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B. Wissenschattliche Mitteilungen

La méthode d’interpolation
de Fredrik Esscher
dans l'assurance vie et invalidité
Par Dr. Ed. Dasen, Bale

I’étude du mémoire de Fredrik Esscher intitulé « On some methods
of interpolation» ) et la connaissance de certains résultats concernant
I'approximation des fonctions actuarielles intervenant dans I'assurance
vie et invalidité que nous avons obtenus dans un travail 2) précédent,
nous ont incité a rechercher de quelle maniére les intéressantes formules
de Mr. Fredrik Esscher pouvaient étre généralisées dans les questions
d’assurance ou l'invalidité joue un role.

Afin que l'on puisse bien suivre nos développements, nous avons
estimé qu’il était nécessaire de donner en un premier paragraphe un
exposé des parties théoriques du mémoire de M. Fredrik Hsscher
que nous avons utilisées dans notre généralisation. On se rendra
aussi mieux compte des difficultés que nous avons rencontrées en
‘voulant passer aux applications, difficultés que nous avons surmontées
en faisant appel au calecul numérique. En effet, dans les questions
de ce genre, la forme analytique des fonctions qu'on étudie conduit,
vu leur complication, & des difficultés de calcul algébrique tellement
grandes, qu’on ne saurait conclure sans recourir au calcul numérique.

I. Partie théorigue.

1. Le mémoire de Fredrik Esscher.

Les valeurs d’une fonction f(x) étant connues pour

T :.’EO, .’171, s e ey .CE”,

1) Forsikringsaktiebolaget Skandia, Stockholm 1930.
2) Bulletin de I"Association des actuaires suisses, 1936.
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on peut se proposer de déterminer une autre fonction y(x) qui prenne
les mémes valeurs que f(x) aux points d’abscisse ci-dessus et qui re-
présente approximativement f(z) pour des valeurs intermédiaires
de z. Habituellement, on suppose que y(z) est un polynome de
degré n, P, (x), les coefficients de celui-ci étant choisis de telle maniére
que

fley=Elz) =0,1,% ..., 8)

La solution générale de ce probleme est donnée par la formule
d’interpolation de Newton que l'on peut écrire:

(1) Lx) = f(@o) + (z— 1) f(2o1) +- (2—2) (z— 1) fl2g 2y ) + ...

+=(Z—=2p) :-. (B— Ly 1) HBg &y s x.)
ol
Hanay) = HEO =12
0 1
f(.’Bo Ty 392) = f(mﬂ m1) - f(,’l}l x2)
Lo — Ly

3
....................... etc.

sont les différences divisées de f(z) et le reste R(x), défini par

(2) f(z) = E(x) + R(z)
a la forme:
(3) R(m) :(CC—QCO) (m_mn)f(m()ml mnm)

Pour les applications pratiques il est, comme bien connu, suffisant
d’admettre que la fonction soit uniforme et continue dans U'intervalle
comprenant tous les points z, 2y, ...,2, 2« et que les dérivées
f'y ', ... f"Y soient continues dans le méme intervalle. Dans cette
hypothése, le reste peut étre écrit comme suit:

(x—xg) ... (x—2x,)

(n + 1)t

ou & appartient & l'intervalle ci-dessus. Dans la suite, on supposera
toujours que les conditions ci-dessus énoncées sont remplies par f(z).

Cependant, en admettant que y(z) = L (x), maintes propriétés
de la fonction f(x) me seront pas considérées dans Uinterpolation. Par

4) B(z) = it
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une connaissance plus approfondie de ces propriétés, il est souvent

possible d’obtenir une meilleure approximation en donnant & y(x)

une forme analytique plus adéquate au cas spécial que 1'on étudie.
Dans la suite, il sera généralement admis que y(z) remplira les

conditions concernant f(x) et contiendra » + 1 parametres oy oy ... o,
déterminés de telle maniére que
(5) fle) =yl@) (=0,1,2...,m)

L’approximation avec laquelle y(x) représente f(x) pour des
valeurs intermédiaires de x est mesurée par le reste Q(z):

(6) f(®) = y(z) + Q)
En tenant compte de (2) et (3), on a
(7) flx) =E(@) + (x—x) ... (@—2) (%2, ... 2,2
et en tenant compte de (5):
(8) y@) =E@) + (-—12p) ... (2—2) Y (2921 ... 2,2)
ce qui nous donne
©9) Q@) =(@—ap) ... (—a) [f(zo ... .0) — Yty ... 2,)]

Comme pour R(z) et de la méme maniére bien connue, on peut montrer
que:
10)  Qz) =

(x— 1) ... (x—x,)
(n +1)!
De (9) ou de (10), le reste Q(z) peut étre calculé avec la méme exacti-

tude que le reste R(x) dans tous les cas ou R(x) peut étre estimé.
Si 'on pose maintenant

[f(n+1) (5) L y(n»H) (5)]

y(@ -+ 2, 2)
Hdly =2+ 252)

(11) q(x) =
on trouve en conséquence de (3) et de (9)

(12)

=1—q(z)
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La condition nécessaire et suffisante pour que

(13) Q(x)| <|R(z)
est
(14) 0 g q(z) __(: @

81 g(z) < 1, Q(z) et B(x) auront le méme signe dans tout I'intervalle
d’interpolation, mais auront des signes contraires si q(z)> 1.

La condition (14) n’est cependant pas trés maniable dans les
applications pratiques, étant donné que y(z, ... z, ) contient un
nombre plus ou moins grand de parametres «, ... «, qui, & leur tour,
étant donné (5), sont des fonctions des valeurs données f(z,), f(z), ..
etc. De plus, la différence f(z, ... z,x) est souvent assez difficile &
calculer. Pour ces différentes raisons, M. Fredrik Ksscher a démontré
quelques conditions «suffisantes» et plus commodes dans les applica-
tions pratiques.

Afin d’indiquer que #(x) est aussi une fonction des parametres
oy - - - O, l'auteur pose

(15) y(7) = Fo(x, o, - ., )

et forme par différentiation et élimination des parametres les fonctions
suivantes:

Y (z) = Fy(z, 9, o, - .. o,)

y(n+1)(w) = Fn+1 (iE, Y, y’: KR y(n))

En posant maintenant:

— Fopr @ 151 - 1)

(16) 1(e) = =i

ou ¥, 9, ... y™ ont été remplacées par f, f, ..., f respectivement,
les conditions suffisantes suivantes peuvent étre énoncées si "+ (z) ne
change pas de signe pour n’importe quelle valeur de x de 'intervalle
d’interpolation:



A. Si

dans tout l'intervalle considéré, on a respectivement

—
iy |
q(z) =
et

Q(x) - B(z) =0

AIV

B. 8i y(z) est choisie de telle maniére que """ (z) ne change pas
de signe dans tout l'intervalle et que

(17) ‘ 0< q() <1,
on a alors
(18) Q(z)| < |R(2)]

Dans la suite de son mémoire, M. Fredrik Esscher étudie une
fonction y(z) ayant la forme

(19) y(x) = ag + a, eM”®

et la formule d’interpolation qu’on obtient pour les fonctions actua-
rielles de l'assurance vie.

Nous nous proposons d’étudier maintenant une fonction y(x)
ayant la forme

(20) Y(x) = ag + a, e+ a, e*2”

et de montrer que la formule d’interpolation que 'on obtient conduit
& de bons résultats pour l'interpolation de certaines fonctions ac-
tuarielles de I'assurance vie et invalidité.

2. Interpolation de f(x) par la fonction y(z) = a, + a, e"® + a, e™"

Nous choisirons donc pour y(z) une fonction ayant la forme
particuliére (20) et nous supposerons que



8 —

(o — b) = f(zg — B
(21) y(zo) = (o)
y(zo +8) = f(zy + 1

I n’y a alors pas de difficultés & montrer que la formule d’inter-
polation y(z, + h) sera obtenue en résolvant 1'équation:

1 e—u.,_k e %2 I

@
|
| flzg) 11 1
(22) | =
|za:0~}~h)1e et
|
‘ f(zg 4+ k) 1 enk goak
En convenant de poser:
1+, =e™ 1+, =em
1 (1 + 1) 2 1— (14 g
LT : Un) =
g h 12
i (L 9" =1 2 ( + faf* —1
S7] = : Sh| = .
h 12

et en développant le déterminant, la formule d'interpolation cherchée
peut s’écrire:

(c}l, -+ 18—) g- (Cztj 4 ;——]) .;‘—1 7
3 k - |9k h
Y(xg + h) = f(x) | 1 — d 1i 2| 21 '
(25) GF| ST — OF) 57
12 2 1 12 1 2
a%j S7|— A% S7 ST SH — 8K ST
+f(x0+k) 1]c 2h| zm 1}ﬂ +f(330_k) '1_]£"L_9]EL”“_§T|__1A_|
AR ST — %) ST az) Sk — Qx| Sk
S1 maintenant on pose:
12 2 1
a%1 S — OF ST
(24) (as)—iﬂ = lzj 2m1 |
a%| S&| — %] Sk|
12 2 1
ST ST — ST ST
(25) (s9)em = T —
A% Sk|— A% Sk
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la formule d’interpolation (23) prend la forme suivante

y(aot+h) = f(@o) [1 — [(@8)em + (9 w)] + F(zo+E) (as)gm +

(26)
— + [ (2o —k) (88)ia

L ]

ou si h est négatit

Yy(xo—h) = f() [1 — [(@8)im + (aa)m]]] + f(mo + k) (@) +

26%*
(26%) + 1 (xg — k) (as)i7

apres avoir convenu de poser:

1 2 2 1
- ap) A — a7 AF
(27) (a8)5=m = it 2" oLl . (aa)5
a‘-‘1 S_l— a,ﬂ a—1
1 2 2 i
A7 ST — AR ST
28) (88)mm = 1o — g = (as)
(J;—-|b a~—|s,—|

Une table numérique de chacun des nombres

(as) I3 (s8) W (aa) F (GS)"}:T|
s’établira sans de trop longs calculs, car
(29) sip = (1 +9)" ap

En possession des valeurs numériques de ces différents nombres,
on conviendra alors facilement que l'utilisation pratique des formules
d'interpolation (26) et (26*) ne souléve aucune difficulté et que le
résultat cherché s’obtiendra d’une maniére extrémement rapide.

A la fin du présent travail, on trouvera des tables numériques
donnant les valeurs de ces différents nombres. Ceux-ci étant calculés
en vue de l'interpolation de certaines fonctions actuarielles de I'assu-

rance vie et invalidité, dont les valeurs numériques se trouvent dans
la table MM et IM 315 9.

3. Détermination de ¢(x).

Conformément & la théorie précédemment exposée au § 1, nous
aurons:



ay & as &
g €™ e Y

ay T !

0 a6 aye™® y

(30) Fa (33: vy, Yy ym) =

0,02em® qle® y"

0 Oclgeala: ageaz.‘t yur
En développant le déterminant, il viendra

(B1) Fy(z, u,y, y" ") = y""(x) — (0 + o) y"(x) + oy a5 y'(2)
d’ou nous déduisons:
(00 + ag) f/(%) — &y &g f'(x)

’(IH(CE)

Nous pouvons done dire maintenant que la condition «suffisantey
pour que la formule (26) donne un résultat meilleur que celui que I'on
obtiendrait par un polynéme d’interpolation de Newton du second
degré, sera que la double inégalité suivante soit satisfaite:

(32) q(z) =1—

(o4 + a5) '(2) — o 3o f' (@)
= f (@)

f'""(x) et y'"'(x) ne devant pas changer de signe dans 'intervalle d’'inter-
polation.

(\33) <1

4, Fonctions pouvant étre interpolées par (26).

Si les valeurs numériques
feg) Hag+K) flag+2H) ...

d’une fonction f(z) sont connues et qu’on se demande s1 la formule (26)
peut étre utilisée pour la détermination des valeurs intermédiaires,
il faudra commencer par calculer les trois premieres différences d’inter-
valle k et vérifier si celles-ci satisfont & 'équation linéaire aux diffé-
rences finies du troisiéme ordre:

(34) A'f(2) — p AR (@) 4 qaf(@) =0

81 l'on constate qu’il en est ainsi et pratiquement ce sera d’'une maniére
approchée, il restera alors & déterminer les constantes o et o,.
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Comme on dispose d'un nombre surabondant d’équations (34),
nous devrons utiliser la méthode des moindres carrés pour déterminer
p et ¢, qui nous permettront ensuite d’obtenir o et o, par résolution
des équations exponentielles

(35) e™ = (g, + 1)

i

B

[

B

(36) et = (2 + 1)
2, et z, étant les racines de I'équation

(37) ¢ st q—=0

La méthode des moindres carrés est toujours longue & employer.
Nous allons montrer par les applications numériques ci-aprés que
siles fonctions actuarielles de I'assurance vie et invalidité sont calculées
a l'aide d’une table de mortalité ajustée par la formule de Makeham
et d'une table d’invalidité ajustée par celle de Behm-Urech, on peut
éviter les longs calculs nécessités par la méthode des moindres carrés.

I1I. Applications.

1. Rente temporaire discontinue d’activité.

Si on calcule la rente temporaire discontinue d’activité avec une
table de mortalité ajustée par la formule de Makeham et une table
d’invalidité ajustée par celle de Behm-Urech, ce qui est le cas pour
la table MM et IM 8149%,, cette rente, prise comme fonction de z, s'ex-
prime analytiquement comme suit:

t=n-1 h=w+1-1
(38) (CEDNO I (1 — GFY
t=0 k=x

s, g et ¢ sont les constantes de Makeham et F' et G celles de Behm-
Urech. Pour la table MM et IM, les valeurs numériques de ces cons-
tantes sont:

0.000 125

= 0.996
IS 7 3

g = 0.9960
¢ = 1.0792 G="Y2
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La valeur approximative des constantes oy et oy pourra étre
obtenue en procédant comme suit: En tenant compte de I'inégalité:

L:.Eﬂ e Fk:mg:: - le
(39) | | a—Feh<e =
k=x
et en effectuant la somme
k=x4t-1

O LR |
40 =
(40) > -

k=zx

on trouve que la rente temporaire discontinue d’activité peut s’ex-
primer approximativement par le développement

t=n-1

() o) ~ ) (o)t gt
1=0
apres avoir convenu de poser:
1 .
(42) e :;gLOgy ot (43) 7

(G—1) Liog g

En considérant maintenant les deux premiers termes du déve-
loppement en série de g° dans (41), on voit que nous pourrons prendre
pour o, et «, les nombres suivants: '

(44) o, = Log ¢
(45) o, = Log G
Pour la table MM et IM 314 9, nous aurons donc:
(46) o = Log 1.0792
(47) oy = Log 1.1487

Afin de pouvoir dire que sur la base des valeurs numériques de
ces constantes la formule d’interpolation (26) donnera une meilleure
approximation que celle donnée par un polyndéme d’interpolation
de Newton du second degré, il faudrait maintenant vérifier la double
inégalité (33) et montrer que f'''(x) et y'"’(z) ne changent pas de signe.



On constate immédiatement que y'//(x) ne change pas de signe. En ce
qui concerne f'’(z) et la vérification de la double inégalité (33), la forme
analytique de f(x) [formule (38)] rend le calcul algébrique tellement
ardu que nous avons renoncé & ces vérifications et préféré faire un
exemple numérique. On trouvera nos résultats dans le tableau I
cl-apres. '

Les polyndémes de Newton du second degré que nous avons
utilisés sont les suivants:

(48) Py(x) =13.762 — 0.0396 (x—25) — 0.00238 (x — 20) (x — 25)
(20 < & < 30)

(49) Py(x) =12.935—0.1020 (z — 85) — 0.00586 (x — 30) (x — 35)
(30 < z < 40)

(60)  Py(x) =10.927 — 0.2410 (z — 45) — 0.00862 (z — 40) (x — 45)
(40 << z << 50)

2. Rente temporaire d’invalidité.

Pour la rente temporaire d’invalidité, la formule suivante est a
utiliser si la table de mortalité est valable aussi bien pour les actifs
que pour les invalides et les rentiers, ce qui est le cas pour MM et
IM 3%, 9.

(51) g = Mo A Dein gy — Nob N

zin| ng D

T+n

&

Une série de rentes a dges-terme différents se calculera d’'une maniere

trés rapide en utilisant (26) et (26*) et avec une bonne approximation,

comme on peut le constater dans le tableau II.

Les polynomes de Newton du second degré sont:

(52) Py(x) = 0.163 + 0.0158 (x — 25) -+ 0.00144 (x — 20) (z — 25)
(20 << =z << 80)

(53)  Py(x) = 0.591 4 0.0554 (z — 35) 4 0.00414 (z — 30) (z —35)
(80 < z < 40)

(54) Py(x) =1.842 + 0.1534 (z — 45) + 0.00538 (z — 40) (z — 45)
(40 < z << 50)
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3. Assurance mixte avec paiement anticipé du capital en cas d’invalidité.

Les résultats numériques obtenus par l'utilisation de (26) et
(26*) pour la détermination par interpolation des valeurs d’assurances
du type considéré sont donnés par le tableau III. Ils sont obtenus,
comme on pourra le constater, plus rapidement que par la formule

(5] + W2+ Dt — (B3] + M2
Dy

(55)  Am=

ou par les polynémes de Newton du second degré:

(56) Py(z) = 0.53687 -+ 0.001484 (z—25) + 0.0000876 (z—20) (z—25)
(20 < z < 30)

(67) Py(x) = 0.56689 - 0.003694 (z—35) + 0.0002122 (x—30) (z—385)
(80 < = < 40)

(58) Py(x) = 0.63914 4 0.008634 (z—45) + 0.0002918 (z—40) (z—45)
(40 < = < 50)

Coneclusion.

L’examen des résultats numériques obtenus nous permet de dire
que la formule d’'interpolation proposée présente, par rapport a la
formule d’interpolation de Newton, les avantages suivants:

10 augmentation de la rapidité des calculs,

20 meilleure approximation pour les fonctions dont I'dge-terme
est inférieur & 60 ans.

Si1'on veut bien tenir compte des incertitudes dont sont entachées
les bases techniques, principalement celles concernant l'invalidité,
on peut dire que la formule d’interpolation (26) pourra s’employer
méme jusqu’a 'adge-terme de 70 ans. Dans les questions de ce genre, on
préférera toujours la méthode rapide & la méthode exacte, lorsque I'on
peut se rendre compte que I'erreur commise n’atteint pas une grandeur
non négligeable. Les erreurs constatées dans nos exemples numériques
sont certainement inférieures & celles qu’aménerait une faible varia-
tion des probabilités d’invalidité.

Nous croyons pouvoir dire en terminant que les résultats aux-
quels nous sommes arrivés montrent suffisamment la valeur des
recherches du genre de celles de M. Fredrik Esscher. Elles permettent
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a 'actuaire d’obtenir des formules d’interpolation simples, donnant
une précision pratiquement amplement suffisante, lui diminuant ainsi
le nombre de ses calculs.

Tables numériques auxiliaires pour 'application des formules d’inter-
polation (26) et (26 *) & MM et IM 31, 9.

h (1+5" (1 +7))" a+p™ 1 A+
1 1.0792 1.1487 0.9266 0.8705
2 1.1647 1.3195 0.8586 0.7579
3 1.2569 1.656157 0.7956 0.6598
4 1.3564 1.7411 0.7372 0.5744
5 1.4639 2.0000 0.6831 0.5000
h 1 2 1 2
(Em am S —! Sm

1 0.9266 0.8705 1.0000 1.0000
2 1.7852 1.6284 2.0792 2.1487
3 2.5808 2.2882 3.2439 3.4682
4 3.3181 2.8626 4.5008 4.9839
5 4.0011 - 3.3626 5.8572 6.7250
h (@s)57] (s8)5,%) 1—[(as)5 51+ (ss)57])
1 0.0885 — 0.1203 1.0318
2 0.2226 — 0.1937 0.9711
3 0.4116 — 0.2082 0.7966
4 0.6665 — 0.1492 0.4827
5 1.0000 0.0000 0.0000

) (CLS)’;‘T{‘ (a(l;)ml 1— [(aS)h':'ﬁ_l + (aa.)r:.)’]
1 0.1571 — 0.0509 0.8938
2 0.3422 — 0.0711 0.7289
3 0.5482 — 0.0662 0.5180
4 0.7692 -— 0.0411 0.2719
5 1.0000 0.0000 0.0000
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l

T Az:30| y () Py(x) 1000[(2)—(1)] 1000[(3)—(D)]
() (2) (3) (4) ()

20 13.960
21 | 18.927 18.9273 13.9299 -+ 0.8 + 2.9
22 13.892 13.8915 13.8951 — 0.5 + 8.1
23 18.852 13.8523 13.8555 + 0.3 + 8.5
24 13.810 13.8092 13.8111 — 0.8 + 1.1
25 18.762
26 13.711 13.7101 13.7081 — 0.9 — 2.9
27 13.654 18.6531 13.6495 — 0.9 — 4.5
28 13.591 13.5903 13.5861 — 0.7 | —4.9
29 18.521 18.5212 13.5179 +02 | —38.1
30 13.445
31 | 13.361 13.3603 13.3664 — 0.7 + 5.4
32 | 13.269 13.2677 13.2762 — 1.3 + 7.2
33 | 13.168 13.1666 13.1742 — 1.4 + 6.2
34 | 13.057 13.0560 13.0604 — 1.0 + 8.4
36 ! 12.935

l
36 | 12.802 12.8026 12.7978 + 0.6 - 4.2
3T | 12,656 12,6575 | 12.6490 + 1.5 - 7.0
38 12.496 12.4983 | 12.4884 + 2.8 — 7.6
39 | 12.822 12.5987 12.3160 + 1.7 — 6.0
40 | 12,132

| i
41 | 11.926 | 11.9211 11.9255 — 4.9 - 0.5
12 | 11703 11.6959 | 11.7017 | 7.1 1.3
43 } 11.463 | 11.4557 11.4607 _— — 2.8
44 | 11.204 11.1996 11.2025 — 4.4 — 1.5
45 | 10.927
46 | 10.633 10.6373 10.6343 + 4.8 + 1.3
41| 10.320 10.3294 10.3243 + 9.4 + 4.8
48 | 9.992 | 10.0027 9.9971 +10.7 + 5.1
49 { 9.648 9.6568 9.6527 + 8.8 + 4.7
50 i 9.291




Tableaw 11.

® aifg(,l y(z) P, (z) 1000[(2)—(1)];1000[(3)—(1)]
0 (@) ) () (5)
20 0.084
21 0.096 0.0960 0.0940 0.0 9.0
99 0.110 0.1097 0.1070 0.3 3.0
23 0.125 0.1252 0.1228 0.2 2.9
94 0.143 0.1429 0.1414 0.1 1.6
25 0.163
926 0.186 0.1859 0.1874 0.1 1.4
o7 0.212 0.2119 0.2148 — 0.1 1 9.8
28 0.949 0.2416 0. 2450 0.4 1820
29 0.276 0.2754 0.2780 0.6 2.0
30 0.514
31 0.857 0.3580 0.3528 + 1.0 4.9
39 0.406 0.4071 0.4000 1.1 6.0
33 0.461 0.4618 0.4554 +08 | —5.6
34 0.522 0.5298 0.5190 +0.8 | 8.0
35 0.591
36 0.669 0.6672 0.6712 18 2.2
37 0.755 0.7524 0.7598 2.6 | + 4.8
38 0.852 0.8479 0.8566 41 | 48
39 0.959 0.9549 0.9616 41 ;2.6
40 % 1.075 f
A | 1.205 1.2094 1.2069 | | 4.4 1.9
42 1.346 1.8529 1.3495 6.9 + 8.5
43 1.500 1.5059 1.5029 L 5.9 2.9
44 1.666 1.6688 1.6671 L28 | 4+ 1.1
45 1.842
46 | 2.033 2.0260 2.0277 7.0 — 5.3
47 | 2.932 2.9919 9.9941 ~10.8 7.9
48 9 441 94981 2.4313 12.9 .97
49 2658 26469 2.6493 111 8.7
50 9,878 | |




Tableaw II1.

i y (2) Py(z) | 105[(2)—(1)]| 10°[(3)—(1)]
(1) (2) (3) (4) (5)

20 0.52 970

21 0.53 087 0.530 880 0.530 784 -+ 1.0 — 8.6
22 0.53 218 0.532 175 0.532 042 — 0.5 — 13.8
23 0.53 358 0.533 595 0.533 476 1.5 — 10.4
24 0.53 515 0.535 156 0.535 086 -~ 0.6 — 6.4
25 0.53 687

26 0.53 876 0.538 755 0.538 830 0.5 + 7.0
27 0.54 087 0.540 830 0.540 964 -— 4.0 -+~ 9.4
28 0.54 316 0.543 117 0.543 274 — 4.8 L 11.4
29 0.54 567 0.545 638 0.545 760 3.2 9.0
30 0.54 842

31 0.55 145 0.551 488 0.551 265 4+ 3.8 — 18.5
32 0.55 479 0.554 840 0.554 535 + 5.0 -— 25.5
33 0.55 847 0.558 502 0.558 229 + 3.2 — 241
34 0.56 247 0.562 508 0.562 347 -+ 3.8 — 12.3
35 0.56 689

36 0.57176 0.571 686 0.571 857 — 7.4 + 9.7
37 0.57 703 0.576 941 0.577 249 — 8.9 ~+ 21.9
38 0.58 284 0.582 705 0.583 065 — 13.5 + 22.5
39 0.58 915 0.589 028 0.589 305 — 12.2 + 15.5
40 0.59 597

41 0.60 340 0.603 560 0.603 437 -+ 16.0 + 3.7
42 0.61 138 0.611 650 0.611 487 -~ 27.0 + 10.7
43 0.62 002 0.620 260 0.620 121 -+ 24.0 + 10.1
44 0.62 927 0.629 418 0.629 339 - 14.8 + 6.9
45 0.63 914

46 0.64 961 0.649 445 0.649 525 — 16.5 — 8.5
47 0.66 065 0.660 359 0.660 493 — 29.1 - 15.7
48 0.67 224 0.671 902 0.672 045 -— 33.8 — 19.5
49 0.68 435 0.684 078 0.684 181 — 27.2 — 16.9
50 0.69 690
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