2
«y

175 a;® — 1050 a:® + 1675 a; —550
AY®

72

35 a:* — 280 a:® + 735 a;® — 700 œ + 168
jV* 28



Diese Kettenbruchentwicklung braucht man aber nicht jedesmal
auszuführen, denn es gibt für die Nenner eine Bekursionsformel, die

man leicht herleiten kann.
Führen wir für den Kettenbruch mit den Quotienten 6o> 61,
die abkürzende Bezeichnung | 6o> 6i> • • • 6»-i I ein, so können

wir schreiben, wenn wir diesen Kettenbruch in einen einfachen Bruch
zurückführen :

?0> 6l> • • • 6p-l
A„^

^0 ^1 6o 6l ~l~ 1 ^2 6o $1 $2 ~l~ 6o ~b $2
r~ — Vo

A„ ÎVl «1 ^2 6162 + I

In diesen Brüchen besteht folgendes Rekursionsgesetz :

^p 6p 1 + ^p-2

Ap=6pA^ + A^
Die Allgemeingültigkeit kann durch vollständige Induktion

bewiesen werden. Da das Gesetz für die niedrigsten Indizes offen-
sichtlich gilt, zeigt man, dass aus der Gültigkeit für p — 1 sofort auch

die für p folgt. Wir setzen also voraus, es gelte:

Vi +^
Ap-t 6p-i Ap_2 ~b

Z 1
Um daraus — zu erhalten, muss man für 6p_i setzen 6p-i + ——

Ap 6p

Z,

V
z„

_
^

yAp_2 + Ap_3

6p (6p-i Va + y3) + y2

6p (659-1 Ap-2 + Ap_g) + Ap_2

6p • Vi + y
6p ' Ap_j + Ap_,
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Damit ist die Allgemeingültigkeit dieser Rekurrenz bewiesen, so

dass man die aufeinanderfolgenden Nenner nach der Formel

(9) ff, ff« + ff^
berechnen kann.

10. Die Polynome N sind aber nicht gerade einfach, wie wir ge-
sehen haben. Tchebychef fand eine andere Rekursionsformel, die

zugleich eine Verallgemeinerung darstellt. Bis jetzt haben wir für die

Äquidistanz der Beobachtungspunkte, das heisst für — x^, immer
den Betrag 1 vorausgesetzt. Hat man bei einer Serie von Beobach-

tungen die Äquidistanz d

»o, ®i ^2 + 2d, Xg — Xg + 3d,

so kann man setzen

d £»

Damit ist auf der Achse die Äquidistanz 1 wieder hergestellt
und der Anfangspunkt in den Ursprung verschoben.

Xg Xl Xg + d Xg Xg

0 £g o !i=l £2 2

Am Schluss hat man diese Verzerrung wieder rückgängig zu
machen.

Diese Äquidistanz d hat Tchebychef in seiner Rekursionsformel

berücksichtigt. Bezeichnet man mit y>p(x) das orthogonale Polynom

p. Grades, so lautet diese Formel:

d2.p2(^2 p2\
(10) y„+i(s) s • W(®) • Vi(®)

Dabei ist n die Anzahl der Beobachtungen Xq, Xj, x„_^ und
d also die Äquidistanz x, — x^.

Voraussetzung für Formel (10) ist, dass man den Ursprung in
die Mitte des Intervalls Xg —> x„_^ verschoben hat. Ist das nicht der

Fall, so kann man die Verschiebung auch in der Formel nachholen.

Für die Abszissen 1, 2, w z. B. lautet sie:
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(10 Vp+i(®) (® 2~) ^ 4 (4^2 i)
* ViW

unci für 0, 1, 2, w — 1 :

„ / w —1\ — p^)
(10") ^(s) ^ —j y,(s) • Vi(^)

Beispiel: a; 0, 1, 2, 3, 4 d 1 n 5

% 1

Vi « — 2

yjg a;2 — 4 a:+ '2

5ar>—30a;2 + 43 a;—6

Das Glied vom höchsten Grade hat immer den Koeffizienten 1.

Diese Rekursionsformeln werden zur Berechnung der orthogo-
nalen Polynome häufig benutzt. Wir werden es aber bei unseren
Anwendungen vorziehen, die früher gefundene Formel (5) zu ver-
wenden, da für diese die Rechnung in ein sehr bequemes Schema

gebracht werden kann.

Nachdem wir gesehen haben, wie man die orthogonalen Poly-
nome finden kann, wollen wir sehen, welche Vorteile sie uns bei der

analytischen Ausgleichung bieten.

6. Anwendung der orthogonalen Polynome hei der
analytischen Ausgleichung.

Es sei irgendeine Verteilung (a;„, %), (aq, 2/j) (a;„^, a/„_i)

beobachtet.

Scheint es uns zweckmässig, zur Ausgleichung dieser Beob-

achtungsreihe ein Polynom m. Grades zu wählen, so schreiben wir

/(aj) «o^o + ®i^i (®) + • • • + (®)
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Dabei sind also die T(z) orthogonale Polynome, gleichgültig, nach

welcher der angegebenen Methoden sie berechnet wurden.

Wir setzen

%-l

^(m) 2 + ®1 ^l(®) + * * * + — »(®)}*

2 (/(«) — »(«))*

Zur Bestimmung der a verlangen wir, dass minimal werde.
Die partiellen Ableitungen nach den a müssen verschwinden. Für die

Ableitung nach a,- erhält man:

(/ (®)—^ (®))= 0

Nun macht sich die orthogonale Eigenschaft geltend, und es

bleibt einzig

woraus

ai)

Man sieht, dass a - nur abhängig ist von T- (z), an das es gebunden
ist, während es unberührt bleibt von allen andern a und T. Das be-

deutet, dass man im Polynom /(z) eine Abänderung vornehmen kann,
z. B. das Anbringen eines weiteren Gliedes, ohne dadurch, wie es

bei den willkürlichen P(z) der Fall war, die bereits gemachte Rech-

nung zu annullieren.

Man kann das auch direkt zeigen:

-K(m) ^ {a„ + «1 Ï\(D r • • • + «m (®) 2/ (®)}®

+ T?(z) + •. • + S «(z)
- 2 {«o S y (z) + % 2 2\ (z) y (z) + + a„, S T„, (z) y (z)

+ 2
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Es ist aber

S 0(a)

S g(œ)
Ctr,

und allgemein

w • öq 2 OQ UQ S î/(m)

S a? T* (z) S 21 (®) t/(a:)

Eingesetzt in E^
^(m) 2 î/ (a;) _ «o S y (a;) — % S 2\ (a:) y (a) —...—a„ S T„ (œ) î/ (a;)

"7m+i B?m+1) — «m+1 2 T„+i(s) 2/(x)

So kann E^ Schritt für Schritt berechnet werden, und jede Ver-
grösserung des Grades vermindert den Wert von E^, bis es für ein

Polynom vom (w—1). Grade null wird, da in diesem Falle gleichviel
Unbekannte a vorhanden sind wie Gleichungen, so dass die Methode
der kleinsten Quadrate nicht mehr nötig ist.

Die Güte einer Ausgleichung wird allerdings nicht durch den
blossen Wert von E^ charakterisiert, sondern es kommt auch darauf

an, mit welchem Grad man diese Fehler erzielt hat. Lidstone gibt
folgendes Kriterium an, das den Grad m mitberücksichtigt:

E2(m)

n—m — 1

Schreiten wir z. B. von einem Polynom 3. Grades zu einem solchen
4. Grades, so muss danach, wenn das Resultat mit dem 4. Grad besser

sein soll, gelten:
Ej Eg

to—5 TO- — 4

Bemerkung.

Wir haben immer stillschweigend vorausgesetzt, allen Beoh-

achtungen komme dasselbe Gewicht zu. Ist das nicht der Fall, be-
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zeichnet z. B. 0^ das Gewicht an der Stelle x, so muss man die Koeffi-
zienten aus der Formel

(12)
^(x)-,(x).6?

berechnen. Wir werden unsere Anwendungen jedoch auf den Fall
beschränken, wo allen Beobachtungen dasselbe Gewicht anhaftet.

Gliederung der Rechnung.

Trotz der Eleganz der Formel (11) erfordert die Berechnung der

a eine beträchtliche Arbeit. Es ist jedoch eine systematische Gliederung
möglich, die die Ausrechnungen in ein einfaches Schema bringt und
dadurch eine gute Kontrolle schafft.

Dazu definieren wir folgende Summen ®)

£ 2/(®) S2

0

1

2

n-1

I/o

l/i

1/2

2/»-i

$ 2/o+2/i+2/a+ • • • +2/»-i

$1 2/l+ ?/2+ • • • + 2/n-l

$2 2/2+ •• • + 2/n-l

#«-1 1/n-l

So ^0+^1+ • • • +$n-l

— $1+ • • • +$n-l

$2 ~ $2+ • • • +$n-l

S*_l Sti 2/„_i

Aus (11) folgt:

«;2?1(x) £2b(x) 2/(«)

s{tj(x)^(0)+^T,(0)+^yT,(0)+.. ,+QzF21(0))}

21 (0) S 2/(x) + zl 11(0) S Q 2/(x) +... + Zl T,(0) S Q j/(x)

21(0) GJ + zl 21(0) S» + J« 21(0) S* + • • • + Zl '' 21(0 )S{+»
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r.(0) ^+zl r.(0) g»+zDt.(o) g»+,,, + zi T.(o)

2 21(a)

Nach dieser Formel werden wir bei den Anwendungen die Kon-
stanten berechnen. Dabei brauchen wir also nur die Summen von der
Form Sji+k

Auch /(x) stellen wir indirekt dar:

(14)

/(0) — cï(, + 2\(0) + «g TgW + • + «m î)„(0)

zl /(0) zl 2\(0) + a, zl ^(O) + • • • F a m J 2^(0)

zD/(0) a,zl»T»(0)+... + a»^TJ0)

(15) /(x) /(0) + Q ZI /(0) + Q Zl»/(0) +... + Q zl ' /(0)

Für die praktische Durchführung ist diese Darstellung die zweck-

massigste.

Zusammenstellung der nötigen Formeln:

<»> - (Y) (?)—C*rO <»-« (<-i)+

V
Vi— 1

(5') 21(0) (-1)*

ceo

_
21(0) $ + ZI 21(0) Sf + + zD :21(0) S;+* Z,

^

ST((i) 22l(x)

(14) zl* /(O) «j Zl* 21(0) -f- a,+i Zl* 21_^j(0) +... + a„ zl * 2^(0)

(15) /(x) /(O) + Q ZI /(0) + g) zl» /(0)+... + zl" /(0)
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Schema für die Tabellierung von d'Tj(O) und 2 2l(a;)
0

fc
0 i 2 3

0 1 *
1 0 2 *

2 0 0 6 *
3 0

•

0 0 20

S 21 (*)
0

n * *

In der Tabelle sind die Diagonalglieder 1, 2, 6, 20, für jedes n
dieselben. Einzig die mit * bezeichneten Werte sind zu berechnen.

So ist die ganze Arbeit systematisch gruppiert.

Bemerkung.

Bevor wir an die eigenen Versuche herantreten, sei erwähnt,
welche Anwendung die Methode kürzlich in Prankreich gefunden hat ®).

Es handelt sich um eine Ausgleichung der einjährigen Sterbens-
Wahrscheinlichkeit der französischen Bevölkerung in der Periode von
0 bis 25 Jahren.

Bevor diese Aufgabe nach der Methode von Tchebychef gelöst
wurde, war ein besonderer Ausschuss damit beauftragt worden,
empirisch ein Polynom aufzustellen und auf dieses die Methode der

kleinsten Quadrate anzuwenden. Dieser Ausschuss stellte ein Poly-
nom 6. Grades zusammen, das aber nicht bessere Resultate ergab als

das von den angeführten Autoren später hergeleitete Polynom
3. Grades mit Orthogonalfunktionen, ganz abgesehen von der grösseren
Anzahl an Wendepunkten.
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II. TEIL.

Anwendung auf die schweizerischen Volkssterbetafeln
1921—1930 und 1929—1932.

Bei der Ausgleichung von Sterbetafeln stellen sich oft grosse
Schwierigkeiten ein, namentlich, soweit das erste Lebensdrittel in
Betracht fällt. In den ersten 2—3 Lehensjahren zeigt die Sterblich-
keitskurve einen überaus steilen Abfall, erreicht ungefähr bei x 12

ein Minimum und nimmt später bei x 20 noch einmal vorüber-
gehend ab. Dann steigt ^ monoton an, so dass die Beohachtungs-
reihe von da an mit Vorliebe durch das Gesetz von Makeham ersetzt
wird.

Es soll unsere Aufgabe sein, den Verlauf von in diesem ersten,
etwas komplizierten Intervall nach der behandelten Methode von
Tchehychef auszugleichen. Dabei werden wir uns der Orthogonal-
funktionen von der Form T(x) bedienen, da mit ihnen die besten Er-
fahrungen gemacht wurden.

Bei den ersten Versuchen stellte es sich heraus, dass ein Polynom
3. Grades zur Darstellung der Sterblichkeit im ersten Lebensdrittel
für die schweizerischen Verhältnisse vollständig ungenügend ist.
Erstens ist der Abfall am Anfang überaus steil und zweitens hat er
sich ungefähr bei x 3 oder 4 schon fast ganz ausgewirkt, so dass

eine starke Verflachung folgt. Um diesem Umstand gerecht zu werden,
bedürfte man eines so hohen Kurvengrades, dass dadurch der prak-
tische Wert in Frage gestellt würde.

Es bestände die Möglichkeit, mit der Ausgleichung erst beim
dritten oder vierten Lehensjahre anzufangen und für die früheren
einfach die unausgeglichenen Werte zu nehmen, wie es in der Schweiz

bei der Anwendung der Kingschen Methode gemacht wurde ®). Jedoch

wird ein Polynom dritten Grades auch dem weiteren Verlaufe nicht
gerecht.

Nach diesen Überlegungen schien es vorteilhaft, eine Parabel
zweiten Grades zu verwenden und diese am Anfang wie auch am
Ende durch eine möglichst einfache Korrektur zu ergänzen. Die

Korrektur am Anfang muss den steilen Abfall bewirken, und die am
Ende muss den Anstieg bei x 20 herum unterbrechen und für
später hinausschieben.
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Damit diese Korrekturen nur da wirken, wo sie erwünscht sind,
und den übrigen Verlauf nicht stören, wurden sie so berechnet, dass

sie an gewünschter Stelle aus der reellen Zahlenachse verschwinden.
Auf diese Art und Weise konnten besonders bei den Beobachtungs-

ergehnissen der Periode 1921—1930 recht befriedigende Resultate
erzielt werden. Die neuesten Messungen 1929—1932 weisen nach dem
Alter 20 jenes erwähnte Abnehmen der Sterblichkeit auf, das durch
die neue hygienische und sportlerische Lebensweise hervorgerufen
zu sein scheint und jedenfalls bei der Ausgleichung nicht schlechthin
übergangen werden darf. Deshalb war es hier nicht möglich, mit
einer einzigen Kurve die Sterblichkeit ebensovieler Altersjahre wieder-
zugeben wie bei der Beobachtungsperiode 1921—1930, wenigstens,
wenn die Korrektur nicht zu kompliziert werden sollte.

1. Tafel für die Männer 1921—1930.

Die unausgeglichenen Werte der g^, findet man in der Schluss-

tabelle neben den ausgeglichenen. Bequemlichkeitshalber führen wir
die Rechnung nicht für g^, seihst durch, sondern für 10® • g^..

Im Intervall 3—19 wollen wir die besprochene Parabel 2. Grades
berechnen: n 17

SJ 37,49 S? 303,22 S® 1643,79

Tabelle für zP 21(0)

// « l 2

0 1 — 16 120

1 0 2 -45
2 0 0 6

S2«(s) 17 1632 69768

37,49 «o 2,2053 /(0) 3,37306

Zi 6,60 a* 0,00404 zl /(0) — 0,45407

Zg 716,64 cn, 0,01027 ZP /(0) 0,06162

Die Parabelgleichung lautet also gemäss (15)

/(sc) 3,37306 — 0,45407 a: + 0,06162^
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Der Ursprung liegt aber bei £ 3, und um diese Verschiebung
rückgängig zu machen, substituieren wir cc/cc—8:

(1) /*(£) 5,105 — 0,66974 a: + 0,03081 a;^

Nun tabelliert man die Werte von /*(cc) (siehe Schlusstabelle). Die
obere Grenze ist vorläufig noch nicht festgelegt. Für die ersten
Stellen werden oft die unausgeglichenen Werte gesetzt. Wir wollen
davon absehen und für die Alter as 0, 1, 2 eine Korrektur çp(as) he-

rechnen, die aber mehr nur den Zweck haben soll, die Kurve zu ver-
vollständigen. Sie haben die Form:

35,58 j/S a:
2) m(a:)^ ' 1 + 7,88 as^

Die zweite Korrektur yj(a') ist schwieriger zu berechnen. Erstens
ist es sehr wichtig zu erkennen, von wo an sie wirken soll. Es schien

hier am besten, wenn y+r) etwa von a; 18,8 ab zu bremsen beginnt.
Als Zähler von y(as) kann man somit schreiben

l/c®—18,8)®

Um den Nenner zu bestimmen, nimmt man eine Anzahl Punkte
heraus, durch die die ausgeglichene Kurve gehen sollte. Diese können
nach einer beliebigen Methode ermittelt werden. An jeder dieser
Stellen berechnet man sodann, wie gross der Nenner sein müsste, um
eine genaue Übereinstimmung zu liefern. So ergibt sich die Ab-

hängigkeit des Nenners von ,:r, und man kann dafür eine Funktion
aufstellen, die, wenn nötig, nach der Methode der kleinsten Quadrate
berechnet werden kann.

Als Nenner ergab sich so folgende lineare Funktion:

3,6 + 0,025a;

W / i
V(®—18,8)»

(8) 9; (as) =-
3,6 + 0,025 a;

35,531/3—a: 1/ (as—18,8)®
(4) F(as) 5,105 — 0,66974a- + 0,03081a;2 -J 1 -LA A

l + 7,88a;2 3,6 +0,025a;

Bemerkung: Die Werte der Parabel /*(a;) berechnet man am
schnellsten, indem man die zwei ersten Differenzen berechnet. Die

zweite ist konstant, und die erste verändert sich stets um diesen

konstanten Betrag.
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Tafceße At. 2.

Beobach- Aus- Ab-
£ tete Werte /*(*) <p(x) — y(x) geglichene weichungen

1000 • gz Werte F(x) F(X)-1000*5j,

0 66,65 5,11 61,54 66.65 0
1 10,13 4,47 5,66 10.13 0
2 4,96 3,89 1.09 4,98 + 0,02
8 3,42 3,37 3,37 — 0,05
4 2,88 2,92 2,92 + 0,04
5 2,35 2,52 2,52 + 0,17
6 2,22 2,20 2.20 — 0,02
7 1,95 1.93 1,93 — 0,02
8 1,87 1,72 1,72 — 0.15
9 1,72 1.57 1,57 — 0,15

10 1,55 1,49 1,49 — 0,06
11 1,41 1,46 1,46 + 0,05
12 1,38 1.50 1,50 + 0,12
13 1.51 1,60 1,60 + 0,09
14 1.76 1,76 1,76 0

15 1,90 1,99 1,99 + 0,09
16 2,27 2,27 2,27 0
17 2,81 2,62 2,62 — 0,19
18 2,99 3,03 3,03 + 0,04
19 3.50 3,50 0,02 3,48 — 0,02
20 3,70 4,03 0,32 3,71 + 0,01
21 3,79 4,62 0,79 3.83 + 0,04
22 3,86 5,28 1,38 3,90 + 0,04
23 3,91 6,00 2,06 3,94 + 0,03
24 3,94 6,78 2,82 3,96 + 0,02
25 3,99 7,62 3,65 3,97 — 0,02
26 3,85 8,52 4,55 3,97 + 0.12
27 4,05 9,48 5,49 3,99 — 0,06
28 4,01 10,51 6,49 4,02 + 0,01
29 3,84 11,59 7,53 4,06 + 0,22
30 4,29 12,74 8.61 4,13 — 0,16
31 4,36 13,95 9,73 4,22 — 0.14
32 4,41 15,22 10,89 4,33 — 0,08
33 4,35 16.55 12,09 4,46 + 0,11
34 4,44 17,95 13,32 4,63 + 0,19
35 4,82 19,41 14,57 4,84 + 0,02
36 5,08 20,95 15,85 5,10 + 0,02
37 5,57 22,50 17,15 5,35 — 0,22
38 5.73 24,14 18.49 5,65 — 0,08
39 5,85 25,84 19,85 5,99 + 0,14
40 6,37 27,61 21,22 6,39 + 0,02
41 6,83 29,44 22,61 6,83 0
42 7,65 31,33 24,03 7,30 — 0,35
43 7,88 33,27 25,46 7,81 — 0,07
44 8,41 35,29 26,91 8,38 — 0,03
45 9,08 37,36 28,38 8,98 — 0,10
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Bewertung:
Bei den Versicherungsgesellschaften ist folgende Würdigung

einer Ausgleichung üblich: Man wendet die ausgeglichenen Wahr-
scheinlichkeiten auf die Zahl der unter Risiko gestandenen Personen

Lj, an und vergleicht die Anzahl der erwarteten Todesfälle mit den

wirklichen.
Dieser Vergleich wird hier gebracht für Gruppen von 5 zu 5

Altersjahren.

Altersgruppen (1) Wirkliche Zahl
von Todesfällen

(2) Nach der
Ausgleichung des

Verfassers er-
wartete Zahl von

Todesfällen

Differenz (2)—(1)

0— 4 29252 29256 + 4
S— 9 3121 3070 — 51

10—14 2466 2539 + 73

15—19 4574 4537 — 37

20—24 6159 6183 + 24
25—29 5628 5686 + 58

30—34 5469 5443 — 27
35—39 6267 6233 — 34

To 8303 8203 — 100

45 1998 1973 — 25

Die Differenzen überschreiten also nur selten 1% der wirklichen
Quote. Ausgenommen am Schluss, wo die ausgeglichene Kurve
infolge der Korrektur die Tendenz annimmt, zu tief zu verlaufen,
sind keine systematischen Fehler vorhanden. Man ersieht auch aus
der Tabelle Nr. 1, dass das Vorzeichen der Abweichungen stark
wechselt, was naturgemäss ein gutes Zeichen für eine Ausgleichung ist.
Je häufiger der Zeichenwechsel, desto besser die Bewertung.

Aus diesen Erwägungen und aus der Betrachtung der graphischen

Darstellung ist man geneigt, die durchgeführte Ausgleichung als sehr

befriedigend zu bezeichnen. Man vermisst aber in diesen Proben
etwas Handfestes, Sicheres, an Stelle des Gefühlsmässigen. In zweifei-
haften Fällen ist es auf diese Weise nicht möglich, einen Entscheid
zu fällen.

Dieser Frage betreffend die Güte einer Ausgleichung wird der

letzte Teil unserer Arbeit gewidmet werden.
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2. Tafel für (lie Frauen 1921—1930.

Die unausgeglichenen Werte findet man wieder in der Schluss-
tabelle.

Parabel 2. Grades im Intervall 3—16 : n 14

SJ 26,50 S* 159,69 662,41

Tabelle für T,(0)

/,:
' 0 1 2

0 1 — 13 78

1 0 *2 — 36

2 0 0 6

ST?(s) 14 910 26208

Z„ 26,50 «o 1,89286 /(0) 3,12292

Zj - — 25,12 a* — 0,02760 J /(O) — 0,45732

Za 292,62 o, 0,01117 /(O) 0,06702

/(®) 3,12292 — 0,45732 a; + 0,06702

7*-3 (1) /*(®) 4,897 — 0,69189 a: + 0,03351 a;^

26,581/3,2 —a;
2 œ (a) —^ 1 4- 7,06

l/(«—17)
(3) y(a:)

(4) F(£c) =4,897 — 0,69189a; + 0,03351a;- +

6,7 — 0,07 ;s

26,58 ]/3,2—a; l/(as—17)»

1 + 7,06 a:^ 6,7—0,07a:
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Tabeïïe JVr. 2.

Beobach- Aus- Ab-
£ tete Werte /•(*) 9?(®) -yW geglichene weichungen

1000 Werte F(®) F(œ)-1000-g^

0 52,45 4,90 47,55 52,45 0
1 9,13 4,24 4,89 9,13 0

2 4,59 3,65 0,99 4,64 + 0,05
3 3,28 3,12 0,18 3,30 + 0,02
4 2,44 2,66 2,66 + 0,22

5 2,28 2,28 2,28 0

6 1,95 1,95 1,95 0

7 1,62 1,69 1,69 + 0,07
8 1,64 1,51 1,51 — 0,13
9 1,45 1,39 1,39 — 0,06

10 1,42 1,33 1,33 — 0,09
11 1,31 1,34 1,34 + 0,03
12 1,26 1,42 1,42 + 0,16
13 1,56 1,56 1,56 0

14 1,77 1,78 1,78 + 0,01

15 2,13 2,06 2,06 — 0,07
16 2,39 2,40 2,40 + 0,01

17 2.88 2,82 2,82 — 0,06
18 3,02 3,30 0,18 3,12 + 0,10
19 3,44 3,85 0,53 3,32 — 0,12

20 3,41 4,46 0,98 3,48 + 0,07
21 3,59 5,14 1,53 3,61 + 0,02
22 3,79 5,89 2,16 3,73 — 0,06
23 3,83 6,71 2,88 3,83 0

24 3,93 7,59 3,68 3,91 — 0,02

25 4,10 8,54 4,57 3,97 — 0,13

26 4,02 9,56 5,53 4,03 + 0,01

27 3,89 10,64 6,57 4,07 + 0,18
28 4,05 11,80 7,70 4,10 + 0,05
29 4,11 13,01 8,90 4,11 0

30 4,05 14,30 10,19 4,11 + 0,06
31 4,07 15,65 11,56 4,09 + 0,02
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.Fig. 5.

Altersgruppen
(1 Wirkliche Zahl
von Todesfällen

(2) Nach der
Ausgleichung des

Verfassers
erwartete Zahl

von Todesfällen

Differenz (2)—(1)

0— 4 22880 22969 + 89

5— 9 2708 2674 — 34

10—14 2349 2407 + 58

15—19 4831 4784 — 47

20—24 8356 6355 — 1

25—29 6396 6416 + 20

30—31 2371 2390 + 19
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Auch hier bleiben die Differenzen in einem erträglichen Rahmen.
Der Erfolg dieser Ausgleichung liegt darin, eine komplizierte Yer-
teilung in einem ziemlich grossen Intervall ohne nennenswerte Fehler
bewältigt zu haben. Legt man Wert darauf, dem ganzen Abschnitt
mit einer einzigen Funktion zu genügen, so darf man mit diesen

Resultaten zufrieden sein.

3. Tafel für die Männer 1929—1932.

Man geht immer nach demselben Arbeitsschema vor:

Quadratische Parabel von x 3 bis x 19 :

/(x) 8,12275 — 0,42810 x + 0,06036

7*-s (1) /*0) 4,769 — 0,63936 x + 0,03018x2

28,3 "|/3,8 — x
(2) 95 (x)

(3) ^ (x)

1 + 12,52 ]/x3

1 (x 19)3

(4) F(x) =4,769—0,63936x + 0,03018x2 +

4,05

28,3 I 3,:! -x ]/(x—19)®

1+12,52 }/x» 4,05

Da die Beobachtungsdauer dreimal kürzer ist als bei den Mes-

sungen 1921—1930, so sind die Beobachtungswerte der ungleich-
massiger verteilt, so dass die Abweichungen im Durchschnitt etwas

grösser werden.

Dazu kommt noch das besprochene Zurückgehen der Sterblich-
keit zwischen 24 und 30, das nicht zufälliger Natur zu sein scheint.
Dieses Stück wird von der Funktion F(x) nicht gerade gut ausge-
glichen, und es wäre empfehlenswert, ungefähr ab 23 mit einer neuen

Ausgleichung anzufangen.
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Tabelle A4. 3.

Beobach- Aus- Ab-
a; tete Werte /*(£) qs(.r) — ¥>(®) geglichene weichungen

1000-^ Werte F(®) F(®)-1000-^

0 56,19 4,77 51,42 56,19 0

1 7,33 4,16 3,17 7,33 0
2 4,57 3,61 0,91 4,52 — 0,05
3 3,32 3,12 0,23 3,35 + 0,03
4 2,40 2,69 2,69 + 0,29

5 2,24 2,32 2,32 + 0,08
6 1,99 2,01 2,01 4 0,02
7 1,94 1,77 1,77 — 0,17
8 1,55 1,58 1,58 4 0,03
9 1,64 1,46 1,46 — 0,18

10 1,46 1,39 1,39 — 0,07
11 1,41 1,39 1,39 — 0,02
12 1,35 1,44 1,44 4 0,09
13 1,67 1,56 1,56 — 0,11
14 1,51 1,73 1,73 4 0,22

15 1,83 1,97 1,97 4 0,14
16 2,44 2,27 2,27 — 0,17
17 2,64 2,62 2,62 — 0,02
18 2,80 3,04 3,04 4 0,24
19 3,72 3,52 3,52 — 0,20

20 3,60 4,05 0,25 3,80 4 0,20
21 4,02 4,65 0,70 3,95 — 0,07
22 3,98 5,31 1,28 4,03 4 0,05

23 3,94 6,03 1,98 4,05 4 0,11

24 4,28 6,81 2,76 4,05 — 0,23

25 4,08 7,65 3,63 4,02 — 0,06
26 3,76 8,54 4,57 3,97 4 0,21

27 3,66 9,50 5,59 3,91 4 0,25
28 3,93 10,53 6,66 3,87 — 0,06
29 3,80 11,61 7,81 3,80 0
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Altersgruppen (1) Wirkliehe Zahl
von Todesfällen

(2) Nach der
Ausgleichung

des Verfassers
erwartete Zahl

von Todesfällen

Differenz (2)—(1)

0— 4 7827 7853 + 26
5— 9 984 962 — 22

10—14 729 737 + 8

15—19 1469 1468 — 1

20—24 2163 2169 + 6

25—29 1961 1995 + 34

4. Tafel für die Frauen 1929—1932.

Quadratische Parabel von x 3 bis ® 19:

/(®) 2,7713 — 0,37243 x + 0,05238 ^
7x-3 (1) /*(») 4,203 — 0,55576 x + 0,02619 x*

26,33 ]/2,3 —x
(2) Ç9 (x)

1 + 7,16 x

/on 1/(^-18)«
(3) y (x) —

6,25

26,33 1/2,3—x l/(x—18)»
(4) FY®) 4,203 — 0,55576x + 0,02619x» + ——' „ »^ ^ ' 1 + 7,16® 6,25

Altersgruppen (1) Wirkliche Zahl
von Todesfällen

(2) Nach der
Ausgleichung
des Verfassers
erwartete Zahl
von Todesfällen

Differenz (2)—(1)

0— 4 6077 6086 + 9

5— 9 878 848 - 30

10—14 622 656 + 34

15—19 1331 1297 — 34

20—24 1942 1951 + 9

25—26 850 848 — 2
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TafceHe AV. A

Beobach- Aus- Ab-
£ tete Werte /*(x) 9>(®) — y(®) geglichene weichungen

1000 Werte F(a:) F(z)-1000-<k

0 44,12 4,20 39,92 44,12 0
1 7,85 3,67 3,68 7,35 0
2 4,10 3,19 0,94 4,13 + 0,03
3 2,81 2,77 2,77 — 0,04
4 2,30 2,40 2,40 + 0,10

5 2,08 2,08 2,08 0
6 1,93 1,81 1,81 — 0,12
7 1,49 1,59 1,59 + 0,10
8 1,56 1,43 1,43 — 0,13
9 1,46 1,32 1,32 — 0.14

10 1,16 1,26 1,26 + 0,10
11 1,09 1,25 1,25 + 0,16
12 1,25 1,30 1,30 + 0,05
13 1,31 1,40 1,40 + 0,09
14 1,61 1,56 1,56 — 0,05

15 1,78 1,76 1,76 — 0,02
16 2,15 2,02 2,02 — 0,13
17 2,55 2,32 2,32 — 0,23
18 2,51 2,68 2,68 + 0,17
19 3,04 3,10 0,16 2,94 — 0,10

20 2,92 3,56 0,45 3,11 + 0,19
21 3,09 4,08 0,83 3,25 + 0,16
22 3,57 4,65 1,28 3,37 — 0,20
23 3,49 5,28 1,79 3,49 0
24 3,67 5,95 2,35 3,60 — 0,07

25 3,72 6,68 2,96 3,72 0
26 3,86 7,46 3,62 3,84 — 0,02.

Die Genauigkeit der erzielten Resultate kann nach diesen ein-

fachen Proben als sehr befriedigend bezeichnet werden, wofür wir im
letzten Teil noch eine genauere Bestätigung finden werden. Grosse

Fehler von systematischem Charakter sind nicht vorhanden.
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Mit Rücksicht auf das von Lidstone gegebene Kriterium ist es

durch eine Erhöhung des Grades der Parabel nicht möglich, eine Yer-
besserung zu erzielen, denn die Abweichungen würden nicht stark

genug verkleinert, dass der Ausdruck

w — m — 1

vermindert würde. Schliesslich ist es ja auch gar nicht der Sinn einer

Ausgleichung, die Ersatzfunktion in allen Einzelheiten den beobach-
teten Werten anzupassen; sie soll vielmehr unter Wahrung der charak-
teristischen Züge die vereinzelten Punkte in einen glatten Verlauf
überführen.

«

Unter Umständen kann jedoch noch auf einem andern Wege eine

Verbesserung der Resultate versucht werden.

Erscheint die Reihe der Beobachtungspunkte, die man aus-

gleichen will, als eine Zusammensetzung von einzelnen, in sich selbst

typischen Teilstücken, so kann es sich eventuell lohnen, an Stelle des

Gesamtintervalles jedes einzelne dieser Teilstücke für sich mit einem

Polynom auszugleichen ®).

Diesem Versuch ist der folgende Abschnitt gewidmet. Es schien

mir nämlich, dass der Verlauf um das Minimum einen spezifischen
Charakter hat, dem man durch diese Aufteilung noch besser gerecht
werden kann.

5. Partielle Tafel für die Männer 1929—1932.

Intervall 0 -> 4.

Quadratische Parabel durch a 2, 3, 4 :

/(a) 4,57 — 1,25 a + 0,33 (jj
7x-2 (1) /*(«) 8,06 — 2,075 a + 0,165 a*

34,041/2 — a
(2) «y (a)

1 + 27,85 a
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(3) F(œ) 8 ,06 — 2,075 ® + 0,165 as®
34,04 y 2 — a;

'

1 + 27,85 ®

Beobach- Aus- Ab-
X tete Werte

1000-g,
/*(x) <p(x) geglichene

Werte F(x)
weiehungen

F(x)-1000-g,

0 56,19 8,06 48,13 56,19 0

1 7,33 6,15 1,18 7,33 0

2 4,57 4,57 4,57 0

3 3,32 3,32 3,32 0

4 2,40 2,40 2,40 0

Intervall 4 —>-12.

Quadratische Parabel:

/(as) 2,4242 — 0,21816 a; + 0,024 Q
7S-4 /*(«)= 3,536 — 0,326 œ + 0,012 a:*

£

Beobachtete
Werte
1000-g,

Aus-
geglichene

Werte /*(x)

Abweichungen
/*(x)—1000

(4) 2,40 2,42

5 2,24 2,21 — 0,03
6 1,99 1,99 0

7 1,94 1,84 — 0,10
8 1,55 1,69 + 0,14
9 1,64 1,57 — 0,07

10 1,46 1,47 + 0,01

11 1,41 1,40 — 0,01
12 1,35' 1,35 0

Intervall 12 -> 23.

Parabel 3. Grades:

/(œ) 1,4318 + 0,0316 ® + 0,1412 Q — 0,084 Q
7^-12 /*(®) 24,448 — 4,6021 ® + 0,2917 a;^ — 0,00567 a:*



— 94

£

Beobachtete
Werte

1000-^

Aus-
geglichene

Werte /*(a:)

Abweichungen
/*(®) —1000-<k

(12) 1,35 1,43

13 1,67 1,46 — 0,21
14 1,51 1,63 + 0,12
15 1,83 1,91 + 0,08
16 2,44 2,27 — 0,17
17 2,64 2,66 + 0,02
18 2,80 3,06 + 0,26
19 3,72 3,43 — 0,29
20 3,60 3,73 + 0,13
21 4,02 3,94 — 0,08
22 3,98 4,02 + 0,04
23 3,94 3,93 — 0,01

Intervall (1) Wirkliche Zahl
von Todesfällen

(2) Nach der
Ausgleichung
des Verfassers
erwartete Zahl

von Todesfällen

Differenz (2)—(1)

0— 4 7827 7827 0
5—12 1407 1402 — 5

13—23 3482 3470 — 12

Es ist noch interessant, einen Vergleich mit den offiziellen aus-

geglichenen Zahlen des Eidgenössischen Statistischen Amtes zu
machen.

Dazu muss vorausbemerkt werden, wie diese Zahlen hergeleitet
wurden. Von 0 bis 8 wurden die unausgeglichenen Werte über-

nommen. Der schwierige Teil von 4 bis 20 wurde stückweise graphisch
ausgeglichen, wobei man auf eine möglichst genaue Anpassung an die

rohen Werte achtete. Deshalb sollen diese offiziellen Zahlen mit
unserer partiellen Ausgleichung verglichen werden. Für Alter über
20 wandte das statistische Amt die Methode von King an.
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1000-Çj,
Abweichungen

£
Ausgeglichene Werte

(1)
Rohe Werte

(2)
Eidg. S tat.

Amt

(3)
Verfasser (2) (1) (Ö)—(1)

0 56,19 56,19 56,19 0,00 0,00
1 7,33 7,33 7,33 0 0
2 4,57 4,57 4,57 0 0
3 3,32 3,32 3,32 0 0

4 2,40 2,54 2,40 + 14 0

5 2,24 2,20 2,21 — 4 — 3

6 1,99 1,99 1,99 0 0

7 1,94 1,82 1,84 — 12 — 10

8 1,55 1,68 1,69 -j- 13 + 14
9 1,64 1,57 1,57 — 7 — 7

10 1,46 1,47 1,47 + 1 + 1

11 1,41 1,40 1,40 — 1 — 1

12 1,35 1,38 1,35 + 3 0

13 1,67 1,48 1,46 — 19 — 21

14 1,51 1,68 1,63 + 17 + 12

15 1,83 1,94 1,91 + 11 + 8

16 2,44 2,25 2,27 — 19 — 17

17 2,64 2,61 2,66 — 3 + 2

18 2,80 2,99 3,06 + 19 + 26

19 3,72 3,37 3,43 — 35 — 29

20 3,60 3,65 3,73 + 5 + 13

21 4,02 3,86 3,94 — 16 — 8

22 3,98 4,02 4,02 + 4 + 4

23 3,94 4,06 3,93 + 12 — 1

2 abs. 2,15 2 abs. 1,77

2 — 0,17 2 — 0,17

Die erzielte Genauigkeit ist also befriedigend.
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(». Partielle Tafel für die Frauen 1929—1932.

Intervall 0 10.

Parabel von 3 —> 10:

/(») 2,7358 — 93373 x + 0,042

(2) 99 (x)

7z-3 (1) / *(«) 4 — 0,4843 x + 0,021 x*

23,05 "j/3,03 — x
1 -f- 4a -f- 3,63x2

23,05 1/3,03 — x
(3) F(x) 4 — 0,4843 x + 0,021 x2 + f

1 + 4x + 3,63x2

Beobachtete Aus- Ab-
£ Werte /*(x) 9>(®) geglichene weichungen

1000-5, Werte F(œ) F(®) —1000-^

0 44,12 4 40,12 44,12 0
1 7,35 3,54 3,81 7,35 0

2 4,10 3,11 0,99 4,10 0

3 2,81 2,74 0,08 2,82 + 0,01
4 2,30 2,40 2,40 + 0.10
5 2,08 2,10 2,10 + 0,02
6 1,93 1,85 1,85 — 0,08
7 1,49 1,64 1,64 + 0,15
8 1,56 1,47 1,47 — 0,09
9 1,46 1,34 1,34 — 0,12

(10) 1,16 1,26 1,26

Intervall 10 -> 17.

Parabel :

/(x) 1,1376 + 0,00432 x + 0,0657 Q
7*-io /*(®) 4,7079 — 0,68553 x + 0,03285 x*
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£

Beobachtete
Werte

1000'Çj,

Aus-
geglichene

Werte /*(œ)

Abweichungen
/*(«) —1000-^

10 1,16 1,14 — 0,02
11 1,09 1,14 + 0,05
12 1,25 1,21 — 0,04
13 1,31 1,35 + 0,04
14 1,61 1,55 — 0,06
15 1,78 1,81 + 0,03
16 2,15 2,15 0
17 2,55 2,55 0

Intervall 17 23.

Gerade: /(a;) 2,4897 + 0,1782a;

7*-w /*(») — 0,5397 + 0,1782a:

£

Beobachtete
Werte

1000

Aus-
geglichene

Werte /*(»)

Abweichungen
/*(») —1000-

(17) 2.55 2,49

18 2,51 2,67 + 0,16
19 3,04 2,85 — 0,19
20 2,92 3,02 + 0,10
21 3,09 3,20 - 0,11
22 3,57 3,38 — 0,19
23 3,49 3,56 + 0,07

Intervall (1) Wirkliche Zahl
von Todesfällen

(2) Nach der
Ausgleichung
des Verfassers
erwartete Zahl
von Todesfällen

Differenz (2)—(1)

0— 9 6955 6954 — 1

10—17 1318 1318 0

18—23 2158 2164 + 6
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1000-5,
Abweichungen

01

Auageglichene Werte
(1)

Rohe Werte
(2)

Eidg. S tat.
Amt

(3)
Verfasser (2) (1) (3) — (1)

0 44,12 44,12 44,12 0,00 0,00

l 7,35 7,35 7,35 0 0
2 4,10 4,10 4,10 0 0

3 2,81 2,81 2,82 0 + 1

4 2,30 2,36 2,40 + 6 + 10

5 2,08 2,08 2,10 0 + 2

6 1,93 1,84 1,85 — 9 — 8

7 1,49 1,65 1,64 + 16 + 15

8 1,56 1,50 1,47 — 6 — 9

9 1,46 1,36 1,34 — 10 — 12

10 1,16 1,20 1,14 f 4 — 2

11 1,09 1,11 1,14 + 2 + 5

12 1,25 1,19 1,21 — 6 4

18 1,31 1,35 1,35 + 4 + 4

14 1,61 1,57 1,55 — 4 — 6

15 1,78 1,82 1,81 - 4 + 3

16 2,15 2,11 2,15 — 4 0

17 2,55 2,39 2,55 — 16 0

18 2,51 2,64 2,67 + 13 + 16

19 3,04 2,86 2,85 — 18 — 19

20 2,92 3,05 3,02 + 13 + 10

21 3,09 3,23 3,20 + 14 + 11

22 3,57 3,40 3,38 — 17 — 19

23 3,49 3,54 3,56 5 + 7

S abs.=^ 1,71 S abs. 1,63

2 — 0,09 S — 0,05

Es ist deutlich ersichtlich, dass man durch diese partielle Aus-

gleichung dem wirklichen Verlaufe hesser gerecht wird als mit einer

einzigen Funktion. Dafür bedeutet diese Methode gewissermassen
eine Vergewaltigung der Verhältnisse bei den Zusammensetzstellen,
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indem dort die g^-Funktion sowie die Intensität unstetig werden. Da-
durch wird die Brauchbarkeit bei diesen Stellen fragwürdig.

Es hängt vom vorliegenden Beispiel ab, zu entscheiden, ob sich
diese Aufteilung lohnt. Bemerkenswert ist, dass es Methoden gibt,
die es erlauben, bei den Ansatzstellen die Stetigkeit wieder herzu-
stellen.

Über solche Methoden hat J. P. Gram Veröffentlichungen ge-
macht, und es soll hier eine davon zitiert werden ®) :

a: sei ein Punkt, wo zwei Intervalle zusammenstossen. Dabei
wird man natürlich einen solchen Punkt nicht da wählen, wo die

Verteilung grosse Schwankungen macht. Die Umgebung von rr,

z. B. das Stück a: —- /t bis a; + fe sei zweimal ausgeglichen worden
durch /i(a;) und /a(a:).

Lineare Kombination: F(a;) A(a;) /^(a;) -f- (1—A(a;)) ^(a;)

Für A (a;) wählt man passende echte Brüche. Diese werden so

bestimmt, dass sie nur von 7i abhängig sind, für 7i 0 % werden und
für positive gegen 1, für negative gegen 0 streben.

Solche Brüche findet man z. B., wenn man in (1 -j- 1)"' die

Glieder allmählich addiert und durch 2 dividiert.

Z. B. ergibt m 3 die Reihe 8A 0, 1, 4, 7, 8

^ _ g
8, 7, 4, 1, 0

/i(aO • • • /i(a>—2), /i(aj 1), /i(as), /i(a:+l)

/2(a) • • • /al«—1)> /2(a), /2OZ+I), /a(®+2)

7/i(®—1) + /«(®—1 4/i(as) + 4/,(as)
n(a:j /Ra; -j],

8

/i(^+l) + 7 /a(a:+l)
'> /a(®+2)

Je mehr überschobene Werte vorliegen, desto glatter wird der

Übergang. Vollständige Kontinuität kann aber nie erreicht werden.

Wegen der Methode der kleinsten Quadrate war

S?i(a:)'/W=STj(i)'i/W
Momentensumme der ausgeglichenen Werte Momentensumme der

unausgeglichenen Werte.
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Diese Eigenschaft, die für /^(a;) und ^(ai) nach Herleitung erfüllt
ist, geht bei der Ausglättung verloren, so dass um die Stelle a; herum
unter Umständen eine Verschlechterung eintritt.

In derselben Arbeit hat Gram noch andere Methoden angegeben.
Oft wird es aber schon genügen, wenn man bei den Grenzstellen die
beiden Kurven genügend übereinandergreifen lässt.

Bei den vorausgegangenen Anwendungen wurden diese Be-

trachtungen nicht verwirklicht. Es wurde hauptsächlich danach ge-
trachtet, die einzelnen typischen Stücke gut herauszupräparieren.

III. TEIL.

Die Güte einer Ausgleichung.
1. Kriterium für den Grad der Ausgleichsfunktion.

Es ist schon ein Kriterium erwähnt worden, das über die Güte
der Ausgleichung entscheidet, wenn man hinsichtlich des zu wählenden

Parabelgrades im Zweifel ist. In diesem Ealle entscheidet also nicht
die Summe der quadratischen Fehler allein, sondern man hat sie zu
dividieren durch (n—w—1), wo n die Anzahl der beobachteten Merk-
male und m der Grad der Parabel ist.

Es sei als Beispiel folgende Verteilung gegeben:

« 0 1 2 3 4 5 6 7 8 9 10 11

2/ 135 167 151 183 244 264 280 372 360 402 398 394

Diese Zahlen stammen aus 10® ^ für Männer 1929—1932,

vom 12. bis 23. Altersjahr. Wir wollen sie mit folgenden vier Poly-
nomen ausgleichen:

/o

/i(x) a« + % Ti(as)

/a(«) «o + «i 2i(«) + «2

/s(z) «o + «1 AO) + «2 ^2(«) + «s ^(a)
Durch den üblichen Prozess findet man:

/o 279,17

/i(a;) 125,84 + 27,86 a;



/a(«) 115,01 + 33,77 a: —1,18 m
/,(®) 143,18 + 8,16® + 14,12 Q - 3,4 (J

£ 2/ /o /iO) LO) /s(»)

0 135 279 126 115 143
1 167 279 154 149 146
2 151 279 181 181 163
3 183 279 209 213 191

4 244 279 237 243 227
5 264 279 265 272 266
6 280 279 293 300 306
7 372 279 321 327 343
8 360 279 349 352 373
9 402 279 377 377 394

10 398 279 404 399 402
11 394 279 432 421 393

Bj 118056 Ei 6872 Bj 6433 B3 2773

BS

11
10732

Bf
10

687
Bj

_
9

715
B3

_
8

347

Man erkennt, dass z. B. die Gerade besser bewertet wird als die

quadratische Parabel, da ihre Fehler nur unbedeutend grösser sind.
Wie man sieht, ist der 3. Grad hier am Platze. Eine weitere Grad-

erhöhung würde nach Lidstone wieder zu einer Verschlechterung
führen.

Dieses Kriterium ist jedoch in seiner Anwendungsmöglichkeit
beschränkt, indem es nur gerade für ganze rationale Funktionen gilt.
Ferner bedingt es, dass das gegebene Material durch mindestens zwei

Polynome verschiedenen Grades ausgeglichen worden ist. In diesem

Falle giht es nur eine relative Beziehung zwischen der Güte dieser

Ausgleichungen, sagt aber nicht aus, welche davon in ein erlaubtes
Mass fallen und welche es überschreiten. Es fehlt also die absolute

Beurteilung.
Wir wollen nun ein anderes Kriterium heranziehen, das diese

Mängel nicht mehr aufweist.
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2. Die ^-Methode.

Mit der Entwicklung dieser Theorie sind die Namen Pearson *°),
Elderton ®), E. A. Fisher *), Cramer®), Anderson'), Helmert') und
Bortkiewicz ') verbunden.

Gegeben sei irgendeine Verteilung, gleichgültig, an welchem
Material sie beobachtet worden sei. Sie werde dann ersetzt durch eine

gesetzmässige, theoretische, sei es durch analytische Ausgleichung
oder auf einem andern Weg. Dann drängt sich sofort die Erage auf,
ob diese theoretische Verteilung auch ruhig an Stelle der beobachteten
verwendet werden dürfe, das heisst, ob sie das Gesetz, das die unaus-
geglichenen Zahlen schon durchblicken lassen, gut wiedergebe oder
ob sie systematische Abweichungen davon zeige. Schliesslich ist auch

von Bedeutung zu wissen, ob die beobachtete Verteilung überhaupt
homogen genug ist, um durch eine zuverlässige theoretische ersetzt
werden zu können. Die Grösse der einzelnen Fehler oder die Summe
ihrer Absolutbeträge gibt uns nur in den extremsten Fällen zuver-
lässigen Aufschluss.

Ein interessantes Kriterium zur Beurteilung der Güte der An-

passung ist die 2 ^-Methode. Wie wir sehen werden, macht sie funda-
mentale Voraussetzungen über die Struktur des Materials, die nicht
in jedem praktischen Falle erfüllt sind, so dass ihre Anwendbarkeit
dadurch beschränkt wird.

Das Wesentliche der 2^-Methode besteht darin, dass man nicht
die beobachtete Verteilung, sondern die theoretische als die primäre
auffasst. Sie stellt die zu erwartende Verteilung dar, das heisst, das

Gesetz des Vorganges. Von ihr ausgehend, berechnet man sodann die

Wahrscheinlichkeit für das Eintreffen einer gleich guten oder schlech-

teren Verteilung als die beobachtete. Die Wahrscheinlichkeit für eine

genau gleich gute wäre praktisch verschwindend klein, weshalb man die

Wahrscheinlichkeit für eine höchstens gleich gute sucht.

An jeder Stelle wird also der ausgeglichene Wert als der zu er-
wartende aufgefasst. Nun setzt die /^-Methode voraus, dass sich

bei oftmaliger Wiederholung derselben Messungen die Häufigkeiten
in jeder einzelnen Merkmalklasse nach der Gaussschen Art, das heisst

in Glockenform, um den betreffenden theoretischen Mittelwert an-
ordnen.
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—L= math. Erwàrtun^

Pig. 6.

Normalverteilung wenn a 1.

Die Wahrscheinlichkeit für eine Abweichung > t vom Mittel-
wert a;,, wird gegeben durch die beiden äusseren Flächenstücke, divi-
diert durch die Gesamtfläche unter der Kurve:

1 *"/' (»-»0)' J (s-sp)'

e ^ _|
/ g 2a2 ^

3 i,
1 +~ (a^-aro)a

' ]/2 ;
e 2O2 ^

2 / e ^ da;

sp-H

2 / e ^ ^
xo

~ (j-g,)«
/ e 2a2

P Xp + f

/ e ^
Xp
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Das muss bei jeder beliebigen Stelle der Verteilung gelten, bei
jeder nach einer andern unabhängigen Veränderlichen x und mit
einer andern Streuung.

Fassen wir nun zwei Stellen auf einmal ins Auge und betrachten
die Besultierende der beiden Einzelabweichungen als totale Ab-
weichung, so erhalten wir eine zusammengesetzte Gausssche Funktion
2 /(x, £/), die sich also nach zwei unabhängigen Variabeinrichtungen
verändern kann. Wir erhalten als Bild nicht mehr eine Kurve, sondern
eine Fläche, eine sogenannte Korrelationsfläche.

Die Mittelwerte der beiden Verteilungen legen wir in den Punkt
Xq z/o und wählen diesen als Basispunkt der Fläche /(x, r/).

Die Masse der Verteilung, die über dem Gebiet (G) liegt, wird
gegeben durch das Doppelintegral

y /" 2 dF /'/ /(x, ?/) dx cZz/ Volumen.
1(G) (G)

Erklärt man /(x, ?/) als Wahrscheinlichkeit/und integriert in den

beiden Bichtungen von — bis + », so wird dieses Doppelintegral
analog wie das einfache, bei einer einzigen Variabein, 1.

Jetzt handelt es sich darum, die Funktion 0 /(x, y) zu finden.
Die unabhängigen Funktionen lauten:

y

x

Fig. 7.

/(x) e *"Î
(s-Zo)^

Ol



Die zusammengesetzte Gausssche Punktion ist das Produkt der

unabhängigen. Sie lautet also:

1 ^r- + ^rMz /(s,3,)=- e ^ '
J

(s-tcp)« (r-j/oP 1

çT ^ 2 <

2jî 0^ 0*2

sind konzentrische Ellipsen um (zg î/g). Wenn tx^ Og ist, gehen sie

in Kreise über.

Die Wahrscheinlichkeit für das Eintreffen gewisser Mindest-
abweichungen ^ und ^ vom Mittel /(:Cg, î/g) erscheint nun als Quotient
zweier Doppelintegrale.

Haben wir nicht nur eine zweifach zusammengesetzte Punktion,
sondern eine solche mit w unabhängigen Yariabeln, so werden wir
folglich für w-fache Integrale zu lösen haben.

Pearson gelang es, diese w-fachen Integrale auf einfache zurück-
zuführen *°), und er erhielt für die Wahrscheinlichkeit den Aus-
druck :

Die untere Grenze / ist eine Funktion der einzelnen Abweichungen
in den w verschiedenen Richtungen. Sie drückt also noch die Ab-

hängigkeit von den w Yariabeln aus. Bezeichnen wir mit ^ die ins

Auge gefasste Abweichung vom Mittelwert in der I. Variabein-

richtung, so ist:

Sehen wir nun zu, welche Form ^ bei unserem Ausgleichungs-

problem annimmt! An den w Stellen iCg, a^, seien die Werte

I/o» 2/i • • • 2/n-i beobachtet worden und ausgeglichen durch eine

Funktion /(x).

P -£
n

0
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Nun nimmt man an, /(x) stelle bei jedem betrachteten Punkte
den Mittelwert dar, und t/, z. B. sei, wenn man viele Messungen machte,
normal um das Mittel /(a;-) verteilt. Die Gesamtheit der « Beobach-

tungsstellen zusammen liefert die Problemstellung, die von Pearson
behandelt wurde.

Damit ist:

2 y? (/(«A — »fr))'
Zj /(«)

(ausgeglichener, d.h.: erwarteter Wert — beobachteter Wert) ^

2j 7 ——
ausgeglichener Wert

Wächst £ von 0 bis so nimmt P ab von 1 bis 0. Es ist also

diejenige Ausgleichung die beste, die das kleinste z beziehungsweise

^ liefert; denn für diesen Wert wird Z), am grössten. P bedeutet
aber die Wahrscheinlichkeit für gleich grosse oder, was wichtig ist,
für noch grössere Fehler.

Elderton und Fisher *) haben die Grössen w, tabuliert,
so dass man die entsprechenden Werte nur abzulesen braucht.

Bei der praktischen Anwendung ist es schwer, einen Wert für
P anzugeben, der die Grenze der Brauchbarkeit einer Ausgleichung
darstellt. Fisher und Anderson nehmen dafür ungefähr den Wert
P 0,05 an; das heisst, nur in einem Fall von 20 sind gleich grosse
oder noch grössere Fehler als die vorliegenden zu erwarten. Es kommt
übrigens gar nicht auf eine genaue Kenntnis von P an. Beträgt
dieses etwa 0,05 oder noch weniger, so bedeutet das, dass Grund vor-
handen ist, dem aufgestellten Ausgleichungsgesetz zu misstrauen. Vor-
aussetzung ist natürlich immer, dass genügend Beobachtungen ge-
macht wurden, so dass die gegebenen Punkte das Verteilungsgesetz
durchblicken lassen.

Der Willkürlichkeitsgrad einer Verteilung.

Man muss bei der Anwendung der ^-Methode noch einen weiteren

Faktor berücksichtigen, den sogenannten Willkürlichkeitsgrad oder

Freiheitsgrad der Verteilung:
Es seien V Beobachtungen auf w Merkmalgruppen verteilt, so,

dass den Punkten x„, ®x, • • • #„-i die Mengen î/i, ent-
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sprechen. Diese gegebene Verteilung werde nun ersetzt durch ein
Gesetz /(er). Es gibt Fälle, bei denen gelten muss:

das heisst, das Gesetz /(a:) muss sich an die vorgegebene Elementen-
zahl V halten. Es hat also die Aufgabe, genau die N Elemente, nicht
mehr und nicht weniger, in die n Gruppen zu verteilen. Man könnte
also unter Umständen die Mengen in n—1 Gruppen willkürlich wählen,
natürlich nicht > V; dann ist aber die Menge in der m. Gruppe fest-
gelegt. Man kann nicht mehr willkürlich über sie verfügen, denn sie

beträgt genau V, vermindert um die Zahl der schon verfügten Ele-
mente. Man sagt, der Willkürlichkeitsgrad sei in diesem Falle gleich
n—1.

Bedingt man etwa aus, dass nicht nur die Gesamtzahl V in beiden

Verteilungen übereinstimmen muss, sondern auch der häufigste Wert,
so schränkt das die Verfügungsfreiheit weiter ein, und der Willkürlich-
keitsgrad sinkt auf w—2.

Es ist nun klar, dass, je mehr solcher Bedingungen man voraus-
setzt, die die beobachtete und die berechnete Verteilung aneinander-
knüpfen, desto kleiner von selbst die Abweichungen werden. Dieser
Umstand muss berücksichtigt werden, wenn man die Güte einer Aus-
gleichung beurteilen will.

Es kann gerade an dieser Stelle bemerkt werden, dass bei Sterbe-
tafeln der Willkürlichkeitsgrad identisch ist mit n, denn es existieren
keine Postulate, die die Freiheit der Ausgleichung einschränken. Die
Summe der ausgeglichenen^-, oder Werte braucht nicht mit der
der unausgeglichenen übereinzustimmen.

Elderton ®) wies darauf hin, dass man diesen Faktor beobachten

müsse, um das berechnete P richtig einzuschätzen. Er meint aber,

es sei ohne Verwirrung nicht möglich, diese Grösse systematisch in
die Rechnung einzubeziehen. In seiner Tabelle bedeutet n die Anzahl
der Merkmalklassen. Fisher *) dagegen misst dieser Tatsache grössere

Bedeutung zu. In seiner Tabelle bedeutet w nicht mehr die Anzahl
der Merkmale, sondern die Anzahl derjenigen von ihnen, die man
beliebig besetzen kann, also den Willkürlichkeitsgrad. Da es aber
nicht auf den genauen, sondern nur auf den angenäherten Wert von
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P ankommt, so hat dieser Unterschied in den meisten Fällen keine

allzugrosse Bedeutung.
Es folgt ein Ausschnitt aus der Tabelle von Fisher *) (Seiten 96/97) :

\Pn 0,99 0,98 0,05 0,01

1 0,000157 0,000628 3,841 6,635
2 0201 0404 5,991 9,210
3 115 185 7,815 11,341
4 297 429 9,488 13,277
5 554 752 11,070 15,086
6 872 1,134 12,592 16,812
7 1,239 564 14,067 18,475

30 14,953 16,306 43,773 50,892

Übersteigt w den Wert 30, so kann man die Kolonnen ein Stück
weit extrapolieren und erkennt dann leicht, in welche das berechnete

fällt. Ferner gibt Fisher *) eine Ersatzmethode an, die um so genauer
wird, je mehr n wächst: Für eine grosse Anzahl von Messungen an
demselben Material nimmt nämlich % angenähert die Form einer

Normalverteilung an, und zwar um so genauer, je grösser w ist. Eine

gute Näherung ist die Annahme, dass ^2;^ normal um das Mittel
|/2m—1 verteilt ist. |/2 w—1 ist also der Erwartungswert für 1^2 2®.

[^2;^—['2n—1 ist normal um 0 verteilt. Je grösser w ist, desto

besser ist die Annäherung an die Normalverteilung.
Als Übergangsstelle, die ungefähr dem Wert i/) 0,05 ent-

spricht, gibt Fisher folgenden Ausdruck an:

]/2** — ]/2w—1 + 2 «)

Man kann sich leicht selbst davon überzeugen, dass diese Gleichung,
für irgendwelche konkreten w, /^-Werte liefert, denen angenähert
P 0,05 entspricht. Wird die linke Seite grösser als 2, so bedeutet

das, dass wir der gemachten Ausgleichung misstrauen müssen. Ein
gutes Zeichen ist es, wenn sie negativ wird.
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Aus der Definition von erkennt man, dass es im wesentlichen
nichts anderes ist als die Bedingung der kleinsten Quadrate. Neu ist
einzig, dass die Fehler nicht absolut gewertet werden, sondern im Ver-
hältnis zur zugehörigen Ordinate. Eine Abweichung von 4 an einer
Ordinate von 50 fällt z. B. weniger ins Gewicht als an einer Ordinate
von 10. Das ist ohne weiteres vernünftig. Im ersten Falle ist eine

Abweichung > 4 wahrscheinlicher als im zweiten.

Die ^-Methode kann deshalb neben ihrer Verwendung als nach-

trägliche Probe auch benutzt werden, wie die Methode der kleinsten
Quadrate, zur Bestimmung des Polynoms. Dadurch wird die Summe
der quadratischen Fehler grösser, jedoch sind dafür die Abweichungen
proportional zu den Ordinaten verteilt.

Es sei 5a, eine durch Beobachtung erhaltene Serie von Sterbens-
Wahrscheinlichkeiten. Die Ausgleichung soll gemacht werden mit
dem Polynom

Dann stellt man zur Bestimmung der Koeffizienten die Forderung
auf:

soll ein Minimum sein. Eine bedeutende Komplikation stellt nun der
Nenner dar. H. Cramer ®) hat aber gezeigt, dass die Fehler ganz un-
bedeutend sind, wenn man im Nenner die unausgeglichenen Werte
setzt.

Die Auflösung ist nun ganz analog wie bei der blossen Methode
der kleinsten Quadrate.

Derselbe Autor weist darauf hin, dass es beim Gesetz von Makeham

bequemer ist, mit der Intensität /q. statt mit der Wahrscheinlichkeit

5a, zu rechnen. Sind die Personen unter Risiko und d^. die beobach-

teten Todesfälle, so ergibt sich:

«o + % £j(a;) + «2 ^(®) + •••+"

r> 2 {qp + «1 Pj(a;) + +«. PJs) — gqp

«o + % -Pi(z) +•.+<*„ P„(s)

Damit lautet die Bestimmungsgleichung:

{a„ + ff(a;) + + a„ PJz) — g,}'

8
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Nun setzt man einige Werte für den Parameter c ein und be-

rechnet M und B. Dann stellt man die resultierenden %^-Werte zu
den Abszissen log. c graphisch dar. Daraus erkennt man, dass

als Funktion von log. c ziemlich genau als Parabel 2. oder 3. Grades
erscheint. Man bestimmt das Minimum dieser Parabel und liest seine

Abszisse ab. Damit ist c bestimmt. Mit diesem Wert von c berechnet

man sodann endgültig die Paramter M und JB.

Diese stark vereinfachte Methode von H. Cramer gab befriedigende
Resultate für

Zuerst sei ein ganz einfaches Beispiel vorausgeschickt, das auch
den Sinn des Willkürlichkeitsgrades zeigt :

Das Vererbungsgesetz von Mendel lehrt, dass die Plälfte der
Nachkommen von zwei Kaninchen z. B., von denen das eine weiss,
das andere schwarz ist, von gemischter Farbe sind. Nur ein Viertel
ist rein weiss und ein Viertel rein schwarz. Dies sind die Erwartungs-
werte. Sie spielen die Rolle wie bei unserem Problem die ausgeglichenen
Werte.

3. Anwendung der- ^-Methode.

weiss X schwarz

weiss gemischt (gefleckt) schwarz

T Y
1/4 1/4

Bei einer Anzahl solcher Paare sind 158 Junge beobachtet
worden. IV 158, « 3.
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Die Verteilung ergab sich folgendermassen :

schwarz gefleckt weiss

erwartet 39,5 79 39,5
beobachtet 39 78 41

(0,5)2 (1,5)2
*2 —— + — + 0,0759

39,5 79 39,5

Die Anzahl der Klassen ist also n 3. Die theoretische Ver-
teilung ist aber nicht frei. Die Summe der 3 Posten muss 158 ergeben.
Also könnte man nur zwei von den drei Klassen willkürlich ausfüllen.
Die Anzahl in der dritten wäre dadurch festgelegt. Also ist der Will-
kürlichkeitsgrad nur 2. In der Tabelle von Fisher entspricht den
Werten n 2, £2 0,0759 ungefähr P 0,96. Das heisst, nur in
vier Fällen von hundert ist ein so gutes oder noch besseres Kesultat
zu erwarten. Dieser Versuch spricht also stark für das von Mendel

aufgestellte Gesetz.

Nun kehren wir zurück zu unserer Ausgleichungsaufgabe. Bevor
wir die ^-Methode anwenden können, müssen wir noch eine Be-

merkung machen.

Multipliziert man die Zahl V der Beobachtungen mit irgendeiner
Zahl Q, so wird auch ^ mit Q multipliziert, wenn man auch die Ab-
weichungen mit demselben Faktor vergrössert. Das ist einleuchtend;
denn wenn man die Anzahl IV der beobachteten Elemente verviel-
facht, so sollte die resultierende Verteilung gleichmässiger ausfallen,
da die Zufälligkeiten nach und nach der Gesetzmässigkeit zustreben.
Ist das nicht der Fall, so ist es ein Zeichen dafür, dass das vorliegende
Material heterogener ist und dass von der theoretischen Verteilung
aus die Aussicht für eine gleich oder weniger wahrscheinliche Ver-
teilung wie die beobachtete sinkt.

Wollten wir nun direkt die gegebene Serie der g^, prüfen, so würde
uns der zugrunde liegende Massstab fehlen. Es kommt sicher auf
dasselbe heraus, ob wir g^. berücksichtigen und dabei gewisse Ab-
weichungen erhalten oder etwa 1000.g^, und dementsprechend auch
lOOOmal grössere Abweichungen. Beide Ausgleichungen sind genau
gleich gut. Trotzdem würde ^ bei der zweiten lOOOmal grösser.
Die /2-Probe ist empfindlich gegenüber einem Massstab, von dem

die Wahrscheinlichkeiten g^, selbst gelöst sind. Es ist von grosser Be-

deutung, aus wievielen Beobachtungen diese g^, berechnet worden sind.
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Also müssen wir, um eine Anwendung machen zu können, zu der
Eeihe der oder zurückkehren.

Männer 1929—1932.

£ dx beobachtet dx berechnet £ dx beobachtet dx berechnet

0 5923 5923 12 128 137
1 871 871 13 160 149
2 454 449 14 146 166
3 335 337 15 186 201

4 244 273 16 260 241

5 230 239 17 295 293
6 207 209 18 312 338
7 203 186 19 416 395

8 166 169 20 397 419
9 178 159 21 446 438

10 153 146 22 436 441

11 142 139 23 428 439

Der Willkürlichkeitsgrad ist hier identisch mit der Anzahl
Klassen: w 24.

Aus diesen Werten ergibt sich 19,3.
Und nach der Tabelle von Fisher — 0,73.
Das Eesultat kann als befriedigend bezeichnet werden, besonders,

wenn man noch einen wichtigen Umstand berücksichtigt, auf den wir
noch zu sprechen kommen werden.

Frauen 1929—1932.

£ dx beobachtet dx berechnet # dx beobachtet dx berechnet

0 4458 4458 13 123 132
1 718 718 14 153 148

2 397 400 15 179 177
3 276 272 16 229 215

4 228 238 17 288 262
5 210 210 18 285 304
6 197 185 19 350 339

7 153 163 20 337 359

8 163 150 21 364 382

9 155 140 22 417 394

10 120 130 23 405 405
11 108 123 24 419 411

12 118 123 25 421 421

26 429 427
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Woraus ^ 16,8
und 0,93.

Geht man von der berechneten Abteilung aus, so wäre danach
in 93 von 100 Fällen mit schlechteren Werten zu rechnen als die,
welche tatsächlich beobachtet wurden. Umgekehrt bedeutet es, dass

die gemachte Ausgleichung das Yerteilungsgesetz der rohen Zahlen
sehr gut getroffen hat.

Die Übereinstimmung ist also noch grösser als bei den der
Männer.

Nun wäre es auch interessant, ein Kriterium dafür zu besitzen,
wann sich die Aufteilung in Intervalle, wie wir es für die Messungen
von 1929—1932 versucht haben, lohnt und wann nicht. Es ist aller-
dings sehr schwer, ein solches, absolut gültiges Gesetz aufzustellen,
und man wird die Hilfe der rein anschaulichen Überlegung nie aus-
schalten können. Jedoch ist es naheliegend, dass man versuchsweise
die Wahrscheinlichkeiten P für die einzelnen Teilintervalle berechnet
und daraus über das ganze Intervall das gewogene arithmetische
Mittel bildet.

Für die bei den Männern gibt das:

PI ~ 0,73 also gleich wie ~^24'

Bei den Frauen dagegen

PJ ~ 0,85 gegenüber P; ~ 0,93.

Stellt man auf diese Probe ab, so hätte also die Aufteilung in
keinem der beiden Fälle eine lohnende Verbesserung gebracht. Dies

kommt daher, dass in einzelnen Intervallen die Summe der absoluten
Fehler kaum verkleinert werden konnte. In diesen wird dann P sofort
bedeutend kleiner, und ein solches Intervall vermag das ganze Resultat
bedeutend zu beeinträchtigen. In andern, besonders typischen Teil-
stücken dagegen ist der Vorteil unzweifelhaft.

* **

Bei den Messungen von 1921—1930 erstreckte sich die Beob-

achtungsdauer über 6 Jahre mehr als bei denen von 1929—1932. Will
man hier die ^-Methode anwenden, so offenbart sich eine äusserst

wichtige Tatsache. Man erhält nämlich für die Alter von 0 bis 45

Jahren einen Wert von ^ bei 80 herum. Extrapoliert man die
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Kolonnen der Tabelle, so sieht man, dass das entsprechende P kleiner
ist als 0,05, wonach die Ausgleichung vollständig ungenügend wäre.
Auch mit der von Fisher angegebenen Ersatzmethode kommt man

zum selben Schluss, denn ^2pp^—- F2n—1 nimmt einen Wert um
-j- 3 herum an.

Betrachtet man aber die graphische Darstellung, so darf man
ruhig behaupten, dass die Ausgleichung auf keinen Fall so schlecht
ist, sondern im Gegenteil recht befriedigend.

Der Fehler liegt wirklich nicht in der Ausgleichung, sondern in
der Annahme, dass man die £ ^-Methode anwenden könne.

Die p^-Methode geht von der fundamentalen Voraussetzung
aus, dass in jeder Gruppe die Häufigkeit bei oftmaliger Wieder-
holung der Messungen nach dem Gaussschen Gesetz, das heisst, in
Glockenform, um einen wahrscheinlichsten Mittelwert herum verteilt
sei. Diese Voraussetzung trifft nun aber für die ^ nicht zu. Es ist
eine nachgewiesene Tatsache, dass in letzter Zeit die Sterblichkeit für
jedes einzelne Alter im Laufe der Kalenderjahre abnimmt. So stellt
das für jedes bestimmte Alter eine mit der Zeit irgendwie ab-
nehmende Funktion dar.

Einen wahrscheinlichsten Mittelwert im Sinne der Zufalls-
Verteilung gibt es da nicht. Diskontinuierlich aufgefasst hat eigent-
lieh jedes Kalenderjahr seinen eigenen Mittelwert, so dass bei einer

langen Beobachtungsdauer an Stelle eines einzigen wahrscheinlichsten
Wertes eine ganze Anzahl auftritt. Statt des Verlaufes (1) nimmt also

die Kurve schematisch den Verlauf (2) an.
Die Stärke der Abflachung ist proportional zu der Länge der

Beobachtungszeitspanne. Das Fehlerintegral ist somit hier nicht
brauchbar und ebensowenig die p^-Methode. Die Fläche unter der

Kurve ausserhalb einer gewissen Grenze + f ist grösser als bei der
reinen Zufallsverteilung. Damit ist auch das Verhältnis gebildet
aus der Fläche ausserhalb dieser Grenzen, dividiert durch die Gesamt-
fläche grösser als normal. Wendet man nun doch die p^-Methode

an, so benutzt man die den Tatsachen nicht entsprechende Verteilung
(1). Damit wird ein das vielleicht noch maximale Wahrscheinlich-
keit besitzt, als zu weit vom Mittel entfernt und daher als unwahr-
schemlich taxiert.

Verlängert man eine Beobachtungsdauer von w auf fc-w Jahre,
so kann daher jp* niemals fc mal kleiner werden. Die Tendenz, durch
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Fig. 8.

die Vergrösserung der Anzahl der beobachteten Elemente einer gesetz-
massigeren Verteilung zuzustreben, ist vorhanden, jedoch wirkt ihr
eine zweite Kraft entgegen, eben dieses Abnahmegesetz der die

das Material wieder heterogener macht.
Wie man aus einem Vergleich der beiden Messungen sieht, hat

bei diesem Entgegenwirken der zwei genannten Kräfte doch die aus-

gleichende die Oberhand behalten, denn das Material von 1921—1930

ist tatsächlich etwas homogener als dasjenige von 1929—1932, jedoch
nicht in dem von der /^-Methode geforderten Masse.

Die Voraussetzung der ^-Methode ist ein rein abstraktes Postulat
und scheint auch in vielen andern Fällen nicht restlos erfüllt zu sein,

wenn auch nicht in dem Masse wie bei den g^,.

Die erwähnte Verfälschung der Tatsachen wirkte natürlich auch
schon hei der kürzeren Beobachtungsperiode 1929—1932. Jedoch
ist dort die Verflachung des Maximums noch nicht so bedeutend, so

dass die Gausssche Verteilung noch als Näherung benutzt werden
kann. Jedenfalls wäre aber auch hier, wenn es auf den genauen Wert
von P ankäme, das Ergebnis ein wenig besser zu bewerten, als das

berechnete P angab.
Am besten wäre die ^-Methode anwendbar, wenn sich die Be-

obachtungen auf ein einziges Jahr beschränkten, was aber eine grössere

Bevölkerung voraussetzt, als dies in der Schweiz der Fall ist.

* **
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4. Beispiel.

Die ^-Methode soll uns noch dazu dienen, einen Vergleich der
verschiedenen, in dieser Arbeit erwähnten Ausgleichungsarten zu
machen.

Der Einfachheit halber wollen wir eine fiktive Verteilung an-
nehmen :

aj 0 1 2 3 4 5 6 7

2/ 2 4 5 7 7 6 5 1

In allen Fällen soll diese Verteilung durch eine Parabel zweiten
Grades ersetzt werden.

a) Empirische Methode.

Wir zeichnen die Parabel möglichst gut von Hand ein und lesen

ab, dass sie durch die Punkte (0,1), (3,7) und (7,1) gehen soll. Durch
diese drei Punkte ist folgende Parabel bestimmt:

/i(®) 1 + 3,5a; — 0,5a^

X 0 1 2 3 4 5 6 7

/l(«) 1 4 6 7 7 6 4 1

*1 1,4167

S (/i(s) - »)« B? 3

b) Methode der kleinsten Quadrate.

Es sei P;(a:) ad

/a(a:) Oq + + «2

®oo ~ 3 UQI 28 dog 140

(T^o 28 ctji 140 ~ ^34

U20 140 <r„ 784 CT22 4676

Man hat also das System zu lösen:

8ßo + 28flj + 140fl2 37

28ag -)- 140aj + 784«2 130

140a„ + 784oj + 467602 578

ßo — 37

gl 130

& 578



Daraus erhält man: dg 1,5418(5)

«i 3,0534

«2 — 0,4345

/a(a;) 1,5418 + 3,0534a; — 0,4345a;2

0 1 2 3 4 5 6 7

/2(a) 1,542 4,161 5,911 6,792 6,803 5,946 4,220 1,625

^ 0,6799

Eg 2,1496

c) Methode von Cauchy.

/s(a;) % a; + «g

Um nicht noch eine Konstante dg berechnen zu müssen, wollen
wir das Intervall 0—7 verschieben nach 1—8, was wir nachträglich
durch die Substitution ac/cc+l wieder rückgängig machen können.
Nun setzen wir die 8 Punkte ein:

£C 1

a: 2

a; 3

a; 4

a: 5

a; 6

x 7

a; 8

2 — cii + dg

4 —j— 4&2

5 — 3$-^ ~J~ 9^2

7 4ct^ 16^2

7 — H~ 25ci2

6 6dj -f- 36dg

5 7dj + 49da

1 8dj + 64dg

37 36di + 204«2

Die Koeffizienten von sind alle positiv. Also konnten wir
direkt addieren.

37 204
a,

36 36

/ 37 204 \
/ (a;) a» a; 4- a» a^' \36 36 7



J /g(x) zl -Z^(as) wo ^ x2

Das gibt wieder 8 Gleichunger

a; 1 2 —

ce 2 4 •

CE 3 5

37

"36

37

IS

37

12

37

$o 1
204 \

a, 4

36

204

18

a» 9
204 \
~KÎ/

204
a: 4 7 a» 16-

9 * V 9

185 / 1020\
x 5 7 o» 25

36 * V 36 7

20437
x 6 6 — ctg 36 -

x 7 5

x 8 1

259

"36

296

86

a, 49

6

1428\

a, 64

36 /
1632 \

36

0,9722 — 4,6667 dg

1,9444 — 7,3333 ctg

1,9167 — 8,0000 ag

2,8889 — 6,6667 «g

1,8611 — 3,3333 «g

— 0,1667 + 2,0000

— 2,1944 + 9,3333 «g

— 7,2222 + 18,6667 «g

Vor der Addition müssen wir hier diejenigen Gleichungen, die

einen negativen Koeffizienten von ctg haben, mit —1 erweitern. Die
Summe 2" ergibt dann:

— 19,1666 - 60,0000 ^
«2 — 0,3194

ai 2,8377

/s(x) 2,8377x — 0,3194x2

/;(x) 2,5183 + 2,1989 x —0,3194x2
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0 1 2 3 4 5 6 7

/s(*) 2,518 4,398 5,638 6,240 6,204 5,528 4,213 2,260

1,2991

4,4748

Es wäre mindestens eine dritte oder vierte Näherung nötig, um
ein brauchbares Eesultat zu erhalten. Dafür hat die Methode von
Cauchy den Vorteil, dass sie nicht auf die Äquidistanz der Beobach-

tungspunkte angewiesen ist, denn sie stellt ja nur auf den Schwerpunkt
der Verteilung ab.

d) Methode der kleinsten Quadrate mit Orthogonalpolynomen.

n 8 Sj 37 Sj 130 S® 224

0 l 2

0 1 — 7 21

1 0 2 —18

2 0 0 6

8 168 1512

Z„ 37 a„ 4,625 /*(0) 1,5422

Zi 1 % 0,006 Zl /„(0) 2,6184

Zg — 219 «a — 0,1448 zl® /,j(0) — 0,8688

/,i(a;) 1,5422 + 2,6184 a: — 0,8688 Q
£ 0 1 2 3 4 | 5 6 7

M®) 1,542 4,160 5,910 6,791 6,803 | 5,946 4,221 1,626

4 0,6793

2,1473
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e) ^--Minimum-Methode.

Es kommt natürlich nur die von H. Cramer angegebene Verein-
fachung in Betracht, wonach im Nenner an Stelle der theoretischen
Werte die beobachteten stehen. Damit lässt sich aber die Anwendung
der orthogonalen Polynome nicht mehr ohne weiteres verbinden, denn

man würde bei der Auflösung für den Koeffizienten a- die Gleichung
erhalten :

>,-^7-:— 2 2} (as) =0
»(«) ^ »(®)

Somit würden alle Koeffizienten ausser dg verschwinden. Des-

halb setzen wir:
/j(a:) ßg + % ® + «2

Dann soll

_
(«g + % a; + ag — y(as))s

2/(z)

ein Minimum sein.

Analog wie bei der Methode der kleinsten Pehlerquadrate setzen

wir bei der Auflösung

7 • 7

37 V 1/ „/a und g^ /» a7 — i.
o o

»

So erhalten wir das System:

2,6024 <4 10,6833 4 64,9880 g; 8<% — "01 — "02

4 10,6833 nil 64,9880 <4 421,8833 g| 28

<4 64,9880 4 421,8833 4 2815,9595 gg 140

Aufzulösen sind also folgende drei Gleichungen:

2,6024 a„ + 10,6833 + 64,9880 ag 8

10,6833 «g + 64,9880 % + 421,8833 «2 28

64,9880 a„ + 421,8833 + 2815,9595 «3 140

Daraus ergibt sich: ctg 1,7285

ai 3,0238

a., — 0,4432
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/s(a:) 1,7285 + 3,0238a; — 0,4432a;2

£ 0 1 2 3 4 5 6 7

/öl®) 1,729 4,309 6,003 6,811 6,733 5,768 3,916 1,178

Jïf 0,5841

i?5 2,5425

* *
«

Anhand dieser fünf Resultate kann man nun leicht die ver-
schiedenen Methoden, wenigstens oberflächlich, beurteilen. In erster
Linie sieht man, dass die und die B^-Proben wie erwartet ganz
verschiedene Resultate geben. Ferner ist an diesem einfachen Beispiel
der Vorteil der orthogonalen Polynome nicht deutlich genug zum Aus-
druck gekommen, abgesehen von der grossen Vereinfachung der

Rechnung.
Die /^-Methode geht, dem Problem tiefer auf den Grund als

sämtliche andern, indem sie ganz bestimmte Voraussetzungen über die

Struktur der Verteilung macht. Jedoch sind diese Voraussetzungen
nicht in allen Fällen erfüllt, so dass die Anwendbarkeit der ^-Methode
beschränkt ist. Wir haben schon den Fall angetroffen, wo das

Gesetz als Probe für die Güte einer Ausgleichung nicht zulässig ist,
und nun sei auch noch darauf hingewiesen, dass es sich ebenfalls
nicht immer zur Ausgleichung als /^-Minimum-Methode eignet:

Bei vielen Häufigkeitsverteilungen sind die äussersten Werte,
da sie nur selten auftreten, ziemlich regellos verteilt, während die

häufigeren, um den Erwartungswert herum, das Gesetz schon deut-
lieh zeigen. Nun verlangt aber die 2 ^-Methode eine maximale An-
schmiegung an die kleinen Werte auf Kosten der grossen. Auf diese

Weise würde man wegen den äussersten, unzuverlässigen Mengen

systematische Fehler bei den regelmässigeren in der Nähe des Er-
wartungswertes heraufbeschwören. Eine Anwendung ist nur dann

am Platze, wenn die Zahl V der Beobachtungen so gross ist, dass auch

die seltensten Werte von zufälligen Schwankungen so weit als möglich
befreit sind.

Die z^-Probe kann auch über die Homogeneität oder Hetero-

geneität eines Materials entscheiden. Wenn man trotz bestmöglicher
Ausgleichung unbefriedigende Werte für die Wahrscheinlichkeit P
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erhält, so darf man schliessen, dass das gegebene Material zu heterogen
sei und dass das Verteilungsgesetz zu wenig durchblicke.

Bei der Beurteilung eines P-Wertes muss man die Homogeneität
des beobachteten Materials mitberücksichtigen. Z. B. kann P 0,5
bei einer sehr regelmässigen Verteilung ein schlechtes Zeichen für eine

Ausgleichung sein, während es diese bei einem heterogenen Material
gutheissen kann.

IV. TEIL.

Zusammenfassung der Ergebnisse.
1. Das Prinzip der Methode uow Pawc% ist sehr elegant, jedoch

ist die rechnerische Durchführung etwas umständlich. Auch die

Genauigkeit des Resultates wird von einzelnen anderen Methoden
überboten.

2. Die Merode der fcZemsfem. Qitudrafe, die von einem ganz anderen

Gesichtspunkt ausgeht, ist der Grundstein für die analytische Aus-

gleichung. Sie stellt nicht ein abgeschlossenes Ganzes dar, sondern
vielmehr einen Ansatzpunkt, der auf anderem Wege noch vervoll-
ständigt werden kann.

3. Ein solcher Weg der Vervollständigung ist die Einführung der

orf/iogonafew PoZî/wome. Sie schalten die Zufälligkeit, die in der Auf-
Stellung der Ausgleichungsfunktion besteht, aus und bringen eine

wesentliche Vereinfachung der Rechnung mit sich, so dass der Arbeits-
umfang nicht grösser wird als bei den häufig verwendeten elementaren
Methoden. Bei der Anwendung auf die schweizerischen Sterbetafeln
hat diese Methode in der schwer auszugleichenden Periode von 0

bis 25 Jahren sehr befriedigende Resultate gezeigt.
4. Die wichtige Frage, wie die Güte einer Ausgleichung zu be-

urteilen sei, erlaubt schwerlich eine allgemeingültige Antwort. Die
Z^-Meffeode ist etwas vom Interessantesten, was in dieser Hinsicht
geschaffen wurde, doch ist sie ein hochempfindliches Kriterium. Die
Anwendung auf die schweizerischen Volkssterbetafeln hat gezeigt,
dass in jedem Fall zuerst die Voraussetzungen geprüft werden müssen,
da man sonst leicht zu irreführenden Folgerungen gelangen kann.
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