Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 34 (1937)

Artikel: La méthode d'interpolation de Fredrik Esscher dans l'assurance vie et

invalidité

Autor: Dasen, E.

DOI: https://doi.org/10.5169/seals-554991

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

B. Wissenschaftliche Mitteilungen

La méthode d'interpolation de Fredrik Esscher dans l'assurance vie et invalidité

Par Dr. Ed. Dasen, Bâle

L'étude du mémoire de Fredrik Esscher intitulé «On some methods of interpolation» ¹) et la connaissance de certains résultats concernant l'approximation des fonctions actuarielles intervenant dans l'assurance vie et invalidité que nous avons obtenus dans un travail ²) précédent, nous ont incité à rechercher de quelle manière les intéressantes formules de Mr. Fredrik Esscher pouvaient être généralisées dans les questions d'assurance où l'invalidité joue un rôle.

Afin que l'on puisse bien suivre nos développements, nous avons estimé qu'il était nécessaire de donner en un premier paragraphe un exposé des parties théoriques du mémoire de M. Fredrik Esscher que nous avons utilisées dans notre généralisation. On se rendra aussi mieux compte des difficultés que nous avons rencontrées en voulant passer aux applications, difficultés que nous avons surmontées en faisant appel au calcul numérique. En effet, dans les questions de ce genre, la forme analytique des fonctions qu'on étudie conduit, vu leur complication, à des difficultés de calcul algébrique tellement grandes, qu'on ne saurait conclure sans recourir au calcul numérique.

I. Partie théorique.

1. Le mémoire de Fredrik Esscher.

Les valeurs d'une fonction f(x) étant connues pour

$$x=x_0, x_1, \ldots, x_n,$$

¹) Försäkringsaktiebolaget Skandia, Stockholm 1930.

²) Bulletin de l'Association des actuaires suisses, 1936.

on peut se proposer de déterminer une autre fonction y(x) qui prenne les mêmes valeurs que f(x) aux points d'abscisse ci-dessus et qui représente approximativement f(x) pour des valeurs intermédiaires de x. Habituellement, on suppose que y(x) est un polynome de degré n, $P_n(x)$, les coefficients de celui-ci étant choisis de telle manière que

$$f(x_i) = P_n(x_i)$$
 $(i = 0, 1, 2, ..., n)$

La solution générale de ce problème est donnée par la formule d'interpolation de Newton que l'on peut écrire:

(1)
$$P_n(x) = f(x_0) + (x - x_0) f(x_0 x_1) + (x - x_0) (x - x_1) f(x_0 x_1 x_2) + \dots + (x - x_0) \dots (x - x_{n-1}) f(x_0 x_1 \dots x_n)$$

οù

$$\begin{split} f(x_0\,x_1) &= \frac{f(x_0) - f(x_1)}{x_0 - x_1} \\ f(x_0\,x_1\,x_2) &= \frac{f(x_0\,x_1) - f(x_1\,x_2)}{x_0 - x_2} \end{split}$$
 etc.

sont les différences divisées de f(x) et le reste R(x), défini par

$$f(x) = P_n(x) + R(x)$$

a la forme:

(3)
$$R(x) = (x - x_0) \dots (x - x_n) f(x_0 x_1 \dots x_n x)$$

Pour les applications pratiques il est, comme bien connu, suffisant d'admettre que la fonction soit uniforme et continue dans l'intervalle comprenant tous les points x_0, x_1, \ldots, x_n, x et que les dérivées $f', f'', \ldots f^{(n+1)}$ soient continues dans le même intervalle. Dans cette hypothèse, le reste peut être écrit comme suit:

(4)
$$R(x) = \frac{(x - x_0) \dots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi)$$

où ξ appartient à l'intervalle ci-dessus. Dans la suite, on supposera toujours que les conditions ci-dessus énoncées sont remplies par f(x).

Cependant, en admettant que $y(x) = P_n(x)$, maintes propriétés de la fonction f(x) ne seront pas considérées dans l'interpolation. Par

une connaissance plus approfondie de ces propriétés, il est souvent possible d'obtenir une meilleure approximation en donnant à y(x) une forme analytique plus adéquate au cas spécial que l'on étudie.

Dans la suite, il sera généralement admis que y(x) remplira les conditions concernant f(x) et contiendra n+1 paramètres α_0 α_1 ... α_n , déterminés de telle manière que

(5)
$$f(x_i) = y(x_i)$$
 $(i = 0, 1, 2, ..., n)$

L'approximation avec laquelle y(x) représente f(x) pour des valeurs intermédiaires de x est mesurée par le reste Q(x):

$$f(x) = y(x) + Q(x)$$

En tenant compte de (2) et (3), on a

(7)
$$f(x) = P_n(x) + (x - x_0) \dots (x - x_n) f(x_0 x_1 \dots x_n x)$$

et en tenant compte de (5):

(8)
$$y(x) = P_n(x) + (x - x_0) \dots (x - x_n) y (x_0 x_1 \dots x_n x)$$

ce qui nous donne

(9)
$$Q(x) = (x - x_0) \dots (x - x_n) [f(x_0 \dots x_n x) - y(x_0 \dots x_n x)]$$

Comme pour R(x) et de la même manière bien connue, on peut montrer que:

(10)
$$Q(x) = \frac{(x - x_0) \dots (x - x_n)}{(n+1)!} \left[f^{(n+1)}(\xi) - y^{(n+1)}(\xi) \right]$$

De (9) ou de (10), le reste Q(x) peut être calculé avec la même exactitude que le reste R(x) dans tous les cas où R(x) peut être estimé.

Si l'on pose maintenant

(11)
$$q(x) = \frac{y(x_0 \dots x_n x)}{f(x_0 \dots x_n x)}$$

on trouve en conséquence de (3) et de (9)

$$\frac{Q(x)}{R(x)} = 1 - q(x)$$

La condition nécessaire et suffisante pour que

$$|Q(x)| \leqslant |R(x)|$$

est

$$(14) 0 \leq q(x) \leq 2$$

Si q(x) < 1, Q(x) et R(x) auront le même signe dans tout l'intervalle d'interpolation, mais auront des signes contraires si q(x) > 1.

La condition (14) n'est cependant pas très maniable dans les applications pratiques, étant donné que $y(x_0 \ldots x_n x)$ contient un nombre plus ou moins grand de paramètres $\alpha_0 \ldots \alpha_n$ qui, à leur tour, étant donné (5), sont des fonctions des valeurs données $f(x_0), f(x), \ldots$ etc. De plus, la différence $f(x_0 \ldots x_n x)$ est souvent assez difficile à calculer. Pour ces différentes raisons, M. Fredrik Esscher a démontré quelques conditions «suffisantes» et plus commodes dans les applications pratiques.

Afin d'indiquer que y(x) est aussi une fonction des paramètres $\alpha_0 \ldots \alpha_n$, l'auteur pose

$$(15) y(x) = F_0(x, \alpha_0, \ldots, \alpha_n)$$

et forme par différentiation et élimination des paramètres les fonctions suivantes:

$$y'(x) = F_1(x, y, lpha_1, \ldots lpha_n)$$
 $y''(x) = F_2(x, y, y', lpha_2, \ldots lpha_n)$ $\ldots \ldots \ldots \ldots \ldots \ldots \ldots y^{(n+1)}(x) = F_{n+1}(x, y, y', \ldots y^{(n)})$

En posant maintenant:

(16)
$$\overline{q}(x) = \frac{F_{n+1}(x, f', f'', \dots, f^{(n)})}{f^{(n+1)}(x)}$$

où $y, y', \ldots y^{(n)}$ ont été remplacées par $f, f', \ldots, f^{(n)}$ respectivement, les conditions suffisantes suivantes peuvent être énoncées si $f^{(n+1)}(x)$ ne change pas de signe pour n'importe quelle valeur de x de l'intervalle d'interpolation:

A. Si

$$\overline{q}(x) \gtrless 1$$

dans tout l'intervalle considéré, on a respectivement

$$q(x) \gtrsim 1$$

et

$$Q(x) \cdot R(x) \gtrsim 0$$

B. Si y(x) est choisie de telle manière que $y^{(n+1)}(x)$ ne change pas de signe dans tout l'intervalle et que

$$(17) 0 \leq \overline{q}(x) \leq 1,$$

on a alors

$$(18) |Q(x)| \le |R(x)|$$

Dans la suite de son mémoire, M. Fredrik Esscher étudie une fonction y(x) ayant la forme

$$y(x) = a_0 + a_1 e^{a_1 x}$$

et la formule d'interpolation qu'on obtient pour les fonctions actuarielles de l'assurance vie.

Nous nous proposons d'étudier maintenant une fonction y(x) ayant la forme

$$y(x) = a_0 + a_1 e^{a_1 x} + a_2 e^{a_2 x}$$

et de montrer que la formule d'interpolation que l'on obtient conduit à de bons résultats pour l'interpolation de certaines fonctions actuarielles de l'assurance vie et invalidité.

2. Interpolation de f(x) par la fonction $y(x) = a_0 + a_1 e^{a_1 x} + a_2 e^{a_2 x}$.

Nous choisirons donc pour y(x) une fonction ayant la forme particulière (20) et nous supposerons que

(21)
$$\begin{cases} y(x_0 - k) = f(x_0 - k) \\ y(x_0) = f(x_0) \\ y(x_0 + k) = f(x_0 + k) \end{cases}$$

Il n'y a alors pas de difficultés à montrer que la formule d'interpolation $y(x_0 + h)$ sera obtenue en résolvant l'équation:

(22)
$$\begin{vmatrix} f(x_{0}-k) & 1 & e^{-\alpha_{1}k} & e^{-\alpha_{2}k} \\ f(x_{0}) & 1 & 1 & 1 \\ y(x_{0}+k) & 1 & e^{\alpha_{1}k} & e^{\alpha_{2}k} \\ f(x_{0}+k) & 1 & e^{\alpha_{1}k} & e^{\alpha_{2}k} \end{vmatrix} = 0$$

En convenant de poser:

$$1+j_1=e^{a_1}$$
 $1+j_2=e^{a_2}$ $rac{1}{a_{\overline{n}|}}=rac{1-(1+j_1)^{-n}}{j_1}$ $rac{1}{a_{\overline{n}|}}=rac{1-(1+j_2)^{-n}}{j_2}$ $rac{1}{s_{\overline{n}|}}=rac{(1+j_1)^n-1}{j_2}$ $rac{1}{s_{\overline{n}|}}=rac{(1+j_2)^n-1}{j_2}$

et en développant le déterminant, la formule d'interpolation cherchée peut s'écrire:

$$(23) \quad y(x_{0}+h) = f(x_{0}) \left[1 - \frac{\left(\frac{1}{a_{\overline{k}|}} + \frac{1}{s_{\overline{k}|}}\right) \frac{2}{s_{\overline{h}|}} - \left(\frac{2}{a_{\overline{k}|}} + \frac{2}{s_{\overline{k}|}}\right) \frac{1}{s_{\overline{h}|}}}{\frac{1}{a_{\overline{k}|}} \frac{2}{s_{\overline{k}|}} - \frac{2}{a_{\overline{k}|}} \frac{1}{s_{\overline{k}|}}} \right] + f(x_{0}+k) \frac{\frac{1}{a_{\overline{k}|}} \frac{2}{s_{\overline{h}|}} - \frac{2}{a_{\overline{k}|}} \frac{1}{s_{\overline{h}|}}}{\frac{1}{a_{\overline{k}|}} \frac{2}{s_{\overline{k}|}} - \frac{2}{a_{\overline{k}|}} \frac{1}{s_{\overline{k}|}}} + f(x_{0}-k) \frac{\frac{1}{s_{\overline{k}|}} \frac{2}{s_{\overline{k}|}} - \frac{1}{s_{\overline{k}|}} \frac{2}{s_{\overline{k}|}} - \frac{1}{s_{\overline{k}|}} \frac{2}{s_{\overline{k}|}}}{\frac{1}{a_{\overline{k}|}} \frac{2}{s_{\overline{k}|}} - \frac{2}{a_{\overline{k}|}} \frac{1}{s_{\overline{k}|}}}}$$

Si maintenant on pose:

$$(24) (as)_{\overline{k}, \overline{h}|} = \frac{\stackrel{1}{a_{\overline{k}|}} \stackrel{2}{s_{\overline{h}|}} - \stackrel{2}{a_{\overline{k}|}} \stackrel{1}{s_{\overline{h}|}}}{\stackrel{1}{a_{\overline{k}|}} s_{\overline{k}|} - \stackrel{2}{a_{\overline{k}|}} s_{\overline{k}|}}$$

$$(25) (ss)_{\overline{k}, \overline{h}|} = \frac{\frac{1}{s_{\overline{k}|}} \frac{2}{s_{\overline{h}|}} - \frac{2}{s_{\overline{k}|}} \frac{1}{s_{\overline{h}|}}}{\frac{1}{a_{\overline{k}|}} \frac{2}{s_{\overline{k}|}} - \frac{2}{a_{\overline{k}|}} \frac{1}{s_{\overline{k}|}}}$$

la formule d'interpolation (23) prend la forme suivante

$$(26) \quad y(x_{0}+h) = f(x_{0}) \left[1 - \left[(as)_{\overline{k}, h} + (ss)_{\overline{k}, h}\right]\right] + f(x_{0}+k) (as)_{\overline{k}, h} + f(x_{0}-k) (ss)_{\overline{k}, h}$$

ou si h est négatif

$$(26*) y(x_0-h) = f(x_0) \left[1 - \left[(as)_{\overline{h, k}} + (aa)_{\overline{h, k}} \right] \right] + f(x_0 + k) (aa)_{\overline{h, k}} + f(x_0 - k) (as)_{\overline{h, k}}$$

après avoir convenu de poser:

$$(27) (as)_{\overline{k}, -\overline{h}|} = \frac{\frac{1}{a_{\overline{h}|}} \frac{2}{a_{\overline{k}|}} - \frac{2}{a_{\overline{h}|}} \frac{1}{a_{\overline{k}|}}}{\frac{1}{a_{\overline{k}|}} - \frac{2}{a_{\overline{h}|}} \frac{1}{a_{\overline{k}|}}} = (aa)_{\overline{h}, \overline{k}|}$$

$$(28) (ss)_{\overline{k},-\overline{h}|} = \frac{a_{\overline{h}|}^2 s_{\overline{k}|} - a_{\overline{h}|}^2 s_{\overline{k}|}}{a_{\overline{k}|}^2 s_{\overline{k}|} - a_{\overline{k}|}^2 s_{\overline{k}|}} = (as)_{\overline{h},\overline{k}|}$$

Une table numérique de chacun des nombres

$$(as)_{\overline{k,h}}$$
 $(ss)_{\overline{k,h}}$ $(aa)_{\overline{h,k}}$ $(as)_{\overline{h,k}}$

s'établira sans de trop longs calculs, car

$$(29) s_{\overline{h}} = (1+j)^h a_{\overline{h}}$$

En possession des valeurs numériques de ces différents nombres, on conviendra alors facilement que l'utilisation pratique des formules d'interpolation (26) et (26*) ne soulève aucune difficulté et que le résultat cherché s'obtiendra d'une manière extrêmement rapide.

A la fin du présent travail, on trouvera des tables numériques donnant les valeurs de ces différents nombres. Ceux-ci étant calculés en vue de l'interpolation de certaines fonctions actuarielles de l'assurance vie et invalidité, dont les valeurs numériques se trouvent dans la table MM et IM $3\frac{1}{2}$ %.

3. Détermination de $\overline{q}(x)$.

Conformément à la théorie précédemment exposée au § 1, nous aurons:

(30)
$$F_{\mathbf{3}}(x, y, y', y'', y''') = \begin{vmatrix} a_{\mathbf{0}} e^{a_{\mathbf{1}}x} & e^{a_{\mathbf{2}}x} & y \\ 0 \alpha_{\mathbf{1}} e^{a_{\mathbf{1}}x} & \alpha_{\mathbf{2}} e^{a_{\mathbf{2}}x} & y' \\ 0 \alpha_{\mathbf{1}}^{2} e^{a_{\mathbf{1}}x} & \alpha_{\mathbf{2}}^{2} e^{a_{\mathbf{2}}x} & y'' \\ 0 \alpha_{\mathbf{1}}^{3} e^{a_{\mathbf{1}}x} & \alpha_{\mathbf{2}}^{3} e^{a_{\mathbf{2}}x} & y''' \end{vmatrix}$$

En développant le déterminant, il viendra

(31)
$$F_3(x, y, y', y'', y''') = y'''(x) - (\alpha_1 + \alpha_2) y''(x) + \alpha_1 \alpha_2 y'(x)$$

d'où nous déduisons:

$$\overline{q}(x) = 1 - \frac{(\alpha_1 + \alpha_2) f''(x) - \alpha_1 \alpha_2 f'(x)}{f'''(x)}$$

Nous pouvons donc dire maintenant que la condition «suffisante» pour que la formule (26) donne un résultat meilleur que celui que l'on obtiendrait par un polynôme d'interpolation de Newton du second degré, sera que la double inégalité suivante soit satisfaite:

$$(33) 0 \leq \frac{(\alpha_1 + \alpha_2) f''(x) - \alpha_1 \alpha_2 f'(x)}{f'''(x)} \leq 1$$

 $f^{\prime\prime\prime}(x)$ et $y^{\prime\prime\prime}(x)$ ne devant pas changer de signe dans l'intervalle d'interpolation.

4. Fonctions pouvant être interpolées par (26).

Si les valeurs numériques

$$f(x_0)$$
 $f(x_0 + k)$ $f(x_0 + 2k) \dots$

d'une fonction f(x) sont connues et qu'on se demande si la formule (26) peut être utilisée pour la détermination des valeurs intermédiaires, il faudra commencer par calculer les trois premières différences d'intervalle k et vérifier si celles-ci satisfont à l'équation linéaire aux différences finies du troisième ordre:

$$(34) \qquad \triangle^3 f(x) - p \triangle^2 f(x) + q \triangle f(x) = 0$$

Si l'on constate qu'il en est ainsi et pratiquement ce sera d'une manière approchée, il restera alors à déterminer les constantes α_1 et α_2 .

Comme on dispose d'un nombre surabondant d'équations (34), nous devrons utiliser la méthode des moindres carrés pour déterminer p et q, qui nous permettront ensuite d'obtenir α_1 et α_2 par résolution des équations exponentielles

(35)
$$e^{\alpha_1} = (z_1 + 1)^{\frac{1}{k}}$$

(36)
$$e^{a_2} = (z_2 + 1)^{\frac{1}{k}}$$

 z_1 et z_2 étant les racines de l'équation

$$(37) z^2 - pz + q = 0$$

La méthode des moindres carrés est toujours longue à employer. Nous allons montrer par les applications numériques ci-après que si les fonctions actuarielles de l'assurance vie et invalidité sont calculées à l'aide d'une table de mortalité ajustée par la formule de Makeham et d'une table d'invalidité ajustée par celle de Behm-Urech, on peut éviter les longs calculs nécessités par la méthode des moindres carrés.

II. Applications.

1. Rente temporaire discontinue d'activité.

Si on calcule la rente temporaire discontinue d'activité avec une table de mortalité ajustée par la formule de Makeham et une table d'invalidité ajustée par celle de Behm-Urech, ce qui est le cas pour la table MM et IM $3\frac{1}{2}\%$, cette rente, prise comme fonction de x, s'exprime analytiquement comme suit:

(38)
$$f(x) = \sum_{t=0}^{t=n-1} (vs)^t g^{e^{x}(e^t-1)} \frac{\sum_{k=x+t-1}^{k=x+t-1}}{\sum_{k=x}^{k=x+t-1}} (1 - GF^k)$$

s, g et c sont les constantes de Makeham et F et G celles de Behm-Urech. Pour la table MM et IM, les valeurs numériques de ces constantes sont:

$$s = 0.9967$$
 $F = \frac{0.000125}{8}$ $g = 0.9960$ $G = \sqrt[5]{2}$

La valeur approximative des constantes α_1 et α_2 pourra être obtenue en procédant comme suit: En tenant compte de l'inégalité:

(39)
$$\frac{\frac{k=x+t-1}{k}}{\left| \frac{k=x+t-1}{k} \right|} (1 - FG^k) < e^{-F\sum_{k=x}^{k=x+t-1} G^k}$$

et en effectuant la somme

(40)
$$\sum_{k=x}^{k=x+t-1} G^k = \frac{G^t - 1}{G - 1} G^x$$

on trouve que la rente temporaire discontinue d'activité peut s'exprimer approximativement par le développement

(41)
$$f(x) \sim \sum_{t=0}^{t=n-1} (vs)^t g^{c^{x}(c^t-1) + TG^{x}(G^t-1)}$$

après avoir convenu de poser:

(42)
$$e = g^{\frac{1}{\log g}}$$
 et (43) $T = \frac{-F}{(G-1) \log g}$

En considérant maintenant les deux premiers termes du développement en série de g^z dans (41), on voit que nous pourrons prendre pour α_1 et α_2 les nombres suivants:

$$\alpha_1 = \text{Log } c$$

$$\alpha_2 = \text{Log } G$$

Pour la table MM et IM $3\frac{1}{2}$ %, nous aurons donc:

(46)
$$\alpha_1 = \text{Log } 1.0792$$

(47)
$$\alpha_2 = \text{Log } 1.1487$$

Afin de pouvoir dire que sur la base des valeurs numériques de ces constantes la formule d'interpolation (26) donnera une meilleure approximation que celle donnée par un polynôme d'interpolation de Newton du second degré, il faudrait maintenant vérifier la double inégalité (33) et montrer que f'''(x) et g'''(x) ne changent pas de signe.

On constate immédiatement que y'''(x) ne change pas de signe. En ce qui concerne f'''(x) et la vérification de la double inégalité (33), la forme analytique de f(x) [formule (38)] rend le calcul algébrique tellement ardu que nous avons renoncé à ces vérifications et préféré faire un exemple numérique. On trouvera nos résultats dans le tableau I ci-après.

Les polynômes de Newton du second degré que nous avons utilisés sont les suivants:

(48)
$$P_2(x) = 13.762 - 0.0396 (x - 25) - 0.00238 (x - 20) (x - 25) (20 < x < 30)$$

$$\begin{array}{c} (49) \quad P_{2}(x) = 12.935 - 0.1020 \ (x - 35) - 0.00586 \ (x - 30) \ (x - 35) \\ (30 < x < 40) \end{array}$$

$$\begin{array}{cc} (50) & P_{\rm 2}(x) = 10.927 - 0.2410 \, (x - 45) - 0.00862 \, (x - 40) \, (x - 45) \\ & (40 < x < 50) \end{array}$$

2. Rente temporaire d'invalidité.

Pour la rente temporaire d'invalidité, la formule suivante est à utiliser si la table de mortalité est valable aussi bien pour les actifs que pour les invalides et les rentiers, ce qui est le cas pour MM et $IM 3\frac{1}{2}\frac{9}{9}$:

(51)
$$a_{x:\overline{n}|}^{ai} = \frac{N_x^{ai} + D_{x+n}^{aa} a_{x+n} - N_{x+n}^{ai}}{D_x^{aa}} - \frac{N_{x+n}}{D_x}$$

Une série de rentes à âges-terme différents se calculera d'une manière très rapide en utilisant (26) et (26*) et avec une bonne approximation, comme on peut le constater dans le tableau II.

Les polynômes de Newton du second degré sont:

$$(54) \quad P_2(x) = 1.842 + 0.1534 \; (x - 45) + 0.00538 \; (x - 40) \; (x - 45) \\ (40 < x < 50)$$

3. Assurance mixte avec paiement anticipé du capital en cas d'invalidité.

Les résultats numériques obtenus par l'utilisation de (26) et (26*) pour la détermination par interpolation des valeurs d'assurances du type considéré sont donnés par le tableau III. Ils sont obtenus, comme on pourra le constater, plus rapidement que par la formule

(55)
$$\overline{A}_{x:\overline{n}|}^{(i)} = \frac{[\overline{M}_{x}^{ai}] + \overline{M}_{x}^{aa} + D_{x+n}^{aa} - ([\overline{M}_{x+n}^{ai}] + \overline{M}_{x+n}^{aa})}{D_{x}^{aa}}$$

ou par les polynômes de Newton du second degré:

$$(56) \ P_{\mathbf{2}}(x) = 0.53687 + 0.001434 \ (x-25) + 0.0000876 \ (x-20) \ (x-25) \\ (20 < x < 30)$$

$$\begin{array}{c} (57)\ P_{\mathbf{2}}(x) = 0.56689 + 0.003694\ (x-35) + 0.0002122\ (x-30)\ (x-35) \\ (30 < x < 40) \end{array}$$

$$(58) \ P_{\mathbf{2}}(x) = 0.63914 + 0.008634 \ (x-45) + 0.0002918 \ (x-40) \ (x-45) \\ (40 < x < 50)$$

Conclusion.

L'examen des résultats numériques obtenus nous permet de dire que la formule d'interpolation proposée présente, par rapport à la formule d'interpolation de Newton, les avantages suivants:

1º augmentation de la rapidité des calculs,

2º meilleure approximation pour les fonctions dont l'âge-terme est inférieur à 60 ans.

Si l'on veut bien tenir compte des incertitudes dont sont entachées les bases techniques, principalement celles concernant l'invalidité, on peut dire que la formule d'interpolation (26) pourra s'employer même jusqu'à l'âge-terme de 70 ans. Dans les questions de ce genre, on préférera toujours la méthode rapide à la méthode exacte, lorsque l'on peut se rendre compte que l'erreur commise n'atteint pas une grandeur non négligeable. Les erreurs constatées dans nos exemples numériques sont certainement inférieures à celles qu'amènerait une faible variation des probabilités d'invalidité.

Nous croyons pouvoir dire en terminant que les résultats auxquels nous sommes arrivés montrent suffisamment la valeur des recherches du genre de celles de M. Fredrik Esscher. Elles permettent

à l'actuaire d'obtenir des formules d'interpolation simples, donnant une précision pratiquement amplement suffisante, lui diminuant ainsi le nombre de ses calculs.

Tables numériques auxiliaires pour l'application des formules d'interpolation (26) et (26 *) à MM et IM $3\frac{1}{2}$ %.

h	$(1+j_1)^h$	$(1+j_2)^h$	$(1+j_1)^{-h}$	$(1+j_2)^{-h}$
1	1.0792	1.1487	0.9266	0.8705
2	1.1647	1.3195	0.8586	0.7579
3	1.2569	1.5157	0.7956	0.6598
4	1.3564	1.7411	0.7372	0.5744
5	1.4639	2.0000	0.6831	0.5000

h	$a^{\frac{1}{h}}$	$a^2_{\overline{h} }$	$\frac{1}{s_{\overline{h} }}$	$\frac{2}{s_{\overline{h}}}$
$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$	0.9266 1.7852 2.5808 3.3181 4.0011	0.8705 1.6284 2.2882 2.8626 3.3626	1.0000 2.0792 3.2439 4.5008 5.8572	1.0000 2.1487 3.4682 4.9839 6.7250

h	$(as)_{\overline{5,\ h}}$	$(ss)_{\overline{5,h}}$	$1 - \left[(as)_{\overline{5,h}} + (ss)_{\overline{5,h}} \right]$
1 2 3 4 5	0.0885 0.2226 0.4116 0.6665 1.0000	$\begin{array}{c} -0.1203 \\ -0.1937 \\ -0.2082 \\ -0.1492 \\ 0.0000 \end{array}$	1.0318 0.9711 0.7966 0.4827 0.0000

-h	$(as)_{\overline{h}, 5 }$	$(aa)_{\overline{h}, 5 }$	$1 - \left[(as)_{\overline{h}, 5 } + (aa)_{\overline{h}, 5 } \right]$
1 2 3 4 5	0.1571 0.3422 0.5482 0.7692 1.0000	$\begin{array}{c c} -0.0509 \\ -0.0711 \\ -0.0662 \\ -0.0411 \\ 0.0000 \end{array}$	0.8938 0.7289 0.5180 0.2719 0.0000

Tableau I.

					1 aoitean 1.
	aa aa	(22)	D (=)	10001(3) (1)1	1000[(9) (4)]
x	$a^{aa}_{x:\overline{20}}$	y(x)	$P_{2}(x)$	1000[(2)—(1)]	1000[(3)—(1)]
	(1)	(2)	(3)	(4)	(5)
20	13.960				
21	13.927	13.9273	13.9299	+ 0.3	+ 2.9
22	13.892	13.8915	13.8951	- 0.5	+ 3.1
23	13.852	13.8523	13.8555	+ 0.3	+ 3.5
24	13.810	13.8092	13.8111	- 0.8	+ 1.1
25	13.762				
26	13.711	13.7101	13.7081	- 0.9	_ 2.9
27	13.654	13.6531	13.6495	- 0.9	- 4.5
28	13.591	13.5903	13.5861	- 0.7	- 4.9
29	13.521	13.5212	13.5179	+ 0.2	- 3.1
30	13.445				
_ 31	13.361	13.3603	13.3664	- 0.7	+ 5.4
32	13.269	13.2677	13.2762	- 1.3	+7.2
33	13.168	13.1666	13.1742	-1.4	+ 6.2
34	13.057	13.0560	13.0604	- 1.0	+ 3.4
35	12.935				
36	12.802	12.8026	12.7978	+ 0.6	- 4.2
37	12.656	12.6575	12.6490	+ 1.5	7.0
38	12.496	12.4983	12.4884	+ 2.3	— 7.6
39	12.322	12.3237	12.3160	+ 1.7	6.0
40	12.132				
41	11.926	11.9211	11.9255	- 4.9	- 0.5
42	11.703	11.6959	11.7017	7.1	— 1.3
43	11.463	11.4557	11.4607	— 7.3	- 2.3
44	11.204	11.1996	11.2025	- 4.4	- 1.5
45	10.927	A			
46	10.633	10.6373	10.6343	+4.3	+ 1.3
47	10.320	10.3294	10.3243	+ 9.4	+ 4.3
48	9.992	10.0027	9.9971	+10.7	+ 5.1
49	9.648	9.6568	9.6527	+ 8.8	+ 4.7
50	9.291				4

Tableau II.

	THE RESIDENCE OF THE PERSON NAMED IN COLUMN 18 AND THE PERSON NAMED IN COL				
x	$a_{x:20}^{ai}$	y(x)	$P_{2}(x)$	1000[(2)(1)]	1000[(3)—(1)]
	(1)	(2)	(3)	(4)	(5)
	(1)	(2)	1 (9)	(±)	1 (0)
20	0.084				- Vill
21	0.096	0.0960	0.0940	0.0	- 2.0
22	0.110	0.1097	0.1070	- 0.3	- 3.0
23	0.125	0.1252	0.1228	+ 0.2	-2.2
24	0.143	0.1429	0.1414	- 0.1	-1.6
25	0.163				
26	0.186	0.1859	0.1874	- 0.1	+1.4
27	0.212	0.2119	0.2148	- 0.1	+ 2.8
28	0.242	0.2416	0.2450	-0.4	+ 3.0
29	0.276	0.2754	0.2780	- 0.6	+ 2.0
30	0.314				
31	0.357	0.3580	0.3528	+ 1.0	- 4.2
32	0.406	0.4071	0.4000	+1.1	- 6.0
33	0.461	0.4618	0.4554	+ 0.8	-5.6
34	0.522	0.5228	0.5190	+ 0.8	- 3.0
35	0.591			*	
36	0.669	0.6672	0.6712	- 1.8	$+\ 2.2$
37	0.755	0.7524	0.7598	-2.6	+ 4.8
38	0.852	0.8479	0.8566	- 4.1	+4.6
39	0.959	0.9549	0.9616	-4.1	+ 2.6
40	1.075				
41	1.205	1.2094	1.2069	+ 4.4	+ 1.9
42	1.346	1.3529	1.3495	+ 6.9	$+ \ 3.5$
43	1.500	1.5059	1.5029	+ 5.9	$+ \ 2.9$
44	1.666	1.6688	1.6671	+ 2.8	+ 1.1
45	1.842		= , a	Ţ.	
46	2.033	2.0260	2.0277	- 7.0	- 5.3
47	2.232	2.2212	2.2241	10.8	— 7.9
48	2.441	2.4281	2.4313	-12.9	- 9.7
49	2.658	2.6469	2.6493	-11.1	-8.7
50	2.878				
	The state of the s				-

Tableau III.

					
x	$\overline{A}_{m{x}:20}^{(i)}$	y(x)	$P_{2}(x)$	$10^{5}[(2)-(1)]$	10 ⁵ [(3)—(1)]
	(1)	(2)	(3)	(4)	(5)
20	0.52 970				
21	0.53 087	0.530880	0.530784	+ 1.0	- 8.6
22	0.53218	0.532175	$0.532\ 042$	- 0.5	-13.8
23	0.53358	0.533595	0.533476	+ 1.5	-10.4
24	0.53515	0.535156	0.535086	+ 0.6	-6.4
25	0.53 687				
26	0.53 876	0.538 755	0.538 830	- 0.5	+ 7.0
27	0.54087	0.540830	0.540964	- 4.0	+ 9.4
28	0.54316	0.543117	$0.543\ 274$	- 4.3	+ 11.4
29	0.54567	$0.545\ 638$	0.545760	- 3.2	+ 9.0
30	0.54 842	5.		5.	
31	0.55 145	0.551488	$0.551\ 265$	+ 3.8	-18.5
32	0.55 479	0.554840	0.554535	+ 5.0	-25.5
33	0.55847	0.558502	0.558229	+ 3.2	-24.1
34	$0.56\ 247$	$0.562\ 508$	$0.562\ 347$	+ 3.8	-12.3
35	0.56 689				
36	0.57 176	0.571.686	0.571 857	- 7.4	+ 9.7
37	0.57 703	0.576941	0.577249	— 8.9	+ 21.9
38	0.58284	0.582705	$0.583\ 065$	-13.5	+ 22.5
39	0.58 915	$0.589\ 028$	$0.589\ 305$	-12.2	+ 15.5
40	0.59 597	2 11			
41	0.60 340	0.603 560	0.603437	+ 16.0	+ 3.7
42	0.61138	$0.611\ 650$	0.611487	+ 27.0	+ 10.7
43	0.62002	$0.620\ 260$	$0.620\ 121$	+ 24.0	+ 10.1
44	0.62927	$0.629\ 418$	$0.629\ 339$	+ 14.8	+ 6.9
45	0.63 914		,	4	
46	0.64 961	0.649 445	0.649525	-16.5	- 8.5
47	0.66 065	0.660 359	0.660493	- 29.1	-15.7
48	$0.67\ 224$	0.671 902	$0.672\ 045$	- 33.8	-19.5
49	0.68 435	0.684078	0.684 181	- 27.2	-16.9
50	0.69690				